








Dnmt1 and Dnmt3 of the Winter Skate (Leucoraja ocel/ala) 

StJohn"s 

By 
Gordon D. Lake 

Alhcs;ssubmiucdtolhc 
SchoolofGradllatcSludics 
in partial fulfilhncntQfthc 

rcquircmcnlsforthcdegrccof 
Ma>lcrofScicnrc 

DCP.lrllncntof Iliology 
Memorial Universi ty of Newfoundland 

July2011 

Ncwf(llmdland,mdLabmdor 



Abstract 

Chromatin managcmcnt throughout vcnebmte developmcnt is a stringently controlled 

and dynamic process. One event involved in that process is the covalent modification of 

cytosine nucleotides by the addition of a methyl group to the fifth carbon atom of the 

pyrimidine ring. Enzymes involved in establishing and maintaining DNA mcthylation 

pattems (DNA-methyltransferases: Dnmts) have bcen isolated and characterized in the 

teleost and mammalian lineages. There arc structural similarities between enzymes as 

well as basic developmental expression patterns but there arc fundamemal differences in 

gene number and function in the context of two very different reproductive stmtegies. 

Subclass Elasmobmnchii displays a wide variety of reproductive stmtegies and studying 

genome management in this subclass could provide great insight into the key differences 

and similarities in DNA methylation observed in the tetrapod and teleost models. I have 

isolated and characterized the first full length cDNAs of the maintenance and de 110\'0 

methyhransfemses (Dmllll and Dlllllf3 respectively) from the Winter Skate (Lel/coruja 

ace/lala), a member of subclass Elasmobranchii. Evidence is presented for multiple 

DIIIII13 splice variants as well as at least two DI111113 retrotmnsposed pseudogenes. 

Preliminary experiments indicate that the early developmental methylation dynamics 

observed in both mammals and teleosts may also be present in L. ucc/I(I/(I 
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Introduction 

Whilc it is thc DNA scqucncc of gcncs that dictatc how cclls arc able to rcspond to and 

interact with their environment it is the higher order arrangement of chromatin that 

ultimately controls gene expression spatially and temporally. Thc complex packaging of 

the genome within eukaryotic nuclei can be classificd as consti tutive heterochromatin 

(ecntromcrcs, tclomercs, satcllite rcpeats and transposable clements), facultative 

heterochromatin (transcriptionally si lenced DNA) and euchromatin (potentially 

transcriptionally active DNA). Constitutive heterochromatin rem:lins consistent from cell 

to cell of a given species while the transcribed regions of the genome :Ire revealed or 

concealed depending on thc stage of dcvelopment and fate of the ccll. This dynamic 

n:lture is achieved through chrom:ltin modification and remodelling. 

Chronllltin rcmodelling protcins shift nucleosomes and control thc organization of 

chromatin fibres as well as the nuclear sca ffold . Thesc remodclling proteins work in 

concert with proteins that carry out covalcnt modifications of the histones around which 

the DNA is coiled as well as the DNA itself [as reviewed in Li 2002]. These 

modifications, or epigenetic m:lrkers (epi: over, above - gelle/ic: of or relating to genes), 

exert a heritable influence over the genetic material that does not involve altering the base 

sequencc. Such heritable genomic control can be seen in transposon silencing, gene 

imprinting (mono-allelic expression dependant on the parental origin of the gene) and 

mammalian X-chromosome silencing. 



DNA methylation is an example of a covalent chromatin modification involving the 

attachment of a methyl-group to the fifth carbon position of cytosine residues. The 

modified base 5-methylcytosine (mSq can be found in the genome of all venebrates and 

flowering plants as well as some fungi. invenebrates and bacterial species [Goll and 

l3estor 2005]. The mammalian genome, for example. contains - 3 X 107 m5C residues. 

most of which arc incorporated into CpG dinuc1cotides [Ilestor 2000]. CpG dinuc1eotides 

arc most abundant throughout repetitive DNA clements such as pericentrie DNA and 

tclomcres as well as sequences harbouring transposons lMa el al. 2005]. The modified 

mSC nucleotides of CpGs can act as targets for methyl-CpG binding domain protcins 

(M ilOs). MilOs selectively recognize methylated CpG dinuc1eotides and funher recruit 

histone deacetylases (HOACs) which play an active role in chromatin rcmodelling [Jones 

et al. 1998]. Regions of the venebrate genome exhibiting rich cytosine and guanine 

content (>55%) arc known as CpG islands lind range from 0.4 - 3 Kb in size. Such 

islands can be found associated with 76% of human gcne promotcr rcgions r as rcvicwed 

by Goll and Ilestor 2005]. Though these islands. associated with tissue-specific and 

housckeeping genes. possess an abundance of mcthylawblc tllrgets. they typically remain 

unmethylated or lightly and variably methylated in all tissues. It is not yet fully 

understood if cytosine modification is inhibited or reversed at these island locations; 

however, the lack of mSC docs eliminate the potential for mSC deamination to thymine 

resulting in a promotcr region point mutation. 



DNA methylation ill depth 

The nucleotide base cytosine, in its nonnal genetic confonnatiorl, base-pairs with guanine 

of the oppositely oriented nucleic acid strand. In such an arrangement, cytosine is 

engaged in three hydrogen bonds stemming from its 4-amino-2-oxo groups as wcll as a 

nitrogen alOm bound to the third carbon atom of its pyrimidine structure. The enzymatic 

interaction necessary to covalently link a methyl-group to the fifth carbon atom, 

therefore, requires cytosi ne to disengage from its hydrogen bonds and rotate about its 

sugar-phosphate component so that it is extended out from the double helix 

confonnation. In this everted state the cytosine base is readily accessible by 

methyhransferase enzymes. The different structures and functions of the DNA­

methyltransferases (Dnmts) are described below but discussion of the conserved catalytic 

region is relevant when discussing the enzymatics ufthe reactio n. 

For the 1110St pan, the C-terminal end of the Dnmt contains the catalytic domain which is 

comprised of ten motifs (Dnmt3L, the exception, is outlined below) with the first ( I) 

being the most proximal (closest to the N-terminal) and the tenth (X) being the mosl 

distal (closest to the C-terminal). Most of these motifs are detectable in the Dnmts of 

bacteria. fungi , plants and mammals while the six directly involved in the reaction arc 

strongly conserved rreviewed by Bestor 2000]. Motifs VII I and IX flank the target 

recognition domain while IX plays a major role in maintaining the struelure of that 

domain [reviewed by Goll and Bestor 2005]. As the Dnmt engages the cytosine base, 



motif VI, which contains a glutamyl residue, protonates the nitrogen atom at position 

three of the cytosine pyrimidine ring (Figure I). The double bond between the nitrogen 

atom and the carbon atom at the fourth position is shifted to between the carbon atoms at 

the fourth and fifth positions. At the same time motif IV (containing the prolyleysteinyl 

dipeptide) binds the carbon atom at the sixth position of cytosine's pyrimidine structure 

breaking the 5-6 double bond allowing the carbon at the fifth position to maintain its four 

required covalent bonds. Most of the S-adenosyl L-melhionine (AdoMet) binding site is 

formed by motifs I and X. Ado Met is the methyl-group donator. As the carbon atom at 

the fifth position binds the methyl-group the 4-5 double bond can no longer be 

maintained and shills back to its original 3-4 position. In doing so the link between motif 

VI and the cytosine base is broken. However, the covalent link with motif IV remains. An 

unknown base or water molecule removes a proton from the carbon atolll al the fifth 

position, freeing the cytosine base from motif IV and re-establishing the 5-6 double bond, 

completing the enzymatic reaction. 

Figure 1: Cata lytic mechanism of DNA (cytosinc-S) mClhyltra nsfcrascs. Adapted 
from Goll and Bestor 2005. 



DNA-melhyftral1s!erase 1 (DIII1II1) 

Dnmtl has been shown to methylate hemimethylated DNA at CpG sites at a rate 5· to 30-

fold greater than that of non-methylated DNA [Stein cf {II. 1982]. It is th is preference for 

hemimethylated DNA that has resulted in Dnmt I being tenned the "maintenance" 

methyhransferase. Although there is variation in size the general st ructure of Dnmtl 

remains consistent throughout vertebrate species. Dnml l from Friend murine 

erythroleukemia cclls, which cxpress high levels of Dnmtl activity, was shown to encode 

a 1573 amino acid protein [Bestor el al. 1988]. The - SOD amino acid C-terminal 

possesscd the characteristic tcn catalytic motifs as described by P6sfai cr al. [ 1989]. The 

remaining - 1000 amino acid N-tenninal was connected via a region of alternating 

glyc ine and lysine residues. 

The most distal domain present on the Dl1mtl N-tenninal is the DNA methyhransfcrase 

I-associated protein (DMAPI) binding domain [Marchkr-Bauer ct al. 2011 ]. DMAPI 

has been implicated <I S a co-repressor supporting maintenance and activation of Dnmt I 

preferentially at sites of homologous recombination repair [Lec el al. 2010]. Proximal to 

the DMAPI binding domain is the replication foc i domain (RFD) [Marchler-Bauercr al. 

20 11]. As the name implies it is responsible for targeting the Dnmtl protein to replication 

foci during S phase DNA synthesis. This domain accounts for the dynamic localization 

documented by Leonhardt et al. [1992] in mammalian nucki. Throughout Gt and G2 

phases of the cell eycle Dnmll is diffuse throughout the nucleoplasm but associates with 



repl ication foci during S phase. The targeting of Dnmtl to replication foci adds further 

validity to the maintenance methyltrnnsfernsc theory. Prox imal still to the RFD is the zinc 

finger domain [Marchler-Bauer el (I/. 20111 containing eight conserved cysteine residues 

that bind two zinc ions. The zinc finger domain allows the Dnmtl protcin to bind 

nonmethyl-CpG dinucleotides and has been found in severnl mammalian proteins to be 

involvoo in chromatin and DNA modification [Frauer el (II. 20111. Between the zinc 

finger domain and the catlllytic motifs of the C-terminus are two Bromo Adjacent 

Homology (BA H) domains lMarchler-Baucr e/ o/. 2011j. BA H domains mediate protein· 

protein interactions and have been shown to be present in human origin recognition 

complex I (ORCI) where they promote chromatin association [Noguchi elal. 2006J. 

Mouse Dnmt I isolated from somatic tissue is produced from a mammalian somatic eel1-

specific promoter which drives expression ofa transcript including a somatic cell-specific 

exon (exon Is) shortly after implantation (Tucker el al. 1996, Yoder el 01. 19961. 

Resulting protein products are only detccted in nuclei. An additional promoter lies 

upstream to that utilized in somatic cells. This second promoter drives expression of an 

oocyte-specific exon (exon 10) resulting in trnnslation initiation in exon 4. The oocyte· 

specific variation of DnrntI lacks thc N-tcmlinal 118 mnino acids of the somatic fonn but 

rctains thc fu nctional nuclear localization signal (N LS) essential for nuclear protcins 

[Mertineit el {I/. 1998J. Though an NLS is present Ihe Dnmllo localizes to Ihe cytoplasm 

of oocytes as well as early embryos and only moves inlo the nucleus during S phase of 

the 8 cell stage of development (discussed further below). A third Dnmt I transcript 



variant spccifie to pachytene spcnnatocytes was also detected although no protein 

product was found, possibly due to multiple upstream open reading frames (ORFs) 

strongly inhibiting translation. 

DNA-melhyllrall.iferase 3 (DnmI3)/amily 

Mouse embryonic stcm (ES) cells homozygous for null Dnmtl mutation displayed stable, 

residual methyl cytosine levels and retained their ability to methylate integrated provinls 

DNA [Lei er al. 1996] providing the first evidence that a second DNA methyhransferasc 

existed independently from Dnmtl . The new melhyhransferasc was dubbed Dnml3 as the 

protein from mice showed Hille similarity to the previously described Dnmtl or Dnml2 

(discussed below) [Okano el al. 1998J. There were two distinct variations of Dnml3 (3a 

and 3b) found in mice and humans by way of a tl3LASTn search of the dbEST database 

using full-Ienglh bacterial type II eytosine-5 methyltransferase sequences as queries. 

These newly discovered methyltransferascs were highly expressed in ES cells, early 

embryos and developing genn cells corresponding to observed de 1101"0 methylation 

pattenls. FurihenilOre, these Dnmts showed no preference for hemi-methylated DNA 

over non-methylated DNA [Okano el al. 1998] lending cn.-dence to their role as de 1/01"0 

mClhyltransferases. 

The mouse Dnm/3a gene encodes al lcast two protein products, 3a and 3a2. consisting of 

908 and 689 amino acids respectively. Dnmt3a2 lad:s the N-tenllinal region of Dnmt3a 



as it is encoded by transcripts derived from a downstream promoter. Both variants arc 

enzymatically active though they demonstrate different nuclear localizations. Dnmt3a2 is 

diffuse throughout nuclei whercas Dnmt3a concentrates at heterochromatin [Chen el af. 

2002]. At least five human isofonns exist for DNMT3b by way of ahemative splicing of 

exons 10, 21, and/or 22 (as reviewed by Chen and Li 2004]. These isofollTIS exhibit 

different tissue distribution with DNM7Jbf and 3M being the predominant fOllllS in ES 

cells. DNMT3b4 and DIIIII13b5 predominantly expressed in testis. and DNAfTJb2 and JbJ 

expressed at relatively high levels in testes, ovary, spleen, thymus and liver [Chen el of. 

2002, Rohertson 1.01 al. 1999, as reviewed by Chen and Li 2004]. Only DNMT3bl and 

3b2 display enzymatic activity [Aoki ct 01. 2001] as the rest lack the amino acid sequence 

present in motifs IX and X involved in maintaining the target recognit ion Tegion between 

motifs VlIl and IX. 

The zebmfish (Dallia reria) shows evidence of six dnmt3s, twice as many as mammals. 

They were labelled as dnmts 3 through S by Shimoda ef al. [20(5) after using a partially 

determined peptide sequence ofzebmfish dnm\3 as the query ofa tBLASTx search of the 

zebmfish genome datab'lse. Smith ef al. [2005J showed dllflll5 to have at least three 

transcript variants with splicing variations occurring upstream to the translation start site 

suggesting a regulatory role illtmllslation or localization. 

Regardless of the model organism in question the general structure remains consistent for 

Dnmt3 as it docs for Dnmll. The C·tcrminal maintains the ten catalytic motifs required 



for enzymatic activity as described by P6sfai el af. [1989]. The N-ten11inal harbours a 

PWWP domain named after a conserved Pro-Trp-Trp-Pro motif [Marchler-Bauer el (II 

20 11 ], The PWWP domain has been demonstrated as being a recognition motif for 

methylated lysine 20 on histone 4 (IHK20me) [Wang el 01. 2010), The only deviations 

from this conserved structure arc zebra fish dnmt3 and dnmt7 [Shimada el {II. 2005] 

which have a calponin-llOmology (CH) domain ncar their distal N-tcnninal capable of 

binding microtubules; this has not been seen in any other known methyl transferase. 

DNA-methyhransferase 3-likc (Dnmt3L) is stmcturally related to both Dnmt3a and 

Dnmt3b. Dnmt3L possesses a simi lar C-tenninal catalytic-like region though it lacks the 

strong conservation of catalytic motifs and docs not exhibit any enzymatic activity 

(Aapola e/ al. 2000]. Dnmt3L has been shown to playa major role in the maternal 

imprinting process of oocyte development and interacts with Dnmt3a and Dnmt3b in a 

manner thai is not yet fully understood in female mammalian cells but appears to provide 

sequence specificity 10 DNA methylation [Hata el al. 2002]. In mammalian males 

Dnmt3L has been linked to the de 110\'0 methylation of dispersed repeated sequences in 

spennalOgonia [Bourc'his and Bestor 2004). Dnmt3L is catalytically inactive but remains 

functional in DNA methylation with an N-tenninal region that recognizes histone 1-13 tails 

that arc unmethylated at lysine 4 and acts to recruitlactivate Dnmt3a [Ooi el al. 2007]. 

Additionally, Dnml3L possess a plant homeadomain (PH D)-like region in its N-tenninus 

which has been shown to recruit histone dcacetylases (HDACs) [Dcplus el al. 2002] 

which may also contribute to chromatin remodelling 



DNA·methylrransferase 2 (Dnmr2) 

Dnmt2 is the most widely distributed methyltransferase. Organisms expressing both 

Dmllll and Dnmr3 always express DI/ml2 and there are a number of species that solely 

express Dnml2 [reviewed by Gall and Bestor 2005]. Dnmt2 lacks the N-tenninal 

extcnsions secn in othcr Dnmts [Yodcr and Bestor 1998]. The catalytic motifs of the C­

tenninal end are well conserved, including the cytosine targeting region between motifs 

Vlll and IX .. yet Dnmt2 shows no activity lowards cither hcmimethylated or 

unmethylated DNA [Okano et al. 1998J. Further analysis involving embryonic stem cell 

disruption of Dnrnt2 expression rcvealed no mcthylation abnonnalities and the 

development of normal phenotypes. While Dnrnt2 is not involvcd in DNA methylation it 

was shown to methylate tRNA (Goll el af. 2006) in mice, Arabidopsis Ihalial/a and 

Drosophila mefanogasler. More recent experiments using D. me/w/Ogasrer (Sch:lCfer el 

(II. 2010) have shown Dnmt2-rnediated tRNA methylation 10 be associated with a 

reduction in stress-induced ribonuclease cleavage. 

DNA IIIclhylation alld dCI,e/opmcnl 

The dynamic nature of chromatin modification is clearly dcmonstrated throughout early 

development of the mouse model. Initially the genomic DNA of the sperm is hcavily 

methylated relative to the oocyte [Olck and Walter 1997]. Immediatcly following 

fertilization the spenn pronucleus is actively demethylated while protamines are replaced 

10 



by histones. In contrast, the maternal genome undergoes passive demethylation [Santos er 

al. 2002]. The oocyte specific variant Dnmllo is sequestered in the cytoplasm of 

embryonic cclls during thc first two cell divisions preventing the maintenance of DNA 

methyl panerns as DNA is semi-conservatively replicated. At the S cell stage Dnmtlo 

moves into the nucleus to preserve illlprints [Howell el al. 2ool} and is then detccted 

solely in the cytoplasm again at the 16 cell stage [Santos el al. 2002J. This depressed 

methylated state persists until the morula stage. De 1101'0 methylation begins by the 

blastocyst stage but only targets the genomes of cells making up the inner cell mass 

(ICM). Genomes oftrophcctodernl cells remain relatively hyromethylated 

Initially, general trends of DNA methylation patterns observed in early mouse 

development were not deteeted in early zebrafish development. It was reported that 

methylation levels were not reduced in zebra fish pre- and early blastula stages compared 

with levels detected at the gastrula stage and in adult somatic tissue [Maeleod el al. 

