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ABSTRACT

Consumption of high salt leads to the alteration of vascular p-adrenoceptor response

which subsequently modifies the blood vesse l responses. This change could be due to an

alteration in p-adrenoceptor-mediated signalling in blood vesse ls. To test this hypothesis,

an evaluation of p-adrenoceptor-mediated mechanical and electrical responses was

undertaken in low-pr essure segment of the circulatory system i.e. main pulmonary

arteries, of Sprague-Dawley rats fed either normal or high salt diets for 18-23 days.

Blood pressure and heart rate were monitored in anesthetised rats using intra-arterial

catheters. Isometric tension was measured in isolated pulmonary artery ring preparations.

Glass microelectrodes were used for the recording of membran e potential (Em)'

Consumption of high salt resulted in a modest increase in blood pressure but not heart

rate. Isoprenaline evoked hyperpolarization in pulmonary arteries of rats fed a normal

diet. Hyperpolarization evoked by stimulation of p-adrenoceptor involved multiple

processes including the activation of K+channels and Na+/K+ATPase.

The remova l of endothelium produced hyperpolarization of vascular smooth muscle cells

in blood vessels obtained from rats fed a normal diet. The hyperpolarisation due to

denudation was the result of the activation of K+channels and Na+/K+ATPase. Moreover,

hyperpolarization as a consequence of p-adrenoceptor stimulation appeared to be

mutually dependent on the presence of endothelial cells since this event (i.e.

hyperpolarization) as evoked by isoprenaline was absent in denuded tissues.

Isoprenaline-mediated relaxation was found to be partly dependent on the presence of

endothelium.



Isoprenaline produced similar relaxations in intact pulmonary arteries obtained from

animals fed a high salt compared to normal diet. However, the £", was found to be more

negative in intact pulmonary arteries of animals fed a high salt diet compared to those fed

a normal diet. The isoprenaline evoked hyperpolarization was notably absent in the

pulmonary arteries. In addition, in intact versus denuded blood vesse ls obtained from rats

on high salt diet, the £", was not significantly different.

Taken together, the data suggests that the presence of the endothelium is essential for the

propagation of p-adrenoc eptor-m ediated relaxation . Moreover, the evidence seems to

also imply that consumption of high salt leads to the activation ofK+channels and

Na+/K+ATPase channels preserving p-adrenocept or-mediated relaxations in pulmonary

arteries.
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1.0. INTRODUCTION

1.1. Overv iew of cardiovascular system

The cardiovasc ular system is one of the integral components of the body that helps in

maintaining cellular homeostasis. It includes the heart and blood vessels (Guyton and

Hall, 2000; Tortora and Grabowski, 2010). The heart pumps blood and blood vessels

channel and deliver it throughout the body. Arteries carry blood saturated with oxygen

and nutrients away from the heart to all parts of the body. Arteries are thick-walled tubes

with a circular coverin g of yellow, elastic fibres, which contain a filling of muscle that

absorbs the tremendou s pressure wave of a heartbeat and slows the blood down (Guyton

and Hall, 2000; Tortora and Grabowski, 2010). This pressure can be felt in the arm and

wrist and is referred to as the pulse. Eventually, arteries divide into smaller arterioles and

then into even smaller capillaries, the smallest of all blood vesse ls. One arteriole can

serve a hundred capillaries. Here, in every tissue of every organ, capillary exchange takes

place where cells take up oxygen and nutrients and send away the waste products.

Capillaries jo in together to form small veins called venules, which flow into larger main

veins, and these deliver deoxygenated blood back to the heart. Veins, unlike arteries,

have thin, high distensible walls, because the blood has lost the pressure which forced it

out of the heart , so the deoxygenated blood which flows through the veins on its way to

the lungs moves along very slowly on its way to be reoxygenated. From the right side

heart, deoxygenated blood flows to the lung via unique vessels i.e. pulmon ary arteries to

be oxygenated, and then back to the left side of heart to begin its journe y around the body

once again . The blood vessels consist of various cells types that communi cate with each



other in response to physio logical stimuli to maintain adequate blood flow in the

circulatory system (Guyton and Hall, 2000; Tortora and Grabowski, 2010) .

1.2. Blood vessels

The blood vesse ls of the card iovascu lar system are divided into arteries, arterio les,

capillaries, venules and veins . The vascular wall is made up of three layers or tunics of

three different cells (Pugsley and Tabrizchi, 2000) . Start ing from the lumen, the first

layer (tunica internaJintima) is composed of an epithelial cell lining also referred as

endothelium, middle layer (tunica media) consists of smooth muscle cells and connective

tissue, and the outermos t layer (tunica externa) is made up of connective tissue and

contains nerve supply to the blood vessels. The composition of the blood vessel layers

varies in struct ure in correlation to the difference in function that occurs throughout the

cardiovascular system (Guyton and Hall, 2000; Pugsley and Tabrizchi, 2000; Tortora and

Grabowski,2010).

In the cardiovasc ular system , pulmonary arteries in contrast to systemic arteries have

lesser smooth muscle cell layers under normal conditions, consistent with low pressure

system (Daly and Hebb, 1966). The pulmonary vascular resistance is offered by the small

arteries with an internal diameter of a few hundred urn. The pulmonary capillary bed

responds differently from the systemic capillary bed. Pulmonary veins are similar in

structure to pulmonary arteries with less layers of smoot h muscle cells and may be

regulated different ly (Daly and Hebb, 1966). The structure of pulmonary arteries may

change with an increase in pressure, i.e. pulmonary hypertension . The chronic increase in



pressure leads to structural remodelling of the medial layer (increase in number or size of

smooth muscle cells) along with fibrosis (Barer et al., 1989). This change may manifests

alteration in various functional mechanisms involved in the regulation of pulmonary

artery (Barnes and Liu, 1995).

1.2.1. Sympathetic innervations of blood vessels

The sympathetic nervous system modifies blood flow under physiological conditions and

may be involved in the pathophysiology of vascular diseases (Dzau et al., 1994). In

blood vessels, smooth muscle cells are innervated by postganglionic sympathetic nerves.

The density of innervation varies widely from vessel to vesse l. The postganglionic

sympathetic nerve terminals form a network of unmyelinated slender processes that

widen at regular intervals into varicosities (Thaemert, 1966). In most blood vessels, a

plexus of branch ing varicose axons sits in the adventitial layer of blood vesse ls. The

blood vessels with multiple smooth muscle cell layers have direct contact with axons at

the medio-adventiti al border. In addition, branchin g of the axons has also been observed

in the two to three outer layers of the tunica media (Burnstock , 1986). These varicosities

are arranged in series along the length of axon and are separated by narrow intervaricose

regions. The nerve varicosities are irregularly distributed along the axons and the

distance between individual varicosities ranges from almost nothing to >7 urn (Luff et al.,

1987). Generally, varicosities are fusiform shape with variable sizes ranging from 0.4-3.0

urn in diameter and 0.25-4 .0 urn in length (Luff et al., 1987). Other than cell organelles

like mitochondria and sarcoplasmic reticulum; sympathetic nerve varicos ities also have a



number of vesicles that contains a "cocktail" of neurotransmitters. Further these are

classifie d into three different types that include large dense cored vesicles (LDVs), small

dense cored vesicles (SDVs) and small clear vesicles (SCVs) (Stjar ne, 1989). Both SDVs

and LDVs have been shown to store noradrenaline and adenosine triphosphate (ATP)

(LDVs contain 8-20 times more than SDVs), and some LDVs contain neuropep tides

(neuropeptide Y, substance P, Calcitonin gene related peptide) (Stja rne, 1989).

Following stimulation of sympathetic nerves these transmitters are released in the

sympathetic neurovascular juncti ons, the width of which range from 50-100 nm (Luff et

al., 1987) and interact with membrane receptors such as adrenergic (a -, p-adrenoceptors),

purinoceptors result ing in vascular contraction and relaxation.

1.2.1.1. Sympathetic nerve stimulation of blood vessels

The sympathetic nerve stimulation has been linked to depolarization of vascular smooth

muscle cells of guinea-pig pulmonary artery & vein and mesenteric veins (Suzuki, 1981,

1983; Van HeIden, 1988, 1991). The nerve mediated depolarization consists of two

components a) transient one, which occurs at the beginning of the response and; b) a

sustained phase that appears thereafter. Both of these components are blocked by a

adrenoceptor antagonists. Van HeIden (1991) had reported an ongoing discharge in

mesenteric vein, referred to as a spontaneous transient depolarization. Following, the

nerve stimulation these spontaneous transient depolarizations increase in frequency with a

time lag of 1-2 seconds. Moreover, these high frequenc y spontaneous transient

depolarizations summate to generate a slow excitatory junctional potential. Interestingly,



these spontaneous transient depolarizations are not produced due to transmitter released

from sympathetic nerve terminala but are generated from the irregular oscillating release

of Ca2
+ from the internal stores that might as well activate contractile proteins in the

vascular smooth muscle cells (Van Heiden 1991). Collectively, this would suggest that a 

adrenoceptors play an important role in vascular contraction by releasing Ca2+from

internal stores that might cause depolarization of vascular smooth muscle cells.

The membrane potential changes in response to sympathetic nerve stimulation vary in

arteries and veins. A single sympathetic nerve stimulus evokes a membrane

depolarization that is referred to as excitatory jun ctional potential (e.j. p.). Severa l e.j.ps

summate to induce depolarization of a few mV that will activate voltage sensitive Ca2
+

channels and this then leads to the contraction of smooth muscle cells (Hirst and

Edwards, 1989). These rapid nerve responses are resistant to inhibiti on by a

adrenocep tor antagonists (Angus et al., 1988). In arteriolar smooth muscle cells, e.j.ps

are observed that have short latencies of 10-20 ms (Hirst and Neild, 1978; Hirst and

Edwards, 1989). The time course of e.j. ps is faster in neuronal or skeletal synapses than

those recorded from any other autonomic organ tissue (Hirst and Edwards , 1989). The

rapid onset of the response sugges ts that the sympathetic transmitter is activating a

ligand-gated channels and the decay phase reflects a slow rate of closure of such

channels. There is ample amount of evidence to support the idea that e.j.ps in arterioles

and arteries result from the release of ATP and the activation of purinoceptors (P2X)

(Suzuki, 1985; Hirst and Jobling, 1989). In addition, it has been demonstrated that non

selective channels activated by ATP in vascular smooth muscle cells also show high

selectivity for Ca2+ions (Benham, 1989). Altogether, evidence sugges ts that sympathetic



nerve stimulat ion induce s e.j. ps and leads to depolarization via the action of the co

transmitter, ATP, on cation permeable ligand gated ion channels (P2X receptors) (North,

2002).

Sympathetic nerve stimulation has been linked to an increase in the pulmonary vascular

resistance (Pace et al., 1972; Piene, 1976). Adrenergic innervation of pulmonary

vasculature largely varies amongst mammal s (Richardson, 1979). Histochemical

examination revea led that catecholamine containing nerve fibres are generally absent in

intra-pulmonary artery of rat (El-Bermani , 1978; McLean et al., 1985). Whereas, extra

pulmonary arteries are abundant in sympathetic innervati on but the extent and density

varies between the specie s (Richardson, 1979). Interestingly, the pulmonary trunk of rat

pulmonary artery is well innervated and produces noticeabl e contraction following

stimulation of nerve. However, the nerve stimulated contraction s are barely detectable in

rat main pulmonary arteries, which suggest that the sympathetic innervation become

scarce further along the pulmon ary vascular tree (Duggan et al., 20 11). Stimulation of

sympathetic nervous system to the pulmonary artery seems to cause stiffening of the

pulmonary vascular bed. This in tum can aid in the propul sion of blood into lungs,

especially in a state of low cardiac output. This hypothesis has been supported by in vivo

investigations conducted in dog and cat pulmon ary artery (Pace et al., 1972; Piene 1976).

1.3. Vascular contracti on

In order to modulate blood flow, numerous endogenous agents act on blood vessels in

response to physiological and pathophysiological stimuli. In blood vesse ls, the

maintenanc e of resting ionic gradient is a fundamental property of the vascular cells that



facilitates propagation and transmission of messages by electrical conduction (Hirst and

Edward, 1989). Modulation of the electrical properties of smooth muscle cells leads to

generation of force, referred to as electromechanical coupl ing. Although spike generation

is involved in triggering contraction, tension may be regulated by depolarization of

quiescent smooth muscle that does not generate action potentials (Su et al., 1964). It is

also clear that contraction can occur by processes that are independent of cell

depolarization and that have been referred to as pharmacomechanical coupling (Su et al.,

1964; Somlyo and Somlyo, 1968; Casteels, 1980; Baron et al., 1984).

Pharmacomechanical responses are elicited by agonist-induced changes in the

concentration of second messenger molecules such as intracellular concentration of Ca2
+

([Ca2+] i) , inositol I,4,5-triphosphate (lP3), 1,2 diacylglycerol (DAO) . Invascular smooth

muscle cells, neurotransmitter or autacoids produce contraction through elevation of

[Ca2+]i via Ca2+influx and release of Ca2+ from intracellular stores (such as sarcop lasmic

reticulum). An increase in [Ca2+] i is known to cause smooth muscle contractio n. The

neurotransmitters released by sympathetic nerve stimulation can increase [Ca2+]i in

smooth muscle cells by activating post-juncti onal membrane receptors such as a-

adrenoceptors or purinoceptors. The c-adrenocep tors are guanine-protein-coupled

receptors (OPC R) that increase Ca2
+ by releasing Ca2

+ from internal stores via the Oaq/

phospholipase C (PLC)/ inositol phosphates (lP)/IP3 pathway (Hirst and Edward, 1989;

Van Heiden, 1991). The purinoceptors are linked to non selective cation channels which

cause depolarization of the membrane resulting in ci+influx via voltage-gated Ca2
+

channels (Figure 1) (Sneddon and Burnstock, 1984; Hirst and Edward , 1989).



1.3.1. Vascular smooth muscle cells

The vascular smooth muscle cells are uni-nucleated, non striated muscle cells. They

appear thickest in the middle and taper at each end (Torto ra and Grabows ki, 2010). Like

striated muscle, smooth muscle also contains actin and myosin filaments that play an

integral role in vascular contraction and relaxation. The absence of regular alignment of

filaments into a sarcomere gives the muscle tissue a smooth appearance under the

microscope (Somlyo and Somlyo, 1968). In various blood vesse ls, smooth muscle cells

communicate with each other and endothelial cells via hemi-channels known as gap

jun ctions (Figueroa and Duling, 2009; Dora, 20 10).

The diverse cellular functions of vascular smooth muscle are mediated by complex

interactions between membrane proteins (receptors, ion-channels, ion exchangers) and

intracellular components/systems (sarcoplasmic reticulum, second messengers, contractile

proteins) (Somlyo and Somlyo, 1970).



1.3.1.1. Receptors

The site of interaction of endogenous and/o r exogenous chemica l mediators with the

surface of the cell leading to a response is known as a receptor (Rang and Dale, 2007).

The binding of chem ica l med iators to receptors initiates the intrace llular chemical

cascade . The cellular respo nses to receptor activation vary conside rably according to the

structure and nature of the receptor. There are four different types of recep tor activated

signal transduction. These include guanine-nucleo tide binding protein (G-prote in)

coupled receptors, nucl ear receptors, tyrosine-link ed kinase receptor system and receptor

coupled to ion channels (Rang and Dale, 2007)

GPCRs are the largest class of cell surface receptor super-family. The GPCRs were

named for their ability to associa te with heterotrimeric G-proteins (Gapy) (Gil man, 1987).

These G-proteins function as interme diaries between extrace llular receptors and

intrace llular effectors proteins for a variety of neurot ransmitters and hormones, thus

controlli ng intrace llular conce ntrations of signa l molecu les such as cyclic nucleotides,

Ca2+and IP (Gilman , 1987; Casey and Gilman, 1988). The GPCR is a bund le of seven-

transmembra ne a -helices alternative ly connected through intrace llular and extracellular

loops. The amino terminal (N-terminal) part of the receptor is located on the extracell ular

side of the cytoplasmic memb rane, whereas its carboxy l terminal (C-terminal) faces the

cytoplasm. Heterotrim eric G proteins are comp osed of a, pand y-subunits. The p- and 't:

subunit are considered to be a single functional complex (Gpy), because they do not

dissociate in non-d enaturing conditi ons. The a -subunit can bind and hydrolyze guanosine

triphosp hate (GTP) . They are called heterotrimeric because of the three different subunits
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and G-proteins because they display highly selective binding affinity for guanine

nucleotides. In the basal state, an a -subunit is bound to guanosine diphosphate (GOP)

and is assoc iated with the py complex. Followi ng receptor-ligand binding, the GPCR

undergoes a conformational change such that it prom otes the exchange of GOP for GTP

on the a-subunit. In the GTP-bound state, the a-s ubunit dissociates from the py-comp lex,

and both the a-subunit and the py-compl ex can interac t with and regulate dow nstream

effectors to evoke physiological responses. However, the hydrolysis of GTP associa ted

with the a-s ubunit result s in its re-association with the py complex, leading to the

dissipation of the intracellul ar response (Neer and Clapham, 1988 ; Neer, 1994). There

are severa l other levels of regulation for this system, such as regulators of G-protei n

signall ing (RGS), activa tors of G-protein signalling (AGS) , and G-protein receptor

kinases (GRKs) (Vogler et al., 2008) . The RGS proteins are known to increase the

intrinsic GTPase activity of the a -subunit; AGS proteins activate G-prote ins independent

of GPCR-mediated signa lling, and GRKs phosphorylate key residues on the GPCR,

leading to desensitization and/or endocy tosis of the receptor (Ferguson, 200 1; Sato et al.,

2006) . There are approx imately twenty Gu-subunits known to date. They are divided

into four major Gusubfamilies such as Gas, GUi, Guq/11and GUI2!13 (Hubbard and Hepler,

2006; Plagge et al., 2008). Stimulatory Gasand inhibitory GUi exist as distinct entit ies,

with Gus being responsible for activating the adenylyl cyclase (AC) and Guiinhibi ting the

enzyme and stimulating potassium channels (Gilman, 1987 ; Brown and Birnbaum er,

1988). The Guq/ll is coupled to the activa tion of phospholip ase C-p (PLC- P). Further,

activation of PLC-P leads to the hydrolysis of phosphatidylinositol 4, 5-bisphosphate

(PIP2) and the produ ction of IP3 and DAG. The signalling via this pathway evokes
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responses that are mediated through Ca2
+ and protein kinase C (PKC) (Lape tina, 1987;

Hubbard and Hepler, 2006). These mechanisms for receptor-effector coupling are

applicable to a gamut of vascular smooth muscle receptor systems such as adrenergic (a ,

P), muscarinic (M), purinergic (P2) and prostaglandins (PGh and PGE2) .

The nuclear receptors are intracellular receptors that transduce signals from

glucocorticoids, mineralocorticoids, the sex steroids (estrogen, progesterone, and

androgen), thyroid hormones, and vitamin 03 . They are characterized by a central ONA

binding domain, which targets the receptor to specific ONA sequences known as response

elements (Berg, 1989; Zilliacus et al., 1995). Glucocorticoids, mineralocorticoids,

estrogen and peroxisome proliferator-activated receptor gamma have been shown to play

an important role in cardiovasc ular and metabolic diseases by regulating vascular smooth

muscle migration, proli feration, perivascular inflammation and ultimately contractility to

endogenous mediators such noradrenaline (Walker, 2007; Ketsawatsomkron et al., 20 10).

Tyrosine-linked kinase receptors are characterised by ligand-stimul ated

autophosphorylation of tyrosine kinase that is intrinsic to the receptor (Hunter and

Cooper, 1985). Unlike G-protein receptors, tyrosine-linked kinase receptors consist ofa

single polypeptide containing one hydrophobic region that forms a single transmembrane

domain. The extracellular surface of the receptor encompasses an agonist recognition site

and the intracellular surface incorporates a tyrosine kinase enzyme. The ligands for these

receptors include: platelet-derived growth factor (pO GF), epidermal growth factor

(EGF), transformin g growth factor (TGF), fibroblastic growth factor (FGF) , insulin like

growth factor I (lGF) and atrial natriuretic peptide (ANP). POGF promotes mitogenesis

and is a potent vasoconstrictor. Mechanical stress (myogenic constriction) and vascular
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remodelling due to hypertension has also been linked to activation of tyrosi ne

phosphorylation pathways (Zou et al., 1998; Murphy et al., 2002) . Activation of

Angiotensin II type I receptors induce growth promoting factors via EGF. This cross-ta lk

between growth factors by G-protein couple receptors is known as trans-activation

mechanism (Eguchi and Inagami, 2000; Kalmes et al., 2001).

The group of transmembrane ion channels that are regulated by the bindin g of a ligand

referred to as ligand gated ion channels or receptor-coupled ion channels. These

complexes are all pentameric, comprised of five similar subunits, which form a barrel-like

structure with a channel pore running through the middle of the complex (Large, 2002).

The receptor-coupled to ion channels upon interaction with ligand results in opening of

transmembrane ion channels allowing the flux of cations or anions down their

concentration gradient. This transduction mechanism may or may not be dependent on

intracellular second messengers and the response to agonist bindi ng is faster than that of

biochemical transduction. These ionotropic receptors play a major role in vascular tone

(Gibson et al., 1998; Large, 2002). Members for this family are Na+ channels and

cholinergic nicotinic receptor s.
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1.3.2. Electrical properties of vascular cells

The smooth muscle cells of blood vessels maintain large ionic gradients across their

plasma membranes (Bolton, 1979; Hirst and Edwards, 1989). The asymmetric

distribut ion of ions across the membrane of vascular smooth muscle cells generates the

potential difference known as the resting membrane potential. The ability of vascular

cells to respond to changes in their ionic environment and maintain a relatively constant

internal milieu is one of their most fundamental properties. In response to external

perturbations, cells will activate specific membrane bound ion transport systems in an

effort to maintain overall homeostasis (Bolton, 1979; Hirst and Edwards, 1989).

The concentration gradients for different ions (K+, Cl', Ca2+and Na+)have been estimated

for arterial smooth muscle cells and are listed in Table I (Hirst and Edwards, 1989). The

electrical properties of vascular smooth muscle have been studied extensively in various

tissues amongst various vertebrates. Various studies suggest that the membranes of

vascular smooth muscle are more permeable to K+ ions compared to other ions (Bolton,

1979; Kuriyama et al., 1982; Hirst and Edwards, 1989). This higher permeability to K+

ions results in a resting membrane potential of vascular smooth muscle cells between -55

to -75 mV (Hirst and Edward, 1989; Nelson et al., 1990). Ionic differences are tightly

regulated by membrane proteins such as K+channels, Ca2+channels, cr channels,

electrogenic pump s and various ion-exchangers.

The membrane potential (Em)as given by the Goldman-Hodgkin-Katz equation

(Goldman, 1943; Hodgkin and Katz, 1949):
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Where Emis the membrane potential as determined by the Nemst potential (EK, ENa and

EC/)and the relative conductances of the ions. Individual E»calculated by the Nemst

equation mentioned arc in Table I. For example :

EK= RT/F In [K] J[K]; at 37°C.



Tablel.

Intracellul ar [X] , and extrace llular [X], ion concentration; and equilibrium Nerns t

potential (Ep) of vasc ular smooth muscle cells (Hirst and Edwards, 1989)

Ions IX!i(mM) [X!o(mM) Ep(mV)

Sodium (Na+) 10- 20 - 150 +50

Potassium (K+) 130 -1 60 3 -5 -90

Chloride (Cl") 40 -70 - 140 -20

Calcium (Ca2+) 1O-6 _ 1O-8 M - 2 >+150

15
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1.3.2.1. The electrogenic pump (Na+/K+ATPase)

The Na+/K+ATPase is a membr ane bound protein that estab lishes and mai ntains high

internal K+ and low internal Na+ concentrations in the smoo th muscle cells (Skou, 2004).

It is an oligomer compose d of a- , p- and y-subunits (Co llins et al., 1982; Mercer et al.,

1993). The a-s ubunit is responsible for the catalytic and ion tran sport pro pert ies of the

enzy me. The p-subun it contains the bind ing sites for the cations, AT P, and the inhibi tor ,

ouabain. The y-subunit is a regulatory subunit and responsibl e for the normal activity of

the enzyme. The latter subunit appea rs to be involved in the occlus ion of K+ by

modul atin g K+ and Na+ af finity of the enzyme. During eac h active cycle th ree Na+ions

are pump ed out of the ce ll in exc hange for two inflow ing K+ ions for eac h ATP mo lecu le

consumed, which impl ies that the enzyme compl ex contains multipl e bind ing sites for

Na+ and K+ (Swead ner, 1989). This exc hange of cations plays a cr itica l role in regulating

the Na+ electroc hemica l gradient across the mem brane. In various ce lls, the Na+

electroc hemica l gradie nt regulates var ious cellular ion counter transporters (Na +/Ca 2+,

Na+JH+/Cr/HC03' , Na+JH+) and co-transporters (Na ' zsuga r/amino acids , Na+/C r ,

Na+/K+/Cn (Mo bas heri et al., 2000). Inhibiti on of the electroge nic pump with ouabain

increases the intracellul ar concent ration of'Na", thu s decreasing its electroc hemica l

gradient that leads to an increase in cytoso lic Ca2+ concent rat ion (Juh aszova and

Blaustein, 1997). The increase in intracellul ar Ca2+ in vascular smoo th mu scle co uld

initiate di fferent signal tran sduction mechanisms that af fect vasc ular myogenic responses

of the circulatory sys tem (Dav is and Hill, 1999; Blaustein et al., 2009).
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1.3.2.2. K+ Channels

The membr anous spanning prot eins that selectively allow K+ ions to pass thro ugh their

pores are known as K+ channels. The K+ channels are the most widely distributed ionic

channels in the body. In the vascular sys tem, these pro teins contribute to regulat ing the

restin g membr ane potenti al, hence vas cular tone of the circul atory sys tem. Effl ux ofK+

ions due to the opening of K+ channels result s in membr ane hyperpolari zation in vasc ular

smoo th muscle. This hyperpolarization leads to the closure of voltage- de penden t Ca2+

channels, and subsequently reducti on in Ca2+ entry , thu s vaso dilation (Ne lson and

Quayle, 1995). On the other hand , inhib ition of K+ channels leads to membrane

depolarization and vasoco nstriction (Ne lson and Quayle, 1995). Four major classes of

potassium channels have been ident ified in vasc ular smoot h muscle; these incl ude

voltage -ga ted potassium channe ls (Kc), inwardly rec tifying potass ium channels (Ks) ,

calcium-act ivated potassium channels (Ke.) and AT P-se nsitive K+ channels (KATP)

(Nelso n and Quay le, 1995; Standen and Quayle, 1998; Ko et al., 2008) . Molecular

biology along with electrophys iolog ical techniques introdu ced another class of K+

channels, i.e. the two pore dom ain potassium channel (K2P)(Lo tshaw , 2007; Enyedi and

Cz irjak G, 20 10).

Voltage-gated potassium channels (K; channels) : K, are ubiquitously ex presse d in

vasc ular smoo th muscle cells (Ne lson and Quay le, 1995). The K, has six transmemb rane

spanning domain s made up of hydrophobic amino acids (SI-S6) , link ed by seq uences of

hydrophil ic amino ac ids . Each subunit also has a cytoplasmic amino- and carboxy

term inal domain. One of the memb rane-spann ing domains in eac h sub unit (the S4 region)
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is charged , having a basic amino acid (lysine or arginine) every third residue that acts as a

voltage sensor to regulate the function of the channel (Korovki na and England, 2002) .

Each channel has two subunits, a and p. Structurally, a -subunits in K, have cytop lasmic

N- and C-termini and contain a pore. Further, each a-subunit is associa ted with ancillary

p-subunits, which influences the characteristics of the channel (Bahring et al. , 2001 ;

Korovkina and England, 2002). The opening of K, in response to a change in voltage, i.e.

depolarization, results in repolarization and thus return to the resting membrane potential.

The small-scale depolarization in vascular smooth muscle cells leads to an influx of Ca2
+

via L-type Ca2
+ channels and activation of the contractile machin ery. Taken together, this

suggests that K, function as a buffer and limit membrane depolarization, thus maintain

resting vascular tone (Nelson and Quayle, 1995; Korovkina and England, 2002 ; Ko et al.,

2008). Prolonged depolarization leads to the inactivation of the K, channel. Compared to

the process of activation, K, channel inactivation is relatively slow and involves an initial

peak in the K, current due to voltage-dependent activatio n followed by a drop in the

current due to voltage dependent inactivation (Nelson and Quayle, 1995). The compound

4-aminopyridine (4-AP) has been used in many studies of vascular smooth muscle as a K,

channel blocker (Smirnov and Aaronson, 1992; Nelson and Quayle, 1995). In addition,

tetraethylammonium ion (TEA) also inhibits Kv, although at higher concentrations than

needed to inhibit KCa channels (Robertson and Nelson, 1994).

Inwardly rectify ing potassium channel (K;r): An ion channel that passes K+(pos itive

charge) more easi ly into the cell (inward direction) is known as inward rectifying. The

inward rectifin g K+channels contain tetrameric subunits, each of which consist of only

two transmembrane domains and are encoded by a member of the Kir gene family
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(Standen and Quayle, 1998; Kubo et al., 2005) . In blood vesse ls, Kir2channels exhibit

strong inward rectifi cation (Park et al., 2008). Bradley et al. (1998) have reported mRNA

and protein express ion of Kir2.J, but not Kir2.2 or Kir2.3, in coronary, mesentery and cerebra l

(basilar) arteries of Sprague-Dawley rats. There is a genera l agreement that K; channels

are abundant in the smooth muscle of small-diameter resistance vessels (Knot et al.,

1996; Park et al., 2008; Ko et al., 2008). However, Tennant and co lleagues (2006) have

also identifi ed Kir2.1in cultur ed human pulm onary artery smoo th muscle cells. The

vasc ular smooth muscle K, channels mediat e inward currents at membran e potentials that

are negative relative to the EK and small outward currents at memb rane potentials that are

positive relative to the EK (Park et al., 2008; Ko et al., 2008). Ba2+ ions block Kir2.1in

arterial smoo th muscle cells. The inhibition by BaH ions is amplified at more negative

memb rane potenti als (Robertson et al., 1996; Kubo et al., 2005; Park et al., 2008; Ko et

al.,2 008). The Kir2.1channels play an integral role in K+ induced vasodilation. A local

increase in extracellular K+ in the range of 6- 15 mM has been shown to produce

vasod ilation and pronoun ced hyperpolarization of rat portal vein, mesenteric, coronary

and cerebral arteries in the absence or presence of endothelium (Robertson et al., 1996;

Knot et al., 1996; Edwards et al., 1998; Weston et al., 2002) . The hyperpolarization

induced by high ext racellular K+ ions involved Kir2\ and electroge nic pump

(Na+/K+ATPase) .

Ca2
+-activated po tass ium channels (KccJ: On the basis of their conductance, Kca

ramifi ed into three subtypes that includ e large (BKca), intermediat e (IKca) and small

conductance (SKCa) (Nelson and Quayle, 1995). The BKca channels seemed to be

preferent ially expresse d in vasc ular smooth muscle cells, while IKca and SKcaare
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preferentially located in endothelial cells (Ghatta et al., 2006; Feletou, 2009; Grgic et al.,

2009). As the name sugges ts, these K+channels are regulated by the cytoplasmic

concentration ofCaz+. Like K, channels, BKca also buffers pressure- or chemical

induced depolarization and vasoconstriction by hyperpolarizing the membrane potential

(Tanaka et al., 2004; Ledoux et aI., 2006) . The BKcachannels are comprised ofa pore

forming a-subunit and regulatory p-subuni t. The pore forming a-subunits contain six

transmembrane-spanning domains (S I-S6) that include a voltage sensor (S4) (Nelson and

Quayle, 1995, Ledoux et al., 2006). An additional seventh transmembrane region (SO)at

the exoplasmic NHz terminu s of BKca has also been reported. The p-subunits enhance

the Caz+sensitivity of the channel (Nelson and Quayle, 1995; Ko et al., 2008) . The BKca

induces vasodilatory responses through the cAMP/PKA or NO/cGMP/PKG pathway.

Treatment with TEA , iberiotoxin, and charybdotoxin blocks the vascular BKcachannels

(Nelson and Quayle, 1995). Of these blockers, iberiotox in is the most selective blocker

of the BKca. Charybdotox in has also been used as a selective BKca channel blocker;

however, it also affects IKca (Ko et aI., 2008). Potential activators of BKcaare NS1619,

NS 1608 and estrogen (Ledoux el al., 2006) .

