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ABSTRACT

Colonization of insular Newfoundland by coyotes (Canis latrans) coincided with
declines in woodland caribou (Rangifer tarandus caribou) populations, generating public
outery to reduce coyote predation on this iconic species. My research was focused on the
Maritime Barrens Ecoregion of Newfoundland. which is more akin to an arctic habitat
than the desert, plains, or forest habitats typically occupied by coyotes. I investigated both
habitat associations and spatial stability of coyotes in relation to short-distance migratory
caribou. I compared efficacy between statistical and algorithmic spatial models incorpor-
ating relatively static habitat and environmental data for predicting patterns of use. The
algorithmic model was superior for predicting future use with the limited background

data. However, the best predictive model showed substantial individual variation, pos-

sibly reflecting local availability of food resources emphasizing the need to collect these
data. Coyote home ranges were relatively static across seasons and years. Overall coyotes
appeared to exhibit adaptive and opportunistic behaviour common throughout the species
range.

Keywords: boosted regression trees; Canis latrans: coyote; geographic information

system: Global Positioning System; Maritime Barrens Ecoregion; mixed-effects model;

Newfoundland; resource selection model
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CHAPTER 1. INTRODUCTION AND OVERVIEW
1.1 Eastern Coyote

Coyotes (Canis latrans) are possibly the most thoroughly studied carnivores in
North America (Voigt and Berg 1987: Bekoff and Gese 2003). While much of this re-
search has been conducted in western desert, mountain, and plains habitat, there has been
substantial research following coyote range expansion eastward across the continent. It is
well documented that the coyote niche differs both in eastern populations (Parker 1995
Gompper 2002) and in the absence of wolves (Bekoff and Gese 2003; Berger and Gese
2007). Most of the research in eastern coyote range has occurred in areas where wolves
are in low density or absent, as is the case for my research in insular Newfoundland. East-
ern coyotes are considered distinct from western populations in both genetic make-up,
which has led to increased body size and possibly the ability to hunt larger prey (Kays ef
al. 2010), and ecological role as a predator/scavenger of larger mammals (Harrison
1992). Although eastern coyotes typically represent the largest canine predator on the
landscape, they are not the functional ecological equivalent of wolves (Créte ef al. 2001).
Eastern coyotes do not show consistent preference for particular habitats, but anthropo-
genic landscapes tend to be more productive and occupied in greater density than forested
areas (Ray 2000; Gompper 2002). Community-level effects following coyote coloniza-
tion can be far-reaching (Gompper 2002).

The coyotes inhabiting northeastern North America are a genetically distinct pop-

ulation segment descended from dispersers that immigrated north of the Great Lakes



from western portions of the continent over the course of the past century (Kays ef al.
2010). Parker (1995) outlined the colonization history of the species through the mid-
western states and Ontario, and into New England and the Maritime provinces. The final
major hurdle in the eastward colonization was cleared in the mid-1980s when the first
coyotes reached the island of Newfoundland, purportedly crossing Cabot Strait over sea
ice (Moore and Parker 1992). The first confirmation of breeding success on the island
was a juvenile coyote killed by a vehicle near Deer Lake in 1987. Northward colonization
of the continent continues (Chubbs and Phillips 2002, 2005; Cluff 2006). though at a
slower rate, likely due to the continued presence of wolves and less intensive anthropo-
genic landscape change north of all current coyote range (Moore and Parker 1992).

In addition to this ecological distinction, eastern coyotes seem to be more ma-
ligned than their western counterparts. This public perception and fear may be a con-
sequence having to deal with a largely unknown predator on the landscape (e.g., Kellert
1985: Linnell ez al. 2003; Andersone and Ozoling 2004: Roskaft er al. 2007). Researchers

throughout the eastern coyote range have commented on public fears and hatred follow-

ing successful colonization (e.g., Hilton 1992; Moore and Parker 199 vens et al.
1994 Parker 1995: Ray 2000: Gompper 2002). Sutherland (2010) focused specifically on

this issue in insular fc and di public ions and emotions sim-

ilar to those experienced elsewhere. Specifically, individuals in her survey indicated that

negative feelings may be a result of lack of familiarity with coyof

s compared to other

predators that have been on the landscape since pre-colonial times. Attitudes toward




coyotes in also followed ic and experiential parameters in the
same way as elsewhere across North America, such as more negative attitudes among
older and more rural people along with those unfamiliar with the species in their area
(Kellert 1985). Research indicates that education programs may improve attitudes for co-
existence with coyotes (Stevens ez al. 1994; Baker and Timm 1998; Fox 2006), a neces-
sity for successful management of a species that is relatively immune to population con-
trol measures (Voigt and Berg 1987; Parker 1995).
1.2.  Natural History of Newfoundland

My research focuses on spatial aspects of coyote ecology in a landscape that ap-
pears dramatically different from everywhere else coyotes have been studied. The Mari-
time Barrens Ecoregion (MBE) of Newfoundland (Figure 2.1) is more akin to an arctic
habitat than the desert, plains, or forest habitats typically occupied by coyotes (Figure

2.3). In addition to the landscape, coyotes in the MBE interact with a unique assemblage

of prey.
The terrestrial of the island of fc  historically character-
ized by native fauna, have unds numerous redefining events. This nat-
ive was heavily with 7 i . 3 rodents, | and |
ungulate ing the entire suite of quadrupedal mammals (Bangs 1913). In the

period following European settlement, numerous modifications of the natural system
have oceurred both accidentally and intentionally (Table 1.1). Fires have resulted in

drastic changes to the landscape, most notably the development of the entire Maritime



Barrens Ecoregion as a primarily non-forested landscape (Meades 1983). Faunal changes
include extinction of the endemic Newfoundland wolf (Canis lupus beothucus: Allen and
Barbour 1937) following decades of bounty, and introductions of 2 galliform birds (Tuck
1968), 7 rodents, 1 lagomorph, and 1 ungulate. All of these ecosystem and community
changes may have substantial importance for the naturally colonized population of
coyotes.

Many far-reaching direct and indirect impacts of these ecosystem changes have
been observed or hypothesized. Introduction of the snowshoe hare (Lepus americanus)
has been implied as the indirect cause of range restriction and population declines of the
Arctic hare (Lepus arcticus; Bangs 1913; Bergerud 1967). Similarly it has been hypothes-
ized that red-backed vole (Myodes gapperi) introductions will eventually cause range re-
striction and reduced populations of the endemic meadow vole (Microtus pennsylvanicus
terraenovae; Hearn et al. 2006). Increases in the accidentally introduced mink (Mustela
vison) populations have been considered the likely cause of observed declines in muskrat
(Ondatra zibethicus obscurus) populations (Soper and Payne 1997). Possible extinction
of the endemic Newfoundland crossbill (Loxia curvirostra percna) has been attributed to
establishment of the red squirrel (Tamiasciurus hudsonicus: Benkman et al. 2008). The
woodland caribou is among the latest species that may be suffering adverse effects of
faunal changes.

Insular caribou herds of Newfoundland have been intensively studied during the

past 60 years due to importance as a cultural and economic resource. Woodland caribou



are the only ungulate species native to Newfoundland (Bangs 1913). Unmonitored hunt-
ing of the population led to precipitous declines in the early 20th century limiting total
numbers to 1000-2000 (Bergerud 1971). This was followed by a period of restriction on
harvest and more directed management leading to steady growth of herds (Bergerud
1971) and eventual exponential growth (Mahoney and Schaefer 2002a) resulting in a
population peak of approximately 96 000 in 1996 (NLDEC 2009a). Since that time cari-
bou have entered another period of precipitous decline with a current population estimate
0f 32 000 (NLDEC 2009a). During this decline, behavioural changes have been observed
including more dispersed calving (NLDEC 2009b) and changes in core areas of use
(Stantec Consulting Ltd. 2011). Numerous hypotheses have been suggested as to the
causal factors in the recent decline, including density-dependent nutritional limitation
(Mahoney and Schaefer 2002a), anthropogenic disturbance leading to habitat loss
(Chubbs et al. 1993; Mahoney and Schaefer 2002b:; McCarthy er al. 2011), and predation
by endemic lynx (Lynx canadensis subsolanus: Bergerud 1971), endemic black bear
(Ursus americanus hamilioni; Mahoney and Virgl 2003), and recently colonized coyote
(NLDEC 2008). Thomas and Gray (2002) indicate that interplay among these factors may
make it difficult to identify the factors regulating caribou populations.
1.3, Coyotes in Newfoundland

Coyote predation may be contributing to caribou population declines with varying
levels of impact in time and space. It has been suggested that, following colonization in

Québec, coyotes have contributed to increased caribou calf mortality and consequent



population declines (Créte and Desrosiers 1995). However, predation may be a proximate
rather than ultimate cause for decline in caribou numbers, mediated by habitat change and
alternate prey species (Festa-Bianchet ez al. 2011). Since coyotes first arrived in New-
foundland, ca. 1985. the population has rapidly increased and expanded across the island
(McGrath et al. 2010). Increased coyote observations (McGrath 2004) and harvest (Mc-
Grath et al. 2010) coincided with caribou declines, but this correlation is not sufficient
evidence to constitute causality. Although it is likely that coyotes are playing a significant
role in caribou mortality, the determination of proximate versus ultimate factors is likely
to be less clear and of great importance in the long term management of the ecosystem.
Determination of which factors affect coyote temporal use of space within this system
should provide further insight to the mechanisms underlying associated trophic interac-
tions.

The potential prey component for coyotes in the MBE is composed of seasonally
migratory caribou, moose (Alces amricanus; as carrion), beaver (Castor canadensis),

muskrat, snowshoe hare, grouse, ptarmigan (Lagopus spp.), red squirrel, and voles. Inter-

specific competition in this landscape is limited. Bears and red foxes represent the
primary mammalian competition. Lynx are also present, but typically occur at lower
density in this open landscape compared to forested regions to the north (M.J. McGrath,

personal communication). Additional ecological knowledge in the form of spatial dynam-

ics should provide valuable insight to this relatively simplified predator-prey system.



In a multi-prey system, adaptive predation can have dramatic population level ef-
fects (Owen-Smith and Mills 2008). This is largely a result of prey switching due to

changes in relative vulnerability with changes in environmental conditions and prey

In a simple wolf-elk-bison system in National Park, prey
abundance, size, defensive behaviour, seasonal vulnerability, and predator preference all
played roles in switching behaviour of wolves (Garrott et al. 2007). Owen-Smith and
Mills (2008) conclude that the higher the diversity of prey. the harder to tease apart
factors affecting prey demographic response to predation. This suggests that identifying
factors promoting prey switching in MBE coyotes would be extremely difficult given the
range of prey sizes and their contrasting ecology. One approach to begin this process of
investigation is through identification of spatial patterns. Home range has been shown to
reflect variability of resources within an animal's territory, but other factors work to con-
found this relationship (Borger ef al. 2006). Additionally, individuals each select from a
different set of options given variation across the landscape. particularly when territorial-
ity exists.
14, Modelling Space Use

In ecology. we strive to explain processes through various means across a con-
tinuum of complexity. Many of these analyses of ecological study are conducted within
each investigator's realm of knowledge and comfort (Ellison and Dennis 2010). One of
the challenges to modern ecologists is adapting approaches to use the best available

methods allowing for a greater depth of scientific enquiry. This will often require re-



searchers to push their personal limitation into new realms of statistical and theoretical

to enhance the ing of systems and allow ecology to progress bey-

ond the basic questions that have dominated ecological journals and manuscripts for the

entire history of the discipline.

The concept of delineating spatial that to wildlife beha-
viour is by no means new. For centuries, natural historians and biologists have endeav-
oured to understand space use by animals (Burt 1943). Refinements of the concepts of
home range and territory to include various stages of life history and temporal scale have
advanced our understanding of animal behaviour from the individual and population per-
spectives. In recent decades, advances in technology (i.c., radio- and satellite-telemetry,

satellite imagery) have dramatically increased the temporal and spatial resolution and ey

tent of data available to scientists and led to a proliferation of new techniques for model-
ling animal space use.

Technological advances allow us to apply spatial theory to research questions con-
cemning ecology of wide-ranging carnivores (Young and Shivik 2006). Basic use-availab-
ility models were enhanced by consideration of the effects of spatial scale (Johnson
1980). Geographic information systems (GIS) coupled with remotely-sensed data from
satellite images greatly expanded the scope of background data available for building
spatial models. Individual-based spatial models were further advanced with the resource

selection function (RSF) typically implemented as a generalized linear model (Boyce and

MeDonald 1999 Manly et al. 2002). By the turn of the century Global Positioning Sys-



tem (GPS) collars were becoming more prevalent as a means of collecting high frequency
location data and bringing the issue of spatial autocorrelation to the forefront (Otis and
White 1999: Rodgers 2001). At this same time new approaches based on machine learn-
ing algorithms were entering the field of habitat modelling (Guisan and Zimmermann
2000; Scott ef al. 2002). Despite this, the RSF approach to modelling has persisted for
many years as the primary tool for modelling habitat associations. Modifications to the
RSF have evolved to improve our knowledge of systems based on remotely collected
data. Most of this model evolution has focused on serial autocorrelation associated with

high-frequency data for a small sample of individuals. Generalized additive models, gen-

eralized estimating equations, ized linear mixed-effect models, and
additive mixed-effect models have all been applied and advocated for modelling resource
selection in the past decade (e.g.. Gillies er al. 2006: Guisan ef al. 2006; Aarts et al. 2008;
Koper and Manseau 2009).

Alternative methods to statistical data models — known as algorithmic modelling,
data mining, or machine learning — are rapidly increasing with advances in computing
technology (see Hastie ef al. 2009). The use of machine learning techniques for species
distribution modelling continues to be promoted (e.g.. Elith er al. 2006; Hochachka et al.

2007: Marmion e al. 2009: Drew ef al. 2011). but is yet to enter the mainstream of re-

source selection modelling. Machine learning often outperforms traditional statistical ap-
proaches in identifying patterns in biogeographical space (Cushman et al. 2007). Ma-

chine learning approaches are especially suited to situations where the data do not neces-



sarily represent mechanisms generating the observed patterns. Specific strengths of ma-
chine learning include no a priori assumptions regarding relationship between response
and predictor variables, variable selection is built into the algorithms, non-linear and hier-
archical structure are easily modelled. and high-order interactions can be included (Craig
and Huettmann 2009). Model interpretation is generally very difficult with many machine
learning implementations, but exceptions do exist. For example, boosted regression trees
provide model output that is easy to visualize, similar to traditional linear approaches
(Elith er al. 2008). A disadvantage of machine learning models is the lack of mechanistic
tie between predictor and response variables (Cushman et al. 2007). While these rule-
based algorithms excel at finding patterns in data and predicting throughout parameter
space, there is no link to explaining the underlying process. Therefore the value may be in
identifying thresholds and targets for additional exploration (Hochachka e al. 2007).