1999). The investigators postulated that the reduction in DNA methylation levels 

recorded in mammals may have been associated with the maintenance of imprinted genes 

during embryonic methylation programming. The lack of imprinted genes in the zebmfish 

[Streisinger elal. 1981. Corley-Smith er al. 1996J perhaps did not require a reduction and 

re-eswblishment of overall DNA methylation levels. Subsequent investigations havc 

provided contradictory evidence to these initial repons. Relative changes in zebmfish 

dllllll/ mRNA and enzyme activity during oogenesis and early development closely 

resemble changes observed in oogenesis and pre-implantation embryos of the mouse 

" 



-------------------------- -----

fMhanni and McGowan 2002]. Zebra fish spenn DNA is heavily methylated relative \0 

that of the oocyte [Mhanni and McGowan 2004]. Following zchl1lfish fertilization 

substantial demclhylalion occurs and persists up 10 early blastula stages. De 1101'0 

methylation initiates and rcmcthylatcs the genome as the embryo enters later blastula 

stages coinciding wilh activation of the zygotic genome and differentiation of embryonic 

and extraembryonic cell lineages [MacKay cl al. 20071. The dis(.:rcpancy between Ihe 

Macleod el af. (1999) and following studies may in part be explained by timing. The 

earliest time point analysed by Hpal l and Mtp ll restriction digestion based experiments 

in the carly report indicated a consistent level of DNA methylation in spcnn, adult 

somatic tissue and carly blaustula cmbryos at 2.2 hours post fertilization (hpf). Howevcr 

the latter investigation claimcd that methylation levels at the 2,2 hpf stage of 

development had alrcady undcrgone the demcthylation process and were undergoing the 

remethylation that would establish levels compamble with those seen in the more heavily 

methylated sperm and adult somatic tissues. Immunohistochemistry techniques utilizcd in 

the later experiments con finned these findings revealing the early demethylation and 

subsequent remcthylation ofzebralish embryos. The Macleod study also relied heavily on 

bisulphite sequencing data collected fro111 small regions of only three genes randomly 

chosen from the GenBank database. Although data exists for and against the reduction of 

DNA methylation levels in early zebralish development this present investigation 

operates on the assumption that three randomly chosen genes maintaining a eonsistcnt 

stale of methylation throughout devclopmcnt docs not reflcet trends affecting the cntire 

gcnome. The thn:c genes reported by MacLeod el al. ( 1996) need not undcrgo 
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demethylation as a genome wide demethylation event is not neccssary for thc reduction 

in methylation levels observed by MacKay /:1 al. (2007) or the reduction in mcthylation 

levels observed in the mouse model. Given that the mammalian model undergoes gene 

imprinting and thc lcbrnfish docs not suggcsts that a similarity in dynamic DNA 

mcthylation in both models is intrinsic for vcrtcbrntc dcvelopmcnt. 

More specifically, each Dnmt plays a key role in dcvelopmcnt and diffcrcntiation. Mice 

homozygous for mutant DIIIIIII failed to develop bcyond the normal day 9.5 embryo and 

dicd prior to day II. Brain, heart, and in some cases forelimb buds were all present but 

lcss dcvcloped than would be cxpected given the gestational age. Cell death was 

widespread throughout the embryo as was reduced cell proliferntion and a 3-fold 

reduction in gcnomic cytosinc mcthylation levels was documented [Li el at. 1992]. 

Morpholino disruption of DIIIIIII transcript trnnslation in zebrnfish caused dcfccts in 

Icnninal differentiation of intcstine, retina and exocrinc pancreas. Thc livcr and cndocrinc 

panercas developed nonnally but degenerated at 84 hours post fcrtilization (hpf). Thc 

same embryos exhibited a dramatic reduction in genomic cytosine methylation as well as 

genome-wide histone 3 lysine 9 (IBK9) trimethyl Icvels [Rai el (I/. 2006, Andcrson el al. 

2009]. Inactivation of DIII1IT3a and Dllllltlb by gene targeting bloch de 1/01'0 methylation 

in mousc ES cells and carly embryos but has no effect on maintenance of imprinted 

mcthylation patterns [Okano el a/. 1999]. It was determined that Dnmt3b was responsible 

for thc mcthylation of ccntromeric minor satellite repeats and that micc deficient in 

Dnmt3b activity dcveloped nomlally until cmbryonic day 9.5 but died before birth. Miee 
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deficient in Dnmt3a activity survived to teml but became undersized and died by four 

weeks of age. Embryos lacking both Dnmt3aJ3b activity showed a more severe 

phenotype similar to that observed for mutant Dnmtl mice. Zebrafish development 

illustrates a tissue-specific function for Dnmt3 as it is required for proper differentiation 

of neurons, pharyngeal arches, the exocrine pancreas, and certain retinal tissues (Rai et 

01. 2010). It is not required for development of the jaw, intestine, endocrine pancreas or 

liver. 

DNA methylation alld 11I1f/1al/ p(l!hology 

Immunodeficiency-centromeric instability-facial anomalies syndrome (ICF) is a rare 

autosomal recessive syndrome involving C-tenninal mutations in the DNMT3b gene [Xu 

el al. 19991. Distinctivc signs of ICF includc a severe immunodeficiency and instability 

of the pericentromcric hcterochromatin at chromosomes I and 16 and less frequently at 

chromosome 9. Variable signs include hypcrtelorism, flat nasal bridge and macroglossia, 

psycilOmotor and mcnwl rctardation as well as intestinal dysfunction and developmental 

delays [as reviewed by Matarazzo el al. 2009]. The mutation within the catalytic region 

of the DNAfT3b gene leads to complete demethylation of classical satellite sequences as 

well as dcmethylation ofCpG islands on inactive X chromosomes in females [Xu et a/ 

1999]. Though silenced X chromosomes are affected there docs not seem to be a 

difference in symptoms between male and female patients [Bourc'his et al. 1999]. 
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Relt syndrome is a neurological disorder almost exclusivcly affecting remales and is 

[inked to mutations in the methylated DNA hilldillg prolein 2 (MeCP2) gene [Arnir et al. 

[999]. [t is thought that eomp[ete loss of the X-linked MeCP2 gene in males would be 

lethal. Rett syndrome is characterized by an apparently nonnal pre- and perinatal period 

followed by a ski ll regression in early childhood (prior 10 age 2). There is loss of already 

acquired skills, regression of language, presence of repetitive motions (especially hand 

movements), seizures and menta l retardation [reviewed by Matarazzo el (If. 2009, 

Geiman and Muegge 201OJ. MeCP2 is not a methyltransferase but a protein that binds 

methylated DNA and takes part in inducing nucleosome clustering and stabilization of 

large chromatin loops [Ghosh ef al. 2010]. Although aberrations in mSC are not the root 

of ReI! syndrome the consequences of being unable to correctly respond to a particular 

epigenetic marker cannot be denied 

Aberrant DNA methylation is one or the mosl consistent epigenetic changes observed in 

human cancers [reviewed by Dclcuve el al. 20091 and has the potential tu influence 

tumourigenesis in three ways. First, mcthylated cytosinc may altcr coding regions of 

genes by inducing point mutations. Second, the ovcrall depiction of mSC in the genome 

may cause genome instability. Third. hypennethylation of gene promoters may inactivatc 

gene transcription [reviewed by Gronbaek el af. 2007]. Hypermcthylation of genc 

promoters sets the scene for potentially disastrous point rnUlations as methylated 

cytosines arc deaminated to thymine. G:C -> A:Thas been shown to be the most common 

mutation 10 the p5J gene in human colon and breast tumours as well as lung and 
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esophageal cancer [Hollstein er al. 1991]. p53 has bccn tenned the guardian of the 

genome as it is one of the most important tumour suppressors mediating growth and 

apoptosis in response to oncogenic cellular stresses such as DNA damage [reviewed by 

Chen et al. 201 1]. Hypomethylation of DNA causes chromatin decondensation and 

chromosomal rearrangements potentially resulting in chromosomal instability [reviewed 

by Kanai 2008]. Feinberg and Vogel stein [1983] showed a substantial degree of 

hypomelhylation in cancer cell genes of a sma ll group of patients with adenocarcinoma 

of the colon and small cell carcinoma of the lung when compared to the genes' normal 

counterparts in control cell types. 

DNA methylation: the el'OllItionmy quay 

DNA methylation as an epigenetic marker plays a major role in proper chromatin 

management throughout development. The integral role of DNA methylation in 

vertebrate development is illustrated by the severity of developmerlwl and pathological 

aberrations documented in both the rnamlll(Llian (mouse) (Illd teleost (zebmfish) 

experimental models resu lting from deviations in the nom1<11 methylation pat1ern. The 

mouse and zebrafish represent the tetrapod and teleost lineages respectively. IWO lineages 

Ihal diverged from each olher -440 million years ago (mya) [Santini cr al. 2009}. Though 

separated by millions of years of evolution these two groups use very similar proteins to 

establish very similar developmental programs in DNA methylation throughout early 

development. There are, however, lineage-specific differences in methyhnmsfcrase 
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numbers as well as how these methyltransferases arc utilized with regard to each model's 

different reproductive strategy. The importance of DNA methylation cannot be denied 

but it is difficult to ascertain the targeting mechanism of DNA methy lt ransferases as well 

as how they arc controlled when information bases we currently have are limited to so 

few species separated by over 400 million years ofindependellt evolution. 

In order to elucidate the core roles of vertebrate DNA methylation it would be bencticial 

to investigate an organism or group of organisms representative of the ancestral 

vertebrate condition. Class Chondrichthyes (the cartilaginous fish) diverged from bony 

fish - 528 +1- 56.4 my a [Kumar and Hedges 1998] and further split into two subclasses, 

Elasmobranchii (sharks, skates and rays) and Holocephali (chimeras) - 374 my a [Nelson 

2006]. The Elasmobranehs exhibit fundamental vertebrate characteristics sueh as u 

developmental neural crest, jaws and teeth, a pressurized circulatory system and adaptive 

immune system [Mattingly et af. 2004]. Members of this subclass have previously been 

utilized as ancestral vertebrates before in numerous comparative physiological studies 

concerning endocrine systems and organ function [Bewley e/af. 2006, Cai e/ al. 2001] 

Furthermore, some species already being used in laboratories (such as LClicorqja 

cril/(/cea) as representative ancestral vertebrate models have genome sizes comparable to 

our own rGregory 2011). This is u great advantage for investigating genome management 

while attempting to shed light on human-centric developmental abnormalities or 

pathologies. Subeluss Elasmobranehii also displays a wide variety of reproductive 

strategies ranging from oviparity (single and multiple) to viviparity (yolk-sac. hislOtrophy 
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and oophagy) [as reviewed by Musick and Ellis 2005]. Studying genome management in 

this subclass cou ld provide greal insight into the key di fferences and similarities in DNA 

methylation observed in previously studied tetrapod and teleost models. 

Objec/iI'es a/Thesis 

The animal model presented in this work is the Winter Skate (Lellcoraja oed/ala) 

belonging to Class Chondrichthyes, Order Rajifom1cs and Family Rajidac. L. ocellml/ is 

an oviparous skate found in the western Atlantic Ocean ofT the coasts of Newfoundland 

and Labmdor and as fur soulh as Nonh Carolina [BeSler 2011]. 1\ belongs to the same 

genus as the currently studied Little Skate (L. eril1acea). Though the Winter Skate was 

chosen for this study due to ils convenient habitat location it also serves as a further 

expansion of the Lellcoraja genus as a scientific model. Previously in my undergraduate 

program I established that L ocellata methylates its genomc. I isolatcd a 274 bp L. 

oce/lata 01111113 3' sequence by revcrsc transcription - polymerase chain reaction (RT­

PCR) using degenemle primers based on CluslalW jLarkin el (II. 20071 alignmcnt of At. 

/IIl/sCIIIIIS. H. sapiells and O. rerio de 1101'0 DNA mcthyhransfemses. The present study 

expands upon that work by investigating DNA mcthylation levels in tcstis and OV<n-y 

(i ssues of L oce/lata. I also report and chamcterize the first full Icngth Chondrichthyes 

DNA mClhyltmnsferase cDNA sequences corresponding to the L. oedlala 01111111 and 

D1I1II13. 
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Materia[s and Mcthods 

DNA and RNA samples 

Ovary, testis and muscle tissue from L. oedlaut specimcns wcre previously collected by 

Dr. Ross McGowan from animals maintained at the Ocean Sciences Centrc (Logy Bay, 

NL, Cunada) und stored at -80"C. 

Genomic DNA was extracted from tissue samples using chloroform/ phenol mcthodology 

lSambrook el al. 1989]. Total RNA had been previously extracted from tissue samples by 

Dr. Ross McGowan using an acid guanidinium thiocyanatc-pheno[-chloroform cxtraction 

lChomezynski and Sacchi [987]. Additional testcs, brain and gut tOlal RNA from L. 

oce/lala specimcns maintained at thc Ocean Sciences Centre were providcd by Dr. 

He[ene VolkofT. 

Comparison o/Ieslis. 01'(11)' alld somalic lissue melitylaliolllel'e/s 

Digestion of gDNA from L. ocellala tesis, ovm)' and somatic tissue was pcrfomlcd using 

the rcstrietion cnzyme HpaJl (Promcga, Madison, WI, USA) . lfpall is a 4 bp cutter 

targeting the sequcnec 5' - CCCC - )' bUI is inhibitcd from cUlling the target scquenee 

when the interior cytosine is mcthylated 
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soo ng of L. ocellara gDNA from eaeh tissue type were separated by gel electrophoresis 

in 0.8% agarosc providing a means of asscssing the initial integrity of each gDNA 

sample. 2.S ).Ig of gDNA from each tissue type wcre then digcsted by /lpal l as per the 

manufacturer's protocol (Promega). Comparison of untrcated gDNA samples to samples 

digested by Hpall (Promega) provided a means of assessing the methylation level 

specific to the endonuclease target sequence of each gDNA sample. The contents of the 

restriction digestions were separated by gel electrophoresis in 0.8% agarose, stained with 

ethidium bromide and visualized under ultraviolet lighl. Complete digestion was verified 

by the addition of control plasmid DNA to each sample of the experimental digests. 

Digestion was considered to be complete when the internal control gave a digestion 

pattern identical to that obtained with test plasmid and Hpal l alone. 

Primer desigll alld symhesis 

Primer design was carried out using the on-line Primer] sofiware 

(hlTp:lljrodo.lI"i.mil.edlllprilllerJl) rRozen and Skaletsky 2000] All primers were 

synthesized by Invit rogen Inc. (Carlsbad, CA, USA) and uscd at an experimental 

concentration of 10 11M unless otherwise Slated (sec Table 1 for primer lisl and 

sequences). 
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Tahle I : Prim ers used throughout the isolatiou aud characterization of Lell('oraja 
ocella(a D""'t3 and Dnmrl, Refer to eDNA sehem(ltics for primer locations 
and orientations The degenerate sequence code used by Invitrogen Inc, is (IS 

follows, B: TlC/G, D: AIT/C, H: AITIC, K: TIC, M: Al e. N: Alc/CI T, R: AIC, 
S: CIG, V: AICIG and Y: CIT 

LCllcora;a ocel/a(a DI1I11t3 

Lcmcora;a occl/(I(a DI//1/( I 

3' D.:gcncr .. te(nOlshown in 
Figure 4) 
5' D('gcncrate{nOl shown in 
Figurc4) 

I' lirpose 
S' RACE RT.PCR 
ScquClleing 
Sequencing 
Sequencing 
Sequencing 
tnitiat lsotationofDn"'li 
eDNA 
tnitiallsolationofDnml1 
eDNA 

21 

~E:;~~~CTGT AACGA TCT 

ACCCATGGCAACAACATTCT 
TGAGGGCACAGGAAGACTTT 
GCA TGCAGCCTTCACAATAA 
AGGCCTGTCTTCCCACTCCTTTGGT 

A TCCTTGCCCTGCTTGA TGGA 

Sequener 
TCCTTTAGCrCCAGTGGCTCCAGCA 
ACCCAAGCCCCCAAACTTCA 
GCTGACTGCCACACAATCAT 
TAGTGGTAGTGGCTTTAGTG 
TGGGTTA TCATCATAGATTG 

TGGGCIIA THGARATGTGGGA 



Sequencing reacliolls (Slid dow allalysis 

Sequencing of all clones obtained throughout this investigation was carried out at the 

Genomics and Proteomics facility of Memorial University of Newfoundland following 

laboratory protocols and using the Applied Biosystems 3130 four eapil1ury Genetic 

Analyzer (Applied Biosystems, Foster City, CA, USA). Sequencing data was assessed 

using the free on-line software CHROMA S (hlfp:lllI'lI'wsofipedill.comlgetISciellce­

CADIChromas-Lile,shlmf) (School of Health Sciences, Southpon, Queensl:md. 

Australia). Rel iable sequence data was funhcr trimmed und analyzed using the free on­

line software Gene Runner version 3.05 (/IIIp:/llI'lI'w.gellerullller.llel/) 

IsolaliOIlO/lhe L. ocel1alu Dllmll cDNA 5' end 

Using the L. ocelfata Dlllllfl 3' eDNA pre\'iously isolated by the McGowan Laboratory, a 

primer was designed (Primer A, see Figure 2 for primer location and orientation) having 

a compatible melting temperature with the Univers.11 Primer Mix (U PM) used by the HD 

SMARTer RACE eDNA Amplification Kit (Clomech. Palo Aho, CA, USA). The PCR 

program recommended by the manufacturer was used; it staned with a 2 min 94°C 

denaturation followed by thiny cycles consisting of 5 cycles with a 30 sec 94°C 

denatuTlltion and a 3 min 72°C elongation step. 5 cycles with a 30 sec 94°C denaturation, 

a 30 sec 70°C anneuling step and a 3 min 7rC elongation step, and 20 cycles with a 30 

sec 94°C denaluTlltion, a 30 sec 68°C annealing step and a 3 min 72°C elongation step. A 
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final I min elongation step at 72°C plus a holding step at 10°C followed. All PCR 

amplification reactions performcd throughout this investigMion were earried out using an 

Eppendorf Mastercyeler ep Gradient (Eppcndorf Inc., Mississauga, ON, Canada). 

Resulling amplieons were separated by gel electrophoresis in 0.8% agarose. All 

electrophoresis gels ran I Kb Plus DNA Ladders ( Invitrogen Inc.) as marker lancs. Gcls 

were stained with ethidium bromide and visualizcd under ullraviolet light. PCR products 

were ligated into the Tapa TA Cloning Vector ( Invitrogen Inc.) as per the kit protocol. 

Vectors containing PCR ampl icons were used to transform Mach Tl chemically 

competent E. coli cells (Invitrogen Inc.). Transfonned cel ls were incubated ovemight ,n 

37"C on L-broth agar containing ampicilin. Resulting colonies were uscd to inoculate L­

broth liquid cullures and incubated ovemight in a 37°C water bath set to shake al 200 

rpm. Plasmid DNA was recovered from cells us ing the Wizard!> PIllS Minipreps DNA 

Purification System (Promega) and Ihe presence of desired PCR products was con finned 

by EcoRI (Promega) digestion and gel electrophoresis in 0.8% agarose. 

Sequencing of cDNA was carried OUI as oUllined above. FUrlher characterization of 

cDNA utilized Ihe follow ing on-line databascs: Conserved Domain Database (CDD) 

[Marchler-lJauer el af. 2011 j, nucleotide and protein sequence databascs (National Center 

fo, lJiotechnology lnfonnalion) and skate EST dalabase 

(hllp:lldecypher.mdibl.orgldecypher/algo-tcra-blastllera-blaSln_nn.shlml) Additional 

characterization took advantage of Ihe fo llowing frec on-I inc software: CluslalW [Larkin 

er (II. 2007], Mobylc@Pasleur vl.O (hllp :llmobyle.pa.\·lew./r/cgi-billlpol"lalpy), SWISS-
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MODEL Workspace [Arnold el al. 2006], WoLF PSORT [I10non el al. 2007], and in the 

case of L. oc:effata Onml3 (discussed below), Scion Image software (National Institute of 

Health, Bethesda, MD, USA). 