A TP-sensilive potass ium channels (KATP channels) : A low intracellular concentration of

ATP leads to efflux of K+ ions thus limiting myogenic depolarization and control of

myogenic tone. Standen et al. (1989) first reported the role of KATPchannels in arterial

dilation in rats. The inhibition ofK ATPchannels induce vasoco nstriction and membrane

depolarization in various vascular smooth muscles (Nelson et al., 1990; Nakashima and

Vanhoutte, 1995, Quayle et al., 1997; Teramoto, 2006). Several endogenous agonists

such as calcitonin gene-related peptide (CGRP) and adenosine activate KATPleading to
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hyperpolarization and relaxation, a response that is mimicked by treatment with KATP

openers . In contras t, various neurotransmitters (noradrenaline, 5-hydroxy trypta mine (5

HT), neuropeptid e Y and vasoco nstrictors angiotensin II, endothe lin- I) inhibit KATP

leading to depolarization and contraction (Quayle et al., 1997). Pathophysiological

involvement of KATPis reported in systemic arterial dilation durin g hypoxia, reactive

hyperaemia in coronary and cerebral circulation, and acidos is- and endotoxic shock-

induced vasodilation (Brayden, 2002, Teramoto, 2006; Ko et al., 2008) . Moreover , the

inhibition of KATPleads to impaired corona ry and cerebra l autoregulation (Nelson and

Quayle, 1995). The KATPare hetero-octameric complexes containing four pore -forming,

inwardly recti fying channel subunits (Kir6.1or Kir6z), together with four sulphonylurea

receptors (SU Rs), which are an ATP-binding cassette (ABC) family of proteins

(Terarnoto, 2006; Ko et al., 2008) . In vasc ular smoo th muscle cells, the KATPare

comp osed of Kir6 .X (Kir61or Kir6.2)/SUR2B (Standen and Quayle, 1998; Tera rnoto, 2006;

Ko et al. , 2008). Exogenously, the KATPin smoot h muscle are known to be inhibited by

glibenclamide and tolbut amid e (anti-diabetic sulphonylurea drugs) (Ne lson and Quayle,

1995; Quayle et al., 1997; Standen and Quayle, 1998; Tera moto, 2006 ; Ko et al., 2008) .

Various agents that open KATPare crornakalim, levcromakalim , nicorandil , pinacidil,

minoxidil , diazoxide, and BRL-55834. The vasodilation and hyperpolarization induced

by these agents can be blocked by glibenclamide (an antago nist of KATP channels)

(Quaylee tal., 1997).

Two-pore domain potassium channel (K2P) : The membr ane proteins with four trans

membrane domain s (TMD) and two pores (P) domains that select ivity allow K+ ions

efflux are referred as two-pore domain potassium channels. This uniqu e feature is at the
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origin of their name, 2P domain K+ channels or K2Pchannels (Lotshaw, 2007). The K2P

channels are composed of four potential transmembr ane segments (M I-M4 ), the 2P

domains (P I and P2), short NH2-termin al and long COOH-terminal cytoplasmic parts,

and an extended extrace llular loop between MI and PI. The connectin g loops between M

domains are generally short , although the sequence connecting M I and M2 is typically

longest and include s the first pore domain (P I). The M I-M 2 extrace llular linker domain

usually contains one or more asparagines which may function in N-l inked glycosy lation

and one or more cystein es which may form disulfid e bridges between subunits (Lesage

and Lazdun ski, 2000 ). Isoform-specific amin o acids have also been ident ified within this

domain that contributes to import ant pharmacological cha racter istics (Enyedi and Cz irjak,

20 I0). The second pore domain (P2) is located between the M3 and M4 domains. The

proton ation of histidin e 98 (His98) in the first pore (P I) is partly responsible for

inhibition of the Tandem of P domains in Weak Inward rectifier K+ channel (TWIK)

related acid sensitive K+chann els (TASK) (Duprat et al., 2007). The cytoso lic C

termin al domain has also been shown to play several important roles in modul ation of

channel gating. Other than pore domains, these subunits do not share significant

sequence homolo gies with the 6TMSII P and 2TMSII P subunits (Lesage and Lazdunski,

2000; Lotshaw, 2007; Enyedi and Czirja k, 2010). However, based on gene sequence

similarities, K2Pchannels are divided into six subfamilies that includes Tandem of P

domains in Weak Inward rectifier K+channel (TWIK ), TWIK-Related K+ channel

(TREK) and TWIK-Related Arachidonic Acid stimulated K+ channel (TRAA K), TW IK

related Acid Sensitive K+ channel (TAS K), TWIK-related Alkaline pH activated K+

channel (TAL K), Tandem-pore dom ain Halothane Inhib ited K+ channel (TH IK)



23

(Lotshaw, 2007; Gurney and Manoury, 2009, Enyedi and Czirjak G, 2010). The latter

mentioned proteins are expressed in various tissues and extensively studied in the central

nervous system (Talley et al., 2001; Lesage, 2003; Lotshaw, 2007). The K2P channels

expressed in the systemic and pulmonary circulations are regulated by various chemical

and physiological stimuli such as pH, oxygen, phospholipid s, neurotransmitters, GPCRs

and volatile anaesthetics. Moreover, stretch regulates the function s of K2P channels under

a range of physiological and pathological situations (Lesage and Lazdunski 2000; Mathie

2007). This sensitivity to a wide range of physiological signals (polyunsaturated fatty

acids, pH, 0 2) that are important in regulating blood flow makes them important

candidates as regulators of vascular tone, especially in small resistance vesse ls of the

systemic circulation, such as mesenteric and cerebral arteries (Blondeau et al., 2007;

Garry et al., 2007), and the pulmonary circulation (Gardener et al., 2004; Gurney et al.,

2003). The arachidonic acid sensitive K2P channels expressed in the cerebral artery, rat

mesenteric and femoral arteries are TREK- I, TREK-2 and THIK (Lesage and Lazdunski,

2000). The TRAAK was reported in mesenteric but not femoral artery (Gardener et al.,

2004; Gurney and Manoury , 2009). The carotid arteries and pulmonary arteries lack

TREK- I and TRAAK. The pulmonary artery contains TASK - I, TASK-2, TREK-2,

TWIK-2 and THIK I (Gardener et al., 2004; Blondeau et al., 2007; Gurney and Manoury,

2009). Functional and electrophysiological studies performed on mice deficient in

TREK- I suggest that it has a role in endothelial cells to regulate cerebral vascular tone

(Blondeau et al., 2007). The TASK- I and TASK-2 channels expressed in pulmonary

artery of various animals have shown to regulate arterial tone in response to various

physiological stimuli (pH, O2) . Treatment with acidic buffer (pH 6.5), Zn2
+, or
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anandamide depolarize the resting membrane potential by blocking the background

channel, i.e. TASK (Maingret et al., 2001). The participation of TAS K in control of

vascular tone seems to be more important in pulmonary vasculature as compared to

systemic arte ries (Gardener et al., 2004).

1.3.2.3. Calcium channels

An increase in intracellular Ca2
+ levels mediated by voltage-gated channels triggers a

range of cellular responses such as the regulation of Ca2
+-dependent second messengers,

Ca2
+ release from cytoplasmic stores, gene expression and smooth muscle contraction

(Xiong and Sperelakis, 1995). Based both on pharmacological and biophysical profiles,

voltage-dependent Ca2
+ channels have been classified into T-, L-, N-, P/Q-, and R-types

(Bean, 1989; Pietrobon, 2005). Out of five different subtypes of voltage-dependent Ca2+

channels, L-type (long lasting/kinetically slow) and T-type (transient! kinetically fast)

have been described in various vascular smooth muscle cells (Sturek and Hermsmeyer,

1986; Bolton and Pacaud, 1992). The kinetics of activation or inactivation is slow for L

type Ca2+compared to T-Ty pe channels with different operational voltage range. The L

type Ca2+ channels operate at high threshold (activation voltage of -45 to -35 mY) with

single channel condu ctance of 18-26 pS; and T-type Ca2
+ channels operate at low

threshold (activation voltage of -60 to -50 mY) with single channel conductance of8-12

pS (Xiong and Spere lakis, 1995; Cribbs, 2006). Whereas L-type channels function

primarily to regulate Ca2
+ entry for contraction, it is generally accepted that T-type Ca2

+

channels do not contribute significantly to arterial vasoco nstriction, with the possible
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exception of the renal microcirculation. The L-type channels are regulated by cyc lic

nucleotides and phosphorylation while T-types are not (Cr ibbs, 2006). Finally, L-type

Ca2
+ channels are inhib ited by verapamil, dilti azem and nifedipine, and activated by Bay

K8644 (Ca2+channel agonist). The T-type channels are blocked by tetrameth rine, R (-)

efonidipine and NN C 55-0396 (Jensen and Holstein-R athlou, 2009) .

1.3.2.4. Chloride Channels (CI}

The chloride channels are abundantly distribut ed in smoot h muscle memb ranes (Kitamura

and Yamaza ki; 200 1). Vascular smooth muscle cell mainly includes two types of Cl

currents, i.e. calcium dependent chloride currents and volume regulated curren ts

(Chipperfie ld and Harper 2000; Kitamu ra and Yamazaki ; 200 1). Age nts (such as

noradrenaline, caffe ine and the Ca2
+ ionophore A-23 I87) that increase intracellu lar

concentration of ci+have been reported to activate cr currents in the smoot h muscle

cells (Byrne and Large, 1987a,b). This change in chloride conductance produ ces

membr ane depolarization , which leads to the opening of voltage dependent Ca2
+ channe ls

thus leadin g to an influx of Ca2
+ and hence contrac tion (Baron et al., 199 I ; Criddle et al.,

1997). A seco nd type of cr currents has been reported to be activated by mechanical

stress that occurs durin g vascular distention caused by high systolic pressure. The

mechanical stress induced elevations in cr conductance leads to the vasc ular con traction ,

thus reduc es the arteria l diameter (Nelson et al., 1997). Criddle el al. (1997) reported that

niflumi c acid selectively inhibited the agonist-induced contrac tion without altering the

high K'vevoked contraction in mesenteric artery of rat. In parallel , He and Tabrizchi
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(1997) demonstrated that niflumi c acid antagon izes the ur-adrenoceptor-induced

contractions in isolated perfused mesenteric blood vessels. In addition, cr channels play

a role in mainten ance of Emof vascular smooth muscle cells by altering the

transmembrane chloride concentration. This is affirmed by the use of var ious cr channel

agonists and antagonists (niflumic acid, indanyloxyacetic acid 94 and diphenylamine-2

carboxylic acid) (Large and Wang, 1996; Criddle et al., 1997; Kitamura and Yamazaki;

200 1).

1.3.3. Endothelial cell layer (Endothelium)

Until the late 1900s, endothelial cells were considered a homogeneous population of cells

merely forming an inert barrier to separate the vascular space from the interstitium.

Ground-breaking investigations by different research groups recognized the fundamental

importance of endothelial cells in the regulation of vascular smooth muscle tone. Further,

recognizing the role of endothelium in coagulation stressed the fact that it's not a merely

passive barrier (Moncada et al . 1977; Furchgott and Zawadzki, 1980; Furchgott, 1983;

Palmer et al., 1987, 1988). The landmark report by Furchgott and Zawadzki (1980)

unravelled the obligatory role of endothelial cells in the acetylcholine-evoked relaxations

in isolated arteries of the rabbit. Since then, this pivotal observation has since been

extended to a wide variety of blood vesse ls from different species, including humans

(Feletou and Vanhoutte , 2009). Later in 1987, Ignarro et al. proposed that the endothelial

mediator involved in endothelium-dependent relaxation is nitric oxide (NO), which

stimulates soluble guanylate cyclase in vascular smooth muscle cells leading to increased
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levels of cyclic guanosine monophosphate (cyclic OMP), and thus relaxation. The latter

ground-breaking observatio n was further substantiated by reports publ ished by Palmer

and coworkers (1987, 1988). Evidently, there is a general agree ment in the scientific

community that NO is indeed a major endothelium-derived relaxing factor (EDRF). The

discovery of var ious nitric oxide synthase (NOS) inhibitors aided in exploring the

physiological role of NO in the vascular walls (Rees et al., 1989). These pharmacological

tools (NOS inhibitors) also made evident that NO is not a sole mediator of EDRF (Rees et

al., 1989). In certain blood-ve ssels, prostacyclin released from endothelial cells evoked

noticeable vasorelaxation by activatin g the production of cyclic adenosine

monopho sphate (cyclic AMP) (Moncada and Vane, 1979; Furchgott and Vanhoutte ,

1989). The endothelium dependent relaxation was observed in various blood vessels in

the presence of NOS and a prostacyclin inhibitor. These endothelium-dependent

relaxations were attributed to hyperpolarization of vascular smooth muscle triggered by

the endothelial cells, and led to the postulation of the existence of endothelium-derived

hyperpolarizing factor (EDHF) (Feletou and Vanhoutte, 1988; Nakashima et aI., 1993).

1.3.3.1. Nitric oxide (NO)

Nitric oxide generated by the vascular endothelium is a major regulator of vascular

homeostasis , and change s in its bioavailability are now known to playa role in the

development of a number of diseases (hypertension, atherosclerosis, stroke etc.)

(Vanhoutte et al., 2009). The impaired vascular function is common to the latter clinical

conditions (Vanhoutte et al., 2009). Palmer et al. (1987, 1988) reported the release of NO
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and enzymatic formation of NO in the vascular endothelium. NO is a by-product from

the convers ion of the sem i-esse ntial amino acid L-arginine to L-citrulline, a reaction that

is catalyzed by eNOS (Palmer et af ., 1988). NO is a free radical species that carries

unpaired electrons on its outer shell. It is highly reactive with a half life of 3-5 seconds

(Moncada et af., 1989). NO reacts with superox ide (0 2
' ) and other reactive oxyge n

species to produc e a highly cytotox ic reactive nitrogen species know n as peroxynit rite. In

addition, NO exhibits low water solubility that aids the gaseo us molecule to diffuse

rapidl y across physiological membranes into the adjace nt smoot h muscle cells (Andrews

et af., 2002) .

The endothelial nitric oxide synthase (eNOS or NOS III) is one of three isoforms of the

enzyme that is mainly localized in caveolae in the memb rane of endothelial cells. The

other two isoform s are neuronal nitric oxide synthase (nNOS or NOS I) and inducible

nitric oxide synthase (iNO S or NOS II) (Moncada and Higgs, 2006). The eNOS is

constitutive ly active in the endothelial cells. An enzyme contains var ious domains; the C

termin al of eNO S is referred as reductase domain that provides a bind ing site for

nicotinamid e adenine dinucleotide phosphate (NA DPH), flavin adenine dinucleotide

(FAD), and flavin adenine mononucleotide (FMN) (Palmer et af. , 1987; Moncada and

Higgs, 1995). The N-t ermin al provides an oxyge nation site (heme protein) for L-argi nine

and is know n as the oxygenation domain. This domain also has a site for a co-fac tor,

tetrahydrobi opterin (BH4) . The commissure where both reductase and oxyge nase

domains join is a bindin g site for calmodulin and acts as a switch to regulate the flow of

electrons between the two domains (Moncada and Higgs, 2006) .
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The generatio n of NO by agonists (bradykinin, substance P and acetylcholine) was

originally considered to be regulated by [Ca2+]i ions. This was confirmed by chelation of

extrace llular Ca2+or with the presence of an antagonist of calmod ulin that abolishes NO

production in response to these agonists (Luckhoff et al.. 1988; Busse and Mulsch 1990).

The mechanism of Ca2+dependent activation has been extensively studied and it is

recognized that the various agonists activate phospholipase C, leadin g to increases in

cytoplasmic Ca2+and diacyl glycerol. The increa ses in [Ca2+]icause displac ement of the

eNOS, thus allowin g calm odulin access to its bindin g site on the eNOS. The bindin g of

Ca2+/calmodulin to the domains connecting region of eNOS result s in an NADPH

dependent flow of electrons from the reducta se region of one monomer of eNOS to the

heme iron in the oxygenase region of the other monomer initiating the synthes is of NO

(Moncada and Higgs, 2006). However, it is also now evident that eNOS could be

activa ted by certain stimuli without a sustained increase in [Ca2+];being necessary. For

example, shear stress, a stimulus generated by blood flowing on the endothelial cell

surface enhances the producti on of NO by two to fourfold over basal values that is

maintained as long as the stimulus is applied (Hoye r et al., 1998). Initially, the

generation of NO in response to shear stress due to the activa tion of eNOS was thought to

be Ca2+-independent. However further, investigation reveals that there is an initial

transient increase in [Ca2+]i when shear stress is applied (Hoye r et al., 1998). This was

also confirmed by inhibition of shear stress-induced activation of eNOS by chelation of

intracellul ar Ca2+. Thi s has led to the view that activation of eNO S by shear stress

actually requ ires Ca2+; and the enzyme could be phosphorylated at resting [Ca2+]i levels to

generate NO (Dimmel er et al., 1999). The mechanism by which shear stress genera tes
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NO involves the phosphatidylinositol 3-kinase (PI3K) pathway, leading to the activation

of serine kinase Akt- Iwhich phosphorylates eNOS on Serl 177 (Dimmeler et al., 1999;

Fulton et al., 1999). In endothelial cells, eNOS has also been reported to be activated via

O-protein-coupled receptors (Schini-Kerth and Vanhoutte, 1995).

In vascular smooth muscle cells, the main target for NO is the enzyme, soluble guanylyl

cyclase (sOC) , that catalyses the conversion of OTP into the second messenger molecule

(cyclic guanosine monophosphate; cGMP) that ultimat ely causes relaxation. The

activation of sOC arises when NO interacts with its heme moiety to form a complex that

ultimately induces conformational changes in the enzyme which exposes the catalytic site

to OTP (Hobbs, 1997). The cOMP induces relaxation by decreasing Ca2+flux by

inhibiting the flow through voltage-gated ci+channels (Lincoln, 1989). In addition,

cOMP also activates cOMP-dependent protein kinases (Schlossmann and Hofmann 2005)

protein kinase 0- 1(PKO I). Further, PKO I phosphorylates proteins in the sarcoplasmic

reticulum , including the Ca2+-activated K+channels (Archer, 1994), the IP3 receptor

associated cOMP kinase substrate (Hirata et al., 1990) and phospholamban (Cornwe ll et

al., 1991). The phosphorylation of these proteins leads to the sequestration of Ca2+ in the

sarcoplasmic reticulum , reduction of cytosolic Ca2+and vascular relaxation.

Damage to the endothelium perturbs vascular homeostasis. The impairment in NO

production or bioavailability is an important risk factor for hypertension and other

cardiovascular diseases; and is referred to as endothelial dysfunction. The endothelial

dysfunction is measured as a decrease in endothelium-dependent vasodilation induced

either by appropriate agonists (Schachinger el al., 2000) or by shear stress due to flow
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(Neunteufl et al., 2000). This has been demonstrated in both animal and human

hypertensive populations (Vanhoutte et al., 2009). In an animal model, Ca2+dependent

NOS activity was reported comparable between aortas of hypertensive and normotensive

rats (Nava et al., 1996). However, NO production was normal in spontaneously

hypertensive rats, but 0 2
- production was elevated and led to increased oxidation of NO,

resulting in a decreased vasodilatation response (Heitzer et al., 2000). The superoxide ion

could arise from a variety of sources, includin g NADPH oxidases and cyclo-oxyge nase

and these enzymes are reported to be up-regulated in hypertension (Vanhoutte et al.,

2009). Taken together, evidence seems to suggest that essential hypertension is

associated with reduced endothelium-dependent relaxation, where the functional role of

NO is regulated through its destruction or modification by another radical, namely

superox ide.

1.3.3.2. Endothelium dependent Hyperpolarizing factors (EDHF)

The EDHF is not a single factor that is synthesized in endothelial cells diffusing to

adjace nt vascular smooth muscle cells to elicit hyperpolarization. The EDHFs represent a

pool of various mediators that are released with EDRF from endothelial cells by various

endothelium-dependent vasodilators (Feletou and Vanhoutte, 2009) . Along with NO,

numerous other factors such as arachidonic metabolites (cyclo-oxyge nase derived

prostacyclin , PG!z; cytochrome P450 mono-oxygenase derived epoxyecosa trienoic acids,

EETs; lipoxygenase derived 12 -(S)- hydroxyeicosatetraenoic acid, HETE), gaseous

molecules (carbon monoxide, CO; hydrogen sulphide, H2S), reactive oxygen species
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(hydrogen peroxide, H20 2) , vasoactive peptides (C-type natriuretic peptide, CNP;

vasoactive intestinal peptide, VIP; calcitonin gene-related peptide, CGRP and

adrenomedullin) and adenosine, mediate their effects by activating K+channels and/or

gap jun ctions causing hyperpolarization of underlying smooth muscle cells (Feletou and

Vanhoutte, 2009).

The EDHF-mediated responses are characterized as a non-NO/non-P Gh mediated

endothelium-dependent vasorelaxation response that is accompanied by hyperpolarization

of vascular smooth muscle. The EETs (I I, 12 EET ; 14, IS EET), generated in the

endothelial cell by cytochrom e P450, diffuse into adjacent smooth muscle cells and

activate BKc• channels causing hyperpolarization (Feletou and Vanhoutte, 2009 ;

Campbell and Fleming, 20I0). Inblood vessels, bradykinin, pulsatile stretch and shear

stress have been reported to release EETs that hyperpolarize underlying vascular smooth

muscle cells by activating large-conductance Ca2+-activated K+(BKc.) channels (Huang

et al., 2005; Weston et al., 2005). Alternatively, Earley et al. (2005) reported that EETs

activate vanilloid transient receptor potential channels type 4(TRPV4 ). The Ca2+ influx

through TRPV4 increases the frequency of unitary Ca2+release events (Ca2+sparks) via

ryanodine receptors located on the sarcoplasmic reticulum of cerebral artery smooth

muscle cells. Further, EET- induced Ca2+sparks activate nearby sarcolemmal BKc.

channels. Like EETs another arachidonic metabolite, lipoxygenase derived 12-S-HETE,

was reported to be released by endothelial cells of porcine coronary artery and rabbit

aorta and activate sarcolemmal BKc• channels, thus causing hyperpolarization of smooth

muscle cells (Pfister et al., 1987; Zink et al., 2001). The endothelium-dependent

relaxations evoked by lipoxygenase derivatives are restricted to few blood vessels



33

(Feletou and Vanhoutte, 2009). Other mediators that recently joined the EDHF club are

CO, H2S and H20 2. Carbon monoxide is a by-produ ct derived from degradation of heme

by heme-oxygen ase. Like 12-S-HETE, CO vasodilator action is restrict ed to few blood

vessels. CO is a dif fusible gaseo us molecule that induces cGMP -mediated act ivation of

BKca and direct activat ion ofKATPand voltage -gated K+channels (Kv) in the smoot h

muscle cells (Wu and Wang, 2005). In contrast, CO is also recognized as a NOS

inhibit or via bindin g to prosthetic heme site of the latter enzyme and could contribut e to

endothelial dysfun ction (Baraga tti et al., 2007). Although, the H2S molecule has been

shown to hyperpol arize blood vesse ls, it is mostly expresse d in vascular smoo th muscle

cells and virtually absent in endothelial cells (Wang, 2002) . The last memb er of gaseo us

EDHFs is H20 2 which is deriv ed by the reaction of superoxide dismut ases with

superoxide ion. The H20 2 molecule acts as an important antiox idant defense in nearly all

cells exposed to oxygen. The H20 2 elicits endothelium-dependent relaxat ions by vario us

pathways such as by activation of cGMP and various K+channels (BKca, KATP, Kv and

KiT) (Ellis and Triggle, 2003; Shimokawa and Matob a, 2004) . However, in certain vessels

H20 2 mediated relaxation is not always assoc iated with hyperpolarization of smoo th

muscle cells (Chaytor et al., 2003) . Amongst the vasoac tive peptid es, C-type natriur etic

peptid e (CN P) has been investiga ted in mesenteric and caro tid arteries and various veins

(Ahluwalia and Hobb s, 2005; Feletou and Vanhoutte, 2009) . As with other EDHF

candidates, CNP evoked hyperpolarization is due to stimulation of cGMP that activates

the BKca channels (Wei et al., 1994). In addition, CNP has also been reported to activate

G-protein regulated inward-r ectifi er K+channels (GIRK) independent of stimulation of

cGMP (Villar el al., 2007).
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Common to all EDHF induced hyperpolarization is activation of the K+ channels presen t

on vasc ular smooth muscle cell s. This underscores the importance of K+ ions as front

runner in the race for the EDHF crow n. The contributi on of two calcium activated K+

channels that have been rigours ly investigated for EDHF are the intermediate and small

conduct ance Ca2+ activated K+channels (IKea, SKea). These channels are expressed in

the plasma membran e of vascular endothelial cells. The endothelium-dependent relaxant

agonists elevate the intracellul ar level of Ca2+and activate IKea and SKea channels that

further cause effl ux of K+ into the extracellular space . The accumulation ofK+ in the

extracellular space can provoke relaxation and/or hyperpolarization of vasc ular smooth

muscle cells by activating K, and/or the Na+/K+ATPase pump (Edwar d et a/., 1998).

Similar hyperpolarization was observed by raising the extrace llular K+ concentration (5-

15 mM) in various blood vessels (Hendrickx and Castee ls, 1974 ; Nelson and Quayle,

1995; Prior et al., 1998; Edward et a/., 1998). In most blood vessels, pharmacological

tools used to study these two channels are chary bdotoxin and TRAM-34 (for blocki ng

IKea); and apamin, scy llatox in and UCLl684 (for inhibiting SKea) (Ney lon et a/., 1999).

Follow ing activa tion of IKea and SKea channels, the efflux of K+ from intrace llular space

to extrace llular space in the endothelium in intact blood vesse ls supposedly occurs

through hetero-cellular hemi- channels known as myoendothelial gap jun ctions (MEGJ).

The MEGJ play an integra l role in the EDHF-mediated responses. Inhibition of these

junctions by gap jun ction inhibit ors (peptides, GAP-27; u-glycyrrhet inic acid derivatives;

carbenoxo lone and heptanol) attenuates the EDHF-mediated and endothelium-dependent

relaxant responses in various blood vesse ls (Yamamoto et al., 1999; Sandow and Hill ,

2000; Sand ow et a/., 2002; Dora et a/., 2003; Haddock et a/., 2006). The gap junctio ns
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are herni-channels (connexins) that aid electrical coupling between same cells (smooth

muscle cells-smooth muscle cells; endothelial cells-endothelial cells) referred to as homo

cellular gap jun ctions; and between two different cells (smooth muscle cells-endothelial

cells) referred to as hetero-cellular gap junctions (Schmidt et al., 2008) . In blood vessels,

the gap junctions are made of connexins (Cx) 37, 40 and 43 (Haddock et al., 2006;

Schmidt et al., 2008). Sandow and Hill (2000) reported that the number ofMEGls

increase with the reduction in the size of the artery. In small arteries such as mesentery

artery, SKea co-localizes with Cx37, Cx40, and Cx43 and is adjace nt to endothelial cell

gap junctions, whereas IKea co-localize with Cx37 and Cx40 in myoendothelial gap

jun ctions (Sandow el al., 2006) . This co-localization of channels in MEGls aids in the

transmission of endothelial hyperpolarization to the underlying smooth muscle which

plays an important role in EDHF-mediated responses in many blood vesse ls. In addition,

with the aid of MEGls vascular electrical responses are conducted through a low

resistance pathway provided by the endothelial cell layer (Dora, 20 I0). Various studies

with IKeal SKeal Cx knock-out mice have shown the importance of these components in

the cardiovasc ular system (Feletou and Vanhoutte, 2009). In genetically modified mice

(eNOS knockout mice), EDHF mediated responses play a compensatory role for the

absence of eNOS (Waldron et al., 1999; Brandes et al., 2000) . Deletion of IKeaand SKea

expression in the endothelial cells of transgenic mice showed elevated blood pressure

with reduced hyperpolarization noted in blood vessels in response to acetylcholine

(Taylor et al., 2003; Si et al., 2006). The endothelium-mediated relaxant responses have

been shown to attenuate in Cx 40 knockout mice. Further, theses connexins are suggested

to play a role in the development of hypertension and irregular arterio lar vasomotion (de
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Wit et al., 2003). Taken together, alteration of the EDHF pathway can also contribute to

these endothelial dysfuncti ons. The EDHF has been sugges ted to play a compensatory

role in the loss of NO bioava ilabil ity (Fe letou and Vanhoutte, 2009). An anomaly in the

function or express ion of various proteins expressed in vascular smoot h muscle and

endothelial cells could affect the dilator function of blood vessels that is critica l for

optimal tissue perfusion.

1.3.4. Signalling pathw ays involved in vascular contraction

The interaction of chemi cal compounds (agonists) with cell surface receptors results in

the activation of various intracellul ar signalling pathways and generation of numerous

second messengers. The second messengers target various intracellul ar targe ts to

generate vasc ular smoo th muscle responses.

The phosphophatidylinositol 4, 5, diph osphate (PIP2) is an important constituent of all

plasma memb ranes (Hirasawa and Nishizuka, 1985). Its phosphodiesteric cleavage to

inositol I, 4, 5 triphosphate (IP3) and I, 2, diacylglycerol (DAG) has been linked to

various agonists such as acetylcholine (Van Breemen et al., 1984), histamin e (Tsuru,

1984), angiotensin (Smith, 1986), noradrenaline (Bulbring and Tomita, 1987), serotonin

(Lapetina, 1987), thromboxane A2 (Lapetina, 1987), ATP (Nort h, 2002) , and vasopressi n

(Crooke et al., 1988). The phosphatidylinositol (PI) undergoes two-stage

phosphorylation in the inner plasma membr ane to form PIP2, which is the precursor for

receptor activation by external stimuli (Hirasawa and Nishizuka, 1985). Receptor

occupat ion stimulates G-protein regulated phospholipase C that hydrolyse PIP2 to
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produce IP3 and DAG (Hirasawa and Nishizuka, 1985). DAG is immediately

phosphorylated to phosphatidic acid (PA) by kinase in presence of ATP (Hirasawa and

Nishizuka, 1985). 1P3 is the intracellular mediator of Ca2
+ release from the endoplasmic



Figure 1. A schematic summarizing signalling involved in vascular smooth muscle cell for the process of contraction and

relaxation . Adenylyl cyclase , (AC); adenosine 5-triphosphate, (ATP); ATP -sensitive potassium channel, (KATP) ; calcium,

[Ca2+]; intracellular concentration ofCa2+,([Ca2+]i); extracellular concentration ofCa2+, ([Ca2+]o); calmodulin, (CaM) ; calcium

ATPase enzyme , (CaATPase) ; 3·-5'-cyclic adenosine monophosphate, (cAMP) ; cyclic guanosine monophosphate, (cGMP) ;

38



guanylyl cyclase, (GC); G-protein , (Gq) ; stimulatory G-protein (G, ); inositol 1,4,5-triphosphate, (IP3); 1,2 diacylglycerol ,

(DAG) ; myosin light chain kinase , (MLCK) ; myosin light chain phosphatase, (MLCP);phospholipase C, (PLC) ; nitric oxide ,

(NO) ; protein kinase A, (PKA) ; protein kinase G, (PKG) ; phosphophatidylinositol4, 5, diphosphate, (PIP2); receptor operated Ca

channel , (ROC) ; sarcoplasmic reticulum , (SR); receptor , (R); voltage operated Ca channel , (VOC); . Solid dark lines represent

pathways mediating contraction and solid light lines represent pathways mediating relaxation

39
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reticulum via IP3 receptors (Streb et al., 1984). Elevation of [Ca2+]i leads to binding of

Ca2+to calmodulin (CaM) to form Ca2+-CaM complex. This complex binds and activates

myosin light chain kinase (MLCK) (Dabrowska et al., 1978). Further, active kinase

complex (Ca2+-CaM-MLCK) phosphorylates the two 20-kDa light chain subunit of

myosin at serine'" and induces the cross-bridge cycling to generate force (Walsh, 1994).

The phosphorylated myosin is dephosphorylated by myosin light chain phosphatase

(MLCP), thus relaxing smooth muscle (Walsh, 1994). DAG is the membrane-associated

activator of protein kinase C (PKC) (Hirasawa and Nishizuka, 1985). PKC has been

shown to play an important role in sensitization of the smooth muscle leading to

contraction. This is referred to as sensitization of contractile elements that evoke

enhanced contraction at a given intracellular Ca2+concentration (Somlyo and Somlyo,

2003) . In addition, PKC targets nucleotide exchange factor on small molecular weight G

protein (Rho subfamily) that further phosphorylates MLCP and results in sustained

contraction (Somlyo and Somlyo, 2003). PKC-induced sensitization could be also caused

by direct or indirect phosphorylation of MLCK by CaM kinase II and subsequently

decrease the affinity of the enzyme for Ca2+-CaM complex (Tansey et al., 1994; Somlyo

and Somlyo, 2003).

1.4. p-adrenoceptors in cardiovascular system

Catecholamines such as noradrenaline and adrenaline regulate physiological processes via

their interactions with a variety of membrane bound receptors. A landmark study by

Ahlquist (1948) divided these surface receptors into a- and p-adrenergic receptors on the
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basis of the relative potency of various agonists in generating cardiovascular responses.

Studies revea led that p-adrenoceptors can be sub-divided into PI, P2, PJ, atypical or P4

(Lands et al., 1967; Emorine et al., 1989; Kaumann et al ., 1997). It has also been

suggested that P4 might be the low affini ty state of the PI receptor (Kaumann et al., 200 1).

The p-adrenoceptors are expressed in the cardiovascular system and play an integral role

in the regulation of the same. PI- and p2-adrenoreceptors are expressed in the pump of the

circulatory system, i.e. the heart. Under normal physiologic conditions contractility

and/or heart rate is regulated by cardiac PI-adrenoceptors but it has been suggested that in

situations of stress , when large amounts of adrenaline is released from the adrenal

medulla, stimulation of cardiac P2-adrenoceptors could contribute to additional increases

in contractility and heart rate (Motomura et al., 1990; Brodde and Michel, 1999).