Resource selection models typically require some assessment of the background

in which individuals are making behavioural choices of selecting among
available options. Large GIS data sets allow for ease of sampling background data and

hence the use of pseudo-absence data (i

. a random sample of points representing the

available envil itions) to i

in pres bs models. There is
a vast literature dealing with potential issues of contamination in pseudo-absence data as
well as alternative approaches when reliable absence data are not available (e.g.. Keating

and Cherry 2004 Pearce and Boyce 2006; Phillips et al. 2009). Failure to adequately deal

with the contamination issue can lead to biased parameter estimates in resource selection



functions. Therefore, evaluating outputs is imperative when using the model for predict-
ive purposes (Rykiel 1996; Guisan and Zimmermann 2000). This procedure provides
some level of credibility regarding model accuracy as well as a measure of comparison
among candidate models. particularly when an independent test set is used for evaluation
(Araiijo and Guisan 2006).
1.5.  Thesis Overview

The MBE is a unique system within the coyote's current range. Coyotes in the
MBE exhibit the largest home ranges among all populations studied in North America
(Blake 2006) reflecting the low net primary productivity of the ecoregion (Liu ef al.
2002). The MBE has undergone rapid change following the arrival of coyotes, most not-
ably the reduction in caribou abundance. Research has shown that coyotes are contribut-
ing to the high mortality rate of caribou calves in central Newfoundland (Blake 2006;
Trindade ef al. 2011). An ongoing diet study has also shown a high proportion of ungu-
late biomass (i.¢.. moose and caribou) is consumed by coyotes during the winter (Mc-
Grath ef al. 2010). This baseline information supports the idea that coyote foraging ef-
forts may be focused on abundant migratory caribou when they are at highest density in
the MBE during the winter season. The dramatic reduction in caribou population numbers
and changes in calving distribution (NLDEC 2009b) may somewhat reflect the establish-
ment of coyotes, but continued predation pressure is the greatest concern for my research.
Additional over-winter mortality or reduced fitness due to predation risk could signific-

antly impact the already stressed caribou population. Clarifying the ecological niche of




coyotes in the MBE will provide insight to the dynamic processes among predator and
prey species.

Coyotes in the MBE were instrumented with GPS collars and tracked from 2005-
2009 by the Newfoundland and Labrador Wildlife Division. I used these GPS data to de-
velop resource selection models for coyotes based on available GIS data that characterize
environment and habitat across the entire ecoregion. I then tested the predictive accuracy
of both a traditional statistical approach and a machine learning approach as a means of
determining (1) whether one approach is superior with the limited available background
data, (2) the value of indirect measures in modelling a generalist, and (3) the best model
for further analyses (Chapter 2). Additionally, I investigated seasonal and annual shifts in
individual home range utilization in an attempt to identify any patterns in shifting prey
focus based on over-winter presence of migratory caribou (Chapter 3). | interpreted the
best predictive model (from Chapter 2) and used this model to generate predictive distri-
bution maps for coyotes across the central portion of the MBE (Chapter 3). Finally. I at-
tempted to fill another knowledge gap with a preliminary assessment of coyote summer
diet (Appendix A) as a potential path forward for coyote research into mechanisms of ob-
served spatial patterns.

“This thesis continues to build upon research directed toward understanding the

ecological niche of coyotes in this novel insular landscape. Specifically. my research adds

a spatial component to the understanding of coyote ecology and how this fits with implic-

ations that coyotes are responsible for the decline in caribou populations. It also ident



an alternate approach to resource selection modelling and the merits of data mining given
limited ecological knowledge or data, concepts broadly applicable to ecological research.
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CHAPTER 2. CREATING HABITAT MODELS FOR A GENERALIST
PREDATOR: APPROACHES AND ISSUES
2.1.  Introduction

Species distribution models (SDMs) are widely used in ecology, both for develop-
ment of theoretical frameworks and application to conservation problems. Despite the
plethora of models that have been developed, there remains a relatively limited suite of
analytical methods used to construct the majority of these models. Researchers have
noted that ecology as a field may lag behind other areas of scientific endeavour because
we fail to apply more powerful and more appropriate techniques that remain outside of
our comfort zone (O'Connor 2002; Hochachka et al. 2007). This situation is not limited to
ecology alone; Breiman (2001) challenged the statistical community to expand their
knowledge and practice by including the techniques of machine learning in the suite of
tools for data analysis, citing various scenarios where stochastic data models failed to
meet the capabilities of algorithmic models.

Resource selection models (RSMs), the subset of SDMs typically developed with
repeated observations from a limited number of individuals, remain firmly entrenched in
the linear stochastic data model approach (Hegel er al. 2010). Manly et al. (2002) pro-
moted logistic regression as a resource selection function. which has become the norm for
identifying spatio-temporal associations of animals in their environment. Modellers fa-

cing budget and time are often chall

d to meet ions of this ap-

proach. The combination of increased location frequency available with Global Position-




ing System (GPS) tracking technology. opportunistic field data collection and common
practice of using readily available datasets (e.g., satellite image. forest inventory, and to-
pographic data) exacerbate these issues when modelling species response to their envir-
onments.

Advances have been made in the more traditional approach to resource selection
modelling by incorporating hierarchical structure to account for random effects. These
advances in RSM structure help to address some major issues, such as correlation, unbal-
anced samples, and unaccounted variability (Gillies ef al. 2006 Cressie et al. 2009;
Fieberg et al. 2010). Additionally, numerous researchers have shown how explicitly ac-

counting for random effects in stochastic data RSMs can enhance the explanatory power

of these models (e.g., Gillies et al. 2006; Hebblewhite and Merrill 2008; Godvik et al.
2009). However, the mixed-effects modelling approach does come with its own assump-
tions, namely distribution of the random effects, that can be both a strength (e.g., predict-
ing to new situations) and weakness (e.g.. no individual exhibits the mean response;
Fieberg et al. 2009; O'Hara 2009).

Stochastic data models in ecology typically focus on identifying explained vari-
ance in a functional form. This procedure requires clearly defined hypotheses of the rela-
tionship between variables. When the goal of modelling is focused on using the best

available data to predict scenarios beyond the original data without inferring process or

functional association, other methods, p algorithm-based (aka.

data mining, machine learning), may be more appropriate (Hochachka e al. 2007). The



design of machine learning algorithms s such that the goal of the resulting model is pre-
diction rather than explanation (De'ath 2007: Hochachka et al. 2007: Hastie et al. 2009).
This is a fuzzy distinction from a mixed-effect stochastic data model, which has a similar
predictive attribute inherent in the random-effect structure, but is one that may have prac-
tical implications.

The limitations of linear for ing SDMs have been highlighted

in recent years, but this has primarily transpired in the area of species occurrence model-
ling. Maximum entropy, artificial neural networks, genetic algorithms, decision trees, and
support vector machines have all been shown to improve predictive performance when
compared to logistic regression and other forms of stochastic data models when applied
to occurrence-based SDMs (Elith et al. 2006; Cutler er al. 2007; De'ath 2007). The
greatest predictive performance has been consistently achieved with ensemble learning
methods (i.c.. bagging, boosting, random forests; Caruana and Niculescu-Mizil 2006;
Olden ef al. 2008) that build upon basic machine learning algorithms by incorporating a
randomization component (Hastie er al. 2009). The call by O'Connor (2000, 2002) to ad-
vance the field of ecology with models that identify constraints rather than correlates in
an attempt to find causal relationships by incorporating analytical advances advocated by
Breiman (2001) remains largely unfulfilled fully a decade later (but see Guilford er al.
(2009). Monterroso et al. (2009), Oppel et al. (2009), Jiguet et al. (2010), and Kuem-

merle ef al. (2010) for examples of ensemble learning methods applied to RSMs).




Finally, and not of least importance, is the underlying theory regarding best mod-

elling practices. For years theoretical habitat ecologists have advocated for the use of
direct (environmental), direct (habitat), and resource gradient data for constructing both a
priori hypotheses and the models to test them (Guisan and Zimmermann 2000: Austin
2002; Scott er al. 2002). In practice, RSMs are typically parametrized with readily avail-
able data. These data are commonly derived from remote sensing applications and inter-
pretation of the resulting data within an ecological context (Kerr and Ostrovsky 2003;
Cohen and Goward 2004). What is commonly missing in this approach is the explicit
data relating resource gradients to animal space use (e.g., spatially and temporally dy-
namic food resources). From an individual animal viewpoint these resources largely af-
fect the behavioural response we are trying to model at the individual level (e.g., Creel
and Christianson 2008: Kanarek e al. 2008; Moorcroft and Barnett 2008).

In this chapter. I attempt to address some of these issues through application of
emerging analytical approaches to model habitat use by a generalist predator in a relat-

ively jthic and landscape. Specifically | investigate whether models

parametrized with only environmental and habitat gradient data may be insufficient to ac-

curately predict habitat use for a generalist camivore, indicating a need for more resource

data (i.c., prey availability). This is based on my hypothesis that appropriate driver data
will allow for effective modelling using diverse approaches (i.c., model convergence). |

predict that a resource selection function designed to explain patterns of coyote (Canis




latrans) space use should highly correlate to the prediction of an ensemble learning
model, given adequate correlative data.
2.2.  Methods
2.2.1. Study Area

1 obtained coyote data from the central portion of the Maritime Barrens Ecoregion
(MBE) of the Island of Newfoundland, Canada (Figure 2.1). The entire MBE encom-
passes some geographically disjunct units (i.¢., Avalon Peninsula, Burin Peninsula, east-
ern peninsulas, and coastal strip extending westward from White Bear River). Based on
spatial connectivity and caribou migratory patterns, these peninsular areas will not be
considered hereafter. However, the discontinuous portions of Central and Western New-
foundland Ecoregions located entirely within the MBE are included in the study area. The
MBE represents the primary historical wintering area for six of the province's woodland
caribou “herds™ (Bergerud 1971), as defined by Caribou Management Areas (i.e.,
Buchans Plateau, Gaff Topsails. Grey River, Middle Ridge, Mount Peyton, and Pot Hill;
Figure 2.2: NLDEC 2010a, 2010b, 2010c. 2010d, 2010e, 2010f). Under the current man-
agement regime, the MBE contains roughly one-third of Newfoundland's primary core
area for caribou and a comparable proportion of secondary core area (Stantec Consulting
Ltd. 2011).

The MBE is ized by heath barrens i d with peatlands and dense

patches of stunted balsam fir and spruce. The climate exhibits thin winter snow cover,

high wind exposure, and regular, dense fog (Damman 1983). Summers are cool and wet:




winters are mild relative to surrounding ecoregions. Frequent soil frost and a history of
fire prevent substantial forest regeneration in this area (Meades 1983). Existing forested
areas are typically restricted to the steep sided valleys and some hill slopes (Figure 2.3).
2.2.2. Data Sources

Data for my research originated from two general sources. coyote captures to de-
ploy GPS tracking collars and publicly available environmental datasets (Table 2.1).
Point data representing the response variable in all models were derived from GPS collar
locations (n = 30 788) combined with a random sample of points (n = 61 576) represent-
ing available habitat by individual for 17 coyotes (8 females, 9 males). Global Position-
ing System collars were deployed by Newfoundland and Labrador Wildlife Division per-
sonnel during mid-winter from 2005 to 2008. These GPS collars were programmed with
a variety of location recording schedules. which [ filtered to a standardized, continuous
interval (see Chapter 3 for additional details). I generated utilization distributions (UDs)
via kernel density estimation for each individual for the entire study period using Hawth's
Tools (Beyer 2007) within the ArcGIS (v. 9.3: ESRI 2008) geographic information sys-
tem (GIS). Random points were selected within a buffered 99% volume contour of each
individual UD at a 2:1 ratio with location points (see Chapter 3 for additional details).

1 used sixteen explanatory variables to parametrize coyote RSMs with the two
methods outlined below. Newfoundland and Labrador Wildlife Division personnel as-

signed the individual identifier, and determined age and sex at capture. | delineated year

and season (based on caribou migration dates; Table 2.1) from date information collected
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by GPS collars. Land cover classification followed the Earth Observation for Sustainable
Development of Forests system (Wulder er al. 2004). 1 generated distance rasters from
water features (NRC 2007a) and road features (NRC 2007b) using the GIS. A digital el-
evation model (DEM) based on the Canada3D product (NRC 2001) originally derived
from the Canadian Digital Elevation Data (NRC 2000) was used to sample elevation.
Slope and aspect (absolute deviation from north) were derived from the DEM within the
GIS. Both slope and aspect were treated as continuous variables. Additionally, a topo-
graphic convergence index (TCI) developed by Skinner (2011) replaced elevation, slope,
and aspect in some candidate models. The TCI is a proxy for surface moisture based
solely on DEM components slope. aspect, and steepness. High values of TCI represent
highly drained areas and low values represent areas of moisture collection. Resource data
were not available at the scale of the models and hence were not included.
223, Data Analyses

I employed two approaches to modelling coyote response to environment and
habitat variables: a stochastic data model and an algorithmic model. Generalized linear
mixed-effect models (GLMMs) were used in the stochastic data approach. With this
structural framework | was able to account for autocorrelation within individuals and
within years by assigning these as random effects.

I constructed 26 candidate GLMMs for each season using a variety of explanatory
variable groupings to assess various hypotheses of coyote ecology and potential interac-

tion with caribou and anthropogenic disturbance (Table 2.2. Appendix B). Each model in-



cluded parameters to consider year (slope) dependent upon individual (intercept) as ran-

dom effects, following implementation methods of Bates (2010a, 2010b, 2010c). I fit the
fixed-effects portion of cach GLMM with a binary logistic regression function using the
Ime4 package (Bates and Maechler 2010) in R (v. 2.11.1: R Development Core Team
2010). Following standard practices, all explanatory variables were assessed for collin-
earity. All variables in any model had reasonably low Pearson correlations (<0.41). Re-
sidual plots were used to assess assumptions of linear models including homogeneity, in-
dependence, normality and link function (Breslow 1996). I assessed each suite of candid-
ate models using Akaike's Information Criterion (AIC) to select the “best” summer and
winter models based on the training data (Burnham and Anderson 2002). Model aver-
aging was not necessary due to high Akaike weights of leading candidate models for each
season.

As an alternative to the more common stochastic data modelling approach, I mod-
elled the same data using boosted regression trees (BRT). This algorithmic model from
the field of machine learning was developed by Friedman (1999a, 2001) and later refined
to incorporate randomization leading to a more robust and less computationally intensive
algorithm (Friedman 1999b, 2002). The base algorithm of BRT is a decision tree. An en-
semble of trees is built in a forward, stagewise series and optimized by stochastic gradi-
ent descent of the “pseudo”-residuals (Ridgeway 2007 Elith er al. 2008). The theory be-
hind ensemble methods is that a committee of weak learners will be far more robust than

a single complex decision tree in predicting outside the range of training data (Hastie er



al. 2009). Tree-based algorithmic models are able to handle missing values. incorporate
interactions among predictor variables, and identify natural breaks in the data to model
non-linear response (De'ath and Fabricius 2000).

