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Abstract

Web search personalization has been studied as a way to tailor Web search results

to individual users based on their interests and preferences. Commonly, document and

personalization profile features are stored in vector space models using measures such

as term frequency (TF) and term frequency-inverse document frequency (TF*IDF).

Inspired by Luhn's model of term importance, a novel approach is proposed in this

thesis to identify and re-weight significant terms in the vector-based personalization

models. Evaluations with a set of ambiguous queries illustrate that the order of the

search results using this approach is superior to the TF approach and comparable to

the TF*IDF approach. However, it is based only on the information stored in the

personalization profiles, rather than requiring access to the distribution of each term

across the document collection. As such, it can be applied more broadly when only

limited information regarding the collection being searched is available.
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Chapter 1

Introduction

In 1990, Tim Berners-Lee and Robert Cailliau proposed a HyperText project called

"WoridWideWeb" to utilize "HyperText... to link and access information of various

kinds as a web of nodes in which the user can browse at will" [7], which marked

the birth of the World Wide Web (WWW, or simply the Web). After two decades

of growth, the Web has become a primary source for people to share and gather

information in their everyday lives. In order to facilitate the access to information

on the Web, Web search was introduced as an information retrieval tool specially

designed for the Web [10], and has reached great success.

Traditionally, Web search systems are not aware of the differences between users,

and provide the search results solely based on the input query. In order to enhance

the accuracy and effectiveness of Web search, many researchers have explored the

possibility of personalizing Web search, which tailors the Web search results to the

individual users based on their interests and preferences [42]. In this chapter, the

background and the motivation for research on improving Web search personalization



will be introduced. The research in this thesis is based on seminal work by Luhn

regarding the identification of significant terms within English documents [39].

1.1 Web Search

In the early days of the Web, there was so little information on the Internet that a

simple list of Web sites could depict a complete map of the whole Web. W3 Servers

was such a list edited by Tim Berners-Lee, and from a historical snapshot of this list

[73] one can see that only thirty Web sites were listed as accessible in 1992. However,

in less than twenty years of development, the Web has grown to be so big that even

counting the number of Web sites has become a very challenging task. According to

a survey conducted by Netcraft in May 2011 [49], there were more than 324 million

Web sites on the Internet at that time, and this number was growing at a rate of

15 million per month. Further, the number of Web pages on the Web is growing at

an even more remarkable rate. The number of Web pages in Google's index was 26

million in 1998, and this number soon exceeded the one billion mark in 2000 [3]. Just

ten years later, as of July 2010, the indexed Web is considered to contain at least

27.96 billion Web pages [17].

The incredible size and growth rate of the Web have brought to surface an in

formation overload problem [42]: analyzing and exploring the countless resources of

information on the Web have long since exceeded the information processing abilities

of individual users. As such, it is now impractical for users to retrieve the information

they need solely by browsing. This problem had made Web search an essential tool

for people to find information among the vast resources available on the Web.



A typical search engine such as Coogle, Microsoft Bing, or Yahoo! asks the user

to input a query and returns a ranked list in which the relevant documents are placed

in the higher positions. By reducing the information resources from the whole Web to

the documents provided in the results list, Web search offers an effective way to solve

the information overload problem. Within a results list, a user is able to browse and

retrieve the needed information from a limited number of resources. Moreover, these

information resources are ranked according to their relevance to the search query, and

this ranking allows a search engine to take the millions of documents that match a

given query and provide just ten at a time that are presumably most relevant to the

query.

However, to some extent, the information overload problem still remains in tra-

ditional Web search. One reason is that users commonly employ very short queries.

By analyzing over one million Web search queries, Jansen and Spink [31] point out

that the average number of terms in user-submitted queries is only 2.4. Since these

short queries can be matched to many documents, it is not feasible for users to con

sider every document in the search results list. While some have pursued approaches

for assisting users to develop better (i.e., more accurate and precise) queries [8], the

primary method used by the top search engines is to improve the order of the search

results such that those that are most relevant to query are placed at the top of the

search results list [52]. If this is done well, it reduces the need for the searcher to

delve too deeply in the search results list.

However, a difficulty with the approaches to addressing the information overload

problem by improving the order of the search results is that in most cases, this order

is determined by the query alone. In the absence of any additional information, the



same query provided by two different searchers will produce the same set of search

results, even if the information needs of the searchers are different. For example, a

sailor may conduct a Web search for "piracy" to look for information about recent

events of robberies at sea, but will find that the results list contains a lot of irrelevant

documents about illegal copying of software, music, or movies. On the other hand, a

lawyer within a record label may input the same query to find information regarding

music piracy, but will receive the exact same search results list as the sailor. In both

of these cases the unwanted search results are relevant to the query, but irrelevant

to the search intents of the particular user. These irrelevant documents place extra

burden on the searcher to manually filtering them out, increasing the time required to

examine the search results, and consequently preventing the searcher from retrieving

the needed information efficiently.

1.2 Web Search Personalization

The problem described above may be called the "search intent problem", and Web

search personalization is a remedy for this problem. Personalized Web search systems

treat individual users differently to fit their varied information needs and provide

personalized search results for each user. The necessity of Web search personalization

is that different searchers may have different intents behind the same query, and

they often have difficulties clearly expressing their intents by specifying their queries

[69]. To make matters worse, these same searchers have a tendency to use very

short queries [31] increasing the likelihood that the same query is used for different

information needs. Due to these two facts, the example mentioned above would not



be a rare case, but rather a common problem that exists in the practice of Web

search. Therefore, Web search personalization is necessary in order to capture each

user's search intents and help them to meet the specific information seeking goals.

There are in general two kinds of Web search personalization [55]: queryaug

mentation and result processing. In query augmentation, different users may enter

the same query, but this query can be automatically modified or augmented into dif

ferent variations for individual users. For example, if the user is a sailor, the query

"piracy" may be augmented to "maritime piracy"; the same query might be expended

to "music piracy" if it is issued by a lawyer within a record label. On the other hand,

personalized Web search systems that utilize the result processing model personalize

the search results instead of the search query, usually by re-ranking the search results

according to the current user's interests and preferences. In this case, the same query

"piracy" is accepted by the search engine, but the results about "maritime piracy"

are placed at the top of the results list for the sailor, and the documents about "music

piracy" will be displayed at the top for the lawyer. Although both of these approaches

have merit, the focus in this research is on result processing and the personalization

of the Web search results rankings.

1.3 Improving Web Search Personalization

A common approach for personalized Web search is to model a user's interests and

preferences within a vector representation [23, 42]. Each dimension of these vectors

represents a term and the value along a given dimension is commonly the term fre

quency (TF) or other related measures found within the information used to generate



the personalization vector. Such information may include Web pages [2]' search results

[18], or browsing histories [66]. The TF value for a given term is simply calculated by

counting the number of times that this term appears in the source information. In or

der to avoid having the term vectors become too bloated with irrelevant information,

stop word removal is often employed, whereby common terms that have no value for

differentiating between good and bad documents are ignored (e.g., "a", "the", "it").

In many cases, stemming [56] is also used to reduce the number of unique terms in

the term vectors.

These vectors are then used to re-rank the search results based on the similarity of

the documents to the personalization vector. The assumption here is that if a term is

used commonly in the vector as well as in a given document in the search results list,

then that document may be important for the individual searcher. Unfortunately, this

is not necessarily the case. Usually, even after stop word removal, the high-frequency

terms are too common to be significant, and provide little value for describing the

unique characteristics of a user's interests and preferences. As such, they may not be

very helpful for assisting the users to meet their specific information seeking goals.

Moreover, these common terms can easily diminish the capabilities of personalizing

the search results because of the potentially ambiguous nature of such terms.

As a result, the frequency of a term may not be a good indicator of the value

of that term. Classical information retrieval has made the use of term frequency

inverse document frequency (TF*IDF) [74] and its variants in order to address this

problem. TF*IDF takes into account the inverse document frequency (IDF), which is

the inverse proportion of documents that contain a given term to all the documents in

the collection. The goal of TF*IDF is to reduce the bias towards high-frequency terms



that appear in many of the documents in the collection. However, the calculation of

IDF is not always feasible within the context of personalized Web search since it

requires knowledge of the distribution of terms across all documents on the Web (or

at least in the Web search engine's index). A more practical way is to estimate IDF

based on a subset of the Web, which could be a collection of Web documents [40], or

a set of local search results returned under the current search query [32][44].

Other classical work in the field of information retrieval may be useful for improv

ing the TF approach to personalized Web search. One such work is that by Luhn

[39], in which it was suggested that given a document, it is possible to identify the

significant terms just based on the term frequency calculated within that document.

Luhn's suggestion was that the significance of a term follows a normal distribution

placed over the terms, when they are ranked according to their frequency. Essentially,

he was suggesting that mid-frequency terms are the most useful terms for representing

the content of the text, rather than high-frequency terms.

Inspired by Luhn's work, a novel approach to automatically identify and re-weight

significant terms in a vector-based personalization model is proposed in this research.

Compared to TF*IDF, this Luhn-inspired vector re-weighting approach is more feasi

ble because it does not require knowledge of the entire collection of documents (or at

least a localized collection of documents) used to generate the personalization model,

but only the information about the generated model itself. As such, the amount

of information that needs to be processed as the personalization model is generated

is greatly reduced. The primary contribution of this research is the application of

Luhn's ideas to the domain of Web search personalization, and the development of

an automatic algorithm for determining both the location and shape of the normal



distribution that produces the re-weighted vector. An evaluation of this approach

using a set of ambiguous queries shows that it can indeed improve the order of the

search results in comparison to the original search engine order as well as a simple

TF approach to personalization, when the personalization vector is sufficiently well

trained and robust. This improvement is similar to that which can be achieved by

TF*IDF, but with less information processing overhead.

1.4 Research Questions

In this thesis, the Luhn-inspired vector re-weighting approach for improving Web

search personalization will be explored and the following research questions will be

answered:

1. How can Luhn's work be adapted for Web search personalization?

(a) How can Luhn's work be formalized within the context of Web

search personalization?

(b) Is it possible to define a set of parameters for this approach that

work for many different personalization profiles?

(c) If not, how can the information within the Web search personal

ization profiles be used to tune the parameters for this approach?

2. What is the benefit of Luhn-inspired vector re-weighting for Web

search personalization? How does this approach affect the ranking of

the search results?



In order to answer these research questions, the first step that needs to be taken is

to choose a baseline Web search personalization system. This baseline system should

employ a vector-based model and a TF approach to weight the terms in the vector.

As a result, the baseline system will likely suffer from an over-weighting problem of

the high-frequency terms, which could be adressed using the Luhn-inspired approach.

Once the baseline system is decided, the second step is to implement the approach

within the framework of the baseline system. The main issues in this step are (a)

transferring Luhn's idea to the context of Web search personalization and formalizing

the approach, (b) identifying the parameters which can be manipulated, and (c)

developing techniques to automatically tune the parameters. By addressing these

issues, answers to the first part of the research questions will be provided.

As the final step, an empirical evaluation will be conducted to verify the benefit

of using the Luhn-inspired vector re-weighting approach for Web search personaliza

tion, resulting in answers to address the second part of the research questions. In

the course of this evaluation, the discussions will focus on the metrics used to com

pare performance of the baseline system and the proposed approach, the evaluation

methodology for conducting the experiments, and the results and observations from

the evaluation.

1.5 Organization of Thesis

The reminder of this thesis is organized as follows. Related work is discussed in Chap

ter 2. Details regarding the Luhn-inspired vector re-weighting approach are explained

in Chapter 3. Based on the baseline system, a prototype has been implemented for



studying and evaluating the approach. The system design of this prototype is doc

umented in Chapter 4. Chapter 5 presents the method and results of an evaluation,

which was conducted to test the approach in comparison to the baseline system. The

thesis concludes with a summary of the primary contributions of this work and an

outline of future work in Chapter 6.

10



Chapter 2

Related Work

Web search personalization is a rather active field of research, and a number of sys

tems have been built to personalize Web search using different techniques. These

techniques are different on the scale of personalization (single user or group of users),

the way to capture the users' interests (explicit or implicit), and the type of aid the

system provides to users (query refinement or result processing). This chapter will

firstly introduce a taxonomy of personalization approaches and classify the different

techniques used in personalized Web search systems into the directions presented in

this taxonomy. In the second part of this chapter, the focus will be on the particular

class of Web search personalization that is most relevant to this research: implicit

content-based personalization. Details will also be given about the baseline personal

ization system selected for this research. The third part of this chapter will provide

an introduction to Luhn's model and its theoretical foundation in Zipf's Laws.

11



2.1 An Overview of Web Search Personalization

Web search personalization, as described by Keenoy and Levene, "takes keywords

from the user as an expression of their information need, but also uses additional

information about the user (such as their preferences, community, location or history)

to assist in determining the relevance of pages" [32]. How to acquire, store, and use

the "additional information about the user" is the key question in the research of

Web search personalization. This section will provide an overview of the different

directions researchers have pursued to answer this key question in the research area

of Web search personalization. Note that one particular direction (implicit content

based personalization) is reserved for discussion in more details in the next section,

as it is particularly relevant to this research.

2.1.1 A Classification for Web Search Personalization

Varied directions exist in the field of Web search personalization. In a survey pa

per by Micarelli et al. [42], the authors suggest that there are two major cat

egories: collaborative-based personalization and content-based personalization. In

the collaborative-based approaches, users with similar interests help each other with

Web search by sharing personalized recommendations of Web pages. On the other

hand, content-based approaches gather each user's personal information from hard

drives, search histories, user feedback, or bookmarks, and then personalize their fu

ture searches by analyzing how the content of Web search results relates to the content

of the user's personal information. This classification resonates with Zhao et al. [77],

who state that personalized Web search systems can be classified according to two

12



dimensions: users and services. The user-oriented personalization is often called col

laborative filtering, which groups users in order to recommend Web search results

through peer evaluation. The service-oriented personalization is called content-based

filtering, that recommends Web pages to a user by analyzing the linked content and

context of Web search results.

Figure 2.1 represents the discussed classification of Web search personalization

in a hierarchical structure. It is further enhanced with a new dimension, explicit or

implicit, to classify personalization approaches into finer categories. In collaborative

based approaches, explicit methods ask users to directly rate or recommend search

results, but implicit methods gather user ratings in a non-obtrusive manner through

past queries and selected search results. In content-based approaches, explicit meth

ods and implicit methods differ in the ways used to create user profiles. A user profile

stores the information about the personal characteristics of the user, from which

the system can learn the interests and preferences of the user and provide effective

assistance to meet the user's information goals [23]. Explicit methods in the content

based category require users to create and maintain their own user profiles manually

and explicitly for the personalization, but implicit methods automatically generate

and update users' profiles by inferring their preferences from the past and current

interactions with the system.

2.1.2 Collaborative-Based Personalization

The foundation of collaborative-based personalization lies in the belief that people

in the same community share similar interests, thus they are likely to find the same

13



Figure 2.1: A classification for Web search personalization.

search results interesting for similar search queries. Collaborative-based approaches

treat the user as a member of a community rather than as an individual, and provide

the personalized search results to the user based on the recommendations from other

users in the same community.

The Eurekster Siwiki [20] is an example of collaborative personalized Web search.

This system allows a user to build and publish a personalized search topic. Once a

search topic is published, other users who have similar interests can join this topic to

conduct their own searches, and become a member of the community of this topic.

Members of a topic community can vote and comment on each search result. The

system learns from these explicit votes, as well as implicit clicks on search results,

and adapts to the community that uses it by dynamically re-rank the search results,

14



pushing the most relevant results to the top of the results list.

As another instance, the I-Spy system [63] follows a similar collaborative approach,

but the communities are defined as groups of visitors to different Web sites, and

only the clicks on search results are used as the metric of relevance. Clicks can be

considered as an implicit method of voting for search results since users will only click

on the documents they think are interesting and relevant. In I-Spy, frequent visitors

to a certain Web site are considered to have similar interests and so can form a user

community. When these frequent visitors search within the Web site using I-Spy, a

query-result relevance score is assigned to each search result based on the number

of users who selected this result for the given query, and this score can be used to

re-rank the search results for all users. As a result, the frequently selected search

results are promoted ahead of other results if a new search for the same or a similar

query is issued in the user community.

Recently, a new Wiki-like search interface was proposed by Gao and Marcos

[22], which was inspired by the previous experimentations of commercial Web search

providers, such as SearchWiki by Google [26] and U Rank by Microsoft [43]. The

unique feature of this new search interface is that users can directly edit the ranks

of the search results for a given query, and the edits can be shared among users and

similar queries. Users who search for the same query are considered to share the

same interests, so the rank edits could be aggregated and shared among users as user

preferences. On the other hand, for a single user, the system can transfer the user's

rank edits for one query to its similar ones, so the user's effort on the rank edits could

be re-used.

Collaborative-based approaches could be effective since people like to accept rec-

15



ommendations from others who have similar interests. But the main drawback of the

collaborative approaches discussed above is that the performance of personalization

depends on the size and activeness of the user community. Unless a number of people

are interested in a certain query or topic, and they are active enough on searching

and rating this query, the collaborative search engines cannot offer the benefit of

personalization to their users.

To address the problem mentioned above, some recent research has started to

explore innovative ways to identify user communities. For example, Mei and Church

[41] suggest that user communities for personalization could be identified based on

the geographic locations of users, indicated by their IP addresses. By assigning users

into nested classes based on the similarity of their IP addresses, an improvement on

search results could be achieved as the result of personalization. On the other hand,

Teevan et al. [72] proposed a new concept of "groupization", which is to discover

and use groups of people for personalization purposes. The groups could be identified

by analyzing similarities among people on query choices, personal information, and

relevance judgments. An evaluation shows a significant improvement on the ranks of

search results for group-relevant queries when the user's individual data is combined

with the data of related people in the same group and used for personalization.

2.1.3 Explicit Content-Based Personalization

As discussed above, many collaborative approaches try to capture the common inter

ests for a user community and recommend the relevant search results to every member

of this community. For a given query, all the members within the same community

16



are treated the same. Everyone gets the same search results as other members. By

contrast, content-based approaches try to learn personal information from each single

user, and treat every user in an individual manner instead of a group manner.

A simple content-based approach is to have users explicitly describe their interests

before conducting a Web search, usually by manually filling a registration form or

answering a questionnaire. The data collected in this way forms the basis of the

user profile, which is then used to decide which Web search results are likely to

be interesting to the user by comparing the content of the search results with the

content of the user's profile. For example, the now defunct Google Personalized

Search [24] (which has been replaced by Google Web History) allows users to specify

their interests by selecting from pre-defined topics (by clicking on checkboxes). The

search results are then personalized based on a user's selection, recommending those

related to the user's selected topics and filtering those that are of no interest to the

Explicit content-based approaches are straightforward and easy to implement, and

can be effective if users can correctly create and constantly update their user pro

files. Moreover, a profile explicitly created by an individual user is presumably more

accurate than a profile generated through implicit methods, although White et al.

[76] found that there is no statistically significant difference on the search effective

ness between implicit relevance feedback and explicit relevance feedback. Another

advantage of explicit methods is that not only the positive feedback (what the user

likes), but also the negative feedback (what the user dislikes) can be used in an ex

plicit questionnaire-based approach, whereas it is difficult to infer negative feedback

in implicit approaches [23].