Moreover, the existence of'Bj-adrenoreceptors has been suggested to mediate negative

inotropic effects in myocardium (Gauthier et al., 2000), but their role remains unclear

(Heubach et al., 2000). The modifications in p-adrenoceptors seem to play an important

role in heart disease such as heart failure. The pronounced activation of the sympathetic

system in patients with heart failure seems to be inversely correlated with survival. The

cardiac p-adrenoceptors, in particular the PI subtype, are down-regulated in heart failure

(Brodde, 1993), and the remaining receptors are uncoupled from Gas,presumably via

increased activity ofG-protein receptor kinases (GRK2 and/or GRKS) (Ungerer et al.,

1993). In addition, an increase in Guiproteins in heart failure and congestive

cardiomyopathy direct its antagonizing effect on p-adrenoceptor-mediated cardiac

responses (Neumann et al., 1988; Bohm et al., 1990). Furthermore, the increased

sympathetic activity could aggravate the disease process via increased renin secretion and
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sodium retention, both of which could increase peripheral resistance and further increase

the work load for the heart. Increased renin secretion in part occurs by the activation of

p,-adrenoceptors in kidneys. The p,-adrenoceptors are present in high density on the

renin-containing ju xtaglomerul ar cells in the afferent arterioles (Johns, 198 I).

Stimulation of these receptors results in increased renin secretion rate causing no or

minimal changes in renal hemodynamics (Kopp et al., 1980). In addition, P2

adrenoceptors have been found to localize in the collecting ducts, and activation of these

receptors may alter the transport properties of various tubular segments (DiBona and

Kopp, 1997). The increased production of renin leads to formation of angio tensin II via

the renin-angiotensin-aldosterone system (RAAS) . Further, angiotensin II causes blood

vesse ls to constrict, resulting in increased blood pressure, and it also stimulates the

secretion of the hormone aldosterone from the adrenal cortex . Aldosterone causes the

tubules of the kidneys to increase the reabsorption of sodium and hence water into the

blood. This increases the volume of fluid in the body, which also increases blood

pressure (Paul et al., 2006). Lastly, p-adrenoceptors are also expressed in the blood

transporting vesse ls of the circulatory system. The p-adrenoceptor-mediated vasodilation

plays an import ant physiological role in the regulation of vascular tone (Guirnaraes and

Moura, 200 I). Stimulation of peripheral p-adrenoceptors leads to relaxation of the

vascular smooth muscle and can regulate peripheral vascular resistance resultin g in the

distribut ion of blood to the different organs. So far, three subtypes of p-adrenoceptors

have been identifi ed in the mammalian blood vessels, i.e. PI,P2and P3(O' Donnell and

Wanstall, 1984; Shen et al., 1996; MacDonald et al., 1999; Chruscinski et al., 200 I;

Briones et al., 2005) . Stimulation ofp , and P2were suggeste d to play role in the
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relaxation of both arteries and veins (Taira et al., 1977; Vatner et al., 1985). The

maximal relaxant response mediated via p-adrenoceptors varies amongst vascular bed and

species, for example: in some arteries such as cerebral and coronary arteries, the PI

subtype plays an important role in relaxation (Edvinsson and Owman, 1974; O' Donnell

and Wanstall, 1985) whereas P2evoked relaxation responses is larger in veins (Molenaar

et al., 1988). In addition, the relaxant responses mainly depend on the level of tone of the

tissues (Begonha et al., 1995). In the 1990s, the existence of a subtype other than

classical PJ- and P2-adren oceptor involved in relaxation was reported in rat carotid,

mesentery and pulmonary arteries; rat aorta and canine pulmonary artery (Gray and

Marshall, 1992; Sooch and Marshall, 1995; Tamaoki et al., 1998; MacDonald et al.,

1999). With the discovery of p3-agonists (BRL-37344, CL-326243, CGP-12177 and ZD

2079) and antagonists (SR-59230), p3-signalling has been studies in experimental models

(both in vivo and in vitro) . Although the P3-adrenoceptor has been shown to play a role in

regulatin g vascular tone, its role varies amongst species. Stimulation of P3-adrenoceptor

by BRL-37344 and CL-326243 in mice, rats and dogs led to reduction of blood pressure

and total periphe ral resistance (Tavernier et al., 1992; Shen et al., 1996; Rohrer et al.,

1999). In contrast, Shen et al. (1996) reported that P3-adrenoceptor agonists were not

able to evoke any cardiovascular effect in conscious primates like monkey and baboon.

Further, a propranolol (non-selective p-antagonist) resistant relaxant component in rat

aorta is not antagonized by selective inhibitors of PI, P2 and P3 receptors (atenolol, P,

antagonist; ICI11855 , p2-antagonist; SR-59230) (Brawley et al., 2000). The later

suggests the presence of a fourth or atypical (P) subtype that participates in the relaxation

of blood vesse ls. Emerging literature on the atypical p-adrenoceptors suggests that it is a
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low affinity form of PI-stubtype that has a typical interaction with CGP-12l 77 (P3

agonist) (Konkar et al., 2000). The physiological importance of p-adrenoceptor has been

elucidated in transgenic mice. In PI-knockout mice, high variability in blood pressure and

significantly low heart rate in response to isoprenaline were observed (Rohrer et al.,

1999). In p2-knockout mice, heart rate and blood pressure appear normal at rest but these

parameters were found elevated during exercise (Chruscinski et al., 1999). Inaddition,

the hypotensive response to isoprenaline is significantly attenuated in Prknockout mice

(Chrusc inski et al., 1999). Interestingly, in double knockout mice <PIand P2) the

upregulation of P3-adrenoceptor compensated for unaltered cardiovas cular responses.

This was shown by significantly enhanced cardiovasc ular responses (hypotension) to P3

agonist CL-3 16243(Rohrer et al., 1999). Taken together, p-adrenoceptors play major

roles in blood flow distributi on to various organs (depending on the metabolic need) and

regulation of vascular tone.

1.4.I . p-adrenoceptor signaIling

The p-adrenoceptor is a GPCR and has u, P, y subunits as part of its infrastructur e. The

p-adrenoceptor is comprised of 4 I3 amino acid residues of approximately 46,500

Daltons. Like all GPCRs, the p-adrenoceptor has seven transmembrane-spanning n

helices with three extraceIlular loops, with one being the amino terminus and three

intraceIlular loops with a carboxy-terminus (Emorine et al., 199 I). The overaIl amino

acid sequence identit y between the three receptors is about 50% and may reach up to 90%

in transmembrane regions that participate in catecholamine binding (MaruIlo et al., 1990).
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The resid ues involved in the bind ing of ligands to p-adrenoceptors are associa ted with the

seven transmemb rane regions, arranged in such a way that they form a pocket, and a part

of the extracellular hydrophilic loops joining the transmemb rane regions (Fraser, 1989).

Following bindin g of the ligand to the receptor, the conformational changes activate Gus

in vasc ular smooth muscle cells (Scheid et al., 1979) or G Ui in endothelial cells (Zheng et

al., 2005) that stimulates second messenger systems or activates ion channels. The

interacti on between p-adrenoceptors and the Gus protein depends on residu es from the

intra-cytoplasmic loops and the C-terminal region (O'Dowd et al., 1988). Furthermore ,

couplin g of Gus to adenylyl cycla se (AC) results in the activation of the enzyme and

catalyses the conversion of AT P to cAMP . The cAMP activates protein kinase A (PKA)

by bind ing to its regulat ory subunit, causing PKA to dissociate from the catalytic subunit,

thereby rendering it active. PKA is a serine/threonine protein kinase that targets a

numb er of intrace llular prot eins to produce vasc ular relaxation, involving a) PKA

induced phosphor ylation of MLCK that result in decreasing the affinity of MLCK for

calmodulin thus relaxation of smoo th muscle cells (Somlyo and Somlyo 1994; Walsh

1994); b) activation of large-condu ctance, Caz+activated Kcachannels; c) activation of

K+channels resultin g in hyperpolarization and reduced Ca2+influ x (Chen and Rembold,

1992) and d) seques tration of Caz+ into internal stores (Tawa da et al., 1988). In addition,

the eNOS inhibitor NO-monomethyl-L- arginine (L-NMMA) attenuated the relaxation

respon se to pz-adrenoc eptors stimulation or to the cAMP analogue dibutyryl cAM P,

indicating that the NO -dependent component of the p-adrenoceptor relaxa tion response is

mediated largely through the elevation of cAMP. The levels of eNOS serine

phosphorylation were also found elevated on stimulation of p-adrenoce ptors in human
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umbil ical vein endothelial cells (HUVECs) (Yao et al., 2003). This was confirmed by

pre-treatment of HUVECs with the PKA inhibitor H89 that resulted in inhibition of P

adrenoceptor-mediated serine phosphorylation of eNOS (Ferro et al., 2003) . Taken

together, it seems that p-adrenoceptor-mediated vasore laxation has both cAMP-dependent

and cAMP-independent components.

1.4.1.1. cAMP-independent pathways

Endothelial/N itric oxide/cGMP pa thway: The participation of endothelial cells/NO in P

adrenoceptor-mediated vascular relaxation is controversial. On one hand, it has been

suggested that the removal of the endothelium or inhibitors of NOS was found to have no

influence on isoprenaline evoked relaxations in rat aorta (Moncada et al., 1991), canine

coronary arteries (White et al., 1986), rat carotid artery (Oriowo, 1994), or human internal

mammary artery (Molenaar et al., 1988); and on other hand, many authors showed that

removal of endothelium reduces the relaxations caused by p-adrenoceptor agonists in

several isolated vesse ls that include rat thoracic aorta (Brawley et al., 2000) , canine

coronary arteries (Rubanyi and Vanhoutte, 1985), mouse aorta (Akimoto et al., 2002) and

rat pulmonary artery (Bieger et al., 2006). Surprisingly, two different investigators

Moncada et al. (1991) and Brawley et al. (2000) showed opposite results in the same

tissue (rat thoracic aorta). It is plausible that different endothelial p-adrenoceptor (P3)

subtype mediate isoprenaline-evoked hyperpolarisation in rat thorac ic aorta. This

hypothesis was investigated by Trochu et al. (1999) and the evidence sugges ted that P3

adrenoceptors are mainly located on endothelial cells, and act in conjunction with PI-and
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P2-adrenoceptors to mediate relaxation through activation of an NOS pathway and a

subsequent increase in cGMP levels. It was also found that P2-adrenoceptor-mediated

eNOS activation occurs independently of Ca2+and might be mediat ed via the

phosphoinosit ide 3-kinase /Ak t (ser ine/threonine protein kinase) pathway. This was

confirmed in rat thoracic aorta by treating the tissue with wortmannin (inhibitor of

phosphoinosit ide 3-kinases) and an Akt inhibitor resultin g in the inhibiti on of P

adrenoceptor mediated eNOS activa tion (Ferro et al., 2004). Taken together, the role of

the endothelium in p-adrenoceptor mediated vasodilation is still unclear.

Role ofK channels in fJ-adrenoceplors signalling: The stimulation of p-adrenoceptors is

also associated with hyperpolarization of smooth muscle cells (Prehn et al., 1983;

Nakashim a and Vanhoutte , 1995; Ming et al., 1997; Fujii et al., 1999; Goto et al., 200 1;

Si eger et al., 2006; Garland et al., 20 11). This change in memb rane potential has been

linked to the opening of K+channels that vary amongst the vascular beds and spec ies.

For example, Nakashima and Vanhoutte (1995) demonstrated that stimulation of P-

adrenoceptors in canine saphenous vein involves the opening of KATI' channe ls and

venodilation. Similarl y, the activation of p-adrenoceptors in rat mesenteric arter ies has

been found to result in the opening of KATI' channels leadin g to the hyperpolarization of

vascular muscle (Fujii et al., 1999; Goto et a!., 200 I; Garland et al., 20 II ). Moreover,

Ming and colleag ues (1997) reported that in conscious dogs, p2-adrenoce ptor-mediated

dilation of resistance coro nary arteries involved the opening of KATI' channe ls as well as

the generation of NO. Si eger et al. (2006) demonstrated that isopre naline induced

hyperpolarization in the rat main pulmonary artery was assoc iated with the opening of

two-pore acid sensitive K+ channels (TAS K), but not the KATp channels. The activat ion
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of TASK following stimulation of'[l-adrenoceptors did not appear to be media ted via

cAMP/PKA activation (Bieger et al., 2006).

The p-adrenoceptor-activa ted AC/cAMP/PKA phosphorylates serine/threon ine residue on

[l-adrenergic receptor kinase (PARK) that further phosphorylates serine/threonine

residues on the p-adrenoceptor, thus facilitating bindin g of p-arres tins to the receptor

(Pitcher et al., 1992; Pippig et al., 1993). Binding of arrestin to the cytoplasmic loop of

the receptor occlude s the binding site for the heterotrim eric G-protein (Gas) thus

preventin g its activation (desensitization). Alternatively, arrestins cause the

internalization of the receptor via c1athrin coated pits and subsequent transport to an

internal compartment, called an endosome. Subsequently, the receptor could be either

targeted to degradation compartments (Iysosomes) or recycled back to the plasma

membrane where it can signal again (Lefkowitz and Shenoy, 2005) . The binding of

arrestin prevents the activation of p-adrenoceptor by agonists . In conclusion, pARK acts

as a negative feedback enzyme which will prevent over-stimulation of the p-adrenoceptor.

The p-adrenoceptor-mediated responses follow cAMP-dependent and independent

pathways. Interestingly, involvement of K+channels in p-adrenoceptor signalling varies

vastly with vascular tissues. What this diversity in p-adrenoceptor signalling signifies is

still unclear. Definitely much remains to be learnt about the mechanisms of p

adrenoceptor signallin g in various tissues.
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1.5. High sa lt diet and cardiovascular diseases

Dietary salt is composed of sodium (Na+) and chloride (Cl) ions. The sodium ions are

the most abundant ions in extracellular fluid and they play a pivotal role in fluid and

electrolyte balance and in generation and conduction of membrane potentials in neurons

and muscle fibres (Tortora and Grabowski, 2010). Evidently, the daily increase of Na"

intake in most countries worldwide is largely due to excess dietary salt. This elevated

consumption of dietary salt cause a rise in blood pressure (hypertension) that further lead

to increases in cardiovasc ular (strokes, heart attacks and heart diseases) and renal diseases

(Intersalt study, 1988; Meneton et al., 2005; He and MacGregor, 2010) . Hypertension

has been reported as the biggest cause of death and the second biggest cause of disabi lity

after malnutrition in children worldwide (Lopez et al., 200 1). Consequences of high

blood pressure are mainly due to its effects on the cardiovasc ular system that cause a high

mortality rate worldwide. In the company of other factors such as high cholesterol and

smoking, hypertension accounts for over 80% of cardiovasc ular diseases (Emberson et

al., 2003). Howeve r, high blood pressure is the single most important cause, respons ible

for 62% of strokes and 49% of coronary heart disease (World Health Report, 2002). Over

the years, assiduous work of many researchers across the globe on salt-induced

hypertension and cardiovasc ular diseases has brought out the concept that in addit ion to

raising blood pressure dietary salt has direct harmful effects . Some of these

cardiovascular effects occur independently of pressure change (He and MacGregor,

20 I0). Tobian (1991) was the first to show that in various forms of experimental

hypertension in the rat, a high salt intake induces structural alterations in cerebra l and
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renal vessels independent of the change in blood pressure (Tobian and Hanlon, 1990;

Tobian, 1991).

1.5.1. Evidence linking high salt diet with cardiovascular diseases

A higher number of deaths due to stroke were reported from Japan (in the late 1950s) and

interestingly, these incidences had a regional distributi on that paralleled high salt

consumption as part of the diet (Sasaki, 1964). The salt intake in northern Japan on

average was 27 g/day, and 70% of the population (age of 50-60 years) had a high blood

pressure (systolic and/or diastolic over 150/90 mmHg) result ing in the highest prevalence

of cerebral haemorrhage (Sasaki, 1964). However, the southern region had a much lower

prevalence of cerebral haemorrhage due to lower salt intake, an average of 14 g/day ; only

10% of the population (same age range) had high blood pressure. A reduction in dietary

salt intake in these populations lowers arterial blood pressure and leads to an 80%

reduction in mortality due to stroke. Thus overall the reduction in salt intake appea red to

be associated with a large decrease in deaths from stroke (Sasaki, 1979; Intersalt study,

1988). Further, a large international study on salt and blood pressure (INTERSALT) was

conducted using a standardized method for monitoring blood pressure and 24-h urinary

sodium. Fifty-two communitie s with a wide range of salt intake from 0.5 to 25 g/day

were enrolled . However, the majority of recruited communities had salt intake of 6 and 12

g/day and only four had a low salt intake (3 g/day or less). In the latter study, it was

demonstrated that a significant positive relationship between salt intake, 24 hour urinary

sodium and blood pressures exists. There was also a highly significant positive
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relationship between salt intake and the increase in blood pressure with age. It was

estimated that an increase of 6 g/day salt intake over 30 years would lead to an increase in

systolic BP by 9 mmHg (Intersalt study, 1988). A commendable joi nt effort by the food

industry and Government of Finland in order to reduce salt in food products and to raise

the genera l awareness among consumers of the harmful effects of high salt consumption

on health has led to reduction of salt intake by one-third (Karppanen and Mervaa la,

2006). This results in a decrease of approximately 10 mmHg in both systolic and

diastolic blood pressures. Moreover, a pronounced reduction of 75-80% in mortality

associated with stroke and coronary heart diseases and an increase of 5-6 years in life

expectancy were also recorded (Laatikainen et al., 2006). The two large randomized

trials, the Trial of Hypertension Prevention (TOHP) I and II have demonstrated the long

term effects of salt reduction on cardiovascular diseases (Cook et al., 2007). More than

3000 individuals with an average baseline blood pressure of 127/85 mmHg participated in

the studies and were randomized to a reduced-salt group (for 18 months in TOHP I and

36-48 months in TOHP II) or to a control group. The individuals in the intervention

group were advised to reduce their salt intake (average of 10 g/day) by 25-30%. These

reduct ions in salt intake resulted in a fall in blood pressure of 1.7/0.9mmH g at 18 months

(TOHP I) and 1.2/0.7mmH g at 36 months (TOHP II). The dietary advice was stopped

after the compl etion of the initial studies. The participants were followed for subsequent

development of cardiovascular diseases up to 15 years after the end of TH0 P I and 10

years after the end of THOP II. The intervention group with reduced-salt intake had a

25% lower incidence of cardiovascular events (Cook et al., 2007). Furthermore,

epidemiological studies in humans have shown that a high salt diet may have a direct
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effect in causing stroke, independent of, and additive to its effect on blood pressure.

Ferrara et al. (1984) reported that the increase in left ventricular mass assoc iated with

essential hypertension can be reduced by lowering the intake of salt. The Trea tment of

Mild Hypertension Study Research Group showed a significant correlation between the

reduction in salt intake and left ventricular mass. In another study group lowering salt

intake was also the only factor which was significantly correlated with a reduction in left

ventricular mass (Liebson et al., 1995). Lastly, consumption of low salt diet has been

shown to improve distensibility of central aorta and large peripheral arteries in

normotensive and elderly hypertensive (stage I) patients (Avolio et al., 1986; Gates et al.,

2004). This should have beneficial effects on the cardiovasc ular system.

1.5.2. Evidence from animal studies

The influence of a high salt diet on the cardiovascular system has been widely studied in

animal models. Numerou s studies in rats, mice, dogs, chickens, rabbits, baboons, pigs

and chimpanzees have all shown that high salt intake plays a role in regulating blood

pressure (Penner et al., 2007; Elliott et al., 2007). Denton et al. (1995) conducted a study

in chimpanzees (98.8% genetic homology with man) and demonstrated that a gradual

increase of salt intake from 0.5g/day to l Og/day over a period of20 months, results in

progressive elevation in blood pressure. After stopping the salt supplementation, the

blood pressure declin ed to that of control group over a period of 3-6 months. A study

conducted in pigs in which one group was fed a diet containing either 0.5% salt or 3% salt

for 8 months after weaning with free access to pure water. The average diastolic and
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systolic blood pressures became progressively elevated from the second to the eighth

month in the group of pigs with the high salt intake (Corbett et al., 1979). Among all the

mammalians, by far the most extensive investigations on the effect of high salt diet and

the underlying mechanisms have been conducted in rats. A number of studies reported

that Dahl salt sensitive and Spontaneous-Hypertensive rats when fed a high salt diet (4 

8% NaC l) for 4-10 weeks develop hypertension and cause pressure induced adaptive

vascular hypertroph y (Folkow et al., 1971; Hampton et al., 1989; Simon et al., 2003) ,

ventricular hypert rophy (Kihara et al.,1985), hypertrophied kidneys with glomerular and

interstitial fibrosis (Blizard et al., 1991; Vaskonen et al., 1997), stroke (Tobian and

Hanlon , 1990; MacLeod et al., 1997), and cardiac failure (Frolich, 1999). The

normotensive (Dahl salt-resistant, Wistar-Kyoto) rats fed a high salt diet (2 - 8% NaCl)

maintains a normal blood pressure but other effect of excess Na+on the cardiovascular

system were observed such as increased left ventricular mass (Frolich, 1993), vascular

hypertroph y (Tobian and Hanlon , 1990; Tobian, 199 I), increased weight and size of

kidney (McCo rmick et al., 1989), stroke (Tobian and Hanlon, 1990) and cardiac failure

(Frolich, 1999). Thus, these observations suggested a link between high consumption of

dietary Na+and cardiovascular diseases by both blood pressure-dependent and blood

pressure-independent mechanisms.

The underlying mechanisms that result in salt induced vascular dysfunction have been

widely investigated. Numerous studies in rats and mice have suggested that salt-induced

vascular dysfunction may be linked to a defective L-arginine/eNOS / NO pathway. Chen

and Sanders (1991) demonstrated that the formation of NO plays an integral role in

resting arteriolar tone in Dahl salt-resistant and Sprague-Dawley rats. The NG
_
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monometh yl-L-arginin e (L-NMMA; eNOS inhibitor) increased blood pressure by

abolishing endothe lium-de rived vaso dilation. It has also been reporte d that basa l cyclic

GM P levels were sig nifica ntly higher (7.8-fo ld) in blood vesse ls of normotensive rats

compared to hypertensive rats (Biege r et al., 2004). These result s sugge st that during salt

loadin g, salt-res istant rats are able to increase NO production , prevent ing the enhanced

blood pressure response. In contr ast, salt-sensitive rats showe d a defect in their ability to

increase NO production in response to high salt intake. It is plausibl e to state that Dahl

salt-se nsitive rats exhibit a marked down- regulation of vasc ular expressio n of eNOS. A

high salt diet co uld indu ce produ ction of superoxi de ions which reduce the

"bioavailability" of NO in the cardiovasc ular system. Furthermo re, blood vesse ls from

hypertensive anima ls have been reported to show more sens itivity to vasoco nstrictor

age nts such as noradr enalin e, sero tonin, ouabain, Bay K8644 (L-type calcium channel

ago nist), phorb ol ester (a prot ein kinase C activator), and endo the lin (Bohr and Webb ,

1988; Domin iczak and Bohr , 1989; Storm et al., 1990). The res ting Emrecorded from

vasc ular smoo th cell s ofrats fed a high salt diet varies from vesse l to vessel. Abe l et at.

(1981 ) record ed restin g memb rane potenti al of similar magnitud e in cauda l arter ies from

Dahl salt-sens itive (-50.2 ± 1.1mY ) and Dahl sa lt-res istan t (-5 1.4 ± 0.9 mY) rats fed a

high salt diet (8% NaC l). Similarly, Parai and Ta brizc hi (2005) reported that the resti ng

Emof smoo th muscle cells of mesentery arteries of Dahl sa lt-resis tant (-68 .0 ± 4.2 mY)

and Dahl salt-se ns itive (-67.2 ± 4.8 mY) rats fed a high sa lt diet (4% NaCl) were not

di fferent. In contra st, Fujii et at. (1997) reported di fferent Emin superior mesenteric

arter ies from Dahl sa lt-se ns itive (-4 1.4 ± 0.5 mV) rats that were significa ntly depolarized

compared to Dahl salt-res istant (-47.0 ± 0.7 mY) rats. A simi lar observ ation was made by
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Wellm an et al. (200 1) in cerebral arteries form Dahl salt-sensitive and Dahl salt-resis tant

rats. The resting Emof tail artery of spontaneously hyperten sive rats (-56. 1 ± 1.1 mV)

was significantly depolarized compared to their aged matched norm otensive controls, the

Wistar-Kyotos (-63. 7 ± 1.5 mY) (Cheung, 1984). Interestingly, Bieger et al. (2004) noted

hyperpolarization of resting EIII in smoo th muscle cells from pulm onary artery of Dahl

salt-sensitive comp ared to Dahl salt-resistant rats fed a high salt diet (4% NaCl). This

lack of consistency betwe en measured Emcould be attributed to the regional difference

among the blood vesse ls. Collectively, evidence sugges ts that the consumption of high

salt could lead to an altered EIII of smoo th muscle cell s and changes in signal transduction

within the vascular system that further affects the functional responses of blood vesse ls to

var ious physiologic al mediat ors.

1.6. Objectives of the study

Since Furchgott and Zawadski (1980) first reported that acetylcholine-media ted

relaxation of vasc ular smoo th muscle requires the presence of an intact endothelium, the

role of the endothe lium in the cardiovasc ular system has been extensive ly studied in

normal and disease states . Endothelium dysfunction has been found a common factor in

the gamut of cardiovasc ular diseases (Vanhoutte et al., 2009) . The p-adrenoceptor 

mediated vasorelax ation has long been considered as a cAM P dependent phenomenon

that take place in the vas cular smooth muscle cells (Scheid et al., 1979). The origina l

observat ion for the invo lvement of endothelial cells in p-adrenoceptor-mediated

vasorelaxa tion was made by Rubanyi and Vanhoutte (1985), who demonstrated that the
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remova l of the endothelium reduced the relaxation of canine coronary arteries caused by

p-adrenoceptor agonists. Since then various researchers have invest igated the role of

endothelium in different vascular tissues but its role still remains unclear. For example;

isoprenaline-induced relaxation in canine coronary arteries (White et al., 1986), human

internal mammary artery (Molenaar et al., 1988) or rat carotid artery (Oriowo, 1994),

were found to be endothelium-independent. Other reports demonstrated that remova l of

endothelium reduces the relaxations caused by p-adrenoceptor agonist in canine coronary

arteries (Rubanyi and Vanhoutt e 1985), mouse aorta (Akimoto et al. 2002) and rat

pulmonary artery (Bieger et al., 2006). Interestingly, two different researchers published

contradictory report s in the same tissue i.e. rat aorta, one group showed that p

adrenoceptor-mediated relaxations were endothelium-independent (Moncada et al., 1991)

and the other reported that this was the case (Brawley et al.,2000). This variance in the

latter observations could be due to differences in experimental design i.e. different level

of tone placed on tissues. In addition, the impact of the presence of endothelium in p

adrenoceptor-mediated electrical responses has remained unresolved.

Hypertension has been linked with reduced endothelium dependent relaxations in isolated

arteries from different animals (Lee and Triggle, 1986; Lee, 1987; Luscher et al., 1987).

However , consumption of high salt diet has been shown to increase the formation of NO

in Sprague-Daw ley rat fed a high salt diet (4% NaCl). This was demonstrated by

enhanced excretion of NO metabolites (Tolins and Shultz, 1994). In parallel, Bieger et al.

(2004) sugges ted that blood pressure of Dahl-salt resistant rats fed a high salt diet (4%

Naf. l) remained unchanged due to elevation of the vascular cGMP levels.
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Dietary salt intake has been shown to influence p-adrenoceptor-mediated vascular

response . High salt intake has been suggeste d to impair p-adrenocep tor-mediated

response (Feldman, 1990a). The reduction of salt intake results in normalized P

adrenoceptor-mediated venodilation in borderline hypertensive patients or elderly

normotensive individuals (Feldman, I990a; Feldman, 1992). In animal studies, high salt

intake has variable effects on normalized p-adrenoceptor-mediated responses. The

isoprenaline-mediated vascular dilation was found to be significantly attenuated in aortic

rings from Dahl salt-sensitive rats fed a high salt diet (Soltis and Katovich , 1991). In

contrast, in low pressure segment of the circulatory system (i.e. pulmon ary artery), P

adrenoceptor-mediated relaxant responses of Dahl salt-sensitive hypertensive rats were

not affected by consumpti on ofa high salt diet (Ford et al., 20 11). Furtherm ore, the

noradrenaline-medi ated vasodilation was attenuated in six and twelve weeks old

spontaneous hypertensive rats (Arribas et al., 1994). Altered p-adrenoceptor-induced

hyperpolarization has been reported in vascular tissues of hypertensive rats (Stekiel et al.,

1993; Goto et al., 200 1). Taken together, the evidence suggests that elevation in blood

pressure might interfere with p-adrenoceptor-mediated relaxation responses.

The consumpti on of a high salt diet has also been shown to modestly elevate systemic

blood pressure in Sprague-Dawle y rats which are considered to be normotensive (Sofola

et al., 2002) . Bieger et al.(2004) reported that blood pressure of Dahl-salt sensitive rats

following consumption of high salt diet (4% NaCl) for the period of7 weeks was

significantly elevated without inducing any change in mean pulmonar y pressures. The

absence of an elevated mean pulmonary pressure in the circulation may allow for the p

adrenoceptor-mediated funct ional and electrical response to remain intact in a state of
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systemic hypertension. Considering the above evidence, we studied p-adrenoceptor

mediated responses in the low pressure system i.e. pulmonary artery of Sprague-Dawley

rats. In addition, consumption of high salt also been found to elevate plasma sodium by I

to 3 mmol/L in patients with essential hypertension and in the spontaneously hypertensive

rat (SHR). The increase in sodium concentration greater than 2 mmol/L has been shown

to induce changes in vascular response independent of an increase in blood pressure (de

Wardener et al., 2004).

In order to study the effect of high salt diet on p-adrenoceptors, we first need to have an

understandin g of the p-adrenoceptor-mediated response independent of changes in blood

pressure. Earlier evidence from this laboratory supported the view that isoprenaline

induces hyperpolarization of pulmonary artery (Bieger at al., 2006). This

hyperpolarization was sensitive to inhibition by acidification of buffer and seems to be

due to the opening of the two-pore domain potassium channel (TAS K) (Bieger et al.,

2006). Studies from this and another laboratory suggested that isoprenaline-induced

relaxant responses in rat pulmonary artery were also in part endothelium dependent

(Priest et al., 1997; Bieger at al., 2006).

Therefore, the two main objectives of the present study were to:

A) Investigate the role of endothelium in p-adrenoceptor-mediated electrical

responses in the rat pulmonary artery.

B) Examine the effect of high salt diet on isoprenaline-induced electrica l and

mechanical responses in the rat pulmonary artery.
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1.7. Hypotheses

It is possible that a high salt diet alters p-adrenoceptor-mediated signalling independent of

changes in systemic blood pressure. In the present project a number of hypotheses were

tested in relation to p-adrenoceptor signalling in isolated blood vesse ls (main pulmonary

artery) from the low-pressure segment of the circulatory system. The first hypothesis

being that endothelium played an integral role in p-adrenoceptor-m ediated vascular

response i.e. electrical and mechanical. The second hypothesis being that consumptio n of

a high salt diet would alter p-adrenoc eptor-medi ated signalling in the blood vessel

independent of a change in intravascular pressure .
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2.0. METHODS

2.1. Study I. Role of endothelium in vascular p-adrenoceptor signalling

2. 1.1. Preparation of animal s

Six- seve n weeks old male Sprag ue-Daw ley rats (270 - 330 g) were housed (two per

cage) with 12h light/dark cycles and give n access to normal food (La bDie t 5POOProLab,

PMI Nutriti on Intern ational, Brentw ood, MO , U.S.A) and tap water ad libitum.

2.1.2. T issue iso lation

Each Sprag ue-Daw ley rat was anaest hetize d with halothane (5% in 100% oxygen) and

exsanguinated . The chest was cut open to access the thoracic cavity to remove cardio

pulmonary organs. Lungs and pulmonary vascu lature along with the heart were

transferred into a dissecting dish con taini ng physiological buffer with the followin g

compositio n (in mM): NaC I, 130; KCI, 4.0 ; glucose , II ; MgCh, 1.2; CaCh, 2.5; KH2P0 4,

1.2; Na HCO J, 12.5; EDTA , 0.1. The pH of the buffer following saturat ion with a 95% 0 2:

5% CO2 gas mixture was 7.4 at 36 ± 1 °C. The main left and right pulm onary arte ries

were isolated , dissected free of conn ecti ve tissue and separa ted from the pulm onary trun k.