In my implementation of BRT for a coyote RSM. I followed recommendations of
Hastie et al. (2009) for setting algorithm parameters. The size of constituent trees (nodes;
J) was set to 6 (Hastie ef al. 2009:363): learning rate (shrinkage: v) was set at 0.1 (Hastie
et al. 2009:620); subsample of training data observations in each iteration (bag fraction;

1) was 0.5 (Ridgeway 2007; Hastie ef al. 2009:620); an additional regularization para-

meter, number of trees in final model (1) was ined by minimizing the lid:
tion deviance following the code of Elith er al. (2008:supplementary material). Boosted
regression tree implementation was conducted using the gbm package (Ridgeway 2010)
in R. Following initial BRT model development. I ran a simplification procedure (Elith et
al. 2008) to reduce model complexity by sequentially dropping the least important vari-

able while maintaining predictive deviance based on 10-fold cross-validation. This sim-

plified BRT model was assessed for overall performance compared with other models.
2.2.4. Model Evaluation

The objective of this res

reh was to develop an operationally valid predictive
model of coyote space use across seasons and years within the MBE. I evaluated the
“best” models from cach approach using a temporally-independent data set of GPS loca-
tions (n = 11 195) and random points (n = 22 390) obtained from 7 individuals (3 female.

4 male). Three of the individuals (1 female. 2 male) in the evaluation dataset were also



monitored within the training dataset. Sensitivity (proportion of observed positive cases

correctly classified) and specificity (proportion of observed negative cases correctly clas-
sified) of model output are commonly used metrics for assessment of prediction to new
data (Fielding and Bell 1997). Specifically, relative operating characteristic (ROC) curves
are a derived graphical representation of model discrimination across the range of
threshold values (Swets 1988; Pearce and Ferrier 2000). I considered predictive capabil-
ity for both GLMM and BRT modelling approaches using area under the ROC curve
(AUC) with the ROCR package (Sing ef al. 2009) in R. Assessment with AUC comes
with some inherent pitfalls concerning model accuracy, especially for models of general-
ists and models built from pseudo-absences (Lobo et al. 2008; Hand 2009). Despite this,
Lobo ef al. (2008) note that AUC scores complemented with sensitivity and specificity
values are useful for discriminating among models for a single species within the same
extent.
23 Results
2.3.1. Stochastic Data Models

Within cach season a single “best” model emerged from among the 26 candidate
GLMMs based on Akaike weights (Table 2.2, Appendix B). The summer and winter
models diverged substantially. The summer GLMM was a simplified version of the
winter GLMM with 2 fewer explanatory variables. Also of note is the drastic difference
in variability among the random effects. Variance of the random effects of individual and

year was 1.78%107 and 4.38, respectively. in the summer GLMM: whereas, the same ran-




dom effects in the winter GLMM had a variance of only 1.07%10” and 3.02<10". These
accumulated differences are readily apparent in the spatial predictions of coyote use (Fig-
ure 2.4).

Due to the high variance among individuals in the summer GLMM, I paramet-
rized the “best” model for cach of the 17 individuals in the training dataset. Year was re-

tained as a random effect in individual GLMMs. Nearly all coefficient estimates ranged

widely among indivil and had il i i ity of effect (Table 2.3). This
diffuse variation among individuals is important to consider within the framework of pre-
diction, as any averaging across individuals is likely to give an inaccurate representation
of individual behavioural response.

2.3.2. Algorithmic Models

The BRT model was optimized over 6500 forward, stagewise iterations using 14

predictor variables (Table 2.1). Following initial model development, a simplification
procedure was conducted to drop variables that did not contribute to the overall model
predictive performance within the training dataset. The final simplified model contained
12 of the original 14 predictor variables. Season and sex were determined to be unneces-
sary by the algorithm. The relative influence of individual variables changed from the ori-
ginal BRT to the simplified BRT. but rank order of variables retained in the simplified
BRT remained the same (Table 2.4). Both the original BRT and simplified BRT per-

formed very well in predicting outcomes within the training dataset (Table 2.5). This is



notable because the training data are resampled at each iteration with 50% of the data re-
maining “out-of-bag”.

There is distinct dissimilarity with GLMM predictions for either season (Figure
2.4). Whereas, the two BRTs exhibit similar spatial predictions when projected in geo-
graphical space (Figure 2.5). This incongruity among models indicates that one or both
modelling approaches is ineffective in achieving the desired level of predictive accuracy.
2.3.3. Model Evaluation

Predictive performance was extremely low for most of the evaluation dataset fol-
lowing both modelling approaches. Boosted regression trees outperformed GLMMs, but
limited inference can be gained from any of the coyote RSMs based on environment and
habitat gradient data alone. Area under the curve values ranged from 0.517 to 0.746,
broken down by data domain of biological interest. Many of my RSM predictions can be
considered no better than random. Generalized linear mixed-effect models were particu-

larly poor with all AUC < 0.6 (Figure

6). Only BRTS predicting to future years for indi-
viduals within the training dataset had reasonable predictive success (i.e., AUC > 0.7
(Pearce and Ferrier 2000); Figure 2.7). Relative operating characteristic plots show that
BRT outperformed the best GLMMs across the entire range of classification thresholds,
indicating superior predictive capability.
2.4.  Discussion

The results of my research have shown that BRT can provide better model struc-

ture for predicting to new data than traditional stochastic data modelling approaches,




even those adapted to deal with unaccounted random variation. The superior performance
of BRT compared with GLMM shown in predicting new locations of individual coyotes
is testament to the power of ensemble methods in resource selection modelling. Similar
results of algorithmic models outperforming stochastic data models have been well docu-
mented in species occurrence modelling (e.g., Elith ef al. 2006; Guisan et al. 2007;
Marmion et al. 2009; Zurell et al. 2009) as well as other natural and social science applic-
ations (e.g., Berk 2006; Abeare 2009: Siroky 2009; Ahmed er al. 2010), but not in re-

source selection modelling.

In general, stochastic data models can be i as our attempt to

the understanding of a phenomenon™ (Breiman 2001:227). The structure of a GLMM as
applied herein accounts for individual and annual variability. Marginal (population-level)
inference from this GLMM fixed-effect structure provides an estimate of “typical” re-
sponse within a RSM framework (Gillies er al. 2006; Aarts et al. 2008; Hebblewhite and
Merrill 2008). However, Fieberg et al. (2009) suggested that application of mixed-effects
models averaged across random effects will weaken marginal predictions. This averaging
effect may have been partially responsible for the poor performance of GLMMs, particu-
larly the summer models where there was extreme variability observed within the random

effects. S

the di among individual availability when averaged over
the population may have been a major contributor to the poor performance of the summer
models (Beyer er al. 2010). Winter models likely indicate other issues with the data as

random-effect variability was quite low.




Ensemble methods of machine learning, particularly tree based methods, focus on
prediction without implying mechanism (Breiman 2001). These models do not require
prior understanding of the system based on available data. Araitjo and New (2007) also
note that in the absence of idealized data for model parametrization, ensemble models
may provide more robust predictions than any single “best” model. Though ensemble
methods are often seen as “black box” approaches, information can be extracted post hoc
regarding model structure that directly relates how individual variables affect the en-
semble model (Hastie er al. 2009:620). In addition, data mining can lead to new hypo-
theses when unexpected evidence for variables appears (Hochachka ef al. 2007; Aarts et
al. 2008). It follows that my BRT models may indicate areas for future ecological re-
search (see Chapter 3). The ability to interpret the structure of BRT combined with the ro-
bust predictive capability makes this analytical method appealing for a wide variety of
modelling applications (Elith ef al. 2008). Therefore, this method should be applicable to

RSMs where little is known, or in situations limited by data or other constraints (e.g.,

broad niche that is logisti i arcas i ible for the purpose of data
collection, historical data that cannot be augmented, and financial or time limitations).
Model validation, as conducted in this research, secks to convey confidence in
resulting predictions (Rykicl 1996). Wiens (2002:744) referred to model prediction and
accuracy as “the holy grail of wildlife biology™. Importantly. where increasing geo-
graphic prevalence has been shown to reduce model accuracy (Marmion ef al. 2009),

AUC scores are essentially independent of prevalence (Manel er al. 2001; McPherson er




al. 2004) making this measure valid for comparison of models developed with the same
data. Failure of most of my models to predict well in a limited domain of parameter space
according to AUC values indicates that little information was gained from any of the ap-
proaches. Although the models were not validated, they are not necessarily entirely in-
valid either. The true operational validity lies in model accuracy, which spans a greater

gamut of evaluation criteria (Lobo ef al. 2008). The highly vagile and generalist nature of

the species, use of pseudo-abs data (with inherent ination), and lack of tem-
poral variability in the predictors will have limiting effects on the value of raw AUC
scores. Low discrimination ability of model predictions does not necessarily indicate low

accuracy. In this

ranking of raster values (Figures 2.4 and 2.5) may be correct,
whereas identifying a threshold value for predicting presence/absence remains inappro-
priate. Regardless of the absolute AUC scores. it can be noted from the ROC plots (Fig-
ures 2.6 and 2.7 ) that BRTS outperformed GLMMs across the entire range of possible
threshold values.

The limitation of all models in my research for predicting to new individuals rep-
resents the inherent issues with indirect gradient data for species distribution modelling.
The lack of standard correlations between these indirect gradients and causal gradients is
likely restricting any generalization of RSM results (Guisan and Zimmermann 2000; Aus-
tin 2002). In this case, the RSM may be applicable only at the local scale of observed in-
dividuals due to variation in behavioural response to causal gradients. Because indirect

gradients provide only correlative structure to the model. variability within any system or
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of the models. More explicitly incorporat-

population will reduce the predictive capacil

ing ecological theory in the form of causal predictors will likely lead to more robust pre-
dictions (Guisan and Zimmermann 2000; Austin 2002; Austin 2007).

Predictive and mechanistic modelling typically diverge in their conceptual design
where causality is not necessarily fundamental to accurate prediction. Surrogate variables
are often adequate for valid prediction and may be preferred (Guisan and Zimmermann
2000). The lesser detail required in collection of surrogates to behavioural response often
result in time and monetary savings while achieving the desired outcome of accurate pre-
diction within the spatio-temporal scope of research objectives. However, my research
has shown that readily available remotely sensed data is largely inadequate when devel-
oping a generalist carnivore RSM for management purposes. Although setting the prox-
imal goal of accurately predicting ecological phenomena will guide better management
practice, we as ecologists continue to strive for understanding process that leads to ob-
served patterns (Beyer e al. 2010). When designing research to develop a RSM for
coyotes or similarly adaptable species | would highly recommend a priori cost assess-
ment through a pilot project or other means to determine whether tradeoffs are manage-

able within the greater constructs of the research program and make direct gradient and

resource a top priority for i
Data available for this research lacked a mechanistic tie at the scale of individual

ted with these data were

behavioural response, therefore the RSM approaches inves

weak in predictive power. Insight to resources as the fundamental drivers of coyote eco-




logy requires further investigation (see Appendix A). Additional financial and human re-
sources would need to be dedicated for future research to attain improved model perform-
ance. The high costs of collecting resource data for terrestrial carnivore RSMs (i.c., prey
availability) due to both high spatio-temporal variation and associated labour require-
ments for adequate sampling typically preclude this type of modelling effort (Austin
2002).

Many resource selection studies are now making use of advancing technology for
increased location frequency available with GPS collars (Hebblewhite and Haydon
2010). Additional large volume data sources are becoming more available through other
monitoring devices and remote sensing (Hooten 2011). Pairing these technological ad-

vances with i improving it is i ive to gain the

greatest insight to ecological phenomena (Green ef al. 2005: Cagnacci ef al. 2010). Data
mining should offer opportunities to explore these profuse data without the assumptions,
both biological and statistical, inherent in the stochastic data modelling approach. It is

important to consider that diffe in ization of modelling may

lead to spurious conclusions regarding performance comparisons (Aradjo and Guisan
2006). While algorithmic models can find correlations and high order interactions within
the data, stochastic data models may perform as well given this prior knowledge to incor-

porate in models. Therefore, we must remember that improved modelling techniques are

not a substitute for best practices of study design and data collection, but can be powerful

100ls to learn more about systems of interest.
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Table 2.4. Relative contribution (% of constituent trees) of predictor variables from
boosted regression tree models of coyote resource selection in the Maritime Barrens
Ecoregion of Newfoundland.

Predictor Base Model Simplified Model
D 33.95 3507
dRoad 19.93 2159
Elev 1003 971
dWaterlha 632
Covlyp 561
dWatersha 464
Slope an
Aspect 369
AWater 320
et 295

Year 213

Season 107

Age 098 0.96
Sex 0.03

b4




Table 2.5. Boosted regression tree model performance assessed via 10-fold cross:
validation of the training data.

Source Base Model Simplified M
No. trees 6500 5250
No. predictors “ 12
Deviance Total 092 092
Residual 032 034
CV.est 0473 £0.001 0.483 +0.002
Correlation Training 084 082
CV.est 0.719.£ <0.001 0.71140.001
AuCH Training 097 097
CV.est.

