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Abstract 

Behavioural rehabilitation is the only treatment option for chronic stroke deficits. 

Unfortunately. even lengthy rehabilitation often provides incomplete recovery. This 

study used an animal model of stroke that incorporates key features of sensorimotor 

impainnent commonly observed in stroke patients. A novel combination of growth factor 

administration and rehabilitation therapy was employed to facilitate functional recovery 

in this model. 

Sprague-Dawley rats received a stroke via injection of endothelin-I at two sites in 

the sensorimotor cortex. This was followed by either a 2-week infusion of epidennal 

growth factor (EGF) and erythropoietin (EPO) or artificial cerebrospinal fluid (aCSF). 

Two weeks post-ischemia, animals began cither a 6-weck enriched rehabilitation program 

or standard housing treatment: (I) EGFfEPO + rehab; (2) aCSF + rehab; (3) EGF/EPO + 

no rehab; and (4) aCSF + no rehab. Functional assessments were perfonned pre- and 

post-ischemia and after 14.28. and 42 days of rehabilitation thereafter (approximately 

every 3 weeks) using the Montoya staircase reaching task. beam traversing and cylinder 

test of forelimb asymmetry. 

The combination of EG F/EPO + rehab led to a significant acceleration in recovery 

on the Montoya staircase reaching task after only 2 weeks of therapy compared to 

rehabilitation-alone. Although the combination of EGFIEPO + rehab resulted in 

accelerated recovery. animals exposed to rehabilitation-alone recovered to a s imilar 

extent after 6 weeks of therapy. This effect was observed in both the staircase and beam 

traversing tasks where animals that received rehabilitation recovered to a significantly 

greater extent than standard-housed animals. 



Combining behavioural rehabilitlltion with growth raetors that promote 

endogenous stem cell mobilization mll)' lIeeelcrate recovery beyond that ofrchabilitation 

alone. This has the potential to reduce the length of rehabilitation necessary to recover 

from stroke deficits. 
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Int roduction 

1.1 OIwl'iew a/Stroke S/(jli~"tics 

Stroke is the third leading cause of death in Canada, resulting in approximately 

15 ,000 deaths a year and over 30,000 hospitali7..ations (Johansen et al.. 2006; Canadian 

Institute for Health Information, 2009). "Ibis results in annual losses of over $3 billion 

per year to the Canadian economy in both direct health care costs for patients and lost 

economic output due to disability (Public Health Agency of Canada, 2002). In addition to 

these severe. or overt strokes that demand immediate medic;11 attention. it is estimated 

that the incidence of smaller, or covert strokes may be 10-20 times more frequent 

(Longstreth. 1998). Covert strokes may result in deficits that are initially more subtle but 

certainly increase the risk of suffering a subsequent. severe stroke by 11 factor of five 

(Venneer et ai., 2003). This indicates that stroke is potentially a much more serious 

problem than currently recognized. 

Some consider the most devastating effects of stroke to be the pemlUnent motor 

disabilities Ihal commonly result from this condition. Unfortunately, current treatment 

melhods providc only incomplete recovery, and require intensive treatment periods in 

order to obtain significant clinical gains. For this reason, research into improved 

treatment techniques for stroke recovery is of the utmost importance in order to assist 

patients in returning to their nonnallives. The current thesis aims to contribute to this 

area by assessing the abi lity of a novel combination of growth factor treatment and 

behavioural rehabilitation to aeeeJcmle the mte of motor recovery in an animal model of 

isehemicstroke 



1.2 Pmhophysiofogy of Ischemic Stroke 

Stroke is a sudden disruption of extra- or intra-cranial blood flow resulting from 

one of two conditions. The first, known as hemorrhagic stroke, occurs when blood 

vessels rupture. causing a leakage or blood into brain tissue. The second. and most 

common type of stroke (- 80% of cases). is referred to as ischemic stroke; a condition that 

develops from a blockage of one or more of the blood vessels in the brain. The resulting 

drastic reduction of oxygen and glucose to regions downstream of the blockade quickly 

disrupts the local neuronal populations' ability to maintain their ionic gradients (Martin et 

al., 1994). Membrane potential is rapidly lost. causing a depolarization of neurons that 

leads to a massive influx of calcium ions (Ca2+) and subsequent release of glutamate into 

the extracellular space (Katsura et al.. 1994). Excessive stimulation orN-methyl-D-

aspartic acid (NMDA) and glutamate receptors by this excessive extracellular glutamate 

causes a further influx ofCa2+ (McCulloch ct al .. 1993). This initiates a cascade of 

nuclear and cytoplasmic events that ultimately lead to necrosis and apoptosis of neurons 

in the ischemic core (Furukawa, et aI., 1997; Dimagl et aI., 1999). lletwcen the ischemic 

core and normal brain regions is an area with only partially disrupted ionic balance and 

reduced blood flow, known as the peri-infarct region. It is thought that if tissue in this 

area can be spared from cell death, stroke-related impairment will be reduced, making it 

an important research target in attempts to maximize recovery in the post-stroke period 

(De Keyser et al.. 1999). 



1_3 Animal MQ(Ie/s o/lschcmicSfrokc 

In order to develop new methods for treating stroke-related impairments. animal 

models are necessary. These models allow experimental manipulation and assessmcnt of 

novel treatments and enable the study of underlying cellular mt:chanisms responsible for 

enhanced Functional recovery. A number oFdifferent species have been used to model 

many oFthe physical and cognitive deficits that can be caused by stroke (Corbett & 

Nurse. 1998). However. rats arc the most commonly used animal for studying functional 

impairment and rehabilitation afier stroke because they offer the advantages of being 

relatively inexpensive. having a cerebrovascular anatomy that is similar 10 humans and 

exhibiting limb movcment and skilled reaching abilities that resemblc those of humans 

(Whishaw el al., 1992). These benefits enable the study of post-stroke recovery pallems 

and the effects of novel interventions using a number oFdiITerent methods of producing 

stroke. 

Onc oFthe most widely used models of producing Focal ischemic stroke in the rat 

has been the middle cerebral artery occlusion (MCAo) method. Occlusion ofthc middle 

cerebral artery (MeA) can be produced using a variety of techniques. Traditionally. the 

most commonly used method involves a transient occlusion whereby a sterile suture is 

inserted through the external carotid artery. passed along the internal carotid artery and 

lodged at the junction of the anterior and middle cerebral arteries (Longa et ai., 1989). 