17



However, it is suggested by Nielsen [51] that one should avoid requiring extra

efforts from users for personalization. Moreover, a study by Teevan et al. [68] shows

that people are generally unwilling to spend extra efforts to specify their intents before

they search. Therefore, the effectiveness of the explicit approaches might be limited

by the willingness of users to do extra work beyond entering their queries and clicking

on search results that appear to be relevant. In addition, even if users are willing to

fill out a questionnaire to specify their interests before search, this information may

become useless as users change their interests over time. The hope that users will

be motivated to constantly update the information is not valid, since they will soon

realize that this is an endless burden and give it up. Moreover, when asked to fill out

a questionnaire, some users may raise concerns about privacy, and feel uncomfortable

submitting personal information to online services without knowing how the personal

information will be stored and used.

Compared to explicit methods, a more promising approach for content-based per

sonalization is to implicitly capture users' interests, rather than hoping users can

explicitly and correctly specify their search intents beforehand. The implicit content

based approach is the direction that is the focus of this research, and will be discussed

in detail in the next section.

2.2 Implicit Content-Based Personalization

A number of ways of implicitly capturing users' interests and preferences for person

alization have been explored by the research community. For a detailed survey of

the implicit techniques that could be used to infer users' preferences, one can refer to
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Kelly and Teevan's work in [33]. Generally speaking, there are two broad categories

for these implicit techniques: the ones that are based on users' Web search activities

and the ones that are based on users' other activities rather than Web search. The

personalization approaches that fall into the first category try to infer users' prefer

ences on Web search results directly from their past interactions with the Web search

system. For example, the submitted search queries, the selected search results, and

the search logs can all be considered as implicit evidence to infer their interests and

preferences. On the other hand, the approaches that fit into the second category take

a broader range of a user's activities into account, and argue that this broader range

provides informative context for the user's personalized Web search, which describes

the user's general characteristics and interests as an individual. The typical data

sources for approaches based on user context are hard drive data, browsing history,

bookmarks, and emails. Sometimes the user context data could be combined with

search-related information, forming a hybrid approach.

Figure 2.2 depicts the discussed categories of implicit content-based personaliza

tion approaches. In this research, the main focus will be on the approaches that are

based on Web search activity. Therefore, the following parts of this section will start

with a brief overview of approaches based on user context, and then the emphasis

will be on the approaches based on Web search activity. The final part of this section

will be a discussion of the baseline system in this research, which is an instance of the

search-based approach that uses selected search results as the source of information

for creating the personalization profiles.
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Figure 2.2: Directions in implicit content-based personalization.

2.2.1 Approaches Based on User Context

By summarizing the user's local desktop data, Chirita et al. [13] propose an approach

of query expansion for Web search personalization. The "local desktop data" is de

fined as the set of personal documents stored on the hard drive of a user's personal

computer. The useful local desktop documents are those that contain some kind of

textual information, such as HTML pages, Word documents, personal textual notes,

chat histories, or even meta-data of video and audio files, etc. The authors argue

that these local desktop documents provide a rich repository of personal information,

which could precisely describe most, if not all interests of the user. Thus the quality

of the user profiles could be increased by extracting personal information from these

local desktop files. For the personalized query expansion, the authors suggest three
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different methods of summarizing the local desktop data. The first method is based

on clustering of the entire desktop data, and selecting the query expansion terms that

represent the entire desktop (which may not always be related to the user's actual

query). The second method is to search for the documents that are related to the

user's query on the desktop, and extract terms from the top 30 relevant documents as

query expansion terms. The third method is based on the lexical dispersion hypoth

esis [4], wherein the query expansion keywords are acquired by extracting dispersive

compounds from relevant desktop documents. According to the lexical dispersion

hypothesis, those dispersive compounds can be used to represent the key concepts of

the desktop documents from which they are extracted. An evaluation shows that the

query expansion could indeed improve the precision of the search results, compared

to the regular Google search engine.

A user's browsing history is another resource of personal information. Since such

browsing history directly shows the user's interests and preferences for Web pages,

the information may be more relevant to the user's Web search activity than other

contextual information. Matthijs and Radlinski [40] propose a system that builds

a user profile based on the complete browsing history, and then uses this profile to

re-rank the search results. In this system, the user's browsing history is captured by a

FireFox add-on called AlterEgo, and stored as < URL, HTM L > pairs. The system

then extracts terms from the browsing history and weights them using three different

weighting schemes: TF, TF*IDF (IDF estimates are calculated using the Google

N-Gram corpus [25]), and personalized BM25 weighting [70]. A unique feature of

this system is that it exploits the characteristics and structure of Web pages, and

gives more weights to the terms from the important parts of the HTML documents,
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such as the text contained in the title, description, or keywords tags. Also, when

assigning relevant scores to the search results, the system not only considers the

similarity between the search results and the user profile, but also incorporates the

original ranking provided by the search engine into the final scores. Moreover, the

system gives additional weights to the URLs that have been visited previously, so the

user's re-finding searches could be supported as well. A user study was designed to

compare the ranking results produced by this system with default Google ranking,

and with two influential personalization approaches [70][18]; significant improvements

were found in both cases.

Other online activities rather than browsing could also be used as user contextual

information for personalized Web search. One direction is to explore the user's online

social activities, as proposed by Wang and Jose [75]. In their approach, the user

profiles are generated from three types of social information: blogs, social bookmarks

and mutual tags. When the user issues a search query, the user's profile is used to

assign an interest score to each of the search results. This interest score is combined

with a relevance score provided by the underlying search engine to calculate a final

score, which determines the personalized ranks of the search results. An interesting

feature of this approach is that it does not stop at the point that the personalized

re-ranking is generated, but further observes the user's reactions to the personalized

search results. Based on the analysis of these reactions, the system adjusts the degree

of personalization and the weights of different information resources, in order to adap

tively develop a best setting for each individual user. An evaluation was conducted

with 208 users, and the result demonstrated that the personalized search outper

formed the non-personalized search for most users. Moreover, the result shows the
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personalization is effective even for users who have minimal online social activities.

The authors also found that utilizing multiple resources is better than using just one

single resource, and the adaptive algorithm for adjusting the personalization degree

and resource weights is effective.

The approach proposed by Teevan et al. [701 is considered as one of the most

comprehensive and promising personalization approaches [40]. Teevan et al. employ

a very rich model to represent a user, including all contextual information the user

has created, viewed, or copied (e.g., Web pages the user viewed, emails the user

sent or read, calendar items the user created, any textual documents stored on the

user's computer). This rich user model also includes search-related information, such

as the user's previously submitted search queries, and the URLs the user visited in

the past. Therefore, this is indeed a hybrid approach of context-based and search

based approaches, which is making use of all available personal information on a user.

The user model is then used to re-rank the top returned search results according to

their relevance values to the model. In the evaluation, the authors show a significant

improvement of their approach over the non-personalized ranking, and they find that

merging their personalized ranking with the search engine's ranking could further

improve the performance.

It is suggested [70] that the more personal data is used to represent a user, the

better is the performance of the personalization. In this sense, the context-base

personalization is promising because of the rich resources of the user's personal in-

formation it can employ. However, all context-based approaches share a common

problem, that is they all require users to install client-side software to capture the

contextual information since this kind of information can only be collected on the
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client-side. This fact produces a couple of disadvantages. First, since the user profile

is stored on the client side and Web search is performed on server side, inevitably

there is a data exchange whenever the personalization is processed, either by trans

ferring the user's profile to the server or by downloading a large number of search

results to the client: in both cases considerable overhead costs may occur. Second,

users may not be willing to install such software on their computers for the purpose

of Web search personalization. Even if they are willing to do so, the distribution and

maintenance of the client-side software might still be an issue. Third, users may have

concerns regarding the collecting and analyzing of their personal documents on their

hard drives, let alone their emails and chat conversations; these concerns may lead to

rejections of the personalization system. Therefore, instead of forcing users to install

client-side software, it is advantageous to collect and analyze users' information on

the server side while they are doing Web searches. The personalization approaches

based on Web search activities will be discussed in the next section.

2.2.2 Approaches Based on Web Search Activity

A simple approach to personalize Web search based on search activities is using click

histories. A click history simply records the URLs of the selected Web pages in the

search results list, without modeling them into complicated forms. PClick is such an

approach proposed by Dou et aI. [18]. In this approach the system records which

documents have been clicked by a user for a given query. If the user issues the

same query again, the previous selected documents will be pushed to the top of the

results list, ranked according to the number of historical clicks on each document. In

24



fact, this approach is a technique to support re-finding. The motivation behind this

simple approach is the observation that re-finding is common in Web search activities,

and the repetition ratio in real world is noticeably high [71][67][18]. However, this

approach cannot utilize personal information to facilitate searching on a brand new

query because it is based on clicked documents for previously submitted queries.

Also, this approach may not be very effective for searches that are repeated due to

failure to find adequate information. Some may argue that if one is really looking

to re-find information, they are better suited to searching or exploring within their

browsing history [29]. Stamou and Ntoulas [65] provide a more complicated approach

for personalized Web search based on click history, which can be viewed as a partial

solution to the problems discussed above. In their approach, when a new query

is issued, the system will attempt to explore the semantic similarity between this

new query and query-match pages of previous queries, in order to identify the user's

current preference and provide personalized re-ranking of the search results.

Another direction of analyzing Web search activities is to collect information from

user's search logs. Search logs record the interactions between a user and the system,

from which a large amount of the user's implicit judgments can be extracted. These

judgments include user-submitted queries, selected search results, and the browsing

time of each document. Using selected search results as the implicit judgment of

relevance, Cui et aI. [15] propose an approach for search query expansion based on

extracting correlations between query terms and the document terms from a user's

search logs, and then using these correlations to recommend high-quality expansion

terms for new queries issued by the same user. Their evaluation showed that this

approach can achieve considerable improvements in performance, especially for short
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queries. Chen and Huang [12] propose another approach to personalize Web search

via mining search logs. They employ not only the selected search results, but also the

browsing time of each selected page to build the personalization model. This model

is then used to provide personalized re-rankings of the search results. Although

log-based approaches can be effective because a large amount of usage data can be

straightforwardly extracted from user's search logs, a difficulty with these approaches

is that they might not be very adaptable because the user's search logs may not

always be available on different search engines, and the use of search logs might be

restricted due to privacy concerns.

The third direction, which may have the least limitation and restriction, is to per

sonalize a user's Web search based on the search results the user selected in the past.

This approach is different from the click-history approach, although in both cases the

data source is the same - the clicked search results. In click-history approaches, the

system simply records clicked results as < Query, URL > pairs and only supports

directly matching on queries or DRLs. However, the approaches in this third group

usually do not directly record the clicked search results, but rather try to extract

information from the set of documents the user has clicked and visited, in order to

build user profiles that represent the user's interests and preferences. When used to

personalize the search, these profiles are not intended to be directly matched by any

search result, but rather used for computing similarities between search results and

user profiles.

Dou et al. [18] propose three profile-based approaches to offer personalized re

ranking based on different lengths of the search history. The profiles employed in

all three approaches are automatically generated from the clicked documents from
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previous searches, and are used to calculate a personalized score for each document

in the current search results. The search results are then re-ranked according to their

personalized scores. An evaluation showed that both long-term and short-term search

histories are important in personalized search, and the proper combination of them

can be more reliable than using any of them solely.

The user profile in the work of Sugiyama et al. [66] is generated from the user's

search and browsing history, which means not only are the selected search results

used, but so are the Web pages that the user has browsed to by following the hy

perlinks on the selected results. A weighting scheme based on TF is employed to

construct the user profiles. The similarity between the profile and each document

(both represented in vectors) is calculated and the search results are re-ordered based

on their similarities to the profile. The authors also present a collaborative filtering

algorithm as an alternate method for constructing user profiles, producing a hybrid

system of collaborative-based and content-based approaches.

Ahn et al. [2] propose a profile-based personalized system for task-based informa

tion exploration. This system allows users to select and save fragments of Web pages

as notes while they explored information resources. Based on the top 300 important

terms judged using TF*IDF, a vector-based profile for each user is created from their

notes. These profiles are used to re-rank search results using the similarity scores

calculated using the BM25 formula [59] between search results and the profile. An

evaluation demonstrated that this system can improve the precision of the top search

results.

Based on the Open Directory Project (ODP) [50] hierarchy, Speretta and Gauch

[64] create two different hierarchical profiles for each user, one generated from the
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user's submitted queries and another from the user's selected search results. Both

profiles can be used to re-rank the search results by combining the personalized rank

with Google's rank, controlled by a tuning parameter. Evaluations showed that both

profiles are equivalently effective on improving the rank of the search results. Inter

estingly, the evaluations also showed that the best results occur when the original

search engine rankings are ignored and only the personalization profiles are used to

re-rank the search results.

Similarly, Sieg et al. [62] build an ontological user profile with hierarchical concepts

for each user based on the ODP; this profile is updated by a spreading activation [60]

algorithm (which starts from a set of source nodes with weights or "activation" and

then iteratively propagates or "spreads" that activation to other linked nodes) based

on the user's interactions with the system, such as the activities of selecting or viewing

new Web pages. The search results are personalized by identifying the best matching

concept in the profile for each result, and using this concept to assign a ranking score

to the result. An evaluation showed that the personalized search achieves 10%-25%

improvement on precision over standard search.

2.2.3 Profile Models

In the profile-based approaches discussed above (including both search-based and

context-based approaches that employ user profiles), two types of models are used to

construct the user profiles: vector-based models [18][66][2][13][40][75][70] and hierar

chical models [64][62].

Vector-based models normally represent user's interests as high dimensional vec-
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tors where the term represents the dimension and the weight represents the magnitude

of the vector in that dimension. On the other hand, in hierarchical models, terms are

linked in a hierarchical structure, which means that two different terms may share a

parent, and updates to either of the terms may also cause changes to the parent or

the other term.

Compared to the vector-based model, the hierarchical model contains extra infor

mation about the relationships between terms, which can be used to provide more

accurate personalized search results. Moreover, using an existing conceptual hierar

chy to build the user profiles could in some degree overcome the "cold start" problem

existing in personalization systems where no initial information is available in the

early stages. However, hierarchical models usually start from an existing hierarchy

such as the ODP [50], and this predetermined hierarchy might not always be suit

able for different users with different preferences. Moreover, the construction and

maintenance of hierarchical models are much more complex than vector-based mod

els, and this fact also limits the applications of hierarchical models in personalized

Web search. On the other hand, vector-based models have their own merits: vectors

can easily be updated with new knowledge; they can be combined with other vectors

readily; and they can be compared to one another as well as to individual document

vectors produced from the search results. In this research, the focus will be on the

vector-based model because of its simplicity and adaptability.
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2.2.4 miSearch System

A difficulty with the discussed profile-based approaches is that most of them create a

single user profile that is meant to capture all of the interests of the user. For a given

information need, such a user profile will invariably include a lot of noise (things that

the user is interested in for one context, but not for other contexts). The noise in

the profile may cause some of search results which are irrelevant to the user's current

search interests to be promoted in the search results list, and reduce the effectiveness

of the personalization system.

To address this problem, miSearch was developed by Hoeber and Massie [30].

Similar to other approaches based on user's interest profiles, miSearch utilizes user

profiles to provide personalized re-ranking for search results. However, instead of

maintaining a single profile for each user, miSearch enables every user to create mul

tiple topic profiles. Each one of these topic profiles represents one aspect of the user's

interests, and the topics can be switched from one to another as the user switches the

current search goal. The main advantage of employing multiple topic profiles is that

they can capture the user's different information needs separately, avoiding the noise

that usually exists in a single profile, and enabling the system to offer more precise

re-ranking results for the user's current search goal.

Let us look at an example of the benefit of using multiple topic profiles. Suppose

there is a user of miSearch system, say Adam, who is a university professor in Music.

The first topic he creates in miSearch is "Classical Music" for his work and he con

ducts a lot of searches under this topic for musical works like sonatas, concertos and

symphonies, and musicians such as Mozart, Chopin, and Bruckner. One day, Adam
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decides to look for a new car for his family, so he starts a new topic named "Cars" and

searches for reviews on mid-size cars and minivans from both domestic and imported

brands such as Chevrolet, Toyota, and Hyundai. While he is searching, he remembers

there is a model that his neighbor recommended to him the other day, so he issues a

query "Sonata" to look for the car's information and he is satisfied because he found

the top search results are all about this "Hyundai Sonata" mid-size car, rather than

any sonatas written by Mozart, Chopin, or Beethoven. Then, after he finishes the

research on cars, he comes back to work and switches the topic to "Classical Music" ,

under which he issues the same query "Sonata" and knows that this time he would

see the information about music, not cars. If the system had only one profile to store

Adam's interests, then it would be very difficult for the system to differentiate the

information about cars from music, since both were highly relevant to Adam's search

intents, but in different contexts. Figure 2.3 shows the screenshots from miSearch for

the scenario described in this example.

In miSearch, each topic profile is represented as a term vector, which stores the in

formation extracted from the search results clicked by the user under this topic. The

fundamental premise is that the user's selection of search results provides a strong

indication of relevance. While a selected document may not actually be relevant,

there must have been "something" within the title, snippet, and/or URL that caused

the user to think that the document might be relevant, resulting in the user click

ing on it to view more details. The topic profiles are generated not to capture the

relevance of an actual document, but the relevance of this "information scent" [54].

The dimensions of the profile vector are formed by the terms extracted from the title,

snippet or URL of the clicked search result, and each dimension is associated with a
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(b) Search results for the query "Sonata" under the topic "Classical Music",

notethatthedocumentsaboutsonataasatypeofmusicarelistedonthe top.

Figure 2.3: Screenshots from miSearch system. Note that the search results were

re-ordered according to the user's currently selected topic.
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weight, which is the TF value of that term. Before the terms are added into the profile

vector, stop word removal is used to ignore those terms that are most common but

have little meaning, such as "the", "a", and "is". Also the terms are stemmed using

Porter's stemming algorithm [56], in order to reduce terms to their root form (e.g.,

terms "fishing", "fished", "fish", "fisher" will be stemmed to its root term "fish").

The topic profile vector is continuously updated while the user clicks on more and

more search results that he/she considers relevant under the current topic.

The miSearch system uses Yahoo! as its underlying search engine. When the user

issues a query under an existing topic, the system transfers the query to Yahoo! and

fetches the returned search results, and then converts each result document into vector

form following a similar way of constructing the topic profile (i.e., using stop word

removal, stemming, and TF weighting). The next step is to calculate the similarity

between each document vector and the topic profile vector using Pearson's correlation

coefficient [27]. Finally, the search results list is re-sorted in descending order based

on the similarity measure, such that those documents that are most similar to the

topic profile are placed at the top of the search results list.

An evaluation of miSearch was conducted based on 12 ambiguous queries selected

from TREe 2005 Hard Track [45]. The result shows that miSearch can be very

effective for improving the precision of the search results, even when as few as two

documents have been selected by the current user.

Because miSearch uses TF in the generation of the vector-based models for the

topic profiles, it may suffer from an over-weighting of the high-frequency terms. Al

though stop word removal is employed to address this problem, it may be possible to

further improve the system performance. In this research, miSearch is employed as
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the baseline personalization system for applying the Luhn-inspired vector re-weighting

approach.

2.3 Luhn's Model and Zipf's Laws

As mentioned before, the approach for improving Web search personalization explored

in this thesis is inspired by Luhn's model [39], which is theoretically rooted in Zipf's

Laws [78]. This section will discuss both Luhn's model and Zipf's Laws, and explore

the connections between these two classical pieces of research on textual information

processing.