The endo the lium was removed in some blood vessel s by gen tle rubbin g with a string

made of cotto n wool.
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2.1.3. Experimental protocol

2.1.3.1. Mechanica l force measurements

Ring preparations from the right and left main pulmonary arte ries (-2 mm in length) were

mounted in 20 ml orga n baths at 36 - 37°C under a force of9 .8 mN and gassed

continuously with a mixture of95% 0 2: 5% C02 for mechanical studies . The tissues

were equilibrated for 60 min (washed twice at 30 min with physiological buffer), and

isometric tension was measured using force displ acement transducers (Model FT03 ,

Grass Instrum ents Co., MA, U.S.A.) connected to a polygraph (Mode l 7PCPB , Grass

Instruments Co., MA, U.S.A.) . Tissues were initially contrac ted with a single

concentration of phenylephrin e (1.0 I-lM), and the integrity of endothelial ce lls was

ascertained by the addition of methacholine (1.0 I-lM). Tiss ues were then washed with

physiological buffer and left for an additional 60 min (was hed once at 30 min with

physiological buffer) before they were contracted with phenylephr ine (0.3 - 1.0 I-lM)and

a contro l cumulative concent ration-response curve to isoprenaline (1.0 nM - 3.0 I-lM) was

constructed (Bieger et al., 2006). Following a wash with regular physiological buffer

and/or acidic buffer (pH 6.4; TASK- I antagonist) each tissue was incubated 20 min with

one of the follo wing: vehicle (twice-distilled water, 200 I-lL), BaCh (100 I-lM; K,

inhibitor) , ouabain (100 ~lM ; Na+/K+ATPase inhibit or), tetraethylamm onium (TEA, 3.0

mM; voltage gated K+ channel blocker) or combination of these interventi ons i.e. buffer

pH 6.4 plus BaCh (100 I-lM), buffer pH 6.4 plus ouabain (100 I-lM), pH 6.4 plus TEA (3.0

mM), BaCh (100 I-lM) plus ouabain (100 I-lM), buffer pH 6.4 plus BaCh (100 I-lM) plus
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ouabain (100 11M), BaCh (100 11M) plus TEA (3.0 mM), buffer pH 6.4 plus BaCh (100

11M) plus TEA (3.0 mM), BaCh (100 11M) plus ouabain (100 11M) plus TEA (3.0 mM),

pH 6.4 plus BaCh (100 11M) plus ouabain (100 11M) plus TEA (3.0 mM). Subsequently,

tissues were contracted with phenylephrine (0.3 - 1.0 11M) and a second cumulative

concentration-response curve to isoprenaline was constructed (1.0 nM - 30.0 11M).

Parallel experiments were carried out in denuded blood vessels.

2.1.3.2. Membrane potential measurements

Pulmonary artery rings were held under a tension of9.8 mN in a 5 ml sylgard lined tissue

chamber perfused with physiological salt solution pregassed with a mixture of95 % O2:

5% CO2 delivered at a rate of 3 - 4 ml per min and warmed to 34 - 35°C. Blood vessels

were allowed to equilibrate for 60 min, and the Emwas recorded with borosilicate

capillary microelectrodes filled with KCl (3.0 M) with a tip resistance of 10 - 20 MD.

The Ag/AgC I reference half-cell containing KCI (3.0 M) was connected to the bath via an

agar salt bridge containing 150 mM NaC!. Impalements were made by means of a

Narishige x-y-z micropositioner, typically from the intimal side at depths >50 11mbelow

the surface. Criteria for impalement and measurement of smooth muscle cell Emwere an

abrupt drop in voltage upon penetration of the cell membrane, a stable Emfor at least I

min, and a sharp return of the Emto zero upon withdrawal of the electrode from the cell

(Biegere l al.,2 006).
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Voltage signa ls were recorded by means ofAxoclamp-2A (Axo n Instrum ents Inc., CA,

USA), the output of which was fed into a Digi-Data 1200 Series Interface (Axon

Instrum ents Inc.). Data was acquired and displayed on AxoSco pe (Version 1.1) and

stored on a micro comput er. The Emfrom 3 - 6 cells was initia lly recorded prior to

exposure of the blood vesse ls to drugs. Subsequently, tissues were exposed to solutions

containin g isoprenaline (1.0 ~M) for 5 - 10 min, and the EIII of the cells was sampled. In

cases wher e inhibitors were used , followin g exposure to isoprenaline, tissues were

perfused with buffer cont ainin g no drugs for 10 - 15 min and then exposed to buffer

containing either buffer pH 6.4, BaCh (100 ~M), ouab ain (I 00 ~M), TEA (3.0 mM) and

combined interventi ons i.e. buffer pH 6.4 plus BaCh (I 00 ~M) , buffer pH 6.4 plus

ouabain (100 ~M) , pH 6.4 plus TEA (3.0 mM), BaClz (100 ~M) plus ouabain (100 ~M) ,

buffer pH 6.4 plus BaCh (I 00 ~M) plus ouabain (I 00 ~M) , BaCh ( I00 ~M) plus TEA

(3.0 mM), buffer pH 6.4 plus BaCh (100 ~M) plus TEA (3.0 mM), BaCh (100 ~M) plus

ouabain (100 ~M) plus TEA (3.0 mM), pH 6.4 plus BaCh (100 ~M) plus ouaba in (100

~M) plus TEA (3.0 mM ) . EIII recordin gs were carried out by sampling 3 - 4 cells

individually in each tissue ove r a period of at least 30 min afte r the addition of drugs or a

change in buffer (pH 6.4) before and during continuous perfusion with isoprenaline (1.0

~M) . Parallel experim ents were carried out in denud ed tissues. The integrity of the

endothelial cell was assessed with methacholin e as outlin ed in our mechanical force

investigation in a portion of the denuded blood vesse l. Inclusion of phenylephrine (1.0

~M) in pilot experiments revealed 1-2 mV of depolari zation in rat main pulmonary artery.
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2.2. Study II. Influence of high salt diet on p-adrenoceptor signalling

2.2.1. Prepara tion of anima ls

At four weeks of age male Sprag ue Daw ley rats were housed (two per cage) with 12h

light/dark cycles and given access to either normal diet (0.26% Na, 0.44 % Cl; LabDiet

5POOProLab, PM I Nutrition International, Brentwood, MO, U.S.A) or high salt diet

(1.52 % Na, 2.4 1% CI; Modified LabDiet 500 1; PMI Nutri tion International, Brentwood ,

MO, U.S.A) along with tap wate r ad libitum for 18 - 23 days.

2.2.2. Blood pressure and heart rate measurements

Follow ing 18 - 23 days on either diet, each rat was anaes thetised with halothane (5% in

100% oxyge n for induction and 1.25% in 100% oxyge n for maintenance) and a cathet er

(polyethylene tubing ID 0.28 mm, OD 0.6 Imm) was inserted into the left distal femoral

artery for the measurement of blood pressure and heart rate . The cathete r was filled with

heparinised saline (25 i.u.lml in 0.9% NaCl), and the blood press ure and heart rate were

measured for 10-15 min continuously. Arter ial blood pressure was recorded with a

pressure transducer (Gould Statham, U.S.A.; Model PD23B) . The pressure transducer

was connec ted to an amplifier (DA 100A) that in turn was linked to a universal interface

modul e (UIM 100) which then interfaced with an acquisi tion unit (MP 100) (Bieger et 01.,

2004) .
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2.2.3 . Electro lyte measurements

Before sac rificing eac h anima l, a 1.0 ml arter ial blood sample was taken for the

measurement of electro lytes . Each blood sample was centrifuge d in an Eppe ndorf

centrifuge , Model 54 15C (14000 rpm) for 6 min to separa te serum from ce lls.

Approx imately of 500 III of serum was collected and electro lytes were measured using a

Beckm an Co ulter LX20 Pro.

2.2.4. T issue isol ation

The study was perfor med using only intact blood vesse ls from rats fed eit her a regular or

high salt diet. The procedur e describ ed in 2. 1.2. was followe d, briefly car diopulmonary

orga ns we re transferred into a dissectin g dish containing physiological buffer (pH 7.4)

satura ted with a 95% O2: 5% CO2 gas mixture at 36 ± 1 °C. The main left and right

pulm onary arteries were isol ated , dissected free of connec tive tissue and separa ted from

the pulm onary trunk. The right ventricle and left ventricle plu s septum were separated,

and the wet we ights of the heart s were recorded. The ventricles were then placed in an

ove n, heated (500 C) for 6 h, and the dry weight was also recorded.
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2.2.5. Experimental protocol

2.2.5.1. Mec hanica l force measurements

The protocol describ ed in 2. 1.3.1. was followed, briefly pulm onary artery rings were

mounted in 20 ml organ baths under a force of9 .8 mN. The artery rings were contracted

with phenylephrin e (1.0 IlM ) and integrity of endothelial cells was ascertained by

relaxing them with meth acholine (1.0 IlM ). Tissues were washed with physiological

buffer . Following equilibration for an additional 60 minut es, tissues were contra cted with

phenylephrin e (0.3 IlM - I IlM ) in order to construct cumul ative response curve to

isoprenaline (1.0 nM - 30 IlM ) in the absence and presence of vehicle, acidic buffer, N"'

nitro-L-arginin e-methyl ester (10 IlM ; nitric ox ide synthase inhibitor, L-NA ME), barium

chloride (100 IlM ), ouabain (100 IlM ), adenosine- 3', 5'- cyclic monophosphorothioate,

Rp- isomer (30 IlM ; cAMP antagonist, Rp-cAMP), tetraethylamm onium (3.0 mM; TEA)

or combin ation of these interventions i.e. buffer pH 6.4 plus BaCh (100 IlM ), buffer pH

6.4 plus L-NAM E (10 IlM ), buffer pH 6.4 plus Rp-cAMP (30 IlM ), BaCh (100 IlM) plus

ouabain (100 IlM ), buffer pH 6.4 plus BaCh (100 IlM ) plus ouabain (100 IlM), BaCh

(100 IlM ) plus ouabain ( 100 IlM ) plus TEA (3.0 mM), pH 6.4 plus BaCh (100 IlM ) plus

ouabain (100 IlM ) plus TEA (3.0 mM).
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2.2.5.2. Membr ane potent ial measurement s

The protocol describ ed in 2.1.3.2. was follow ed, briefly pulm onary artery rings were held

under the tension of9.8 mN in a 5 ml sylgard lined tissue chamber perfused with

physiological salt solution pregassed with a mixture of 95% 0 2 : 5% CO2 delivered at a

rate of3-4 ml per min and warmed to 34-35°C. The Emwas recorded with borosilicate

capill ary microel ectrod es filled with KCl (3.0 M) with a tip resistance of 10-20 MD .

Initially, the Emfrom 3-6 cells was recorded prior to exposure of the blood vesse ls to

acidic buffer, N"'-nitro-L- arginin e-methyl ester (10 11M), BaCh (100 11M), ouabain (100

11M), tetraethylamm onium (TEA; 3.0 mM) or combin ation of these interventions i.e.

buffer pH 6.4 plus BaCh (100 11M), buffer pH 6.4 plus L-NAM E (10 11M), BaCh (100

11M) plus ouabain (100 11M), buffer pH 6.4 plus BaCh (100 11M) plus ouabain (100 11M),

BaCh (100 11M) plus ouab ain (100 11M) plus TEA (3.0 mM), pH 6.4 plus BaCh (100 11M)

plus ouabain (100 11M) plus TEA (3.0 mM). Subsequently, tissues were exposed to

solutions contain ing isoprenaline (1.0 11M) for 5-10 min , and the Emof the cells was

sampled.
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2.3. Study III. Effect of denudation of endothelium on vascular p-adrenoceptor

signalling in rats fed a high salt diet.

2.3.1. Preparation of animals

Male Sprague Dawley rats, four weeks of aged were housed (two per cage) with 12h

light/dark cycles and given access high salt diet (1.52% Na, 2.4 1% CI; Modified LabDiet

5001; PMI Nutrit ion Internation al, Brentwood , MO, U.S.A) and tap water ad libitum for

18 - 23 days.

2.3.2. Blood pressure and heart rate measurements

The procedure detailed in 2.2.3. was followed.

2.3.3. Tissue isolation

The protocol described in 2.1.2. was followed.

2.3.4. Experimental protocol

2.3.4.1. Mechanical force measurements

The protocol mention ed in 2. 1.3.1. was followed excluding experiments involving TEA

alone and in combination.
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2.3.4.2. Membrane potential measurements

The protocol mentioned in 2.1.3.2. was followed excluding experiments involving TEA

alone and in combin ation.

2.4. Data and Statistical Analysis

Results from the relaxation studies were calculated as a percentage of the maximum

relaxation induced by isoprenaline following contraction with phenylephrin e. Percent

maximal response (Emax) and pECsovalues were calculated for individual curves with

help of statistical software, Sigma Plot 8.0. An analysis of variance was used for

statistical analysis of the data. The Student Newman-Keuls mult iple range test was used

for multipl e comparisons between means. Student's t-test was also used to compare

means. For all cases, a probability of error of less than 0.05 was selected as the criterion

for statistical significance.

2.5. Chemicals

Stock solutions of all drugs were made in twice-distilled water. All drugs were purchased

from Sigma Life Science (Oakville, Ontario, Canada).
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3.0. RESULTS

3.1. Study I. Role of endothelium in vascu lar p-adrenoceptor signalling

3.1.1. Mechanical Function

3.1.1.1. Intact tissues

Isoprenaline produced concentrat ion-dependent relaxations with Ell/ ax and pECso of 82.83

± 1.00% and 7.26 ± 0.02, respectively (mean ±s.e.m.; n = 87). The relaxant responses to

isoprenaline were significantly attenuated in acidic buffer and BaH alone, where Ell/ ax and

pECso were reduced (Table 2; Figure 2B and 3A). The presence of TEA (3.0 mM) or

ouabain (100 11M) alone elicited modest but statistically significantly inhibition of

relaxant responses to isoprenaline (Table 2; Figures 4A and SA). The inhibiti on of the

isoprenaline-evoked relaxant responses produced by TEA or ouabain alone was

significantly lower compared to acidic buffer and Ba2
+ alone (Table 2). Inclusion of BaH,

TEA or ouabain alone in acidic buffer did not produce further inhib ition of isoprenaline

relaxant responses compar ed to acidic buffer or Ba2
+ alone (Table 2; Figure 3B, 4B and

SB). Presence of TEA and Ba2
+ combined in acidic or regular buffer did not cause further

inhibition compared to acidic buffer alone (Table 2; Figure 6A and B). Inhibition of

isoprenaline mediated maximal responses, produced by Ba2
+ and ouabain combined in the

absence or presence of TEA was of similar magnitude (Table 2; Figure 7A and 8A).

However , in the presence of acidic buffer, Ba2
+ and ouabain combined or BaH, ouabain

and TEA combin ed caused further inhibition of relaxant responses produced by

isoprenaline (Table 2; Figure 7B and 8B).



Tab le 2. Percent maximal response (Emax) and pECsodetermined from individual concentration-response curves for isoprenaline

in rat main pulmonary artery ring preparations with (+E) and without (-E) endothelium .

pECso

Regular diet (+E)

e.: pEC50

Regular diet (-E)
Emax

Control 7.24 ± 0.11 77.00 ± 3.81 7.16 ± 0.08 61.00 ± 4.29
Acidic buffer 6.91 ± 0.08",d 54.33 ±4.42" 6.83 ± O.l l ",e 54.00 ± 6.30

Control 7.26 ± 0.05 80.33 ± 5.76 7.01 ± 0.09 62.17 ± 4.77
BaCb 6.87 ± 0.09",b 42.00 ± 4.14",b 7.00 ± 0.09 50.33 ± 5.41"

Control 7.15 ± 0.14 85.50 ± 1.91 7.17 ±0.10 63.17 ±6.53
Acidic buffer + BaCb 6.69 ± 0.12" 58.00 ± 4.12",d 6.78 ± 0.22 56.67 ± 2.73

Control 7.30 ± 0.07 78.33 ± 1.82 7.10 ± 0.05 63.00 ± 4.52
TEA 7.10 ± 0.04" 68.00 ± 2.88"'b,d 6.69 ± 0.31 51.17 ±9.54"

Control 7.28 ± 0.09 77.83 ± 6.29 7.05 ±0.13 68.00 ± 3.56
Acidic buffer + TEA 6.78 ± 0.19 49.83 ± 4.89" 6.52 ± 0.4ge 55.33 ± 4.17"

Control 7.29 ± 0.08 86.83 ± 1.70 6.91 ± 0.07 69.83 ± 6.49
Ouabain 6.84 ±0.10" 72.83 ± 3.34",b,d 6.54 ± 0.28 58.67 ± 5.57
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Control 7.24 ± 0.12 82.83 ± 2.15 7.18 ± 0.08
Acidic buffer + ouabain 6.77 ± 0.07" 60.67 ± 7.363 6.85 ± 0.073

Control 7.33 ±0.09 80.83 ± 3.90 7.18 ± 0.12
TEA + BaCh 6.96 ± 0. 11 51.17± 8.063 6.99 ± 0.03

Control 7.39 ± 0.08 86.50 ± 4.86 7.14 ± 0.25
Acidic buffer + TEA + BaCh 6.94 ± 0.19 52.17± 7.383 6.87 ±0.12

Control 7.19 ± 0.07 85.38 ±3 .66 6.98 ± 0.06
BaCh + Ouabain 6.77±0. 113 44.00 ± 5.013 6.80 ± 0.07

Control 7.19 ± 0.08 80.50 ± 2.95 7.19 ± 0.05
Acidic buffer + BaCh 6.62 ± 0.083 33.00 ± 5.393

,b 6.65 ± 0.193

+ Ouabain

Control 7.35 ± 0.06 87.33 ± 2.94 6.69 ± 0.22
BaCh + Ouabain + TEA 6.72 ±0.173 43.83 ± 8.87" 6.48±0.26

Control 7.29 ± 0.06 84.17± 3.89 6.72 ± 0.26
Acidic buffer + BaCh + 6.32 ±0.173

,d 26.00 ± 5.033
,b,d 6.49 ± 0.03c

Ouabain + TEA

Acidic buffer (pH 6.4 ± 0.2) BaCh (100 11M); Ouabain (100 11M); Tetraethylammonium (TEA, 3.0 mM)

72

54.17 ±5.69
49.50±3.20

65. 17± 5.56
57.50 ± 5.39

69.00 ± 7.89
46.83 ± 8.123

67.33 ± 3.99
37.33 ± 10.403

67.17± 7.71
48.17 ± 7.283

58.33 ± 3.49
24.67 ± 7.203 ,c,c

60.33 ±6.41
21.17± 4.083 ,c,c



Each value is the mean ± s.e.m., n= 6-8

'Significantly different from respective control;p <0.05

bSignificantly different from acidic buffer (intact ); p<O.05

'Significantly different from acidic buffer (denuded); p<0.05

"Significantl y different from BaCh (intact); p<O.05

<Significantly different from BaCh (denuded); p<O.05
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Figure 2. Concentration-response curve for isoprenaline (% relaxation remaining from phenylephrin e induced sub-maximal

contractions) in intact {+E} and denuded {-E} main pulmonary artery ring preparations from rats fed a regular diet [R] in A)

regular buffer (control) and twice-distilled water and; B) regular buffer (control) and acidic buffer. Each point represents a mean

± s.e.m. of six to seven experiments.
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Figure 3. Concentration-response curve for isoprenaline (% relaxation remaining from phenylephrine induced sub-maximal

contractions) in intact {+E} and denuded {-E} main pulmonary artery ring preparations from rats fed a regular diet [R] in A)

regular buffer absence (control) or presence of BaCh and; B) regular buffer (control) or acidic buffer plus BaCh. Each point

represents a mean ± s.e.m. of six experiments.
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Figure 4. Concentration-response curve for isoprenaline (% relaxation remaining from phenylephrine induced sub-maximal

contractions) in intact {+E} and denuded {-E} main pulmonary artery ring preparations from rats fed a regular diet [R] in A)

regular buffer absence (control) or presence of TEA and; B) regular buffer (control) or acidic buffer plus TEA. Each point

represents a mean ± s.e.m. of six experiments.
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3.1.1.2. Denuded tissues

Isoprenaline produ ced concentration-dependent relaxations with Emax and pECsoof63 .76

± 1.57% and 7.03 ±0.04, respectively, (mean ± s.e.m.; n = 84) which were significantly

smaller when compared to intact blood vessels. Denudation effectively attenuated the

relaxant responses to isoprenaline (Table 2; Figure 2A). Acidic buffer did not cause

inhibition of relaxation to isoprenaline (Table 2; Figure 2B). TEA , Ba2+or ouabain alone

also did not cause inhibit ion of relaxant responses to isoprenaline (Table 2; Figure 3A, 4A

and 5A). Inclusion of Ba2+, TEA or ouabain alone in acidic buffer did not cause further

inhibition of relaxation to isoprenaline when compared to their respective control or

acidic buffer (Table 2; Figure 3B, 4B and 5B). The combination of Ba2
+ and TEA also did

not result in further inhibiti on compared to TEA and ouabain alone (Table 2; Figure 6A).

In contrast, Ba2
+ and ouabain combined produced significant inhibiti on of the relaxant

responses to isoprenaline compared to Ba2+or ouabain alone. The inhibitory effect of

Ba2
+ and ouabain combined in denuded tissue was similar to intact tissues (Figure 7A).

The presence of TEA and Ba2
+ combined, or Ba2

+ and ouabain combined, in acidic buffer

did not cause further inhibition compared to acidic buffer alone (Table 2; Figure 6B and

7B). While the combi nation of Ba2
+, TEA and ouabain in regular or acidic buffer

produced additive inhibition compared to acidic buffer and Ba2+alone, the inhibition

produced by the former intervention was not different from the effect of Ba2
+, TEA and

ouabain combined in the regular buffer (Table 2; Figure 8A and 8B).
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Figure 5. Concentration -response curve for isoprenaline (% relaxation remaining from phenylephrine induced sub-maximal

contractions) in intact {+E} and denuded {-E} main pulmonary artery ring preparations from rats fed a regular diet [R] in A)

regular buffer absence (control) or presence of ouabain and; B) regular buffer (control) or acidic buffer plus ouabain. Each point

represents a mean ± s.e.m. of six experiments .
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Figure 6. Concentration-response curve for isoprenaline (% relaxation remaining from phenylephrine induced sub-maximal

contraction s) in intact {+E} and denuded {-E} main pulmonary artery ring preparations from rats fed a regular diet [R] in A)

regular buffer absence (control) or presence of TEA and BaCh together and ; B) regular buffer (control) or acidic buffer plus

TEA and BaCh together. Each point represents a mean ± s.e.m. of six experiments.
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Figure 7. Concentration -response curve for isoprenaline (% relaxation remaining from phenylephrine induced sub-maximal

contractions) in intact {+E} and denuded {-E} main pulmonary artery ring preparation s from rats fed a regular diet [R] in A)

regular buffer absence (control) or presence of BaCh and ouabain together and; B) regular buffer (control) or acidic buffer plus

BaCh and ouabain together. Each point represents a mean ± s.e.m. of six to eight experiments.
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Figure 8. Concentration-response curve for isoprenaline (% relaxation remaining from phenylephrin e induced sub-maximal

contractions) in intact {+E} and denuded {-E} main pulmonary artery ring preparations from rats fed a regular diet [R] in A)

regular buffer, absence (control) or presence of BaCb, ouabain and TEA together ; B) regular buffer (control) or acidic buffer

plus BaCb ouabain and TEA together. Each point represents a mean ± s.e.m. of six experiments.
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3. 1.2. Membrane potential

3.1.2. 1. Intact tissue

Acidic buffe r, TEA or ouabain alone did not ca use significa nt changes in the rest ing Emof

the smoo th muscle ce lls (-61.3 ± 1.24, -60.5 ± 1.32, -58 .7 ± 0.53 mVr espectively; Tab le

3). However , BaH in the absence or presence of ac idic buffer ca used mode st

depolari sati on of the vascul ar smoo th muscle cell s (-57.7 ± 0.38, -57 .5 ± 0.26 respecti vely

mY ; Tabl e 3) . BaH and ouabain combined, but not BaH and TEA combined, depol ari zed

pulmonary artery smo oth muscle cells (-58.7 ± 0.9, -60. 5 ± 0.85 mV respecti vely ; Table

3). Addition of the latter two agent s to acidic buffer (-58.2 ± 0.35, -57. 6 ± 0.94 mY)

resulted in mode st but significant depolarization comp ared to ac idic buffer alone (-6 1.3 ±

1.24 mY) but not more than Ba2
+ alone (-57.7 ± 0.38 mY) (Ta ble 3) . Similarly, the

presenc e of Ba2
+, TEA and ouabain in acidic buffer (-56.4 ± 0.54 mV) or in regular buffer

(-55 .9 ± 0.86 mY ) result ed in further depolari zation compare d to acidic bu ffer alone (-

61.3 ± 1.24 mY ) (Ta ble 3) . Howe ver, the additi on of acidic buffer failed to increase the

inhibitory effect of combined inte rventi ons (BaH, TEA and ouabain) . Expos ure of

isopren aline to blood vesse ls result ed in hyperpolari sation of approx imate ly 8.0 mV

(Ta ble 3). The hyperpolari sation produced by isopren alin e was significantly dimini shed

in acidic buffer (-61.3 ± 1.24 vs -64 .2 ± 1.29 mY , respectively; Table 3). TEA mod estly

but not significantly inhibited isopren aline induced hyperp olari zation (-60 .5 ± 1.32 vs-

64.2 ± 1.37 mY , respectiv ely ; Table 3) . Further , inclu sion of acidi c buffer with TEA

caused additive inhibiti on (-58.3 ± 1.12 vs -59.5 ± 1.38 mY , respectivel y; Ta ble 3).

Presence of Bi +or ouabain alone in regular buffer did not affec t isoprenaline-evoked
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hyperpolarisation (-58.7 ± 0.97 vs -64 .1 ± LIS mY, respectively; Table 3). However, in

the presence of acidic buffer ouabain (-59 .3 ± 1.31 mY) but not Ba2+(-57.5 ± 0.26 mY)

alone, dimini shed isoprenaline induced hyperpolarisation (Table 3). Isoprenaline

mediated hyperpolarization was partially inhibited by exposure of Ba2+and TEA

combined (-60. 5 ± 0.85 vs -65.5 ± 1.70 mY, respectively), or Ba2
+ and ouabain combined

(-58. 7 ± 0.97 vs -64.1 ± 1.15 mY, respectively) (Table 3). Isoprenaline-indu ced

hyperpolarisation was similarly affec ted by Ba2
+, ouabain and TEA together in regular (

55.9 ± 0.86 vs -57 .7 ± 0.81 mY, respectively) or acidic buffer (-56 .4 ± 0.54 vs -58.3 ±

0.62 mY, respectively; Table 3).
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Table 3. Membrane potential (mV) in vascular smooth muscle cells of rat pulmonary ring preparation with (intact) and without

(denuded) endothelium in absence or presence of isoprenaline (1.0 11M)after various treatments.

Regular diet (+E) Regular diet (-E)
Control Treatment Isoprenaline Control Treatment Isoprenaline

No treatment -62.2 ± 1.27 -70.6 ± O.72a -68.2 ± 0.27b -69.6± 1.I8 b

(8)(34) (8)(41) (6)(25) (6)(35)

Acidic buffer -61.6 ± 1.04 -61.3 ± 1.24 -64.2 ± 1.29 -67.1 ± 0.52b -66.2± 1041 -63.9 ± 1.84 (4)
(5)(24) (5)(24) (5)(21) (9) (44) (7) (31) (23)

TEA -61.8 ± 0.72 -60.5 ± 1.32 -64.2± 1.37c -68.5 ± 1.25b -64.9 ± 0.95 -66.5 ± 1.19
(4)(17) (4)(24) (4)(26) (8)(30) (7)(34) (4)(22)

BaCh -60.7 ± 1.21 -57.7 ±0.38a -64.1 ± 1.56a
,c -68.1 ±OA5 b -66A ± 1.01 -64.2 ± 1.72 (4)

(4)(23) (4)(18) (4)(25) (8)(36) (6)(31) (22)

Ouabain -6004± 0.56 -58.7 ± 0.53 -64.9 ± 0.51c -69.1 ± 1.43b -61.7 ± 1.I4 a -59.2 ± 1.79a

(4)(24) (4)(25) (4)(23) (5) (12) (4) (22) (8) (22)

Acidic buffer + TEA -60.1 ± 0.99 -58.3 ± 1.12 -59.5 ± 1.38 -66.8 ± 0.67b -61.9 ± 1.78a -6204± l.92 a

(4)(15) (4)(19) (4)(19) (5)(35) (4)(23) (4)(22)
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Acidic buffer + BaCh -61.5 ± 0.78 -57 .5 ± 0.26a -64 .8 ± 0.69 a
,< 67 .2 ± O.72b -63 .9 ± 0.32a -62.6 ± 1.27"

(4)(23 ) (4)(23) (4)(18) (7)(35) (5)(26) (4) (19)

Acidic buffer + -60.8 ± 0.49 -59.3 ± 1.31 -63.5 ± 1.64 -68.5 ± i.ss" -61. 7 ± 1.76a -59 .3 ± 1.88a

Ouabain (4)(24) (4)(24) (4)(22) (4)(19) (4) (22) (4)(19)

BaCh + TEA -60.6 ± 0.28 -60.5 ± 0.85 -65.5 ± 1.70a
,< -67.4 ± 1.69b -63 .1 ± 1.48a -6 1.7 ± 1.82a

(4)(17) (4)(17) (4)(24) (4)(1 1) (4)(19) (4)( 19)

BaCh + Ouabain -61.2 ± 0.48 -58 .7 ±0.97a -64.1 ± 1.15a,< -70.3 ± 1.32b -58.3 ± 1.20a,e -60 .7 ± 1.19a

(4)(22) (4)(22) (4)(20) (4)(1 1) (4) (23) (4)(22)

Acidic buffer + BaCh -61.8 ± 0.49 -57.6 ± 0.94 a
,d -60.1 ± 1.82 -68 .5 ± 1.89b -63.0 ± 1.39a -61.3 ± 1.41a

+ TEA (4)(10) (4)(19) (4)(14) (3)(10) (4)(19) (4)(19)

Acidic buffer + BaCh -62.2 ± 0.2 1 -58.2 ± 0.35a
,d -61.3 ± 1.55 -68.7 ± 2.19b -58.5 ± O.73a,e -61.2 ±0.87"

+ Ouabain (4)(22) (4)(21) (4)(22) (4)(9) (4)(23) (4)(23)

BaCh + Ouabain -60.8 ± 1.37 -55.9 ± 0.86a
,d -57.7± 0.81 -66.5 ± 0.50b -56 .8 ± 1.67a,e -61.3 ± 1.38a

+ TEA (4)(16) (4)(26) (4)(24) (4)(9) (4)(27) (4)(23 )

Acidic buffer + BaCh -61.3 ± 1.01 -56.4 ± 0.54a
,d -58 .3 ± 0.62a -67.3 ± 1.01b -58 .6 ± 1.59",e -61.7 ± 1.35a

+ Ouabain + TEA (4)( 15) (4)(2 1) (4)(24) (4)(7) (4)(2 1) (4)( 15)

Acidic Buffer (pH 6.4 ± 0.2); Tetraeth ylamm onium (TEA ; 3.0 mM ); BaCh (100 11M); Ouabain (100 11M)
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Each value is the mean ± s.e.m. with the numbe r of cells and number of rats indicated in parenthes es

'Significantly different from respective control ; p <O.05

bSignificantly different from contro l (intact); p<O.05

<Significantly differ ent from respective treatment ; p<O.05

dSignificantl y different from acidic buffer (intact);p <0.05

<Significantly different from acidic buffer (denuded); p<O.05
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3. 1.2.2. Denud ed tissue

The resting Emof smoo th muscle cells of denud ed blood vesse ls (-E) was significantly

different from that of intact blood vesse ls (+E) (-62 .2 ± 1.27 vs -68.2 ± 0.27 mY,

respectively; Table 3). The cells were hyperpolarized by approx imately 6-8 mY in

denuded comp ared to intact blood vesse ls. Neither acidic buf fer (-67.1 ± 0.52 vs -66.2 ±

1.41 mY, respectiv ely) nor Ba2
+ alone (-68.1 ± 0.45 vs -66.4 ± 1.01 mY, respectively)

influenced the restin g EII/' In contrast, ouabain (-69. 1 ± 1.43 vs -61.7 ± 1.14 mY,

respectively) but not TEA alone (-68.5 ± 1.25 vs-64.9 ± 0.95 mY, respecti vely) caused

significant depolari zation of the vascular smooth muscle cells (Table 3). Howe ver, the

inclusion ofBa2+(-67.2 ± 0.72 vs -63.9 ± 0.32 mY, respectively) TEA (-66 .8 ± 0.67 vs 

6 1.9 ± 1.78 mY, respectively) or ouabain alone (-68.5 ± 1.85 vs -61.7 ± 1.76 mY,

respectivel y) in acidic bu ffer also caused significant depolarization of the Em. As well ,

the combination of Ba2
+ and TEA, Ba2

+ and ouabain, and Ba2
+, TEA and ouabain in

regular or acidic buffer also depolarized the smooth muscle cells (Table 3). Isoprenaline

induced hyperp olarization was notably absent in these tissues with or without any

interve ntion (Table 3).
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Table 4. Systolic and diastolic blood pressure (BP; mmHg); heart rate (HR ; beats/min) ;

body weight (BW; g) and ratio of right ventricle dry (RVd) to wet (RV,,) weight ; ratio of

left ventricle + septum , dry (LV + Sd) to wet (LV + Sw)weight of rats fed a regular and

4% salt (NaCI) diets for 18-23 days.