0,921+ <0.001 0.918+0.001

! Cross-validation values are m

Area under the relative operating characteristic curve




0 25 50 100 Kilometers

Figure 2.1. Maritime Barrens E ion of fc (highli ) with the central
portion representing the study area for this research outlined in red. The island of New-
foundland is highlighted in the inset map of Canada.
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0 25 50 100 Kilometers

Figure 2.2. Caribou Management Areas (CMA) of the island of Newfoundland desig-
nated by the Department of Environment and Conservation, Wildlife Division. High-
lighted CMAs (Buchans [Bu], Gaff Topsails [GT]. Grey River [GR], Middle Ridge [MR],
Mount Peyton [MP] and Pot Hill [PH]) are included in this research as representative of
caribou populations that overlap with GPS monitored coyotes.



region of Newfoundland. Forested areas are generally restricted to steep-sided valleys (a)
and protected slopes (d). Barrens (b, ¢) make up the majority of the study area composed

‘ Figure 2.3. Aerial view of forest and barrens typical of the central Maritime Barrens Eco-
\
| of heathlands and peatlands interspersed with water bodies of various sizes.
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0 25 50 Kilometers

Figure 2.4. Spatial ictions of ized linear mixed-effect models for coyotes in
the central Maritime Barrens ion of Di between winter
(a) and summer (b) projections are easily visible with the effect of roads and water incor-
porated in the winter model. Blue and red colours represent predicted areas of low and
high coyote use, respectively.
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0 25 50 Kilometers

Figure 2.5. Spatial predictions of boosted regression tree (BRT) models for coyotes in the
central Maritime Barrens Ecoregion of Newfoundland. Only the model for adult females
during summer is shown (a) among the projections for the original model containing all
14 predictors. The simplified BRT model is shown for adult coyotes (b). Other age, sex
and season projections show only minor deviations not easily di i at this scale
in graphical format. Blue and red colours represent predicted areas of low and high
coyote use, respectively.
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Figure 2.6. Relative operating characteristic (ROC) plots for prediction to an independent
ion dataset from ized linear mixed-effect models of coyote resource selec-
tion within the central Maritime Barrens Ecoregion of Newfoundland. Area under the
ROC curve (AUC) values provide of measure of reliability for model predictions under
various conditions (i.c.. all coyotes pooled. coyotes from the training data in a different
time period, and new coyotes in a different time period) for each seasonal model and
pooled predictions from both seasonal models.
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Figure 2.7. Relative operating characteristic (ROC) plots for prediction to an independent
evaluation dataset from a boosted regression trees model of coyote resource selection
within the central Maritime Barrens Ecoregion of Newfoundland. Area under the ROC
curve (AUC) values provide of measure of reliability for model predictions under various
conditions (i.e.. all coyotes pooled. coyotes from the training data in a different time
period. and new coyotes in a different time period) for each season and pooled predic-

tions from both seasons.




CHAPTER 3. NEARING THE ECOLOGICAL LIMIT: COYOTE
ADAPTABILITY PRODUCES INDIVIDUALISTIC SPACE USE PATTERNS

3.1.  Introduction

Predators are often implicated when socio-economically important prey species
decline (e.g., Matte 2007; Jacques and Van Deelen 2010; Stansell ef al. 2010). Thus, it is
not surprising that coyote (Canis latrans) predation has been asserted as the cause for
woodland caribou (Rangifer tarandus caribou) population declines on the island of New-
foundland (NLDEC 2008). Coyotes first arrived in Newfoundland ca. 1985 (Moore and
Parker 1992) and have since expanded across the island. Increased coyote observations
and harvest (McGrath er al. 2010) coincided with caribou declines, but this correlation is
not sufficient evidence to constitute causality. Although it is likely that coyotes are play-
ing a significant role in caribou mortality, the determination of proximate versus ultimate
factors is likely to be less clear and of great importance in the long term management of
the ecosystem. Herein I seek to delineate a framework of implied coyote predation risk
for caribou in time and space.

In this context I want to determine whether coyote home range attributes imply a
temporal increase in predation risk for woodland caribou. The home range as defined by
Burt (1943) is an often-studied construct in spatial ecology of animals. This region

defined by an animal's regular movements encompasses the space required to gather

food, acquire mates. and rear young. Home range size within eastern coyote range varies

both seasonally and ically with food availability (Gompper 2002). Within a re-
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gion, coyote home range size reflects density of available food resources (Mills and
Knowlton 1991; McLoughlin and Fergusson 2000; Young ef al. 2008). Consequently,
coyotes may shift use patterns within their home range through time as a response to
changes in food distribution (Mills and Knowlton 1991: Kitchen ez al. 2000).
Seasonality and patchiness of food resources is known to be a primary driver of
carnivore spacing behaviour (McLoughlin e al. 2000). Coyotes in Newfoundland may
respond to highly variable prey density (i.c., seasonally migratory caribou) by shifting
home ranges to adapt to this variability. Research in Colorado has shown that coyotes
will shift core areas of use possibly in response to changing resources (Kitchen et al.
2000). Shifting spatial patterns have also been observed in other carnivores where pat-
terns reflected changes in prey density or availability (e.g., (Logan and Irwin 1985;
Lovallo and Anderson 1996). Coyotes on Cape Breton Island, Nova Scotia exhibited no

territorial shift during winter in response to congregations of ungulate prey (Patterson and

Messier 2001). However. in southeastern Québec, coyote relocation frequency increased
in a deer wintering area within existing home ranges (Créte ef al. 2001). In cases of ex-
tremely low food resource density. territoriality will break down due to costs of large area
defence (McLoughlin e al. 2000). This strategy may be most appropriate in Newfound-
land where observed coyote home ranges are far larger than elsewhere within the species
range and may represent the maximum extent possible. Therefore, shifting or expan-
sion-contraction of seasonal home ranges may be the most effective adaptation to exploit

seasonal prey abundance.




Differential use of space within an individual's home range is the subject of re-
source selection modelling (RSM). Habitat data typically represent the biophysical envir-
onment that an individual encounters during its lifetime. For the purposes of modelling,
we are commonly limited by available habitat data that provide a snapshot of this envir-
onment. Spatial extent and resolution of these data may affect model outcomes (Guisan
et al. 2007; Zuckerberg et al. 2011). Lack of temporal congruence of datasets may also
introduce errors in prediction dependent on the level of change across time periods span-
ning data collection. Guisan and Thuiller (2005) provide a more thorough list of consider-
ations for building and evaluating species distribution models. Of the three idealized
types of spatial gradients identified by Austin (1980), many available habitat datasets
function as indirect gradients. These indirect gradient data will likely limit geographical
scope of predictions (Austin 2002). It is important to note that even less than ideal data
can still provide useful information for modelling species' distributions (Zuckerberg er al.
2011). Ata minimum, successful predictive models based on surrogate data should
provide information to target future research.

A plethora of coyote RSMs have been created throughout the species range, but
due to their generalist nature the ecological niche of this species varies geographically

and with differing community composition (Voigt and Berg 1987). Gompper's (2002)

summary of northeastern coyote populations indicates that home ranges reflect food

y and vary both and seasonally. Plant community structure

largely influences animal distributions, particularly herbivorous mammals and birds (c.g..
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St-Georges ef al. 1995: Mayor et al. 2009). that represent the majority of coyote diets in
insular Newfoundland (McGrath et al. 2010; Appendix A). Large, deep water bodies may
function as escape terrain for caribou during the summer (Bergerud 1985: Bergerud er al.
1990). Deer and elk in Yellowstone have been observed using water bodies as an effect-
ive means to escape coyote predation (Gese and Grothe 1995). Conversely, caribou may
be more susceptible to coyote predation on these large water bodies when they are frozen
(M.J. McGrath, personal communication). Roads commonly represent increased human
impact due to traffic levels and access opportunity leading to negative consequences for
wildlife (Fahrig and Rytwinski 2009). Topography may function as a surrogate for micro-
climatic variation that is not otherwise quantified (Guisan and Zimmermann 2000). All of
these biological, physical, and anthropogenic factors may play into the way coyotes make
use of their home ranges.

In this chapter, I attempt to provide insight toward the issue of coyote predation
on migratory woodland caribou through an assessment of coyote space use during sea-
sons of high and low relative caribou abundance. Specifically I investigate whether
coyote home ranges shift coincident with over-winter aggregations of caribou in the

MBE. My hypothesis is that coyotes in Newfoundland are food limited and will adapt

ribou as a

space use to exploit available resources. I predict that if coyotes are targeting
primary winter food source, then territories will break down and significant shifts in
home ranges will be observed across seasons. Relatively static home ranges will indicate

that coyotes are acquiring sufficient food resources within their territories throughout the
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year irrespective of large caribou aggregations occurring within any individual territory. I
also investigate habitat features that coyotes select within their home range across sea-
sons and years. This addresses my hypothesis that coyotes are selecting habitat within ter-
ritory based on relative primary food resource availabilities by season. I predict that if
coyotes are selecting habitat based on similar habitat attributes believed to be important
to caribou, then open cover types, areas near large water bodies, and high elevation sites
will be selected for by coyotes. However, if coyote space use is a function of human in- ‘
fluence and individual adaptation to locally available food resources then roads, de-
veloped areas and dense cover types should be more influential for coyote habitat selec-
tion.
3.2.  Methods
3.2 Study Area
I obtained coyote data from the central portion of the Maritime Barrens Ecoregion
(MBE) of the Island of Newfoundland. Canada (Figure 3.1). The entire MBE encom-
passes some geographically disjunct units (i.c., Avalon Peninsula, Burin Peninsula, east-
ern peninsulas, and coastal strip extending westward from White Bear River). Based on
spatial connectivity and caribou migratory patterns, these peninsular areas will not be
considered hereafter. However, the discontinuous portions of Central and Western New-
foundland Ecoregions located entirely within the MBE are included in the study area. The
MBE represents the primary historical wintering area for 6 of the province's woodland

caribou “herds™ (Bergerud 1971), as defined by Caribou Management Areas (CMAs
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Buchans Plateau, Gaff Topsails. Grey River, Middle Ridge, Mount Peyton, and Pot Hill;
Figure 3.2: NLDEC 2010a, 2010b, 2010c, 2010d. 2010e, 2010f). Under the current man-
agement regime, the MBE contains roughly one-third of Newfoundland's primary core
area for caribou and a comparable proportion of secondary core area (Stantec Consulting
Lid. 2011).

The MBE is ized by heath barrens i with peatlands and dense

patches of stunted balsam fir and spruce. The climate exhibits thin winter snow cover,
high wind exposure, and regular, dense fog (Damman 1983). Summers are cool and wet;
winters are mild relative to surrounding ecoregions. Frequent soil frost and a history of
fire prevent substantial forest regeneration in this area (Meades 1983). Existing forested
areas are typically restricted to the steep sided valleys and some hill slopes (Figure 3.3).
3.2.2. Coyote Location Data

Researchers with the Newfoundland and Labrador Wildlife Division instrumented
26 coyotes with Lotek GPS 4400 Global Positioning System (GPS) collars (Lotek Wire-
less, Inc., Newmarket, ON) between 2005 and 2009 within the MBE. I censored coyotes
with less than 100 days of successful monitoring from all analyses. Global Positioning
System recording schedules varied among individual collar deployments, so I filtered the
entire dataset to a 4-hour relocation schedule. This schedule represents the highest stand-
ardized relocation frequency across all individuals. Standardized sampling is important to
control for effects of autocorrelation within the dataset (Otis and White 1999: de Solla et

al. 1999; Fieberg 2007a). Fix rates at this interval were 8.1 % 1.6% (¥ + SE) among in-




dividual coyotes. Two coyotes had respective gaps in GPS records of 9 and 68 days due
to collar failure prior to replacement. Both individuals were retained for analysis, but it
should be noted that this may affect results for early-winter space use especially concern-
ing the 68-day data gap. The 4-hour relocation data were then filtered to remove the most
likely erroneous data based on limited information (D'eon and Delparte 2005: Lewis er
al. 2007; Tobler 2009). All locations with > 4 satellite vehicles (3-dimensional) were
filtered to a maximum dilution of precision (DOP) allowance of 10: locations with 3
satellite vehicles (2-dimensional) were filtered to a maximum DOP of 5. Quality filtering

resulted in an additional 5.8 + 0.7% data loss among individuals. Fix success rate and loc-

ation quality were highly correlated (R? = 0.499) within individual collar deployments.
The data retained for these analyses (41,983 locations) included 10 female and 11 male
coyotes; 18 adults (> 2 years old). 13 yearlings (1-2 years old) and 2 pups (< | year old).
Some individuals are represented in multiple age classes as they transitioned from pups to
yearlings and yearlings to adults (Table 3.1). Monitoring for each individual ranged from
140 to 758 days.
3.2.3. Home Range Overlap

In order to assess whether coyotes maintained seasonal home range fidelity, I cal-
culated home range similarity across seasons on an individual basis using Bhattacharyya's
affinity. Bhattacharyya's affinity is a function of the product of two distributions that can
be used to quantify the degree of similarity between utilization distributions (UDs: Bhat-

tacharyya 1943; Ficberg and Kochanny 2005). Values of Bhattacharyya's affinity range



from 0 (no overlap) to | (identical distributions). Seasons were delineated based on cari-
bou migration trends (Mahoney and Schaefer 2002) with designated cutoff dates of May
10 and November 1. Summer represents the calving and post-calving period for caribou
when calf predation is known to be high (Blake 2006: Trindade er al. 2011). Winter rep-
resents the period of large-scale aggregation with anecdotal evidence that predation may
be causing significant added mortality. Beginning of summer as designated here also cor-
responds with approximate parturition date of coyotes in Newfoundland (Blake 2006).
Where [ am primarily concerned with the influence of coyotes on overwintering caribou
populations, this biological discretization is most informative (Kie et al. 2010). I de-
veloped individual seasonal UD estimates of home range using kernel density estimation
(KDE) procedures with the adehabitatHR package (Calenge 2011) in R (v. 2.11.1; R De-
velopment Core Team 2010). In most cases the least-squares cross-validation KDE

method failed to converge, a situation that has been noted by other researchers with high

volume location data (e.g., Hemson et al. 2005: Gitzen ef al. 2006). Therefore, [ used the
reference smoothing parameter for all KDE home range calculations to maintain consist-
ency among individuals. Although the reference method tends to over-smooth data, it
provides a more conservative estimate of home range (Borger er al. 2006). I expect the
over-smoothing tendency to minimize KDE differences across seasons leading to a more
conservative estimate of possible shifiing patterns of use. For my purposes. actual home
range size was not an issue, but rather the changes in shape and extent of the home range

over time. [ calculated Bhattachary ffinity of pooled and chronological seasonal UDs




for each individual using the adehabitatHR package. I also evaluated home range similar-
ity within each season (i.c.. summer and winter) across years as a measure of spatial sta-
bility for each individual.
3.2.4. Random Location Data

In addition to temporal changes in space use, I investigated the specific habitat as-
sociations of coyotes in the MBE. Utilization distributions have been suggested as an ef-
fective approach to define availability in habitat studies (Kie er al. 2010) in order to limit
bias in the pseudo-absence sample (Phillips ef al. 2009). Following this premise, I gener-
ated random points within the 99% volume contour of each individual's UD plus a buffer
area equal to the 95th percentile 4-hour movement distance over the entire monitoring
period. This area was selected to represent the entire area with which each coyote had ex-
perience and reasonable opportunity to select spatial locations for continued use within

the sampling period. I used least-sq ss-validati i to de-

velop the individual KDE-based UDs for random point selection. The least-squares cross-
validation method has lower bias (Seaman and Powell 1996), but is likely to produce
fragmented UDs due to under-smoothing with large data sets (Kie et al. 2010). Fieberg
(2007b) recommended less smoothing with large sample size. something that is accom-
plished with least-squares cross-validation relative to the reference method. The frag-
mentation issue disappeared following the buffering procedure in all but 3 cases (transi-

ent individuals). I implemented UD methods for these habitat analyses with Hawth's

Tools (Beyer 2007) in ArcGIS (v. 9.3: ESRI 2008).