Typically. this suture is left in place for 60. 90. or 120 minutes. Suture occlusions of 

longer than 60 minutes can rcsult in hypothalamic damage (Garcia et al.. \995). This 

triggers a hyperthermic response in the animal that exacerbates cell death and docs not 

usually occur in human stroke (Reglodi et aI., 2000). Other models ofMCAo have been 



developed that avoid damage to deep brain structures such as the thalamus and 

hypothalamus (Carmichael et al.. 2005). These MCA models involve surgical separation 

of the parotid gland and temporalis muscle and a craniotomy over the MeA (Tamura et 

al.. 1981). Occlusion distal or proximal to the branching of the striatal arteries will result 

in purely cortical or cortical plus striatal injury. respectively. This prevents the 

hyperthermic response observed in suture models of MeAo, but is a morc challenging 

technique and requires a much more invasive surgery (Yamashita et aI., 1997). Both the 

distal and proximal MeAo methods, as well as the intraluminal suture model. create a 

large and variable inj ury in rodents. These infarcts arc of a magnitude not usually 

observed in human stroke survivors and thus, MCAo methods may more accurately 

model malignant infarction than typical human ischemia from which recovery is possible 

(Carmichael. 2005). A final modification of the MeAo model is to inject blood clots or 

microsphercs into the artery (Miyake el al., 1993; Zhang et al.. 1997). These injections 

produce multifocal lcsions throughout the brain that mimic the scope of human 

infarctions, however, these infarcts are of variable size and location, making evaluation of 

therapies that rely on damage in a particular brain region extremely dimeult with this 

method (Beech et al.. 200\). In all of the MeAo modcls mentioned. but particularly the 

intraluminal suture model. the forelimb motor cortex is often spared (Carmichael. 2005: 

Windle et al.. 2006), rendering this model less useful for studies involving rehabilitation 

of post-stroke forelimb and grasping function. 

In order to produce smaller, more focal1esions than with traditional MeAo 

models, other techniques have been developed, including photothrombosis (Watson et al.. 

1985), With this model, the area oflhe brain to be lesioned is exposed via craniotomy. 



Following (he craniotomy. a light-reactive dye. Rose Bengal, is injccted and once the dye 

has had a chance to circulate throughout the body a laser light source is directed at the 

prospective lesion site in order to excite the photosensitive dye. This produces local 

singlet oxygen that causes free radical damage to all blood vessels in the area of 

illumination. The resultant endothelial damage then initiates focal platelet aggregation 

and a elotting response that blocks regional blood flow and causes localized ischemic 

damage (Watson ct al., 1987). Although this tcchnique allows for the creation of 

extremely controlled lesions, all vesscls and capillary beds in the ischemic region arc 

pcnnanently compromised without further surgical intervention (Watson ct al.. 2002: Yao 

et al.. 2003). The gradual repcrfusion of the ischemic site that is typically seen in human 

stroke is not possible with this model. 

Another method of producing smalL focal stroke lesions in a targeted brain region 

is through local injection of the vasoconstrictor peptide, endothelin-l (ET-I) (Fuxe et al.. 

19(7). This peptide activates voltage-dependent Ca2+ channels in the vascular 

endothelium. resulting in a reduction ofarteriul size that subsequently restricts blood flow 

to adjacent tissue (Yanagisawa, 1988). This method is more udvantugeous than 

photothrombosis because reperfusion ofafTected areas occurs gradual ly over time 

(Biemaskie et ul.. 2001; Windle et al.. 2006). Reperfusion also naturally occurs in most 

cases of human stroke. making this an excel lent model for experimental stroke research 

(Carmichael. 2005). Selecting a good model for inducing stroke in animals is important 

for ensuring that research findings will be applicable when testing transitions into a 

clinical setting. 



/../ Nellroprotectil'e Strategies 

To date. only two treatments have been successfu lly tmnslated from basic animal 

research to provide neuroprotcction following ischemic stroke in humans. The first 

involves administration of the thrombolytic enzyme known as tissue plasminogen 

activator (tPA) (NINDS, 1995). This enzymc re-establishes perfusion to ischemic brain 

regions by breaking down blood clots that are impeding normal flow. Successful 

administration within 4.5 hours of ischemic stroke onset results in improvcd functional 

outcome and a reduction in pathologicaltissuc damage (I·lciss et al.. 1998: Albers et aI., 

2002). However, if the patient docs not present to the hospital within this timc window, 

of which the majority do not (67.6%; Nadeau et al.. 2005), administration oftPAdoesnot 

result in significant functional benefits and has been shown to increase the acutc mortality 

rate or patients (NINDS, 1995). 

rhe second method of reducing stroke damage is therapeutic application of 

hypothermia. Using animal models of ischemia. it has been demonstrated that lowering 

thc core body temperature can both improve functional outcome and decrease cell death 

(Colbourne & Corbett, 1994; Colbourne & Corbett. 1995). The underlying protective 

mechanisms of hypothermia arc thought to involve a reduction of the metabolic rate, 

modulating Ca2+ signalling and glutamate receptor activation, causing an attenuation of 

the physiological cascade that normally results in ischemic damage (Lazzaro & 

Prabhakaran,2008). Despite the promising results displayed by hypothermic treatment, a 

lack of clinical guidelines for its use in stroke prevents its widespread use in acute stroke 

care (Lyden et aI. , 2006). Because the majority of stroke patients are not able to receive 



tPA treatment or hypothennia in the time that these interventions would be most 

beneficial. most patients develop chronic functional impainnents related to their stroke. 

As a result, research into alternative means of treating these long-term impaimlents is 

necessary. 

1.5 RecUt·ery/rom Chronic Slroke Impuirmel/l 

Following brain damage. many cellular processes are initiated in un attempt to 

stabilize the isehemie core, promote ncuroplastie change and growth of surviving 

neurons, and reinforce newly fonned connections. Migration ofneuroblasts and 

astrocytes to the site of injury takes place quickly after damage has occurred (Jin et a1.. 

2003; Goings et a1.. 2004). Many of these cells differentiate into astrocytes. which then 

secrete a variety of beneficial neurotrophic factors such as brain-derived neurotrophic 

factor and neuronal growth fuctor into surrounding tissue (Ridet et al.. 1997; Chen & 

Swanson. 2003). These growth factors uugmcnt the ubility of neuronal tissue in the peri­

infarct region to undergo neuroplastie change. providing an important opportunity to re­

estabHsh disrupted cortical connections and thus restore lost motor function (Camlichael, 

2006). Despite these favourable conditions for recovery of motor function. only small 

improvements in outcome occur spontaneously. Attaining significant levels of motor 

recovery requires extraneous behavioural intervention (Biemaskie & Corbett, 200\). 

1.6 Enhancing Molor Recol'ery with Rehabililation 

Stimulating neuroplasticity mechanisms in peri-infarct regions provides the 

capability for the cortical remapping necessary to improve functional outcomes beyond 



limitcd spontancous rccovcry. Clinical motor rehabilitation capitalizcs upon thc 

reorganizational capacity ofthc injured bmin by using regular and repeatcd stimulation of 

strokc-impaired limbs to stimulatc cortical rcorganization (HOOics ct aI., 2006). 