DP HR DW RVd/R V" LV+Sd/

LV+Sw
Regular diet 94/70± 368±4.20 295±3 .23 0.21 ± 0.01 0.29 ±0.01

0.6 1/0.78 (77) (77) (77) (4 1) (4 1)

4% Salt diet 106/72 ± 378±3.77 282±3.74" 0.2 1 ± 0.01 0.28 ± 0.01

0.94"/0 .68" (83) (83) (83) (4 1) (41)

"Significantly different from respective value in regular diet group ;p < 0.05.

Each value represents a mean ± s.e.m. ; number of rats indicated in parenthesis.
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3.2. Study II. Influ en ce of high salt diet on p-adren ocept or signalling

Blood pressure (systolic and diasto lic) of rats on high salt diet was modestly but

significa ntly higher than rats on regular diet while heart rates among the two groups were

not significa ntly different (Tab le 4). A significantly lower body weight was record ed for

rats on high salt diet compared to those on a regular diet (Tab le 4). The ratio of wet to

dry weight of left and right ventricles was found not to be different between the two

groups of rats (Ta ble 4) i.e. no left or right ventricular hypertroph y was apparent. The

values of serum electrolytes were also not different between the two groups of rats (Table

5).

3.2.1. Mechanica l Function

Relaxations produced by isoprenaline in pulmonary arteries from rats on regular and high

salt diets were of simi lar magnitude in terms of Emax and pECso(84 .16 ± 1.08% and 7.24±

0.03 vs. 83.34 ± 1.09% and 7.23 ± 0.03; n = 65) , respectively. Addition of twice disti lled

wate r did not affec t the cumulative concentration-response curves to isoprenaline in

tissues from rats fed a regular compared to the salt diet (Figure 9A, IDA, II A). Acidic

buffer (pH 6.4) attenuated isoprenaline-induc ed responses, significa ntly reducing Emax

and pECso(Figure 9B, IDB, II B). The latter intervention produc ed a significantly grea ter

inhibi tion of the relaxan t response to isopre naline in blood vesse ls obtained from rats on

high salt compared to regular diet (Figure liB, Table6) . The effec ts of the cAMP

antagonist, Rp-cAMP, on relaxant responses to isoprenaline were similar as in the

previous findin gs
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Figure 9: Concen trat ion-response curve for isoprenal ine in main pulmonary artery ring

preparation from rats fed regular diet [R] of A) in regular buffer (contro l), B) in buffer pH

6.4, C) in the presence barium chloride (100 11M)plus ouabain (100 11M) and, D) buffer

pH 6.4 plus barium chloride (100 11M) plus ouabain (100 11M).
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Table 5. Serum electrolyte s (mmol/ I) of the rats fed regular diet and 4% salt diet for 18-

23 days.

Regular diet 4% Salt diet
Na+ 137.69 ±0.39 136.81 ± 0.38
K+ 4.48 ±0.08 4.67 ± 0.10
cr 98.44 ± 0.47 98.19 ± 0.33
Ca2+ 2.49 ±0.02 2.53 ± 0.02

Each value represents a mean ± s.e.m., n=16
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from our laborator y (Bieger et ai, 2006), and of similar magnitude in tissues from rats on

a high salt or a regular diet.

L-NAME (10 /-1M) significantly reduc ed Emax and pECso of isoprenaline concentration

response curves in tissues from rats on regular diet. In contr ast, L-NA ME only caused a

modest but significant reduction in Emax without affec ting the pECso in tissues from rats

on high salt diet (Ta ble 6; Figure 12A). The inclusion of L-NA ME in acidic buffer

resulted in a significant reduction in Emax and pECsofor isoprenaline. The inhibit ory

effect ofL-NAME in acidic buffer was modestly but significantly greater in tissues from

rats on high salt compared to the regular diet (Table 6; Figure 12B). The presence of BaH

(100 /-1M) significantly attenuated isoprenaline-induc ed relaxations and this effect was of

similar magnitud e in blood vesse ls from rats fed either regular or a high salt diet (Table 6;

Figure 13A). The inclusion of Ba2
+ in the acidic buffer caused a significantly greate r

inhibition of the isoprenaline relaxations in pulmonary arteries from rats on high salt

compared to those on a regular diet (Table 6; Figure 13B).

The presence of Ba2
+ and ouabain together produc ed additional inhibiti on of isoprenaline

induced relaxation s when comp ared to BaH alone in the tissues from rats on a high salt

diet (Table 6; Figure 9C, 10C, 13A and 14A). It was apparent that Ba2
+ and ouabain

togethe r produced a greater inhibitor y effect in tissues from rats fed a high salt in

comparison to the regul ar diet (Figure 14A). Howev er, the inclusion of Ba2
+ and ouab ain

together in acidic buffer resulted in similar inhibition of isoprenaline responses in tissues

from both rats on a high salt diet and those on a regular diet (Table 6; Figure 9D, 10D,
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14B). Toge ther, TEA (3.0 mM), Ba2
+ and ouabain produced significantly greater

inhibit ion of isoprenaline
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Figure 10: Concentratio n-respo nse curve for isoprenaline in main pulmonary arte ry ring

preparatio n from rats fed 4% salt diet IS] A) in regular buffer (con tro l), B) in buffer pH

6.4, C) in the presence of barium chloride (100 11M)plus ouabain (100 ~lM) and, D)

buffer pH 6.4 plus barium chloride (100 11M) plus ouabain (100 11M).
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evoked relaxation in tissues from rats on high salt compared to regular diet, while in the

acidic buffer, these pharmacological agents (i.e. TEA, Ba2
+ & ouabain, together)

produced similar inhibition of isoprenaline-induced relaxations in blood vesse ls of rats

on either diet (Figure 1SA and B).
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Table 6. Percent maximal response (Emax ) and pEC 50 determined from individual concentration-response curves for isoprenaline

in main pulmonary artery ring preparations from rats fed regu lar diet and 4% salt diets for 18-23 days .

Regular diet 4% Salt diet
pEC 50 e.: pEC 50 e.:

Control 7.21 ± 0.06 85.00 ± 3.02 7.11 ± 0.15 88.14±3.25
200 IlLdd H2O 7.16±0.07 79.29 ± 2.01c.e 7.42 ± 0.09f 86.86 ±5.35d,f

Control 7.24±0.11 77.00 ± 3.81 7.29 ± 0.02 79.17±3.48
Acidic buffer 6.91 ± 0.08 " 54.33 ± 4.42" 6.70 ±0.19" 43.00 ± 3.53"·b

Control 7.36 ± 0.15 87.86 ± 4.06 7.50 ± 0.05 88.43 ±2.92
L-NAME 6.88±0.11" 66.71 ± 4.40",c,e 7.18 ±0.09 73.71 ± 3.19",d,f

Control 7.25 ± 0.06 87.14 ±2.32 7.25 ± 0.05 79.83 ± 5.89
Acidic buffer + L-NAME 6.74±0.081" 53.00 ± 5.26" 6.52±0.23" 39.33 ± 3.64",b

Control 7.26 ± 0.05 80.33 ± 5.76 7.15 ± 0.07 78.17±2.26

BaCh 6.87±0.09" 42.00 ± 4.14" 6.98 ± 0.05 48.50 ±3.03"

Control 7.15 ± 0.14 85.50 ± 1.91 7.18 ± 0.11 85.67 ± 1.14
Acidic buffer + BaCh 6.69 ± 0.12" 58.00 ± 4.12",e 6.52 ± 0.06"·f 47.33 ±2.73"·b
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Control 7.l9 ±0.07 85.38 ±3.66 7.30 ± 0.05 87.88 ± 2.05
BaCh + Ouabain 6.77 ±0.lla 44.00 ±5.0I a 6.83 ± 0.14a 27.88 ± 3.62a,b,d,f

Control 7.l9 ±0.08 80.50 ± 2.95 7.25 ±0.07 81.67±3.58
Acidic buffer + BaCh + Ouabain 6.62 ± 0.08a 33.00 ±5.39a,c 6.46 ± 0.13a,d,f 37.83 ±2.83a

,d,f

Control 7.35 ±0.06 87.33 ± 2.94 7.26 ± 0.09 81.71 ± 3.05

BaCh + Ouabain + TEA 6.72 ±0.17a 43.83 ± 8.87a 6.63 ± 0.07a 23.86±5.63a,b,d,f

Control 7.29 ±0.06 84.17±3.89 7.14±0.04 79.71 ± 4.17
Acidic buffer + BaCh + Ouabain 6.32 ±0.17a,c 26.00 ± 5.03a,c,e 6.32 ± 0.19a,d,f 21.86 ± 2.93a

,d,f

+ TEA

Acidic buffer (pH 6.4 ± 0.2); N"'-nitro-L-arginine-methyl ester (L-NAME ; 10 11M); BaCh (100 11M); Ouabain (100 11M);
Tetraethylammonium (TEA, 3.0 mM).

Each value is the mean ± s.e.m., n= 6-8

"Significantly different from respective control ; p <0.05

bSignificantly different from treatment (regular diet) ;p<0.05

"Sigrrifcantly different from acidic buffer (regular diet); p <O.05

dSignificantly different from acidic buffer (4%Salt diet);p<0.05

"Significantly different from BaCh (regular diet) ; p <0.05

fSignificantly different from BaClz (4%Salt diet) ; p <O.05
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Figur e 11. Concentration- response curve for isoprenaline (% relaxation remaining from phenylephrine induced sub-maximal

contractions) in main pulmonary artery ring preparations from rats fed a regular [R] or 4% salt [S] diets for 18-23 days in A)

regular buffer (control) and twice-distilled water and; B) regular buffer (control) and acidic buffer. Each point represents a mean

± s.e.m. of six to seven experiment s. ' Significantly different from respective value of regular diet;p<O.05.
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Figu re 12. Concentration-response curve for isoprena line (% relaxation rema ining from pheny lephrine induced sub-maximal

contractions) in main pulmonary artery ring prepa rations from rats fed a regular [R] or 4% salt [S] diets for 18-23 days in A)

regular buffer absence (control) or presence ofL-NAME and; B) regular buffer (contro l) or acidic buffer plus L-NAME . Each

point represents a mean ± s.e.m. of six to seven experiments. ' Significantly different from respective value of regular diet ;

p<O.05.
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Figure 13. Concentration -response curve for isoprenaline (% relaxatio n remaining from pheny lephrine induced sub-maximal

contractions) in main pulmonary artery ring preparations from rats fed a regular [R] or 4% salt [S] diets for 18-23 days in A)

regular buffer absence (control) or presence of BaCh and; B) regular buffer (control) or acidic buffer plus BaCh. Each point

represents a mean ± s.e.m. of six experiments. ·Significantly different from respective value of regular diet;p<O.05.
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Figure 14. Concentration-response curve for isoprenaline (% relaxation remaining from phenylephrine induced sub-maximal

contractions) in main pulmonary artery ring preparations from rats fed a regular [R] or 4% salt [S] diets for 18-23 days in A)

regular buffer absence (control) or presence of BaCh and ouabain together and; B) regular buffer (control) or acidic buffer plus

BaCh and ouabain together. Each point represents a mean ± s.e.m. of six to eight experiments. 'S ignificantly different from

respective value of regular diet; p<O.05.
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Figure 15. Concentration -response curve for isoprenaline (% relaxation remaining from phenylephrine induced sub-maximal

contractions) in main pulmonary artery ring preparations from rats fed a regular [R] or 4% salt [S] diets for 18-23 days in A)

regular buffer, absence (control) or presence of BaClz, ouabain and TEA together; B) regular buffer (control) or acidic buffer

plus BaCh ouabain and TEA together. Each point represents a mean ± s.e.m. of six to seven experiment s. ' Significantly

different from respective value of regular diet ; p<O.05.
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3.2.2. Membr ane potential

The resting £111 of smooth muscle cells of the pulmonary arteries of rats on a high salt diet

was significantly more negative compared to rats on a regular diet (-62.2 ± 1.27 vs -66.9

± 0.96 mY, respectively; Table 7, Figure 16 AC). Addition of isoprenaline (1.0 IlM )

induced significant hyperpol arization of smooth muscle cells of pulmonary arteries of rats

on the regular diet but not of those on the high salt diet (-62.2 ± 1.27 vs -70.6 ± 0.72 mV,

respectively; Table 7; Figure 16 BD, 17B). Exposure to acidic buffer (pH 6.4) resulted in

a significant depolarization of smooth muscle cells of pulmonary arteries of rats on high

salt diet (-68.2 ± 1.01 vs -63.4 ± 1.11 mY, respectively) but not of those on a regular diet

(-6 1.6 ± 1.04 vs -6 1.3 ± 1.24 mY, respectively; Figure 17A). The presence of acidic

buffer significantly impaired hyperpolarization caused by isoprenaline (Table 7; Figure

17B).

L-NAME alone had no influence on the resting £111 of smooth muscle cells in blood

vessels from rats fed either regular (-61.3 ± 0.49 vs -60.4 ± 1.27 mY, respectively) or

high salt diet (-67.9 ± 1.41 vs -67.2 ± 1.36 mY, respectively). In the presence of acidic

buffer, did not produce any additional effects on the resting £111 of smooth muscle cells of

pulmonary arteries from rat fed either diet (Table 7; Figure 17B). Addition of

isoprenaline to acidic buffer containing L-NAME produced similar effects to those of

acidic buffer alone (Table 7). While Ba2+alone did not have an effect, combined with

ouabain it produc ed a significantly greater degree of depolarization in smooth muscle

cells of blood vesse ls from rats on salt compared to those on a regular diet (Figure 17A).

In the presence of Ba2+alone, isoprenaline produced a similar degree of hyperpolarization
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Figure 16. Membrane potential recordings of pulmonary arteries from rat fed regular [R] or 4% salt diet [S] in the presence of

A) regular buffer (control), B) isoprenaline (1.0 IlM), C) regular buffer (control) and, D) isoprenaline (1.0 IlM).
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of smoo th mu scle ce lls of pulmonary arte ries from rats on either high salt (-61 .5 ± 1.84 vs

-65.9 ± 0.45 mY, respectively) or regu lar diet (-57.7 ± 0.38 vs -64 .1 ± 1.56 mY ,

respectively; Tab le 7). In contrast , hyperpolarization evoked by isopre naline was affected

more in the presence of Ba2
+ and ouabain in the smoo th muscle ce lls from rats on a high

salt diet (-60 .8 ± 0.46 vs -62.8 ± 0.19 mY , respectively) co mpare d to those on a regular

diet (-58 .7 ± 0.9 7 vs -64 .1 ± 1.15 mY, respect ively; Table 7; Figure 17B).

The extent of the depolari zation by inclu sion of Ba2
+ and ouabain in ac idic bu ffer, but not

by BaH alon e in acidic buffer , was significantly different in smoo th muscle cell s of blood

vesse ls from rats on a high salt diet compared to a regular diet (Ta ble 7; Figure 17A).

Isoprenaline was able to produc e a significant hyperpolarization of the smoo th mu scle

cells in acidic bu ffer containing BaH alone in blood vesse ls from rats on a regular die t (-

57.5 ± 0.26 vs -64 .8 ± 0.69 mY , respectively) but not tho se on a high sa lt diet (-60 .6 ±

1.21 vs -62 .8 ± 0.22 mV, respec tive ly; Ta ble 7; Figure 17B). However, in acid ic buffe r,

the combi ned presence of Ba2
+ and ouabai n inhi bited isoprenali ne-indu ced

hyperp olarization in blood vesse ls from rats on either regular (-58 .2 ± 0.35 vs -6 1.3 ±

1.55 mY , respectively) or high salt diet (-60.2 ± 1.02 vs -60 .9 ± 1.79 mY , respectively;

Ta ble 7; Figure 17B).

The presence of TEA with Ba2
+ and ouabain in regular bu ffer in comp ari son to acidic

buffer produced a similar degree of depolari zation in smoo th mu scle ce lls of pulmon ary

arteries from rats on either diet (Table 7; Figure 17A) . Isoprenalin e-indu ced

hyperpolari zation was between I to 3 mV in tissues with the latter treatment s (Figure

17B).



Table 7. Membrane potential (mY) of smooth muscle cells in main pulmonary artery ring preparations from rats fed regular or

4% salt diets for 18-23 days.

Regular diet 4% Salt diet
Control Treatment Isopr enaline Control Treatment Isoprenaline

No treatment -62.2 ± 1.27 -70.6 ± o.na -66.9 ± 0.96 b -68.3 ± 0.73b

(8)(34) (8)(41) (11)(53) (11)(56)

Acidic buffer -61.6 ± 1.04 -61.3 ± 1.24 -64.2 ± 1.29 -68 .2± 1.01b -6304± i .u- -65 .8±0.97
(5)(24) (5)(24) (5)(21) (5)(22) (5)(22) (5)(21)

L-NAME -61.3 ± Oo49 -6004± 1.27 -66.7 ± 0.68a,< -67.9 ± 1.41b -67.2 ± 1.36 -68.9 ± 0.82
(7)(25) (7)(32) (7)(37) (6)(24) (6)(27) (6)(29)

Acidic buffer + -61.9 ± 1.19 -61.1 ± 1.27 -64.2 ± 1.05 -67.8 ± 1.91b -62.9 ± 0.80a -6504± 1.17
L-NAME (7)(21) (7)(32) (7)(34) (6)(19) (6)(21) (6)(20)

BaCh -60.7 ± 1.21 -57.7 ± 0.38 a -64.1 ± 1.56a
,< -66.8 ± 0.66 b -61.5 ± 1.84a -65.9 ± 0045<

(4)(23) (4)(18) (4)(25) (4)(24) (4)(24) (4)(24)

BaCh + Ouabain -61.2 ±Oo48 -58.7 ± 0.97a -64.1 ± 1.15a,< -67.6 ± 0.50 b -60.8 ± 0046a -62 .8 ± 0.19 a

(4)(22) (4)(22 ) (4)(20) (4)(24) (4)(24) (4)(15)

Acidic buffer + BaCh -61.5 ± 0.78 -57.5 ± 0.26a -64.8 ± 0.69a,< -67.2 ± 0.70b -60.6 ± 1.21a -62 .8 ± 0.22a
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(4)(23) (4)(23) (4)(18) (4)(24) (4)(24) (4)(21)

Acidic buffer + BaCh -62.2 ± 0.21 -58.2 ± 0.353 -61.3 ± 1.55 -66.9 ± 1.05b -60.2 ± 1.023 -60.9 ± 1.793

+ Ouabain (4)(22) (4)(21) (4)(22) (4)(23) (4)(23) (4)(17)

BaCh + Ouabain -60.8 ± 1.37 -55.9 ±0.863 ,d -57.7±0.81 -66.6 ± 0.06b -57.9 ± 0.503
,e -58.9 ± 1.793

+ TEA (4)(16) (4)(26) (4)(24) (4)(16) (4)(23) (4)(13)

Acidic buffer + BaCh -61.3 ± 1.01 -56.4 ±0.543,d -58.3 ± 0.623 -68.6 ± 0.83b -57.2 ± 1.203
,e -58.6 ± 0.703

+ Ouabain + TEA (4)(15) (4)(21) (4)(24) (4)(15) (4)(23) (4)(20)

Acidic buffer (pH 6.4 ± 0.2); N'" nitro-L-arginine -methyl ester (L-NAME; 10 11M);BaCh (100 11M); Ouabain (100 11M);
Tetraethylammonium (TEA; 3.0 mM)

Each value is the mean ± s.e.m., with the number of rats and of cells indicated in parentheses .

"Significantly different from respective control; p<O.05

"Significantly different from respective control (regular diet);p <0.05

"Significantly different from respective treatment ; p <O.05

dSignificantly different from acidic buffer (regular diet); p<O.05

"Significantly different from acidic buffer (salt diet); p<O.05
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Figure 17. Effect of regular buffer (RB) and acidic buffer (A; pH 6.4) in abse nce and presence of various pharmacological

agents on A) membrane potential (Em)and B) isoprenaline elicited hyperpolarization in vascular muscle of main pulmonary

arteries from rats on a regular or a high salt diet. N'" nitro-L-a rginine methyl ester; (L-NAME ; 10 11M), Ba2+;(Ba; 100 11M),

Ouabain ;(O; 100 11M), TEA (T; 3 mM). Resting Em: regular diet: 61 .5 ± 0.32 mV (mean ± s.e.m., n=51 rats & 221 cells) ; high

salt diet : 67.4 ± 0.36 mV (mean ± s.e.m., n=52 rats & 244 cells) . ' Significantly different from respective value of regular diet ;

p <O.05. #Significantly different from respective treatment ;p<O.05.
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3.3. Study 111.Effect of denudation of endothelium on vascular p-adr enoc eptor

signalling in rats fed a high salt diet

3.3. 1. Mechanica l Function

3.3.1.1. Intact tissues

Isoprenaline-induced responses for intact tissues with Emax and pECso in absence or

presence of various treatments were described in section 3.2.1. For purposes of

compar ison, the data for vehicle (ddH20 200 ul.), acidic buffer (pH 6.4), Ba2+,ouabain or

the combination of these interventions is mentioned again in Table 8.

3.3.1.2. Denuded tissues

Relaxant responses to isoprenaline were significantly attenuated in denuded tissues

compared to intact tissues as evidenced by their respective Emax and pECsovalues (66.25

± 1.59% and 7.07 ± 0.03; n = 40 vs 83.79 ± 1.23% and 7.27 ± 0.03; n = 39). The removal

of endothelium significantly reduced isoprenaline mediated maximal responses (Table 8;

Figure 18A). The presence of acidic buffer did not affect inhibition of isoprenaline

induced vasore laxation (Table 7; Figure 18B). Ba2+alone and in combination with

ouabain in both regular buffer and acidic buffer significa ntly reduced isoprenaline-elicited

relaxations (Table 8; Figure 19A and 19 B, 20A and B). However, inhibition of

isoprenaline-induced relaxations were noticeably less with Ba2+alone and in combination

with ouabain in acidic buffer compared to in regular buffer.



Tab le 8. Percent maximal response (Emax) and pECsodetermined from individual concentration-response curves for isoprenaline

in main pulmonary artery ring preparations with (+E) and without (-E) endothelium from rats fed a 4% salt diet for 18-23 days.

4% Salt diet (+E) 4% Salt diet (-E)
pECso Emax pECso s.:

Control 7.29 ±0.02 79.17±3.48 6.99 ± 0.08 65.86±3.43
Acidic buffer 6.70± 0.19a 43.00 ±3 .53a 6.78 ± 0.09a 66.29 ± 4.73c,e

Control 7.15±0.07 78.17± 2.26 7.06 ± 0.04 63.14 ± 6.05
BaCh 6.98± 0.05 48.50 ± 3.03a 6.68 ± 0.09a 28.29 ± 3.42a,c

Control 7.18 ±0.11 85.67 ± 1.14 7.02 ± 0.07 65.83 ± 5.33
Acidic buffer + BaCh 6.52 ± 0.06a 47.33 ± 2.73a 6.64 ± 0.16 39.17 ± 5.53a,c

Control 7.30 ± 0.05 87.88 ±2.05 7.05 ±0.05 64.71 ± 1.66
BaClz + ouabain 6.83 ± 0.14a 27.88 ± 3.62a,b,d 6.81 ±0.07a 17.57 ± 2.54a

,c

Control 7.25 ± 0.07 81.67 ± 3.58 7.09 ± 0.04 69.17 ± 2.04
Acidic buffer + BaCh + ouabain 6.46 ±0.13a 37.83 ± 2.83a

,b,d 6.47 ± 0.09a 33.00 ± 6.32a
,c

Acidic Buffer (pH 6.4) BaCh (100 JlM); ouabain (100 JlM)

Each value is the mean ± s.e.m., n= 6-8
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'Significantly different from respective control;p <O.05

"Significantly different from acidic buffer (+E); p <O.05

"Significantly different from acidic buffer (-E);p <O.05

dSignificantly different from BaCb (+E);p <O.05

'Significantly different from BaCb (-E);p <O.05
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Figure 18. Concentration-response curve for isoprenaline (% relaxation remaining from phenylephrine induced sub-maximal

contractions) in intact {+E} and denuded {-E} main pulmonary artery ring preparations from rats fed a high salt diet [S] in A)

regular buffer (control) and twice-distilled water and; B) regular buffer (control) and acidic buffer. Each point represents a mean

± s.e.m. of seven experiments .
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Figure 19. Concentration-response curve for isoprenaline (% relaxation remaining from phenylephrin e induced sub-maximal

contractions) in intact {+E} and denuded {-E} main pulmonary artery ring preparations from rats fed a high salt diet [S] in A)

regular buffer absence (control) or presence of BaCh and; B) regular buffer (control) or acidic buffer plus BaCh . Each point

represents a mean ± s.e.m. of six to eight experiments.
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Figure 20. Concentration-response curve for isoprenaline (% relaxation remaining from phenylephrine induced sub-maximal

contractions) in intact {+E} and denuded {-E} main pulmonary artery ring preparations from rats fed a high salt diet [S] in A)

regular buffer absence (control) or presence of BaCb and ouabain together and; B) regular buffer (control) or acidic buffer plus

BaCb and ouabain together. Each point represents a mean ± s.e.m. of six to eight experiment s.
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Table 9. Membrane potential (mV) of smooth muscle cells in main pulmonary artery ring preparations with (+E) and without (-

E) endothelium from rats fed a 4% salt diet for 18-23 days.

4% Salt diet (+E) 4% Salt diet (-E)

Control Treatment Isoprenaline Control Treatment Isoprenaline

No treatment -66.9 ± 0.96 -68.3 ± 0.73 -69.6± 0.98 -69.7±2.17
(11)(53) (11)(56) (5)(16) (5)(11)

Acidic buffer -68.2± 1.01 -63.4 ± 1.11" -65.8 ± 0.97 -69.2 ±0.65 -66.3 ± 2.88 -66.7± 2.88
(5)(22) (5)(22) (5)(21) (5)(20) (5)(17) (5)(12)

BaCh -66.8 ± 0.66 -61.5 ± 1.843 -65.9 ± 0.45b -69.5 ± 1.28 -59.9± 1.413,d -61.1 ± 1.233

(4)(24) (4)(24) (4)(24) (4)(15) (4)(19) (4)(12)

Acidic buffer + BaCh -67.2 ± 0.70 -60.6 ± 1.213 -62.8 ± 0.223 -68.2 ± 1.07 -57.9 ± 1.463,d -60.5 ± 1.293

(4)(24) (4)(24) (4)(21) (4)(15) (4)(18) (4)(15)

BaCh + ouabain -67.6 ± 0.50 -60.8 ± 0.463 -64.7 ± 1.I2 3
,b -69.4± 1.38 -58.1 ± 1.I3",d -60.3 ± 1.953

(4)(24) (4)(24) (4)(19) (4)(17) (4)(22) (4)(13)

Acidic buffer + BaCh -66.9 ± 1.05 -60.2 ± 1.023 ,< -60.1 ± 2.403 -68.4 ± 1.15 -59.9± 1.733,d -61.8 ± 1.553

+ ouabain (4)(23) (4)(23) (4)(18) (4)(15) (4)(19) (4)(13)

Acidic Buffer (pH 6.4 ± 0.2); BaCh (100 11M);ouabain (100 11M)
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Each value is the mean ± SE. with the numb er of rats (= n) and number of cells indic ated in parentheses.

'Si gnificantly different from respective contr ol; p<O.05

bSignificantly different from respective treatment ; p<O.05

<Significantly different from acidic buffer (+E); p<O.05

dSignificantl y different from acidic buffer (-E); p<0.05
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3.3.2. Membrane potential

3.3.2.1. Intact tissues

The £11I for intact tissues was stated in section 3.2.2. For evaluation purposes , the data for

no treatment, acidic buffer (pH 6.4), Ba2
+, ouabain or combination of these interventions

is mentioned again in Table 9.

3.3.2.2. Denuded tissue

Hyperpolarization recorded in smooth muscle cells was of similar magnitude in

pulmonary arteries with (-66.9 ± 0.96 vs -68.3 ± 0.73 mY, respectively) or without

endothelium (-69.6± 0.98 vs -69.7± 2.17 mY, respectively) from rats fed a high salt diet

(Table 9). The presence of acidic buffer did not affect resting £11I of smooth muscle cells

(-69.2 ± 0.65 vs -66.3 ± 2.88 mY, respectively; Table 9). BaH (-69.5 ± 1.28 vs -59.9 ±

1.41 mY, respectively) alone and together with ouabain in absence (-69.4 ± 1.38 vs -58.1

± 1.13 mY, respectively) and presence of acidic buffer(-68.4 ± 1.15 vs -59.9 ± 1.73 mY,

respectively) significantly depolarized vascular smooth muscle cells compared to acidic

buffer alone (Table 9). The extent of isoprenaline-indu ced hyperpolarization was

noticeably reduced in the absence or presence of various treatments such as acidic buffer

(pH 6.4), Ba2
+, ouabain or combination of these interventions.
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4.0. DISCUSSION

Removal endothelium produced hyperpolarization of vascular smoo th muscle cells in

blood vesse ls obtained from rats fed regular diet. The hyperpolarisation due to

denud ation was the result of the activation of K+channels and Na+/K+ATPase . p

adrenoceptor-evoked hyperpolarization appeared to be mutu ally dependent on the

presence of endothelial cells. Isopr enaline-induced hyperpolarization was absent in

denuded tissues. p-adr enoc eptor-mediated relaxation was found to be partly dependent

on the presence of endothelium. Isoprenaline produced similar relaxation s in intact

pulmonary arteries obtained from animals fed a high salt compar ed to normal diet.

However , the EII/was found to be hyperpolari zed in intact pulmon ary arteries of animals

fed a high salt diet comp ared to those fed a normal diet. The isoprenaline evoked

hyperpolarization was notably absent in the pulmonary arte ries. In addition, in intact

versus denud ed blood vessels obtained from rats on high salt diet Emwas not significa ntly

different. Collective ly, the studies concluded that the presence of the endothelium is

essential for the propagation of p-adrenoceptor-m ediated relaxation. Moreover, the

evidence see m to also imply that consumption of high salt leads to the activation of K+

channels and Na+/K+ATPase channels preserving p-adrenoc eptor -mediated relaxations in

pulmonar y arterie s.

A substantial amount of evidence suggests that a link betwe en excessive consumpti on of

Na+ in the form of diet ary salt and deve lopment of hypertension (lnters alt , 1988). This

observation stand s true for both human and animal popul ations (Tobian, 1991; Meneton

et al., 2005; He and MacGr egor, 20 10). In animal s, this is particularl y marked in the
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genetically selected Dahl salt sensitive rats (Dahl et al., 1962), but it also occurs to a

smaller extent in non-selected animals including Sprague-Dawley rats (Sofola el al.,

2002), Wistar rats (Huang & Johns, 2000) , and chimpanzees (Denton et al., 1995).

In the latter mentioned animal population, high salt consumption has been linked with

causing adverse cardiovascular effects (i.e. ventricular or vascular hypertrophy) without

altering the blood pressure (Tobian, 1991; Menton et al., 2005; He and MacGregor,

2010). The mechani sms linking consumption of high salt diet and hypertension! adverse

cardiovasc ular effects appears to be complex and to involve alteration in the

cardiovascular system i.e. heart, kidney and vascular system (Tobian, 1991; Menton et

al., 2005; He and MacGregor, 2010).

The alteration of adrenergic responsiveness due to the consumption of high salt diet could

be an important factor in the pathogenesis and maintenance of the hypertension and thus

cardiovascular disease (Feldman, 1990 a; Michel et al., 1990; Brodde and Michel, 1992).

One of the possible mechanisms that is a contributor to the increased in peripheral

vascular resistance is an increase in n-adrenoceptor mediated vasoco nstriction (Michel et

al., 1990; Brodde and Michel, 1992). However, an alteration in other vascular

adrenoceptors i.e. p-adrenoceptor responsiveness could also be a contributing factor to the

overall increase in peripheral resistance in the hypertension. Blunted p-adrenoceptor

responses have been reported in hypertensive animals and humans (Field and Soltis,

1985; Naslund el al., 1988; Feldman, 1990b; Borkowski et al., 1992). Further, high salt

diet has inconsistent effects on p-adrenoceptor-mediated vasore laxation. In humans, a

reduction in salt intake has been associated with improved p-adrenoceptor-mediated
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vaso dilation (Nas lund et al., 1988 ; Feldman, I990 b) and imp roved vasc ular distensibility

in hypertensive and elderly patient s (Avo lio et al., 1986; Gates et al., 200 4). In Dah l-salt

sensit ive rats fed a high salt diet, p-adrenoceptor-mediated responses to iso prena line were

attenuated in ao rtic ring (So ltis and Katovich, 1991) but were unchanged in pulm onary

arteries (Fo rd et al., 20 11). Thi s discrepanc y could be associa ted with vari abilit y in the

vascul ar beds (i.e. sys temic vs pulm onar y) and di fferent intracellular signa lling path way

activated as a con sequen ce of p-adrenoc eptor stimulation i.e. cAMP, PKA, cGMP and

pota ssium channels (Scheid et al., 1979; Ruban yi and Vanhoutt e, 1985 ; Nakashim a and

Vanhoutte, 1995 ; Bieger et al., 2006). Against this back ground , the current thesis

research was undert aken to assess the electric al and mech anic al diff erences in the low

pressure segment of the circul atory system (pulmonary arte ry) from Spra gue-D awley rats

on regular and high sa lt diet.