Preliminary research sellillg Ihe s tage/or lhis Ollml3 illl'e~'ligalioll 

Previously, I obtained 274 bps of Lellcoraja oc:ellata's Dllml3 transcript within the )' 

catalytic region (Figure 3) LLake 2008]. The sequence was isolated using RT-PCR with 

degenerate primers designed based on a ClustalW [Larkin el af. 2007] alignment of 

Nomo sapiens ONMTJA (GenBank number A1320883) and 38 (Gen 8 ank number 

NM 006R92.3), MilS IIl11scl/lu$ Dnml3A (GenBank number A1'068(25) and 38 (GenBank 

number AF068626) as well as Oallio rerio dnmts 3 through 8 (GenBank numbers 

AB196914, A8196915, AB196916, ABI96917, A8196918 and A13196919 respectively). 

lt was from this 274 bp sequence that species specific primers were designed for the 

purjlOse of dctcnnining the remaining sequence of both the )' and 5' ends of the L 

oce{{ala 011111/3 eDNA. 

Iso/aliOIl o/Ihe complete 3' end of L occllata DIIIIII3 tDNA 

First strand eDNA was synthesized using the BD SMART RACE eDNA Amplification 

Kit and protocol (Clontech). Template RNA was derived from pooled L vw{{al(l oocytes 

(0.75 - 1.0 em in diameter). The initial reverse transcri ption react ion consisting ofa 1.5 
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(A) 

~ __ A A 

(B) 
I: 1949-1968bps 
2: 2096 - 2116bps 
3: 200] - 2021 bps 
4: 26R4 - 2704 bps 
5: 2055 - 2080 bps 

6: 2344 - 2365 bps 
7: 2215 - 2224, 2414 - 2423 bps 
8: 207 - 227 bps 
9: 170 - 179,29! - 300bps 

10: 2450 - 2475 bps 

II: 2060 - 2080 bps 
12: 1813 - 1833bps 
13: 1426 - 1446bps 
14: 885 - 905 bps 
15: 176 - 196bps 

Figure 3: Schematic of L. ocellura Dllmt3 eDNA. {A} The 274 bps previously isolated [Lake 2008] are indicated in orange. 
Untranslated regions are shown in grey. Arcas of sequence subjected to splicing are demarcated by triangles. 
Primer locations and orientations arc indicatcd by arrows. (8) Locations of primers corresponding to the labeled 
schematic. See Table I for primer sequences. 



hour 42°C incubation fo llowed by 7 minutes at 72°C was performed using an Eppendorf 

Mastereyclcr ep Gradient (Eppendorflnc.). 

PCR primcr #1 was designed to amplify the remaining 3' end of the L. ocdlola 01111113 

transcript. The position of primer #1 within the original 274 bp sequence is shown in 

Figure 3. The PCR program started wi th a 2 min 94°C denaturation followed by thirty 

cycles consisting of a 30 sec 94°C denaturation. a 30 Sl'C anneal ing step using a block 

gradient (55°C - 600 C) and a 30 sec elongation step at 72°C. A final I min elongation 

step at 72uC plus a holding step at lOoC followed. PCR products were cloned and 

sequenced as previously described. 

Sequencing analysis and fisSile distriblllion oflhe L. oce llata /J1II1/13 3' j'arkml.\· 

Gel electrophoresis of the 01l1llt3 3' clones recovered via the above mentioned Miniprep 

system indicated two variants (Figure 4A). ClustalW [Larkin el al. 2007] alignmcnt of 

the two variant sequences indicated thaI one lacked an intenml region comprising 189 

bps. Primcrs #3 and #4 were designed to flank the variable 3' region (Figure 3) and were 

utilized in investigating the tissue distribution oflhe two 01l1l/13s containi ng variable 3' 

clltalytic regions. Tissue types tested in this manner were L. ocellala ovary, testis, brain 

and gut. First stmnd eDNA synthesis reactions were carried out using the AncT primer 

(Invitrogen Inc.). PCR amplifications utilizing primers #3 and #4 started with a 2 min 

94°C dcnatur:ltion foll owed by thirty cycles consisting of a 30 sec 94°C denatumtion, a 
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30 sec 65°C annealing step and a I min elongation step at 72~C. A final I min elongation 

step at 72"C plus a holding step at 10°C fo llowed. PCR products were separated via gel 

electrophoresis. Comparison of transcript levels of each of the two Dlllllt3 3' variant 

amplicons was conducted within each lane of the electrophoresis gel using Scion Image 

software (Nalionallnstitute of Health). 

Isola/ioll of/he L. oeellata Dlllllt3 eDNA 5' elld 

Primers #2 and #5 were designed 10 isolate the 5' end of the Winter Skate 01/11113 

transcript. Primer 1/2 was used with BD Bioscience's SMA RTer RACE eDNA 

Amplification Kit (Clontech) to generate first strand cDNA. Subsequent PCR was 

performed using Primer 1/5 and the UPM provided by the SMARTer RACE kit 

(Clolltech). The PCR program recommended by the manufacturer was used; it started 

with a 2 min 94°C denaturation fo llowed by thirty cycles consisting of 5 cycles with a 30 

sec 94°C denaturation lind a 3 min 72~C elongation step. 5 cycles with a 30 sec 94°C 

dcnalurntion, a 30 sec 70°C annealing step and a 3 min 72°C elongation step. and 20 

cycles wilh a 30 sec 94°C denaturntioll. a 30 sec 6SoC annealing step and a 3 min 72°C 

elongation step. A final I min elongation step at 72°C plus a holding step at 10°C 

followed. 

PCR amplicons resul1ing from the above reaction were cloned. isolated and sequenced as 

previously described. Gel electrophoresis of the DIIIII/3 5' clones recovered via the 
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Miniprep system indicated two variants (Figure 411). ClustalW [Larkin ef al. 2oo7J 

alignment of the two variant sequences indicated one lacked an intenml region 

comprising I I I bps. 

M(lfching 1J11111IJ 5' l'arial1lS 10 3' W/,.ial1ls 

Two sets of discriminating primers were designed in order to match the variable 5' ends 

to the variable 3' ends (Primer #s 6, 7/8, 9). Primer #10 was designed to be used in 

conjunction with 130 Ilioscienee's RT kit (Clonteeh) for first strand cDNA synthesis, the 

product of which was used as template in amplification reactions pairing primcr #6 with 

primers #8 and #9 as well as reactions p .. 1iring primcr #7 with primcrs #8 and #9 (sec 

Figure 3 for positions and orientations). The parameters for all six amplification reactions 

were the same. The PC R program started with a 2 min 94°C denaturation followed by 

thirty cycles consisting of a 30 sec 94°e denaturation. a 30 sec 50QC annealing step and a 

3 min elongation step at n"c. A final I min elongation step at nOc plus a holding step 

at I Que fo llowed. 

Il/l"esligaliOI1 0/pOlel1liallJ1II1If3 pselldogenes 

While investigating the 3' variants of the L. oce/lota 1)1111113 cON A by way of RT-PCR 

using primers #3 and #4 rcsults simi lar to those found in the experimental reactions were 

observed in the control pe R rcaction.~ using the '"no-RT" reaction (reverse transcription 
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react ion lacking a reverse transeriptase) as template. Fresh primer aliquots were prepared 

and fresh enzymes were used in an eITon to eliminate any potential contamination to 

reaction reagents. The "no-RT" PCR results resembling the experimental results 

persisted. A new experiment was designed to investigate the possibility that the results 

were due to genomic DNA (gDNA) carryover in the RNA extraction. 1 ).1g of gDNA 

extmc\ed as outlined above from L ocellaft/ testis underwent RNase A (Qiagen Inc., 

Mississauga, ON, Canada) treatment as per product protocol. One half of the 20 I-li RNase 

treated gDNA volume was then removed and subjected to DNA Wipeout (Qiagen Inc.) as 

per the product protocol using a 9 min 42°C incubation period. Both the RNase treated 

gDNA and RNase/DNA Wipeout treated gONA samples were used as template for PCR 

using primers #3 and #4. The PCR progmlll starled with a 2 min 94°C denaturation 

followed by thiny cyeles consisting of a 30 sec 94°C denaturation. a 30 sec 65°C 

annealing step and a I min elongation step at n °c. A fina l 1 min elongation step at n Oe 

plus a holding step at lOoe followed. 
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Results 

Higher levels o/ONA meThylation in tesTis ,-e/aTil'c to OV(II')' and sOll/atic fissile 

Research conducted during my 11Sc. (Honours) dissertation project lLake 2008] using 

restrict ion cnzymes demonstrated that the L. oee//afa genome was methylated. However. 

on ly somatic tissues were examined in that study. Si nce ditTerences in relative DNA 

methylation levels exist between sperm and oocytes in both mammals and teleosts an 

investigation into whether or not the same trend was evident in L. oce//ata was 

undertaken. It should be noted that Winter Skate DNA methylation levels were assessed 

usi ng DNA isolated from testis and ovary tissues rather than speml or oocyte populations. 

As a resu lt methylation levels of reproductive cells may have been partially masked by 

methylation levels of surrounding reproductive tissue cells. Figure 5 shows the results of 

a Hpa ][ restriction enzyme digestion. Although a direct quantitative comparison cannot 

reliably be made between lanes of the electrophoresis gel it is evident thaI. of the 2.5 ).g 

of DNA digested in each case, the majority of DNA in the testis samples persisted as high 

molecular weight fragments indicating that Hpa l l digestion was inhibited. Hpa ll 

inhibition is indicative of a methylated cytosine residue in the restriction enzyme target 

sequence. Therefore L. ocellafll testis tissues appear to exhibit higher levels of cytosine 

methylation relative to somatic and ovary tissues. 
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Figure 5: Methylat ed cytosine is elevllted in the testis uf L (lCelh,lll when 
compared to ovary and somatic tissues. (A) Methylated cytosine in the 
target sequence S'-CCCC-J' prevents NIXI II rrom digesting genomic DNA 
resulting in a greater proportion or high molecular weight rragments 
(outlined in white) upon separation via gel electrophoresis in 0.8% agarose. 
(8) Control electrophoresis gel. Initial integrity or gDNA samples is 
con finned by large proportion or high molecular weight fragments prescnt in 
all samples prior to HPllII digestion 
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Isola/ioll and charaClerizaliOIl of II Ie L. occllata Dllmll 

The 3' end of the Winter Skate DIIII1II was previously acquircd by the McGowan 

laboratory (unpublished data). TIle eDNA cloning was completed by amplifying an 

- 2600 bp 5' sequence using RACE RT-PCR (Figure 6). The full Icngth L. ocellalll 

Dl/lf/II eDNA sequencc consists of 4990 bp (Figure 7). Based on thc longest open 

reading frame (ORF) identified in the cloned sequence (4531 bp) the first 73 bp and final 

386 bp are untranslatcd (sce Figure 4 for schcmatic of cDNA clone). 

The translated ORF ofthc L. ocellaw Dmllll yiclds a 1509 amino acid sequcnce (Figure 

8). Thc SC(lucncc surrounding the translation start codon (AUG) was compared to the 

Kozak conscnsus seq uence [Kozak 198 7] (Table 2) which acts to increase recognition 

efficiency of the start codon by the 43S translation pre-initiation complex ras reviewed by 

Kozak 2005]. L. oce/lala DIII1III displayed a weak resemblance to the Kozak consensus 

seq uence as only the -3 located nucleotide (three nucleotides upstream from the adenine 

of the AUG stan codon) <Ind not the +4 loc<lted nucleotide (four nucleotides down~tream 

from the adenine of the AUG start codon) was conserved. Regardless orthe weak nature 

of the L. ocella/a DIll/III Kozak consensus sequence, a complete ORF is present with 

both a stan and stop site yielding a protein sequence possessing the expected domains for 

the enzyme type in question. Three nuclear localization signals (NLS) wcre predicted 

using the on-line WoLF PSORT software (hlfp:llwo/fpsofl.orgl) JHorton el al. 2007J 
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Figure 6: The 5' end of L. o,'clfutu IJ nmt I gencratcd by 5' RACE RT-l)CI~. - 2600 
bp (outlined in white) amplified with a primer designed from 3' sequence 
previously acquired by the McGowan laboratory, 
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TTTATTTTACTCATTATAGGGCAAGCAGTGGTATCAACGCAGAGTACATGGGGACCGACAACAAT 
ACAATACAATGCCGGGCACTACCCGCTGCTCGCTGCCCGACGACGTCAAGAAGCGGCTTCAAGCA 
CTTGAGGATAAAGCCGGTCTATCAGAGAAGGAATGTGTGAAAGAAAAGCTGAGTTTGCTGCATGG 
CTTCTTACAAGCAGATGCACAAAATGACCTCAGCGAGCTGGAAACAAAATTTAAAAAAGAAGAGC 
TCTCGGAGGAGGGTTATCTGGCCAAAGTGAAAGCATTGCTCAGCCAGGAGCTTTCCGTAGGGAAT 
GGAAATTCTGAGCTTGGTGTGAATTCAAATGGTTGCACAGAAAATGGAGCCACTGACAGTGATAA 
AAGTGACACCAATGGTGTATCTGATGAGCCAAATGGCCAAGAGGAGAGCAATATGGAAACAGAAG 
CTGTGGTTTTCCCAACAGCAAAGAGTCGTGGGAAGCGACTAAGTAAATCCAATGGAGATAACAAA 
AGACTATCAGGAAGTCCAAGGTTCACCAGGAACTCGGCAAAGCAGCAAGCCACAATTACATCCAT 
GTT TGCT MAGT AGCAAACAAACGCAAGTCAGA TGACCT AAA TGAACCAGAA TCAAAGAAGAA TG 
AGACCGATGAATGTAATGCTGAACAGGAGCAAGATGAAAAGAAAATCAAAATTGAATCTGAACAA 
ACGCTT AGTGGAGCCGAAGCT ACCTCT AACTGT AAACCCAAAAGTGAACAAACTCCT AAGACGCC 
ACCTCCCAAGTGCACAGATTGCAAGCAGTTCTTGGATGACCCAGATCTCAAATACTTCCAGGGCG 
ATCCTGATAATGCATTAGAAGAGCCTGAGATGTTGACTAATGAGCGGTTGTCACTCTTTGAAGGA 
ACGAACGATGAAGGGTTTGAAAGTTATGATGACTTGCCTCAACATAAAGTTACATTCTTCAGTAT 
TTATGATCGGAMGGCCACTTGTGTGCTTTTGATACTGGCCTCATCGAAAAGAATGTGGAATTGT 
GCTTCAGTGGTGTGGTGAAGCCAATCTATGATGATAACCCAAGCCTGGATGGTGGAGTCAGAGCT 
AAAAAACTGGGACCAATAAATGCCTGGTGGATAACTGGTTTTGATGGTGGAGAAAAAGCTTTGAT 
TGGATTTACAACAGCGTTTGCTGATTATATATTGATGGATCCCAGTGACGAATATGCAACCATCT 
TTGCTGTGATGCAAGAGAAAATCCACATAAGCAAAATTGTCATTGAATTTCTACAAAATAATCTT 
GATTCCACTTATGAAGACTTGCTAAACAAGATAGAGACTACAGTACCTCCTGCTGGACTGAGTTT 
CTCTCGCTTCACGGAGGATTCGCTGCTGAGACACGCCCAGTTTGTCTTGGAACAAGTGGAGAGTT 
ATGATGAAGCTGGTGATGTTGATGAACAGCCTATCATTATAACTCCCTGTATGAGGGATCTGATC 
AAGCTGGCTGGTGTCACTCTTGGGAAAAGACGAGCTGCAAGGCGACAAGCAATACGTCACCCTAC 
CAAGATCGATAAGGACAAGGGACCCACTAAAGCCACTACCACTAAGTTGGTATATCAGATTTTTG 
ATACTTTCTTCTCTGAGGAAATTGATCAGAATGACAAAGAGAATGGATCAAAGCGTAGGCGCTGT 
GGAGTGTGTGAGGTTTGTCAACAGCCTGACTGTGGGAAGTGCAATGCTTGTAAGGACATGGTGAA 
GTTTGGGGGCTTGGGTCGTAACAAACAAGCCTGCTTACAGAGAAGGTGTCCAAATCTGGCTGTGA 
AGGAGGC TGA TGACGA TGAGAA TGA TGAGGA TGACTC TGA TCT AA TTGACAAAGCA TCTCCT AAA 
AGAATGTTGCAGGGTCGGAAAAAAAAGCMTCGAAGAGCCGCATCTCTTGGATTGGAGAGGCTAT 
GAAGTCTGACGGACGGAAGACCTATTACCAGAAAGTGTCTGTTGACGATGAAATTCTGGCGATCA 
ATGATTGTGTGGCAGTCAGCCCGGATGACCCCACCAAACCGCTTTACTTAGCAAGAATCACATCA 
ATGTGGGAAGAAGTCGGTGGGAAGATGTTCCATGCAAATTGGTTCTGCCGTGGCACAGACACTGT 
ACTGGG TGAAACCTC TGA TCCACTTGAGCTCTTTCT AG TGGA TGAGTGTGAAGACA TGCAGTT AT 
CTTATGTAGACAGCAAAGTAAAGGTTATTCACAAGGCTGCCTCGGAGAGCTGGGCACTGGAGGGT 
GGAATGGATGATGAGTTTGAGTTAAAAATGGTTGAAGATGATGGAAAGACCTACTTCTACCAGAT 
GTGGTATGATCCAGAGTATTCCCGATTCCAAATTCCTCACCCATGTGAATCAACGGAGGAGAACA 
AGCACAAGTTCTGTGACAGTTGCACTCGGTTGGCTGAAATCAGACAGCGAGAGATGCCACGGGTG 
CTGGAGCCACTGGAGCTAAAGGATGATTCAAAGGTTTTCTACGCATTGGCTACTAAGAATGGAAC 
GCAGTATAAAGTTGGAGATGGCATTTACCTCCTGCAAGATGCATTCTCATTCAGCGTTAAACCAT 
C T AG TCC TGGCAAGCGACCAGTGAAGAAAGA TGACGTGGA TGAAGACCTGT ACCCCGAGT ACT AT 
CGCAAGTCATCTGATTACATCAAAGGGAGCAACCTTGATATTCCTGAACCATTCCGAATTGGCCG 
CATTCATGAAATCTTCTGTCACAAGCGTAGCAATGGCAAACCCAATGAAGCAGATATTAAGCTAC 
GAA TCAA T AAA TTCT ACAGAGCTGAGAA T ACGCACAAAGGCCTGAAAGGCAGTT ACCACACTGAC 
ATCAATTTGCTATATTGGAGCGATGAAGAAGTGACCGTGGACTTCAAAGACATCCAAGGCCGCTG 
TACTGTGGAATATGGTGAAGATCTGACTGTATGCGTTCAGGAATACTGTGCTGGAAGCCCAGACA 
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GATTCTATTTCCTAGAGGCCTACAATGCAAAGACAAAATCCTTTGAAGACCCTCCCAACCGTGCA 
CGCAGTTCGGCCAACAAAGGCAAGGGT AAAGGGAAAGGCAAAGGCAAAGGAAAGGGGAAGTCTGC 
TACTGAACCTGAACAAACAGAGCCAGAGGTTTCGGACAAATTCGAGAAACTTCGCAGCCTTGATG 
TATTTTCAGGCTGTGGGGGTCTGTCTGAAGGATTCCATCAGGCAGATCTTTCGGAAACCATGTGG 
GCCATTGAGATGTGGGATCCAGCAGCCCAGGCGTTCCGTTTGAATAATCCCGGTGCCACCGTCTT 
CACTGAGGACTGCAACGTTCTCTTGAAACTTGTCATGGCTGGAGAGAAGACCAATTCACTTGGAC 
AGAAACTGCCACAGAAGGGTGATGTGGAAATGCTCTGTGGTGGCCCTCCGTGCCAGGGCTTTAGC 
GGGATGAATCGGTTCAATTCCCGCACCTACTCCAAATTCAAGAACTCCCTTGTGGTCTCTTATCT 
CAGCTATTGTGACTATTACCGGCCCCGGTTTTTCCTCCTGGAAAACGTGAGGAACTTTGTCTCAT 
TCAAGCGCTCCATGGTCCTGAAGCTAACTCTTCGCTGCCTTGTTCGAATGGGCTACCAGTGCACA 
TTTGGTGTCTTGCAGGCTGGTCAGTACGGAGTTGCCCAGACCCGCCGGAGAGCTATCGTTCTGGC 
CGCAGCCCCTGGAGAGAAGCTGCCGCTCTTCCCAGAGCCCCTGCACGTCTTCGCACCCAGAGCCT 
GCCAGCTCAGTGTGGCAGTGGATGACAAGAAGTTTGTCAGCAATGTCACCAGGACAAAGTCTGCT 
CCGTACAGAACCATCACTGTAAGAGATACCATGTCCGATCTGCCTGAAATTCGCAATGGAGCATC 
GGCGCTGGAAATCTCGTACAATGGTGAACCTCAGTCCTGGTTTCAGAGGCAGATTCGAGGCACAC 
AGTACCAGCCTATCCTGCGGGATCATGTCTGTAAGGATATGAGTGCCTTGGTGGCAGGCAGAATG 
CGCCACATTCCCCTCGCCCCGGGGTCTGACTGGCGTGATCTTCCAAATATTGAGGTGCGCCTTTC 
CGATGGCACCATGACCAAGAAGCTGAGGTACACACACCACGATAAAAAGAACGGGCATAGCAGCA 
CTGGTGCGCTACGTGGAGTGTGTTCTTGCGCAGACGTGAAGCAGTGTGAGCCGGCTGACAGACAG 
TTCAACACACTCATCCCCTGGTGCCTGCCCCACACTGGAAACAGACACAACCACTGGGCCGGTCT 
GTATGGCAGGCTGGAATGGGATGGATTCTTCAGCACCACCGTCACCAATCCTGAGCCGATGGGAA 
AACAGGGTCGTGTTCTACATCCTGAGCAGCACCGTGTGGTGAGTGTGCGAGAGTGTGCACGATCC 
CAGGGGTTCCCAGACACCTACAGGCTCTTTGGGAACGTTTTGGACAAGCACAGGCAGGTTGGCAA 
TGCAGTACCACCTCCTCTGGCTAAAGCTATCGGCACGGAAATCAAACTTTGCGCACTTGACAGGA 
AGAAAGGGAATACAGAGCACATCAAACTAGAGACAATGGACACAAGCGCCTGATTCATCTCCTTC 
AGCT TGA TGTTCC CACCACA TCTTCA TGCACTGCA TTCAAGGGCAGGAGGAAAGAAAA T ACGA TG 
GGATTCCTGTGACTGTTCGGTGAAATAATGTTTTTTTTTAAACTGGGTGATGTGAGGCAGCCAAT 
GAAGATGTAACATTGTTTTTAGTTATGAATGAACATTTTTTTTTTGATTGTGCAGTGCTGTCATG 
CATTGTGGATTTTAATGTGGTTTTAAAATGCACAGTATTTGAATAATTGCCCACTTTTTGCAGTG 
GTAATTCATATGTTTAATAAATTGTAGTTTTTATATGTTGTAATATTTCAATAAATATTTTAAGT 
GGAATGCTATTATGCCGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