2.3.1 Luhn's Model

Luhn's model was proposed in his 1958 paper on the automatic creation of docu

ment abstracts [39]. In this paper, Luhn explains that his motivation for this work

was to address two common problems existing in manual abstract processing. First,

preparing abstracts is an intellectual effort that requires skill and experience. Conse

quently a considerable amount of manpower that could be well used in other ways is

consumed on creating abstracts. Second, achieving consistence and objectivity in ab

stracts is difficult because the abstracts are almost always influenced by the authors'

backgrounds, opinions and immediate interests; therefore the quality of abstracts may

vary widely among authors. As a solution to these problems, Luhn suggests that both

human effort and bias in abstract processing could be eliminated by using computers

to automatically select significant sentences from the article and use these sentences

to constitute the "auto-abstract".
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Luhn states his basic idea as this: "It is here proposed that the frequency of word

occurrence in an article furnishes a useful measurement of word significance. It is

further proposed that the relative position within a sentence of words having given

values of significance furnishes a useful measurement for determining the significance

of sentences." [39] In other words, in order to determine which sentences may best

serve as the auto-abstract, the first step is to establish a set of significant words in

the article, and then use this set of significant words to identify significant sentences

for constructing the auto-abstract.

In Luhn's model, judging significance of words is based on word frequency. The

idea behind this is rather intuitive: a writer normally will repeat certain words while

making arguments and elaborating on aspects of a subject. This means of emphasis

is an indicator of significance. In practice, Luhn proposes a method for finding sig

nificant words by establishing two cut-offs on word frequency, as illustrated in Figure

2.4. The words exceeding the upper cut-off C are considered to be common words and

those below the lower cut-off D are rare. Both common words and rare words cannot

significantly contribute to the document's content. Luhn further proposes that the

significance of words follows a normal distribution that reaches the peak at halfway

between the two cut-offs, represented as curve E in Figure 2.4.

Luhn's model of word significance is unsophisticated in the sense that it avoids

linguistic implications such as grammar and syntax, and also ignores the difference of

word forms (i.e., words are stemmed). Also Luhn does not employ a stop-words list

to remove the most frequent words like "the", "a", "is", but rather relies on the upper

cut-off to exclude these noisy words, as well as those content-related high-frequency

words that cannot be removed by a stop-words list, such as the word "cell" in an
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Figure 2.4: Luhn's model of word significance. This figure is adapted from Luhn's

paper on word significance [39].

article on biology. In regards to the ways of establishing the upper cut-off and the

lower cut-off, Luhn provides few details, only describing it as "a matter of experience

with appropriately large samples of published articles".

After establishing a set of significant words, Luhn then examines the sentences

according to their relationships to the significant words. The "significant factor"

of a sentence is determined by the number of significant words it contains, and the

linear distance between the significant words due to the intervention of non-significant

words. Based on the significant factor, sentences are then ranked in descending order

and the top sentences are selected as elements of the auto-abstract.

Luhn's model is seminal work in the field of automatic text processing, and forms

the basis for many later works on automatic text analysis [19], automatic text sum-
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marization [61], and Web search coverage testing [16]. However, to the best of our

knowledge, it has not been explored in the context of personalized Web search or

termvectorre-weighting.

2.3.2 Zipf's Laws

Zipf's Laws [78] are classic empirical laws in linguistics. Zipf's First Law states

that the frequency of a word in a given text is inversely proportional to its rank of

occurrence among all words in the text. In other words, the most frequent word will

occur about twice as often as the second most frequent word, three times as often

as the third most frequent word, and so forth. This law could be described by the

following formula:

(2.1)

where r is the rank of the word, f is the frequency of the word, and c is a constant

for the given text. According to this formula, Zipf's First Law could also be stated

as this: the product of the rank and the frequency of any word in a given text is

approximately a constant.

Zipf's First Law is surprisingly simply yet influential. It not only holds true for

most natural languages, but also has been observed in many non-linguistic contexts,

such as population of cities [21]' company sizes [5]' and even the Internet [1]. However,

in the context of word frequency, this law only holds true for high-frequency words. A

reason for this is that high-frequency words tend to have unique numbers of occurrence

and thus occupy unique ranks. However, many low frequency words often share the

same frequency (e.g., there are many different words that appear twice or once in a
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text).

In order to describe the behavior of low frequency words, Zipf also proposed a

second law. Zipf's Second Law was further revised by Booth based on a more detailed

analysis of low-frequency terms in text [91. Booth's revised form of the law is

11/In = n(n + 1)/2 (2.2)

where In is the number of different words appearing n times in the text, and II is the

number of different words that occur only once in the text. Thus, the values of II/In,

n=l, 2, 3, 4, 5, show a pattern of 1,3, 6, 10 and 15. In other words, the distinct words

that occur only once are approximately three times as many as the words appearing

twice, six times as many as the words appearing three times, and so on.

2.3.3 Connections Between Luhn's Model and Zipf's Laws

When introducing Luhn's work in his classic information retrieval book [74]' van

Rijsbergen states that the curve of "resolving power of significant words" in Luhn's

model indeed is a demonstration of Zipf's First Law, and Luhn uses this law as a

"null hypothesis" to build up the two cut-offs in his model. From this statement, it

is apparent that Zipf's First Law provides a start point and theoretical foundation

for Luhn's model.

van Rijsbergen's statement is not the only evidence to suggest that Luhn's model

is related to Zipf's Laws. Goffman's transition theory [53] provides more explanation

to reveal the connections between Zipf's Laws and Luhn's model. This theory is based

on the observation of Zipf's two laws: the first law describes the phenomenon of high

frequency words (i.e., unique rankings) and the second law focuses on the behavior
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of low-frequency words (i.e., different words share the same frequency). These two

entirely different laws predict the two distinct edges of the word distribution in any

given text, and therefore it is reasonable to expect a critical region in between these

two edges where the transition of word behavior from high-frequency to low-frequency

phenomenon takes place. Goffman further suggests that it is at this transition region

that the most content-bearing words of a given text occur, which is consistent with

Luhn's model that suggests the most significant words appear in the mid-frequency

region. Goffman's transition region theory provides theoretical support to Luhn's

model in light of Zipf's Laws, and offers a rational explanation for the cut-offs that

Luhn uses in his model to exclude both high-frequency and low-frequency words.

This theory will be revisited in the next chapter as it suggests ways to automatically

establish Luhn's curve of significant words in the proposed approach.

From a different perspective, Losee [38] also suggests connections between Luhn's

model and Zipf's Laws. Losee argues that Luhn's model and Zipf's Laws share the

same basis, which is the statistical dependencies existing between terms that can

be measured by the expected mutual information measure (EMIM). Given a pair of

terms, EMIM measures the amount of information that one term provides about the

other. In other words, EMIM represents the "dependency" of the terms. High EMIM

means the terms in the pair are highly dependent on each other, thus have to work

together to express a meaning. On the other hand, a term with lower EMIM has better

capability to provide information by itself, because less of the information the term

carries is determined by the neighbor terms. By employing EMIM, Losee provides a

partial explanation for Zipf's First Law, suggesting that the law is a consequence of

the statistical dependencies that exist between terms in natural language. Also, Losee
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demonstrates a phenomenon about EMIM that is consistent with Luhn's model: the

EMIM decreases while moving from the most common words to the less common

words, and reaches the minimal values in the region of mid-frequency terms. Once

the region of mid-frequency terms is passed and one continues moving towards the

low-frequency terms, the EMIM starts to increase again. This pattern of EMIM

change suggests that both the rare terms and the very common terms are not as good

at representing the meaning of the text on their own as mid-frequency terms, which

is consistent with Luhn's suggestion.

In conclusion, van Rijsbergen's statement, Coffman's transition region theory,

and Losee's EMIM-based explanations all provide indications that Luhn's model is

closely connected to Zipf's Laws and thus has a sound theoretical foundation. This

also explains why Luhn's model remains a practical principle in the area of informa

tion retrieval after more than 50 years. In this thesis, the possibilities of using the

inspiration from Luhn to improve Web search personalization will be explored. The

details of this approach will be provided in the next chapter.
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Chapter 3

Luhn-Inspired Vector

Re-Weighting

3.1 Inspiration from Luhn

Web search personalization has shown its effectiveness through many applications,

some of which have been discussed in the previous chapter of related work. However,

Web search personalization systems can be further improved by dynamically refining

their personalization models to better represent users' search intents. In particular,

this research focuses on the ways to refine vector-based models by identifying signif

icant terms in the vectors and reweighting the terms according to their significance.

By giving higher weights to the significant (and discriminating) terms and reducing

the weights of common terms, the re-weighted personalization models can more pre

cisely represent users' search preferences, fit their information needs, and enhance

their experiences in Web search personalization.
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Luhn's model [39] provides valuable inspirations for this work. Essentially, Luhn's

model suggests a promising way to select significant terms from a collection of terms

(i.e., a text) by analyzing the term frequency of occurrence. Similarly, the purpose of

refining vector-based personalization models is to assign a significance value to each of

the terms in a collection of terms (in this case, the target term vector) and re-weight

the terms according to this significance value, with the same precondition that the

term frequency (TF) values are given. Based on this similarity, it is reasonable to

assume that Luhn's model will also work in the context of Web search personaliza

tion, although most of the existing applications of this model are for the purpose of

automatic text analysis [19] and summarization [61].

3.2 Vector Re-Weighting

The first step in performing Luhn-inspired vector re-weighting is to rank the terms

in the vector-based personalization model according to their frequency, resulting in

a TF histogram as illustrated in Figure 3.1. In this histogram, the terms near the

left end are high-frequency terms, which usually are too common to be significant.

Similarly, the terms near the right end are low-frequency terms, which are too rare

to be significant and can be considered noise. The valuable terms are located in the

middle range.

Once the TF histogram is established, a normal distribution curve can then be

placed on the top of the histogram to demonstrate the "resolving power of significant

words" [39]. Luhn uses this phrase to refer to the ability of words to discriminate

content: the greater the resolving power, the better the word can represent the char-
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Figure 3.1: The basic idea of vector re-weighting.

acteristics of the content. As will be explained in the sections that follow, the primary

challenge in applying Luhn's model is the development of an automatic algorithm to

determine the location and variance of the normal distribution based on features of

the term vector and its associated TF histogram.

In Luhn's original model, an upper cut-off and a lower cut-off are used to exclude

the terms that provide little value in describing the text. Stop word removal is not

employed in Luhn's model, so the upper cut-off plays this role instead. The lower

cut-off is designed to eliminate the particularly rare terms (e.g., those that only

occur once). However, as mentioned previously, the proposed vector re-weighting

approach is built within the framework of an existing Web search personalization

system (miSearch [30]), and this system uses stop word removal when creating topic

profiles. Also, rare word removal (which removes terms that occur only once) is

employed when fetching terms from topic profiles for re-weighting (i.e., those rare
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terms are not considered in the process of re-weighting, but are still kept in the

original profiles for data completeness). Therefore, it is not necessary to establish

the two cut-offs as in Luhn's original model. In fact, since noisy terms that have no

meaning have been filtered out, the remaining terms all bear some degree of value

related to the search topic, and thus deserve to be considered in the re-weighting

process and remain part of the re-weighted profile (although some may be assigned

with very low weights after re-weighting).

There are two main reasons for selecting miSearch as the baseline system in this

research of the Luhn-inspired vector re-weighting approach. First, miSearch employs

vector-based personalization models based on term frequency, which is ideal for im

plementing and evaluating this vector re-weighting approach. Second, miSearch uses

multiple topic profiles to represent a single user's different search intents, so the noise

within a topic profile can be minimized. A topic profile with a low degree of noise

can facilitate the study of the Luhn-inspired vector re-weighting approach. Note that

while this vector re-weighting approach is developed to work within the multiple

profile framework of miSearch, it can be applied to any personalization method that

employs a vector-based modeling of information that relies on term frequency.

3.3 Approach Formalization

More formally, the goal of the Luhn-inspired vector re-weighting is to replace the TF

value in the source term vector with a term significance (TS) value based on the

normal distribution placed over the TF histogram. The location and the variance of

the normal distribution are two crucial factors for this approach. The location of the
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curve determines where the peak of the resolving power of significant words is placed.

In other words, it determines which terms' weights will be increased (i.e., those terms

that are near the peak), and which will be decreased (Le., those terms that are far

from the peak). The variance of the curve (i.e., the degree of flatness or steepness)

decides to what extent the terms in the vicinity of the peak will be re-weighted.

To calculate the TS value for each term in the vector, the probability density

function of the normal distribution is used:

(3.1)

where Ti is the rank of the given term i in the term frequency histogram, and TS(i) is

the significance value of that term i. Equation 3.1 contains two parameters that affect

the location and the shape of the normal distribution, and therefore the TS value for

a given term: the mean value /1. and the variance (12. The mean value /1. decides

the location of the centre of the normal distribution, and the variance (12 describes

how concentrated the distribution is around the mean. How these parameters for

the normal distribution are determined is the fundamental challenge of making this

approach an automatic method, and will be discussed in detail later in this chapter.

Once the appropriate values are determined for /1. and (12, the TS values for the

terms in a given vector-based model can simply be calculated using Equation 3.l.

A re-weighted vector can then be created by replacing the frequency of term i with

TS(i). An alternate approach is to multiply the term frequency by the term sig

nificance, resulting in a TF * TS approach for re-weighting. These two different

re-weighting approaches will be compared and discussed in the evaluation chapter of

this thesis.
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3.4 An Example

As mentioned previously, this Luhn-inspired vector re-weighting method has been

implemented within miSearch, a personalization system that uses multiple vector

based topic profiles to represent a user's various different information needs. A user

may create a topic profile titled "piracy" when searching for information about old

fashioned piracy: the boarding or taking control of vessels. This topic profile is pop

ulated with information as the user submits related queries and clicks on documents

believed to be relevant. Essentially, this topic profile is a vector that represents the

term frequency of words appearing in the title, snippet, and URL of the documents

the user clicks on.

To evaluate the effect of the personalization, 50 search results were collected from

Yahoo! under this ambiguous query and assigned relevance values. Based on these 50

search results, three different ranked lists were produced for comparison: the original

list, the personalized list produced by miSearch, and the personalized list produced

by miSearch enhanced with Luhn-inspired vector re-weighting. For this example, the

mean and variance parameters of the normal distribution where manually tuned. For

each of the three ranked lists, the average precision (AP) [6] was calculated over the

top-10 and top-20 documents to compare the performance. A high AP value means

that there are many relevant documents near the top of the list. As such, it is a

measure of the quality of the ranking of the search results. Table 3.1 lists the AP

values of the three ranked lists in this example.

Figure 3.2 depicts the TF histogram of the topic profile and the calculated term

significance based on our approach. The blue bars in this figure show the TF data; the
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Table 3.1: Average precision values for each of the three methods for ranking the

search results.

AP Yahoo! miSearch Luhn-inspired vector re-

weighting

Top-10

Top-20

0.611

0.436

0.745

0.633

0.950

0.819

IllUUlUUl::
;;" ~'

Figure 3.2: Luhn-inspired vector re-weighting for the "piracy" topic profile.

red curve represents the TS value assigned to each term by the normal distribution.

Note that if two or more terms have the same TF value, they share the same rank

and are therefore assigned the same TS value.

From Table 3.1, it is clear that the topic profile employed in miSearch helps
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to improve the ranking order of the search results over the original search engine.

The Luhn-inspired vector re-weighting further improves the ability to move relevant

documents to the top of the list.

A careful inspection of Figure 3.2 can provide some insight into why this approach

works. The high-frequency terms (e.g., "pirates" and "piracy") are ambiguous and

may appear in documents that match many different senses of the query. However,

the mid-frequency terms (e.g., "attacked", "Somali", and "Somalia") are more useful

for differentiating between the desired senses of the query. As a result of re-weighting

the vector, these mid-frequency terms playa more prominent role in the re-ranking

of the search results.

This example demonstrates the promise of the Luhn-inspired vector re-weighting

approach. However, the parameters in this example were carefully selected to ensure

that the normal distribution is placed at the optimal location within the topic profile

vector. In other words, this approach works well only if the parameters are properly

selected. To overcome this limitation, an automatic algorithm for selecting these

parameters is discussed in the next section.

3.5 Automatic Parameter Selection

3.5.1 Parameter Optimization

The first step to take in the study of automatic parameter selection is to perform

parameter optimization on a set of selected queries. The purpose of this parameter

optimization is to train optimum parameters for a large number of topic profiles. The
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hope is that a certain set of parameters might be found to work well for many topic

profiles. If this is the case, then this set of parameters can be used as the default

setting for the Luhn-inspired vector re-weighting. Even if it is not the case and such

a "one size fits all" setting cannot be found, it is still possible to observe some general

rules for choosing parameters by analyzing the relationships between the optimum

parameters and the corresponding topic profiles. These observed rules may be helpful

when designing an automatic algorithm for parameter selection.

An effective technique for optimizing real number functions is Particle Swarm Op

timization (PSO) [34]. PSO is a population-based, stochastic search algorithm which

maintains a swarm of particles to conduct the process of optimization. Each particle

contains a set of real number parameters for the objective function, and these par

ticles move around in the search space guided by the best found position, which is

continually updated as better positions (judged by the fitness evaluation) are discov

ered through particles' movements. In addition, each particle also has the memory of

its personal best position and inertia of the last movement; the next movement of this

particle is determined collectively by these three components. Consequently, all par

ticles move toward and eventually converge at the global optimum, which represents

the optimum parameters for maximizing (or minimizing) the objective function.

Ten ambiguous topics were selected from the TREC 2005 Hard Track [45] for use

in these parameter optimization experiments. For each query, 50 search results were

retrieved from Yahoo! and assigned relevance scores by a panel of reviewers resulting

in ground truth relevance. Since the queries were ambiguous in nature, each search

results list contained a mixture of relevant documents and irrelevant documents. The

effectiveness of the personalization approach can be judged based on whether the
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relevant documents can be identified and moved near the top of the list after the

re-ranking process. Similar to the previous example, average precision measured over

the top-10 and top-20 documents was used to judge the quality of the re-ranked search

results lists. To facilitate the fitness evaluation, the average precision over the top-10

(AP-lO) and top-20 (AP-20) documents were combined into one single fitness value

by taking 60% AP-IO plus 40% AP-20.

Initially, ten empty topic profiles were created in the miSearch system, one for

each of the test topics. In the second step, five searches were conducted under each

topic profile, using queries that were derived from the test topic, but different than

the test query. The goal here was to mimic a user's past interest and search activity

in a topic. In each of these searches, the first five relevant documents were clicked to

update the topic profile, and the updated profile was then used to re-rank the search

results under the test query. In this way, each topic profile was updated five separate

times, resulting in a total 50 different topic profiles generated for the experiments.

A test program was implemented to facilitate the experiments. Given a set of

parameters, this test program automatically applies the Luhn-inspired vector re-

weighting to the target topic profile and directly outputs the resulting AP values

of the search results which are re-ranked by the re-weighted profile. Using this test

program, it is very convenient to test a large number of different parameters, without

anyon-screen interaction with the system interface.

All of the 50 generated topic profiles were then used in the optimization. A set

of optimum parameters was trained for each of the topic profiles using PSO with the

goal of maximizing the fitness value (i.e., 60% AP-lO + 40% AP-20). Each particle

in the PSO contained two parameters (i.e., J.L and 0'2), and the optimum parameters
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were achieved when particles converged to the global best fitness value for a given

topic profile.