4.1. Role of endothelium in p-adrenoceptor signalling

p-adrenoceptor-mediated responses in the rat pulm onary arte ry have both endot helia l

dependent and indep end ent comp onents. In an intact tissue, p-adrenoceptor stimulation

produc es hyperp olari zation of smoo th muscle cell s via the activation of an ac id-se nsitive

channel (i.e. TASK ). This latter response was abse nt in the endo the lial denuded tissues.

Bieger et ai, (2006) demon strat ed that isopr enaline-evoked hyperpolarization in the

isolat ed rat main pulmonary arter y was not onl y sensitive to inhibitory actions of acidic

buffer but also to the anandamide (TAS K chann el antagonist). Anandamide also

produ ced conc entr ation dependent inhibition of the relaxation and inhibiti on of
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hyperpolarization elicited by isopr enaline (Biege r et al., 2006) . TAS K channels are

prese nt in rat pulm onary artery (Gardener et al., 2004) and were found to be sens itive to

inhibiti on by anandamide (Ma ingret et al., 200 I ; Gurney et al., 2003). In the present

study, hyperpolari zat ion induced by stimulation ofp-adre noce ptors was sig nifican tly

inhibit ed by the pre senc e of ac idic buf fer but not Ba2+, ouabain or TEA alone. The latter

sugges ts that TA SK pla ys an integral role in p-adrenoceptor-mediated hyperpolari zation .

In the pulmonary arte ry, Ba2+and ouabain together inhibited p-adr enoceptor-m ediated

mech anical respon se in the absence and presen ce of endothe lium. Ba2+and ouabain

together mod estly inhibited isopren aline-evoked hyperpo larization in intact arterie s

compared to denuded arteries. Moreo ver, acidic buffer combined with Ba2+and ouabain ,

did not cause furth er inhibition of the relaxation when comp ared to Ba2+ and ouabain

combin ed. In accord ance to the menti oned observation , it is plausibl e to suggest that the

stimulation of Bvadrencceptcr caused the acti vation of TA SK chann els, likely located on

the smoo th muscle cell s, leadin g to modest efflux of K+ which then perpetu ated the

opening Kir2.1channels and/o r the ove r-activation of Na+/K+ATPase leadin g to a we ll

defin ed susta ined hyperp olarization of approx imately 8.0 mY in an intact blood vessel.

Alternative ly, it is also be possibl e that TASK, Kir2.1, Na+/K+ATPase were activated in

parall el and work ed in concert to produce the isoprenaline mediated hyperp olarization .

Evidently , isopre naline mediated vasorelaxa nt respon ses were simi lar in the presen ce of

acidic buffer and Ba2+sugg esting that the latter mig ht be acti ng as an inhibitor of TASK

channe ls in addition to its ef fect on Kir2.1. Nonetheless, Ba2+ is belie ved to be a relativ ely

selective inhibitor of Kir2.1channels (Sabirov et al., 1997; Owen et al., 1999).
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Figure 21. A schematic demonstrating p-adrenoceptor (P-AR) signa lling in intact rat main pulm onary artery .

Inward rectifier potassi um channels , (K ir2.1) ; electroge nic pump, (Na+/K+ATPase) ; endothelia l cell, (EC); vascular smooth

muscle cell, (YSMC) ; two-pore domain acid sensit ive K+channels , (TASK) .
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Yet, another hypothesis cou ld be that stim ulation of p-adrenoceptors resulted in

endothe lium dependent hyperpolarization. This event would have had to predominantly

occur via the activation of acid-sensitive channels, and a portion of the electrical respo nse

may have been brou ght on as a result of the so called "potassium clouds" i.e. activation of

Na+/K+ATPase causing the Kir2.1channels to open (Edwa rds and Weston, 2004) .

Hyperp olarization of vascular smooth muscle cells is believed to occur under certain

cond itions due to K+efflux via Kir2.l and/or Na+/K+ATPase as a consequence of the

activation of the interm ediate Ca2+-activated K+channels located on the endothelial cells

(F616touand Vanhoutte , 2009). However , this does not explain the findin g that the

acidification of the buffer and anandamid e were both capable of inhibitin g

hyperpolarization and relaxati on induced by isoprenalin e in such blood vessels (Bieger et

al., 2006) . As well, in the present investigation , a comb ination of BaH and ouabain

inhibited isoprenal ine-indu ced relaxation in both intact and denud ed tissue to a similar

degree.

It was also observed that TEA partially attenuated hyperpolarization induced by

isoprenaline in intact pulm onary arteries. TEA caused a modest but not significant

inhibiti on of the relaxation in the intact tissues. The lack of complete inhibition of

hyperpolari zation by TEA in the presence of isopren aline may support the view that the

latter intervention unlik e acidic buffer is not able to substantially inhibit the K+channels

that are activated by the stimulation of p-adreno ceptors in isolated rat pulmon ary arteries.

In the rat abdominal aorta, p-adrenoceptor-m ediated relaxation has been reported to be, in

part, dependent on the activation of large-conduct ance, Ca2+-sensitive K+channels (BK)



K +efflux? hyperpolarization

i

Figure 22. A schematic demonstrating denudation-induced hyperpolarization in rat main pulmonary artery .

Inward rectifier potassium channels, (Kir2.1);electrogenic pump , (Na+/K+ATPase); vascular smooth muscle cell, (VSMC) ; two-

pore domain acid sensitive K+channels , (TASK)
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(Matsushita et al., 2006) while in the isolated rat aorta , relaxant respo nses to isopre naline

were partly inhibit ed by TEA (Kang et al., 2007). It had been previously reported that

charybdotoxin but not apamin also partially attenuated relaxant responses to isoprenaline

in intact rat main pulm onar y artery (Bieger et al., 2006) . Furthermore , relaxant responses

to isoprenaline in rat pulm onary artery could be completely abolished by elevation in the

extrace llular concentration of K+ (30 mM) (Bieger et al., 2006). Co llective ly, the

evidence seems to suggest that the relaxant responses due to the stimulation of~

adrenocep tors in vascula ture are partly dependent upon the activatio n ofK+ channe ls.

It is eviden t that denud ation can abolish hyperpolarization caused by isopre naline in rat

main pulmonary artery. We did observe that the removal of the endothelial cells resulted

in the Emshifting to a more negative setting of approx imately -67 mV. One simple

explanation could be that the substantial hyperpolarization follow ing denud ation rendered

the TAS K channels inefficient to cause further hyperpolarization upon stimulation of~

adrenoce ptor . The EK in single vasc ular muscle cell has been repor ted to be about -75

mV (Russe ll et al., 1992). It is possible, that since denud ation of blood vesse ls caused an

increase in Em(i.e. hyperpol arization) of the smooth muscle cells, this subdued the

participation of the acid-sensitive channels following the application of isoprenaline as Em

was brought close to EK(Figure 22).

Altoget her, the study sugges ts that the denudation of blood vesse ls causes

hyperpolarization of smoo th muscle cells as a result of the activa tion of Kjr2.Jand

Na+/K+ATPase . Moreover, inclusio n of BaH and ouabain in acidic buffer does not

produce any additive depolarization of denud ed pulm onary arteries . It is also apparent
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that this hyperpolarization is brought on in part via the activation of K + channels, since

TEA was able to produc e modest depolarization in denud ed tissues without having any

impact in the intact blood vesse ls. Therefore, it is reasonable to assume that the

participation of Na+/K+ATPaseand K + channels includin g the K ir2.1 in increasing the Em

meant that the electrica l responses caused by the stimulation of p-adrenoceptors seem no

longer a viable trigger in generating hyperpolarization in a denud ed blood vesse l.

4.2. Influence of high salt diet on p-adrenoceptor signalling .

In the current inves tigation, hyperpolarization observed in vasc ular muscle of blood

vesse ls from animals on a high salt diet is in accord with previous work from this

laboratory (S ieger et al., 2004; Parai and Tabrizchi, 2005) . An approx imate ly 6.0 mV of

hyperpolarization was record ed in the resting Emof smooth muscle cells of the main

pulmonary arteries of rats that consumed a high salt diet in compar ison to a regular diet.

This hyperpolarization can be attributed to the opening of K + channels and the activatio n

of Na+/K+-AT Pase. It is also apparent that isoprenaline-induced relaxa tions were not

perturbed in pulm onar y arter ies from rats fed a high salt diet compared to those on a

regular diet. The latter observa tion could be taken to indicate that hyperpolarization of

smooth muscle cells of the pulmonary arterial vesse ls played a pivota l role in preserving

isoprenaline-media ted relaxations in tissues obtained from animals on a high salt diet.

Support for this view stems from a recently publi shed report by Garland and colleagues

(20 II ). These investigators have purposed the view that hyperpolarization of smoot h
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muscle cells evoked by the stimulation of p-adrenoceptors is instrumental in spreading of

vasodilation in blood vessels (Garland et al., 2011). Therefore , hyperpolarization may be

a compensatory mechanism to restore the normal relaxant responses to p-adrenoceptor

stimulation in tissues from animals that consumed a high salt diet.

A modest but significant increase in blood pressure was recorded in normotensive rats

after consumpti on of high salt diet in our present study. Similarly, Sofola et al. (2002)

also reported a significant increase in blood pressure of Sprague-Dawley rats fed a high

salt diet compar ed to those on a regular diet. In systemic arteries, an increase in blood

pressure has been reported to attenuate p-adrenoceptor-mediated functional and

membrane potentials (Asano et al., 1982; Borkowski et al., 1992; Goto et al., 2001).

Previously evidence from this laboratory indicated that salt-induced systemic

hypertension in Dahl rats did not lead to elevation in pulmonary arterial pressure (Bieger

et al., 2004). However, it was noted that alteration in receptor-mediated signal

transduction evolved in pulmonary arterial vascular bed of Dahl hypertensive rats fed a

high salt diet independent of elevation in systemic arterial pressure (Bieger et al., 2004).

It was observed that the electrolyte levels were similar in plasma collected from the

animals fed either regular or high salt diets. Even though we did not detect any

significant changes in plasma levels of'Na" in animals fed a high salt diet, it is plausible

that alteration in p-adrenoceptor-mediated signal transduction noted in our present

investigation may have occurred as a consequence of small daily fluctuations in plasma

levels ofNa+due to the consumpti on of high salt diet. Data in the literature supports the

view that a rise in Na+concentration greater than 2 mmol/L induces changes in vascular
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response independent of the increase in blood pressure (de Wardener et al., 2004). This

may have been the case in the current investigation.

Dietary salt intake has also been shown to have a variable influence on p-adrenoceptor

mediated vascular responses. An intake of high salt in the diet has been implicated as a

cause for an impaired p-adrenoceptor-mediated response (Feldman, 1990 a). For

instance, in borderline hypertensive patients or elderly normotensive individuals, a

reduction in salt intake results in normalized p-adrenoceptor-mediated venodilation

(Feldman, 1990 b, 1992). However, Naslund and colleagues (1990), in forearm brachial

artery, have found that the potency of isoprenaline-induced vasodilation increased in salt

insensitive individuals after six days on high salt diet (250 mmol Na+ per day) compared

to individuals on a low salt diet (10 mmol Na per day). Experimental evidence for the

influence of high salt diet on vascular p-adrenoceptor-mediated responses varies in rat.

For example, Soltis and Katovich (1991) demonstrated that isoprenaline evoked relaxant

responses were attenuated in aortic rings from of Dahl-salt sensitive rats following three

weeks on high salt diet. In contrast, isoprenaline mediated relaxant responses were not

different in pulmonary artery from Dahl-salt sensitive rat fed a high salt diet (Ford et al.,

20 11). This noted variance between the former and latter findings as to the effect of high

salt diet on p-adrenoceptor-mediated relaxations could be due to differences in the nature

of the vesse ls i.e. systemic arteries that cater high blood pressure as compare to

marginally lower pressure by pulmonary arteries.

Here, it is also evident that isoprenaline-induced hyperpolarization in tissues from rats on

the high salt diet was absent. Based on the electrophysiologica l data in our current study,
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the hyperpolarization recorded in vascular smooth muscle cells of pulmonary arterial

vesse ls from rats fed a high salt diet compared to regular diet is mainly due to the

activation of the leak K+current, opening of the Kir2.1channels, the activation of

Na+IK+ATPase and to a modest degree the opening of the TEA -se nsitive voltage-gated

K+channels. Thu s, it is plausible that since consumption of the high salt diet had alread y

caused the opening of K+ channels and activation ofNa+/K+ATPase, leadin g to the

hyperpolari zation of vascular muscle cells, isoprenaline was no longer capable of

producin g a furth er decrease in the Em. Alternati vely , it is possible that Emof smoo th

muscle cell s of the pulm onar y arterial vessels of rats fed a high salt diet was close to the

K+reversal potential and further hyperpol arizat ion by isoprenaline did not ensue. As

mentioned earlier, Ek of single smooth muscl e cell has been reported to be approx imately

-75 mV (Russe ll et al., 1992)

Stimulatio n of p-adrenoceptors in vascular muscle leads to the activations of the adenylyl

cyclase with a subseq uent increase in intrace llular cAM P concentration and

vasore laxa tion (Scheid et al., 1979). In rat pulm onary arte ry, TAS K channels have been

reported to be present in vasc ular muscle (Gardener et al., 2004) . In addition, it seems

that the activation of these acid-se nsitive leak channels can occur independently of

adenylyl cyciase/cAMP /PKA pathway (S ieger et al ., 2006) . This study seem to also

reveal that cAMP antagoni st, Rp-cAMP , did not display any differential inhibit ory

response on isoprenaline-mediated relaxation s in tissues from animal s fed a high salt diet

versus those on a regular diet. This would argue aga inst a modified role for cAMP in

tissues from animals on high salt compared to a regular diet.
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The p-adrenocep tor-media ted relaxation in part is mediated via eNOS/NO/cGMP

pathway (Priest et al., 1999; Bieger et al., 2006) . In the current investigat ion, the latter

pathway does not seem to play any role in p-adrenoceptor-mediated hyperpolarization.

However, previo us ev idence from our laboratory demonstrated that consump tion of high

salt resulted in hyperpolar ization of mesenteric artery of Dahl salt- resistant rats. This

hyperpol arization was reversed by L-NAM E (Parai and Tabr izchi , 2005) . In contrast,

isopren aline-induced relaxation of the pulmon ary artery of Dahl salt-sensitive rats (Ford

et al., 2011) was found to be insensitive to inhibition by L-NAM E. In our present study,

hyperpolari zat ion of vascular smooth cell brought on by consumption of the high salt diet

was found to be insensitive to the action of L-NAM E. Taken together, our current

observa tions suggest that an altered role for eNOS/NO/cGMP pathway in relation to

isoprenaline-induced hyperpolarization and relaxation in pulmonary arterial vessels from

rats fed a high salt seems tenuous.

Interestingly, the opening of Kir2.1(BaH-sensitive) and the activa tion ofNa+/K+ATPase

(ouabain-sensitive) appear to be an integral part of the resting Emin the pulm onary

arterial vesse ls from animals fed a high salt diet. The assoc iation between the opening of

Kir2.1and activation of Na+/K+ATPase (via potassium cloud) and the ensuing

hyperpol arization of vasc ular smooth muscle in an intact blood vesse l is well docum ented

in the literature (Edward s et al., 1998; Weston et al., 2002). It is also clear that Ba2+

together with ouabain but not alone produced a much greater inhibitory effect of

isoprenaline evoked relaxati ons in tissues from rats fed a high salt diet comp ared to those

on a regular diet. Moreover, inhibition of TA SK channels by acidic buffer also produced
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a grea ter inhibition of relaxation caused by isoprenaline in pulm onary arterial vessels

from rat on a high salt diet compared to a regular diet. Taken together, such evide nce

could imply that TAS K and the combined effects of Kir2.1and Na+/K+ATPase act in

parallel in manifestation of the hyperpolarization due to the activation of' [f-adrenocep tors

by isoprenaline. Furthermore, it is also possible that opening of TAS K might act as

trigger for the activation of potassium cloud to preserve ~-adrenoceptor mediated

relaxations in blood vessels from animals on the high salt diet. However, based on our

current electrophysiolog ical and mechanical data, it is also clear that a limited, if any,

modifi cation of the role for TEA -sensitive channels has occurred in associa tion with ~

adrenoce ptor-mediated response in tissues from rats fed a high salt diet. This is in

contrast to the changes observed for the role of TAS K and Kir2.1channels and

Na+/K+ATPase on both mechanical and electrical functions due to the stimulation of ~

adrenocep tors in blood vesse ls from rats on a high salt in comparison to regular diet.

In conclusion, vascular ~-adrenoceptor signalling has clearly multipl e electrical

components in rat main pulmonary arteria l vessels . The sustained hyperpolarization

observed with chronic consumpti on of high salt diet involves the opening of leak

channels (TAS K) and Kir2.1channels and the activation of Na+/K+ATPase. This

hyperpolar ization preserves isoprenaline evoked relaxant responses in the main

pulmonary arter y. The vasodilatory responses to isoprenaline were not significantly

changed in rats fed a high salt diet. However, they appeared to be mediated mainly by K+

channels and Na+/K+ATPase rather than by NO as in the regular diet animals.
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4.3. Effect of denudation of endothelium on vascular p-adrenoceptor signalling in

rat s fed a high salt diet.

The remova l of endothelium resulted in hyperpolarization of similar magnitude in smooth

muscle cells of pulm onary artery from rats fed a high salt diet compared to endothelium

intact tissues from rats fed the same diet. Ba2
+ but not acidic buffer depolarized the

smoo th muscle cells from denud ed pulmonary artery from rats fed a high salt diet. The

Emof smoo th muscle cell s, following denud ation of pulmonary artery of rats on either

regular or high salt diet was also compara ble (Table 3 and 9). In agree men t with previo us

findings, isoprenaline did not further hyperpolarize the smooth muscle cells with EIII

ranging from -67 mV to -70 mV (Table 3, 7 and 9). Isoprenaline-indu ced maxima l

response was attenuated in denud ed tissues comp ared to intact tissues in rats fed a high

salt diet. The res idual isoprenaline-mediated relaxation was not mediated by TASK

channels but by Bi +sensitive Kjr2.1channels.

Replott ing figures from previously mentioned data sugges ts that the extent of inhibition

of maximal response was similar in denuded tissues from rats fed either a regular or high

salt diet (Figure 23A). Despite producing significa ntly greate r inhibition in intact

pulmonary arteries from rats on a high salt diet, the inhibitory effec ts of acidic buffer

were dim inished in denud ed pulm onary arteries from rats fed a regular or a high salt diet

(Figure 23B). We found that, L-NA ME produced simi lar inhibition of isopre naline

mediated relaxant responses in tissues from rats fed a regular compared to high salt diet.

The presence of L-NAM E in acidic buffer produced additive inhibition that was greater in

pulmonary arteries from rats on a high salt diet compared to a regular diet. This additive
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effect observed in tissues from rats fed a high salt diet could be attributed to inhibition of

TASK channel s. Hyperpolarization recorded in the endothelium intact pulmonary artery

of rats fed a high salt diet was sensitive to acidic buffer. Interestingly, in the absence of

endothelium, smooth muscle cells were hyperpolarized and this event was sensitive to

BaH but not to acidic buffer in rats fed a high salt diet. Considering this evidence, it

would be fair to argue that the presence of endothelium is necessary for the TASK-

mediated mechani cal and electrical responses in pulmonary artery of rats on either regular

or high salt diet.
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Figu re 23. For discussion purposes the following figures are replotted from previously mentioned data. Concentration -response

curves for isoprenaline (% relaxation remaining from phenylephrine induced sub-maximal contractions) in intact {+E} and

denuded {-E} main pulmonary artery ring preparations from rats fed a regular [R] and high salt diet [S] in A) regular buffer

(control) and twice-distilled water and; B) regular buffer (control) and acidic buffer. Each point represents a mean ± s.e.m . of six

to seven experiments.
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A major component of p-adrenoceptor signalling is BaH sensitive alone and mutually

with ouabain. It was observe d that the high salt diet played a role in the over -stimulation

of Ba2+ sensitive component of isoprenaline signalling. In study I, removal of the

endothelium attenuated the Ba2
+-mediated inhibit ion of isoprenaline relaxan t responses .

As previo usly mentioned, it is possible that Ba2
+ might also inhibit TAS K channels

involved in p-adrenoceptor signalling. Inhib ition produced by acidic buffer and BaH was

comparable in intact and denud ed pulm onary artery from rats fed a regular diet. In study

II , reducti on of maxim al responses to isoprenaline by BaH was of similar magnitude in

intact blood vessels from rats fed a regular or high salt diet. It is also evident that the

degree of inhibit ion of isoprenalin e-indu ced relaxant responses with BaH was greater

accentuated in denud ed pulm onary arter ies from rats fed a high salt diet compared to

tissue from rats fed the regular diet (Figure 24A). The presence of Ba2
+ in acid ic buffer

also resulted in an additive effect in intact blood vesse ls from rats a fed high salt diet, and

in endothelium denud ed tissues from rats on either, high salt diet or regular diet (Figure

I3B and 24B). It is evident that high salt diet has increased the participation of Ba2
+

sensitive Kir2.1channels in p-adrenoceptor-mediated relaxation in the pulm onary artery

(Figure 13AB. and 24 AB). These findin g also seem to support the view that TASK

channels are insensiti ve to the inhibitory action of BaH (Lesage and Lazdunsk i, 2000) .
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Figure 24. For discussion purposes the following figures are replotted from previously mentioned data. Concentration-response

curves for isoprenaline (% relaxation remaining from phenylephrine induced sub-maximal contractions) in intact {+E} and

denuded {-E} main pulmonary artery ring preparations from rats fed a regular [R] and high salt diet [S] in A) regular buffer

absence (control) or presence of BaCh and; B) regular buffer (control) or acidic buffer plus BaCh. Each point represents a mean

± s.e.m. of six to eight experiments .
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It is consistent with study I and II that the "potass ium cloud s" theory could play an

important role in vasc ular smoo th muscle relaxation and hyperpolarization (Edwar d et al.,

1998; Weston et al., 2002) . The latter process may play a modest role in p-adrenoceptor

mediated responses in endothelium intact pulm onary arteries of Sprag ue Dawley rats fed

a regular diet. However , it is evident that the contribut ion of the Kir2.1and Na+/K+ATPase

sign ificantly increased in the pulm onary arter ies from rats fed a high salt diet compared to

rats fed a regular diet. Furthermo re, no difference was observe d in the degree of

attenuation of isoprenaline mediated responses in pulmonary artery with or without

endothelium from rats fed either a regular or high salt diet (Figure 25A). It is also evident

that addition of ouabain and BaH combined in acidic buffer resulted in inhibition of a

similar magnitude in tissues with or without endothelium from rats fed a high salt diet

(Figure 24B). Accordingly, this could sugges ts that remova l of endothelium leads to

over-activation of Kir2.1further causing hyperpolarization of smoo th muscle cells from

pulmonary arteries of rats fed a high salt diet.
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Figure 25. For discu ssion purposes the following figures are replotted from previously mentioned data. Concentration-response

curve s for isoprenaline (% relaxation remain ing from phen ylephrine induced sub-max imal contractions) in intact {+E} and

denuded {-E} main pulmonary artery ring preparations from rats fed a regular diet [R] in A) regular buffer absence (control) or

presence of BaCh and ouabain together and; B) regular buffer (control) or acidic buffer plus BaChand ouabain together. Each

point repre sents a mean ± s.e.m. of six to eight experim ents .
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4.4. Conclusion

The stimulation of'Bvadrenoceptors causes hyperpol arization of vascular smooth muscle

cells . Isoprenaline-induced hyperpol arization in part contributes to the p-adren oceptor

mediated relaxation of the rat main pulmonary artery. The vascular p-adrenoc eptor

mediated signal transduction consi sts of multiple compon ents with a sequence of events

that include the activation ofK+channels (TASK and Kir2.1) and Na+/K+ATPase. The

evidence implies that in the presence of endothelium, the hyperpolarization of vascular

smooth muscle cells via the activation of Kir2.1and/or Na+/K+ ATPase can occur with the

source of the "potassium clouds " being the smooth muscle cell s, i.e. as a consequence of

the activation of K+channels that propagate to derive the subsequent events.

Either of the treatment i.e. removal of endothelium or consumption of high salt diet shifts

the Emtoward hyperpolarized state. The change of Emto more negative potential

substantially diminishes the hyperpolarization induced by isoprenaline. This suggests

that there is a ceiling for isoprenaline-induced hyperpol arization i.e. if the tissue is in the

range of EK ; further hyperpolarization with a p-adrenoceptor agonist may not occur .

Consumption of high salt diet has a direct impact on p-adrenoceptor signalling in rat main

pulmonary arterial vessels . This change is not due to pressure nor is it seems to be

dependent on electrolytes but could be due to changes in neurohumoral factors . The

sustained hyperpolarization observed with chronic consumption of a high salt diet

involves the opening of leak channels (TASK) , Kir2.1channels and the activation of

Na+/K+ATPase . This hyperpolarization preserves isoprenaline-evoked relaxant responses

in the main pulmonary artery.
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Stimulation ofp-adrenoce ptors initiates the formation of "potassium cloud" that spread s

along the artery with the aid of endothelium. Endothelium plays a role of conduit for

electrical coupling. The smoot h muscle cell layer has been implica ted as an alternat ive

cond uction pathway in the event of damage to the endothelium (Budel et al., 2003) . Thus

it is possible that in the absence of endothelium attenuates the exte nt of p-adrenoceptor

mediated relaxant responses . TAS K channels play an important role in p-adrenoceptor s

signalling in rat pulm onary artery . These leak conductances have been shown to be an

important comp onent in regulating pulm onary vasc ular tone (Olschewsk i et al., 20 I0).

This project showe d that the presence of endothelium is necessary for participation of

TAS K in p-adrenoceptor-m ediated responses. Ident ification of these mechanisms

increases our understandin g of the process involved in the blood flow to the organs and

could exp lain how these processes can be compro mised in diseases in which endothelial

functio n is reduced.
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5.0. LIMITAnONS

As with all experim ental designs, a numb er of limitations can be identified with the

present work. For example, it would have been ideal, if memb rane potenti al was

recorded simultaneously with mechanical funct ion for complete concentration-response

curve to isoprenaline. This would allow for greater understandin g of the relationship

between vascular hyperpolarization and relaxati on . Evaluation of TASK express ion on

endothelial and vascular smooth muscle cell s from rats fed either diet (regular or a high

salt diet) cou ld have provided additional evidence for the increased particip ation of the

chann el following high salt consumption. It would be meanin gful to measure the quantit y

of salt con sumed by rats.As well , it would be intere sting to study and comp are the p

adrenoceptor signalling in smaller vesse ls such as mesentery artery which contributes in

the total peripheral vascul ar resistance in the systemic circulatory bed. To this end, future

experiments could be aimed at investigating the changes in p-adrenoce ptor-mediated

electrical and mechanical responses in systemic blood vesse ls.



142

6.0. BIBLIOGRAPHY

Abel P.W., Trapani A., Matsuki N., Ingram M.J., Ingram F.D., Hermsmeyer K. (1981)
Unaltered memb rane properties of arterial muscle in Dahl strain genetic hypertension.
Am J PhysioI241:H224-227.

Ahlquist R.P. (1948) A study of the adrenotropic receptors. Am J PhysioI 153:586-600.

Ahluwalia A., Hobbs A.J. (2005) Endothelium-derived C-type natriuretic peptide: more
than just a hyperpolarizing factor. Trends Pharmacol Sci 26:162-167.

Akimoto Y., Horinouchi T., Shibano M., Matasushita M., Yamashita Y., Okamoto T ,
Yamaki F., Tanaka Y., Koike K (2002) Nitric oxide (NO) primarily accounts for
endothelium-dependent comp onent of p-adrenoceptor-activated smooth muscle relaxation
of mouse aorta in response to isoprenaline. J Smooth Muscle Res 38:87-99.

Andrews KL, Triggle CR, Ellis A (2002) NO and the vasculature : where does it come
from and what does it do? Heart Fail Rev 7:423-445.

Angus l .A ., Broughton A, Mulvany M.J. (1988) Role ofa lpha-adrenoceptors in
constrictor responses of rat, guinea-pig and rabbit small arteries to neural activation. J
Physio/403:495-510.

Archer S.L., Huang 1.M., Hampl Y., Nelson D.P., Shultz P.J., Weir E.K. (1994) Nitric
oxide and cGMP cause vasore laxation by activation of a charybdotoxi n-sensitive K+
channel by cGMP-dependent protein kinase. Proc Natl Acad Sci USA 91:7583-7587.

Arribas S., Marin 1., Ponte A , Balfagon G., Salaices M. (1994) Norepi nephrine-induced
relaxations in rat aorta mediated by endothelial beta adrenocep tors. Impairment by ageing
and hypertension. J Pharmacol Exp Ther 270:520-527.

Asano M., Aoki K., Matsuda T (1982) Reduced beta adrenoceptor interactions of
norepinephrine enhance contraction in the femoral artery from spontaneously
hypertensive rats. J Pharmacol Exp Ther 223:207-2 14.

Avolio A.P., Clyde K.M., Beard TC., Cooke H.M., Ho K.K., O'Rourke M.F. (1986)
Improved arterial distensibility in normotensive subjects on a low salt diet.
Arterioscle rosis 6:166-169.

Bahring R., Milligan C.J., Yardanyan Y., Engeland 8. , Young B.A , Dannenberg 1.,
Waldschutz, R., Edward l .P., Wray D., Pongs O. (200 1) Coupling of voltage-dependent
potassium channel inactivation and oxidoreductase active site of Kvbeta subunits. J BioI.
Chem 276:22923-22929.



143

Baragatti 8. , Brizzi F., Barogi S., Laubach V.E., Sodini D., Shese ly E.G. (2007)
Interactions between NO, CO and an endothelium-derived hyperpolarizing factor (EDHF)
in maintaining patency of the ductus arteriosus in the mouse. Br J Pharmacol151 :54-62.

Barer G.R., Cai Y.N., Russell P.C., Emery C.J. (1989) Reactivity and site of vasomotion
in pulmon ary vesse ls of chronically hypoxic rats: relation to structural changes. Am Rev
Respir Dis 140:1483-1485 .

Barnes P.J., Liu S.F. (1995) Regulation of pulmonary vascular tone. Pharmacol Rev
47:87-131.

Baron C.B., Cunningham M., Strauss J.F. 3rd, Coburn R.F. (1984) Pharmacomechanical
couplin g in smooth muscle may involve phosphatidylin ositol metaboli sm. Proc Natl
Acad Sci USA 81:6899-6903.

Baron A., Pacaud P., Loirand G., Mironneau C., Mironneau 1. (199 1) Pharmacological
block ofCa2+-activated CI- current in rat vascular smooth muscle cells in short-term
primary culture. Pflugers Arch 419 :553-558.

Bean B.P. (1989 ) Classes of calcium channels in vertebrate cells. Annu Rev Physiol
51:367-384.

Begonha R., Moura D., Guimara' es S. (1995) Vascular p-adrenoceptor-mediated
relaxation and the tone of the tissue in canine arteries. J Pharm Pharma coI 47:510-513.

Benham C.D. (1989) ATP-activated channels gate calcium entry in single smooth muscle
cells dissociated from rabbit ear artery. J PhysioI 4 19:689-701.

Berg J.M. (1989) DNA bindin g specificity of steroid receptors. ee l/ 57:I065- I068.

Bieger D., Duggan J.A., Tabrizchi R. (2004) Effects of chloride substitution on
electromechanical responses in the pulmonary artery of Dahl normotensive and
hypertensive rats. BrJ Pharma coI 141:1068-1076 .

Bieger D., Parai K., Ford c. A., Tabrizchi R. (2006) beta-adreno ceptor mediated
responses in rat pulmonary artery : putative role of TASK-I related K channels. Naunyn
Schmiedebergs Arch Pharmac ol 373:I86-196.

Blaustein M.P. , Zhang J., Chen L., Song H., Raina H., Kinsey S.P., Izuka M., Iwamoto
T., KotlikoffM.I., Lingrel 1.B., Philipson K.D., Wier W.G., Hamlyn 1.M. (2009) The
pump, the exchan ger, and endogenous ouabain : signalling mechani sms that link salt
retention to hyperten sion . Hyp ertension 53:291-298.



144

Blizard D.A ., Peterson W.N. , Iskandar S.S., Shihabi Z.K., Adams N. (199 1) The effec t of
a high salt diet and gender on blood pressure, urinary protein exc retion and renal
pathology in SHR rats. Clin Exp Hyper/ens A 13:687- 697.

Blondeau N., Petrault 0 ., Manta S., Giordanengo V., Gounon P., Bordet R., Lazdunski
M., Heurteaux C. (2007) Polyunsaturated fatty acids are cerebral vasodilators via the
TREK- I potassium channel. Circ Res 101:176-184.

Bohm M., Gier sch ik P., Jakobs K.H., Pieske 8. , Schnabel P., Ungerer M., Erdmann E.
(1990) Increa se of Gni in human hearts with dilated but not ischemic cardiomyopathy.
Circulation 82 :1249-1265.

Bohr D.F., Webb R.C. (1988) Vascular smooth muscle membran e in hyperten sion . Annu
Rev Pharma col ToxicoI 28:389-409.

Bolton T.B . (1979) Mec hanisms of actio n of transmitter s and other substances on smoo th
muscle . Physio l Rev 59:606-718.

Bolton T.8. , Pacaud P. (199 2) Voltage-depe ndent calcium channel s of smooth muscle.
Jpn J Pharma coI 58:251-257.