Within cach buffered UD, I generated twice as many random points as there were

filtered GPS telemetry locations. Random points were distinet for each individual regard-

less of buffered UD spatial overlap. Data masking (i.e., portions of GIS layers excluded
from sampling) was limited to raster pixels representing ocean (i.e. random points that
were classified as ocean from land cover and shoreline data were excluded as valid loca-
tions because the ocean in this region is free from ice cover throughout the year). Points
on freshwater bodies were retained as these areas are commonly used during the winter
months (i.e. when ice covered) by coyotes for travel and possibly for hunting ungulate
prey.
3.2.5. Landscape Data

I followed the general approach to habitat modelling of using readily available
datasets to rank likelihood of use by coyotes in the MBE. Topographic parameters often
function as surrogates for more direct gradient variables due to micro-climatic and biotic
community associations, but tend to limit functional geographic extent of models (Guisan

and Zimmermann 2000). [ extracted elevation, slope, and aspect data from the Canada3D

digital elevation model (NRC 2001). As an alternative means of classifying 1
incorporated topographic convergence index (TCT) values generated by Skinner (2011)
for the island of Newfoundland. The TCl is a proxy for surface moisture based solely on
DEM components slope. aspect. and steepness. High values of TCI represent highly
drained areas and low values represent arcas of moisture collection. I used land cover

classification values from the Earth Observation for Sustainable Development of Forests




(EOSD) dataset (Wulder ef al. 2004) to represent plant communities in the MBE. It has
been noted that the EOSD data may not be as reliable as provincial forest resource in-
ventory data for the island of Newfoundland (Saunders 2010), but the EOSD dataset is
the most comprehensive for classifying land cover in the MBE. due to the lack of forest
cover in this region. Following previously stated hypotheses of caribou refugia and
coyote hunting success. | created distance rasters from nearest water body of 5 ha, 1 ha,
and any surface water as delineated in the National Hydro Network (NRC 2007a). I as-
sessed potential avoidance of higher human use areas by creating a distance from nearest
road raster using the National Road Network (NRC 2007b). These layers were sampled at
all random and GPS telemetry locations using the GIS.
3.2.6. Predictive Distribution Models

Point attributes from the habitat data described above were used to determine the
best predictive model of coyote habitat use from the existing data. I explored both gener-
alized linear mixed-effect models and boosted regression trees (BRT) to maximize pre-
dictive success with the available habitat data for the MBE. Boosted regression tree mod-
els outperformed generalized linear mixed-effect models based on predictive performance
with an independent dataset (see Chapter 2). In fact, the mixed-effect model predictions
were no better than random, indicating limited explanatory power at the population level.
Therefore, in this chapter I report only BRT results.

Boosted regression trees are algorithmic models for identifying patterns in data.

This exploratory approach makes no assumptions about data structure or underlying dis-




tributions. The BRT model is a forward. stagewise series of decision trees constructed
from the pseudo-residuals of the preceding tree (see Friedman (2001, 2002), Ridgeway
(2007). and Elith et al. (2008) for complete details). This type of tree-based algorithmic
model is robust to missing data. non-linear response, and high-level interactions (De'ath
and Fabricius 2000) while predicting beyond the range of training data (Hastie et al.
2009).

[ followed the recommendations of Hastie ef al. (2009) and Ridgeway (2007) to
set BRT algorithm parameters (see Chapter 2 for details). The BRT model was implemen-
ted in R using the gbm package (Ridgeway 2010) with additional code (Elith ef al. 2008)
to minimize the cross-validation deviance as a means to optimize number of trees in the
final model.

3.2.7. Model Evaluation

Model evaluation was incorporated at two stages. During model calibration, 10-
fold cross-validation of the bag fraction (subset of data used to construct the decision
tree) was used to assess predictive performance at each iteration. In addition, I withheld
approximately 25% of the location data for evaluation purposes. These evaluation data

were tempe i of the calibration data and composed of locations from 3 in-

dividuals within the training data and 4 new individuals (see Chapter 2 for details). A new
set of random locations was generated to correspond to this withheld evaluation data fol- ‘

lowing the same procedures as above. I assessed predictive performance of the BRT




model using this temporally independent data with the arca under the relative operating
characteristic curve (AUC) using the ROCR package (Sing ef al. 2009).
Lalso assessed accuracy across the range of values with correct classification rate

using the ROCR package. This metric was employed to quantify the ability of the model

to distinguish between binary classes, not to determine any threshold value for class
tion of sites. Threshold values are often misleading in that correct classification rate is de-
pendent on prevalence (Fielding and Bell 1997). The design of this study dictated a pre-
valence of 33% within the dataset. Thus, any point where accuracy is above 67% indic-
ates an improvement over random chance.
3.3, Results
3.3.1. Home Range Overlap

There was substantial spatial flux in coyote seasonal home ranges through the
study period. Values of Bhattacharyya's affinity ranged from 0.23 to 0.96 across all
seasons and individuals (Appendix C). Individual coyote home range overlap did not
differ significantly (Fy 150 = 0.14, p = 0.97) between seasons (0.784 + 0.037 (¥ + SE);
summer and winter locations pooled across years), within seasons across years (winter =
0.748 + 0.030; summer = 0.765 + 0.111), through consecutive seasons (0.763 + 0.022),
and among all seasons (0.765 + 0.017). Two outliers in the dataset were both second year

ent rather than territorial.

males that may have been trans
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3.3.2. Predicting Coyote Distribution

The BRT model that I developed indicates that unmeasured quantities have a
strong effect on coyote space use in the MBE as indicated by the variable for individual
being most influential (Table 3.2). Among measured quantities, distance to nearest road,

elevation, distance to water body (> 1 ha), EOSD land cover class, and distance to large

water body (= 5 ha) were most influential to the BRT model (Figures 3 8). Each of
these predictors was incorporated in more than 5% of the 6500 boosted trees that made
up the final model.

Other predictors included in the BRT model were not very influential. These in-
clude calendar year as a means to control for annual variations, coyote age class to de-
termine if pups or likely dispersing juveniles used the landscape in a different manner

from adults, and Each of these 3 “control” predictors was selected in fewer than

2.5%of i trees. The i —slope, aspect, and TCI - along

with distance to surface water each contributed less than 4% (Figures 3.9-3.12). Distance
to surface water has a very limited range of values in this wet climate and poorly drained

landscape. Most important from a caribou ecology perspective was the effect of season

on space use. Somewhat surprisingly, season was included in just over 1% of trees in the

model. Interestingly, sex and season were found to have no “significant” contribution ac-
cording to the simplification process of Elith e al. (2008: see Chapter 2 for simplified

BRT model results).



3.3.3. Model Evaluation

The strong relative influence of individual in the BRT model indicated that I was
missing important predictors for characterizing coyote space use. Within the training
data, the BRT performed extremely well (10-fold cross-validation AUC = 0.92). Inde-

pendent test data indicated much higher inty in icti When ing for

known individual variation in space use. the model reliably predicted future coyote loca-

tions (AUC > 0.7), whereas model ictions for previ unknown indivi were
no better than random (AUC = 0.5: Figure 3.13). Thus, my BRT model results are likely
limited in inferential power to assess predictions outlined in the introduction. Cutoff val-
ues varied over the possible range of values and exhibited a peak correct classification
rate near 68% (Figure 3.14). This measure indicates little improvement over random
chance as the peak in accuracy is only slightly above prevalence within the dataset.
Again, the modest success of the BRT model is likely a product of insufficient causal in-
put data.

The BRT model predicted 2 primary areas of coyote use in the central MBE (Fig-
ure 3.15). The central portion of the Middle Ridge CMA contained a concentration of rel-
atively high-use predictions. although the area to the cast of Eastern Meelpaeg in the Bay
du Nord Wilderness Reserve was predicted as low relative use. An even greater concen-
tration of high-use was predicted in the central Grey River CMA across the plateau from
the head of Bay de Vieux to the head of Facheux Bay. Interestingly. while both of these

areas are historically important caribou wintering areas. the intensity of coyote use is



more dispersed during the winter period. Relative low-use areas were predicted along the
immediate coastline and through the centre of the study area. These low-use predictions
likely reflect the negative association of coyotes to both roads and developed areas shown
in the partial dependence plots (Figures 3.4. 3.7). Large lakes also stand out as predicted
low-use during all seasons. Besides these areas there was a general pattern of moderate
use across the MBE, interspersed with both high and low use patches. Little difference
can be seen between seasons or sexes as indicated by the relative influence measures
(Table 3.2) and spatial predictions of use (Figure 3.15).
3.4.  Discussion

My research focused on the individual scale of coyote spatial dynamics to address
the question of response to seasonal caribou abundance. Results indicated that a certain
level of change is constant and no seasonal oscillation of space use occurs in relation to
prey influx in the form of wintering caribou. Similarity in home range overlap through
time suggests that some constant level of spatial flux to exploit resources in specific areas
oceurs within the MBE coyote population rather than distinct seasonal shifts. In particu-

lar, Bhattacharyya's affinity identified changes in distributions (i.e., KDE of use) that

translate to the combined effects of changes in home range boundaries and intensity of
use. Likely what I observed was individuals tracking changes in resource availability

through time similar to other coyote populations (e.g.. Kitchen ez al. 2000). I did not spe-
cifically investigate age or social class as factors influencing individual home range over-

lap. Thus, it is likely that transient individuals were also monitored during this study and
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may account for the extremely low Bhattacharyya's affinity values seen in a few cases
(Appendix C). While there may have been some adjustment to boundaries, most of the
shifis were more likely due to within territory changes reflecting local resource availabil-
ity. This is based on casual observation as I did not quantify absolute size of home ranges
or proximity of conspecifics. The high degree of individual overlap indicated that coyotes
were not making major shifts to congregate in areas of high caribou density. Coyotes in
other areas have been found to alter use patterns within territories when concentrated and
abundant food resources are present (Créte er al. 2001; Young et al. 2008). Though it is
notable that highest ungulate density does not always indicate highest hunting effort by
coyotes (Patterson ef al. 1998), 1 did not have spatial data regarding caribou density to
test this possible correlation specifically. In either possible scenario I cannot exclude the
hypothesis that coyotes are focused on hunting caribou during winter in the MBE with
these data alone.

The more influential BRT model predictors may provide useful insight to how and
why coyotes are using the MBE landscape. Coyotes monitored for this research exhibited
a negative response to roads within 8 km (Figure 3.4). Part of this response may be re-
lated to the limited number of roads within the MBE, basically representing the perimeter
of the study area. However. these roads do provide human access to the MBE and may

truly be avoided due to harvest pressure on coyotes. Elevation response was also determ-

ined to be negative below 150 m (Figure 3.5). Elevation may function as a surrogate for

v to coastline where small communities exist within the MBE. Alternatively.

proximity



coyotes may be selecting for high points within home ranges for calling, territory mark-
ing. or visual opportunity. Coyotes in this study tended to be found closer to water bodies
thought to be large enough to provide escape opportunity for caribou in the ice-free
period (= | ha; Figure 3.6). Land cover class was equally important to distance to water
body in predicting where collared coyotes would be found. Coyotes in this study showed
an affinity for tall shrub. herbaceous ground cover. dense broad-leaf forest, and dense and
open mixed-wood forest cover types (Figure 3.7). Finally, proximity to large water bodies
(= 5 ha) seemed to only have an effect at distances greater than 3 km (Figure 3.8).
Coyotes tended to avoid locations at this greater distance possibly showing a preference
for these larger water bodies for travel and hunting of caribou when they are ice covered.
Effects were also found among some of the less influential linear predictors of
coyote space use. While these predictors did not contribute information to many of the
trees in the BRT model, their effect on classifying coyote spatial distribution may still be
important. Coyotes in the central MBE appeared to avoid slopes steeper than 17 degrees
(Figure 3.9). Among the lower slope angles. the model indicated that use was highest up
to 5 degrees and tended to decrease up to 17 degrees before a sharp decline. This may re-
flect both the ease of locomotion on lower angle slopes as well as the limited availability
of higher angle slopes on the landscape. Steep slopes are often densely forested in the
case of the river valleys or largely devoid of vegetation as rocky outcroppings and cliffs
within the MBE. No apparent trend was found in coyote response to aspect of slope (Fig-

ure 3.10). The low influence on the model and wildly fluctuating response likely reflected




random use of all aspects as a result of coyote association with low slope angles. In terms
of proximity to all mapped surface water (i.e., lakes, ponds, rivers, and streams), coyotes
tended to be located nearer to water with a steady decline to a distance of 500 m (Figure
3.11). This was similar to the trend noted for proximity to small water bodies and may
also reflect a preference for flat areas that tend to accumulate water in small ponds and
pools. Coyote response to TCI was highly varied. but exhibited a gradual positive trend
throughout the range of values (Figure 3.12). Additionally, it appeared that coyotes
avoided areas with TCI below 1, possibly due to these locations representing standing
water.

The four lowest ranked predictors represented a combined influence of less than
5% in my BRT model. Demographic groups (sex and age) are unlikely to provide insight
to space use by coyotes at the population level in the MBE. Eastern coyotes in particular
tend to form cohesive family groups that travel and forage as a unit (Harrison 1992; Pat-
terson and Messier 2001). This behaviour should mean that all individuals within any
family group will have very similar patterns of resource utilization at the scale of this
study. Variation in the MBE is likely occurring at a finer scale than the temporal parti-
tions (season and year) used in this model. Spatial variation at the ecoregional scale prob-
ably determines more of the direct individual response.

Many habitat models developed for coyotes and other camivore species focus
largely on land cover types. Much of this research has taken a coarse-grained approach to

classification and has found that rural agricultural areas provide superior coyote habitat



compared to forested areas (Créte ef al. 2001; Gompper 2002). Finer-grained approaches
to modelling habitat within individual home ranges generally incorporate a wider array of
potential variables. These include proximity to roads, structures and water, precipitation,
topography. anthropogenic disturbance history and structural vegetation metrics (Gomp-
per 2002; Kays er al. 2008; Boisjoly et al. 2010). The importance of these various metrics
in predicting coyote habitat are often in opposition within the literature depending on the
researchers' definitions and level of resolution. For example, roads may be negatively as-
sociated with coyote use when defined as high traffic corridors (Gompper 2002; Kays et
al. 2008), but positively associated when they are used by coyotes for travel in more re-
mote settings (Gompper 2002; Kolbe ef al. 2007).