Achicving thc optimal results from a motor rehabilitation program requires scvcral 

conditions to be met. [n order to achicve maximal recovery of complex motor 

movements, rehabi litative therapy must simulate the motor patterns required in the 

specific task for which rchabilitation is desired (Richards et al.. 1993). Task-specific 

therapies enable recruitment of non-affected brain regions that arc adjacent to cortical 

damage to restore lost function (Nuda et al.. 1996). Clinical studies have also 

demonstrated the importance of task-specific therapy in perfonnance of experimentlll 

outcome measures and nomm[ life activities (langhammer & Stanghelle. 2000; 

Blennerhassctt & Dite, 2(04). In addition to thempies being task-specific. both animal 

and human studies agree that the greatest gains in motor function are achieved when 

rehabilitation is administcrcd soon fo llowing stroke (Biemaskie et al.. 2004; Salter et al.. 

2006). Delaying rehabilitation one month after stroke results in a loss of conical 

representation, making recovery of function difficult (Barbay et at.. 2006). Along with 

administration oftask·specific therapy early after stroke, ensuring that rehabilitation 

provides challenging and intense motor stimulation is also important for maximizing 

functional outcome (Kwakkcl CI al .. 2004: Birkenmeieret al., 2010). It is thought that 

greater recovery is realized when more repetitions of rehabi litative exercises arc 

perfonned in both animal and cli nical studies. This has led to a theory Ihat motor benefits 

arc not gained until a threshold of duralion and intensity ofrchabilitative therapy has been 

surpassed (Han el al ,2008; Maclellan et al., 20 11). 



Early, intensive. task-specific therapy is important for maximizing motor recovery 

following stroke because this combination takes advantage of the 'primed' peri-infaret 

tissue for neuroplastic change resulting from the milieu of growth factors present in 

damaged tissue that promote grov.1h of new neural connections (Carmichael ct al.. 2006). 

Animal studics havc dcmonstratcd that thc benefits of these growth factors can be further 

augmented by placing animals in enriched housing environments. leading to an 

uprcgulation of gro\\1h factors and neurogenesis (Falkenberg et aI., 1992: Bruel­

Jungemlan et al.. 2005; Gelfo et al.. 2010). High intensity rehabilitation is thought to 

strengthcn ncwly formed connections and task-specific rchabilitation supports repeated 

use of disrupted neural circuits. causing an increase of their cortical representation as the 

brain reorganizes around infarcted tissue (Nudo et al., 1996; Hodics ct al.. 2006). 

Although self· repair mechanisms that can be cnhanct:d by rehabilitation exist in 

the brain. this treatment is not without its limitations. Functional gains that are made 

come at the cost of largc investmcnts of timc and eITort on the part of both the patient and 

medical personnel in rehabilitation. Achieving maximal levels of recovery requires 

months ofthcrapy and patients' abilities often platcau below their pre-stroke level of 

function (Yagufll et al.. 2003). In order to overcome these limitations and enable greater 

recovery offunetion at an accelerated ratc. it may be necessary to augment neuroplasticity 

and promote replacement of lost tissue via exogenous therapies. This may be possiblc 

through supplemcntary administration of growth factors in combination with 

conventional rchahilitationtechniques. 



1. 7 Growlh Factor Injilsion and Stroke 

Administration and endogenous upregulation of growth factors has garnered much 

intcrest in attempting to provide ncuroprotcction and improve recovery of motor function 

following stroke. A wide variety of growth factors havc been tested in this regard. 

including basic fibroblast gro\\1h factor (FGF-2). bone morphogenctic protcin-7. vascular 

endothelial gro\\1h faclOr (VEGF), and granuloC}1c colony stimulating factor (Fisher et 

al.. 1995; Zhang et al., 2000; Chang et a1.. 2003; Shyu et aI. , 2004). Howcver. while 

thcsc studics dcmonstrate that simplc administration of growth fa(;lors conveys moderatc 

benefit in reducing stroke-related damage in animals. functional improvement is limitcd 

to gross motor movements. Two grO\\1h factors that have shown particular promise in 

aiding in strokc rccovcry arc epidennal growth factor (EGF) and crythropoietin (EPO). 

EGF is onc ofthc most powcrful mitogcnic proteins in the human body. This 

protein has been shown to increase the proliferation of neural stcm cells from thc sub­

ventricular zone (SVZ) in the brain (Reynolds &Weiss. 1992). These cells are of 

particular interest in post-stroke recovery. because cells from this rcgion natumlly migrate 

to thc site of injury following damage to thc brain (Jin ct al.. 2003; Goings et al.. 2004). 

[fthis process is impeded. post-stroke impaimlcnt is cxacerbated. implicating these cells 

in motor recovery processes (Tsai et al.. 2006). [n addition to aiding proliferation of 

ncural stcm cclls in the SVZ. EGF induces migmtion of radial glia to the site of cortical 

damagc. potcntially enhancing thc ability of cells to migrate to the site of injury (Gregg & 

Weiss. 2003). EGF also has a neuroprotective effect on cells undergoing traumatic events 

by inhibiting apoptotie processes (Liu et al., 2006). Increasing the proliferation of cells 

that are migrating to the ischcmic sitc may cnhancc neural repair by replacing lost tissue. 
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or supporting the reorganization of surviving tissue through IOClil secretion of additional 

gro\\1h factors. 

EPO is an angiogenic protein thaI has been found to increase rcpcrfusion of 

infarcted areas by promoting vascular growth (Carlini ct al., 1995; Chong ct at., 2002). In 

vivo administration of Ero promotes neuroblast migration to the ischemic sile (Wang et 

al.. 2(04). Continued exposure to EPO can then induce differentiation ofncuroblasts inlo 

a neuronal phenotype (Shingo et aI., 2001). EPa also exerts a positive effect on 

astrocylcs in the ischemic site by increasing expression of other beneficial growth factors 

such as vascular endothelial gro\\.1h factor and brain derived neurotrophic factor (Wang ct 

al.. 2004). Deposition ofprolcins that exert an inhibitory effect on neural growth and 

plasticity such as chondroitin sulfate proteoglycans are downregulated by EPO 

administration (Vitellaro-Zuccarello et al.. 2008). Dy increasing the population of viable 

cells and e,xpression of growth factors in the ischemic core and peri-infarct region. post­

stroke administmtion ofEPO may enhance tissue regeneration and neuroplasticity. 