Analysis of the optimization results shows that the optimum parameters (normal

distribution curves) vary considerably from profile to profile. As such, the conclusion

is that there is no "one size fits all" set of parameters for the Luhn-inspired vector re

weighting. Therefore, it is necessary for the parameters to be determined individually

according to the target profile, and this might be done by observing patterns of the

optimum mean values and variances in relation to the features of the corresponding

topic profiles. However, after reviewing the optimum parameters and their associated

topic profiles, no patterns were observed for deciding the mean values. In other

words, no general rules could be established for determining the locations of the

normal distribution curves by simply examining the optimization results.

However, patterns are observed for determining the shape of the normal distri

bution curve. While inspecting the term frequency histograms of the topic profiles

and the optimum normal distribution curves placed on top of them, a phenomenon

emerges to show that the steepness of the optimum curve is related to the shape of

the local region around the mean point in the term frequency histogram. A steep

region in the term frequency histogram often comes with a steep normal distribution

curve, and a flat region comes with a flat curve. In other words, the observed rule

for deciding the variance parameter (12 is that if the local region around the mean

point in the term frequency histogram is steep, then a low variance value (which

produces a steep curve) is needed; if the local region is flat, then it is better to have

a high variance value that can result in a flat curve. Figure 3.3, Figure 3.4, and Fig

ure 3.5 contain three examples of this pattern to demonstrate how the optimum shape
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Figure 3.3: Optimum normal distribution curve for the "international art crime" topic

profile (0'2 = 0.379).

of the normal distribution curve changes from steep to flat when the corresponding

histogram changes.

The optimization results provide little hints on deciding the location of the normal

distribution curve, but some valuable information on deciding the shape. In the

following sections, formulas for computing the location and the shape of the curve

will be established, based on information gathered from this optimization experiment,

along with other sources from the literature.

3.5.2 Determining the Location

The parameter optimization provides little information on choosing the mean value

for the normal distribution used in the vector re-weighting process. Therefore, another

52



Figure 3.4: Optimum normal distribution curve for the "radio wave and brain cancer"

topic profile (0-2 = 2.328).
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Figure 3.5: Optimum normal distribution curve for the "arrests bombing WTC" topic

profile (0-2 = 5.887).
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way has to be found to determine the location of the normal distribution curve. When

looking back to the root of Luhn's model, it is interesting to see that Zipf's Laws,

and more importantly, Goffman's theory regarding the transition region [53], provides

valuable information for this purpose.

Pao argued that the understanding of the underlying theory involved in most

automatic text indexing approaches is absent, and arbitrary decisions on cutoff points

are commonly made when selecting index words from frequency lists [53]. In order to

address this problem, he proposed that Goffman's transition region theory, which is

rooted in Zipf's Laws, provides a theoretical basis for automatic selection of indexing

words.

As discussed in Section 2.3.3, Goffman's transition theory states that a region

of content-bearing words could be identified for a given text. This region is situ

ated between the high-frequency words described by Zipf's First Law [78] and the

low-frequency words described by Booth's revision of Zipf's Second Law [9]. Pao

formalized this theory into a simple equation for calculating Goffman's transition

region:

n=(-1+~)/2; (3.2)

where n is the frequency of the word that is located at the centre of Goffman's

transition region, and II is the number of the words that only appear once in the

target text. Using this equation, one can easily identify the words around Goffman's

transition region, which are considered the terms that have the highest resolving

power.

Poo's equation for determining Goffman's transition region is employed to de-

54



cide the mean value for the normal distribution used in the Luhn-inspired vector

re-weighting approach. Given a topic profile, the number of terms that occur only

once (i.e., II) is counted within the topic profile vector, and used in Equation 3.2 to

calculate the frequency value n. The term in the profile that has the nearest frequency

value to n is selected as the centre of the transition region, and its rank is used as

the mean value. This selected term is called the "mean term". It is possible to have

multiple terms in the profile that have the same frequency value which is nearest to

n, but this does not affect the mean value because these terms all share the same

rank (same frequency results in same rank). Even though stop word removal is being

performed in the creation of the source topic profile, this does not have an effect on

the calculation of Goffman's transition region since its selection is based on selecting

the term that is nearest to a calculated frequency (rather than counting within the

ranked list of terms).

3.5.3 Determining the Shape

The shape of the normal distribution is an important feature in performing Luhn

inspired vector re-weighting. Within the probability density function that is llsed to

calculate the normal distribution, the shape is controlled by the variance parameter

a2
, which is the square of the standard deviation a of the distribution. Increasing

a makes distribution flat and broad; decreasing a makes the distribution steep and

Whether it is better to have a flat and broad or a steep and narrow normal dis

tribution depends upon the features of the histogram near the mean term. This
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phenomenon was observed in the parameter optimization, and could be further ra-

tionalized by the fact that the mean term represents the center of the region of

content-bearing terms according to Goffman's theory. Therefore, if there are many

other terms near the mean term that have similar values, then a high (J value is de-

sirable since it will flatten the distribution to include these terms that have a similar

frequency (i.e., a broad transition region). On the other hand, if the terms nearby

have very different TF values, then it may be better to have a low (J so that the

distribution is narrowly focused on the mean term (i.e., a narrow transition region).

The slope of the histogram at the mean term can be estimated numerically using

central difference formulas [11]. The 5-point central difference formula is given below:

s = I - f(x + 2h) + 8f(x + ~~~ 8f(x - h) + f(x - 2h)1 (3.3)

where s is the approximated slope at the mean term, x is the rank of the mean term,

and h is the ranking difference between any two terms on the histogram (always 1 in

our case). f(x - h) and f(x + h) are the frequency values of the terms immediately

before and after the mean term, respectively. Similarly, f(x - 2h) and f(x + 2h)

indicate the frequencies of the terms located two ranks before and after the mean

term.

In order to reduce the estimation error in the slope calculation, this 5-point central

difference formula is used whenever possible (i.e., x > 2). However, it cannot be

calculated if the mean term is located at the second or first terms in the TF histogram.

If there is only one term located before the mean term (i.e., x = 2), the 3-point central

difference formula [11] is used:

f(x - h) - f(x + h)
s= 2h
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For the rare case that the mean term is the first term (i.e., x = 1), the 2-point forward

difference formula [11] is used:

s = f(x) - ~(x + h) (3.5)

There is a difficulty with using this numerically estimated slope within a finite

calculation: it has an unlimited range of values. Since ordered histograms are always

monotonically decreasing, the slope is limited to the range (0,00). If the data in the

vicinity of the mean term are very similar to one another, then the slope will approach

0; if the data in this region are very different, then the slope will be a large number

(potentially approaching infinity). This range of values is hard to deal with when the

slope s is used to calculate the standard deviation a of the normal distribution.

This problem is addressed by calculating the angle of the secant line within Eu

clidean space. The angle Bcan be calculated by the following formula:

B= arctan(s) (3.6)

Since the slope s is within the range (0,00), the angle B will have a range (0,71"/2),

measured in radians. That is, when the slope is near zero, the secant line will be

nearly horizontal and the angle of the line will approach B = 0. As the slope of the

line grows larger, the secant line gets steeper and may become nearly vertical. In this

case, the angle of the line will approach B= 71"/2 (i.e., 90 degrees).

Using this angle B, the standard deviation a can be calculated using the following

formula:

a=a+b/B (3.7)

where a and b are two tuning parameters that can be used to control the minimum

value and the rate at which a changes as a result of a change in B. A large B indicates
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a steep slope, resulting in a low standard derivation that produces a narrow normal

distribution around the mean term. A small e indicates a flat slope, resulting in a

high standard deviation that produces a broad distribution around the mean term.

Note that in some rare cases, it is possible for e to be equal to 0 and this will make

Equation 3.7 illegal. In this case, a is directly set to 10, which will result in a very

flat distribution curve.

Once the standard derivation a is generated from e, the variance a2 can be easily

computed by taking square of a. This variance a2 could then be used, along with the

mean value j.t, to form the normal distribution curve that re-weights the target term

As illustrated above, the only information required for performing the automatic

parameter selection is the target term vector itself (note that the tuning parameters

a and b are optional and could be set with default values). The features within the

target vector are used to determine the mean value j.t and variance a2 of the normal

distribution curve used in the proposed Luhn-inspired vector re-weighting approach.

Therefore, given a term vector, the proposed approach is able to automatically de

cide the re-weighting parameters and perform the re-weighting, without any extra

knowledge other than the information already contained in the target vector. This

feature makes the proposed approach very flexible for adapting to applications with

vector-based models in different contexts, since there is no contextual information

needed for conducting the re-weighting on the target vector-based models.
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3.6 Discussion

Inspired by Luhn's model, a vector re-weighting approach was proposed in this re

search in order to improve the vector-based models used in Web search personaliza

tion systems. In this chapter, details about this approach were given to answer this

research question: how can Luhn's model be adopted for Web search personalization?

The first part of this research question is about how Luhn's work can be formalized

in the context of Web search personalization. In order to address this question, Luhn's

model was modified and implemented through three steps: first, the two cut-offs used

in Luhn's original work were discarded because of the common practice of using stop

word removal in Web search personalization systems. Second, a formula based on the

normal distribution density function was given to implement the vector re-weighting

by placing a normal distribution curve on top of the term frequency histogram of the

target vector. Third, two crucial parameters in the formula, the mean value J.I- and the

variance (72, were identified as the adjustable parameters to control the performance

of the re-weighting.

After the approach has been formalized, the second part of the research question

asks if there is a set of parameters for this approach that could work well for many

vector-based personalization profiles. This question was addressed through parameter

optimization experiments, the results of which showed that the answer to this question

is no. There is no "one size fits all" setting of the parameters that could be used

everywhere. Instead, the parameters should be decided individually according to the

features of the target personalization profile.

Although this research failed in the effort to find a global set of parameters, the
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parameter optimization experiments provided valuable information on how to use the

features within the term frequency histogram of the target profile to decide the shape

of the normal distribution curve used in the re-weighting. Using this observation,

along with Goffman's transition region theory, formulas were established to calculate

the mean value J.L and the variance (J2 dynamically based on the features of the target

profile. This algorithm of automatic parameter selecting provided answers to the

final part of the research question about how the features within the personalization

profiles could be used for tuning the parameters, and makes the proposed vector

re-weighting approach flexible and easy to implement. In fact, with this automatic

parameter selection algorithm, the re-weighting process can be automatically applied

to the target personalization profiles to improve the personalized rankings, without

any extra user effort beyond what is already required by the baseline personalization

framework.

As Luhn's model succeeded in selecting significant terms for automatic abstract

creation, it is reasonable to expect that this Luhn-inspired vector re-weighting ap

proach could also achieve success in refining the vector-based personalization profiles

and improving the performance of Web search personalization. The example pro

vided in this chapter demonstrated. the promises of this approach on improving the

re-ranking quality of the baseline personalization system once the parameters are

properly selected. Moreover, the automatic algorithm for selecting parameters was

built based on the sound theoretical foundation of Goffman's transition region theory,

and was designed to be tunable. There are reasons for believing that this automatic

algorithm can work well and will produce high quality parameters. However, it is not

expected that these system-generated parameters could match the optimum param-
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eters generated one by one using PSG in the parameter optimization process (Note

that this parameter optimization requires the knowledge of the relevance of docu

ments, which is not present for generalized Web search. As such, using this approach

to tune parameters is not feasible in the general case, and that is why an automatic

algorithm is needed to tune the parameters based only on the features of the term

frequency histogram). The goal for the system-generated parameters is that they

can produce satisfactory re-weighting results based solely on the topic profiles, rather

than on supplemental information that mayor may not be reasonable to collect.
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Chapter 4

Prototype Implementation

In this chapter, a prototype for studying and evaluating the Luhn-inspired vector re

weighting is presented. The design, architecture, and user interface of this prototype

will be discussed in the following sections.

4.1 System Design

Based on the miSearch system [30], a prototype has been built in order to study the

Luhn-inspired vector re-weighting approach and to conduct evaluation experiments.

Specific prototype design goals are listed as follow:

• Focus on studying the approach. The prototype was built in the early stage of

this research and continually updated while the research progressed. One main

function of this prototype is to implement new ideas and verify their outcomes,

especially in the study of the automatic parameter selection. Therefore, the pro

totype was designed to make it easy to manipulate the re-weighting parameters,
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visualize the re-weighting results, and output the judgments of the re-ranking

quality.

• Facilitate the evaluation. For a large-scale evaluation, it is not feasible to pre

pare test data and conduct experiments merely through manual interactions

on interfaces. The prototype provides functions to automatically (or semi

automatically) generate the test data, run the experiments, and output the

evaluation results.

• Add TF*IDF feature. The original miSearch system only employs a TF scheme

for modeling the personalization profiles, and thus could be further improved by

adding a TF*IDF based approach on profile modeling. Moreover, the evaluation

can be more comprehensive and valuable if the proposed re-weighting approach

is compared not only to the TF scheme, but also to the TF*IDF scheme.

• Do not break the original architecture and workflow of miSearch system. The

vector re-weighting and TF*IDF are designed as add-on features to the original

miSearch system. The method for keeping the topic profiles independent of one

another and for collecting the information for populating the topic profile based

on clicked search results remains unchanged within the prototype.

• Light-weight implementation. The prototype minimizes the modification to the

original miSearch system, and reuses the existing code as much as possible.

• User-friendly interface. In this prototype, the user interface is not designed for

the end users (it is too complicated for the end users), but for the researcher to

study the approach. The purpose is to support the researcher to switch between
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different approaches and manipulate the parameters conveniently.

4.2 Architecture

4.2.1 Platform

The prototype is integrated into the miSearch system, which is a standard Java

Web application built on Java Development Kit 1.6. The system is developed using

NetBeans as the integrated development environment, and GlassFish as the Web

application server. MySQL is used to manage the topic profile database, as well as

the user accounts.

4.2.2 System Architecture

The system architecture of the prototype is shown in Figure 4.1. Since this prototype

is built on the existing miSearch system, this architecture includes the structure of the

original miSearch system, as well as the new modules developed specifically for this

research. These two parts are distinguished by different colors. The general workflow

and the relationship between modules will be outlined here; more details about the

design and implementation of the new modules will be given in the next sections.

After logging into the system, the user can create a new search topic or select

an existing one and issue a search query. This query is passed to the search results

generator, which generates a ranked list of search results using the Yahoo! search

engine. If the search query is a new query, the search results generator also stores

the first page of the returned search results into a local search results cache, so the
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Figure 4.1: System architecture of the prototype. The modules marked in blue color

are new modules developed for this research.

generator can directly fetch the search results from the cache if the same query is

issued again. The search results are then sent to the personalized re-mnking module,

which re-ranks the search results according to the similarities between the search

results and the current topic profile. Finally, the re-ranking results are presented in

a re-ranked list of personalized search results.

The heart of the prototype is the topic modeling module. This module models

topic profiles that represent the user's interests and preferences within specified search

topics; these topic profiles are used to determine how the search results should be re

ranked. A click monitor watches the user's behavior of clicking the documents in the
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results list, and exacts information from the title, snippet, and URL of the clicked

documents to generate/update the topic profiles. The topic profiles can be modeled

using different approaches. The TF approach is used in the original miSearch system;

the TF*IDF, TS, and TF*TS approaches are newly added to this prototype for

this research. More details about the new approaches will be given in the following

subsections.

The PSG module and the evaluation module are designed not as features of the

prototype, but as tools to facilitate this research. The main functions of these two

modules will be introduced later in this section.

4.2.3 TF*IDF Approach

TF*IDF [74] is a classical weighting scheme in information retrieval. For each term t

in a given document d, the TF*IDF weight is calculated by multiplying the frequency

of the term t in document d by the inverse document frequency (IDF) of t:

TF * IDF(t,d) = TF(t,d) * IDF(t)

The IDF aspect of this formula is calculated as follows:

I DF(t) = log ~~(It)

(4.1)

(4.2)

where IDI is the total number of documents in the corpus from which the document

d is retrieved. DT(t) is the number of documents in the corpus D in which the term

t appears. Essentially, TF*IDF gives high weights to the terms that have a high

term frequency (in the given document) and low document frequency in the whole

collection of documents, and low weights to the common terms that appears in many

documents.
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Applying TF*IDF in the context of Web search personalization is always a chal

lenge. The main difficulty is that the calculation of IDF requires knowledge about

the entire corpus of the documents, and this corpus is the entire Web in the context

of Web search personalization. While Web search engines likely have access to this

information, they do not make it available through their search APIs. As such, for

a search mechanism built upon the API of the top search engines, it is not feasible

to calculate a global IDF for Web search results using the entire Web because of its

incredible size. While some may argue that it is possible to conduct a separate Web

search for each term or stem that makes up the personalization vector or document

vector to get the document frequency, these vectors may have a very high dimension

ality making this approach rather expensive with regards to network resources, Web

search service resources, and the time taken to make the calculations.

Another approach is to estimate IDF using a subset of the Web. This subset

could be an existing collection of Web documents as used in [40], or a set of search

results retrieved by the current query [32][44]. A collection of Web documents could

better mimic the size of the Web, but it might be out of date and may not provide

an accurate sample of the current Web. On the other hand, using the current search

results as the corpus can avoid the extra efforts on accessing and maintaining an

external collection, and makes use of the search results data that is already at hand.

In this prototype, a subset of current search results is used to calculate the

TF*IDF. When the click monitor notices a document in the search results list has

been clicked, it passes this document, along with the current page of search results

(100 search results per page by default), to the TF*IDF approach module via the

topic modeling module. The terms in the clicked document are extracted and TF
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values for the terms are calculated. Next, for each term, the number of documents

that contain this term is counted by searching the term in the collection of documents

(i.e., 100 documents in the current page of search results). Note that by using more

documents, the accuracy in estimating IDF can be increased, but the trade-off is that

more information has to be processed. The results are then stored into the database

as the TF*IDF profile in the format of < Term, T F, DT, IDI >, in order to keep the

raw data for calculating TF*IDF available. This is done since two TF*IDF vectors

cannot be simply added when new documents are clicked. In the case of updating the

TF*IDF profile, the TF, DT, and IDI values for the same term in the original profile

and in the newly clicked document are added respectively. These updated values are

then used to re-calculate the new TF*IDF weights for the terms in the profile using

Equation 4.1 and 4.2.

When the user chooses to re-rank the search results based on TF*IDF, the TF*IDF

profile is passed to the personalized re-mnking module. This module converts the

documents in the results list into TF*IDF document vectors (note that it is different

from TF, TS, and TF*TS approaches, where the results document are converted into

TF vectors) following a similar procedure as generating the TF*IDF vector from the

clicked document, but without the step of storing the raw data into the database

(since the document vectors will not be updated). Each of the document vectors is

then compared to the profile vector and a similarity score is calculated using Pearson's

correlation coefficient [27]. Based on the similarity scores, the documents in the search

results list are re-ordered in a descending order of similarity, resulting in a personalized

search results list based on TF*IDF modeling.
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4.2.4 TS Approach

As described in Chapter 3, The TS approach is one of the two ways to model topic

profiles using Luhn-inspired vector re-weighting. Two re-weighting parameters (j.t and

(72) are required for this approach to perform the re-weighting. These parameters can

be input manually, or generated automatically by the automatic parameter selection

module given the tuning parameters (a and b). In both cases, the approach talks

to the database first to fetch the current TF profile, and then re-weights the terms

in the profile vector using the term significant (TS) values calculated based on the

re-weighting parameters and the features of the TF histogram generated from the

TF profile. The re-weighted topic profile is then sent to the personalized re-ranking

module, which converts the result documents into TF vectors and compares them

to the re-weighted profile (TS vector). Note that another alternative would be to

re-weight each document vector using this same Luhn-inspired approach; however, it

is expected that due to the sparseness of these vectors, the accuracy in choosing the

location and shape of the normal distribution may not be as good as with the more

robust topic profile vectors. Next, similarity scores between the profile vector and

document vectors are calculated using Pearson's correlation coefficient [27]. According

to the similarity scores, the search results are re-ranked to form the personalized search

results list.