Another confounding factor in coyote habitat modelling has been the changing
predictor associations through time, for example varied responses to land cover (Litvaitis
and Harrison 1989; Person and Hirth 1991). Often these variations have been attributed to
cither changes in density of the primary prey (Murray ef al. 1994; Carroll et al. 2000), the
generalist diet of coyotes (Litvaitis and Harrison 1989). or annual life cycle requirements
(Person and Hirth 1991). One approach to accounting for these changes has recently
emerged in the form of mechanistic models. Moorcroft er al. (2006) found that prey
abundance in a spatially explicit model provided significantly better predictions than a

ure of terrain.

model with a more common proxy me:
Available data often limit the applicability of any RSM. The landscape data I used

for this study were no exception. Minimal gradient range, patchy distribution of gradients




on the landscape, and coarse resolution of data relative to fine scale of the actual gradient
all proved to restrict the insight into individual behavioural response. The minimal gradi-
ent ranges can be visualized in the random point attributes (decile plots in Figures 3.4 —
3.12). Surrogate data such as I used for the BRT model are likely to be less successful

with these shallow gradients (Austin 2002). Extensive forest cover, slope, and range in el-

evation are concentrated in the major river valleys (Figure 3.3). These predictors exem-
plify patchy distribution of gradients on the landscape. Many habitat features influencing
coyote behavioural responses (e.g., topographic features) are likely not captured at the

coarse resolution of available datasets. Saunders (2010) describes how this could be the

case with EOSD ification of the in

Forest structural components are not as refined in satellite image based EOSD as
the provincial forest inventory (Saunders 2010). This may affect modelled outcomes.
where reflectance values fail to provide distinction among habitat that are perceived very
differently by animals on the landscape. For example, Kays ef al. (2008) showed the im-
portance of the structural components of forest stands in predicting coyote use. The struc-
tural components such as stem density, fine scale edges, and tree height are possibly in-
fluential factors affecting coyote movements. Further refinements or increased coverage
of existing land cover datasets could dramatically improve model performance with in-
clusion of these variables.

Evaluation criteria underscored the idea that the most important factors determin-

ing coyote space use are missing. Unmeasured influences were strongest in this coyote




RSM (e.g., individual behavioural response, relative prey density within home range).
Area under the curve values indicate that overfitting may have been an issue with my
BRT model (Vaughan and Ormerod 2005). Cross-validation prediction estimates per-
formed very well; prediction of known individuals in a new time period were moderate;
and predictions to new individuals were poor. This further implies that gradient data were
inadequate for prediction rather than model overfitting per se.

Generalist species represent particularly challenging subjects for modelling in a
novel landscape (Seoane et al. 2005; Evangelista er al. 2008). Defining the ecological
niche for coyote in the MBE follows this pattern. Home-range-level habitat modelling
with landscape-level GIS data tends to limit ecological insight, but can provide a useful
starting point for directing further research efforts. Ground-truthing remotely-sensed
datasets can be labour intensive and financially prohibitive, particularly in remote loca-
tions where individual animals roam over expansive areas. Focusing efforts with baseline
models should facilitate targeting of sampling efforts to refine resource selection models.
The “hot spots™ identified in my BRT model of coyote habitat (i.e., Middle Ridge and
Grey River CMAs) could be used as focal areas to collect more detailed data concerning
potential drivers of coyote space use in the MBE. These hot spots may correspond to his-
torical calving grounds, but recent information indicates that calving has become much
more dispersed in recent years (NLDEC 2009).

Factors other than those [ investigated in creating this BRT model are likely af-

fecting coyote space use in the MBE. One major influence that was omitted due to lack of




v. It has been shown that coyotes spatial patterns often

existing data was resource densi

mirror those of their primary prey species (Carroll ef al. 2000: Kays et al. 2008). Comple-
mentary to this similarity in spatial patterns is the idea that coyote space use may also re-
flect prey density across the landscape and through time (Mills and Knowlton 1991: Pat-
terson and Messier 2001). As a generalist predator, coyotes regularly alter their diets de-
pendent on available foods. This dietary shift may be seen both seasonally (Appendix A)
and throughout cycles of prey abundance (O'Donoghue er al. 1998a.b; Stoddart et al.
2001). Therefore, I would expect that some of the predictive power lacking in my final
RSM may be attributed to spatio-temporal variability in diet composition and prey abund-
ance.

Coyote habitat is known to reflect prey habitat coupled with vulnerability
(O'Donoghue er al. 1998a; Patterson et al. 1998). The current lack of knowledge concern-

limited

ing prey habitat in the MBE added another layer of challenge to modelling. Whi
prey species are available to coyotes in Newfoundland (see review in Chapter 1), these
prey also occupy non-typical habitats. The patches of stunted conifer growth common
throughout the MBE are generally quite small, often highly dispersed, and uncharacter-
istic of habitats occupied by snowshoe hare (Lepus americanus) or red squirrel (Tamias-
ciurus hudsonicus). Regardless, these two species were frequently seen in coyote diets in
the MBE (Appendix A). Voles also appeared in the summer diet of coyotes. Due to a re-

and expansion of red-backed voles (Myodes gapperi) in

cent i pop

Newfoundland, native meadow vole (Microtus pennsylvanicus terraenovae) ecology is




likely in a state of dramatic change (Hearn et al. 2006). Overall this lack of prey know-
ledge fails to inform a more detailed model of coyote habitat.

Prey density does not necessarily imply hunting success. Variation in prey vulner-
ability due to vegetation structure, snowpack, and landscape geomorphology can also
play an important role (Murray ef al. 1994; Kays et al. 2008). Individual coyotes will
likely modify their behaviour to have the highest success rate of acquiring food items bal-
anced with the reward of those items (Patterson ef al. 1998). This again leads to a dy-
namic spatial process through time dependent on relative density of food items coupled
with their accessibility.

Additional factors that may be affecting coyote space use in the MBE include en-

and competitive i ions. Snow depth and hardness can alter
coyote habitat use in both restricting movements (Murray er al. 1994: Gese et al. 1996)
and increasing prey vulnerability (Patterson and Messier 2003). These effects can interact
to complicate the observed response at different scales (Kays er al. 2008). Negative inter-
specific interactions observed in western North America (Carroll e al. 2000: Berger and
Gese 2007) may be somewhat limited in Newfoundland due to the absence of wolves.
However, dietary overlap with lynx. foxes, and black bears may have some level of influ-
ence on coyote movements. Conspecific avoidance is likely more important in the MBE.
as this type of interaction has been shown to shape coyote spatial dynamics throughout
their range (e.g., Messier and Barrette 1982: Patterson and Messier 2001: Moorcroft et al.

2006).




Cosmopolitan habits of the coyote may represent a rare ecological case of the ex-
treme generalist, but therefore make a useful case study in modelling. A species native to
the western United States, coyotes have expanded and thrived across the continent fol-
lowing the widespread extirpation of wolves and habitat fragmentation as a result of agri-
cultural and forestry development (Moore and Parker 1992; Gompper 2002; Boisjoly et
al. 2010). Newfoundland is no exception to this, but does provide another example of the
species' adaptive capabilities, both crossing sea ice in what was likely a multi-day trek
(Moore and Parker 1992) as well as inhabiting a landscape depauperate in typical prey.
The extreme home range sizes reported for Newfoundland (Blake 2006) are likely a re-
flection of the limited resource availability that coyotes have encountered since coloniz-
ing the island. This may again lead to a necessity in being a generalist. It has been ob-
served that even Canada lynx. one of North America's most studied specialists (Aubry ef
al. 1999: Mowat et al. 1999) have taken on more of a generalist role on the island of
Newfoundland, including exploitation of abundant caribou calves during the summer
months (Saunders 1963; Bergerud 1971).

Based on landscape geometry. RSMs can incorrectly define selection of locations
used in transition only (Moorcroft et al. 2006). Coyotes by nature are cursorial animals, a
trait that may be magnified in the MBE where home ranges are expansive. Potential for
patchy distribution of prey or long distance movements between prey encounters due to
low density of food items will compound any effects of improper identification of sites

selected by coyotes. Repeated observations of coyotes within the MBE travelling long




distances (several kilometres) in a straight-line path (J. Neville, personal communication)
support this concept. In light of this lack of information regarding behaviour at any given
location, inference to selection at that location is limited. Diet analyses suggest the im-
portance of ungulate carrion in coyote diets. This food source is likely discovered from
extensive olfactory searching (Wells and BekofT 1982) and not necessarily tied to any
particular landscape feature if the carrion is a result of the recreational hunting season.
Relative abundance of carrion on the landscape may also alter coyote hunting behaviour
and thus any assessment of space use.
3.4.1. Management Implications

This research has shown that coyote predation risk for overwintering caribou is
likely much less than what has been suggested from anecdotal evidence. While I cannot
rule out intense localized effects, I did not find evidence to support the hypothesis that
coyotes are actively targeting winter aggregations of caribou to the point of altering
coyote territorial structure. Instead I found that individual variation is extremely high, in-
dicating that individual coyotes are adapting to localized conditions and likely exploiting
the most abundant and vulnerable food resources at a finer scale. This fits with what oth-
ers have found regarding exploitation of highly vulnerable neonate caribou calves
(Trindade et al. 2011).

What all of this may mean for management of a true generalist in this landscape is

the necessity to track prey availability in one form or another. Ongoing autumn and

winter diet analysis suggests a dynamic response both seasonally and across years by
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coyotes (McGrath e al. 2010). Additional data collected as part of this study investigated
summer coyote diet and further highlights the breadth of seemingly opportunistic food

exploitation (Appendix A). This dynamic response to food availability implies a necessar-

ily spati poral response to of coyotes dependent on ecological and soci-
etal goals. A relatively static habitat model will be of limited value compared to the much
more difficult and costly option of dynamic resource modelling. While determining

mechanisms of coyote spatial associations may be ing. the information gained for

adaptively managing impacts on prey populations may prove worthwhile.
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Table 3.1. Individual GPS collared coyote age class representation in the central Maritime

Barren Ecosystem of Newfoundland during the study period. 2005-200.

Individual' Seasons Monitored Age Classes
102 5 A
105 3 A
106 4 YA
107 3 YA
108 3 A
109 s YA
1o 3 Ry
m 3 Ry
n 3 A
s 3 A
201 3 YA
202 3 YA
203 2 YA
206 3 A
212 3 A
214 3 YA
25 4 YA
216 5 YA
a7 3 YA
218 3 A
21 2 Py

" Each coyote was given a uniqu
males

Age classes we
> 2 years) based on estimated birth date of April 1

¢ assigned as P

pup (< 1 yean), Y

101

yearling (1-2

cars), and A

lentifying number; 100 series for females, 200 series for

adult



Table 3.2. Relative contribution of predictor variables from boosted regression tree model
of coyote resource selection in the central Maritime Barrens Ecoregion of Newfoundland.

Predictor Relative Influence (%)
D 33.95
dRoad 1993
Elev 1003
dWatertha 597
Covlyp 597
dWatersha 566
Slope 399
Aspect 390
AWater 344
Ter 295
Year 213
107
0.98
0.03
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Figure 3.1. Maritime Barrens Ecoregion of (highlighted) with the central
portion representing the study area for this research outlined in red. The island of New-
foundland is highlighted in the inset map of Canada.
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Figure 3.2. Caribou Management Areas (CMA) of the island of Newfoundland desig-
nated by the Department of Environment and Conservation, Wildlife Division. High-
lighted CMAs (Buchans [Bu], Gaff Topsails [GT], Grey River [GR], Middle Ridge [MR],
Mount Peyton [MP] and Pot Hill [PH]) are included in this research as representative of
caribou populations that overlap with GPS monitored coyotes.
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region of Newfoundland. Forested areas are generally restricted to steep-sided valleys (a)
and protected slopes (d). Barrens (b, ¢) make up the majority of the study area composed

of heathlands and peatlands interspersed with water bodies of various s
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Figure 3.4. Partial dependence plot for distance to nearest road as predictor of coyote
space use in the central Maritime Barrens Ecoregion of Newfoundland. Distance to

nearest road was included by the regression tree algorithm in 19.9% of 6500 trees in the w
model. Tick marks at top of plot area represent deciles of data.
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Figure 3.5. Partial dependence plot for elevation as predictor of coyote space use in the
central Maritime Barrens Ecoregion of Newfoundland. Elevation was included by the re-
gression tree algorithm in 10.0% of 6500 trees in the model. Tick marks at top of plot
area represent deciles of data.
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Figure 3.6. Partial dependence plot for distance to nearest body of water > 1 ha as pre-
dictor of coyote space use in the central Maritime Barrens Ecoregion of Newfoundland.
Distance to nearest body of water > 1 ha was included by the regression tree algorithm in
6.0% of 6500 trees in the model. Tick marks at top of plot area represent deciles of data.
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Figure 3.7. Partial plot for Earth Observati

of the S

ment of Forests (EOSD) land cover class as predictor of coyote space use in the central

Maritime Barrens Ecoregion of Newfoundland.

land cover class was included by

the regression tree algorithm in 6.0% of 6500 trees in the model.
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Figure 3.8. Partial dependence plot for distance to nearest body of water > 5 ha as pre-
dictor of coyote space use in the central Maritime Barrens Ecoregion of Newfoundland.

Distance to nearest body of water > 5 ha was included by the regression tree algorithm in
5.7% of 6500 trees in the model. Tick marks at top of plot area represent deciles of data.
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Figure 3.9. Partial dependence plot for slope as predictor of coyote space use in the cent-

ral Maritime Barrens Ecoregion of Newfoundland. Slope was included by the regression

tree algorithm in 4.0% of 6500 trees in the model. Tick marks at top of plot area represent
deciles of data.
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Figure 3.10. Partial dependence plot for aspect of slope relative to north as predictor of
coyote space use in the central Maritime Barrens Ecoregion of Newfoundland. Aspect of

slope was included by the regression tree algorithm in 3.9% of 6500 trees in the model.
Tick marks at top of plot arca represent deciles of data.
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Figure 3.11. Partial dependence plot for distance to nearest surface water as predictor of
coyote space use in the central Maritime Barrens Ecoregion of Newfoundland. Distance
to nearest surface water was included by the regression tree algorithm in 3.4% of 6500
trees in the model. Tick marks at top of plot area represent deciles of data.
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Figure 3.12. Partial plot for i gence index as predictor of

coyote space use in the central Maritime Barrens Ecoregion of Newfoundland. Topo-
graphic convergence index was included by the regression tree algorithm in 3.0% of 6500
trees in the model. Tick marks at top of plot area represent deciles of data.
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Figure 3.13. Relative operating characteristic (ROC) plots for prediction to an independ-
ent evaluation dataset from a boosted regression trees model of coyote resource selection
within the central Maritime Barrens Ecoregion of Newfoundland. Area under the (ROC)
curve (AUC) values provide of measure of reliability for model predictions under various
conditions (i.e.. all coyotes pooled. coyotes from the training data in a different time
period. and new coyotes in a different time period) for each seasonal model and pooled
predictions from both seasonal models.
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Figure 3.14. Cutoff plot showing the range of modelled response values for differentiat-
ing used and non-used geographic locations from a boosted regression tree (BRT) model
of resource selection by coyotes in the central Maritime Barrens Ecoregion of Newfound-
land.