Figure 7: i-ell('(lruju IKellulu J)NA-"'(!I")'I"ulI~f(!ruse I eDNA seq uence. 4990 bp 
DI1II1II clone with the largest ORF identified consisting or 453 1 bp, Start 
(ATG) and Stop (TGA) codons arc indicated in green and red text 
respectively. 
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MPGT 
TENGATOSDKSOTNGVSOEPNG 

QE ES NME T EA VVF PT AKSRGKRLS KSNG DNKRLSGS PRFT RNSAKQQAT I T SMFAKVAN 
KRKS DDLNE PE SKKNE T DECN AEQEQ OEKK I K I ES EQT LSGAEA T SNCK PKS EQT PK T P 
P PKCT DCKQF L DO POLK Y FQGOP DNA LEE PEM L TNE RLS L FEGTN DEG FE S 

VP P AGLS FSR FTEOS LLRHAQ FVLEQVES Y DEAGDVOEQ P I I IT PCMRO 
L I KLAGVT LGKRRAARRQAI RH PTK I OKOKG PTKATTT K L VYQ I FDT FFSEE I DQN DKE 

NLAVKEAODDEN 
DEODS 0 L I OKAS PKRMLQGRKKKQS KS R I S W I GEAMKS DGRKTYYQKV SVDD 

PCE S TE ENKHK FC DSCTRLAE I RQREMPRVLE P LE L KODS KV FYA LATKNGTQY KVG 
DG I Y LLQDAF S FSVK P S S PGKR PVKK OOVO 

NRARSSANKGKG 
KGKG KGKGKGK SATE PEQTE PEVS OK FEK LR S LOV FSGCGG LSEG F HQA D LS ETtl:WA I E 
tl:WO P AAQA FRLNN PGATV FT E DCNVL LK L VMAGF. K TNS LGQK L PQKGOVEM LCGG PPCQ 
G FSGMNR FN S R TY SK FKNS L VVS Y LS Y C DY YRPR F F L LENVRN FVS FKRSMVI. K L T LRC 
L VRMG YQCT FGV LQAGQY GV AQTRRRA I V LAAAPGE K L PL F PE PL HVF A P RACQ I S VA V 
DOKK FVSNVTRTKSAPYRT I TVROTMSDLPE I RNGASALE I SYNGE PQSWFQRQI RGTQ 
Y Q P I LROH VC K OMS A L V AGRMRH I P LA PGS DWRD L PN T EVR LS OGTMTKK LR YTH H OK K 
NGH SS TGA LRGVCS CII DVKQC E P ADRQ FNT L I PWC L PHTGN R H N H WAG L Y GR l.EW DG FF 
S TTVTN PE PMGKQGRV LH PEQHRVV SVRECIIRS QG F POTY R L FGNV L OK H RQVGNA V P P 
P LAKA I GTF: I K I .CII LDRK KGNTE H I K LE TM OT SA 

Figure 8: Lellcomja ocd/ala LlNA-mcthyltrallsfcra sc I amino acid SCIIIII.'II CC. 

Translation of the largest identified ORF of the DIIII111 clone yields a 1509 aa 
sequence. N-tenninus domains arc indicated in orange and the C-terminus C-
5 DNA methylase domain is indicated in green (refer to Figure 9 for N­
tenll inusdornain identities). 
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Tahle 2: Compariso n of Ollmll translalion sta rt sites in vertebrates. Comparison to 
the Kozak consensus sequence [Kozak 1987] focuses on nucleotides in the-3 
location (3 nucleotides upstream from the adenine nucleotide beginning the 
tmnslation start codon) and +4 location (4 Ilucleotidcs downstream from the 
adenine nucleotide beginning the translation stan codon) proven to be the 
most influential in targeting the 43S pre-initiation complex to the translation 
stan codon (green text) rNakagawa cl at. 2007]. Similarity to the Kozak 
consensus sequence is categorized as Strong (both the -3R and +4G 
nuclcotides are conscl"\'ed), Weak (onc of the nucleotidcs in either the -3R or 
the +4G location is conserved). or Poor (neithcr of thc nucleotides in the -3R 
or thc +4G locations arc conscl"\'cd). R: A or G 

Nuclrolidcl'osil ion -6 -5 -4 -3 -2 -I 3 4 
Kozak Scg G C C C C A T G G 

Org.1nisrn ~':~:r~~n~nsus 
~ 

/.. oct'//(l/(l A A A C A A T C C Wcak 
X./Ut'l·j.y A T A G C C T C C Wcak 
G·8(J1I1I~· C C C C C G T C C roo, 

A-fII1lI.\·cllllls T G C A A G T C C Weak 
H. S(leiellS T C C C A G T G C Weak 

D.rerio C C A A G C Weak 
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(NLS Scorc of OAI): PDDVKKR, KRRR and RKKK. Their locations begin at amino 

acids 10, 535 and 610 respectively. Both the Conserved Domain Database (CDO) 

fMarchler-Bauer el al. 20111 and SW ISS-MODEL Workspace [Amold el al. 2oo6J were 

used to identify thc remaining protein domains. Their identities and amino acid positions 

arc as follows (Figurc 9): DNA Mcthyltransferase I-Associatcd Protcin binding domain 

(DMAPI) 5-96, Replication Foci Domain (RFD) 288-423. Zinc Finger domain (ZI) 532-

578, Bromo Adjaccnt Homology domains (BA I'I) 643-769, 857-991 and C-5 cytosine­

specific DNA methyltransferase domain 1033-1487. Figure 10 outlines the tcn catalytic 

motifs of the L. oce/lala Dnmtl mcthyltransfemse domain. Conscrved sequenccs 

dctcrmined by Posfai er al. [1989J were used to probe thc subject L. ocelfaf(/ sequence for 

similarity. In addition the COD was utilized in outlining spccific features of the 

methyltnmsfcrase domain. As a result motifs I, II, 111 , IV. V. VI and VIII superimpose 

very well over the CDD data whi le the remaining motif locations do not align with amino 

acids indicated to be involved in specific fcatures. 
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Figure 9: Dnmtl functional domains in representative vertebrate models. (A) Schematic of L. oedlata Dnmll protein. 
Functional domains identified in thc N-Icrminus arc indicated in orange (DMAP1: DNA mcthyltransferase 1-
associated protein binding domain, RFD: replication foci domain, Zf: zinc-finger domain, BAH: bromo adjacent 
homology domain). Predicted nuclear localization signals (N LS) are shown in bluc. Thc C-terminus catalytic 
region is shown in green with the predicted 10 catalytic motifs shown in yellow. (8) Percentage similarity of the 
subject L. ocellulu Dnmll functional domains with other vertebrate Dnrnll proteins (H sapiens GcnBank 
X63692, M musculus GcnBank X14805, D. rerio GenBank NM 131189 G. gallus GcnBank 043920, X laevis 
GenBank 078638). 



tUUt H" 
LRS L DVF5 GCGGL5 EG F HQAD LS ETMWA I EMWD P AAQAFRLNN PGA TV FTE DCNVL LK L 

, -,,- ,- -- ' i~1 * * 
VMAGEKTN 5 LGQK L PQKG OVEMLCGG P PCQG FS GMNRFN S RTY 5 KFKN 5 L VV 5 Y L 5 Y C D 

Y Y RPRFF L LENVRN FV S FKR5 MV LKL TLRCL VRMGY QCT FGVLQAGQY GVAQTRRRA I V - - '* U - ,-
LAM PGE KL PLFPE P LHV F APRACQ L 5VA VD DKK FV 5NVTR T KSA PY R T I TVRDTM5 OL 

PE I RNGA5ALE I S YNG E PQ5 W FQRQ I RGTQY Q P I LRDHVCKDMSAL VAGRMRH I P LAPG 

5 DWRD L PN I EVRL5 DG TMT KKLR Y T HH DKKNGH 5S TGA LRGVCSCA DVKQCE P ADRQ FN 

T L I PWC L P H TGNRHN HWAG L Y GR LE WDG F F5 TTVT N PE PMG KQGR V LH PEQH RVV5 VRE 

CAR5QGFP OT YRLFGNVLDKH RQVGNA V P PPLAKA I GT E I KLCA 

Figure 10: Cata lytic motifs present in the L ocelluru Dnmt] C-S cytosiue-sllecific 
DNA lIIet hyltransferase domain. Underlined regions corrcspond to the 10 
motifs predicted using 13 bacterial DNA methyltransferases [P6sfai el al. 
[1989]. Pound symbols located above amino acid residues indicate their 
incorporation into specific features as reported by the Conserved Domain 
Database [Marchler-Bauer A el al. 2011]. Pound symbol colour code is as 
follows. Red: Feature I (Cofactor Binding). C reen: Feature 3 (DNA 
Binding). Rlue: Component of Fcature I and 3. Orange: Component of 
Feature 2 (Substrate Interaction) and 3. 
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hulatioll (llId characterizmiofl ofL. occllata 0llml3 

RACE RT-PCR was perfon11cd using Primer3 [Rozen and Skaletsky 2000] designed 

primers based on the previously acquired 274 bp region of the Winter Skate 01111111 

These rcactions yielded two amplicons for the 3' end as well as two amplicons for the 5' 

end sized at - 1000/ 1200 bp and - 2000/2200 bp respcctively (Figure 4). The full length L. 

oce/fala 01111113 cDNA sequence incorpomting the longest amplicon of each cnd consists 

of3301 bp (Figure II). The largest ORF identified (2340bp) results in a 5' UTR of214 

bp and a )' UTR of747 bp (see Figurc 3 for schematic of cDNA clone) 

The longest identified ORF of the L. oce/lata DIII1II3 yields a 779 amino acid sequence 

(Figure 12). WoLF PSORT [Honon ef al. 2(07) predicted an NLS of six amino acids 

(RHKK KK, NLS score of 0.82) staning at position 61. The SW ISS-MODEL Workspace 

[Arnold c/ a/. 2006] identified the remaining protein domains. Their identities and amino 

acid positions arc as follows (sec Figure 13): I'ro-Trp-Trp-Pro domain (PWWP) 141-214, 

Plant Homeo Domain (PHD) 367-444 lII1d C-5 cytosine-specific DNA mcthyltnmsferase 

domain 473-746. Figure 14 outlines the ten catalylic motifs of thc L. ocella/a DnmG 

methyhmnsfemse domain. Motif assessment was carried oul as oullil1(:d above. Again, 

motifs J, II , 111 , IV, V, VI and VII I superimpose very well over the COD data. Motif X 

also shows some similarity with the COO feature description. The remaining molif 
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ACA TGGGGGCAGTGAAGTGAAGTGGAGCCGGAGTGAAGTCGGAGCGGGCGA TCGCGGACCCCAGCGCCAA T ATCCCCCT 
CCTCACCTCTCCCTGGAGCCGAGATTCTTAACCAGAAAGGCCGACAATGAAGTCTAACGACTGCAACTCGGAAACTGCT 
GGTGACATCAGCAAACTAGAGCCTGTCATGAACGGGGAAACTCACCAACTGGATCAATC,GGGAGCAAGCAACAACATCC 
AGTTCCCAAACCCCCAGCCCAAA TCCCACTCAAAGTGGAACTGATAGCACCGCA TTCTGACA') 'GAGATTCTATCGAGT 
GAAAGCAGTC 'I' AGGGAGGAAGC'I'TGA'I'GATGGGAGGCCAAAGGGTAAATCGAGA TGCCAAGAAGAAAGCGAAGAGGCAA 
AGCGGCGAGGAGTA 'l'CAGGTTGGGAGAGCAGTCTCAGACAAAGGCCAGCACCACGTA T AA T'!'TTCCAGGCAGGAA T'!'TC 
CTTTCGCCACAAAAAAAAGAAAGAAGATAA T AA T ATGAAACTCAAAAAGGACA TGAACAATTCATTGTCTCAGAAGACG 
AGGACATCTGCTACCAAGGCT'I''I'TA'I'CGC'I'GAAAATTCTGTCATAGACC'I'CACTT'l'GGAGCCTC'I'GGA'I'AGCAGCAAGA 
AACC'I'CCAG'I'TCCAGCAGAAAGCTTTGTCTGCGAAAATAGCATTG'I'GAAGGG'I'ACAGATGGAATCCCTCAGTACCAGGA 
TGGCAAGGGTTACGGT A TTGGGGAGTTGGTGTGGGGAAAGA T AAAGGGGTTC'I'CGTGGTGGCCGGCCA TCGTGGTGTCG 
TGGCGCACACCCGGACGGAGGCAAGCGGCGTCGGGGATGCGGTGGCTCCAATGGTTCGGAGACGGCAAGTTCTCAGAGG 
TTTCTGCCGACAAACTTATGCCT'!'T AACTGCGA TTGGTCAA TATTTCCACACATC'I'GCATTTAACAAGCTGA TTTCTTA 
CAAAAGAGCTGTGTATCAGGCTTTGGAGATTGCCAGCAGCAGATCTGGGATTCCATTCCCTTCCAATGACCGGGGCACT 
TTGGAGGAACAGATAAAGCCCATGCT AGACTGGGCA TTTGCTGGTTTCCAACCGAAAGGCT ACGAAGGAATTAAACCCA 
AACAAAACACAGAGAACGA T ACTGCAGA TGGCACTCCAGTCGAGGTCTGTGTCCCCGAGT ACTA TCCGCCAACAAAGAA 
ACAGAAGACTAGTCTTTATAAAAGCAAAGAAGGACCTGAGGAGGAACACCGTGGCAGAGAAAAAATCTTCTTTCAAGTT 
ACA TCGAATAA T AAAAGCA TTGAAGAATTTTGTCTTGCTTGCGGCAGCATT AGAA TCGGCACTTTTCATCCACTGTTTG 
AAGGTGGTCTATGTTCCATTTGCAAGGATATCTACCTGGAGACTTCCTACATGTATGACGATGATGGCTACCAGTCCTA 
CTG TACCGTGTGCTGTGGTGGGCGGGAGGTTCTGCTGTGTGGGAATGCAAACTGCTGCAGATGCTTTTGTGTGGACTGC 
ATAGATA TTTTGGTGGGTCCGGGTGCA TCTGAAGAAGCCAAGGTCCTGGACCCTTGGCGA TGTTACA TGTGCCTGCCGC 
ACGAAAGCTACGGAGTGTTGAGGCGACGAGGAGACTGGACCATGAAACTTCAAGAGTTTTTTGCCAGCGACAATGGGCA 
GGAATA TGATCCGCCTAAAATTT ACCCAGCCGTACCTGCCGAGMCAGAAAGCCAATCAAAGTTCTGTCGTTGTTTGA T 
GGGATAGCAACGGGATATTTAGTTTTAAGGGATTT AGGATTTAAGGTTGAGAGGT A TGTTGCTTCTGAAA TATGTGAAG 
ACTCGATCGCAGTGGGGACGGTCCGACATGAAGGAAGAATCACATACGTACATGATGTCAGGAACATCAGCCGGCAGAA 
CA TTCA TGAGTGGGGTCCGTTTGATCTGGTGATTGGAGGeAGCCCCTGTAACGATCTTTCTATTGT AAA TCCTGCAAGA 
AAGGGTTTAT ATGAGGGCACAGGAAGACT'I'TTCTTTGAATTTTATCGACTGCTTCA TGACACCAGACCAAAGGAGTGGG 
AAGACAGGCCTTTCTTC'I'GGCTATTTGAGAATGTTGT'!'GCCATGGGTGTCAATGATAAAAGGGACATCTCACGTTTCTT 
GGAGTGT AACCCAGTTA TGATCGATGCAA TCGACGTGTCTGCTGCCCACCGGGCTCGCTACTTTTGGGGMACTTACCA 