For the TS approach, the results of the re-weighting can be visualized through

the re-weighting visualization module. Both the original profile and the re-weighted

profile are passed to this module. Using the TF values in the original profile, the re-

weighting visualization module generates a term frequency histogram where the terms
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are ranked in descending order of term frequency. Based on the re-weighted profile, a

normal distribution curve is placed on the top of this term frequency histogram, which

represents the re-weighting results of the profile vector. The visualization offers an

intuitive way to look into the mechanism of the re-weighting in action, and provides

a clear picture to show how the re-weighting helps to improve the original profile.

Moreover, through the visualization, it is straightforward to see the changes to the

re-weighting results while tuning the parameters, which provides valuable information

for studying the parameters in this research.

4.2.5 TF*TS Approach

TF*TS approach is an alternative method to refine topic profiles using Luhn-inspired

vector re-weighting. The re-weighing process is almost identical to the TS approach,

except that the new weights assigned to the terms in the profile vector are calculated

using the product of term frequency (TF) and term significance (TS), resulting in

a TF*TS scheme instead of using TS alone. In this case, the re-weighted profile

is a TF*TS vector, and personalized ranking results can be produced via similarity

calculation between this TF*TS vector and the TF document vectors.

Similar to the TS approach, the TF*TS approach can be visualized via the re

weighting visualization module. Compared to the TS approach, the visualization of

TF*TS may have a different normal distribution curve placed on the same term

frequency histogram, representing the weights assigned to the profile vector by the

TF*TS approach.
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4.2.6 PSO Module

As mentioned in Chapter 3, the PSG module is mainly used to optimize the re

weighting parameters for the study of the automatic parameter selection, but it is

also employed as a tool to optimize the tuning parameters in the evaluation for this

research. More details about the role that PSO plays in the evaluation will be provided

in the next chapter.

4.2.7 Evaluation Module

The evaluation module helps to prepare the test data, conduct the evaluation ex

periments, and organize the evaluation results. In this module, a cache-generating

program converts the documents in the test data collection into the local cache format

that can be recognized by the miSearch system. An evaluation program that accesses

the search result documents in the cache and topic profiles in the database conducts

the experiments automatically and outputs the evaluation results in metrics of preci

sion and average precision. A Microsoft Excel template takes the evaluation results

and organizes them into tables and charts dynamically, providing intuitive views of

the evaluation results.

4.3 User Interface

As a typical Web application, the prototype employs an interface that interacts with

the user via Web pages that are generated by the server and viewed via a Web

browser. The Web-based interface is constructed using standard JSP and JavaScript

techniques, and is designed to provide convenient and informative interactions to the
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researcher (and perhaps expert users). In the next sections, the user interface of

the prototype will be introduced in detail, and the focus will be on the new features

developed in this research.

As previously mentioned, the user interface of this prototype is not intended to

be used by the end users, but by the researcher in this study. As will be illustrated

in the following sections, many features of the interface are designed for experimental

purposes: the approaches for modeling the topic profile can be switched from one to

another; the new approaches can be turned on and off; parameters can be adjusted

and manipulated; evaluation information can be displayed. If the end users are given

this level of control, it would be too complicated for them to understand and use this

system. Therefore, in the following sections, the term "researcher" will be used to

refer to the user of this prototype, in order to avoid misunderstandings.

4.3.1 The Main View

The main view of the prototype is shown in Figure 4.2. There are three main compo

nents in this view: the left panel provides main functionality for selecting, managing

and re-weighting user-defined search topics, and a switch for choosing the re-ranking

and re-weighting modules. The centre panel is the place where the researcher can

input the search query, conduct the search, and review the search results. The right

panel offers a tag cloud to visualize the selected topic profile, and a re-ranking eval

uation tool to display the precision and average precision values calculated based on

the top-10 to top-50 search results.

In this main view, the researcher can select an existing search topic and conduct
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Figure 4.2: The main view of the prototype.

related searches, or create new topics and issue new queries. In either case, the

topic profile will be populated while the researcher clicks on the documents that

are considered relevant in the search results list. The changes of the profile will be

visualized by the tag cloud, and will affect the ranking of the search results once the

page is refreshed. The researcher can also try the new features that are listed in the

left side of the view, to re-weight the topic profile for better ranking results, or choose

the model used to re-rank the documents. Note that the display of the relevance

score, similarity, and re-ranking evaluation in this view is for research purposes and

could be turned off when the system is used by a real end user.

73



*isearCh

africa .""". "n,.

exhibition he pro..
glltedge Info Information

parks routeschooll

south ........ lours

1ouCh,t,flQA.c~__tion,""_SouIhAflic.Tl''''''loulhAll'lw
Hot*IoulhAAtcaAcc-utllnIouChAflic.Tr...... ..,...
~So\lItl.o\tk.lridl....-V-.cOlllIoulhAlllc."'"-...1ion
.-r'IMulhIoMu",_MlIteuntrylml..,IoulhAMc•
..'.. DeyTCMlllldo.yT.... IOUfH,vIUCANAIlCH .... _

~~:';:"-~W£DDINlOa

travel venues _'0m
wlklpedla

Figure 4.3: The view of manual re-weighting.

4.3.2 Manual Re-Weighting

From the main view shown in Figure 4.2, the researcher can test the Luhn-inspired

vector re-weighting feature by manually inputting the re-weighting parameters (mean

value J.t and variance (/2) and clicking on the "Reweight" button. Figure 4.3 shows the

view after manual re-weighting is performed. Note that the documents are re-ranked

and the precision and average precision values are changed in this view.

The researcher can also visualize the re-weighting by clicking on the "Visualize"

button. The re-weighting parameters are still required in this case. As mentioned

previously, the re-weighting visualization module provides a term frequency histogram

to visualize the topic profile, and a normal distribution curve that represents the re-

weighting result. An example of the visualization is given in Figure 4.4.