Serial administration of EGF and EPO in rats has been shown to improve post­

stroke outcome on se\'eral measures of motor recovery beyond what is possible with 

either factor alone or control infusion (Kolb et aI. , 2007). Augmenting neuroplasticity in 

this fashion may enable rehabilitation-mediatt:d functional recovery to occur at an 

accelerated rate, to a level that is not possible with rehabilitation alone. 

J.8 Overview of Experimcm 

The present study was the first to assess thc combinatory effects of grO\vth factor 

administration and enriched rehabilitation on post-stroke recovery of motor function. As 

II 



previously mentioned, adminislmtion ofEGF and EPO may have beneficial effects on 

stroke outcome, potentially through migration ofncuroblasts or a grov.1h factor repository 

in the site of ischemic injury lind peri-infarct cortex. Subsequent administration of 

conventional rehabilitation techniques may capitalize on the beneficial properties of these 

events, leading 10 a faster and larger reorgani:mtion of surviving cortical tissue involved 

in the relevant motor pathways. For this reason we hypothesized that administering a 

combination ofEGF, EPO and a subsequent rehabilitative treatment regime following 

forelimb sensorimotor cortex ischemia would result in accelerated functional 

improvements than with either rehahilitation- or EOF and EPO-alone. Additionally, we 

believed thaI the combination of EGF/EPO with rehabilitation would produce a 

synergistic effect. leading to a higher plateau of motor perfonllance than with either 

themp}' alone. 
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l\.'1ethods 

2.1 Subjects 

Sixty-seven male Sprague-Dawley rats, (Charles River Laboratories, Montreal. 

Quebec. Canada) weighing 300-325 grams upon arrival. were used in this study. Animals 

were handled for several minutes a day over the first four days after arrival and pair­

housed in PlexiglasO cages on a 12: 12 hour reverse light/dark cycle with lights off at 8:00. 

Food and water were accessible ad libitum except during behavioural training and testing 

periods. when animals were restricted to 90% of their free-feeding weight. All 

procedures and testing .... -ere pcrfomled during the dark cycle. Data from 50 animals, 

divided among four groups, were used in the final behavioural analyses. 

2,2 Experimental Conditions 

The experimental design of the current study consisted of a 2x2 matrix with 

osmotic pump infusion (pump) and rehabilitation therapy (rehab) as independent 

variables. Following post-stroke testing, animals were pseudo·randomized into I of2 

conditions (matched for perfomJance on staircase task): consecutive infusion ofEOF and 

EPa or two infusions ofanificial cerebrospinal lluid (aCSF). Both groups were then 

further divided so that animals would be exposed to either enriched rehabilitation 

treatment (Rehab), or standard housing (No Rehab). The resulting experimental design 

consisted of4 conditions: Rehab + EOF/EPO (n '" 13). Rehab + aCSF (n '" 12), No Rehab 

+ EOF/EI'O (n '" 12), No Rehab + aCSF (n = 13). All procedures were approved by the 

Memorial University of Newfoundland Animal Care Committee and comply with 

regulations set by the Canadian Council of Animal Care. 

]J 



2.3 lJehavioural Training and Tesling 

2.3.1 Staircase Test of Skilled Reaching Performance 

The staircase test enables assessment offorelimb reaching and grasping 

capabilities providing a means to evaluate the severity of animals ' forelimb motor deficits 

following stroke (Montoya ct aL 1991). Animals rest on a central platform in a Plexiglas 

box and are able to reach for 45 mg sugar pellets (TestDiet, Richmond, Indiana. USA) on 

two staircases situated on cach side of their body (Figure 11\). The pellets on each 

staircase are only accessible by the ipsilateral limb and are composed of seven levels 

(containing three pellcts each) that are progressively more distant from the animal. 

Acquiring the food reward requires arm extension and fine digit manipulation and 

increases in difficulty with descending steps. Forelimb reaching ability is measured by 

the accuracy of obtaining pellets in a given trial. 

Prior to stroke, all animals were trained in the staircase apparatus twice per day 

for 14 consecutive days. Each trial lasted for 15 minutes and was scparatcd by a 

minimum of four hours. Performance across the final two days was collapsed and 

animals [ailing to retrieve a minimum of 12 out of the 21 possible pellets with the 

dominant paw (avcrage was 17.9 pcl1cts), with a standard deviation of less than two 

pcl1ets. wcre eliminatcd from thc study (n '" 5). PerfomlUncc at this time point was used 

as a mcasure of cach animal's basel inc reaching ability. 

Tbc first post-stroke assessment occurred five days after surgery in ordcr to assess 

the functional impairment of each animal. Animals with the ability to obtain greater than 

60% of their baseline number ofpel1cts were excluded from the study (n = 12). 

14 



Figure 1. Battery of behavioural tests for functiolllll motor pcrfomlance. 

(A) Lateral view orthe Montoya staircase reaching task. (8) Ream-traversing task. A 

step was scored as a fault if the pad of the foot slipped from the lOp (white) level of the 

beam. (C) Cylinder lest. Forepaw use was measured by filming from below the animal 

(nOlshown). 
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This ensured that the experimental population consisted of animals with moderate to 

severe stroke for whom therapy is requirc<i in order to significantly recover from stroke­

induced impaimlcnt. Excluded animals were sti ll housed and tested alongside the 

remaining animals to avoid altering cage dynamics. Throughout the enriched 

rehabilitation treatment. animals were assessed afier each fourteen days of rehabilitation 

(approximately every 3 weeks) in the behavioural assay (Figure 2). At each post-stroke 

time point, animals' reaching abilities were assessed in 6 trials over 3 consecutive days (2 

trials/day for IS minutes). Data from the first day of testing (first 2 trials) were not 

analyzed, as the purpose of these trials was to allow the animals to reacclimatize to the 

testing environment. 

2.3.2 Beam-Traversing Performance 

The beam-traversing test challenges an animal's ability to cross a tapered beam 

(length, 160 em; widest portion, 6em; narrowest portion, 2 em) elevated 75 em above the 

ground in order to reach a darkened chamber at the narrow end (Figure I B). A I em wide 

ledge (I cm below upper levcl of beam) was positioned on both sides of the beam to help 

prevent the animal from falling from the beam when its fOOl slipped. Animals naturally 

allempt to stay on top of the upper level of the beam (Kolb& Whishaw. 1983). Correct 

perfonnance of this task requires progressively more coordinated and sk illed paw 

plaecment in order to avoid sl ipping 10 the safety ledge as the beam tapers. Trials were 

video reco r<k-d and performance was measured for each limb by calculating the 

proportion of steps in which thc pad of the foot slipped from the top of the beam relative 

to the total number of steps. 
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Figure 2. Timclinc of experimental procedure. 
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Prior to baseline testing. animals were trained 10 cross the beam to a darkened chamber 

placed at the narrow end. Rats were required to repeatcdly cross the beam until they were 

able to traverse from the widest portion of the beam to the goal box without pausing or 

noticeably slipping on four consecutive trials. Testing occurred pre- and post-stroke as 

well as bi-weekly throughout rehabilitation treatment. On each test day, animals were 

required to traverse the beam four times and data from all trials were averaged. The 

pereentage of successful steps was calculated as: (I - I foot fault s/total stepsJ) * 100. 