Borkowski K.R., Gros R., Schneider H. (1992 ) Vascular beta-adrenoc eptor-m ediated
responses in hyperten sion and ageing in rats. J Au/on PharmacoI 12:389-40 1.

Bradle y K.K., Jaggar J.H., Bonev A.D., Heppn er T.1., Flynn E.R.M., Ne lson M.T.,
Horowit z B. (1998 ) Kir2.1encodes the inward rectifi er potassium channel in rat arteria l
smooth muscle cell s. J PhysioI 515:639-651.

Brandes R.P., Schmit z-Winn enth al F.H., Feletou M., Godecke A., Huang P.L., Vanhoutte
P.M. (2000) An endoth elium-d erived hyperp olari zing factor distinct from NO and
prostacyclin is a major endothelium-dependent vasodilator in resistance vessels of wild
type and endoth elial NO synthase knock-out mice. Proc Nat! Acad Sci USA 97:9747
9752.

Brawley L., Shaw A.M. , Mac Donald A. (2000) /3,-/32- and atypical B-adren oceptor
mediate d relaxat ion in rat isolated aorta. Br J Pharma coI 129:637-644 .

Brayden l E. (200 2) Functional roles of KATI' channels in vascu lar smooth muscle. Clin.
Exp. Pharmaco l Physio I 29:317-323.

Briones A.M ., Daly C.1., Jimenez-Alta yo F., Martin ez-Revelles S., Gon zalez J.M.,
McGrath lC., Vila E. (2005 ) Direct demo nstration of beta 1- and evidence against beta2
and beta3 -adrenoceptors, in smooth muscle cells of rat small mesenteric arterie s. Br J
Pharmac oI 146:679-691 .



145

Brodde OE, Michel MC. (1992) Adrenergic receptor s and their signal transduction
mechanisms in hypertension . J Hyp ertens SlIpp/ l 0:S13 3-45 .

Brodde O.E. (1993) p-Adrenoceptors in cardiac disease. Pharmacol Ther 60 :405-430.

Brodde O.E., Michel M.e. (1999) Adrenergic and muscarinic receptors in the human
heart. Pha rma col Rev 51:65 1-690.

Brown A.M., Birnbaumer L. (1988) Direct G protein gating of ion channe ls. Am J
Physiol . 254:H40 1-4 10.

Budel S., Bartlett I.S., Segal S.S. (2003) Homoce llular conduction along endot helium
and smooth muscle of arterio les in hamster cheek pouch: unmasking an NO wave. Circ
Res 93:61-68.

Bulbring E, Tomita T. (1987) Catecholamine action on smooth muscle. Pharmacol Rev
39:49-96.

Burnstock G. (1986) Autonomic neuromuscular j unctions: current developments and
future directions. J Anat. 146:1-30.

Busse R., Mulsch A (1990) Calcium-dependent nitric oxide synthesis in endothe lial
cytosol is mediated by calmodulin. FEBS Lell 265:133-136.

Byrne, N.G., Large W.A (I 987a) Action of noradrenaline on single smooth muscle cells
freshly dispersed from the rat anococc ygues muscle. J PhysioZ. Lond 389 :5 13-525.

Byrne, N.G., Large W.A (I 987b) Membrane mechanism associa ted with muscarinic
receptor activation in single cells freshly dispersed from the rat anococcygeu s muscle. Br
J Pharma co 92: 371-379.

Campbell W.B., Fleming 1. (20 10) Epoxyeicosatrienoic acids and endothelium
dependent responses. Pflugers Arch 459 :881-895.

Casey PJ ., Gilman AG. (1988) G protein involvement in receptor-effec tor coupling. J
Bioi Chem 263:2577 -258 0.

Casteels R. (1980) Electro- and pharmacomechanical coupling in vascular smooth
muscle. Ches t 78:150-156.

Chaytor AT, Edwards D.H., Bakker L.M., Griffith T.M. (2003) Distinct hyperpolarizing
and relaxant roles for gap junctions and endothelium-derived H20 2 in NO-independent
relaxations of rabbit arteries. Proc Nat! Acad Sci USA 100:15212-1 5217.



146

Chen P.Y., Sander s P.W. (1991) L-arginine abrogates salt-sensitive hypertension in
Dahl/Rapp rats. J Clin Invest 88:1559-1567.

Chen X.L., Rembold C.M. (1992) Cyclic nucleotide-dependent regulation of Mn2+
influx, [Ca2+1;, and arterial smooth muscle relaxation. Am. 1. Physio/ 263:C468-473.

Cheung D.W. (1984) Membrane potential of vascular smooth muscle and hypertension in
spontaneously hypertensive rats. Can J Physiol Pharmaco I 62:957-960 .

Chipperfield A.R., Harper AA (2000) Chloride in smooth muscle. Prog Biophys Mol
Bioi. 74:175- 221.

Chruscinski A.J., Rohrer O.K., Schauble E., Desai K.H., Bernstein D. Kobilka B.K.
(1999) Targeted disrupti on of the b2 adrenergic receptor gene. J Bioi Chem 274:16694
16700 .

Chruscinski A., Brede M.E., Meinel L., Lohse M.J ., Kobilka B.K., Hein L. (2001)
Differential distribution of beta-adrenergic receptor subtypes in blood vesse ls of knockout
mice lackin g beta(1)- or beta(2)-adrenergic receptors. Mol Pharmaco l 60:955-962.

Collins J.H., Forbush 3rd, Lane LK, Ling E., Schwartz A, Zot A (1982) Purification
and characterization of an Na+/K+ATPase proteo-lipid labelled with a photo-affinity
derivative of ouabain. Biochim Biophys Acta 686 :7-12.

Cook N.R., Cutler J.A., Obarzanek E., Buring J.E., Rexrode K.M., Kumanyika S.K.
(2007) Long term effec ts of dietary sodium reduction on cardiovasc ular disease
outcomes: observational follow-up of the trials of hypertension prevention (TOHP). BMJ
334:885-888.

Corbett W.T., Kuller L.H., Blaine E.H., Damico F.J. (1979) Utilization of swine to study
the risk factor of an elevated salt diet on blood pressure. Am J Clin Nutr 32:2068-2075.

Cornwell T.L., Pryzwansky K.B., Wyatt T.A. , Lincoln T.M. (199 1) Regulation of
sarcoplasmic reticulum protein phosphorylation by localized cyclic GMP-dependent
protein kinase in vascular smooth muscle cells. Mol PharmacoI 40:923-93 1.

Cribbs L.L. (2006) T-type Ca2+channels in vascular smooth muscle: multiple functions.
Cell Calcium 40:221-230.

Criddle D.N., de Moura R.S., Greenwood LA., Large W.A. (1997) Inhibitory action of
niflumic acid on noradrenaline- and 5-hydroxytryptamine-induced pressor responses in
the isolated mesenteric vascular bed of the rat. Br J PharmacoI120:8l 3-818 .



147

Crooke S.T., Nambi P., Aiyar N., Stassen F., Grillone L. (1988) Vasopressin V I
receptors and inter-receptor regulation in vascular smooth muscle cells. Biochem
Pharmacal 37 :2105-2 108.

Dabrowska R., Sherry J.M., Aromat orio O.K., Hartshorne OJ. (1978) Modulator protein
as a component of the myosin light chain kinase from chicken gizzard. Biochemistry
17:253-258.

Dahl L.K., Heine M., Tassinari L. (1962) Effects of chronia excess salt ingestion.
Evidence that genetic factors play an important role in susceptibility to exper imental
hypertension. J Exp Med 115:1173-1190.

Daly I.D.B., Hebb C. (1966) Innervation of lungs. In pulmonary and Bronchial Vascular
System, ed by I.D.B. Daly, C. Hebb; 89-117.

Davis MJ ., Hill M.A (1999) Signalling mechanisms underlying the vascular myogenic
response. Physiol Rev 79:387-423.

Denton D., Weisinger R., Mundy N.J., Wickings EJ. , Dixson A, Moisson P. (1995) The
effect of increased salt intake on blood pressure of chimpanzees. Nat Med 1:I009-1016.

de Wardener H.E., He FJ. , MacGregor G.A (2004) Plasma sodium and hypertension.
Kidney Int 66:2454-2566.

de Wit C., Roos F., Bolz S.S., Pohl U. (2003) Lack of vascular connexin 40 is assoc iated
with hypertension and irregular arteriolar vasomotion. Physiol Genomics 13:169-177.

DiBona G.F., Kopp U.C. (1997) Neural control of renal function. Physiol Rev 77:75
197.

Dimmeler S., Fleming I., Fisslthaler B., Hermann C., Busse Re, Zeiher A.M. (1999)
Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation.
Nature 399 :601-605.

Dominiczak AF., Bohr D.F. (1989) Vascular smooth muscle in hypertension. J
Hyp ertens Suppl 7:S 107-116.

Dora K.A., Sandow S., Gallagher N.T., Takano H., Rummery N.M., Hill C.E. (2003)
Myoendothelial gap juncti ons may provide the pathway for EDHF in mouse mesenteric
artery. J Vasc Res 40:480-490.

Dora KA (20I0) Coordination of vasomotor responses by the endothelium. Circ J
74:226-232.



148

Duggan 0.1., Bieger D., Tabrizchi R. (2011) Neurogenic responses in rat and porcine
large pulmonary arteries. Pulm Circ 1:419-424.

Duprat F., Lauritzen I., Patel A., Honore E. (2007) The TASK background K2Pchannels:
chemo- and nutrient sensors. Trends Neurosci 30:573-580.

Dzau V.1., Gibbons G.H., Morishita R., Pratt R.E. (1994) New perspecti ves in
hypertension researc h. Potentials of vascular biology. Hypertension 23:1132- 1140.

Earley S., Heppner T.1., Nelson M.T., Brayden J.E . (2005) TRPV4 forms a novel Ca2+_
signalling complex with ryanodine receptors and BKca channels. Circ. Res 97: 1270
1279.

Edvinsson L., Owman C. (1974) Pharmacological characterization of adrenergic alpha
and beta receptor s mediating the vasomotor responses of cerebral arteries in vitro. Circ
Res 35:835-849 .

Edwards G., Dora K.A., Gardener M.1., Garland C.1., Weston A.H. (1998) K+ is an
endothelium-derived hyperpolarizing factor in rat arteries. Nature 396 :269-272.

Edwards G, Weston AH. (2004) Potassium and potassium clouds in endothelium
dependent hyperpolarizations. Pharmacal Res; 49:535-54 1.

Eguchi S., Inagami T. (2000) Signal transduction of angiotensin II type I receptor
through receptor tyrosine kinase. Regul Pept91 :13-20.

EI-Bermani A.W. (1978) Pulmonary noradrenergic innervation of rat and monkey : A
comparative study. Thorax 33:167-174.

Elliott P., Walker L.L., Little M.P., Blair-West JR., Shade R.E., Lee D.R., Rouquet P.,
Leroy E., Jeunemaitre X., Ardaillou R., Paillard F., Meneton P., Denton D.A. (2007)
Change in salt intake affects blood pressure of chimpanzees : implications for human
populations. Circulation 116:1563-1568.

Ellis A., Triggle C.R. (2003) Endothelium-derived reactive oxygen species: their
relationship to endothelium-dependent hyperpolarization and vascular tone. Can J
Physiol Pharmacal 81:1013-1028.

Emberson J.R., Whincup P.H., Morris R.W., Walker M. (2003) Re-assessing the
contribution of serum total cholesterol, blood pressure and cigarette smoking to the
aetiology of coronary heart disease: impact of regression dilution bias. Eur Hearl J
24:1719-1726.



149

Emorine L., Marull o S., Briend-Sutr en M.M., Patey G., Tate K., Delavier- Klutchko C,
Strosberg A.D. (1989 ) Molecular characterization of the human p3-adrener gic receptor.
Science 245:1118-1121.

Emorine L.J., Feve 8. , Pairault 1., Briend-Sutren M.M., Marull o S., Delavier-Klut chko
C., Strosberg D.A. ( 1991) Structur al basis for functional diversity of beta 1-, beta 2- and
beta 3-adrenergic receptors. Biochem PharmacoI41 :853-859.

Enyedi P., Cz irjak G. (20 10) Molecul ar background ofleak K+ currents : two-pore
domain potassium channels. Physiol Rev 90:559-605.

Field F.P., Soltis E.E . (1985 ) Vascular reactiv ity in the spontaneously hypertensive rat.
Effect of high pressure stress and extracellular calcium . Hypertension 7:228-235.

Feldm an R.D. (1990a) Beta-adr enoc eptor respon siveness in hypertension: effects of
dietary NaCI intake . Br J Clin PharmacoI30:55S-60S.

Feldman R.D. (1990b) Defecti ve venous beta-adrener gic respon se in borderlin e
hypertensive subje cts is corrected by a low sodium diet. J Clin Invest 85 :647-652.

Feldman R.D. (1992) A low-sodium diet correct s the defect in beta-adren ergic response
in older subjects. Circulation 85:612-618.

Feletou M., Vanhoutt e P.M. (1988) Endothelium-dependent hyperpolarization of canine
coronary smooth muscle. Br J PharmacoI9 3:515-524.

Feletou M. (2009) Calcium-activated potassium channels and endothel ial dysfunct ion:
therapeutic options? Br J PharmacoI 156:545-562.

Feletou M., Vanhoutt e P.M. (2009) EDHF: an update. Clin Sci (Lond) 117:139-155.

Ferguson S.S. (200 1) Evolving concepts in G prot ein-coupled receptor endocy tosis : the
role in receptor desen sitization and signalling. Pharmacol Rev 53:1-24.

Ferrara L.A. , de Simon e G., Pasanisi F., Mancini M. (1984) Left ventricular mass
reduct ion during salt dep letion in arterial hypertension. Hypertension 6:755-759.

Ferro A., Kang Y., Xu B., Ji Y. (2003) P2-Adrenoceptor activation cause s protein kinase
A- and Akt-dependent phosp hory lation of nitr ic oxide syntha se type 3 in huma n umbil ical
vein endothe lial cells [abstract] http: //www .pa2online.org/ Volli ssue4abstrOl8P .html

Ferro A., Coash M., Yamam oto T., Rob J., Ji.Y ., Queen L.R. (2004) Nitri c oxide
depend ent p2-adr energic dilatation of rat aorta is mediat ed throu gh activation of both
prote in kinase A and Akt. Br J PharmacoI 143:397-403.



150

Figueroa X.F ., Dulin g B.R. (2009) Gap jun ctions in the control of vasc ular function .
Antioxid Redox Signal 11:25 1-266 .

Folkow B., Gurevich M., Hallback M., Lundgren Y., Weiss L. (1971) The hemodynamic
consequences of regional hypotension in spontaneously hypertensive and normotensive
rats. Acta Physiol Scand. 83:532-541.

Ford C.A, Mahajan P., Tabrizchi R. (20 11) Characte rization of p-adrenoceptor mediated
relaxation signals in isolated pulm onary artery of Dahl salt-se nsitive hypertensive and
normo tensive rats. Auton Autacoid Pharmacol3I :1-12.

Fraser C.M. ( 1989) Site-d irected muta genesis of beta-adrenergic receptors. Identification
of conserved cysteine residu es that independently affect ligand bindin g and recep tor
activation. J Bioi Chem 264:9266-9270.

Frolich E.D., Chien Y., Seso ko S., in Pegram B.L. (1993) Relationship between dietary
sodium intake, hemodynamics and cardiac mass in SHR & WKY rats. Am J Physiol
264 :30-34.

Frolich E.D. (1999) Risk mechanisms in hypertensive heart disease. Hypertension
34 :782-789.

Fuj ii K., Onaka U., Goto K., Abe I., Fujishima M. (1999) Impaired isoproterenol induced
hyperpolarization in isolated mesenter ic arteries of aged rats. Hypertension 34:222-228.

Fulton D, Gratton JP, McCabe TJ , Fontana J, Fujio Y, Walsh K, Franke TF,
Papapetropoulos A, Sessa WC. (1999) Regulation of endothelium-derived nitric oxide
production by the protein kinase Akt. Nature 399:597-601.

Furchgott R.F., Zawadzki lV. (1980) The obligatory role of endothelial cells in the
relaxation of arterial smooth muscle by acetylcholine. Nature 288:373-376.

Furchgott R.F. (1983) Role of endothelium in responses of vascular smooth muscle.
Circ Res 53:558-573.

Furchgott R.F., Vanhoutte P.M. (1989) Endothelium-derived relaxing and contracti ng
factors . FASEB J3 :2007- 2018.

Gardener M.J ., Johnson LT., Burnh am M.P., Edwards G., Heagerty A M., Weston AH.
(2004) Functional evidence ofa role for two-pore domain potassium channels in rat
mesenteric and pulmon ary arteries. Br J PharmacolI42 :192-202.

Garland C.J., Yarova P., Jimenez-Altayo F., Dora K.A (20 1I) Vasc ular
hyperpolar ization to p-adreno ceptor agonists evokes spreading dilatation in rat isolated
mesenteric arteries. Br J PharmacoII64:913-921.



151

Garry A. , Fromy B., Blondeau N., Henrion D., Brau F., Gounon P., Guy N., Heurte aux
C, Lazdunski M., Saumet J.L. (2007 ) Altered acetylcholine, bradykinin and cutaneou s
pressure-induced vasodilation in mice lacking the TREKI potassium channel : the
endothelial link. EMBO Rep 8:354-359.

Gates P.E. , Tanaka H., Hiatt W.R ., Seals D.R. (2004) Dietar y sodium restriction rapidl y
improves large elastic artery compliance in older adults with systolic hyperten sion .
Hypertension 44:35-4 1.

Gauthier C., Langin D., Balligand J.L. (2000) P3-Adrenoceptors in the cardiovascular
system . Trends Pharmacol Sci 21:426-43 1.

Ghatta S., Nimmagadda D., Xu X., O'Rourke S.T. (2006) Large-conductance , calcium
activated potassi um channels: struct ural and functiona l implications. Pharmacol Ther
110:103-11 6.

Gibson A., McFadzean 1., Wallace P., Wayman C.P . (1998) Capacitative Ca2+entry and
the regu lation of smooth muscle tone . Trends Pharmacol Sci 19:266-269.

Gilman A.G. (1987) G protein s: transducers of receptor-generated signals . Annu Rev
Biochem 56:6 15-649.

Goldman D.E. (1943) Potential, impedance , and rectification in membranes. J Gen
PhysioI 27:37-60 .

Goto K., Fujii K., Abe 1. (200 1) Impaired beta-adrener gic hyperpolari zation in arteries
from prehypertensive spontaneously hypertensi ve rats. Hypertension 37:609-613 .

Gray D.W., Marshall 1. (1992) Novel signal transduction pathway mediating
endothelium-dependent p-adrenoceptor vasorelaxation in rat thoracic aorta . Br J
Pharmacol l 07:684-690 .

Grgic 1., Kaistha B.P., Hoye r J., Kohler R. (2009) Endothelial Ca2+-activated K+chann els
in norma l and impai red EDHF -dilator respo nses -relevance to cardiovascular pathologie s
and drug discovery. Br J PharmacoI 157:509-526.

Guimaraes S., Moura D. (200 1) Vasc ular adrenoceptors : an update. Pharmaco l Rev
53:319-356.

Gurney A.M., Osipenko O.N. , MacMillan D., McFarlane K.M., Tate RJ ., Kempsill F.E.
(2003) Two-pore domai n K channe l, TASK- I, in pulmonary artery smooth muscle cell s.
Circ Res 93:957-964.



152

Gurney A., Manoury B. (2009) Two-pore potassium channels in the cardiovascu lar
system. Elir Biophys J 38:305-318.

Guyton A.C., Hall J.E. (2000) Textbook of Medical Physio logy.

Haddock R.E., Grayso n T.H. , Brackenbury T.D., Meaney K.R., Ney lon C.B., Sandow
S.L. (2006) Endothelial coordination of cerebral vasomotion via myoendothelial gap
junctions containing connexins 37 and 40. Am J Physiol Heart Circ PhysioI291:2047
2056.

Hampton J.A., Bernardo D.A., Khan N.A., Lacher D.A., Rapp J.P., Gohara A.F.,
Goldblatt P.J. ( 1989) Morphometric evaluation of the renal arteria l system of Dahl salt
sensitive and salt-resistant rats on a high salt diet. II. Interlobular arteries and intralobular
arterioles. Lab Invest 60:839-846.

He F.J., MacGregor G.A. (2010) Reducing population salt intake worldwide: from
evidence to implementation. Prog Cardiovasc Dis 52:363-382.

He Y., Tabrizchi R. (1997) Effects of niflumic acid on alpha l- adrenoceptor-induced
vasoconstriction in mesenteric artery in vitro and in vivo in two-kidn ey one-clip
hypertensive rats. Eur J Pharmaco l 328:191-1 99.

Heitzer T., Brockhoff C., Mayer B., Warnholtz A., Mollnau H., Henne S., Meinertz T.,
Munzel T. (2000) Tetrahydrobi opterin improves endothelium-dependent vasodilation in
chronic smokers:evidence for a dysfunctional nitric oxide synthase. Circ Res 86:E36.

Hendrickx H., Casteels R. (1974) Electrogenic sodium pump in arterial smooth muscle
cells. Pflugers Arc h 346 :299-306.

Heubach J.F., Rau T., Eschenhagen T., Ravens V., Kaumann A.J. (2002) Physiological
antagonism between ventricular ~ ,-adrenoceptors and a l- adrenoceptors but no evidence
for ~2- and ~3-adrenoceptor function in murine heart. Br J Pharmaco l 136:2 17-229 .

Hirasawa K., Nishizuka Y. (1985) Phosphatidylinositol turnover in receptor mechanism
and signal transduction. Annu Rev Pharmacol Toxico l 25:147-170.

Hirata M., Kohse K.P., Chang C.H., Ikebe T., Murad F. (1990) Mechanism of cyclic
GMP inhibition of inositol phosphate formation in rat aorta segments and cultured bovine
aortic smooth muscle cells. J Bioi Chem 265 :1268-1273.

Hirst G.D., Edwards F.R. (1989) Sympathetic neuro-effector transmission in arteries and
arterioles. Physiol Rev 69 :546-604 .



153

Hirst G.D., Joblin g P. (1989) The distributi on of gamma-adrenoce ptors and P2
purin oceptors in mesenter ic arteries and veins of the guinea-pig. Br J PharmacoI96:993
999.

Hirst G.D., Neild T.O. (1978) An analysis of exci tatory junct ional potent ials recorded
from arterioles. ] PhysioI280:87-104.

Hobbs A.J. (1997) Soluble guanylate cyclase: The forgotten sibling. Trends Pharmacol
Sci 18:484-491.

Hodgkin AL, Katz B. (1949) The effect of sodium ions on the electrical activity of giant
axon of the squid. J Physioll08:37-77.

Hoye r 1., Kohle r R., Distler A (1998) Mechanosensitive Ca2+osc illations and STOC
activation in endothelial cells. FASEB] 12:359-366.

Huang C.H., Johns EJ. (2000) Impact of angiotensin II in the brain on rena l sympathetic
nerve activity in anaesthetised rats raised on a high salt diet. Journal ofPhysiology
523 :213-214 .

Hubbard K.B. , Heple r J.R. (2006) Cell signalling diversity of the Gqalpha famil y of
heterotrimeric G proteins . Cell Signal 18:135-150.

Hunter T., Cooper J.A (1985) Protein-tyrosine kinases. Ann u Rev Biochem 54:897-930.

Ignarro LJ ., Buga G.M., Wood K.S., Byrns R.E., Chaudhuri G. (1987) Endothelium
derived relaxing factor produced and released from artery and vein is nitric ox ide. Proc
Natl Acad Sci USA 84:9265-9269.

Intersalt Cooperative Research Group. (1988) Intersalt: an international study of
electro lyte excretion and blood pressure. Results for 24 hour urinary sodium and
potassium excretion. BM]. 297 :319-328.

Jensen LJ ., Holstein-R athlou N.H. (2009) Is there a role for T-type Ca2+channels in
regulation of vaso motor tone in mesenteric arterioles? Can ] Physiol PharmacoI87 :8-20.

Johns EJ. (198 I) An investigation into the type of beta-adrenoceptor mediating
sympathetically activated renin release in the cat. Br J PharmacoI 73:749-754.

Juhaszova M., Blaustein M.P. (1997) Distinct distributi on of different Na+pump alpha
subunit isoforms in plasmalemm a. Physiological impli cations. Ann N Y Acad Sci
834: 524-36.

Kalmes A., Daum G., Clowes A W. (2001) EGF R transactivation in the regulation of
SMC funct ion . Ann N Y Acad Sci 947 :42-55.



154

Kang K.B., van der Zypp A., Majewski H. (2007) Endogenous nitric oxide attenuates B
adrenoceptor-mediated relaxation in rat aorta. Clin Exp Pharm acol Physiol 34:95-10 I .

Karppanen H., Mervaala E. (2006) Sodium intake and hypertension. Prog Cardiovasc
Dis 49:59-75.

Kaumann AJ. (1997) Four beta-adrenoceptor subtypes in the mammalian heart. TIPS
18:70-76.

Kaumann AJ ., Engelhardt S., Hein L., Molenaar P., Lohse M. (2001) Abolition of (-)
CGP 12177-evoked cardio stimulation in double BI/B2-adrenoceptor knockout mice.
Obligatory role of BI- adrenoceptors for putat ive B4-adrenoceptor pharmacology.
Na unyn- Schmiedeberg's Arc h Pharmaco/363:87-93.

Ketsawatsomkron P., Pelham CJ., Groh S., Keen H.L., Farac i F.M., Sigmund C.O.
(2010) Does peroxisome proliferator-activated receptor-gamma (PPAR gamma) protect
from hypertension directly through effects in the vasculature? J Bioi Chem 285 :93 11
9316.

Kihara M., Utagawa N., Mano M., Nara Y., Horie R., Yamori Y. (1985) Biochemical
aspects of salt-induced, pressure-independent left ventricular hypertrophy in rats. Heart
Vesse ls 1:212-215 .

Kitamura K., Yamazaki 1. (2001) Chloride channels and their functional roles in smooth
muscle tone in the vasculature. Jpn J PharmacoI85:351-357 .

Knot HJ. , Zimmermann P.A., Nelson M.T. (1996). Extracellular K' -induced
hyperpolarization and dilatation s of rat coronary and cerebral arteries involve inward
rectifier K+channels. J Physiol (Lond) 492: 419-430.

Ko E.A. , Han J., Jung 1.0 ., Park W.S. (2008) Physiological roles ofK +channels in
vascular smooth muscle cells. J Smoo th Muscle Res 44 :65-81.

Konkar A.A., Zhai Y., Granneman J.G. (2000) Bi-Adrenergic receptors mediate B3
adrenergic-independent effects ofCgp 12177 in brown tissue. Mo l PharmacoI57:252
258.

Kopp U., Aurell M., Nilsson I.M., Ablad B. (1980) The role of beta-1-adrenoceptors in
the renin release response to graded renal sympathetic nerve stimulation. Pflu gers Ar ch
387:107-11 3.

Korovkina V.P., England S.K. (2002) Molecular diversity of vascular potassium channel
isoforms. Clin. Exp . Pharm acol Physio. 29: 317-323 .



155

Kubo Y., Adelman J.P., Clapham D.E., Jan L.Y., Karschin A, Kurachi Y., Lazdunski M.,
Nichols C.G., Seino S., Vandenberg C.A (2005) International Union of Pharmacology.
LIV. Nomenclature and molecular relationships of inwardly rectifying potassium
channels. Pharmacal Rev 57:509-526.

Kuriyama H., Ito Y., Suzuki H., Kitamura K., Itoh T. (1982) Factors modifying
contraction-relaxation cycle in vascular smooth muscles. Am J PhysioI243 :641-662.

Laatikainen T., Pietinen P., Valsta L., Sundvall J., Reinivuo H., Tuomilehto J. (2006)
Sodium in the Finnish diet: 20-year trends in urinary sodium excretion among the adult
population. Eur J Clin Nutr 60:965-970.

Lands A M., Arno ld A., McAuliff J.P., Luduena F.P., Brown T.G. Jr. (1967)
Differentiation of receptor systems activated by sympathomimetic amines. Natur e
214:597-598.

Lapetina E.G. (1987) The role of GTP-binding proteins in receptor activation of
phospholipase C. Adv Exp Med BioI 221:95-100.

Large W.A , Wang Q. (1996) Characteristics and physiological role of the Ci+-activated
cr conductance in smooth muscle. J Pltysio/ 271:C435-454.

Large W.A (2002) Receptor-operated Ca2+-permeable non-selective cation channels in
vascular smooth muscle: a physiologic perspective. J Cardiovasc Electrophysiol 13:493
501.

Ledoux J., Werner M.E., Brayden lE., Nelson M.T. (2006) Calcium-activated potassium
channels and the regulation of vascular tone. Physiology (Bethesda) 21:69-78.

Lee R.M., Triggle C.R. (1986) Morphometric study of mesenteric arteries from
genetically hypertensive Dahl strain rats. Blood Vessels 23: 199-224.

Lee R.M. (1987) Structural alterations of blood vessels in hypertensive rats. Can. J
Physiol Pharmacal 65: 1528-1535.

Lefkowitz RJ., Shenoy S.K. (2005) "Transduction of receptor signals by beta-arrestins".
Science (journal) 308 : 512-517.
Lesage F., Lazdun ski M. (2000) Molecular and functional properties of two-pore-domain
potassium channels. Am J Physiol Renal PhysioI279:7 93-80 1.

Liebson P.R., Grandits G.A, Dianzumba S., Prineas RJ., Grimm R.H. Jr, Neaton J.D.,
Stamler J. (1995) Comparison of five antihypertensive monotherapies and placebo for
change in left ventricular mass in patients receiving nutritional hygienic therapy in the
Treatment of Mild Hypertension Study (TOMHS). Circulation 91:698-706.



156

Lincoln T.M. (1989) Cyclic GMP and mechanisms of vasod ilation. Pharmacol Ther
41:479-502.

Lopez A D., Mathers C.D., Ezzati M., Jamison D.T., Murray CJ . (2006) Global and
regional burden of disease and risk factors, 200I : systematic analysis of population health
data. Lancet 367 :1747-1 757.

Lotshaw D.P. (2007) Biophysical, pharmacological, and functional characteristics of
cloned and native mammalian two-pore domain K+channels. Cell Biochem Biophys
47:209-256.

Luckhoff A, Pohl U, Mulsch A, Busse R. (1988) Differential role of extra- and
intracellular calcium in the release of EDRF and prostacyclin from cultured endothelial
cells. Br J Pharm acol95: I89- I96.

LuffSE, McLachlan EM, Hirst GD. (1987) An ultrastructural analysis of the sympathetic
neuromuscular jun ctions on arterioles of the submucosa of the guinea pig ileum. J Comp
Ne uroI 257:578- 594.

Luscher T.F. , Raij L., Vanhoutte P.M. (1987) Endothelium dependent vascular responses
in normotensive and hypertensive Dahl rats. Hyp ertension 9:157-163.

MacDonald A, McLean M., MacAuly L. Shaw AM. (1999) Effects of propranolol and
L-NAME on beta-adrenoceptor-mediated relaxation in rat carotid artery. J Auton
Pharmaco I 19:145-149 .

MacLeod A.B., Vasdev S., Smeda J.S. (1997) The role of blood pressure and aldosterone
in the product ion of hemorrhagic stroke in captopril-treated hypertensive rats. Stroke
28:1821-1829.

Maingret F., Patel AJ ., Lazdunski M., Honore E. (200 1) The endocannabinoid
anandamide is a direct and selective blocker of the background K+channel TASK-I.
Embo J20 :47-54.

Marullo S., Emorine L.J., Strosberg A.D., Delavier-Klu tchko C. (1990) Selective binding
ofl igands to beta-I , beta-2 or chimeric beta l/ beta 2-adrenergic receptors involves
multiple subsites. EMBO J 9:147 1- 1476 .

Mathie A. (2007) Neuron al two-pore-domain potassium channels and their regulation by
G protein-coupled receptors. J PhysioI578:377- 385.

Matsushita M., Tanaka Y., Koike K. (2006) Studies on the mechanisms underlying p
adrenoceptor-mediated relaxation of rat abdominal aorta. J Smoo th Muscle Res 42:217
225.



157

McLean J.R., Twarog B.M., Bergofsky E.H. (1985) The adrenergic innervation of
pulmonary vasculature in the normal and pulmon ary hypert ensive rat. J Auton Nerv Syst
14:111-123.

McCormick C.P., Rauch A.L. , Buckalew V.M. (1989) Differential effect of dietary salt
on renal growth in Dahl salt-sensitive and salt-resistant rats. Hypertension 13:122-127.

Meneton P., Jeunemaitre X., de Wardener H.E., MacGregor G.A. (2005) Links between
dietary salt intake, renal salt handling, blood pressure, and cardiov ascular diseases.
Physiol Rev 85:679-715 .

Mercer R.W., Biemesderfer D., Bliss D.P. Jr, Collins J.H., Forbush B. 3rd. (1993)
Molecular cloning and immunologica l characterization of the gamma polypeptide , a small
protein associated with the Na+/K+ATPase. J Cell Bioi 121:579-586 .

Michel M.C ., Brodde O.E., Insel P.A. (1990) Peripheral adrenergic receptors in
hypertension . Hypertension 16:107-120.