116



0 25 50 Kilometers.

Figure 3.15. Spatial representations of predicted female coyote use during summer (a)
and winter (b) from a boosted regression trees model for the central Maritime Barrens
Ecoregion of Newfoundland. Blue and red colours represent predicted areas of low and
high coyote use, respectively.
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Figure 3.15 (continued). Spatial representations of predicted male coyote use during sum-
mer (c) and winter (d) from a boosted regression trees model for the central Maritime
Barrens Ecoregion of Newfoundland. Blue and red colours represent predicted areas of
low and high coyote use, respectively.
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CHAPTER 4. SUMMARY AND CONCLUSIONS
4.1 Spatial Modelling

My thesis has shown that incorporating disparate modelling approaches in the
study of a biological system with unknown strength of associations between available
habitat data and species response can yield additional insight over a single model ap-
proach. In particular, I found that an algorithmic model can provide insight to underlying,
biological processes beyond the scope of the original dataset by functioning as a tool to
refine hypotheses for future research.

Generalized linear mixed-effect models can be highly effective in refining our un-
derstanding when basic correlations are known a priori. The mixed-effect structure can
account for autocorrelation and control for random effects so that we can more readily
determine the associations among the effects of interest. However. these models carry
some important distributional assumptions (Fieberg er al. 2009; O'Hara 2009). There is

also the assumption of a linear relationship between response and explanatory variables.

Ensemble decision tree models are free from these assumptions of distribution and
lincar relationships, but the goal of accurate prediction in no way implies causal mechan-
ism (Breiman 2001). However. accurate predictions can still function to guide short-term

management. Resultant model predictions can also be used to focus future efforts de-

signed to identify and quantify the causal mechanisms in a more efficient manner.
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Removing as many statistical assumptions as possible will get us closer to identi-
fying limiting factors at a given spatial scale, but we rely on underlying ecological as-
sumptions in the relationship as well (O'Connor 2002). Recursive partitioning as a means
of finding patterns in data when mechanism is unknown can provide more information
regarding current relationships and directions for future research than making assump-
tions regarding ecological correlation in building confirmatory statistical models
(Hochachka et al. 2007; Oppel et al. 2009).

Machine learning methods are data hungry and thus may have previously eluded
resource selection modellers. We can make use of these emerging techniques now that the
availability of data has expanded with GPS collars collecting high volume location data
that can be combined with high resolution spatial datasets. Algorithmic models provide
us an opportunity to gain insight into spatial processes by identifying important variables.
Identifying these important surrogate variables should then allow us to more readily
transition from modelling constraints and correlation to modelling causation.

42.  Modelling Coyotes

I found that individual coyotes in the central Maritime Barrens Ecoregion (MBE)
of Newfoundland maintain fairly static spatial patterns (Chapter 3) with home ranges
more than 10 times the size of what they are in historical coyote range (Bekoff and Gese
2003: McGrath er al. 2010). However, individual adaptability was evident within each

home range. I did not find specific within-home-range habitat associations that generalize



to the population (see AUC values for prediction to new individuals in Chapter 3). The
lack of pattern in my models based on commonly used surrogate data (Chapter 2) is
likely due to individual behavioural adaptations to available resources in time and space.
1 suggest that direct food resource data are essential to modelling coyotes effect-
ively in this landscape and should lead to improved predictions guiding management ac-

tion. Within the of there exists a high degree of

spatio-temporal flux in food availability. The vast majority of the island's caribou migrate

between summer and winter range. Moose and caribou hunting seasons result in a flush

cal trends char-

of carrion on the landscape. Snowshoe hare populations experience cy
acteristic of the species throughout the boreal region of Canada, though asynchronous
with mainland populations and with varying amplitude (Joyce 2001). Coyote populations
themselves experience substantial mortality from hunting and trapping (McGrath er al.
2010). which opens territories and reduces intraspecific resource competition at local
scales.

4.3.  Adaptation to Prey Abundance

Coyotes occupy a broad dietary niche throughout their range with Newfoundland
being no exception (Appendix A: McGrath ef al. 2010). The limited diversity of mam-
malian fauna available as food resources for coyotes (see Chapter 1 for list of Newfound-
land mammals) coupled with the extraordinary size of home ranges (McGrath ef al. 2010)

indicates that food limitation may be a significant factor in the ecology of coyotes on the




island. Therefore any food resource is likely to be exploited to the greatest extent pos-
sible. This may exaggerate community-level effects of predation with temporal variation
in prey species distribution and abundance.

Accurate predictive models of prey species may be beneficial as inputs to coyote
spatial models (Kays ef al. 2008). Adaptability is key to success at the most basic level of
individual fitness for coyotes likely at the extreme of their foraging niche in the MBE.
Generalist predators adapt to changes in prey density and vulnerability through time. The

temporal scale of these changes can have significant implications for both predator and

prey dynamics (Owen-Smith and Mills 2008).
4.4.  Implications for Caribou
Individual variation among coyotes' spatial patterns could mask locally intense

caribou calf predation during the early summer months now that calving is more dis-

persed (NLDEC 2009). The MBE is a novel landscape and biological system for coyotes.
However, we know that landscape configuration and habitat interact with prey availabil-
ity to increase coyote predation pressure on caribou in managed forests (Boisjoly er al.
2010). Similar managed landscapes have been shown to be avoided by caribou in New-
foundland irrespective of predation (Schaefer and Mahoney 2007). Calf recruitment is
also negatively associated with disturbed forest landscapes (McCarthy er al. 2011). While
this is not really an issue in the MBE where little to no anthropogenic landscape modific-

atjon has oceurred in the past century, other landscape characteristics may similarly affect

caribou predation risk.




Numerous researchers across coyote range have shown the strong association

between coyote space use and the availability and vulnerability of prey (... Mills and
Knowlton 1991: Murray et al. 1994: Patterson and Messier 2001). I did not find any
strong indication of the coyote population in the MBE focusing efforts on hunting cari-
bou over other prey during winter months. While herbaceous cover types may have been
used for travel or hunting caribou, the association of coyotes with tall shrub and dense
broad-leaf cover types (Chapter 3) may correspond with habitat use by snowshoe hares.
My preliminary summer diet analysis (Appendix A) supports the idea that coyotes are op-
portunistic foragers with caribou as a substantial component of early summer diet along
with snowshoe hare, birds, berries, and voles.
4.5.  Conclusions

In light of the factors outlined above and the fact that populations of coyotes have
continued to expand while caribou populations have declined dramatically, we need to
identify and quantify mechanisms driving coyote ecology on the island of Newfoundland.

Understanding the mechanisms of coyote behaviour will better inform management ac-

tion. Measuring direct gradients is often considered cost prohibitive, but ing the
cost of GPS monitoring makes prey abundance measures a relatively reasonable addition
for the quality of information and resultant models. Determination of community interac-
tions will require following trends through time as prey abundance changes (i.c.. snow-
shoe hare cycle, moose harvest levels, future caribou demography). Once causal mechan-

isms have been identified and measured. mechanistic models (e.g.. Mitchell and Powell




2004: Moorcroft and Barnett 2008) can be developed. This will allow researchers to pre-

dict the specific outcome of population perturbations (Moorcroft et al. 2006).

If caribou population declines continue, mortality factors will need to be ad-
dressed. Simple population control measures for coyotes have been determined ineffect-
ive as a long-term solution for alleviating predation on caribou in Québec (Mosnier et al.
2008). Therefore, habitat and alternative prey management may represent the most effica-
cious measures. Considering that habitat alteration is not an issue in the MBE, a focus on
the suite of prey species is warranted. Availability of moose carcasses and vulnerability of
snowshoe hares may be increasing predation risk for caribou (Boisjoly ef al. 2010). My
research provides a foundation in identifying arcas requiring further investigation. Indi-
vidual variation is strongly affecting space use, but in that context other factors emerge as

influential as well. These landscape characteristics may hold more direct keys to coyote

resource s ion such as food availability and protection from persecution.
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APPENDIX A. SUMMER DIET OF COYOTES IN THE BARRENS OF
NEWFOUNDLAND

A.l.  Introduction

Coyotes (Canis latrans) have recently colonized the island of Newfoundland
(Moore and Parker 1992) and may be having profound effects on natural communities.
One of the species that may be most negatively affected is the native woodland caribou
(Rangifer tarandus caribou). Public and management interest follow assertions that
coyote predation is a major contributing factor in population declines (NLDEC 2008).
While much of the coyote ecological niche remains unknown (Chapter 3). there is some
evidence that coyotes are contributing to these dramatic caribou declines via calf mortal-

ity (Trindade er al. 2011).

While y considered to be the generalist (Andelt 1987;
BekofT and Gese 2003), coyotes are not purely opportunistic predators (MacCracken and
Hansen 1982). Multiple factors can influence coyote foraging behaviour including type
and level of human disturbance (Dumond ef al. 2001), environmental conditions (Andelt
et al. 1987; Patterson ef al. 1998), relative and absolute density of available prey (Bartel
and Knowlton 2005; Prugh 2005), and landscape type (Andelt f al. 1987; Tremblay et al.

1998). Therefore, the interplay of these and other factors affecting coyote foraging beha-

viour in fc land can lead to i different for caribou.
Diet analysis can provide a basis for understanding the mechanisms driving carni-

vore ecology. Preliminary investigations of autumn and winter diets of coyotes in New-




foundland from stomach contents of harvested individuals began in 2000 (Bridger 2005)
and have been well documented since 2005 (McGrath er al. 2010). This research has
shown that caribou makes up a significant proportion of coyote diet, particularly during
late-winter months, but is declining through time. Yet, there remains a knowledge gap re-
garding summer diets. This is a period of potentially high prey consumption as new pups
are born in a population with high reproductive rates (McGrath ef al. 2010). Here, |
provide a snapshot of coyote summer diet from scat contents analysis. Scats offer oppor-
tunity for non-invasive study of carnivore diets throughout the year (Seton 1925) and
have been shown to be a reliable indicator of coyote diet when compared with more dir-
ect evidence of foraging behaviour (Prugh 2005).
A2.  Methods

The Maritime Barrens Ecoregion (MBE) was selected as a study site by the New-
foundland and Labrador Wildlife Division for deployment of Global Positioning System
(GPS) collars on coyotes. This ongoing research project facilitated collection of coyote
scats for my research. The MBE is the historical wintering ground for a large proportion
of the island's woodland caribou population (Bergerud 1971). Many other potential prey
species inhabit the MBE also (Chapter 1). However, prey density estimates were not
available for these species across the study area. Thus. I focused solely on consumption
irrespective of availability.

Adequate sample sizes are required to develop accurate conclusions regarding diet

based on scat contents. These sample sizes typically must be large, particularly for spe-
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cies with more generalist dietary habits (Trites and Joy 2005). [ collected more than 83

ite vis-

scats from 21 coyote GPS collar location clusters in the MBE during July 2009. S
its were conducted in conjunction with Newfoundland and Labrador Wildlife Division ef-
forts to obtain information on den habitat, reproductive success, and predation events. All
sites were classified based on evidence collected at the site as either den, feeding, or un-
known. The location cluster areas were searched and all putative coyote scats were col-
lected. Scats were individually bagged and stored in a freezer until processing.

Each frozen scat was dried in an oven at 60°C for a minimum of 48 hours. |
weighed scats as a means of standardizing content for biomass. I soaked scats in water for
12 hours or longer to aid break down, then rinsed each scat through a 0.5 mm sieve to ex-
tract macroscopic contents. | visually sorted contents and estimated percent volume to the
nearest 5% based on hair for mammals (Kelly and Garton 1997) or other indigestible ma-
terial for other items. [ selected a representative sample of hairs from each scat and
placed these on microscope slides in a thin layer of polyurethane spray. Following room
temperature drying, I identified scat contents based on medulla and negative cuticle scale
patterns using guide books (Day 1966; Adorjan and Kolenosky 1969; Teerink 1991;
Jones et al. 2009) and a reference collection. Mammalian food items were categorized to
species when possible, except in the case of voles (Microtus pennsylvanicus terraenovae
and Myodes gapperi). which were grouped. Other categories included birds, arthropods.

vegetation, and inorganic material.
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Various methods exist for diet quantification from scats, each providing somewhat
different information based on methodology (Ciucci er al. 1996: Cumberland et al. 2001
van Dijk e al. 2007). Various methods of analysis provide information useful to assess
level of bias among methods. Weaver (1993) indicated that differential digestability
among food items results in overestimation of relative importance for smaller prey items
and underestimation of their numbers based solely on percent volume. Conversion of scat
content data to estimate biomass may provide a more accurate assessment of diets than
relative occurrence. However, the disparity among age classes, especially of large ungu-
lates, can significantly skew biomass estimates when age of prey can not be determined
from hairs (Weaver 1993). Another drawback of estimating biomass of ingested food
from scats is the limitation of existing conversion equations to mammalian prey (Ciucci
et al. 1996).

I estimated dry weight of food items by location cluster and overall percentage of
occurrence in summer coyote diet. Items that occurred in trace amounts (i.e., < 5%) were
excluded from calculations but reported as present in samples. Percentage of occurrence

(PO). calculated as

PO,(%

n,
Z " X100 (van Dijk et al. 2007)

where 7, is the number of scats containing species i, has been shown high concordance

with actual ingested food items, but is still susceptible to the prey size bias (van Dijk ef



al. 2007). Ciucci et al. (1996) suggested that estimated dry weight (DW), calculated as

DW =% volume XDW ., .
is less affected by the prey size bias, but differential digestibility remains a concern. The
combination of these two metrics provides more accurate qualitative information regard-
ing ingested food items.

A.3.  Results and Discussion
Global Positioning System location clusters were biased toward den sites. Eleven

of 18 location clusters were determined to be den sites based on field evidence. Samples

from seven of these sites included putative pup scats based on size and morphology
(Table A1). Feeding sites with remnants of large cervids were also identified, while all
other sites were not classified because evidence of other activity (e.g., resting, hunting,
and territorial defence) is time sensitive and requires detailed observation beyond the
scope of this research.

Coyotes in the MBE exhibited a generalist diet typical of the species. The variety
of food items identified from scats included large and small mammals, birds, insects, and
berries (Table A2). Bird remains represented a higher proportion of the diet in these data
than previous analyses of autumn and winter diet (McGrath ef al. 2010). Although indi-
vidual bird species were not identified in scat contents, ptarmigan remains were specific-
ally noted at multiple sites. Plant mater, largely in the form of berries, also represents a
higher proportion of coyote diet in the summer, similar to other parts of eastern Canada

(Samson and Créte 1997; Patterson et al. 1998; Dumond er al. 2001). The differences in




rank order between percentage of occurrence and estimated dry weight (Table A2) reflect
differences in digestibility of food items, diversity of items within samples, size of indi-
vidual samples (Table A1), and prey size.