2.3.3 Cylinder Test of Forelimb Asymmetry 

The cylinder test measures the portion offorel imb use for postural support during 

rearing (Jones & Schallert. 1994; Schallert et al.. 2000). Animals were placed in a 

Plexiglas cylinder (20 cm diameter) on a glass tabletop and videotaped from below 

(Figure IC). Each trial continued until the subject completed a minimum of20 

independent rears and wall contacts. The number of contacts with each paw was 

analyzed and use of the limb contralateral to the stroke was calculated as: ([contralateral 

contacts + VI bilateral contactsj/total contacts) * 100. Testing occurred prc- and post­

stroke as well as bi-weekly throughout rehabili tation treatment. 

2..j Surgical Procedures 

2.4.1 Focal Ischemia 

Following baseline behavioural testing. mts were anesthetised with isoflumne (3% 

induction. 1.5% maintenance; CDMV Canada. St-Hyaeinlh. Quebec. Canada) in 100% 0 1 

(1.6 Umin). Animals were secured in a stereotaxic frame and received a 0.2 mL scalp 
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subcutaneous injection of 1% lidocaine (AstraZencca, Mississauga. Ontario. Canada). 

The midline orlne scalp was incised and three holes were drilled in the skull over the 

forelimb sensorimotor cortex. conlralalerallO the paw ofbes! perfonnancc in the b..1sclinc 

staircase reaching test. At two oflhesc siles. 2 ~(L of clldothclin-l (El-1; 400 pmol/IlL 

Calbiochcm. Lll Jolla. California. USA) was injected into the brain at the following co­

ordinates (relative to bregma): 0.0 mm anteroposterior (A P). :1:2.5 mm mediolatcral (ML). 

-2.5 rum dorsoventral (OY): +2.3 mm AP. ±2.5 rnm ML -2.5 111m DY. The third drill 

hole located a\-0.5 mm AP. ± 1.5 rum ML was used for cannulation orthe lateral 

ventricle during a subsequent surgery. Reclal temperature was maintained at a minimum 

of36.SoC with a homeothernlic blanket (l·larvard Apparatus, Saint-Laurent. Quebec. 

Canada) throughout the surgery. After ET-l injcction was complete. the incision site was 

sutured and topical 2% Xylocaine (AstI""J.Zcneca. Mississauga, Ontario. Canada) was 

applied. Anesthesia was then discontinued and animals were placed in a cage on a heated 

blanket until consciousness and normal mobility wcre restored. 

2.4.2 Osmotic Mini-Pump Implantation 

Thrcc days after st roke induction. animals were re-anesthetized and their scalps 

re-ineiscd. AS mm infusion cannula was inserted into the lateral ventricle at -0.5 mm 

AP, ± 1.5 mm ML relative 10 bregma and secured in place with cyanoacrylate glue 

(Loctite. Mississauga, Ontario, Canada). This cannula was attached to an osmotic 

minipump (1.0 IlUhr. 7 days; Alzet, Cupertino. California, USA) containing either EOF 

(10 ~lglmL) oraCSF via surgical tubing. The osmotic minipump was placed 
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subcutaneously bctween the scapulae and the scalp was sutured. Topical 2.0% Xylocaine 

was then administered to the incision site and anesthesia tenninated. 

Seven days following EGF pump implantation and cannulation. animllls were re­

anesthetized. A small incision was made sl ightly anterior to the position of the osmotic 

pump and thc pump was removed. A new pump containing either EPO (1365 IU/m L) or 

aCSF was secured to the cllnnulised surgical tubing. The incision site was sutured. 

topical 2.0% Xylocaine was tldministered to the incision si te and anesthesia tenninated. 

All osmotic mini pumps were removed after seven days. 

2.5 Enrichcl/ Neill/hili/alion 

Two weeks after induction offoctll ischemia. animals were pseudo-randomized to 

either the enriched rehabilitation (Rehtlb) or no-rehabilitation (No Rehab) group. 

Animals in the Rehab group were housed in large wire mesh cages (length. 105 cm; 

width. 67 cm; height. 75 cm) in groups of five orsix while thosc in the No Rchab group 

were pair-houscd in s13ndard cage conditions. Wire mesh ctlges contained a Vtlricty of 

objects (platfomls. ropes. tubes. ramps. balls. etc.) that were changed twice per week and 

pluced in different locations in order to increase novelty. 

Rehabilitation was received by animals houscd in the enriched environment. For 

six hours per day. animals wcre removed from the cnriched cnvironment und plneed in 

standard rat housing that contained a modified reaching box (Figure 3). This box allowed 

free access to an environment similar to the staircnse reuehing test (tnsk-spccific) in 

which the animal could reach for the same pellets used in the staircase. using only its 

impaired forelimb. The food rcwurd was placed at a level that was only accessible 
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Figure- 3. Lateral view of the modified reaching rehabilitation box. 

Animals can freely enter thc box and reach for a food reward with their impaired limb. 
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through making a proper reaching and grasping movement. To control ror possible 

con rounding etTects or pellet consumption. animals that did not receive rehabilitation 

were adm inistered a sim ilar number of pellets (- IS g) per day in addition to their nOnJml 

food. Enriched environment housing continued for eight wecks and animals reccivcd 

rehabilitative training five days/week except during periods or behavioural testing. 

2.6 Histological Procedures 

Following all behavioural assessments. animals were deeply anesthetized (5% 

isofiurane in O2) and transcardially perfused with icc-cold. 0.9% heparinized saline. 

followed by 4% paraformaldehyde (PFA). Bmins were removed and post-fixed in 4% 

PFA overnight at 4°C. then tmnsferred into a 20% sucrose-phosphate butTer solution unti l 

satumted. The brains were then frozcn in isopentane on dry icc. sectioned on a cryostat at 

IS I-lm and staincd with cresyl violet to assesscorlical damage crellted by ET-I injection. 

The section ofnmximal conical damage was identified and severity or corlical damage 

was calculated as follows: l-{area of undamaged ipsilcsional cortex/area of undamaged 

cOll tralesional eone.'() • 100 (lmageJ 1.36b software for Mac. downloaded rrom the public 

domain. National Institutes or ]-Ieahh. USA, hllp:llrsb.info.nih.gov/ij/). This generated a 

value fo r the percentage of damaged cortex in the lcsioned hemisphcre relative to 

homologous tissue in the un-Iesioned hemisphere (Ploughman et al.. 2005). Each animal 

was assigned a score on as-point sealc that corresponded to its amount of damaged 

cortical tissuc: O. no ischemic damage; I. 1·25% damage; 2. 26-50% damage: 3. 51-75% 

damagc; 4. >75% damage. 
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2.7 Slalislicul Anulysis 

Statistical analyses were conducted using the statistical package for the social 

sciences (SPSS; v 13.0.0 Grad Pack for Mac as x, SPSS. Chicago, IL, USA). 