TGAAGGA TT ATTTTGCTTGTGAAT AACACAGCATAT AAT AGGTCTTTCAGMACTT ACGGTGCTCTCTT AGAAACT AAC 
AAGTAGTGAAACAMTCCAGACTGGTTTTCAGTATACTGTGACACAAAATATTTGCTTGGCATTATTGTGAAGGCTGCA 
TGCTGTACATTTACGATACTGTGGCCATTATTCACAGTCACAACTCAGGACAGAGTAGGTAGCTAGCATGCCTACTATA 
GTTGTTTT AGA TTTTGTAA TTTCATCT'!'TTA T ATGGGAAGAAACCAGAAT'!'CCTACTTTT AGTTATAGTTTTCTT ACM 
TAG'I'GTGAGGATTATACTTCACAGTTT'!'TTAGTGTACT'!'TGTAGCCAGTTT'I'ATTATGGGATTTAAGGGCTTTTTATTT 
CTTGATGGTGCTATTGTCCCCCTTTTAGATTTTCAACTTATTTTTTAAAT'!'TCCAACATAGTATTTTATTGTTACTATA 
CAT ACAGTATCAGCAGCTGGATT'!'TGGT AGACAGA T AA T AAGTCTTGACCT AT'!' AACAAAAGA TCAACCT AGCAGAGTT 
TAAAATCATTGTTCAAAA TGTTGAAGTTGTTGTTCTGTTTAAACAGT ATTCCAAGTAT A TTTT AACTTTTCAGCAAAGT 
GTA TTTTTTTCATG'I' AACCTGTTGTATGTGTAGT'!'GGGGAA TAATCATGA T ACA TTGTT AAA TTTGTTTA TGTTTTGT A 
TTTTAGCAAGGGTTGCAGATGTATAAATGAGCAAAMAAAAAAAAAAAAAAAAAAAAAAAAA 

I<' igllrc II: LClicoraja oeel/ata DNA-mcthy/rrum;jeru.\'c 1 eDNA sClllienee. 3301 bp 
DIIII1I1 clone with the largest ORr identified consisting of 2340 bp, 
Underlined sequence indicates regions of transcript subjected to splicing. 
Start (ATG) and Stop (TAA) codons ofORF arc indicated in green and red 
text respectively. 
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MGS KQQH PV PK P P AQ I P LKVE L I1'. PHS OME I LS S ES S LGRK LODGRPKGKS RCQE ES E E 

AKRRGVSGWE SS LRQR P A PR I I FQAG I S FRHKKK KEDNNMK LK K DMNN S LSQKTRT SAT 

K1'.FI1'.ENSVI DL TLEPLDSSKK 

KFSEVSADKLMPL TAIGQYFHT 

S1'.FNKL I S Y KRA VYQALE I AS SRSG I P FPSN DRGT LEEQ I K PML OWl'. FAG FQ PKGYEG I 

K PKQNTEN DT 1'.DGT PVEVCV PE YY P PT KKQKTS L Y KSKEG PE EEH RGREK I FFQVT SNN 

KSIEEFCLACGS 

LD PWRCY MC L PHE S YGVLRRRGDWTMK L 

OE FF ASDNGQEYDPPK I Y PAVPAENRKP I KVLSLFDGT ATGYTNT,RDI,GFKVERYV 1\::; E 

ICEDSII\VGTVRHEGRITYVHDVRNISRQNIHEWGPFDLVIGGSPCNDLSTVNPARKGL 

Y EGTGRL FFE FYR L L H DT RPK EWE DR P F FW L FE.NVV AMGVN DKRD I S R FLE.CN PVM I DA 

T DVSAAHRARYFWGNLPGMNRPLVASSADKLELQHCLF.HGR I I\KFSKVRT I TTRSNS I K 

QGKDQH F PV I MNGKE 0 I L WCT ELER 1 FG FPVHYTDV S NMGRGARQKLLGRSWS V PV I RH 

LF1'.PLKDYFACE 

Figurc 12: Lellcoruju (,cd illta DNA-mcthyltrll nSrCrllSC J ll mino acid scq ucncc. 
Translation of thc largest identified OR F of the D/lllltJ clonc yiclds a 779 
aa sequence. N-tenninus domai ns arc indicated in omngc and thc C­
tcrminus C-5 DNA mcthylasc domain is indicatcd in grecn (refer to Figurc 
13 for N-tCnllinus domain idcntitics). Underlincd sequence indicates 
regions of protein affcctcd by transcript splicing 
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Figure 13: Dnmt3 functional domains in representat ive vertebrate models. (A) Schematic of L. oee/lala Dnmt3 protein. 
Functional domains identified in the N-tenninus are indicated in orange (PWWP: Pro-Trp-Trp-Pro motif, PHD: 
Plant Homeo Domain). The C-tenninus catalytic region is shown in grecn with the predicted 10 catalytic motifs 
shown in yellow. The predicted nuclear localization signal (Nl S) is shown in blue. Regions showing evidence of 
transcript splicing are indicated by triangles. (8) Percentage similarity of the subject L.ocellala Dnmt3 

:ti functional domains with other vertebrate Dnmt3 proteins (/1. sapiens 3a GenBank AB208833 , /1. sapiens 3b 
GenBank AB208880, M. muscuills 3a Gen Bank AF06R625 M. musculus 3b Gen Bank AF06R626, D. rerio 3 
GenBank AB196914, D. rerio 4 GcnBank AB196915, D. rerio 5 GenBank AB196916, D. rerio 6 GenBank 
AB196917, D. rerio 7 GenBank AB19691R, D. rerio 8 GcnBank AB196919, G. gallus 3a GenBank 
NP 001020003 .1 and G. gallus 3b GcnBank NP 001019999.1). Columns titled Long & Short indicate 
alignments carricd out using the 274 amino acid and 211 amino acid L. oce/lala domains respectively. 



DGT PVEVCVPEYY PPTKKQKTSL Y KSKEG PEEEH RGREK I FFQVTSNNKS t EE FCLACGS I R I GTFH PLF 

EGGLCSICKDIYLEASYMYDDDGYQSYCTVCCGGREVLLCGNANCCRCFCVOCIDILVGPGASEEAKVLD 

flUIt 
PWRCYMCLPHES'lGVLRRRGDWTMKLQE FF ASDNGQE'lDPPK I Y PAVPAENRKP I KVLS LFDG I A TGY LV 

If It tilt I I~I 
LRDLGFKVER 'lVASE I CEDS IA VGTVRHEGR IT'lVH DVRN I S RON I HEWGP FDLVIGGS PCNDLS rVN PA 

f • - - , ---

RKGL 'lEGTGRLFFEF'lRLLH DTRPKEWEDRPFFWLFENVVAMGVNDKRD I SRFLECN PVM I DA I DVSAAH 
- '. - UH --

RARYFWGNLPGMNR PLVAS;AI'Lf:LI,lHCLE,;';RIAKF,K T! TRSN~ KO',K JOHFP IMNI;KEIIL - , 
W,'T LE 1 FGFPVH'lTDVSNMGRGARQKLLGRSWSVPVIRHLFAPLKDYFACE 

I' it:ure 14: C~la ly lic 1II0lifs in Ihe long ]' , 'arianl L m·e/lala Dnml3 C-Ierminus. 
Underlined regions correspond to the 10 motifs predicted using 13 bacterial 
DNA methyltl1lllsferases [P6sfai ef (II. 1989J . Pound symbols located tlbove 
amino acid residucs indicate their incorporation into specific features as 
reponed by the Conserved Domain Database [Marchler-Bauer et al. 20 11 ]. 
Pound symbol colour code is tiS follows. Red: Fetlture 1 (COfiICIOT 
Binding). Green: Feature 3 (DNA Binding). Orange: Component of 
Feature I & 2 (Substl1lte Intcraction). I' urplc: Component of Feature 2 & 3 
mack: Component of all three Features. I'i nk text highlights target 
recognition domain affected by 3' transcript splicing. 
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locations as predicted by P6sfai e/ al. [ 19891 do not align themselves with amino acids 

indicated to be involved in specific features by the COD. 

Val"ia/ioll ill L. ocellata DllllltJ /ml1serip/s 

The dilTerent lengths of 5' cON A dctected in this study (Figure 3B) rcpresent alternate 

tmnscripl splices (Figure II) revealing multiple potential translation start eodons (Figure 

12). Thc upstream start site results in the translation of an additional 28 amino acids 

within the same reading frame as the downstream start site. The sequences surrounding 

the two translation start codons were compared to the Kozak consensus sequence fKozak 

1987J (sec Table 3) as previously perfonm:d for L. oee/lara Dlllllfl. The upstream 

translation stan site yielding the longer N-temlinus bears a weak resemblance to the 

Kozak consensus sequence showing only the nucleotide al Ihe +4 local ion 10 be 

conserved. The downstream translation start site yielding the truncated N-tenninus shows 

a strong resemblance to the Kozak consensus sequence with nueleotides in bOlh the -3 

and +4 locations conserved. 

Two diITerent3' eDNA sequences were also detected in this study (sec Figure 4A). The 

shorter oflhe two sequenccs lacks an intcrnal 189 bp region coding for 63 amino acids 

within the reading frame of the longer 3' sequencc. Consequently, removal oflhese 189 

bp docs not creatc a reading framc shift (sec Figure 12). The Dnmt3 region affected by 
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this splicing cvcnt lics betwecn moti [~ VIII and IX of thc C-5 cytosine-spccifie DNA 

rnethyltmnsfer<lse domain (see Figure 14). 

Tahll' 3: Comparison of Dllltlt3 translation start sites in ' ·crtebnltes. Comparison to 
the Kozak consensus sequence [Kozak 1987] focuses on nucleotidcs in the -3 
location (3 nucleotides upstream from the adenine nucleotide beginning the 
translation stm1 codon) and +4 location (4 nucleotides downstream from the 
adenine nucleotide beginning the translation start codon) proven to be the 
most influential in targeting the 43S pre-initiation complex to the translation 
start codon (outlined in grecn tcxt) [Nakagawa el (/1. 2007]. Similarity to the 
Kozak consensus sequence is categorized as Strong (both the -3R lmd +4G 
nucleotides are conserved). Weak (one of the nucleotides in either the -3R or 
the +4G location is conserved), or Poor (neither of tile nudeotides in the -3R. 
or the +4G locations are conserved). R: A or G 

NuclCQ~idc I'osilion -6 -5 -4 -3 -2 -I 3 4 
Kozak Seq G C C R C C T G G 

S,m,l.mylO 
Organism Kozakconscllsus 

~ 
L. oce/lata 

G G A A G G Weak 
Upstream 

L. oce/lala 
C T G A C A C G Strong 

Downstream 
H sapiells 3a G C C C A G A T C C roo, 
II. sapiells3b G A A A G C A T C A Weak 

At.musculus3a C C A G C A A T G C Weak 
M./1//isc/lI/lsJb G A A A C A T G A Weak 

D. rerio3 G G A A A A T C G Strong 
D. rerio4 G A C A G G T C A Weak 
D. rerio5 C T T C A A T G C Weak 
D. rerio6 T C T G T G T C A Weak 
D. reriol C A G A A G A T C G Strong 
D. rerio8 A C A C C T C C roo' 

C.gaf/lisJo T G C G C A T G G Strong 
C. galllls3b A C C G C G A T C A Weak 
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Since a splicing event within the catalytic region of the L oce/fa/a Dnmt3 may be 

relevant to tissue specificity, a tissue comparison of J' variants was undertnken. Figure 

15 shows gel electrophoresis sepnmtion of RT-PCR products from L. ocel/afa ovary, 

testis. brain and gut tissues amplified using primers flanking thc variable region (#3 and 

#4). Both 3' v<lriants nrc prcsent at the tmnscript level in all four tissue types. Due to the 

fact that <In appropriate control gene sequence hns not been identified in skates, 

quantilntive comparisons between gel electrophoresis lanes could not be made. However. 

$cn lmage software (National Institute of Health) W<lS used to evaluate relative band 

intensities of the 3' variant peR products within each tissue type Crable 4). Of the four 

tissue types tested, only gut tissue showed a majority of the 514 bp amplicon over the 703 

bp amplicon based on the laller's 93.2% relative intensity to the fonner. Ovary. testis and 

br<lin tissues all showed majorities of the 703 bp amplicon over the 514 bp amplicon with 

relative intensities of 123.8%, 150.0% and 160.0010 respectively. 

In an effort to determine which variable 5' end paired with which variable 3" end new 

primers capable of isolating the longer and shorter variants in each scenario were 

designed (primers #s 6, 7, 8 and 9; see Figure 3 for positions). Pairing the long 5' region 

to the long 3' region for PCR amplification was expected to yield a 2159 bp fr<lgmellt 

(primers #8 and #6 in Figure 16). Two fragments amplified with sizes of - 2200 bp and 

- 2000 bp. The Inrger of the two fmgrnents was closest to the expected size but was the 

less prominent of the two. Pairing the long 5' region to the short 3" region for PCR 

amplification was expected to yield <I 2028 bp fnlgment (primers #8 and #7 in Figure 16) 
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""" .... . ~ .... . ~ .... 
~ .... .. .... 

'''hi 
(0) AA 

J ~ l 
Figure 15: 80th the 703 bll and 5 14 bp 3' transcript variants of the L. m'ellata 

DIIIII'] arc IITesent in four different tissue types. (A) RT- I'C R products 
wcre amplified using primers #3 and #4 working from template 
synthesized using Invitrogen's AncT primer and 1 ~lg of total RNA. 
Absence of peR amplification in the - RT reactions indicates no genomic 
DNA contamination. (8) Graphical representation of band intensities from 
Lane I (ovary +RT) generated by Scion Image software. (C) Band 
intensities from Lane 3 (test is +RT). (D) Band intensities from Lane 6 
(brain +RT). (E) Eland intensities from Lane 8 (gut +RT). Red lines 
indicate the boundaries sct allowing pixel counts beneath each curve to be 
obtained separate from pixel eounts of adjaeent curves. Peaks on left side 
of each individual image correspond to the 703 bp band while peaks on the 
right correspond to the 514 bp band. See Table 3 for square pixel counts 
and clIicula\ed ratios. 
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,---------- ------- - -

Tahle 4: Tiss ue specific differential uprcssion of the L Ot'cllu(u 1)1111113 ) ' 

transcript va riants. Square pixel counts were dctcnnincd using Scion Image 
software 10 analyze a tiff image of RT-PCR products separated by gel 
electrophoresis (sec Figure 10). Ratios were dctCnllincd by calculating the 
blind intensity of the 703 bp product relative to the 5 14 bp product. PCR 
amplification was carried out using primers #3 and #4. Pixel counts were 
taken fromlhc centers of the electrophoresis bands. 

Tissue Ovary Testes Drain C "I 
703 bp Square 

25 13 4400 4245 1804 Pixels 
514 bp Square 

2030 2934 2667 1935 
Pixels 
Ratio 1.238 1. 500 1.600 0.9323 

SamplcCalculalion 
Ovary: 703bp pixel count I Sl4bp pixel count 2513 / 2030 = 1.238 
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Figure 16: The long 5' end of the L ocellar" D"",/3 transcript matches with both 
the long and short J' ends. Primer #8 isolates tr.mscripts with extended S­
ends while primer #2 serves as a landmark to ensure #8 is annealing where 
it was designed to. Primers #6 and #7 isolate lhe long and short 3" ends 
respectively while primer #1 acts as a landmark ensuring both #6 and #7 
anneal whcrc Ihey were designed to. 
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Again, two fragments resulted from amplification only this time the fragment sizes were 

- 1900 bp and - 2000 bp. The largest fragmem was closest to the expected size and also 

appearcd far less promincnt than the smaller fragment. PCR ampl ification using primer 

#8 paired with #2 was perfonned to act as a landmark ensuring #8 was annealing where it 

was designed to (primer #2 had been previously shown to anneal to its designed target 

sequence; data not shown). This reaction was expected to amplify a single 1910 bp 

fragment. As seen in Figure 16 two fragments amplified with the larger, less prominent 

onc being - 1900 bp and the smallcrofthc two being - 1700 bp. 

Pairing the short 5" region to the long 3' region for peR amplification was cXllCcted to 

yield a 2085 bp fragment (primers #9 and #6 in Figurc 17). A single fragmcnt amplified 

at - 1900 bp. Pairing the short 5' region to the short 3' region for PCR amplification was 

expectcd to yield a 1955 bp fragmem (primers #9 and 117 in Figurc 13). A single fragmcnt 

amplified al - 1800 bp. PCR amplification using primcr #9 paired with 112 was also 

perfonned to acl as a landmark ensuring #9 was annealing whcre it was designed 10. This 

reaction was expected to amplifY a 1836 bp fragment but yiclded a fragmcl11 of - 1650 bp 

(assecn in Figure 13) 

Evidellce oi L. ocellata Dl/l/ltJ pscl/dogel/es 

Initial PCR amplifications, prior 10 the usc of DNA Wipeout trcatmcnts for total RNA 

samples, in the '"no-RT" controls amplified cDNA fragments matching the 3' end 
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Figure 17: The short 5' end of the L f)("eI/U((1 DmlllJ transcript IIHllchcs wilh bolh 
the long and shorl 3' ends. Primer #9 isolates transcripts with spliced 5' 
ends while primer #2 serves as a landmark to ensure 119 is annealing where 
il was designed 10. Primers #6 and #7 isolate the lung and short 3' ends 
respectively while primer #1 acts as a landmark ensuring both #6 and #7 
anlleal where they were designed to. 
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doublet seen in Figure 15. This result suggested DNA contamination. Using gDNA 

treated with RNases as the peR template resulted in 705 bp and 5 14 bp amplicons 

consistent with the previous reverse transcribed cDNA amplification results (Figure IS). 

Using the RNase treated/DNA Wipeout treated gDNA as peR template yielded no 

amplicons indicating that the 705 bp and 514 bp doublet was indeed amplifying from the 

intact gDNA template. The 705 bp and 514 bp gDNA peR products were cloned and 

sequenced (Figures 19 and 20 respectively). BLASTn alignment against the 

eurresponding 703 bp and 514 bp cDNA PCR products revealed a 99% identity match in 

each instance (Figures 21 and 22 respectievly) 

Having shown that both the 703 bp and 5[4 bp L. oeclla/a cDNA amplieons match two 

same sized amplieons derived from gDNA [ wanted to investigate this regiun in 

representative mammalian and teleost DI1I11I3 sequences (H. sapicl1.\", M. 11111.\"("11111.\' and D. 

rerio: refer \0 Materials and Methods for GenBank numbers). A Clusta[W [Larkin el al 

2007J alignment of the single L. oceflaw, two H. sapiens, two M. II1I1SCIIIIIS and six D 

rerio de nOl'O DNA methyltransferases was perlormed. The entire L. orcllala eDNA 

sequence was used to preserve the stnlcturc ufthe alignment since the region in question 
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"" "'" 

Figure 18: Buth the long and short 3' ends detected in Ihe L o{'e1luf" 1)1111113 

transcript are present al the genomic 1c\'l~ l . peR amplificlltion was 
carried out using primers #3 and #4. RNase trealrnent degrades RNA 
ensuring that any amplification Ihal does occur is due to a genomic DNA 
(gDNA) template. DNA wipeout removes the gONA tcmpbtc revealing 
lhat amplification was duc to a gDNA template and not contaminating 
mRNA. Thc first lane on the len reveals the integrity of thc gDNA sample 
prior to RNase or DNA wipeout treatments. 