Significant interpretation is required to relate scat contents to diet and foraging be-
haviour. The presence of coyote hair and claws in scats is assumed to be a result of
grooming behaviour or inadvertent self-mutilation while restrained in a foot-hold trap.
Moose (Alces americanus) was likely consumed as carrion, although predation on moose
calves cannot be ruled out. Caribou may have been consumed either as carrion or a result
of predation; coyote predation on calves is known to occur (Trindade ef al. 2011). All
other animals in the diet are assumed to be a result of direct predation. It should be noted
that larger prey items (i.c., caribou and moose) are likely to occur in multiple scats over
time and each scat should not be considered equivalent to one animal consumed. As well,
some scats will contain multiple individuals of smaller prey species. Remains of smaller
prey in scats occur at a higher rate relative to consumed biomass and therefore may be
overrepresented in diet analyses without the incorporation of a correction factor (Floyd er
al. 1978; Weaver 1993).

Combining these data with autumn and winter diet data collected by McGrath er
al. (2010) provides a more complete picture of coyote dietary niche in Newfoundland.
Still missing is the selection behaviour of coyotes in acquiring food items that would
provide greater insight to the implication of coyote predation as a contributor to caribou

population declines across the range of ecosystem conditions. Biomass estimates of food



items across the MBE supplemented to scat content data could provide the necessary in-
formation for investigating switching behaviour as abundance of foods changes through
time (e.g.. Prugh 2005).

Whether coyotes are currently focusing on caribou as a preferred prey species and
likely to contribute to further population declines is a matter of ecological and socio-eco-

nomic i ( 2010; Fe Bianchet et al. 2011). Generalist predators

that adapt to prey availability can have ilizing effects on prey ions where

multiple alternative prey provide adequate food for predator subsistence (Fryxell and
Lundberg 1994). Research in Québec indicated that changes in coyote diets through time
may be affected more by availability of preferred prey than simply by abundance of spe-
cies consumed (Samson and Créte 1997). Predation on caribou may vary through time as
density of moose carrion and snowshoe hare (Lepus americanus) changes, or current

coyote diets may be a result of the decrease in caribou abundance. The full scope of ef-

fects of coyote predation on caribou ions on the island of warrants

concern and requires additional research to determine how coyote prey selection is af-

fected by changes in prey densi
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Table A1. Summary of coyote scats collected during summer 2009 from GPS collar
location clusters in the Maritime Barrens Ecoregion of the island of Newfoundland.

Location Cluster ID_ Month of Locations No. Seats te Type Dry Weight (g)
c3 May [ wunknown 2061
9 June 1 unknown 557
s June 4 den 4076
ci8 April 1 wnknown 15.85
0 April 1 fecding 2872
e May 3 unknown 801

May 3 unknown 5753
May 2 fecding 2004
July 1" 8479
Apil | 201
June >5 den 8256
July 1 den 3193
July 4 den 2617
July >4 den 33.06
June 5 den 203
July 1 wnknown nn
i June 1 unknown 359
B June 1 unknown 1677
car June 4 den 8887
ca' June u den 6898
49! July 18 den 98.00

" Sample included pt

during sample

* Numerous seats were amalgamated within a sample: the actual number of scats is unknown.

utative pup scats. Determination was based on scat dimensions and/or pres
ollection

 of pups at site




Table A2. Coyote scat contents from the Maritime Barrens Ecoregion of the island of
Newfoundland collected July 2009.

Percentage of Occurrence Estimated Dry Weight  Scats with only Trace

Amounts (< 5% volume)

% rank ¢ rank
Woodland caribou 1111 5 2491 1 4
Snowshoe hare 1296 4 21269 2
Bird sp. 1435 2 136.09 3 is
Vegetation® 2593 1 93.09 4 23
Vole spp. 1343 3 6020 5 3
Moose 602 6 5451 6 8
Squirrel 163 7 2494 7 |

1 Marmmal 139 10 2488 8 3

| Coyote’ 278 9 1887 9 |
Inorganic material 324 8 197 10 9
Muskrat 046 13 243 [F] 0
Masked shrew 046 13 0.79 3 |
Arthropod spp. 046 13 0.56 " n
Beaver 139 10 0.39 15 2

Food items occurring in trace amounts were not included in calculations for percentage of
occurrence or estimated dry weight.

Mostly composed of berries and grasses.

" Assumed to be a product of grooming behaviour or inadvertent self-mutilation while restrained
in a foot-hold trap.



0 25 50 Kilometers

Figure Al. Locations of coyote GPS location c]us!ers ‘where sca(s were collected (A)
during July 2009 in the Maritime Barrens of

represents spatial predictions of relative use for adult female coyotes durmg summer from
a boosted regression tree model (Chapter 3). Blue and red colours represent predicted
areas of low and high coyote use, respectively.
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APP]

Table BI. Candidate generalized linear mixed-effect models to describe winter coyote

NDIX B. GENERALIZED LINEAR MIXED-EFFECT MODELS

habitat in the central Maritime Barrens Ecoregion of the island of Newfoundland.

Rank Model Formula AIC
I Use-Covlyp+dRoaddWater+ Elev+Slope+Aspect+(YearfID) 3817185
2 Use-CovT+dRoad+dWater+Elev+Slope+Aspect+(Year(ID) 38261.00
3 Use-CovrdRoad+dWaters Elev+Slope+Aspects(Year(ID) 38275.12
4 ‘ovTyp+dRoad+dWater+Aspect+(YearlID) 38300.15
5 Use-Covyp+dRoad+dWater ha+ Elev+Slope+ Aspect(YearllD) 3831183
6 Use-CovTyp+dRoad+dWaterSha+ Elev-+Slope+Aspect(Year]ID) 38350.24
7 Use-CovT+dWater+Elev+Slope+Aspects(Year(ID) 38416.71
8 Cov+dWater+Elev:+Slope+ Aspect(Year|ID) 3842148
9 Use-CovT+dRoad+Elev+Slope+ Aspect+(Year|ID) 38456.58
10 Use-CovtdRoad+Elev+Slope+Aspectt(YearlID) 38467.66
11 Use-CovT+Elev+Slope+ Aspect+(Year|ID) 38677.77
12 Use-CoviElev+Slope+Aspect+(YearlID) 3868026
13 Use-dRoad+dWater+Elev+ Slope Aspect(YearlID) 38750.60
1 - Elev+Slope+Aspect+(YearlID) 39088.50
15 Use-CovTyp+dRoad +dWater+ Elev+(YearllD) 42794.60
16 Use-CovTyp+dRoad+dWater+ TCH(YearlID) 4283451
17 Use-CovTyp+dRoad +dWater+(Year(ID) 42919.12
18 CovTyp+dRoad +dWaterIha+ TCI+(YearlID) 4293250
19 Use-CovTyp+dRoad+dWaterSha+ TCI+(YearlID) 42970.04
20 Use-CovTyp+dRoadt TCI+(YearllD) 42974.63
21 Use-CovTyp+TCH(YearlID) 43394.59
2 Use-CovTypH(Year(iD) 4351333
23 Use-Covt(Year|ID) 43643.90
24 Use-CovT+(YearllD) 43647.55
25 Use-dRoad+dWater+(Year|ID) 43840.22
26 Use-CovTyp+Elev-+Slope+Aspect+(YearID) 177363768




Table B2. Candidate generalized linear mixed-effect models to describe summer coyote
habitat in the central Maritime Barrens Ecoregion of the island of Newfoundland.

Rank Model Formula AIC

I Use-CovTyp+Elev+Slope+Aspect(Year(ID) 20853.32
2 Use-ElevtSlope+Aspect+(YearID) 21021.88
3 Use-CovIyp+TCI+(YearID) 2345945
4 Use-CovT+ElevtSlope+ Aspect+(Year(ID) 32706.57
5 Use-Covyp+dRoad+dWaterIha+Elev+Slope+Aspect+(YearflD) 3593324
6 Use-CovTyp+dRoad+dWater+ Elev+Slope+Aspect+(Year(ID) 3596104
7 Use-Covyp+dRoad+dWatershar+Elev+Slope+Aspect(YearllD) 3600411
8 Use-CovI+dRoad+dWaterlha+Elev+ Slope +Aspect+(Year|ID) 36020.83
9 Use-CovidRoad+dWaterIhatElev+Slope+ Aspects (Year|ID) 3602407
10 Use-CovTyprdRoad +dWaterIha+Aspect+(YearlID) 360344

Il Use-CovT+dRoad+Elev+Slope+Aspes

(YearlID) 36091.42

12 Use-Cov+dRoad+Elev+Slope+Aspect+(YearlID) 36093.82
13 Use-Cov+dWaterlha+Elev+Slope+ Aspects (Year|ID) 36129.40
14 Use-Cov+Elev+Slope+Aspect+(YearlID) 36230.78
15 Use-dRoad+dWaterlhatElev+Slope+ Aspect+(YearID) 3652022
16 Use-CovTyp+dRoad+dWaterlhat Elev+(Year(lD) 39293.16
17 Use-CovTyp+dRoad+dWaterIhat TCT+(YearlID) 3936347
18 Use-CovTyp+dRoad+dWater+ TCH(Year|ID) 39392.33
19 Use-CovTyp#dRoad +dWaterlhat(Year(ID) 39393.48
20 Use-CovTyp+dRoad+dWaterSha+ TCH(YearID) 3941370
21 Use-CovTyp+dRoad+ TCI+(YearlID) 3941444
2 Use-CovlypH(YearllD) 3982043
23 Use-CovT+(YearllD) 39947.50
24 Use-Covt(YearD) 39965.74
25 Use-dRoad+dWaterlha(Year]ID) 40682.79
26 Use-~CovT+dWaterlhatElev+ Slope Aspect+(VearlID) 156971.70
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APPENDIX C. BHATTACHARYYA'S AFFINITY MEASURES OF INDIVIDUAL

SPATIAL OVERLAP ACROSS SEASONS

‘Table C1. Bhattacharyya's Affinity values for overlap of seasonal kernel density
estimated utilization distributions for individual coyotes in the central Maritime Barrens

Ecoregion of Newfoundland.

n* Pooled Seasonal
Age class' Season x Season BA® BA*
102 W2005  S2005  W2006  $2006 w2007 087358
A W2005 090000 088924 0.89364 0.77889
A 52005 087881 0.89194 0.77028
A W2006 0.83948 0.88485
A 52006 0.69732
A W2007
105 W2005  S2005  W2006 089520
A W2005 092789 0.79045
A 52005 0.84464
A W2006
106 W2006 2006 W2007 2007 0.86966
v W2006 05824 057194 055717
A 2006 092897 0.83070
A w2007 087183
A 52007
107 W2006  S2006  W2007 0.56978
v W2006 0.60816  0.59108
A 52006 044415
A w2007
108 W2007 2007 W2008 0.85127
A w2007 077166 0.78147
A 52007 0.88276
A W2008
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Table C1 (continued).

T Pooled Seasonal
Age class” Season x Season BA* BAY
109 W2007 2007 W2008 52008 w2009 090103
G w2007 092322 091475 086598 084311
A 52007 092167 0.90469 0.86693
A W2008 0.84148 091215
A 52008 0.74445
A w2009
1o w2007 S2007  W2008 0.66989 !
P w2007 0.86507 049742
Y 52007 0.50567
X W2008
m w2007 S2007  W2008 0.56832
P w2007 054424 057101
Y 52007 058227
Y W2008
n W2008 2008 W2009 0.75440
A W2008 080822 071890
A 52008 0.70019
A W2009
1 w2008 S2008  W2009 081272
A w2008 075809 0.49055
A 52008 061244
A W2009
201 w2005 S2005  W2006 0.94164
Y W2005 091570 0.74333
A 52005 085199
A W2006
202 52006 W2007 82007 0.85005
v 52006 067030 0.22790
A w2007 059341
A 52007




Table C1 (continued).

"\’n class' Season x Season BA*
203 w2005 52005
¥ W2005 0.25269
A 52005
206 w2006 $2006  W2007 0.78914
A W2006 085276 0.86275
A 52006 070759
A W2007
212 w2007 S2007  W2008 071001
A w2007 078126 0.60326
A 52007 057609
A W2008
214 w2007 S2007  W2008 0.92498
Y w2007 0.68340 048492
A 52007 089941
A W2008
215 W2007 52007 W2008  S2008 0.89522
Y w2007 070872 084359 087499
A 52007 083523 0.76842
A W2008 0.89037
A 52008
216 W2007 52007 W2008  S2008 W2009 0.94075
v W2007 088738 087958 085977 087673
A 52007 094647 0.96456 091333
A W2008 091544 090106
A 52008 090674
A W2009
27 w2007 S2007  W2008 0.89335
¥ w2007 077167 081365
A 52007 0.90640
A W2008




Table C1 (continued).

3 Pooled Seasonal
Age class® Season x Season BA® B/
218 W2008  S2008  W2009 0.64647
A W2008 055940 070715
A 52008 065422
A W2009
21 W2008 52008 0.84975
3 W2008 084975
Y 52008

es identifiers.

* Females are represented by 100 series identifiers; males are represented by 200 sei
d as either pup (P: < | year
e of April |

s was determined based on field ageing techniques. Individuals were classif
yearling (Y; > 1and < 2 years old), or adult (A: = 2 years old) based on presumed birth d:

© Bhaicharyys ATy (Fieberg s Ky 2005) vl wers crctaed o compacson betwen &
ssonal kernel density estimated utilization distributions (KDEs) by individual, Seas
) and winier (W) based on mean dte of carbou migraton (May 10 and November 1 Mahoney and S
2002).

* Bhattacharyya's Affinity values were calculated for KDE of winter locations pooled across all years compared with
KDE of summer locations pooled across all years for each individual,




Table C2. Summary statistics of Bhattacharyya's Affinity values measuring seasonal
overlap of coyote kernel density estimated utilization distribution by individual in the
central Maritime Barrens Ecoregion of Newfoundland.

Winter' Summer* Consecutive’ Al Pooled Seasonal’
n u 6 48 86 2
Mean 075 076 0.76 0.76 078
Standard Devi- 015 027 0.16 0.16 017
ation
Standard Error 0.03 on 0.02 0.02 0.04
Minimum 025269 022790
Maximum 094647 0.96456

el density estimated utilization distributions (KDEs) were evaluated for overlap of seasonal pairs i.¢.. winter or
summer) across all year combinations by individua

" KDEs were evaluated for overlap between consecutive seasons only by individual.
Al pair combinations of seasonal KDE were evaluated for the entire monitoring period by individual.

! Locations were pooled by season across all years and overlap of pooled KDEs was evaluated by individual.
C.1.  References
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