Histological data were analyzed using the Kruskal-Wallis and Mann-Whitney U non­

parametric tests. Dchaviouml data wcre analyzed using 3-way repeated measures analysis 

of variance (ANOVA; between-groups, Rehab. Pump; within-groups, Time) with Ryan­

Einot-Gabriel-Welsch F (REGW-F) post-hoc and independent samples I-tests 

(Bonferonni correction) for multiple comparisons. The number ofpcllets rctrieved during 

daily reaching therapy was assessed using independent samples t-test. Mauchly's test of 

sphericity and Lcvcne's test for homogcneity of variance werc perfomled for each 

ANOVA (where appropriate) with Huynh-Feldt and Drown-Forsythe corrections made 

when these conditions were not satisfied. Significance was set at p::::; 0.05 for all analyses 

and values are expressed as group means ± SEM. 

Resul ts 

3.1 BdlUl'ivllral Tesling 

One-way ANa VAs indicated that all groups sufTered impainnents of similar 

magnitude on all behavioural tasks prior to initiation of enriched rehabilitation (data not 

ShO\Hl; p > 0.05). This timc-point was then excludcd from further analysis in order to 

assess treatment efTeets. An independent samples t-tesl showed that the average number 

of pellets acquired during daily reaching therapy was not significantly different bctwl'Cn 

the Rehab + EGF/EPO and Rehab + aCSF groups (p > 0.05). 
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3.1.1 Staircase Test of Skilled Reaching Pcrfomwnce 

A 3-way repeated measures ANOVA (between-groups: Rehab. Pump: within­

groups: Time) revealed a Time X Rehab X Pump interaction (F2.92= 4.87. P < 0.01). 

Two-way ANOVAs at each lime point indicated that a significant Rehab X Pump 

interaction existed between groups after both 2 (F3.46 = 3.022, P < 0.04) and 6 weeks (FJ.46 

= 4.837. p < O.OI)oflrcatment (Figure 4A). REGW-F post hoc analysis showed that the 

Rehab + EGFfEPO group perfonned significantly better than the No Rehab + aCSF and 

No Rehab + EGF/EI'O groups at both 2 and 6 weeks (p < 0.05). 

In ordcr to asscss the magnitude ofimprovemellts over the course of this 

experiment. perfonnance at each time point among each condition was subtracted from its 

post-stroke test·point (hencefonh referred to as "rehab score"). REGW-F analysis 

indicated that after 2 weeks of treatment animals in the Rehab + EGF/EPO condition had 

improvcd significantly more on the staircase test than those in the No Rehab + EGF/EPO 

and No Rehab + aCSF groups (p < 0.05) (Figure 4(3). It was not until after 6 weeks of 

treatment that animals in the Rehab + aCSF group showed a significant improvement 

over the No Rehab + EG F/EPO group (p < 0.05) (Figure 4C). 

3.1.2 Beam-Traversing Perfomwnce 

Data from the fore- and hindlimbs were averaged to provide a measure ofbcam­

walking success for the limbs contralateral to the stroke. There was no Time X Rehab X 

Pump interaction (p > 0.05). Two-way repeated measures ANOVA indicatcd a Time X 

Rehab interaction (F I 96I.90.221= 6.467. p < 0.01) with animals in the Rehab condition 

perfonning significantly bener than those in the No Rehab condition (Figure 5(3). 
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Figure 4. Post-ischemic assessments of skilled reaching ahility in the st!lircase test 

(mean ± SEM). (A) Group perfonnanee across time represented as a percentage of 

haseline rcrfonnanee. Significant differences between groups existed at 2-week and 6-

week time points. (B) Improvement (rehab score) of each group from "post" to 2-week 

time point. Rehab + EGF/EPO group showed significant recovery relative to non-rehab 

conditions after 2 weeks of treatment (*p<O.05). (C) Improvement (rehab score) of each 

group from "post" to 6-week time point. The Rehab + aCSF group showed significantly 

greater recovery relative to the No Rehab + EGFfEPO group after 6 weeks oftrcatment 

(tp<0.05). Effects shown in B remained at 6 weeks (tp< 0.05). 
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Figure 5. Post-ischemic perfonnanee on beam-traversing task (mean ± SEM). (A) 

Perfonnanceofall experimental conditions across time (presented as % of bas cline 

performance; not significant (NS». (ll) Perfonnance of rehab conditions vs. non-rehab 

conditions across lime. Significant diOcrences between conditions exist after 6 wccks of 

treatment where animals in the Rehab condition demonstrated significam improvements 

over animals in the standard conditions (*p<O.OI). (C) Improvement (rehab score) of the 

Rehab and No-Rehab groups from post to 6 v,·eek time point. Animals in rehab groups 

recovered significantly more by this time point than animals in groups that did not receive 

rehab (*p<O.OI). 
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Subsequent analysis on rehab score at each time point revealed thai performance in the 

Rehab condition was significantly greater than that oflhe No Rehab condition after 6 

weeks oftTemmen! (148 '" 10A05, p< 0.01) (Figure SC). 

3.1.3 Cylinder Test of Forelimb Asymmetry 

Three way-repeated measures ANOVA indicated no Time X Rehab X Pump 

interaction (p > 0.05), However, both a significant Time X Pump (F2.92= 4.198, P < 0.02) 

und Time X Rehab (F2.n= 4.064. P < 0.02) interaction was exhibited in the cylinder test 

(Figures 60 and C respectively). Independent samples I-tests at each tcst-point by Rehab 

condition revealed that animals in the Rehab condition increased the use of their impaired 

forelimb significantly more during the cylinder test than those in the No Rehab group 

after 2 weeks of treatment (48= 5.359, P < 0.03) (Figure 60). Similar t-tests at each Time 

X Pump interaction did not reveal significant time points at which group differences 

existed in use of the impaired forelimb for postural support (p > 0.05). 