74



africa .",,", .rr,••

i:
il:25

~:

~~~'~"~~~'''~*~~O?/~~~.f';~7'o~##':,~¥
"'~/ .fI ~ ~~ll'~ ~7

TopIcVeclor

!.TefmFt Y+TEllmSQiflcance!

Figure 4.4: An example of re-weighting visualization.
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Figure 4.5: The view of TF*TS re-weighting.
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In the manual re-weighting, TS is used as the default re-weighting method. How

ever, the researcher could conveniently switch to TF*TS method by selecting it in the

radio button. Once the TF*TS method is selected, a click on the "Reweight" button

will produce a ranked list of search results based on the TF*TS re-weighted topic pro

file, and the visualization will also be changed accordingly. Figure 4.5 demonstrates

how the ranking of documents is changed when the TF*TS method is employed, even

with the same re-weighting parameters.

4.3.3 Automatic Re-Weighting

Besides re-weighting the topic profile manually, another option is to let the system

automatically generate the re-weighting parameters. The researcher may try to tune

the algorithm using the two tuning parameters, or simply keep the default tuning

values (a = 0.1 and b = 1) and click on the "AutoReWeight" button to view the re

weighting results based on the automatically generated parameters. Figure 4.6 shows

the view of the automatic re-weighting.

After the automatic re-weighting is performed, the parameters generated by the

system are automatically input into the manual re-weighting control panel. There

fore, the researcher can clearly know what the system-generated parameters are, and

have the opportunity to further tune these parameters to re-weight the profile. Also,

the researcher can visualize the automatic re-weighting result by clicking on the "Vi

sualize" button using system-generated parameters.
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Figure 4.6: The view of automatic re-weighting.

4.3.4 TF*IDF Re-Ranking

As an option, the researcher may choose to re-rank the search results using TF*IDF

modeling. In order to do so, one can simply select TF*IDF in the radio button and

click on "Re-rank" button. The re-ranking results are shown in Figure 4.7.

In Figure 4.7, note that the search results are ranked by TF*IDF in a different

order compared to the TF re-ranking shown in Figure 4.2, and thus produce different

precision and average precision values. In addition, when the TF*IDF modeling is

selected, the features that only work for TF modeling, such as the profile re-weighting

and the tag cloud visualization, are disabled and hidden in the interface. This results

in a very different view, which provides strong cues for the researcher to distinguish

the TF*IDF re-ranking from the default TF re-ranking.
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4.4 Discussion

In this chapter, the design, architecture, and user interface of a prototype for studying

the Luhn-inspired vector re-weighting are presented. This prototype is implemented

based on the existing miSearch system, and benefits the study and the evaluation of

the proposed approach in this research.

The prototype is a faithful implementation of the proposed Luhn-inspired vec-

tor re-weighting. As proposed, the re-weighting parameters playa key role in both

of the manual re-weighting feature and the automatic re-weighting feature to deter-

mine the re-ranking results. Moreover, the correctness of the implementation of the

re-weighting algorithm and the automatic parameter selection algorithm can be ver-
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ified by the re-weighting visualization and the explicitly displayed system-generated

parameters.

The prototype helps the study of the proposed approach. The real time precision

and average precision calculation provides a quick judgment of the re-weighting re

sults, and the re-weighting visualization unveils full details of the re-weighting mecha

nism. With these two handy tools, it is very convenient to manipulate the parameters

to see the changes through manual re-weighting or automatic re-weighting, and more

importantly, understand why and how these changes of the parameters affect the

re-weighting results.

The prototype helps the evaluation of the proposed approach. Through the ded

icatedly designed evaluation module, the prototype offers useful tools for preparing,

conducting, and organizing the evaluation experiments. These tools ease the work

load of the experiments, and allow a large-scale evaluation of the proposed approach

to be possible. Also, the newly added TF*IDF modeling offers a new dimension for

comparing the re-ranking results in the evaluation, thus making the evaluation more

comprehensive.

The implementation also meets other design goals. The new features are inte

grated into the existing miSearch system in a non-intrusive manner, and the newly

designed user interface is helpful for assisting the researcher to experiment with the

new features and manipulate the parameters.

In conclusion, the implementation of the prototype verifies the feasibility of the

proposed Luhn-inspired vector re-weighting approach and provides new features that

enhance the existing miSearch system. More importantly, this prototype helps to

answer the research questions by providing valuable assistance for the study and
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evaluation of the proposed approach.
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Chapter 5

Evaluation

An experimental study was conducted to evaluate the effectiveness of the Luhn

inspired vector re-weighting approach. The methodology, settings, and results of this

evaluation are presented in this chapter. The key question to be answered through

this study is whether the proposed approach is indeed an improvement over the rank

ing order of the original search results, the existing baseline TF approach, and the

commonly used TF*IDF approach.

5.1 Methodology

In the evaluation, the main goal is to compare the ranking orders of search results

produced by a search engine, to that of the miSearch system (TF approach), the

TF*IDF approach, and the Luhn-inspired vector re-weighting approach proposed in

this thesis. In order to do so, it is necessary to have a dataset which contains a corpus

of documents, a query set that defines queries for the search engine to generate search

results from the data set, and relevance judgment scores for each search result to
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determine whether it is relevant or irrelevant to each query.

Since miSearch employs Yahoo! as its default search engine, one possible solution

is to choose a set of queries to perform searches on the Yahoo! engine, and have a

panel of reviewers assign relevance scores to the search results, as in [30]. However, it

is not feasible to assign relevance scores in this way when the number of queries and

the number of documents retrieved under each query exceed the abilities and time

limitations of the reviewers. Moreover, if others want to replicate the experiment with

the same queries, it may not be possible to reproduce the exact evaluation results for

two reasons: first, Yahoo! is a live search engine that will produce different search

results over time as the Web is constantly changing. Second, the relevance scores

provided by a different panel of reviewers for a different set of search results may not

be consistent with the first.

In order to address the difficulties mentioned above, a well-recognized test col

lection was used to conduct the evaluation. A test collection consists of a large col

lection of documents, a set of queries, and corresponding relevance judgments made

by a group of experts for the documents that relate to each of the queries. For this

evaluation, the test queries can be selected from the provided query set, and used

to conduct searches on the document corpus. In this way, relevance scores for the

search results can be obtained easily and objectively from the relevance judgments

provided by the test collection. Employing such test collections is a common evalua

tion methodology within information retrieval research, since it makes the evaluation

reproducible due to the fact that the document collection, query set, and relevance

judgments are published, fixed, and accessible to the research community.

Every year, the Text REtrieval Conference (TREC) [47] provides large-scale test
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collections for the information retrieval community, in the form ofTREC Tracks [481.

The TREC 2010 Web Track [46] is one such track provided in 2010 that focused on

evaluating Web retrieval technologies. Since it fits well into the purpose and context of

this thesis, this test collection was employed to conduct experiments in the evaluation.

The dataset used in the TREC 2010 Web Track is the ClueWeb09 Dataset [35].

This dataset consists of 1 billion Web pages, in ten languages, collected in January

and February 2009. Since this research does not address issues with multi-lingual

Web search, a subset of this dataset was used, namely TREC Category B, which

contains 50 million English Web pages.

The TREC 2010 Web Track provided 50 queries for the competition. According

to the official guideline [14], queries are categorized as either ambiguous or faceted.

Ambiguous queries have multiple distinct interpretations, and a user interested in

one interpretation would not be interested in the others. On the other hand, faceted

queries have different aspects covered by the subtopics, and a user interested in one

aspect may still be interested in others. Since disambiguation is the main power of

Web search personalization, only these ambiguous test queries were selected for use

in this evaluation.

For each of the queries, the TREC 2010 Web Track provides relevance scores for

the documents that can normally be retrieved by this query from the test collection.

In the experiments, if a given document retrieved by the underlying search engine

cannot be found in the relevance judgments under the corresponding query (different

search engines may produce different search results under the same query, and some of

the retrieved documents may not be listed in the reievancejudgments), this document

was considered irrelevant to the query. The relevance judgements were provided on a
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six-point scale (from -2 to 3) to show the extent to which the document is relevant.

However, for the purpose of this evaluation, it is enough to just have a binary judgment

that determines a document to be either relevant or irrelevant to the intents of the

search query. Therefore, the original six-point scale relevance scores were translated

into relevant if the score is larger than zero, or irrelevant if the score is less or equal to

zero in this evaluation. That is, for this evaluation, any degree of relevance is deemed

to be sufficient to consider the document a good document for the query.

In order to conduct the evaluation, a search engine is needed to retrieve the

documents from the document collection according to the input query, and provide

an initial ranking of the search results. Such a search engine [57] is provided by the

creators of the Clue Web09 Dataset, based on the Lemur toolkit [58]. For each search

query, this search engine can return up to 1000 search results in a ranked order.

The information extracted for each of these search results are the title, snippet, and

URL. Also, there is a unique document ID for each result document that can be

used to identify the corresponding relevance judgment. In this evaluation, a search

for each of the ambiguous test queries was conducted using this search engine. For

each of the search results sets, the documents were matched to the relevance scores

provided by the TREC 2010 Web Track, and locally cached for use in the evaluations.

In this process, a complication arose, which was that some search results contain

embedded JavaScript and CSS elements in the snippets. It seems that the search

engine has difficulty stripping them out properly. As a result, a manual data cleaning

was performed for the documents that were used within the experiments after the

search results were stored in the local cache.

Once the test data was prepared, the experiments started with a training phase of
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the topic profiles. In the beginning of the training phase, topic profiles were created

in the prototype for each of the test queries. The topic profiles were then updated

by clicking on the first 20 relevant documents (judged by the provided relevance

judgments) that appear after the top-IOO documents in the ranked search results list.

The assumption here is that these relevant documents that are deep in the results list

(after top-IOO) would not normally be considered by a searcher for the given query

(since they are not at the top). However, these documents could appear among the

top search results and be viewed if the searcher conducts related searches with similar

queries. Therefore, using these documents to populate the topic profiles is intended

to mimic a searcher's past search activity for a topic. Note that in the training phase,

although only the top-IOO search results and the following first 20 relevant documents

were used, it was necessary to cache all search results returned by the search engine

for each query because training the TF*IDF profiles needs not only the information

of the relevant document that is being clicked, but also the information about the

surrounding documents of this relevant document on the same page (as described in

Section 4.2.3).

After the topic profiles were trained, the experiments entered the evaluation phase.

Here, the top-IOO documents returned by the search engine for each test query were re

ranked using different methods. The re-ranking results were then compared using the

evaluation metrics calculated based on the relevance scores of the documents. Note

that none of the documents used in the training phase were used in the evaluation

phase, since the evaluation occurred only over the top-IOO documents.

Both precision and average precision [6] measured over the top-10 and top-20

documents were used as the evaluation metrics (i.e, P-IO, P-20, AP-1O and AP-20).
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The formula for calculating precision is as follow:

P = number of relevant documents
number of retrieved documents

The formula for calculating average precision is given below:

AP = L~=l(P(r) x rel(r))
number of relevant documents

(5.1)

(5.2)

where r is the rank in the list of retrieved documents, n is the number of retrieved

documents, P(r) is the precision measured over top r documents in the list, and

rel(r) is a function that equals to 1 if the item at rank r is a relevant document, or

ootherwise.

Precision is simply the ratio of relevant documents to the total documents retrieved

(10 and 20 for the experiments). Average precision provides a score that not only

takes into account the relevance of the documents, but also their placement within

an ordered list. This metric provides a measure of the quality of the ranked search

results list, indicating the extent to which the relevant documents are placed in the

high positions in the list. Also, average precision is sensitive to small changes in the

ranking. A single exchange of ranks between a relevant document and a irrelevant

document will change the final average precision score, but will not have an effect

on the precision score as long as this exchange is within the scope that the precision

is calculated. As such, average precision is a better metric than precision. In the

evaluation, average precision was used as the primary metric because of its advantages

over precision. However, one of the difficulties with average precision is that it can

report a high score even if the precision is low (i.e., when there are a small number of

relevant documents, but they are at the top of the list). As such, precision is needed
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as a supporting metric to be reported together with average precision so that such

special cases can be identified.

Six different re-ranking algorithms were evaluated against each other and in com

parison to the original ranked order of the search results in these experiments. The

TF approach represents the method employed in the original miSearch system. The

TF*IDF approach follows the classical IR approach to improve TF weighting. The

TS approach is a result of performing the Luhn-inspired vector re-weighting method

proposed in this thesis. As an alternative to replacing the TF vector values with TS

values, the fourth approach under investigation scales the TF values by the TS factor,

resulting in a TF*TS approach.

For the TS and TF*TS approaches, two tuning parameters (i.e., a and b) are

needed in Equation 3.7 for performing the automatic parameter selection (as described

in Chapter 3). One may argue that the algorithm is not truly automatic since these

two parameters have to be tuned. However, as mentioned previously, the tuning

parameters are optional and can be set with default values (a = 0.1 and b = 1.0). In

order to evaluate the tunability of the Luhn-inspired vector re-weighting approach,

the untuned re-weighting results will be reported in comparison with the re-weighting

results produced by performing tuning on the parameters a and b. These tuned

versions of TS and TF*TS represent the fifth and sixth re-ranking algorithms.

5.2 . Test Queries

Although 27 queries are provided in TREC 2010 Web Track under the ambiguous

category, not all of them can be used as test queries in these experiments. Since 20
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relevant documents after top-lOO documents are used to populate the personalization

vectors in each of the topic profiles, the test collection has to contain at least 20

relevant documents after the top-lOO documents for each test query. Also, there

must be a sufficient number of relevant documents in the top-lOO documents (at least

three relevant documents), otherwise it might be difficult to differentiate and compare

the performance of the different re-ranking approaches. 17 of the ambiguous queries

did not meet these criteria, leaving 10 test queries for use in these experiments (see

Table 5.1).

After calculating the AP-lO values of the original ranking for each test query,

two queries were removed from the 10 test queries: the topics "ct jobs" and "bart

sf". These two topics were excluded from the experiments because they both have

very high average precision within the order of the search results provided by the

underlying search engine (AP-lO > 0.8). This high average precision means that the

search engine produced an outstanding ranking order of the search results, indicating

that the query may not be as ambiguous as the creators of the test collection intended.

Also, an outstanding original ranking order leaves little room for further improvements

made by the personalized re-ranking approaches. Therefore, in the evaluation, these

two queries were discarded, resulting in 8 test queries remaining.
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Query

Table 5.1: Test queries. Selected from TREe 2010 Web Track "ambiguous" queries.

Description

After Top-lOO

OriginalAP-IO

52 1 avp I Find information about events sponsored by AVP, the Association of Vol- 1 20

leyballProfessionals.

~

571ctjobs

63 1 flushing

80 I keyboard reviews

82 I joints

86 1 bart sf

Find information about jobs in Connecticut.

Find information about Bellevue, Washington.

Find information about Flushing, a neighborhood in New York City.

Find dealers that sell or rent Bobcat tractors and construction equipment. 120

Find reviews of computer keyboards.

Find information about joints in the human body.

Find information about the BART (Bay Area Rapid Transit) system in San I 20

Find recipes for rice.

Find information about the history, culture, and geography of South Africa. 126



Certainly it would have been better to have more queries upon which to base

the evaluation experiments. However, while the low number of the test queries may

reduce the reliability of the statistical analysis of the results, it is expected that a

pattern of performance can still be identified in the evaluation, with respect to the

different personalized re-ranking approaches under investigation.

5.3 Hypotheses

This evaluation is aimed to explore how the proposed Luhn-inspired vector re-weighting

approach improves the performance of the baseline system, and how the different

settings affects the behavior of the proposed approach. The benefit of integrating

Luhn-inspired vector re-weighting into a Web search personalization system will be

measured from the following aspects:

• Effectiveness

Hypothesis 1: Compared to the original ranking, both TS and TF*TS ap

proaches will produce better ranking orders of the search results.

Hypothesis 2: Compared to the TF (miSearch) ranking, both TS and TF*TS

approaches will produce better ranking orders of the search results.

Hypothesis 3: Compared to the TF*IDF ranking, both TS and TF*TS ap

proaches will produce similar quality ranking orders of the search results.

• Alternative approaches

Hypothesis 4: TF*TS approach will produce better ranking orders than TS

approach.
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• Tunability

Hypothesis 5: The tuned parameters for automatic parameter selection will

produce better ranking orders than the untuned parameters, in both TS and

TF*TS approaches.

5.4 Evaluation Results

5.4.1 Default Tuning Parameters and Tuned Parameters

The experiments for evaluation were conducted in two rounds in order to evaluate the

effect of the tuning parameters. The first round of experiments were conducted using

default tuning parameters (a = 0.1 and b = 1.0) for both TS and TF*TS approaches.

These default values are educated assumptions for the tuning parameters based on

their roles in the formula (as described in Section 3.5.3), and the result of using them

represents the performance of the Luhn-inspired vector re-weighting approach in the

untuned condition.

A second round of experiments were conducted using the same test data and

test queries, but with tuned parameters. In this setting, the two tuning parameters

were optimized by PSO (as introduced in Section 3.5.1) based on all test queries,

and set to be a = 0.951 and b = 0.882. That is, one set of tuning parameters

was determined based on data from all eight test queries, their search results, and

the expert relevance judgements that were provided by the test collection. These

parameters are not optimal for anyone query, but represent an average optimization

over the evaluation set. These parameters were then applied to both TS and TF*TS
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to conduct the re-weighting, and new AP and P values were calculated from the

re-ranking results produced by the tuned TS and TF*TS (denoted as TS-Tuned and

TF*TS-Tuned) approaches. The purpose of this round of experiments was to measure

the potential of the proposed approach once the tuning parameters were properly set.

Since the default setting of the tuning parameters was generated from the defi

nitions of these parameters, this default setting has no bias towards either the TS

approach or the TF*TS approach. However, in the tuned case, the tuning was focused

on improving the AP metric of the TS approach (i.e., the TS approach and the AP

metric were chosen to implement the fitness evaluation in the PSO), so the tuning

was inherently biased towards the TS approach and the AP metric. This fact needs

to be taken into account when comparing the TS approach to the TF*TS approach

in the tuned condition.

5.4.2 Raw Data

The raw data of the evaluation results is presented in this section. For each of

the seven approaches that produced ranking lists of the search results (i.e., original

ranking, TF, TF*IDF, TS, TF*TS, TS-Tuned, and TF*TS-Tuned), the quality of the

ranking was measured in AP and P values over top-10 and top-20 documents. The

AP and P values are shown in Figure 5.1.

From Figure 5.1, it is clear that the AP and P values fluctuated widely from

one test query to another. For example, the AP and P values are quite high in

some topics, such as "avp", "flushing", and "keyboard reviews", but are low in some

others, such as "joints" and "bellevue". Because of the standard deviation across these
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(a) Top-10 (b) Top-20

Figure 5.1: Average precision (AP) and precision (P) for each test topic.
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values, the mean over the set of test queries does not provide an accurate measure

of the performance differences between the different approaches studied. Moreover,

it is difficult to conduct statistical analysis directly based on these AP and P values

because of the high variance. Consequently, these values are only considered as raw

data, and further processing is needed to make the data more comparable (which will

be discussed in the next section).

The general theme that appears in the raw data is that the TF approach performed

better than the original ranking in most cases, the TF*IDF approach performed

even better, and the TS and TF*TS approaches performed better than TF*IDF in

some cases, but worse in others. In most cases, the TS and TF*TS approaches

performed differently and produced different AP and P values. Compared to TS,

TF*TS seems to be a better approach because it was outperformed by TS in only one

case, which is "keyboard reviews". Also, it is noticeable that the tuned TS and TF*TS

approaches performed better than the untuned approaches in many cases. The topics

"avp", "bellevue", "bobcat", "rice", and "south africa" are some examples to show

the improvements. From these examples, it appears that the tuning of parameters

improved the performance of both TS and TF*TS approaches. However, these direct

observations from the raw data are not reliable; whether these observed differences

were caused by the different approaches or just by random chance remains unknown

at this stage. As such, a normalization of the raw data and a statistical analysis of

the normalized data are needed to gain more insight into the data, and provide more

reliable conclusions of the experimental results.

A couple of interesting special cases can also be observed within Figure 5.1. For

the topic "avp", the original ranking order of search results was very poor, but it was
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improved dramatically by the TF approach, and TF*IDF, TS, TF*TS, TS-Thned,

and TF*TS-Thned further improved the ranking order of the search results. In the

initial search results, there were no relevant documents in the top-10 list (AP-lO =

oand P-lO = 0 for the original ranking), but re-ranking the search results (TF*TS

Thned as the best one) produced an excellent top-10 list which contained 8 relevant

documents (P-lO = 0.8), and all of which were ranked at the top of the list (AP-lO =

1.0). Also, for the topic "flushing", note that TF*IDF made significant improvements

on the TF ranking, and TS and TF*TS achieved even better results than TF*IDF.

However, the improvements degraded somewhat in the tuned case. Since the tuned

parameters are the average optimization across all of the test queries, it is reasonable

to assume that they may do worse than the untuned versions in some cases. Another

similar example can be found in the topic "keyboard reviews".

5.4.3 Average Improvements over TF Approach

The raw AP and P values varied between cases, and thus are not suitable to be used for

aggregating the results or conducting statistical analysis to compare the performance

between the different approaches. Therefore, it is necessary to normalize these values

into a more stable metric for further analysis.

In this normalization, the TF approach was used as the baseline approach, and

the AP and P values produced by all other approaches were normalized based on this

approach. A new metric called improvement over the TF approach was employed,

and it was measured by the division of the AP or P values of an approach by the

corresponding values produced by the TF approach in an individual test query.
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More formally, for each test query, the improvement of a given approach over the