TGAGGGCACAGGAAGACTTTTCTTTGAATTTTATCGACTGCTTCATGACACCAGACCAA 

AGGAGTGGGAAGACAGGCCTTTCTTCTGGTTATTTGAGAATGTTGTTGCCATGGGTGTC 

AATGATAAAAGGGACATCTCACGTTTCTTGGAGTGTAACCCAGTTATGGTCGATGCAAT 

CGACGTGTCTGCTGCCCACCGGGCTCGCTGCTTTTGGGGAAACTT ACCAGGAA TGAACA 

GGCCCCTGGT TGCTTC TTCAGCAGAT AAAC TGGAAC TGCAGCAC TGCCTTGAGCA TGG T 

AGGATAGCAAAGTTTAGCAAAGTTAGGACCATAACAACAAGGTCGAACTCCATCAAGCA 

GGGCAAGGATCAACATTTCCCAGTTATCATGAATGGGAAGGAAGACATTCTGTGGTGTA 

CAGAACTGGAGAGGATCTTTGGCTTTCCAGTGCACTACACAGACGTGTCGAACATGGGG 

AGAGGAGCTCGGCAGAAACTTCTTGGAAGGTCTTGGAGTGTGCCTGTCATTCGCCACCT 

A TTTGCACCTCTGAAGGA T T A T TT TGCTTG TGAAT AACACAGCA T AT AAT AGG TCT TTC 

AGAAACTTACGGTGCTCTC TTAGAAAACTAACAAGTAGTGAAACAAATCCAGACTGGTT 

TTCAGTATAC TGTGACACAAAATCATTTGCTTGGCATTATTGTGAAGGCTGCATGC 

Figurc 19: 705 bp of L ol'ella/a gDNA amplified using primcrs #3 lind #4, Primers 
were originally designed to amplify sequence in the catalytic region of L 
neellala DIIII1I] reverse transcribed mRNA. The gDNA amplieon is very 
simi lar in size to lhe eDNA ampl icon generated under the exact same peR 
conditions. 
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TGAGGGCACAGGAAGACTTTTCTTTGAATTTTATCGACTGCTTCATGACACCAGACCAA 

AGGAGTGGGAAGACAGGCCTTTCTTCTGGTTATTTGAGAATGTTGTTGCCATGGGTGTC 

AATGATAAAAGGGACATCTCACGTTTCTTGGAGTGT AACCCAGTTATGATCGATGCAAT 

CGACGTGTCTGCTGCCCACCGGGCTCGCTGCTTTTGGGGAAACTTACCAGGAATGAACA 

GGATCTTTGGCTTTCCAGTGCACTACACAGACGTGTCGAACATGGGGAGAGGGGCTCGG 

CAGAAACTTCTTGGAAGGTCTTGGAGTGTGCCTGTCATTCGCCACCTATTTGCACCTCT 

GAAGGATTATTTTGCTTGTGAATAACACAGCATATAATAGGTCTTTCAGAAACTTACGG 

TGCTCTCTTAGAAACTAACAAGTAGTGAAACAAATCCAGACTGGTTTTCAGTATACTGT 

GACACAAAATATTTGCTTGGCATTATTGTGAAGGCTGCATGC 

Figure 20: SJ4 bp of L ocellala gl>NA am plified using prim ers #3 lind #4. Pri mers 
were originally designed 10 amplify sequence in the catalytic region of L 
ocellml/ Dml1l1 reverse trnnscribcd mRNA. The gDNA amplicon is very 
similar in size to the cDNA amplicon generated under the exact same pe R 
conditions. 
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(A) 

(8 ) Score = 1279 bits (692), Expect = 0.0 
Identities = 7011705 (99%), Gaps = 21705 (0%) 
Slrand"'Plus/P]us 

Figun' 21: Alignmt!nt uf L. occlluru 3' region of eDNA and gI)NA. (A) BLASTn 
alignment showing two mismatchs and two additional [Juclcotides in the 
gDNA sequence. (8) Data readout from the BLASTn alignment indicating 
99% identity matches between the eDNA and gDNA sequences. 
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(A) 

(11) Score = 939bits(5081,hpt.-.;t = O_o 
Jdcnlilics = 512!51 4 (99"10). Gaps - 015 14 (0"/0) 
Strand- Plus/Plus 

Figure 22: Alignment of L oedlutu spliced 3' region of eDNA and gI)NA. (A) 
BLASTn alignment showing two mismatchs between the eDNA and gDNA 
sequences. (8) Data readout from the BLASTn alignment indicating 99% 
identity mat(;hcs between the eDNA and gDNA sequences. 
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did not differ between cDNA and gDNA sequences. Figure 23 highlights the 703 bp 

region of L. oeellara eDNA that corresponds to the equivalent 705 bp gDNA region. In 

thi s region that is free of introns in the L oee/la/a genome there is a minimum of one (D. 

rerio (/1111118) and a maximum of five (AI. II1I1Seu/lis DlIlIIl3a) post-tnmscriptional splice 

sites present in all the cDNA sequences aligned (Table 5). 

Table 5: Tally of post transcriptional Sl)iice sites. Splice sites detected by 
comparison of genomic and eDNA sequences found in GenBank (NCBl ). 
Tallied splice sites of the aligned vertebrates ocellITt:d within the 703 bp 
region of the L. oee/law inlron·less DIIII1/3 isolated fro m gDNA. 

/·Illman 
Dnmt 3a 3b 

# ofintronlexonspliee 
sites present in 703bp 

re'ion 

Zebrafish 
5 7 8 
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ZP -------------------------------------------------
Sd~ ------------------------------------------
",ounlb ------------------------------------------------
HUIMnlb ------------------------------------------------------
H4 - -----------------------------------------

HuManJ.. TCTAGAACGTICCAGTGACAGCTTGTGGAATGTGGCTAGGTGTAATICCAGCT'l'CTCCTG2717 
H6 - --------------------------------------
H3 - -----------------------------------------
Zf5 -- - -- - ------------------------------------------

-------------------------- - - --- '!'GCAATCCTGTCATGATIG 394~ 
--------------------------- 21~6 

"",u.,,)b ---------------------- -- ------------TCTAACCCAGTGATGATCG 24~O 
HmnanJb ---------------------- - - TCTAATCCAGTGATGATTG2649 
H4 - -------------TGTAATCCAGTGATG~TIG 2121 

----------TCTAACCCCGTG~TGATTG 2545 
Hu"",nJa GAGGCTGC"'GGCTAGCCCAGTGTCTGGCTCCTGAG~GAGAATCCAACCC'I'GTG~TGATIG 2777 
H6 -------------------TGCAACCC~GTG~TGATIG 2114 

------------------TGT.v.cCCTGTGCTTGTTG4IJO 
- - --------------------TGTAACCCTGTGCTHTIGJ626 
----------------------TGT ...... TCC~GTC~TGATCG 21~8 

Zf7 ATGCTGTAAAAGTAAGCCCA--GCCCAC~GGGC~CGTI~CTTCT=AATTT~CCTGG 4003 
Sd~ 2214 
Blou.e)b ATGCC~TCAAGG'!'{;TCTGCT--GCTCACAGGGCCCGGTACTTCTGGGGTAACCT~CCCGG 2~08 

Humanlb ATGCC~TC ......... GTTTCTGCT--GCTCACAGGGCCCGAT ... CTICTGGGGCAACCTACCCGG 2701 
Zf4 ACGCCATAGAGGTGTCGGCT--GCTCAC~GGGC~CGCT~TTTCTGGGGCAACCTGCCAGG 2179 

ACGCCA" ... G"AGTGTCTGCT--GC~CAC"GGGCCCGTT"CTI=TAACCTICCTGG2603 
Hu",,"n3a ATGCC~ ...... GAAGTGTC~GCT--GC~CACAGGGCCCGCTACTICTGGGGiAACCTICCCGG 2835 
zr6 ATGCCAAGG ...... GTGTCTGCA--GCCCACAGAGCACGCTATTTTTGGGGG ...... CCTGCCTCG2172 
zn ATGCCGiG ......... GTG--AGTCCAGCTCACAGAGC"AGAT ... CTICTGGGGG ...... CATACCTGG4188 
z(~ ACGCTG'!'{; ......... GTG--AGTCCAGCTCAC"GAGC ...... GAT ... CTTTTGGGGG ...... C~TACCTGGl684 
Zf8 ATGCTAAGGAGGTGTCAGCC--GCACACAGAGCTCG ... T ... CTICTGGGGG ...... CCTTCCTGG2256 

Hm .... n3b 

'" 

'" '" ",ou.e~b 

Hu"",nlb 

'" 
"" '" '" 

MTG ...... CCGACC tGTTGCGACTICTCTC ... C-TG~C ...... TGTAGATCTGC~GGACTGCCTGG 4062 
2273 

MTG ...... CAGGCCCGTGATGGCTTC ......... GAA-TGAT ...... GCTCGAGCTGC~GGACTGCCTCG 2567 
GATGMCAGG--- --------------------------------------2717 
...... TGMGAGGCCTCTCTGTGCCTCTGGGAT-GGAT ......... TTAGAGCT'l'C ... GGACTGTI1GG2238 
CATGMCAGGCCTTIGGCA'N;CACTGTGAA-TGAT ...... GCTGG ... GCTGCAAGAGTGTCTGG1662 
TATG ...... CAGGCCGTTGGC~TCC ... CTGTGAA-TGAT ...... GCTGG ... GCTGCAGGAGTGTCTGG 2894 
CATGAATAG ... CC ...... 'I'GTCTGCC ... -TGTGCAC'I'G"T ...... "CTGG"TCTTC ...... G ... CTGTTTGG22)1 
CA'I'GMCAG ... CCMTCAT"GC ... TCTC ... G ...... - TGAT ......... CTCTGTCTTCMGMTGTCTGG4241 
CATG.v.CAG ... CC ...... TCAT~GC ... 'N;AC ... G.v.- ... GAT ......... GTC ... GTCTTC"GG ... CiGTCTGG 374J 
GATGAATCGGCCACTGACTGCT~TGG'!'{;.v.-TGAC ......... CTCG"TCTGC"AGACTGTCTGG 231~ 

: __ ::_:_~_:_:_;_:_:_:_:_;_;_.~ __ ~ __ :_:_: ___ ~_'_,:'::,:',:c.:~:.::_m_"_"_",_',_",_,,'_·c_.';,_~_',,_"_',,_<C_';,_'''_,,_m_,,_"_,'_ HH 
.v.C~TGGCCGTCTTGCCMGT't<'GGGAAGGTACGTACC ... TCACAACACGCTCC.v.TTCCA 2298 
AGCACGGC ... GMT"GCC ...... GTT(-AGC ......... GTGAGGACC ... TTACC~CC ... GGTC ......... CTCTA 2722 
AGc"TGGC ... GG ... T"GCCAAGTTCAGC ......... GTG ... GGACC ... TTACT~CG ... GGTC ......... CTCCA 2~54 
AGC"TGGC"GGACAGCTAAGT"GGT ......... GTGCGGACC ... TC ... CT~CTCGGTCGMTTCC" 2291 
"'=TGGCCGC"'CTGCMlIGT"TG"MlI"'GTTCGCACT~TCACT~CACGGCAAMCTCCC 4301 
... TGGAGGCCGC ... CTGCC ...... GT"TG ............... TACGCACC~TTACCAC ... CGGCC ......... C ... T~C 3803 
.v.CATGG~CGC ... CAGCTAAGTIC.v.T ......... GTGCGAACC~TC ... CAACTCGCTC ......... CTCCA 2375 
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-----263'1 

3061 
3291 

-----AGCTTTCTCCTGCTC-------------------AGT-GGGAGCAGAGCCT----2 999 
Mu"",n3b -----AGTTCCCTCTTGCTC-------------------AGT-GGGGGCAGAGCCA----3010 
Zf4 -----AGCTTTGG"""-"J\AC"' ------------------AGC-"TGAG--MGCTG ___ 26~J 

GMAAAGGMfTTAAAGCAAA --- ----------CC"CAGAGGAGGMAACGCCGCAGG3113 
C"""-"J\AGGMfTTMAACMAAA-- ----CCACAGAGCCGGAM-TACCGGAGG 3338 
------GTTATTTGCAACA--------------------------------------- --2600 

67 



Figure 23; Alignm ent uf L. oed/ala DIlIIlfJ 3' region with DIIIIIIJ eDNA of olh er 
\'{" rll'brate models. (A) Section of ClustalW alignment using the full 
length L. ocellata DI1I11/3 eDNA (Sd3) with H. sapiem DNMTJa Gen Bank 
AB208833, H. sapiells DNMTJb GenBank AB208880, M. 1IIII,I'Cl/fIlS 

DIIII/fJu GenBank AF068625 , AI. /IIl/scl/fl/s DIIII/db GenBank AF0ti8626. 
D. rel'io JI1I11IJ GellBank AB 196914, D. retio dlll1ll4 Gen Bank AB196915, 
D. rerio dl1l11/5 Genl3ank AB 1969 16, D, rerio dl111116 Gen Bank AB I96917, 
D. rerio dlllll/7 GenBank AB 1969 18, D. rerio dl/lli /8 GenBank AB1969l9. 
Region of L ocellala sequence corresponding to the 703 bp in question is 
highlighted in green text. Post transcriptional splice sites of remaining 
sequences are preceded by blue lext and followed by red lex\. 
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Discussion 

Study of the elass Chondrichthycs, subelass Elasmobranchii, provides an excellent 

opportunity to understand DNA methylation and its role in managing the vertebrate 

genome. The position of subelass Elasmobr.:mchii in the evolutionary record makes it an 

ideal choice to act as a representative of the ancestral vertebrate condition linking the 

teleost and tetrapod lineages. Extensive studies using both mmnmalian and teleost models 

have shown how integral proper chromatin management is to the complete and successful 

development of an organism. Specifically, DNA methylation of the genome and 

controllcd dynamic methylation adjustmcnts have been shown to be vital in maintaining 

normal. wild type development. Both the teleost and mammalian lineages appear to use 

very simi lar proteins to establish and maintain this epigenetic marker. In addition both 

lineages display similar strategies in the hypemlethylation of paternal geml cell genomes 

relative to those of maternal germ cells and, perhaps more importantly. both show a 

genome-wide demelhylation/remethylation eyele follow ing fertilization. These 

simi larit ies are important for understanding the evolution of thi s process but the role 

played by variations in the numbers of DNA methyltransferase genes remains unelear 

Although both lineages demonstmte similar relative germ cell DNA methylation levels 

and post-fertilization dynamics. they uti lize two very dilTerent reproductive strategies 

(extenml ovipary versus intenml vivipary). Expanding the investigation of vertebrate 

chromatin management into the subclass Elasmobranehii may help shed light on the 

significance of these dilTerencesand similarities 
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This study investigates DNA methylation in LCllcoraj(l o(:cll(l/(I (the Winter Skate) found 

olT the shores of Newfoundland and Labrador. L. occ/laf(/ is from the subclass 

Elasmobranchii, order Rajifonnes and family Rajidae. As it is a member of the family 

Rajidae its reproductive strategy is single oviparity, that is, eggs arc deposited one at a 

time on the rocky substrate and embryonic development occurs externally from thc 

mother [Bester 2011). l'laving previously shown that L. oee/la/a 1l1ethylates its genome 

[Lake 20081 I proceeded with an investigation into relative genn cell DNA methylation 

levels to detennine if the trends observed in zebra fish and mammals were conserved. 

This wou ld add further validity to the usc of L. ocdla/a as a representative ancestral 

vertebrate while studying genomic methylation. In order to test this genomic DNA from 

ovary, soma and testis tissues were subjected to Hpall restriction digestions. Hpall 

targets 5'-CCCG-3' sequences and creates a single strand nick between the cytosine 

nucleotides of each strand of DNA resuiting in two fragments, each ending with a)' GC 

overhang. In the presence of a methyl-group covalently bonded to the cytosine of the 

internal epG dinucleotide Hpall is prevented from cutting at that specific target 

sequence. Undigested genomic DNA runs as a single large sized band (> 12.000 bp) when 

separated by gel electrophoresis. BOlh ovary and soma DNA were digested by the Hpall 

endonuclease; hence displ'lying the continuous gradient from very large 10 relatively 

small DNA fragments separated via gel eleetrophorcsis indicativc of large scale 

restriction digestion. Although both samples were extensively digested, thcre was the 

persistence of very large DNA fragments indicating that nOl all potential IIpall target 

sequences had been cleaved. This suggested that there was some level of DNA 
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methylation present in these two tissue types. Comparatively, the majority of the Hpall­

digested DNA from the testis slIInples migrated as a single band ofa large fragment size. 

This drastic reduction in digestion can be at1ributed to the prevention of Hpall gaining 

access to its target sequence via extensive genomic CpG methylation. There was also a 

continuous smear of DNA fragmcnts in the digested testis samples indicating that at least 

some of the Hpa l l target sequences were unmelhylated, but al lower levels than those 

seen in the other two tissue types, 

It should be noted that these results are applicable to DNA methylation levels of 

reproductive tissues and not pure genn cell populations. As there arc a number of 

contributing celltypcs to each tissue it can not be clearly stated that L. ocel/lIIa sperm arc 

hypennethylated relative to oocytes. However, these results do reflect a trend in paternal 

hypennethylation relative to maternal methyl1cvels regarding rcproductive structures and 

provides a jumping off point for the remainder of this study which focuses primarily on 

the DNA-methyltransferases of L. owl/lila. 

L.ocellataDl1m/I: .\·/ruc/lI1"e 

This study repor1s the isolation and identification of a 4990 nucleotide (nt) L. (xxI/ala 

DNA-melh),ltrallsfemse I cDNA scquence (sec Figure 7) bui lding upon the previous 

2669 base pairs (bp) acquired by the McGowan laboratory. Comparisons ofthc sequence 

to those present in the nucleotide sequence database (by National Center for 
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8ioteehnology Information BLASTn) using the full length L. oed/ata eDNA as the query 

returned no significant sim ilaritics. Perfonn ing a DeCypher Tera-BLASTN search using 

the full length L. oed/ata DIIIIIII eDNA sequence to probe the skute EST dutabuse 

(http: //decypher.mdibl.orgldecypher/algo-Iera-blastltera-blasln_nn.shlml) resulted in five 

hils all originating from Lel/eora}a crillaeca (the Little Skate) and all scoring 99% 

similarity (data not shown). The longest EST returned in the search was 831 nl in length 

and spanned bolh bromo-adjacent homology domain coding regions (protein domains arc 

discussed below). The remaining four ESTs overlapped with Ihe first 10 varying degrees 

und spanned regions of the L. oed/ala Dnll1ll eDNA coding for portions of the 

methyltransferase catalytic region as well as the Replication Foci domain (dara not 

shown). However, the L. oed/ala clone presented in this study is the fir.;t instance of a 

complete DIIIIIII eDNA being reported for a membcroflhe subclass Elasmobranehii. 