3.2 ,..,'ererily of Ischemic IJamaRe 

A Kruskal-Wallis non-parametric test was used to assess individual group 

differences on damage score (K3 = 1.817. p > 0.05). Two Mann-Whitney U tests were 

used to assess the main effects of Rehab (U = 237, p > 0.05) and Pump (U = 264, p > 

0.05) on damage scorc. All of these tests failed to detect significant differences among 

groups, signifying that neither the pumps used. nor rehabilitation paradigm received had a 

significant effect on ET-I induced maximal (;ortical damage (Figure 7A and 8). 
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Figure 6. Post-ischcmic performancc on cylindcr tcst of forelimb asymmetry (mean ± 

SEM). (A) Performance ofal! groups on the cylinder test offorclimb asymmetry across 

all test periods (NS. p>O.05). (8) There was a significant effect of Pump across Timc. 

However, no differences at individual time points could be isolatcd. (C) There was a 

significant effect of Rehab across Time, but again these differences could not be isolated 

with post-hoc comparisons. (0) After 2 weeks of treatment, animals in the cnriched 

rchabilitation group had recovered to a significantly greater extent than animals not 

receiving rehabili tation (tp<O.05). 
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.'igure 7. Assessment of maximal damage to cortical tissue. (A) Representative section of 

damage induced by ET-l corresponding to a damage score bordering between 2 and 3. 

Scale bar represents 500 ).lm. (B) 40X magnification of insets from ischemic (left) and 

surviving (right) tissue from ligure A. Damaged tissuc in ischemic core is condensed and 

more darkly stained than surviving tissue. Scale bar represents 40 ~Im. (C) Damage 

scores across groups. No differences in cortical damagc were detected among groups. 
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[)iscussion 

4.1 Summary of FinlJings 

In this study we assessed the combinatory eflcets of growth factor infusion 

(EGFIEPO) and rehabilitation in aiding recovery of motor function following ischemic 

strokc. We replicatcd previous findings that rehabilitative therapies are efficacious 

following motor cortex damage (Jones et al.. 1999: Bicmaskie et al.. 200 I). More 

importantly. however. we arc the first to demonstrate that the improvements experienced 

from rehabilitation can be accelerated by four weeks. Administration ofEGF/EPO in 

comhination with rchabilitativc therapy resulted in maximal improvcmcnts after only two 

weeks of treatment. whercas it required six weeks for similar improvements to be 

achieved with rehabilitation-alone. These data may have important implications for 

designing new therapies and augmenting current rehabilitation paradigms. 

After just two wecks of the combination treatment of EGFIEPO and rehabilitation. 

animals had improved to a significantly grcater extent on the staircase task than animals 

in thc growth factor only and control groups. [n contrast, the group that received 

rehahilitation with a vehicle infusion did not improve significantly over other groups until 

after six weeks of rehabilitation. Other studies of post-stroke rehabilitation have shown 

that significant improvements in function require two to four weeks ofrehabilitation to 

manifest (Biemaskic et a1.. 2001). The daily task-specific reaching component of the 

present rehabilitation paradigm was intended to provide an opportunity to practice the 

specific movements required in the staircase rellching test. This models the reality of 

clinical rehabilitation. in which the goal is usually to providc restoration of motor abilitics 

that arc important in thc paticnt 's daily life. These staircase results indicated that task-
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specific motor recovery was sharply accelerated by the combinmion of EGFfEPO and 

rehabilitation. However, overall level of recovery did not differ between the combination 

and rehab only groups in sk illed reaching perfonnance upon the conc lusion of the 

rehabilitation program. 

Interestingly. gross walking abilities. as assessed by the beam-traversing task. 

were not subject to the same acceleration effect as observed in the staircase reaching task. 

After two weeks of rehabilitation, all groups had improved thci r perfonnance on thc beam 

task 10 Ihe same degrce. Upon conclusion of the six week rehabilitation period. both 

groups recciving rchabi litation had improved significantly morc on thc beam walking task 

than animals in eithcr ofthc non-rehabilitation conditions. This indicates that benefits of 

the combinatorial treatmcnt mny be isolatcd to the motor domains undergoing the most 

rigorous and specific therapy. It has becn previously noted that recovery is enhanced for 

tasks that are specifically targeted by a given rehabilitation program (Richards et aL 

1993) 

Assessment ofpost-slroke asymmetrical use offorcpaws for postural suppon 

using the cylindcr task rcvealed that animals in both of the rehabilitation conditions 

recovcred significantly more use of their impaired forelimb after two weeks of lreatment 

than animals that did not reccivc rchabilitation. As with the beam task, ani mals in the 

combination treatment group recovcred to a similar degree as animals in the rehabilitation 

only group. This is a funher indication that Ihe accelerated recovery found in skilled 

reaching perfonnancc may be confined to motor domains specific to the task USl-d for 

rchabilitation. Upon conelusion ofthc rchabili tation period. all groups had recovered to 
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the same degree on the cylinder task. as has been noted in other studies using this test 

(Clarke et aI., 2009). 

-1.2 Comparison 10 Prel'iolls Li/era/llre 

Although this study demonstrated a beneficial eOect ofEGF/EPO infusions on 

stroke recovery when combined with rehabilitation. this differs from previous literature 

that has shown that EGF/EPO infusions are effective without rehabilitation. Kolb et a1. 

(2007) showed that infusing EGF/EpO into the lateral ventricle caused significant 

improvements in post-stroke recovery of function over animals that received EGF. EPa. 

or aCSF alone. In the present study. infusing EGF/EpO alone did not result in post-stroke 

recovery of function that was greater than control animals on any behavioural test. There 

are several key differences between these studies that may explain this incongruence. 

The method of stroke induction (present study. ET-l; Kolb study, pial vessel strip) 

differs between these studies. It is possible that different methods of injury may result in 

dilTerent levels of neuroblast and astrocytic migration to the site of ischemic injury. In 

order to administer the pial vessel strip, Kolb and colleagues removed a large portion of 

skull (21 mm2) which was never replaced. Damage to the skin causes a release of man)' 

growth factors including EGF. FGF and VEGF into the local area over a period of weeks 

(Barrientos et a1.. 2008). These growth factors have been previously shown to enhance 

neuroplastic change as well as promote migration of new cells to the site of brain injury 

(Fisher et al.. 1995: Zhang et al.. 2000; Gregg & Weiss, 2003). The bmin being in direct 

contact with these additional growth factors from the incised skin is potentially an 

important factor in promoting recovery using the pial strip method, which could lead to 
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an enhanced migration ofbcneficial cclls to thc peri-infarct rcgion. With ET-l injection. 

only a small hole is madc in the skull (I mm2) meaning that the brain and skin are less 

able to interact. possibly resulting in less exposure to gro\\1h factors than with the pial 

strip modcl. In natumlly occurring strokc. the brain neither interacts with thc skin nor 

reccivcs tmumatie damage from pemlancnt rcmoval of pial vessels. For thesc reasons. 

we believe that ischemic damage resulting from ET-l injection more closely resembles 

clinical stroke and these results more accurately rcpresent the effects ofEGFIEPO 

infusion. 