TF approach on AP, which was denoted as AP*, was calculated using the following

formula:

AP*(approach) = APla;r;;~ch) (5.3)

and the improvement over TF on P, which was denoted as P*, was calculated as:

P*(approach) = p(a;r;;~h) (5.4)

where approach E {original, TF, TF*IDF, TS, TF*TS, TS-Tuned, TF*TS-Tuned}.

For example, in the query "avp", the AP and P values produced by the TF approach

over top 10 documents were AP-lO = 0.921 and P-1O=0.8, and TF*TS-Tuned pro

duced AP-10 = 1.0 and P-lO = 0.8. Therefore, the improvement of TF*TS-Tuned

over TF on AP-lO was AP*-lO = 1.0/0.921 = 1.086, and the improvement on P-lO

wasP*-lO =0.8/0.8 = 1.0.

Using this new metric, the arithmetic average of AP* and p* values for each

approach were calculated across all eight queries based on both top-10 and top-20

documents. The results are showed in Figure 5.2, where the mean values of AP* and

p* are denoted as MAP* and MP*. The error bars in the figure demonstrate the

standard errors of the mean values. Note that the TF approach always has a mean

value equal to 1.0 and a standard error equal to 0 because it is the baseline approach

used in this normalization.

The general trend that emerged from this analysis of average performance change

over the TF baseline is that the TF approach improved upon the original ranking order

of the search results, and TF*IDF showed even further improvements. Compared to

TF*IDF, the (untuned) TS and TF*TS approaches both displayed advantages in
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(a) Top-10

(b) Top-20

Figure 5.2: Average improvements over TF approach regarding to AP (MAP*) and

P (MP*). Error bars represent the standard errors of the mean values.
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improving MAP* values, but not MP* values. That is, these approaches were able to

provide better ranking orders of the relevant documents within the top-10 and top-20

search results, but were unable to draw more relevant documents into these sets from

the remaining set of documents. After tuning on the parameters, the TS-Tuned and

TF*TS-Tuned approaches performed better and achieved some of the best results.

Whether these improvements are statistically significant will be validated in the next

section; the discussion here is just based on analysis of the descriptive statistics of

the experiments.

MAP* represents the average improvements on the average precision metric that

an approach achieved over the TF approach. In other words, this value shows how

well an approach performed on promoting the relevant documents within the top

10 and top-20 scopes to the top of the ranked list of search results, in comparison

with the TF approach. As shown in Figure 5.2, the original ranking did a poor job

on this, probably because of the ambiguous test queries selected for this evaluation.

Compared to the original ranking, the TF approach achieved 63.9% improvements on

MAP*-10 and 76.7% improvements on MAP*-20, indicating that TF produced much

better ranking orders of the relevant documents existing in the top-10 and top-20

search results. By correcting the over-weighting problem of the TF approach, the

more complicated approaches (TF*IDF, TS, TF*TS, TS-Tuned, and TF*TS-Tuned)

all outperformed the TF approach with considerable increases on MAP*. Among

those approaches, TS-Tuned produced the best MAP* values in both top-10 and top

20 scopes, and TF*IDF yielded the worst results on MAP*. However, the differences

between those more complicated approaches are rather slight when compared to the

differences between them and the original ranking or the TF approach, indicating
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that those approaches are at a very similar level with respect to the capability of

improving rank orders of relevant documents over the baseline TF approach.

On the other hand, MP* represents the mean value of the improvements made

by an approach over the TF approach on the precision metric, which measures how

good the approach is in bringing more relevant documents from the rest of the search

results set into the top-10 and top-20 scopes (but does not care how these relevant

documents are ranked). On the MP* metric, the original ranking was still less effective

than the TF approach. Similar to the results on MAP*, all of the more complicated

approaches produced better MP* values than the baseline TF approach. However,

the Luhn-inspired methods (TS, TF*TS, TS-Thned, and TF*TS-Thned) were no

longer the best ones in this case, and TF*IDF demonstrated its superiority over

other approaches in this group on increasing the number of relevant documents by

its highest MP* values among all the approaches in both top-10 and top-20 scopes.

The MAP* and MP* can be used together to evaluate the overall quality of the

re-ranking results of the different approaches. Compared to the original ranking and

the TF approach, the Luhn-inspired methods (TS, TF*TS, TS-Thned, and TF*TS

Thned) all produced better ranking results since the improvements of the MAP* were

simultaneously supported by improvements on MP*. That is, not only was the order

of the relevant search results improved when viewing the top-10 and top-20 search

results, but more relevant documents from the remainder of the set were moved to

prominent locations in the search results list. However, when compared to TF*IDF,

the improvements on the re-ranking results carried out by the Luhn-inspired methods

was not so clear. Although the Luhn-inspired methods were superior in terms of the

average precision metric, TF*IDF yield better precision among the top-10 and top-
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20 search results. That is, the search results produced by TF*rDF contained more

relevant documents than other approaches, but these relevant documents may not

be ranked in such a satisfactory order as in the search results list produced by the

Luhn-inspired methods.

As discussed in Section 5.4.1, the default tuning parameters are considered un

biased. Therefore, it was expected that TF*TS approach can perform better than

TS approach in this untuned scenario. The reason behind this expectation is the

fact that TF*TS makes use of the extra information from TF, rather than simply

discarding TF information as TS does. While the TF information may sometimes be

misleading since the common terms are over weighted, it is still a valuable measure

of the importance of the terms. As such, it might be better to integrate TF with

TS, rather than just using TS alone. This expectation was supported by the results

showed in Figure 5.2, indeed the TF*TS approach produced better MAP* and MP*

values than TS approach did (except for MP*-lO). However, without the support

from statistical analysis, it is not yet sufficient to conclude that TF*TS is a better

method than TS.

Compared to the untuned TS and TF*TS approaches, the corresponding TS

Thned and TF*TS-Thned approaches produced better MAP* and MP* values on

both the top-10 and top-20 scopes, with only one exception on MP*-20, where TF*TS

Thned produced an average improvement value lower than the untuned TF*TS ap

proach. Therefore, it seemed that the tuning of parameters improved the perfor

mance of the Luhn-inspired vector re-weighting. However, further statistical analysis

is needed to verify if it is really the case, or this improvement is just a result of the

specific features of the different test queries used in these experiments. Another in-
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teresting observation is that the TS-Thned approach yielded better results than the

TF*TS-Thned approach, which might be an effect of the tuning that was biased to

wards TS approach. However, this biased tuning not only improved the performance

of the TS approach, but also increased the average improvement values of the TF*TS

approach, indicating that this tuning was proper for both TS and TF*TS approaches.

5.4.4 Statistical Analysis

A statistical analysis was conducted on the average precision (AP*) and precision (P*)

improvements over the baseline TF approach, in order to verify statistically significant

differences between the approaches that were being evaluated. This statistical analysis

was performed using ANOYA tests at a significance level of Q = 0.05. The reason

for choosing ANOYA is that the number of data points in the tests was relatively

low (only eight test queries), and ANOYA is known for its robustness with respect to

limited data.

In these tests, the raw average precision and precision values (i.e., AP-lO, AP

20, P-lO, and P-20) produced by the original ranking and each of the re-ranking

approaches (TF, TF*IDF, TS, TF*TS, TS-Thned, and TF*TS-Thned) across all test

queries were normalized through the conversion into the improvement over the TF

approach metric (i.e., AP*-lO, AP*-20, P*-lO, and P*-20), and tested in a pair-wise

manner between approaches. The results of the statistical analysis are reported in

Table 5.2.
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On both AP*-lO and AP*-20 metrics, statistically significant differences were mea

sured between the original ranking and each of the re-ranking approaches that per

sonalized the search results (i.e., TF, TF*IDF, TS, TF*TS, TS-Tuned, and TF*TS

Tuned). These results indicate that the improvements made by the re-ranking ap

proaches over the original ranking on AP* metric can be attributed to the advantages

of personalized re-ranking approaches. Since alIre-ranking approaches made use of

the extra information within the personalization profiles, these statistically signifi

cant results were expected. However, such statistical significance was not found on

the P*-lO metric when comparing the TF and the TF*TS approaches to the original

order, and also not on the P*-20 metric for any of the re-ranking approaches com

pared to the original order. For P*-lO, what happened was that the original ranking

produced some much better P-lO values than the TF approach (in the cases "rice"

and "south africa") and TF*TS approach (in the case "rice"), as shown in Figure 5.1.

These special cases resulted in high variance in the data, which diminished the sta

tistical significance. Similarly, the large standard errors for MP*-20 (as illustrated

in Figure 5.2) yielded by the original ranking and each of the re-ranking approaches

(except for the baseline TF approach) indicate that the variance on P*-20 within

the approaches under comparison was considerably high. As a result, no statistical

significance was found on the P*-20 metric.

As the baseline approach, the TF approach produced better ranking orders of the

search results than the original ranking, but was outperformed by the Luhn-inspired

methods (i.e., TS, TF*TS, TS-Tuned, and TF*TS-Tuned) with statistical significance

found on both AP*-lO and AP*-20 metrics (i.e., on average precision, as the primary

evaluation metric). However, no statistical significance was found on the P*-lO and
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P*-20 metrics, indicating that the improvements on precision made by the Luhn

inspired methods over the TF approach were marginal and inconsistent. It is a bit

surprising to see that the improvements made by TF*IDF over the TF approach were

not statistically significant, because TF*IDF showed considerable increase over TF on

both MAP* and MP* metrics, as shown in Figure 5.2. However, note that TF*IDF

also had larger standard errors for both MAP* and MP* (illustrated as longer error

bars in Figure 5.2) than other approaches, indicating that TF*IDF had higher degree

of variance in the data, which brought a negative effect on the statistical analysis.

Compared to the TF*IDF approach, no statistically significant difference was

detected for the TS, TF*TS, TS-Tuned, and TF*TS-Tuned approaches on any met

ric. This result suggests that any difference in performance between TF*IDF and

the Luhn-inspired methods cannot be attributed to the differences between the ap

proaches. Interestingly, significant similarity (p value in ANOVA test larger or equal

to 0.95) between TF*IDF and TS was measured on the AP*-20 metric, showing that

those two approaches are essentially equal in improving the average precision of the

top-20 search results.

No statistically significant difference was measured between TS and TF*TS, or

between TS-Tuned and TF*TS-Tuned. On the contrary, significant similarities were

detected for TS and TF*TS on P*-lO metric, and for TS-Tuned and TF*TS-Tuned

on AP*-10 metric. Therefore, although TS and TF*TS (and also TS-Tuned and

TF*TS-Tuned) produced different AP and P values in almost every single test query

(as shown in Figure 5.1) and showed noticeable differences on MAP* and MP* (as

shown in Figure 5.2), the differences in performance between these two methods were

not consistent.
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Although the tuning of parameters improved the performance of both TS and

TF*TS approaches on MAP* and MP* metrics (as illustrated in Figure 5.2), this

result was not supported by the statistical analysis, as no statistically significant

difference was found when comparing TS-Thned to TS, or TF*TS-Thned to TF*TS.

Therefore, the conclusion is that these improvements are marginal and may be the

result of specific features of the test queries and the test collection, rather than the

tuning of the shape of the normal distribution curve used for the re-weighting.

5.5 Computational Complexity Analysis

In this section, the proposed Luhn-inspired vector re-weighting approach will be com

pared to the TF*IDF approach in terms of complexity, in order to analyze the com

putational costs of these two different approaches.

In the implementation of the Luhn-inspired vector re-weighting approach, the

topic profile vector is used exclusively as the source of information. The algorithm

traverses through all the terms in the topic profile vector (suppose n terms) three

times: once for re-ranking the terms in descending order of frequency, once for finding

the mean term, and once for calculating and assigning the TS values. Therefore, the

computational cost of the proposed approach is approximately 3n, where n is the

number of terms in the topic profile vector.

On the other hand, in order to generate a topic profile using TF*IDF that contains

the same n number of terms, the algorithm needs to search through the document

collection for each of these terms to calculate the IDF values. In the implementation

of TF*IDF for this research, IDF is estimated using the 50 search results on the
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current page as an estimate for the document collection (as described in 4.2.3). As a

result, the computational cost of TF*IDF is approximately 50n.

Since both 3n and 50n have the same O(n) complexity once the constant before

n is removed, they are considered equal in theory. However, the big difference be

tween the two constants makes the two approaches unequal in practice. Moreover,

it is possible that larger collections could be employed to calculate the IDF values

in other implementations that approximate TF*IDF for Web search personalization

(as in [40]). In these cases, thousands, or even millions of documents have to be

searched for each term in order to compute the IDF. Even though efficient search

strategies could be employed to address this problem, compared to these common

practices of using TF*IDF, the proposed Luhn-inspired vector re-weighting approach

demonstrates substantial advantages with respect to computational costs.

5.6 Discussion

In this chapter, an experimental evaluation study was reported. This evaluation was

conducted with experiments based on test data and queries selected from the TREe

2010 Web Track. These experiments were designed to evaluate the proposed Luhn

inspired vector re-weighting approach in comparison with the baseline approaches

(i.e., original, TF, and TF*IDF). In the experiments, four different methods (i.e., TS,

TF*TS, TS-Tuned, and TF*TS-Tuned) of the proposed vector re-weighting approach

were evaluated.

The TS and TF*TS approaches demonstrated the performance of the proposed

vector re-weighting approach in a default setting. In a generalized application, prob-
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ably no knowledge about the data, queries, and relevance judgments can be acquired

to tune the performance of the proposed approach, so a default setting is required

for the approach to perform the re-weighting automatically. The experiments with

TS and TF*TS mimicked this generalized scenario with a "best-guess" of the default

values from the definition of the tuning parameters, and were intended to evaluate the

proposed approach based on the simplest formulation. The results demonstrated that

statistically significant improvements over the baseline original ranking and the TF

approach can be made by the proposed vector re-weighting approach, even with an un

sophisticated estimation of the tuning parameters. However, no significant difference

between the TS and TF*TS approaches and the TF*IDF approach was found. This

result indicates that while these new approaches are not better than TF*IDF, nor are

they worse. In fact, the proposed approach has produced comparable performance to

TF*IDF, without the need to access and process the distribution of terms throughout

the collection (or a subset of the collection) in order to address the over-weighting

problem of the common terms. Instead, this approach calculates a re-weighting based

solely on the features of the personalization vector, without the need to access any

supplemental information.

For the TS-Tuned and TF*TS-Tuned approaches, knowledge about the test data,

queries, and relevance judgments were employed to tune the proposed approach. This

scenario was designed to maximize the performance of the proposed approach, and

measure its potential for improving the baseline system with proper tuning. The

tuning was done over all of the test queries to arrive at a single set of parameters that

is essentially the average over each query. The tuned parameters were not optimal

for anyone query, but intended to be an improvement over the initial best-guess
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parameters. The evaluation results showed that the tuning indeed increased the

average improvements of the proposed vector re-weighting approach over the TF

approach on average precision and precision (measured in MAP* and MP*, as shown

in Figure 5.2). However, this improvement was not statistically significant.

The hypotheses proposed in the beginning of this chapter can now be validated

via the results from the experiments discussed above:

Hypothesis 1: Compared to the original ranking, both TS and TF*TS approaches

will produce better ranking orders of the search results. The evaluation results showed

that all Luhn-inspired methods (TS, TF*TS, TS-Tuned, and TF*TS-Tuned) out

performed the original ranking. This can be observed in Figure 5.2, where the TS,

TF*TS, TS-Tuned, and TF*TS-Tuned approaches yielded much higher MAP* and

MP* values compared to the original ranking (nearly three times higher in some

cases). These results suggest that the Luhn-inspired methods can bring more relevant

documents into the top-10 and top-20 search results, and those relevant documents

can be ranked in a better order in positions nearer to the top of the search results list.

Moreover, from the results of the statistical analysis, these improvements made by

the Luhn-inspired methods over the original order were statistically significant, with

only a few exceptions on P*-lO and P*-20. These statistical analysis results indicate

that the improvements were a result of using the Luhn-inspired methods, and they

are therefore better approaches to order the search results compared to the original

ranking. As such, it is concluded that Hypothesis 1 is validated.

Hypothesis 2: Compared to the TF (miSearch) ranking, both TS and TF*TS

approaches will produce better ranking orders of the search results. In the evaluation,

the TF approach has been set as the baseline for normalizing all other approaches
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into the new improvement over the TF approach metric. According to this new

metric, all of the Luhn-inspired methods (TS, TF*TS, TS-Tuned, and TF*TS-Tuned)

produced average values greater than 1.0 in all of the four evaluation metrics (MAP*

10, MP*-lO, MAP*-20, and MP*-20), indicating that positive improvements on both

average precision and precision were made by the Luhn-inspired methods over the TF

approach. In the statistical analysis, statistical significance for these improvements

was found on the AP*-lO and AP*-20 metrics, but not on the P*-lO and P*-20

metrics. This result indicates that the Luhn-inspired methods are indeed better

approaches than TF on ordering the search results and putting the relevant ones

to the top of the search results list, but may not be better for bringing new relevant

documents into the top-10 or top-20 search results. Since average precision is a better

metric than precision on measuring the quality of the ranking order of search results

(as discussed in Section 5.1) and has been chosen as the primary evaluation metric,

Hypothesis 2 is validated based on the significant improvements on the AP metric

made by the Luhn-inspired methods over the TF approach.

Hypothesis 3: Compared to the TF*IDF ranking, both TS and TF*TS ap

proaches will produce similar quality ranking orders of the search results. Fl'om Fig

ure 5.2, it was observed that the Luhn-inspired methods (TS, TF*TS, TS-Tuned, and

TF*TS-Tuned) demonstrated advantages over the TF*IDF approach on the MAP*

metric, and TF*IDF achieved superiority over the Luhn-inspired methods on the

MP* metric. However, both of the observations were not supported by the statistical

analysis. That is, the differences in performance between the Luhn-inspired meth

ods and TF*IDF were minimal and not statistically significant. Moreover, significant

similarity was measured between TS and TF*IDF on P*-lO, suggesting that these
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two approaches were essentially equal in performance with respect to improving pre

cision within the top-10 search results. Therefore, Hypothesis 3 is validated based on

the fact that the slight differences between the Luhn-inspired methods and TF*IDF

were not statistically significant, and this hypothesis can be further supported by the

existence of statistically significant similarity within these approaches.

Hypothesis 4: TF*TS approach will produce better mnking orders than TS ap

proach. As explained in Section 5.4.3, it was expected that TF*TS approach can

perform better than the TS approach, because of the extra TF information it em

ploys. This expectation was supported by the data illustrated in Figure 5.2, where

TF*TS produced better MAP* and MP* values than TS with the default setting

of the tuning parameters. However, the statistical analysis demonstrated that there

was no significant difference between the performance of TS and TF*TS, nor be

tween TS-Tuned and TF*TS-Tuned. As such, the data regarding Hypothesis 4 is

inconclusive.

Hypothesis 5: The tuned pammeters for automatic pammeter selection will pro

duce better mnhng orders than the untuned pammeters, in both TS and TF*TS ap

proaches. The TS-Tuned and TF*TS-Tuned approaches performed differently from

the TS and TF*TS approaches on re-ranking the search results in almost every single

test query (as illustrated by the different AP and P values in Figure 5.1). In many

cases, the tuned approaches produced better AP and P values than the untuned ap

proaches. Also, at an average level (Figure 5.2), the TS-Tuned outperformed the TS

approach, and the TF*TS-Tuned approach outperformed the TF*TS approach, with

respect to both the MAP* and MP* metric on top-10 and top-20 search results (MP*

20 was an exception, where TF*TS performed better than TF*TS-Tuned). However,
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the statistical analysis results suggest that these differences were not statistically sig

nificant. While the observations from Figure 5.1 and Figure 5.2 do show a marginal

improvement, due to the lack of statistical significance, Hypothesis 5 is inconclusive.

This evaluation provided answers to the research question regarding the benefits

of Luhn-inspired vector re-weighting for Web search personalization and its effects

on the ranking of the search results. The experimental results have shown that the

proposed Luhn-inspired vector re-weighting approach (TS, TF*TS, TS-TImed, and

TF*TS-Tuned) significantly improved the ranking order of the search results over

the baseline original ranking and the TF approach. More importantly, although the

results of these experiments did not show a statistically significant improvement over

the performance of the well-known TF*IDF approach that is common in information

retrieval research, nor did the performance of this Luhn-inspired vector re-weighting

approach cause a performance decrease. The key finding in this evaluation is not

that this approach provides a performance increase over TF*IDF, but that it achieves

performance on par with TF*IDF, without the need to have direct knowledge of the

test collection being searched. In fact, the approach can achieve similar results simply

by pre-processing a simple TF histogram of the information to find the discriminating

terms, and using these as the primary information by which the search results are re

ranked. Therefore, the proposed Luhn-inspired vector re-weighting approach can be

easily implemented as a feasible alternative to TF*IDF in Web search personalization

to improve the TF personalization models, while avoiding the difficulties that TF*IDF

may have in accessing and processing the large amount of information involved in the

computation of IDF in the context of Web search.
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Chapter 6

Conclusion and Future Work

6.1 Primary Contributions

Web search personalization is effective for assisting users to seek information that

meets their personal interests and preferences. In order to learn users' information

needs, personalization systems collect and analyze their information from various

sources, such as peer recommendations, user questionnaires, desktop and hard drive

documents, and past Web search activities. This information is then used to per

sonalize their Web search activities by providing personalized query augmentation or

search results re-ranking.

User profiles are used in Web search personalization to model users' interests and

preferences. A common approach to model user profiles is to use high dimensional

vectors. In these vectors, each dimension represents a term extracted from the in

formation source that is used to generate the personalization vectors; the magnitude

along a given dimension is commonly the term frequency (TF), which measures how
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often this given term appears in the information source. Normally, these vectors are

used to personalize Web search by re-ranking the search results, based on similarity

scores calculated between vectors generated from the search result documents and

personalization vectors, which represents the users' information needs.

The key benefit of this common vector-based approach is conceptual simplicity

and easy implementation. Furthermore, TF vectors can easily be updated with new

knowledge by simple vector addition. They can also be compared to one another as

well as to individual document vectors produced from the search results using vector

distance metrics such as Euclidean distance or Pearson's correlation coefficient.

However, vector-based models that employ TF weights may suffer from an over

weighting problem of the high-frequency terms. High-frequency terms are highly

weighted in the TF vectors, but usually they are too common to be helpful for de-

scribing the unique characteristics of users' interests and preferences. Moreover, these

high-frequency terms are potentially ambiguous in nature, and thus they can easily

diminish the effectiveness of the personalization when they are given high weights in

the personalization vectors.

Classical information retrieval has suggested TF*IDF as a solution to this problem.

In TF*IDF, the high-frequency terms are down-weighted by the inverse document

frequency (IDF), which is a measure of how infrequent a given term occurs across

all the documents in the collection. In other words, TF*IDF values those terms that