The nucleotides directly adjacent to the translation initiation codon have becn impl icuted 

in the 43S pre-initiution complex's (40S ribosomal subunit + elF!. elFin und elF) 

efficient recognition of the AUG start codon [as reviewed by Kozak 2005]. This sequence 

consisting of 5'-GCCRCCal/gG-)' (R: A or G). termed the Kozak consensus sequence 

[Kozak 1987], is > IO-fold more enicient than a simple AUG start codon at binding the 

43S pre-initiation comp lex as it scuns the mRNA transcript in the 5' to 3' direction. Of 

the entire Kozak sequence i1 has been determined thul the third nucleotide upstream (-

3R). as well as the fourth nucleotide downstream (+4G) from the adenine of the start 

codon are the most important nueleotides involved in translation initiation aside from the 
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start codon itself fNakagawa CI al. 2007]. Although both the ·3R and +4G nucleotides 

play important roles in translation initiation the effect of +4G alone is minor compared to 

that of ·3R alone. The sequence surrounding the start codon of the L oecllma DI1II1I/ was 

compared 10 Ihe Kozak consensus sequence revea ling a weak similarity consisting only 

of the ·3R nucleotide (see Table I). For the purposes of this study all 0111111/ sequence 

comparisons were carried out using well known seientific models as representatives for 

the teleost (Danio rcrio) and tetrapod (Xenopus /acl"is, Gal/lis gallus. Mus IIIIISCIIIIIS and 

Homo sapicns) lineages. Of the sequences examined all but G. galllls showed weak 

similarity to the Kozak sequence with only the ·3R nucleotide conserved. G. gallll.j· 

showcd a poor dcgrce of similarity with neither the ·31< nor the +4G nuclcotides 

conserved. The degree of conservation of the Kozak sequence in the L. ocel/(l/a DIIII/Il 

may only be partial but it is consistent with other major vertebrate modcls and docs 

preserve the ·3R nucleotide known to be the more instnmlental of the two key nucleotide 

locations 

The open reading frame (O]{F) of L Dcdltl/ll 011111/1. as reported by Gene Runner 

software, was 1509 amino acids (aa) in length (sec Figure 8), well within the expected 

size range of this protein type (X /(ICl'I'S Olllntl: 1490aa - M. muscu/lls Dnmtl: 1620 aa). 

Comparisons to on·line protein databases (National Center for Biotechnology 

Information BLASTp) reported an average of 85% similarity when compared 10 the 

above mentioned vertebrate model organism Onmtl proteins. The highest degree of 

similarity was seen in f-I. sapicns (88%) although the percentagc of the L. oed/a/a On111tl 
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th<lt aligned with the H. sapiens DNMTI was the lowest (84%) (Table 6). The lowest 

degree of similarity was found in D. rerio (83%), however this comparison utilized 99% 

of the L. oeel/ara Dnmtl amino acid sequence. Thc free on-line software 

Mobyle@Pasteur vl.O (hlfp:/lmobyle.pas/ellrJrlcgi-hin/pol"/al.py) was used to perfonn a 

multiple protein alignment and unrooted tree analysis of the above mentioned vertebrate 

modcl organism Dnmtl s with thc L. oeel/ala Dnmtl . This revealed that L. ocellala 

Dnmtl protein was most similar to D. rerio dnmtl when considering the enti re amino 

acid sequence (Figure 24). Furthermore, thcre is a pattern indicating a highcr 

conservat ion of amino acid types (hydrophilic, hydrophobic, large or Slllall residues) over 

actual amino acid identities in all of the compared Dnmt l proteins. This conservation of 

amino acid type would be more important in maintaining protcin structure and function 

than specific idcntities as lIlultiple amino acids with simi lar hydrophobic/hydrophilic 

nature may be of similar sizes allowing for proper protein fo lding. 

The order and identities of conserved domains within the L. oee/la/a Dnmtl protein, as 

reported by the Conserved Domain Database (CDD) [Marchler-Bauer el 01. 201 1], were 

consistent with other vertebrate maintenance Dnmts. No single species hcld a monopoly 

on domain similarities as top hits were lound in all species except f1. sapiells. The range 

of percentage similarity for each domain remained fairly narrow amongst the vertebrate 

species with the widest spread being only 15%. The L. oeella/a Dnmtl was predicted to 

have three nuclear localization signals (N LS) by WoLF PSORT [I·lorlon el al. 2007], a 

number consistent with that found in mice [Cardoso and Leonhardt 19991 and zebrafish 
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[Mhanni el af. 200 1]. There was little conservation over all of Ihese signals between L. 

oee{lala and the representative venebrate models (data not shown). Though position and 

degree of similarity varies belween Ihe species, Ihe NLS do seem to be heavily biased 

towards positively charged, hydrophilic lysine and arginine residues, a bias preserved in 

the L. oceffata Dnmll. 

Table 6: Comparison of L oallala Dnllltl to representative vertebrate I)UllItl 

pruteins. L. oeeflala translated open reading frame (as rqmned by 
GeneRunner software) was aligned to other vcnebrale amino aeid 
sequences using the National Center for Biotechnology lnfonnalion 
BLASTp search 1001. Vertebrate amino acids sequences used were as 
follows: D. rerio GcnBank NM 131189, G. gat/lis GenBank 043920, H. 
sapien.\" Gen Bank X63692, At. /II/IK/dl/s GenBank Xl4805 and X. lacds 
GenBank 078638. 

% Idcntity 
% Similarity 

% L. ocelfa/a protein covered in 
Malch alignment 

D. rcrio 72 8J 99 
G. gat/lis 74 85 97 

H. sapicns 78 88 84 
At. muscuflls 73 84 85 

X. facvis 74 85 99 
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M.mU5cutu5 

G. 9~ttU5 __ ~",," ___ D. reriD 

Figure 24: L. (}cel/Uftl Dnmtl amino acid scquence is morc similar to that of IJ. 
rerio Dnmll than uth er represent ative vert ebrate maintena nce 
methyltransfera ses. Multiple protein alignment and unrooted tree analysis 
was perfomled using Mobyle@Pasteur v1.0 (hup:/lmoby/epas/emIrlcgi­
binlporw/py) and the following protein sequences: D.rerio GenBank 
NM 131189, G. gal/lis GenBank 0 43920. H sapiens GenBank X63692, 
AI. /llIISCIIIIlS Genl3ank X14805, and X. {(lel'is Genl3ank number D78638. 

The least conserved L. ocel/ala Dnmtl domain present in all the chosen representative 

vertebrate species was the DNA methyltransferase I-associated protein (DMA P I) 

binding domain. DMAPI co-localizes with recombinant chromatin following 

homologous recombination and appcars to have a strong binding preference for 

hemimethylated DNA . DMA PI stimulates DNA methylation mcdiated by Onmtl 

afTe(;ting epigeneti(; alterations associated with the repair of double stranded DNA brcaks 

during homologous rc(;ombinalion (Lec el af. 2010]. Additionally, DMAPI 's amnity for 

hemimethylated CpG dinueleotides promotes the recruitment of Dnrml 

conscrvatively synthesized DNA during S phase fTakebayashi el (If. 2007]. 
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Targeting Dnmll to newly synthesized DNA where il can fulfill its role as a maintenance 

DNA methyltransferase is the replication foci domain (RFD). The RFD binds the 

proliferating cell nuclear antigen (PCNA) [Chuang el af. 19971. rCNA assists in DNA 

polymerase delta processivity [Langston and O'Donnell 2008]. While this association 

with the replication machincry is not strictly m:cessary for Dnmtl maintenance activity it 

docs improve its efficiency [Spada el uf. 20071. 

Dnmt!'s targeting ofCpG dinuc1cotides is aided by the presence ofa zinc finger domain 

containing cluster of eight cysteinyl residues the form 

CX2CX2CX4CX2CX2CXI SCX4C [Bestor 1992]. This cluster fonns two short helical 

segments embedded with Znh cations thaI interact with both the major and minor 

grooves of DNA as nonmethylated CpG dinucleotides arc bound [Song el o/. 2011J. 

Interestingly the study by Song el al. [2011] suggests Ihat methylation of either cytosine 

ofa CpG dinucleotide would create steric clashes with peptide atoms preventing Dnmll 

from binding. 

Adjacent to the C~tenninal catalytic domain arc two Bromo Adjacent Homology (BAH) 

domains. The core of a BA H domain is an open, distorted p-barrel comprised of six 

strands intefl1lptcd by a helix positioned between the fourth and fifth strands [Oliver ef o/. 

2005]. BAH domains mediate protein-protein interactions and targel origin recognition 

complexes (ORC) to chromatin in humans [Noguchi el a/. 2006] potentially through an 
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intemetion with heterochromatin-associated protein I (HPl) as seen in X. lael'is fPak el 

(II. 1997] 

Of the analyzed representative vertebrate models the C-tenninal catalytic domain is by 

far the most high ly conserved domain. L occll(l/(I Onmtl showed a minimum of 94% 

similarity with the M. /11I1SCIIIIIS and a high of 97% identity matches with the G. g(llllls 

dnmt!. Both COD features one and two show an excellent correlation with the Postili el 

al. 11989] predictions (see Figure 10). Feature one describes the co-factor binding region 

of the domain, The COD source for feature one, O'Gam er al. [1999J, analyzed the 

crystal structure of the bacterial Haemophillis Itaemo/yliclis methyltransferase focusing 

on the region involved in binding the methyl donor AdoMe!. It is not surprising that this 

feature would align well with the Posfai e/ al. fl989] predicted motifs as the f/lwl 

tllethyltransferase was included in the thirteen bacterial enzymes used in making their 

predictions. The COD's sccond feature describes the substrate interaction site which, to a 

slightly lesser degree than feat urc onc, also aligns vcry welt with the Posfai el al. [1989] 

predictions. The third COD feature is involved in DNA binding ;15 well as target 

recognition. The target recognition domain (TRO) lies bctween predicted 1110lifs VIII and 

IX [as reviewed by Cheng 1995]. Amino acid residues determined to be involved by the 

COD do not align perfectly with the predicted motifs. There is overlap with features two 

and three corresponding to the binding of DNA (sec Figure (0) but the means of 

recognizing an everted cytosine nucleotide may be less conserved bctween spccies due to 
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issues involved with approaching a distorted DNA complex and avoiding steric 

interaction~. 

L.oceliataDIII11I3:s/l'IIctlire 

This study reports the isolation and identification of a 3301 nt L. oce/fata DNA­

methyl/ralls/erase 3 eDNA sequence (sec Figure I I) building upon the previous 274 nt 

acquired during my Honours research [Lake 2008]. Using the full length L. oce/fa/a 

eDNA sequence in a National Center for Biotechnology Information BLASTn search, as 

well as a DcCypher Tera-BLASTN search (hup:lldecypher.mdibl.org/dccypher/algo-tera­

blast/tera-blastn_nn.shtml). reported no significant similarity found. The L. oce/fa/(/ 

Dnmt3 ORF, as reportcd by Gene Runner software, was 779 aa at its longest (sec 

FigureI2). There was evidence of 5' and 3' transcript variants. The 3' variants will be 

discussed further below while discussion of the 5' variants is relevant when analyzing the 

translation start sites. The L. ()/xflo/(l DnmtJ eDNA presented here shows two potential 

translation start eodons in the same reading frame separated by 27 aa. The sequence 

surrounding the upstream start codon was compared to the Kozak consensus sequence 

revealing a weak similarity of only the +4G nucleotide (see Table 3). Comparison of the 

downstream start codon to the Kozak consensus sequence revealed a strong similarity 

with conservation of both the -3R and +4G nucleotides. 13ased on these data it appears 

that the downstream start codon would be preferred for translation initiation. However, 

when the sequences surrounding the Dnmt3 start codons in other vertebrate models were 
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assessed, the majority showed only a weak similarity to the Kozak consensus sequence 

and there was no preference for conservation of the -3R or +4G nucleotides. Having a 

weak translation start site adjacent to a stronger translation start site in L. ocefl(l{(/ may 

not necessari ly mean il wou ld be passed over by scanning pre-initiation complexes as 

other vertebrate DI1I1113 transcripts possess similar weak, and even poor, simi larity to the 

Kozak consensus sequence. 

The 779 aa Dnmt3 of L. oceflata fall s within the lower s ize limits of the de 1101'0 

methyltransfemses of the representative vertebrate models (D. rerio dnmt6: 73 1 a:l - D. 

rerio dnmt3: 1448 aa). Comp:lrisons to protein d:lt:lbases by a N:ltion:ll Center for 

Biotechnology lnfonnation BLASTp search reported a top hit from D. rerio dnmt4 

registering 80% simil:lrity. Moby1c@Pateur v l.O (Jlllp://mohyle.paslellrjrlcgi­

bil1/porwl.py) protein alignment and unrooted tree analysis of the L. (ICdlllla Dnmt3 with 

the represent:ltive vertebmte models also reported a higher degree of similarity with D 

rerio dnmt4 th:ln with all others aligned (Figure 25). The next BLASTp result which was 

not a predicted protein product was H. .\"{/piel1s DNMT3b isoform 2 with 75% similarity. 

Considering the unrooted tree analysis, the top two BLAST hits and the fact that D. rerio 

dlllll14 is very s imilar to the mamm .. lian DNMTJh in both sequence and expression 

pattems [Shimod,1 el al. 2005. Smith el (I/. 2011], it seems that the tr:tnscript isolated in 

this study codes for an Elasmobranchi i DNMTJb equivalent. 
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Figurc 25: L. m:elluru DumB aminu acid SC(lucnce is more similar 10 that of I). 
reri(} dnmt4 than other reprcscntatil'e vertebrate de 1101'1' 

mcthyllra nsfcrases. Protein alignment and unrooted tree analysis was 
carried out using the full length L. oce/fa/a Dnmt3 amino acid sequence 
and the primary isoform of e<lch of the representative vertebrate de 1101'0 

methyhransferascs. Multiple protein alignment and unrOOlcd tree analysis 
was perfomlCd using Mobyle@Pasteurvl.O (1Iflp:llmobyle.poslewJrlcgi­
billiporlal.py) and the following protein sequences: D.rerio dnmt3 through 
8 GenBank AB196914, AB196915, AB196916, AB196917, ABI96918 
and ABI96919 respcctively, C. gal/lis dnmt3a and 3b GenBank 
NP 001020003.1 and NP 0010 19999.1, H sapiell.r DNMna and 3b 
GenBank AB208833 and NP 008823 . I as well as M. mlisclIIIIS Dnmt3a 
and 3b GenBank AF068625 and AF068626. 
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The 5' variant shortens the potential ORF by 28 aa whieh docs not affect the NLS 

predil:ted by WoLF rSORT [l1orton e/ af. 2007] located at amino acid 61 (sec Figure 

13). Regulatory roles have been suggested for 5' splice variants in zebra fish de 1101'0 

methyltransferases. hov,·ever those splice junctions involve untranslated regions. not the 

coding sequence lSmith cl al. 2005]. Even with the slightly truncated N-tenninus the 

order and identities of conserved domains within the L. ocella/a Dnmt3 , as reported by 

the COD (Marchler-Bauer el af. 2011]. were consistent with other vertebrate de 1/01'0 

Dnmts. 

Similar to L. ocellala Onmtl, there was no tTend in domain similarities across the 

representative species although D. rerio dnmt4 did hold the highcst dcgree of similarity 

in both splice variants of the C-tenninus catalytic domain (sce Figure 13). The most distal 

N-terminus domai n is the PWWP eharal:terized by a moderately conserved 100-150 aa 

region with the highly conserved Proli ne-Tryptophan-Tryptopha n-Proline motif. The N­

tenninus half fomlS a five stranded r~-barrel while the C-tenninus half forms a helical 

bundle [Qiu et {II. 2002]. PWWP domains in proteins other than methyltransferases have 

been implicated in binding methylated histones [Wang et al. 2010]; however the same 

domains of mammalian Dnmt3a and Onmt3b have been shown to be involved in their 

fu nctional specialization. Mammalian Dnmt3a and Dnmt3b concentrate in the major 

satellite repeats at pericentric heterochromatin . Disrupt ing the PWWJ> domain of each 

enzyme prevents this association and abolishes their ability to methylate major satellite 

repeats. It was found that the PWWP domain of Onmt3a had little DNA binding ability 
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while the Dnmt3b equivalent had a nonspecific DNA binding capacity suggesting the 

targeting of Dnmt3 enzymes to their specific DNA regions is mcdiatcd by a mcchanism 

other than d irect pro tein-DNA contact [Chen e/ af. 2004]. 

Between the PWWP domain and the C-terminus catalytic region lics the Plant I"'omeo 

Dom<lin (PHD). The PH D is a metal-dependent fo lding motif comprising - 50 amino acid 

residues featuring a conserved Cysteine~-Histidinc-Cystcine3 zine binding motif [i'ascu<ll 

e/ af. 2000]. The PHD h<ls been shown to mediate interactions between mammalian 

OnmtJa and histone deacetylase I (HOAC I) contributing to the active repression of 

transcription [Fuks et af. 2003]. 

The most highly conserved region betwecn the L. m:e{{a/a Onmt3 and the representative 

vertebrate de 1101'0 methyhransferases was the C-terminal catalytic region. The On111t3 

presented here shows evidence of at least one transcript variant involving the 3' end. This 

transcript splice resu lts in the removal of 64 aa corresponding to the target recognition 

domain situated between motifs VIII and IX (sec Figure 14). As was the case for L 

nee/fa/a Onmtl there was a high degree of overlap between CDD features one <lnd two 

(co-factor binding and substrate interaction respectively) and the P6sf<li c/ (If. [1989] 

predicted mOli(~. FealUre three (DNA bi nding) W<lS independent of the other fe<lturcs with 

the exception of<l single amino acid. A large component of the DNA bi nding feature W<lS 

removed from the 3' splice of the L. ace/fata 011/1113 transcript. A National Center for 

Biotechnology Information BLASTp search using the L. m:c{{ala 3' spliced protein as the 
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query returned a top hit indicating 73% simi larity to H sapiens DNMT3b isoform 3. 

Mammalian 011l11l3iJ3 is a ubiquitously expressed catalytically inactivc isoform that is co­

expressed in cells with other active Dnmt3 i50fonllS. Dnmt3b3 is capable of interacting 

with Dnm!3bl and Dnm!3a as wcll as modulating thc activity of Dnmt3a-Dnmt3L 

complexcs in vilro by an as yet unknown mechanism [Van Ernburgh and Robertson 

201 1]. The presence of a Dnmt3 transcript lacking its target recognition domain and 

having a high dcgree of similarity to the mammalian Dnm!3b3 isoform indicates that L 

oce/lala could potentially possess a similar mechanism as that seen in mammals for 

modulating Dnmt3 complex activities 

Tisslle diSlriblllion o/Onml3 3' splice varial1ls 

With L. ocellara showing cvidence of a potentially catalytically inactive Dnm!3 isofornl I 

wanted to investigate tissue distribution of Ihc 3' splice variants as well as in-tissue 

relative abundances. 130lh 3' tmnS(;ripl variants cloned in this investigation were present 

in each of the four tissue types tested. If thc shorter tmnseript lacking the TRD docs 

indeed represent an equivalent of the mammalian 011l11l3iJ3 isoform it would appear that 

the mammalian trend of 01l1ll13b3 being co-expressed with other isofonllS is present in L. 

ocellara as well. All RT- PCR reactants/template conccntrations and conditions were 

identical in all four scenarios; however no internal standard to control for RNA quantity 

is available for the skate so quantitative comparisons between lanes arc nOI reliable 

Nevertheless, the general band intensity differences seen between ovary and testis tissue 
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(lanes I and 3 respectively; sec Figure 15) eorrclate well with the cornpamtive 

mcthylation level data. 