Ming Z., Parent R., Lavallee M. (1997) pz-Adrenergic dilation of resistance coronary
vessels invo lves KATP channels and nitric oxide in conscious dogs. Circulation
95:1568-1576 .

Mobasheri A., Avila J., Cozar-Castellano I., Brownleader M.D., Trevan M., Francis MJ.,
Lamb J.F., Martin-Va sallo P. (2000) Na+/K+ATPase iso-zyme diversity; comparative
biochemistry and physiological implications of novel function al interactions. Biosci Rep
20:51-91.

Molenaar P., Malta E., Jones C.R. , Buxton B.R., Summers RJ . (1988) Autoradio graphic
localization and function of p-adrenoceptors on the human internal mamma ry artery and
saphenous vein. Br J PharmacoI95:225-233.

Moncada S., Herman A.G., Higgs E.A., Vane J.R. (1977) Differenti al formati on of
prostacyclin (PGX or PGI2) by layers of the arterial wall. An explanation for the anti
thrombotic properties of vascular endothelium . Thromb Res 11:323-344 .

Moncada S, Vane JR. (1979) The role ofprostacyclin in vascular tissue. Fed Proc
38:66-71.

Moncada S, Palmer RM, Higgs EA. (1989) Biosynthesis of nitric oxide from L-arginine .
A pathway for the regulation of cell function and communication. Bioch em Pharma col
38:1709 -1715.

Moncada S., Rees D.O., Schulz R., Palmer R.MJ. (1991) Development and mechanism
of a specific supersensitivity to nitrovasodil ators after inhibition of vascular nitric oxide
synthesis in vivo . Proc Natl Acad Sci USA 88:2 166-2 170.



158

Moncada S., Higgs E.A (1995) Molecular mechanisms and therapeutic strategies related
to nitric oxide. FASE B J 9:1319- I330.

Moncada S, Higgs EA (2006) Nitric oxide and the vascular endothelium. Handb Exp
Pharmacal 176:213-254.

Motomura S., Reinhard-Zerkowski H., Oaul A, Brodde O.E. (1990) On the physiologic

role of beta-2 adrenoceptors in the human heart: in vitro and in vivo studies. Am Heart J

119:608-619.

Murphy T.V., Spurrell B.E., Hill M.A (2002) Cellular signalling in arteriolar myogenic
constriction: involvement of tyrosine phosphorylation pathways. Clin Exp Pharmacal
PhysiaI29:612-619.

Nakashima M., Mombouli J.V ., Taylor A.A., Vanhoutte P.M. (1993) Endothelium
dependent hyperpolarization caused by bradykinin in human coronary arteries. J Clin
Invest 92:2867-2871.

Nakashima M., Vanhoutte P.M. (1995) Isoproterenol causes hyperpolarization through
opening of ATP-sen sitive potassium channels in vascular smooth muscle of the canine
saphenous vein. J Pharmacal Exp Ther 272:37 9-384.

Naslund T., Silberstein 0.1 ., Merrell W.1., Nadeau J.H. , Wood A.1. (1990) Low sodium
intake corrects abnormality in beta-receptor-mediated arter ial vasodilation in patients
with hypertension: correlation with beta-receptor function in vitro. Clin Pharmaco l Ther
48:87-95.

Nava E., Llinas M.T., Gonzalez J.D., Salazar F.1. (1996) Nitric oxide synthase activity in
renal cortex and medulla of normotensive and spontaneously hypertensive rats. Am J
Hypertens 9:1236-1239.

Neunteufl T., Heher S., Katzenschlager R. (2000) Late prognostic value of flow
mediated dilation in the brachial artery of patients with chest pain. Am J Cardio I 86:207
210.

Neer E.1., Clapham O.E. (1988) Roles ofG protein subunits in transmembrane
signalling. Nature 333 :129-134.

Neer E.1. (1994) G proteins: critical control points for transmembran e signals. Protein
Sci 3:3-14.

Nelson M.T., Patlak J.B., Worley J.F., Standen N.B. (1990) Calcium channels, potassium
channels, and voltage dependence of arterial smooth muscle tone. Am J PhysiaI 259:3
18.



159

Nelson M.T., Quayle J.M. (1995) Physiological roles and properties of potassium
channels in arteria l smoo th muscle. Am J PhysioI268 :799-822.

Nelson M.T. , Conway M.A., Knot H.J., Brayden 1.E. (1997) Chloride channel blockers

inhib it myogenic tone in rat cerebral arter ies. J PhysioI502 :259-264 .

Neumann 1., Schmitz W., Scholz H., von Meyerinck L., Doring V., Kalm ar P. (1988)
Increase in myocard ial Gi-proteins in heart failure. Lancet 2:936-937.

Ney lon C.B., Lang R.J ., Fu Y., Bobik A., Reinh art P.H. (1999) Mo lecular cloning and
characterization of the intermediate-condu ctance Ca2+-activated K+channel in vascular
smooth muscle: relations hip between KCa channel diversity and smooth muscle function.
Circ Res 85:33-43.

North R.A. (2002) "Mo lecular physiology of P2X receptors". Physiol. Rev 82 : 1013
1067.

O' Donnell S.R., Wanstall J.C. (1984) Beta-I and beta-2 adrenoce ptor-mediated
responses in prepar ations of pulmonar y artery and aorta from young and aged rats. J
Pharm acal Exp Ther 228:73 3-738 .

O' Donnell S.R., Wanstall J.C. (1985) Responses to the P2-selective agonist procaterol of
vascular and atrial preparations with different functional p-adrenoceptor popul ations. Br
J PharmacoI84 :227-235 .

O'Dowd B.F., Hnatowich M., Regan 1.W., Leader W.M., Caro n M.G., Lefkow itz R.J.
(1988) Site-directed muta genesis of the cytoplasmic domains of the human beta 2
adrenergic recept or. Loca lization of regions involved in G protein-r eceptor coupling. J
Bioi Chem 263 :15985-15992.

Olschewski A., Li Y., Tang B., Hanze 1., Eul B., Bohle R.M., Wilhelm 1., Morty R.E.,
Brau M.E., Weir EX. , Kwapiszewska G., Klepetko W., Seege r W., Olschews ki H.
(2006) Impact of TAS K- I in human pulmonary artery smoo th muscle cells. Circ Res
98:1072-1080.

Oriowo M.A. (1994) Atypical beta-adrenoceptors in the rat isolated common caro tid
artery. Br J Pharma coI113:699-70 2.

Owen 1.M., Quinn C.C., Leach R., Findlay 1.B., Boyett M.R. (1999) Effect of
extracellular cation s on the inward rectifying K+channels Kir2.1and Kir3.I/Kir3.4. Exp
PhysioI84 :471-488 .

Pace J.B ., Cox R.H., Alvarez-Vara F., Karreman G. (1972) Influ ence of sympathetic
nerve stimulation on pulm onary hydraulic input power. Am J Physiol 222:196-20 I .



160

Palmer R.M., Ferrige AG., Moncada S. (1987) Nit ric oxide release acco unts for the
biological activity of endothelium-derived relaxing factor. Nature 327 :524-526.

Palmer R.M., Ashton D.S., Moncada S. (1988) Vasc ular endothelial cells synthesize
nitric ox ide from L-arginine. Nature 333:664.

Parai K., Tabrizchi R. (2005) Effec ts of chloride substitution in isolated mesenteric blood
vesse ls from Dahl normotensive and hypertensive rats. J Cardiovasc Pharmacal 46:I05
114.

Park W.S., Han J., Earm Y.E. (2008) Physiological role of inward rectifier K+channels
in vasc ular smoo th muscle cells. Pjlu gers Arch 457 :137-147 .

Paul M., Poyan Mehr A, Kreutz R. (2006) Physiology of local renin- angiotensin
systems. Physiol Rev 86:747-803.

Penner S.B., Campbell N.R. , Chockalingam A , Zarnke K., Van Vliet B. (200 7) Dietary
sodium and cardiovascular outcomes : a rational approac h. Can J CardioI 23:567-572.

Pfister S.L., Spitzbarth N., Nithip atikom K., Edgemont W., Falk J.R ., Campbell W.B.
(1998) Identifi cat ion of I I , I4, I5- and I I , I2, I5-trihydroxyeicosatrienoic acids as
endothelium derived relaxing factors of rabbit aorta . J Bioi Chern 273:30879-30887.

Piene H. (1976) The influence of pulmonary blood flow rate on vascular input
impedance and hydraulic power in the sympathetically and noradrenaline stimulated cat
lung. Acta Physiol Scand 98:44-53.

Pietrobon D. (2005) Function and dysfunction of synaptic calcium channels: insights
from mouse models. Curr Opin NeurobioI 15:257-265.

Pippig S., Andexinger S., Daniel K., Puzicha M., Caron M.G., Lefkowi tz RJ ., Lohse MJ .
(1993) Overexpressio n of beta-arrestin and beta-adrenergic receptor kinase augment
desensitization of beta 2-adrenergic recepto rs. J Bioi Chern 268 :3201-3208.

Pitcher J., Lohse MJ., Codina J., Caron M.G., Lefkowi tz RJ . (1992) Desensitization of
the isolated beta 2-adrenergic receptor by beta-adren ergic receptor kinase, cAM P
dependent protein kinase, and protein kinase C occurs via distinct molecular mechanisms.
Biochemistry 31 :3 I93-3 I97.

Plagge A, Kelsey G., Germain-Lee E.L. (2008) Physiological functions of the imprin ted
Gnas locus and its protein variants Galpha(s) and XLa lpha(s) in human and mouse. J
Endocrinol l 96:193-214.



161

Prehn J.L., Bevan J.A . (1983) Facia l vein of the rabbit. Intracellul arly recorded
hyperpolarization of smooth muscle cells induced by beta- adrenergic receptor
stimulation. Circ Res 52:465-470.

Priest R.M., Hucks D., Ward J.P.T. (199 7) Noradrenaline, p-ad renoce ptor mediated
vasore laxa tion and nitric oxide in large and small pulm onary arte ries of the rat. Br J
PharmacoI1 22:1375-1384.

Prior H.M., Webster N., Quinn K., Beech 0.1 ., Yates M.S. (1998) K'vinduc ed dilation of
a small renal artery: no role for inward rectifi er K+channels. Cardiovasc Res 37:780
790.

Pugsley M.K ., Tabri zchi R. (2000) The vascular system. An overview of structure and
function . J Pharma col Toxicol Methods 44:333-340.

Quayle J.M., Ne lson M.T., Stand en N.B. (1997) ATP- sensitive and inward ly rectifying
potassium channel s in smooth muscle. Physiol Rev 77: 1165-1232.

Rang H.P ., Dale M.M., Ritter M, Flower R.1. (2007) Rang & Dale's Pharmacology.

Rees D.O., Palmer R.M., Hodson H.F., Moncad a S. (1989) A specific inh ibitor of nitr ic
oxide formation from I-arginine attenuat es endothelium dependent relaxation. Br J
PharmacoI 96:418-424.

Richardson J.B. (1979) Nerve supply to the lungs. Am Rev Resp ir Dis I 19:785-802.

Robertson B.E., Nelson M.T. (1994.) Aminopyridine inhibi tion and voltage dependence
of K+currents in smoo th muscle cells from cerebr al arteries . Am. 1. Physiol 267:1589
1597.

Robertson B.E., Bonev A.D., Ne lson M.T. (1996) Inward rectifi er K+currents in smooth
muscle cell s from rat coronary arteries: block by Mg2+, Ca2+and Ba2+. Am. 1. Physiol.
271: 696-705.

Rohrer O.K ., Chru scinski A., Schaubl e E.H., Bernstein D., Kobilk a B.K. (1999)
Cardio vasc ular and metabolic alterations in mice lacking both b I and b2- adren ergic
receptors. J Bioi Chem 274: 1670 1-16708.

Rubanyi G., Vanhoutte P.M. (1985) Endot helium-removal decrea ses relaxation of canine
coronary arteries caused by p-adrenergic agoni sts and adeno sine . J Cardiovasc
Pharmacol 7: 139-144.

Russell S.N., Smirno v S.V. , Aaron son P.I. (1992) Effects of BRL 38227 on potassium
currents in smooth muscle cells isolated from rabbit portal vein and human mesenteric
artery. Br J Pharma col l 05:549-556.



162

Sabirov R.Z., Tominaga T., Miwa A., Okada Y., Oiki S. (1997) A conserved arginine
residue in the pore region of an inward rectifier K channel (IRK I) as an external barrier
for cationic blockers. J Gen Physiolll0:665-677.

Sandow S.L., Hill C.E. (2000) Incidence of myo-endothelial gap jun ctions in the
proximal and distal mesenteric arteries of the rat is suggestive ofa role in endothelium
derived hyperpolarizing factor-mediated responses. Circ Res 86:341-346.

Sandow S.L., Tare M., Coleman H.A., Hill C.E., Parkington H.C. (2002) Involvement of
myoendoth elial gap juncti ons in the action of endothelium -derived hyperpolarizing factor.
Circ Res 90:1108-1113.

Sandow S.L., Neylon C.B., Chen M.X., Garland C.J. (2006) Spatial separation of
endotheli al small- and intermedi ate-conductance calcium- activated potassium channels
(Kea) and connexin s: possible relationship to vasodilator function ? J Anat 209:689-698.

Sasaki N. (1964) The relationship of salt intake to hypertension in the Japanese.
Geriatrics 19:735-744.

Sasaki N. (1979) The salt factor in apoplexy and hypertension: epidemiological studies in
Japan. In: Prophylactic Approac h to HypertensiveDiseases. New York: Raven p.467
474.

Sato M., Blumer J.B., Simon V., Lanier S.M. (2006) Accesso ry proteins for G proteins:
partners in signaling. Annu Rev Pharmacol ToxicoI 46:151-187.

Scheid C.R., Honeyman T.W., Fay F.S. (1979) Mechanism of beta-adrenergic relaxation
of smooth muscle. Nature .277:32-36.

Schachinger V., Britten M.B., Zeiher A.M. (2000) Prognostic impact of coronary
vasodilator dysfunction on adverse long-term outcome of coronary heart disease.
Circulation 101:1899-1906.

Schini-Kerth V.B., Vanhoutte P.M. (1995) Nitric oxide synthases in vascular cells. Exp
PhysioI80:885-905.

Schlossmann J, Hofmann F. (2005) cGMP-dep endent protein kinases in drug discovery.
Drug Discov Today 10(9):627-634 .

Schmidt V.J. , Wolfle S.E., Boettcher M., de Wit C. (2008) Gap junctions synchronize
vascular tone within the microcircul ation. Pharma cological reports 60 :68-74 .



163

Shen Y-T., Cervoni P., Claus T., Vatner S.F. (1996) Differences in b3-adrenergic
receptor cardiovascular regulation in conscious primates, rats and dogs. J Pharmacal Exp
Ther 278 :1435-1443.

Shimokawa H, Matoba T. (2004) Hydrogen peroxide as an endothelium-derived
hyperpolarizing factor. Pharmacal Res 49 :543-549.

Si H, Heyken WT, Wolfle SE, Tysiac M, Schubert R, Grgic I, Vilianovich L, Giebing G,
Maier T, Gross V, Bader M, de Wit C, Hoyer J, Kohler R. (2006) Impaired endothelium
derived hyperpol arizing factor-medi ated dilations and increased blood pressure in mice
deficient of the intermediate-conduct ance Ca2+-activated K+channel. Circ Res 99:537
544.

Simon G., Jaeckel M., l1lyes G. (2003) Development of structural vascular changes in
salt-fed rats. Am J Hyp er/ens 16:488-493.

Skou J.C. (2004) The identification of the sodium pump . Biosci Rep 24:436-451.

Smith J.B. (1986 ) Angiotensin-receptor signaling in cultured vascular smooth muscle
cells. Am J Physia/250:759-769.

Smirnov S.V., Aaronson P.I. (1992) Ca2+-activated and voltage-gated K+currents in
smooth muscle cells isolated from human mesenteric arteries. J Phys iol. (Lond .) 457 :
43 1-454.

Sneddon P, Burnstock G. (1984) Inhibition of excitatory junction potentials in guinea-pig
vas deferens by alpha, beta-methylene-ATP: further evidence for ATP and noradrenaline
as cotransmitters. Eur J Pharmacal 100:85-90.

Sofola O.A., Knill A, Hainsworth R., Drinkhill M. (2002) Change in endothelial
function in mesenteric arteries of Sprague-Dawley rats fed a high salt diet. J Physiol
543:255-260.

Soltis E.E., Katovich MJ. (1991) Reduction in aortic smooth muscle beta-adrenergic
responsiveness results in enhanced norepinephrine responsiveness in the Dahl salt
sensitive rat. Clin Exp Hyper/ens A 13:117-132.

Somlyo AP, Somlyo AV. (1968) Vascular smooth muscle. I. Normal structure,
pathology, biochemi stry, and biophysics. Pharmac al Rev 20:197-272.

Somlyo A.P., Somlyo AV. (1970) Vascular smooth muscle. II. Pharmacology of normal
and hypotensive vesse ls. Pharmacal Rev 22 :249-353.

Somlyo A.P., Somlyo A V. (1994) Signal transduction and regulation in smooth muscle.
Nature (London) 372 :231-236.



164

Somlyo A P., Somlyo AV. (2003) ci+sensitivity of smooth muscle and non-muscle
myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev
83:1325-1358.

Sooch S., Marshall I. (1995) An atypical p-adrenoceptor mediates relaxation of the rat
isolated mesenteric artery. Br J PharmacoI114:22.

Standen N.B., Quayle J.M., Davies N.W., Brayden J.E., Huang Y., Nelson M. T. (1989)
Hyperpolarizing vasodilators activate ATP-sensitive K+ channels in arterial smooth
muscle. Scie nce 245:177-180.

Standen N.B., Quayle J.M. (1998) K+channel modulation in arterial smooth muscle.
Acta Physi ol Scand 164:549-557.

Stekiel W.J., Contney S.J., Rusch N.J. (1993) Altered beta-recept or control of in situ
membrane potent ial in hypertensive rats. Hyp ertension 21:1005-1009.

Stja rne L. (1989) Basic mechanisms and local modulation of nerve impulse-induced
secretion ofneurotransmilters from individual sympathetic nerve varicosities. Rev
Physiol Biochem Pharmacoll 12:1-137.

Storm D.S., Turla M.B., Todd K.M., Webb R.C. (1990) Calcium and contractile
responses to phorbol esters and the calcium channel agonist, Bay K 8644, in arteries from
hypertensive rats. Am J Hypertens 3:245S-248S.

Sturek M., Hermsmeyer K. (1986) Calcium and sodium channels in spontaneously
contracting vascular muscle cells. Scie nce 233:475-478.

Streb H., Bayerdor ffer E., Haase W., Irvine R.F., Schulz I. (1984) Effect of inositol
1,4,5-trisphosphate on isolated subcellular fractions of rat pancreas. J Membr Bioi
81:241-253.

Su c.,Bevan J.A, Ursillo R.C. (1964) Electrical quiescence of pulmonary artery smooth
muscle during sympathomimetic stimulation. Circ Res 15:20-27 .

Suzuki H. (1981) Effects of endogenous and exogenous noradrenaline on the smooth
muscle of guinea-pig mesenteric vein. J Physiol 321:495-512.

Suzuki H. (1983 ) An electroph ysiological study of excitatory neuromu scular
transmission in the guinea-pig main pulmonary artery. J PhysioI 336:47-59.

Suzuki H. (1985 ) Electrical responses of smooth muscle cells of the rabbit ear artery to
adenosine triphosphate. J PhysioI359:401-415 .



165

Sweadner KJ. (1989) Iso-zymes of the Na+/K+ATPase . Biochim Biophys Acta 988 :I85
220 .

Taira N., Yabuu chi Y., Yamashita S. (1977) Profile of p-adrenoce ptors in femoral,
superior mesenteric and renal vascular beds of dogs. Br J Pharma coI59:577-583.

Talley E.M., Solorzano G., Lei Q., Kim D., Bayliss D.A. (200 1) CNS distributi on of
members of the two-por e-dom ain (KCNK) potassium channel famil y. J Neurosci
21:7491-7 505.

Tamaoki J., Tagaya E., Isono K., Nagai A. (1998) Atypica l adrenoceptor-med iated
relaxation of canine pulm onary artery through a cAMP-d ependent pathw ay. Biochem
Biophys Res Comm 248:72 2-727 .

Tanaka Y., Koike K., To ro L. (2004) Maxi K+channel roles in blood vesse l relaxations
induced by endothelium-der ived relaxing factors and their molecular mechanisms. J
Smooth Muscle Res 40: 125-15 3.

Tansey M.G., Luby-Ph elps K., Kamm K.E., Stull J.T. (1994) Ca2+-dependent
phosphorylation of myosin light chain kinase decreases the Ca2+ sensitivity of light chain
phosphorylation with in smooth muscle cells. J Bioi Chem 269:9912-9920.

Tave rnier G., Galitzky J., Bousquet-M elou A., Montrastruc J.L., Berlan M. (1992) The
positive chronotropic effect induced by BRL 37344 and CGP 12177 , two beta-3
adrenerg ic agon ists, does not involve cardi ac beta adrenocepto rs but baroreflex
mechanisms. J Pharmacol Exp Ther 263: 1083-1090.

Tawa da Y., Furuk awa K., Shigekawa M. (1988) Cyclic AMP enhances inositol
trisphosphate-induced mobili zation of intracellul ar Ca2+ in cultur ed aortic smooth muscle
cells. J Biochem 104:795-800.

Taylor M.S., Bonev A.D., Gross TP., Eckman D.M. , Brayden J.E., Bond C.T . (2003)
Altered express ion of small condu ctance Ca2+-activated K+ (SK3) channels modul ate
arterial tone and blood pressure. Circ Res 93:124-1 31.

Tennant B.P. , Cui Y., Tink er A., Clapp L.H. (2006) Functional express ion of inward
rectifier potassium channel s in cultur ed human pulm onary smoo th muscle cells: evidence
for a major role of Kir24 subunits. J Membrane Bioi 213 :19-29.

Tera moto N. (2006) Physiological roles of ATP- sensitive K+channels in smoo th muscle.
J Physiol (Lond) 572: 6 17-624.

Thaemert J.C. (1966) Ultras tructura l interrelationship s of nerve processes and smooth
muscle cells in three dim ensions. J Cell Bioi 28:37-49.



166

Tobian L., Hanlon S. (1990) High sodium chloride diets injur e arteries and raise
mortality without changing blood pressure. Hypertension 15:900-903.

Tobian L. (1991) Salt and hypertension. Lessons from animal models that relate to
human hypertension. Hypertension 17:52-58.

Tolins J.P., Shultz PJ. (1994) Endogenous nitric oxide synthesis determines sensitivity
to the pressor effec t of salt. Kidney Int 46:230-236.

Tortora GJ., Grabowski S.R. (20 10) Principles of anatomy and physiology.

Tsuru H. (1984) Histamin e receptors in the cardiovascular system. Bibl Cardiol 38:70
80.

Trochu J-N, Leblais V., Rautureau Y., Beverelli F., Le Marec H., Berdeaux A. Gauthier
C. (1999) Beta 3-adrenoceptor stimulation induces vasorelaxation mediated essentially
by endothelium-derived nitric oxide in rat thoracic aorta. Br J Pharmacol 128:69-76.

Ungerer M., Bohm M., Elce J.S., Erdmann E., Lohse MJ. (1993) Altered expression of
p-adrenergic receptor kinase and PI-adrenergic receptors in the failing human heart.
Circulation 87:454-463.

Vanhoutte PM, Shimokawa H, Tang EH, Feletou M. (2009) Endothelial dysfunction and
vascular disease. Acta Physiol (Oxf) 196:I93-222.

Van Breemen c., Lukeman S., Cauvin C. (1984) A theoretic consideration on the use of
calcium antagonists in the treatment of hypertension. Am J Med 77:26-30.

Van Heiden D.F. (1988) Electrophysiology of neuromuscular transmission in guinea-pig
mesenteric veins. J PhysioI40l:469-488.

Van Heiden D.F. (1991) Spontaneous and noradrenaline-indu ced transient
depolarizations in the smooth muscle of guinea-pig mesenteric vein. J Physiol 437:5 I 1
541.

Vaskonen T., Merva ala E., Krogerus L., Teravainen T.L., Laakso J., Karppanen H.,
Vapaatalo H. (1997) Cardiovascular effects of chronic inhibition of nitric oxide synthesis
and dietary salt in spontaneously hypertensive rats. Hypertension Res 20:183-192.

Vatner S.F., Knight D.R., Hintze T.H. (1985) Norepinephrine-induced beta I-adrenergic
peripheral vasodilation in conscious dogs. Am J PhysioI249:49-56.

Villar I.C., Panayiotou C.M., Sheraz A., Madhani M., Scotland R.S., Nobles M. (2007)
Definit ive role for natriuretic peptide receptor-C in mediating the vasorelaxant activity of



167

C-type natriuretic peptide and endothelium-derived hyperpolarising factor. Cardiovasc
Res 74:515-525.

Vogler 0., Barcelo J.M., Ribas C., Escriba P.V. (2008) Membrane interactions ofG
proteins and other related proteins. Biochim Biophys Acta 1778:1640-1652.

Waldron G.J., Ding H., Lovren F., Kubes P., Triggle C.R. (\ 999) Acetylcholine-induced
relaxation of peripheral arteries isolated from mice lacking endothelial nitric oxide
synthase. Br J Pharma coI128:653-658.

Walker B.R. (2007) Glucocorticoids and cardiovascular disease. Eur J Endocrinol
157:545-59.

Walsh, M.P. (\ 994) Regulation of vascular smooth muscle tone. Can. 1. Physiol.
Pharmacol72:919-936.

Wang R. (2002) Two's company, three' s a crowd: can HzS be the third endogenous
gaseous transmitter? FASEB J 16:1792-1798.

Wei C.M., Hu S., Miller V.M., Burnett J.C. Jr. (1994) Vascular actions of C-type
natriuretic peptide in isolated porcine coronary arteries and coronary vascular smooth
muscle cells. Biochem Biophys Res Comm 205:765-771 .

Wellman G.C., Cartin L., Eckman D.M., Stevenson AS. , Saundry C.M., Lederer W.J.,
Nelson M.T. (2001) Membrane depolarization, elevated Caz+entry, and gene expression
in cerebral arteries of hypertensive rats. Am J Physio l Heart Circ Physiol 281 :H2559
2567.

Weston A H., Richards G.R., Burnham M.P., Feletou M., Vanhoutte P.M., Edwards G.
(2002) K+-induced hyperpolarization in rat mesenteric artery: identification, localization
and role of Na+/K+ATPases. BrJ PharmacoI136:918-926.

Weston A H., Feletou M., Vanhoutte P.M., Falck J.R ., Campbell W.B., Edwards G.
(2005) Endothelium dependent hyperpolarizations induced by bradykinin in the
vasculature; clarifi cation of the role ofe poxyeicosa trienoic acids. Br.1. Pharmacol
145:775-784 .

White R.E., Jolly S.R., Carrier G.O. (\ 986) Enhanced relaxation of canine coronary
artery to isoprot erenol and salbutamol after removal of endothelial cells. Gen Pharmacol
17:497-499.

World Health Report (2002) Reducing Risks, Promoting Healthy Life. World Health
Organisation: Geneva , Switzerland, 2002. Available at http://www.who.int/ whr/2002
(Accesse d June 30, 2006).



168

Wu L., Wang R. (2005) Carbon monoxide: endogenous production, physiological
functions, and pharmacological applications. Pharmacol Rev 57:585-630.

Xiong Z., Sperelakis N. (1995) Regulation ofL-type calcium channels of vascular
smooth muscle cells. J Mol Cell CardioI 27:75-91.

Yamamoto Y., Imaeda K., Suzuki H. (1999) Endothelium-dependent hyperpolarization
and intercellular electrical coupling in guinea-pig mesenteric arterioles. J Physiol
514:505-513.

Yao K., Xu B., Liu Y.P.,Ferro A. (2003) Effects of beta-adrenoceptor stimulation on
endothelial nitric-oxide synthase phosphorylation of human umbilical vein endothelia l
cells. Acta Pharma col Sin 24:219-224.

Zilliacus J., Wright A.P., Carlstedt-Duke J., Gustafsson J.A. (1995) Structural
determinants of DNA-binding specificity by steroid receptors. Mol EndocrinoI 9:389
400.

Zheng M., Zhu W., Han Q., Xiao R-P. (2005) Emerging concepts and therapeutic
implications of p-adrenergic receptor subtype signalling. Pharmacol Ther 108:257-268.

Zink M.H., Oltman C.L., Lu T., Katakam P.V., Kaduce T.L. , Lee H. (200 1) 12
lipoxygenase in porcine coronary circulation: implications for coronary vasoregulation.
Am J PhysioI280: 693-704.

Zou Y., Hu Y., Metzler 8. , XUQ. (1998) Signal transduct ion in arteriosclerosis:
mechanical stress-a ctivated MAP kinases in vascular smooth muscle cells. Int J Mol Med
1:827-834.








	0001_Cover
	0002_Inside Cover
	0003_Blank Page
	0004_Title Page
	0005_Abstract
	0006_Abstract iii
	0007_Acknowledgements
	0008_Table of Contents
	0009_Table of Contents vi
	0010_Table of Contents vii
	0011_List of Tables
	0012_List of Figures
	0013_List of Figures x
	0014_List of Figures xi
	0015_List of Figures xii
	0016_List of Figures xiii
	0017_List of Abbreviations and Symbols
	0018_List of Abbreviations and Symbols xv
	0019_Chapter 1 - Page 1
	0020_Page 2
	0021_Page 3
	0022_Page 4
	0023_Page 5
	0024_Page 6
	0025_Page 7
	0026_Page 8
	0027_Page 9
	0028_Page 10
	0029_Page 11
	0030_Page 12
	0031_Page 13
	0032_Page 14
	0033_Page 15
	0034_Page 16
	0035_Page 17
	0036_Page 18
	0037_Page 19
	0038_Page 20
	0039_Page 21
	0040_Page 22
	0041_Page 23
	0042_Page 24
	0043_Page 25
	0044_Page 26
	0045_Page 27
	0046_Page 28
	0047_Page 29
	0048_Page 30
	0049_Page 31
	0050_Page 32
	0051_Page 33
	0052_Page 34
	0053_Page 35
	0054_Page 36
	0055_Page 37
	0056_Page 38
	0057_Page 39
	0058_Page 40
	0059_Page 41
	0060_Page 42
	0061_Page 43
	0062_Page 44
	0063_Page 45
	0064_Page 46
	0065_Page 47
	0066_Page 48
	0067_Page 49
	0068_Page 50
	0069_Page 51
	0070_Page 52
	0071_Page 53
	0072_Page 54
	0073_Page 55
	0074_Page 56
	0075_Page 57
	0076_Page 58
	0077_Page 59
	0078_Chapter 2 - Page 60
	0079_Page 61
	0080_Page 62
	0081_Page 63
	0082_Page 64
	0083_Page 65
	0084_Page 66
	0085_Page 67
	0086_Page 68
	0087_Page 69
	0088_Chapter 3 - Page 70
	0089_Page 71
	0090_Page 72
	0091_Page 73
	0092_Page 74
	0093_Page 75
	0094_Page 76
	0095_Page 77
	0096_Page 78
	0097_Page 79
	0098_Page 80
	0099_Page 81
	0100_Page 82
	0101_Page 83
	0102_Page 84
	0103_Page 85
	0104_Page 86
	0105_Page 87
	0106_Page 88
	0107_Page 89
	0108_Page 90
	0109_Page 91
	0110_Page 92
	0111_Page 93
	0112_Page 94
	0113_Page 95
	0114_Page 96
	0115_Page 97
	0116_Page 98
	0117_Page 99
	0118_Page 100
	0119_Page 101
	0120_Page 102
	0121_Page 103
	0122_Page 104
	0123_Page 105
	0124_Page 106
	0125_Page 107
	0126_Page 108
	0127_Page 109
	0128_Page 110
	0129_Page 111
	0130_Page 112
	0131_Page 113
	0132_Page 114
	0133_Page 115
	0134_Page 116
	0135_Page 117
	0136_Chapter 4 - Page 118
	0137_Page 119
	0138_Page 120
	0139_Page 121
	0140_Page 122
	0141_Page 123
	0142_Page 124
	0143_Page 125
	0144_Page 126
	0145_Page 127
	0146_Page 128
	0147_Page 129
	0148_Page 130
	0149_Page 131
	0150_Page 132
	0151_Page 133
	0152_Page 134
	0153_Page 135
	0154_Page 136
	0155_Page 137
	0156_Page 138
	0157_Page 139
	0158_Page 140
	0159_Chapter 5 - Page 141
	0160_Chapter 6 - Page 142
	0161_Page 143
	0162_Page 144
	0163_Page 145
	0164_Page 146
	0165_Page 147
	0166_Page 148
	0167_Page 149
	0168_Page 150
	0169_Page 151
	0170_Page 152
	0171_Page 153
	0172_Page 154
	0173_Page 155
	0174_Page 156
	0175_Page 157
	0176_Page 158
	0177_Page 159
	0178_Page 160
	0179_Page 161
	0180_Page 162
	0181_Page 163
	0182_Page 164
	0183_Page 165
	0184_Page 166
	0185_Page 167
	0186_Page 168
	0190_Blank Page
	0191_Inside Back Cover
	0192_Back Cover