appear frequently in the document that is under investigation, but rarely appear

in other documents in the collection. In this way, the high-frequency terms can be

scaled down by the fact that common terms tend to be used widely in the collection

of documents, and thus yield low IDF values.
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TF*IDF is a classical measure of term importance, but there are a couple of dif

ficulties with using TF*IDF in Web search personalization. First, the calculation of

IDF in the context of Web search is not always feasible because it requires knowledge

of the distribution of terms across the entire Web. Moreover, even if it is possible to

estimate the IDF by using an existing collection of Web documents or a subset of the

Web instead of the entire Web, the overhead of calculating IDF is still considerably

high since every term in the personalization vectors has to be searched in the collec

tion to count the number of documents in which it appears. While this information

could be cached for future use, the overhead in calculating the document frequency is

traded for an overhead in storage and access. Second, it is difficult to incrementally

update personalization vectors that are modeled on TF*IDF since the values in such

vectors cannot be directly added. However, it is a common requirement in personal

ization systems that the personalization vectors be updated incrementally, allowing

new information on the users' interests to be added to the existing personalization

vectors. Third, if the personalization vectors are modeled using TF*IDF, it is also

necessary to generate TF*IDF vectors for each document in the search results set, so

these document vectors can be compared to the personalization vectors and similar

ity scores can be calculated. However, the generation of document vectors is costly

since it involves the high overhead of calculating IDF for each term in each of the

documents in the search results set.

In this thesis, a novel Luhn-inspired vector re-weighting approach is proposed.

Similar to TF*IDF, this approach is intended to address the over-weighting problem

of common terms within TF vectors, but from a different perspective. This work is

inspired by Luhn's model of term importance, and it directly re-weights the terms in
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the target TF vector according to the term significance values, which are calculated

by placing a normal distribution curve on the top of the term frequency histogram

generated from the target vector. The mean value (which decides the location) and

the variance (which decides the shape) of the normal distribution curve used in the

re-weighting are automatically computed based on the features of the term frequency

histogram; the minimum width of the curve and the rate at which the width increases

due to the angle of the slope at the mean point can be tuned through two tuning

parameters (as described in Section 3.5.3). After the term significance values are

assigned to the terms by the normal distribution curve, two different approaches are

available for re-weighting terms in the target vector: the TS approach directly replaces

the term frequency (TF) values of terms with the term significance (TS) values, and

the TF*TS approach re-weights the target vector by scaling down the term frequency

by the term significance. These two approaches, along with their tuned versions

(i.e., TS-Tuned and TF*TS-Tuned), were evaluated in comparison with the baseline

approaches (i.e., the original ranking, the TF approach, and the TF*IDF approach)

in this research.

Compared to the TF*IDF approach, the proposed Luhn-inspired vector re-weighting

approach has some advantages when applied to Web search personalization. First,

this approach requires no supplemental information other than what is in the per

sonalization vector itself. Therefore, this approach is more feasible than TF*IDF

in situations where calculating IDF becomes difficult and costly due to the large

amount of information that has to be accessed and processed, such as Web search

personalization. Second, this approach is based on TF, and it re-weights the person

alization vectors without changing their nature as TF vectors. In fact, whenever a
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re-weighting is requested, a copy of the target personalization vector is fetched, and

the re-weighting will be performed on this copy. Therefore, the incremental updating

of the personalization vectors is unaffected, and can be simply done by TF vector

addition. Third, this approach has low calculation overhead, as it uses simple formu

las to re-weight the TF values in the personalization vectors, and generates simple

TF document vectors of search results for comparison. Finally, this approach can be

easily applied within systems that have pre-existing TF vectors because all the infor

mation required for the re-weighting is contained in the vectors. However, TF*IDF

might have difficulties on working on pre-existing TF vectors, since it requires the

knowledge of the original collection from which these old TF vectors were generated,

which may not be available in a Web context.

The results of performance evaluations show that both the proposed Luhn-inspired

vector re-weighting approach and the TF*IDF approach outperform the original order

and the simple TF approach to personalization (but the improvement of TF*IDF over

the TF approach is not statistical significant). Moreover, the proposed Luhn-inspired

vector re-weighting approach is slightly better than the TF*IDF approach in improv

ing average precision (AP) of the search results, but slightly less capable of improving

the precision (P) values. In other words, the proposed approach can make better rank

orders of the relevant documents and promote them to the top of the search results

list, but TF*IDF is more capable of bring new relevant documents from the rest of

the search results set into the top-10 and top-20 ranges. However, the statistical

analysis demonstrates no significant difference between the proposed approach and

TF*IDF (they even show significant similarity on some metrics), providing evidence

of the performance equivalence of these approaches.
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In conclusion, Luhn-inspired vector re-weighting can be used as a viable alterna

tive to TF*IDF for Web search personalization. This proposed approach has similar

performance results with TF*IDF, but requires access to much less information for

correcting the over-weighting problem of TF vectors. In this approach, there is no

need to conduct costly calculations to generate IDF, and simple formulas are used

to scale down the weights of high-frequency terms based solely on information in

the TF vector itself. Moreover, this approach does not affect the simple and low

overhead methods for incrementally updating the personalization vectors, since ev

erything within the approach is based on simple TF modeling.

6.2 Future Work

The Luhn-inspired vector re-weighting approach can be further explored and studied

in a number of ways. The first is to conduct user evaluations [28] to study the

performance of the approach under realistic settings. For example, specific search

tasks could be designed and assigned to the users to conduct searches on the system,

and the search results could then be re-ranked through different approaches (TF,

TF*IDF, TS, and TF*TS). The effectiveness of each of the approaches may be judged

by how quickly and how easily the users can find a given number of documents that

they consider relevant. Also, it is possible to conduct field trials, in which a group of

users can use the system to do real search tasks that they are interested in. In this

case, the users are able to experience the differences between approaches and witness

the improvement made by the vector re-weighting. By conducting evaluations with

real users, new information could be learned on how efficient the approach is in real-
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time system operation, how effective the approach is when working with real users'

judgments on document relevance, and how robust the approach is when tested with

various user-defined queries and user-generated topic profiles.

The characteristics of the two different re-weighting approaches (TS and TF*TS)

can be further studied. Initially, it was expected that the TF*TS approach can per

form better because it makes use of the TF information (just as TF*IDF uses TF as

well), which is discarded in the TS approach. However, the experiments conducted

for this thesis have shown that although TS and TF*TS did produce different re

weighting results from the same starting point in most cases, it is difficult to simply

tell which one is better because their performance is case dependent and without

statistical significance. Therefore, it is worthwhile to conduct further studies and

evaluations of these two approaches, in order to identify conditions that can promote

the benefits of using the extra TF information in the TF*TS approach. These con

ditions might be related to the shape of the term frequency histogram used in the

re-weighting. That is, TF*TS might work better in a histogram that has a steep

shape (and so a steep normal distribution curve), because in this case the weights of

high-frequency terms could be dramatically (and might even be overly) reduced and

the TF factor can then become a compensation for that.

More ways of tuning the vector re-weighting approach may also be explored. A fea

ture of the approach is that it is tunable, and experimental results have demonstrated

some promises on performance gain once the approach is properly tuned (although

the improvement was not statistically significant). The tuning in the evaluation was

done by employing PSG to maximize the average performance based on the existing

relevance judgements. More studies can be conducted to explore other techniques for
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tuning the parameters. For example, it may be possible to tune the parameters based

on the features of the query (ambiguous or specific) or the topic profile (sparse or

robust), and have different tuning in different conditions. By doing so, the approach

can be properly tuned whenever it is applied, and achieve its maximum performance.

Also, it is possible to tune the parameters based on a much larger and more diverse

set of queries (e.g., using Web search logs), to find a stable setting of the tuning

parameters that can be used widely.

Alternative formulas to determine the location and the shape of the normal dis

tribution curve that is used for the re-weighting can be considered and evaluated

against the formulas devised in this research. These formulas form the basis of the

automatic re-weighting algorithm, and any change made on them may directly affect

the performance of the proposed Luhn-inspired vector re-weighting approach. There

fore, it is worthwhile to explore other alternatives of these formulas, in order to find

the opportunities for further performance increase within the context of the proposed

approach.

In this research, when TS and TF*TS personalization vectors are used to re

rank the search results, the documents in the search results set are simply converted

into TF vectors, without further re-weighting to convert them into TS or TF*TS

vectors. The main reason for this decision is that the information within in the

search results is very limited, containing only small pieces of information (URL, title,

and snippets) extracted from the source documents. Therefore, the data in the term

frequency histograms generated from these search results will be very sparse, making

re-weighting on such histograms potentially inaccurate. It would be interesting to

explore the opportunities of using the TS or TF*TS approaches to re-weight the
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document vectors in addition to the personalization vectors. Such an evaluation

could be conducted simultaneously with the study of alternative methods for the

placement and shape of the normal distribution curve.

More studies and experiments can also be conducted to identify the conditions

under which the proposed approach performs well or performs poorly. No approach

is perfect and without any limitation. It is also expected that this approach will

have limitations under certain conditions. For example, the experience gained from

this research is that this approach needs sufficient information in the target vector

to perform the re-weighting, and if the data in the vector is sparse, it may perform

inaccurately. However, what if new information is continually added into the per

sonalization vector and eventually the vector becomes very big and noisy? Can this

approach perform well under this circumstance? Questions like this are needed to be

addressed in the future study, in order to be aware of the strengths and limitations

of this approach.

The exploration of other possible applications of the proposed approach is also un

der consideration. Although implemented within the content-based multiple-profile

framework of miSearch, Luhn-inspired vector re-weighting could be implemented

within any personalization method that employs a TF-based vector modeling of in

formation, including collaborative-based personalization frameworks. Also, this ap

proach may be helpful to improve TF-based models used in other fields beyond the

scope of Web search personalization.

120



Bibliography

[1] L. A. Adamic and B. A. Huberman. Zipf's law and the Internet. Glottometrics,

3:143-150,2002.

[2] J. Ahn, P. Brusilovisky, D. He, J. Grady, and Q. Li. Personalized Web explo

ration with task models. In Proceedings of the International World Wide Web

Conference, pages 1-10, 2008.

[3] J. Alpert and N. Hajaj. We knew the Web was big... http://googleblog.

blogspot . com/2008/07/we-knew-web-was-big. html, 2008.

[4] P. G. Anick and S. Tipirneni. The paraphrase search assistant: Terminological

feedback for iterative information seeking. In Proceedings of the International

ACM/SIGIR Conference on Research and Development in Information Retrieval,

pages 153-161, 1999.

[5] R. L. Axtell. Zipf distribution of U.S. firm sizes. Science, 293(5536):1818-1820,

Sept. 2001.

[6] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval: The Con

cepts and Terminology Behind Search. Addison-Wesley, Reading, MA, 2nd edi

tion,2011.

121



[7] T. Berners-Lee and R. Cailliau. WoridWideWeb: Proposal for a HyperText

project. http://www .w3. org/Proposal. html/, 1990.

[8] J. Bhogal, A. Macfarlane, and P. Smith. A Review of ontology-based query

expansion. Information Processing and Management, 43:866-886, 2007.

[9] A. D. Booth. A Law of occurrences for words of low frequency. Information and

Control, 10(4):386-393, 1967.

[10] A. Broder. A taxonomy of Web search. ACM SIGIR Forum, 36(2):3-10, 2002.

[11] R. Butt. Introduction to Numerical Analysis Using MATLAB. Infinity Science

Press LLC, Hingham, Massachusetts, 2008.

[121 X. Chen and L. Huang. The research of personalized search engine based on users'

access interest. In Proceedings of Asia-Pacific Conference on Computational

Intelligence and Industrial Applications, pages 337-340, 2009.

[13] P.-A. Chirita, C. S. Firan, and W. Nejdl. Summarizing local context to person

alize global Web search. Proceedings of the International Conference on Infor

mation and Knowledge Management, pages 287-296, 2006.

[14] N. Craswell, C. Clarke, and 1. Soborofl'. TREC 2010 Web track guidelines.

http://plg.uwaterloo .ca/-trecweb/2010. html, 2010.

[15] H. Cui, J. Wen, J. Nie, and W. Ma. Query expansion by mining user logs. IEEE

Transactions on Knowledge and Data Engineering, 15(4):829-839,2003.

122



[16] A. Dasdan, P. D'Alberto, S. Kolay, and C. Drame. Automatic retrieval of sim

ilar content using search engine query interface. In Proceedings of the ACM

Conference on Information and Knowledge Management, pages 701-710,2009.

[17] M. de Kunder. The size of the World Wide Web. http://wvv.

worldwidewebsize. com/, July 2010.

[18] Z. Dou, R. Song, and J. R. Wen. A large-scale evaluation and analysis of per

sonalized search strategies. In Proceedings of the International World Wide Web

Conference, pages 581-590,2007.

[19] H. P. Edmondson and R. E. WyUys. Automatic abstracting and indexing survey

and recommendations. Communications of the ACM, 4:226-234, 1961.

[20] Eurekster. Eurekster Swicki Home. http://www.eurekster.com. May 2011.

[21] X. Gabaix. Zipf's law for cities: An explanation. Quarterly Journal of Economics,

114(3):739-767,1999.

[22] B. J. Gao and S. Marcos. Rants: A Framework for rank editing and sharing in

Web search. In International Conference on World Wide Web, pages 1245-1248,

2010.

[23] S. Gauch, M. Speretta, A. Chandramouli, and A. Micarelli. User profiles for

personalized information access. In P. Brusilovsky, A. Kobsa, and W. Nejdl,

editors, The Adaptive Web: Methods and Strategies of Web Personalization,

pages 54-89. Springer-Verlag, Berlin Heidelburg New York, 2007.

123



[24] Google. Google introduces personalized search services; site enhancements em

phasize efficiency. http://www.google.com/press/pressrel/enhancements.

html,2004.

[25] Google. Google N-Gram Corpus. http://googleresearch.blogspot.com/

2006/0S/all-our-n-gram-are-belong-to-you. html, 2006.

[26] Google. Google SearchWiki. http://googleblog.blogspot.com/200S/11/

searchwiki-make-search-your-own. html, 2008.

[27] O. Hinkle, W. Wiersma, and S. Jurs. Applied Statistics for the Behavioural

Sciences. Houghton Mifflin Company, Boston, 1994.

[28] O. Hoeber. User evaluation methods for visual Web search interfaces. In Pro

ceeding of International Conference on Information Visualisation, pages 139-145,

2009.

[29] O. Hoeber and J. Gomer. BrowseLine: 20 timeline visualization of Web brows

ing histories. In Proceedings of the International Conference on Information

Visualization, pages 156-161, 2009.

[301 O. Hoeber and C. Massie. Automatic topic learning for personalized re-ordering

of Web search results. In Proceedings of the Atlantic Web Intelligence Conference,

pages 105-116, 2009.

[31] B. J. Jansen and A. Spink. How are we searching the World Wide Web? A

comparison of nine search engine transaction logs. Information Processing and

Management, 42(1):248-263, 2006.

124



[32] K. Keenoy and M. Levene. Personalisation of Web search. Intelligent Techniques

for Web Personalization, 3169:201-228, 2005.

[33] D. Kelly and J. Teevan. Implicit feedback for inferring user preference: A

bibliography. ACM SIGIR Forum, 37(2):18-28, 2003.

[34] J. Kennedy and R. Eberhart. Particle Swarm Optimization. In Proceedings of

IEEE International Conference on Neural Networks, pages 1942-1948, 1995.

[35] Language Technologies Institute of Carnegie Mellon University. The ClueWeb09

Dataset. http://boston.lti . es. emu. edu/Data/elueweb09, 2009.

[36] H. Liu and O. Hoeber. A Luhn-inspired vector re-weighting approach for im

proving personalized Web search. In Proceedings of the IEEE/WIC/ACM Inter

national Conference on Web Intelligence - Workshops (International Workshop

on Web Information Retrieval Support Systems), pages 301-305,2011.

[37J H. Liu and O. Hoeber. Normal distribution re-weighting for personalized web

search. In Proceedings of the Canadian Conference on Artificial Intelligence 

Graduate Student Symposium, pages 281-284,2011.

[38] R. Losee. Term dependence: A basis for Luhn and Zipf models. Journal of the

American Society for Information Science and Technology, 52(12):1019-1025,

2001.

[39] H. P. Luhn. The automatic creation of literature abstracts. IBM Journal of

Research and Development, 2:159-165,1958.

125



[40] N. Matthijs and F. Radlinski. Personalizing Web search using long term browsing

history. In Proceedings of the International Conference on Web Search and Data

Mining, pages 25-34, 2011.

[41] Q. Mei and K. Church. Entropy of search logs: How hard is search? with

personalization? with backoff? In Proceedings of the International Conference

on Web Search and Web Data Mining, pages 45-54,2008.

[42] A. Micarelli, F. Gasparetti, F. Sciarrone, and S. Gauch. Personalized search on

the World Wide Web. In P. Brusilovsky, A. Kobsa, and W. Nejdl, editors, The

Adaptive Web: Methods and Strategies of Web Personalization, pages 195-230.

Springer-Verlag, Berlin Heidelburg New York, 2007.

[43] Microsoft. Microsoft U Rank. http://research. microsoft. comlen-us I

projects/urank/, May 2011.

[44] A. Moukas and P. Maes. Amalthaea: An evolving multi-agent information

filtering and discovery system for the WWW. Autonomous agents and multi-

agent systems, 1(1):59-88, 1998.

[45] National Institute of Standards and Technology. TREC 2005 Hard Track. http:

I Itrec .nist .gov/data/t14\_hard.html, 2005.

[46] National Institute of Standards and Technology. TREC 2010 Web Track. http:

I Itrec. nist. govIdata/webl0. html, 2010.

[47] National Institute of Standards and Technology. TREC Home Page. http:

Iitrec.nist.gov/, April 2011.

126



[48] National Institute of Standards and Technology. TREC Tracks. http://tree .

nist .gov/traeks. htm1, April 2011.

[491 Netcraft. May 2011 Web Server Survey. http://news .neteraft. eom/

arehives/2011/05/02/may-2011-web-server-survey .htm1/, May 2011.

[50] Netscape. The Open Directory Project. http://dmoz.org, May 2011.

[51] J. Nielsen. Personalization is overrated. http://www.useit.eom/a1ertbox/

981004.htm1,1998.

[52] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation rank

ing: Bringing order to the Web. Technical Report. Stanford InfoLab, Stanford

University, 1999.

[53] M. L. Poo. Automatic text analysis based on transition phenomena of word

occurrences. Journal of the American Society fOT Information Science, 29(3):121

124,1978.

[541 P. Pirolli and S. K. Card. Information foraging. Psychological Review,

106(4):643-675,1999.

[55] J. Pitkow, H. Schutze, T. Cass, R. Cooley, D. Turnbull, A. Edmonds, E. Adar,

and T. Breuel. Personalized search. Communications of the ACM, 45(9):50-55,

2002.

[56] M. Porter. An Algorithm for suffix stripping. Program, 14(3):130-137, 1980.

[57] T. L. Project. Category B Interactive Search. http://boston .1ti . es . emu. edu:

8085/e1ueweb09/seareh/eatb/1emur. egi, April 2011.

127



[58] T. L. Project. The Lemur Project. http://www.lemurproject.org/, April

2011.

[59] S. Robertson, S. Walker, and M. Hancock-Beaulieu. Okapi at TREC-7: auto

matic ad hoc, filtering, VLC and Interactive track. In Proceedings of the Seventh

Text Retrieval Conference, pages 253-264,1998.

[60] G. Salton and C. Buckley. On the use of spreading activation methods in auto

matic information. In Proceedings of the International ACM/SIGIR Conference

on Research and Development in Information Retrieval, pages 147-160, 1988.

[61] D. Shen, Z. Chen, Q. Yang, H. Zeng, B. Zhang, Y. Lu, and W. Ma. Web

page classification through summarization. In Proceedings of the International

ACM/SIGIR Conference on Research and Development in Information Retrieval,

pages 242-249,2004.

[62] A. Sieg, B. Mobasher, and R. Burke. Web search personalization with ontolog

ical user profiles. In Proceedings of the A CM Conference on Information and

Knowledge Management, pages 525-534, 2007.

[63] B. Smyth, E. Balfe, J. Freyne, P. Briggs, M. Coyle, and O. Boydell. Exploiting

query repetition and regularity in an adaptive community-based Web search

engine. User Modeling and User-Adapted Interaction, 14(5):383-423,2005.

[641 M. Speretta and S. Gauch. Personalized search based on user search histories.

In Proceedings of the IEEE/WIC/ACM International Conference on Web Intel

ligence, pages 622-628,2005.

128



[65] S. Stamou and A. Ntoulas. Search personalization through query and page topical

analysis. User Modeling and User-Adapted Intemction, 19(1-2):5-33, 2008.

[66] K. Sugiyama, K. Hatano, and M. Yoshikawa. Adaptive Web search based on

user profile constructed without any effort from user. In Proceedings of the

International World Wide Web Conference, pages 675-684, 2004.

[67] J. Teevan. The re: search engine: simultaneous support for finding and re

finding. In Proceedings of the ACM Symposium on User Interface Software and

Technology, pages 23-32, 2007.

[68] J. Teevan, C. Alvarado, M. S. Ackerman, and D. R. Karger. The perfect search

engine is not enough: A study of orienteering behavior in directed search. In

Proceedings of the International Conference on Human Factors in Computing

Systems, pages 415-422,2004.

[691 J. Teevan, S. T. Dumais, and E. Horvitz. Investigating the value of person

alizing Web search. In Proceedings of the Workshop on New Technologies for

Personalized Information Access, pages 84-92, 2005.

[70] J. Teevan, S. T. Dumais, and E. Horvitz. Personalizing search via auto

mated analysis of interests and activities. In Proceedings of the International

ACM/SIGIR Conference on Research and Development in Information Retrieval,

pages 449-456,2005.

[71] J. Teevan, R. Jones, and M. Potts. History repeats itself: Repeat queries in

Yahoos logs. In Proceedings of the International ACM/SIGIR Conference on

Research and Development in Information Retrieval, pages 703-704, 2006.

129



[72] J. Teevan, M. R. Morris, and S. Bush. Discovering and using groups to improve

personalized search. In Proceedings of the International Conference on Web

Search and Data Mining, pages 15-24, 2009.

[73] The World Wide Web Consortium. W3 Servers. http://wr.TV . \13. org/History/

19921103-hypertext/hypertext/DataSources/WWW/Servers. html/, 1992.

[74] C. J. van Rijsbergen. Information Retrieval. Butterworths, London, England,

1979.

[75] Q. Wang and S. Jose. Exploring online social activities for adaptive search

personalization. In Proceedings of the International Conference on Information

and Knowledge Management, pages 999-1008, 2010.

[76] R. W. White, I. Ruthven, and J. M. Jose. The use of implicit evidence for

relevance feedback in Web retrieval. In Proceeding of European Colloqium on IR

Research, pages 93-109, 2002.

[771 Y. Zhao, Y. Yae, and N. Zhong. Multilevel Web personalization. In Proceedings

of the International Conference on Web Intelligence, pages 649-652, 2005.

[78] H. P. Zipf. Human Behaviour and the Principle of Least Effort. Addison-Wesley,

Oxford, England, 1949.

130










	0001_Cover
	0002_Inside Cover
	0003_Blank page
	0004_Title Page
	0005_Blank page
	0006_Abstract
	0007_Acknowledgements
	0008_Table of Contents
	0009_Table of Contents v
	0010_Table of Contents vi
	0011_Table of Contents vii
	0012_List of Tables
	0013_List of Figures
	0014_List of Figures x
	0015_Chapter 1 - Page 1
	0016_Page 2
	0017_Page 3
	0018_Page 4
	0019_Page 5
	0020_Page 6
	0021_Page 7
	0022_Page 8
	0023_Page 9
	0024_Page 10
	0025_Chapter 2 - Page 11
	0026_Page 12
	0027_Page 13
	0028_Page 14
	0029_Page 15
	0030_Page 16
	0031_Page 17
	0032_Page 18
	0033_Page 19
	0034_Page 20
	0035_Page 21
	0036_Page 22
	0037_Page 23
	0038_Page 24
	0039_Page 25
	0040_Page 26
	0041_Page 27
	0042_Page 28
	0043_Page 29
	0044_Page 30
	0045_Page 31
	0046_Page 32
	0047_Page 33
	0048_Page 34
	0049_Page 35
	0050_Page 36
	0051_Page 37
	0052_Page 38
	0053_Page 39
	0054_Page 40
	0055_Chapter 3 - Page 41
	0056_Page 42
	0057_Page 43
	0058_Page 44
	0059_Page 45
	0060_Page 46
	0061_Page 47
	0062_Page 48
	0063_Page 49
	0064_Page 50
	0065_Page 51
	0066_Page 52
	0067_Page 53
	0068_Page 54
	0069_Page 55
	0070_Page 56
	0071_Page 57
	0072_Page 58
	0073_Page 59
	0074_Page 60
	0075_Page 61
	0076_Chapter 4 - Page 62
	0077_Page 63
	0078_Page 64
	0079_Page 65
	0080_Page 66
	0081_Page 67
	0082_Page 68
	0083_Page 69
	0084_Page 70
	0085_Page 71
	0086_Page 72
	0087_Page 73
	0088_Page 74
	0089_Page 75
	0090_Page 76
	0091_Page 77
	0092_Page 78
	0093_Page 79
	0094_Page 80
	0095_Chapter 5 - Page 81
	0096_Page 82
	0097_Page 83
	0098_Page 84
	0099_Page 85
	0100_Page 86
	0101_Page 87
	0102_Page 88
	0103_Page 89
	0104_Page 90
	0105_Page 91
	0106_Page 92
	0107_Page 93
	0108_Page 94
	0109_Page 95
	0110_Page 96
	0111_Page 97
	0112_Page 98
	0113_Page 99
	0114_Page 100
	0115_Page 101
	0116_Page 102
	0117_Page 103
	0118_Page 104
	0119_Page 105
	0120_Page 106
	0121_Page 107
	0122_Page 108
	0123_Page 109
	0124_Page 110
	0125_Page 111
	0126_Chapter 6 - Page 112
	0127_Page 113
	0128_Page 114
	0129_Page 115
	0130_Page 116
	0131_Page 117
	0132_Page 118
	0133_Page 119
	0134_Page 120
	0135_Bibliography
	0136_Page 122
	0137_Page 123
	0138_Page 124
	0139_Page 125
	0140_Page 126
	0141_Page 127
	0142_Page 128
	0143_Page 129
	0144_Page 130
	0145_Blank page
	0146_Blank page
	0147_Inside Back Cover
	0148_Back Cover