A higher level of DNA methylation in testis over ovary tissue (see Figure 5) implies a 

higher concentmtion of de 1101"0 methyltmnsfemses. Mammalian de 1101'0 

rncthyltmnsferases rc-program mcthylation patterns in prc-implantation embryos and 

remain active in germ cell lines while becoming down-rcgulated in adult differentiated 

somatic tissucs ras rcvicwcd by 1·lcrmann el 0/. 2004]. Similar dynamic de 1101'0 

methyltmnsferase cxprcssion is secn in D. rerio [Smith el 0/.2011]. Thc relativcly low 

levels of DI111113 3" isoforms seen in L. ocd/ala gut tissuc sccmto mirror this reduction in 

somatic 011/1//3 Icvels. L. oce/fala brain tissue, however, docs not appear to down­

regulatc 011/11/3 tmnscript cxpression as Figure 15A indicates levels of the 3" isofonllS 

comparable with those secn in testis. Studies in mice have shown thaI 01l1ll13b expression 

is detccted in early dcvelopmental stages of the central nervous system (CNS) within a 

narrow window corresponding to cmbryonic day 11-15. 01l1ll13a expression is high in 

neuml precursor cells but is subsequently maintained at only slightly lower levels in 

poslmilolic CNS neurons rFcng el al. 2005]. M. /IIUSCllflis Dnmt3a shows evidence of 

playing II complementary role with Dnmtl in altcring methylation patterns in response to 

behavioural changes or extcrnal signals involved in synaptic plasticity, learning and 

associativc memory formation LVu el 0/. 201!j. The persistencc of 01111113 transcript 

cxprcssion in L. ocd/a/(l brain tissue may reflect a similar means of brain function 

regarding dynamic DNA mcthylation patterns. 



BLASTp results indicated a higher degree of simi larity of the L. oed/ala Dnmt3 to other 

vertebrate Dnmt3b equivalents. It may be that Elasmobranchii rosscss fewer de 1101'0 

methyltransferases than either teleosts or mammals and therefore rely on variable 

transcript splicing to producc specific 01111113 fonns with diversified functions, as 

opposed 10 having separate 011111t30 and OIlIl1t3b genes. This would account for an 

apparent L. oed/ala OIlIl1t3b equivalent reflecting tissue specific expression patterns 

charactcristic of mammalian 011111130. Of course an exhaustive characterization of the full 

L. oed/ala Dmm complement is required before such a claim can be made. 

The relative abundance of each 3' tnmscript isoform within a single tissue sample was 

investigated using square pixel counts of areas beneath b.1nd intensity peaks detenllined 

by Scn lmage soflware (sec Figure ISB-E). DNA band intensity is a result of cthidiulTl 

bromide (Et Br) binding the DNA and subsequent ultraviolet (UV) light illumination. On 

avemge one EtSr molecule intercalates into native-DNA every four nuclcotides at 

physiological pH rChitre and Korgaonkar 1979]. Therefore the longer a DNA fragment is 

the more EtBr it will bind and the more intense it will appear under UV light. A 703 bp 

amplieon would be expected \0 bind - 1.4 times as many EtBr molecules as a 514 bp 

amplicon resulting in a greater band intensity based 011 EtBr binding capacity and nOl 

abundance of amplicons. 

The ratios of 3' transcript isofonns from ovary, testis and brain tissue all indicate 

majorities of 703 bp amplicons (sec Table 4). Taking into account the baseline intensity 
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determined by size discrepancy alone (1.4) it seemed that ovary tissue had the 514 bp 

amplicon present sl ightly more than the 703 bp amplicon. This bias of a potentially 

catalytically inactive foml over a potentially active foml may reflect the down regulation 

of de 11(1\'0 Dl1m/.\" seen in the ovary tissue of other organisms. Testis and brain tissue 

maintained their 703 bp bias after accounting for their baseline intensities however the 

ratios were slightly diminished. The higher expression level of a potentially active 

isoform relative to a potentially inactive isoform is consistent with the higher de 110\'0 

expression levels seen in these tissue types in mice and zebra/ish 

Gut tissue appeared to be the outlier of the lour tissue types as the 514 bp amplicon was 

the dominant Dllm/3 3' isofonn present. The apparem low levels of the potentially 

catalytically active isofoml relative to the shoner, potemially inactive isoform are again 

consistent with trends seen in other animals where de 1101'0 expression is down regulated 

in somatic tissues. It should be noted that, of the primers used to amplify the 3" variable 

region, the most 3' primer (#4) oriented in the 5' direction (sec Figure 3) was designed to 

anneal in the 3' untranslated region (UTR) of the sequenced eDNA. Primer design was 

carried out previous to sequence tnmslation so it was not known until after that this was 

the case. Having a primer anneal to the 3' UTR may have biased the observed isoform 

types as the peR amplification would havc only occurred from mRNA templates having 

that same 3 'UTR. Variable UTRs are often related to transcript stability and translation 

rates (Moueadel e/ af. 2007]. It is possible these L. ocella/a tissue types had additional 
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Dmlltl mRNA with different)' UTRs which would not have been detected in this PCR 

experiment using primcr #4. 

Which el1d goes where? 

New primers were designed capable of discriminating against each of the 5' and)' splice 

variants previously described. Their placement can be scen in Figure 3. Primcr #6 

anncliled \0 a scquencc present only in the TRD of the )' isofonn corresponding \0 

mammalian Dnmtlb2. In the ease of the DmntlbJ equivalent with the TRD removcd 

primer #6 would not anneal. Thi s removal of sequence juxtaposed two sections of 

sequcncc previously separated by 189 nt creating the target sequcnce to which primer #7 

iIflnealed. Thc same strategy was employed on the 5' cnd. Primcr #8 annealed 10 

scquence within the spliced region whereas primer #9 could not recognize ils target 

sequence unless the internal 84 nt were abscnt. RT -PCR was then carried out pairing each 

5' primer with each of the)" primers. Primer #2 was paircd with both #8 and #9 for 

parallel RT-PCR reactions 10 ensure tlmt the 5" discriminators were annealing where they 

were designed to. Similarly, primer #1 was paired with each of the )' discriminating 

primers. Both primer #1 and #2 had been shown in previous cxpcrimcnts 10 reliably 

annea l where they were designed to (data not shown). 

Whereas PCRs pairing primer #1 wi th primers #6 and #7 produced single DNA 

fragments of expected sizes, the pairing of primer #2 wi th #8 did not. In addition to the 
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expected amplicon of - 1900 bp, a second, far more prominent ampticon of - 1700 bp was 

generated (see Figure 16). This indicated that there were at least two different 01111113 

transcript isoforms present having the 5' inseo but differing by - 200 bp at some location 

between primers #2 and #8. The peR reaction matching primer #8 to #6 retunled a 

similar result. The expected amplieon of 2159 bp was amplified but 10 a much lesser 

degree than a second amplicon approximately 200 bp smaller. The same result was seen 

from peR using primers #8 and #7. The expected 2028 bp amplified but to a much lesser 

degree than a second amplieon - 200 bp smaller. Taken together these results suggest that 

four different L. oee/lala 01111113 transcript isofonns exist with the extended 5' scqucnce: 

two isofonllS with and without the J' TRD as well as two isofonns, with and withoulthe 

TRD and an additional 200 bp located between nuclcotides 207 (primer #8) and 1949 

(primcr #1) (Figurc 26). Since the PCR amplification between primers #1 and #6 or #7 

did not generate multiple bands, the additional - 200 bp missing from the two additional 

isoforms present in mueh higher concentrations must lie upstream of primcr # I's 

location. A ClustalW [Larkin el (11.2007] alignment of H. sapiel1s DNMT3bl (GenBank 

NP OORR23.I), DNMT3b2 (GenBank NP 787044.1) and DNMT3b3 (GenBank 

NP 787045.1) proteins showed a 20 aa region present between the PWWi' and PHD 

domains of Dnmt3bl missing from both DNMT3b2 and DNMT3b3. The addition of 198 

nt (- 200 nt) would code for 66 aa which is approximately three times the insert seen in I/. 

.Wlpiem DNMT3bl. Adding H. sapiel1s DNMT3a (GenBank AB20SR33) to the alignment 

shows a number of small protein regions upstream from the 20 aa insert present in H. 

sapiells DNMT3bl unique to the DNMT3a . All of these regions togcther account for 68 
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Figure 26: Schematic of L. (}cellafa DllmtJ Ira nserillis illustrating the 
eomlJinations of 5' and 3' sillice variants. Regions of transcripts 
detennined experimentally to be subjt:ctl>U to splicing arc indicated in 
orange. Dashed lines indicate regions of transcripts suspected of 
harbouring additional splice sites. Asterisks indicate transcripts 
corresponding to PCR products that wcrc of expected sizes (see Figures 16 
and 17) but were prescnt in much lowcr concentrations than PCR products 
- 200 bp smaller having the same S' and)' spl ice variant combinations. 
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additional amino acids present upstream in H sapiens ONMTJa from the 20 aa 

distinguishing DNMTJbl from DNMTJb2lJ. Although H. sapiens DNMTJa lacks 16 of 

thc 20 aa bctween the PWWP and PHD domain corresponding to the DNMTJb2/J region 

mentioned above there is st ill a 68 aa (204 nt) difference in N-tenninus regions between 

the H. S(lpiells DNMTJa and DNMTJb species. Further study is required to detcnninc the 

exact nature of the full complement of L. oce/la/(l Dnmts. It may be that the clone 

obtained in this investigation was in fact an isofoml transcribed at lower levels than the 

primary L oce/la/a 01111113 gene product and may be more similar to H. sapiens ONMT3a 

in sequence than origina lly thought, even though it appears to produce an equally 

abundant transcript with its TRD spliced out. This would partially account for the 

DNMT3a-like higher levels of transcription observed in brain tissue over other adult 

somatic tissue 

Similar unexpected results were obtained frolll peR usi ng the above strategy substituting 

primer #9 for #8. Both primers #6 and #7 were shown to anncal to thcir cxpected target 

sequences. The peR reaction using primcrs #2 and #9 was expl'Ctcd to yield ;L 1836 bp 

ampl icon but instead amplified a DNA fragment - 1650 bp in sizc. There did not appellr 

to be a second, less prominent band prescnt in this reaction as there had becn using 

primer #8 (Figure 17). ludging fro m this reaction alone it would SCC111 that thc L ocelfa/(l 

Ol1l11tJ isofoml utilizing the shorter 5" sequence is lacking the - 200 bp seen to separate 

H sapiens DNMTJa from DNAfTJb. This abscnec of - 200 bp is consistent in thc 

matching of primer #9 wilh #6 and #7. pe R was expected to retum amplicons of2085 bp 
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and 1955 bp using #6 and #7 respectively. The DNA fragments that amplified, however, 

were - 1900 bp and - 1800 bp. These sizes arc consistenl with Ihe results from the primer 

#9 landmarking PCR amplification. II would appear that al 1e'1SI IwO L. ace/fa/a 01//1113 

transcript isoforms exist where the shoner 5' sequence is utilized with both the long 3' 

sequence and the short, potentially catalytically inactive, 3' sequence (sec Figure 26). 

Evidel/ce oiL occllata 01111113 p.wlldogel1es 

Pseudogenes arc sequences present in a population's genome that arc characterized by 

close similarities to one or more paraloguus genes and are typically non-functioning. 

Pseudogenes can be found in bacteria, plants, insects and vertebrates. They can arise due 

to the duplication of genes occurring through unequal crossing over or through 

retrotrnnsposition where a single stranded RNA molecule is reverse transcribed and the 

resulting double stranded molecule is inserted back into the genome. Processed 

pseudogenes resulting from retfotransposition typically lack 5' promoter sequences and 

introns, flanking repeats and 3' polyadenylation tracts (as reviewed by Mighell el (If 

2(00). Though they arc present in the genome with sequences similar to those of actively 

transcribed genes, retrotransposed pseudugenes are not likely to be co-expressed with 

their gene of origin as they more often than not arc removed from the promoters and 

enhancers governing expression of said gene. In the process of investigating the L. 

oce{{a/a 01111113 3' transcript isofonns several "no-RT" PCR controls yielded the same 

results as the experimental reactions. The 703 bp and 514 bp amplieons were amplified 
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under reaction conditions lacking a cDNA template. This suggested the RNA sample was 

contaminated with genomic DNA capable of acting as template using primers #3 and #4. 

Figure 18 shows the initial integrity of the L. oceflata testis genomic DNA sample. The 

sample's high molecular weight and minimal smcaring follow ing separation by 

electrophoresis indicatcs no cyidcnce of dcgradation. Both the 703 bp and 514 bp 

amplicons were genernted from the gcnomic DNA following RNase A treatment 

indicating RNA was not acting as template. Treatment with DNA wipeout subsequently 

degraded thc genomic DNA template. Removal of template in this manner resulted in no 

amplification of the 703 bp and 514 bp fragmen ts. PCR products from the first reaction 

were cloned and sequenced to confinn that L. ocellm(l genomic DNA contained the same 

sL'<Juences as the 01111113 3' transcript isofonllS (sec Figures 19 and 20). Alignments of the 

703 bp and 514 bp fragments ampl ified from mRNA templates and genomic DNA 

tcmplates show 99% similarity in both cases (sec Figure 21 and Figurc 22). The 1% 

discrepancy may be accounted for by sequencing errors. 

Figure 23 shows a ClustalW rLarkin el al. 2007] alignmem of the O. rerio. M. IIIIISCldliS 

and N. sapiens de //01'0 methyltransferases along side the L. ocellala 703 bp amplicon. 

The region corresponding to L. ocella/a clone spanned multiple intronlexon splice sites in 

all the aligned teleost and mammalian sequences. many of which were highly conserved 

in their position across species. Thc parsimonious explanation is that these splice sites 

were inherited from an evolutionary ancestor and not spontaneously incorporated into 

multiple species' genomes at homologous locations. Therefore it appears that L. ()(:ello/a 
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has at least two retrotrans])Osed pseudogenes, one with the TRD intact and one with the 

TRD removed, each consisting only of exonic sequence. The conventional L. acel/ora 

01111113 gene consisting of both introns and exons would not have yielded a peR product 

under the experimental conditions used as the extension time was sixty seconds, time 

enough to amplify only a few thousand base pairs. If primers #3 and #4 annealed to 

exonie sequences flanking one or more introns, full extension would likely not occur in 

such a short period of time. Dnmf3 pseudogenes arc not unique 10 L. vce/lafa and have 

been documented in both AI. /llIISCIIIIIS and H. .wpiens lLees-M urdock er af. 2004]. H 

sapiens carry a DNMT3a pseudogene that has remained fu nctional while M. /IIuscufus 

carry at least one for each member of the DII/III3 family, all of which have resulted from 

retrotransJXlsition and not genome duplication. 
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Summary and Conclusion 

Development of multicellu lar organisms requires an elegant and sophisticated means of 

dynamically control ling chromatin stnlcture. DNA methylation has been shown to play 

an integml role in vertebrate genomic management as aberrations in methylation patterns 

have been linked to phenotypic abnonnalit ies, cancer and even embryonic death. Much of 

our understanding of the enzymes responsible for establishing and maintaining these 

methylation patterns has originated from studies using tcleosts and mammals. There arc 

similarities in enzyme structure and basic developmental expression patterns between 

these two evolutionary groups, but the significance of functional roles related to different 

gene numbers and reproductive strategies is still not known. Invest igating DNA 

methylation in subclass Elasmobranchii, the evolutionary outgroup of teleosts and 

mammals, provides an opportunity to explore the core roles of vertebrate DNA 

methylation and how it is established and maintained. Here I have presented the first full 

length eDNA sequences of the maintenance methyltransrerase 0/l1/J1/ , and de /lO\'O 

methyhransrerase DIIII/13 of LCllcoraj(l ocd/ala. At the nucleotide level they show no 

significant similarities to known Olllllls. At the protein level they arc very similar 

possessing all the domains we recognize to be essential for their function assembled in 

the order consistent wilh all other documented maintenance and de 1101'0 

methyltransferases. I have provided evidence of multiple 01111111 splice variants involving 

alternate translation start codons as well as a 3' splice removing a catalytically important 

region or the methyltransferase domain. Although the L. oed/ala amino acid sequence 
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shows a high degree of similarity to H. sapiel/s ONlIff3b isoform2 there appears to be a 

trend in tissue distribution si milar to that of H. sapiens ONMT3a in the ccntral ncrvous 

system. It may be that L. oee//a/a possesses a single 01111113. or a reduced 011111/3 family, 

relying on multiple transcript splices to perfOnll the functions carried out by various 

DI/I11/3 genes in the more derived mammalian and teleost lineages. There are also 

indications of at least two retrotransposcd 01/111/3 pscudogenes with their origins linked to 

the potentially catalytically active and inactive mcthyltransferasc splice variants. A more 

rigorous investigation of the total number of de 1101"0 methyhmnsferases of the L. oee//O/a 

genome is currently being conducted. New degenerate primers flanking the most 

common intron/exon splice sites shared by all zebra fish and mammalian 01/1IIt3 genomic 

sequences have been designed. These primers arc being used in pe R amplification with 

gDNA as template in an elTort to dctcct L. oeel/lIIa 011111/3 intronic sequences. Multiple 

intronic sequences confirmed within the L. oeel/O/a genome would imply the existencc of 

multiple 011111/3 genes. Cloning of the exonic sequences flanking these multiple intronic 

sequences would provide a means of creating primers specific to each of the individual L 

ocellala OI1I11t3S. Further probing of thc transcriptome with these new primers would 

yield full clones of all the potcntial 01111113 family members. Developmental expression 

analysis by way of immunopreeipitation could then be conducted to elucidate the pallen! 

of de 1101'0 methyhransfcrasc expression in the developing L. oee/I(lw. 

Preliminary work has shown the trend ofhypernlCthylated paternal germ cells relative to 

matemal germ cells seen in both tcleosts and mammals is present in L ocella/ll. While 
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the exact number of methyhransferases is still being investigated it appears that early 

developmental methylation dynamics can be traced back to L. oed/ala. This preservation 

of unbalanced patemal and matemal methylation contributions 10 the Elasmobranchii 

embryo indicates a dynamic epigenetic reprogramming event is essential, not only in 

Osteichthyes, but also in the sister group Chondrichthyes. 

This investigation has been undertaken in the hopes of assisting the exploration of DNA 

methylation in subelass Elasmobrallchii, a group of organisms employing a wide range of 

reproductive strategies and developmental programs capable of providing insight into 

intrinsic vertebrate chromatin management as well as the derived fonllS studied in both 

teleostsand tetrapods 
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