Another difference between these studies is the test battery that was used to assess 

motor function (present study: staircase. beam. cylinder; Kolb study: tray reaching. 

swimming. cylinder). It is possible that had wc used the s.'lme tasks as Kolb et al.. we 

may have observed similar beneficial effects of the EGF/EPO infusion alone. 130th 

studies measured forelimb asymmetry using the cylinder task. howcver. Kolb and 

colleagues did not observe improvements in control groups over time as was observed in 

the present study as well as throughout the literature (Schaller! et al.. 2000; Shanina et al.. 

2006; Clarke et al.. 2009). Had this been the case. any beneficial effects ofEGF/EPO 

infusion alone could have been masked. 

In the present study. osmotic pumps were not tested upon completion of drug 

infusion to ensure that proper administration of drug treatment had occurred. Although 

all infusion pumps were prepared at similar times and inserted by an experimenter blind 

to the experimental conditions, it is unknown whether equal infusions of EG F and EPO 

were delivered to all animals. Thi s may have led to some animals in cither the 

combination or drug-only group not receiving the entirety of their gro\\1h factor infusion 
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and therefore pcrfonning more similarly to the rehabilitation-only or control groups. 

Exclusion of animals that had non-functioning pumps may hclp amplify existing 

differenccs and should be considered in fu ture studies. This is unlikely the case howcver. 

because of the significant improvements observed in the combinatory condition. It is 

unlikely that only the pumps in the growth factor-alone condition wcre malfunctioning as 

these osmotic pumps have been found to have very low ratcs or no failure in other studies 

(llcwitt & Corbett. 1993; Peelingct al .. 2001: Chaulk et al .. 2003). A more parsimoniolls 

explanation is that administration of growth factors-alone docs not provide significant 

recovery of function 

-1.3 Possible Afeclumisms!or Ta~-k-Specific Acceler(llcd RccOl'cry 

As previously mentioned. infusing EGF and EPO into thc brain is thought to 

enhancc migration and dilTcrcntiation ofncuroblasts into the site of ischemic damagc 

(Gregg & Weiss. 2003; Wang et al.. 2004; Kolb ct al.. 2007). This generates a small 

population of cclls in thc peri-infarct region that have thc capacity to dilTerentiate into 

new neurons and potentially replace destroyed neuronal tissue. Alternatively. these cells 

may assume an astrocytic phenotype and express growth factors that support cell survival 

and neuroplasticity in the surrounding region (Ridet et al.. 1997: Chcn & Swanson, 2003). 

Either ofthesc possibilities could clearly provide the environment necessary to improve 

post-stroke motor recovery, however. our data show that animals receiving only the 

EGFIEI'O infusion did not improve more than controls on any test of functional recovery. 

Additionally, animals receiving the combination treatment neither improved their overall 

levcl ofpcrfonnancc to a greater extent nor accelerated reacquisition of motor abilities 
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over those receiving rehabilitation alone on tests of gcncralized motor ability. 

Accelerated motor f(.'Covcry was only notcd for the staircase test that is targeted by the 

task-specific component of the rehabilitation paradigm. 

Task.specific rehabilitation may be critically important 10 fully utilizing the 

beneficial effects of exogenous growth factor infusion into the brain. 11 is widely thought 

that newly fonned connections in the brain require activity in order to be maintained 

(Butz et aI., 2009). Without receiving stabilizing gro\\1h factors or being strengthcned 

with long-term potentiation. new synapses can be pruncd (Lc Be & Markram. 2006). 

With daily reaching rehabilitation. task-specific pathways receive intense stimulation over 

the coursc ofwl'Cks. When combined with thc cnh~mced neuroplasticity expected from 

the EGFiEPO infusion. cortical maps involved in task-specific motor palterns may be 

able to refonn and enlarge at an accelerated rate relative to motor maps involved in other 

stroke-disrupted movements. Evidence of this occurs naturally. when cortical 

representations ofa limb enlarge in response to motor learning (Karni ct al .. \995). This 

response would likel y be exaggerated in an animal receiving growth factor treatment 

intendcd to enhance its inherent neuroplasticity. 

Combining EGF/EPO infusion with rehabilitation accelerates the rate at which 

rehabilitation-mediated functional recovery occurs. However. this accelcrated rccovery is 

limitcd to motor domains that undergo task-specific rehabilitation. General motor 

abilities show improvements in recovery, hut not morc than is achievcd with 

rehabilitation alone. This is speculated to be due to a domination ofneuroplastic 

rcsourecs by thc motor pathways undergoing the intense stimulation of task-specific 
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rehabilitation. but further study is requirL'<i in order to elucidate the true mechanisms 

behind this accelerated motor recovery effect. 

oJ. oJ LimiTations 

There is an aspect of the present study that limits the extent to which 

interpretations of the results can be made. The window in which animals were tested 

restricts the interpretation of the rate and absolute level of functional recovery. Because 

animals in the combination group had already reached their maximal level of recovery by 

the first testing point after the onset of rehabilitation. it is impossible to detemtine the 

timeline of recovery. Animals in the combination group may have reached maximal 

motor fL'Covery on the stairease test anywhere from 0-14 days following the 

commencement oflhe rehabilitation paradigm. Furthennorc. animals receiving the 

combination treatment still appeared to be improving their pcrfonnance after six weeks of 

treatment, indicating that continuing rehabilitation and testing may have further improved 

the pcrfonnanee of these aninmls. Despite this limitation to detennining the absolute 

effects of the combination treatment. the finding that pcrfonnanee on a lest of skilled 

reaching ability is significantly improved after two weeks of rehabilitation still stands. 

TIlis study demonstrates that combining growth factors with rehabilitation in rats 

following ET-I isehemia significantly reduces treatment times for maximal recovery. 

Addressing this limitation in subsequent studies could show that this combination themp)' 

is even more beneficial than initially anticipated. 
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.J.5 Conclusion 

The effect of combining growth factor infusion with rehabilitation for post-stroke 

recovery of function is a promising treatment, especially for severe stroke where 

rehabilitation provides limited benefit (Careyet al .. 1988; Asberg & Nydevik. 1991; 

Alexander. 1994). By accelerating the rate at which lost motor abilities arc recovered 

aftcr stroke. the overall burden of strokc on society can be substantially diminished in 

many ways. Reduced treatment time could result in a drastic reduction of direct health 

care costs for treating each stroke paticnt. With fewer resources required to treat each 

patient. medical personnel would be available to treat more individuals. which will be 

increasingly important in Western. aging societies. Perhaps most importantly. enabling 

'nonna1cy' in individuals who have suffered a stroke as quickly as possible is crucial for 

not only the economic health of our society. but also for ensuring that every person can 

attain the highest quality of life. 
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