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Abstract

I this thes

is, we have studied the development and assessment of a multi-scale
Computational Fluid Dynamics (CFD) model for simulating thermally driven flows.
Using a constant eddy viscosity model. mean momentum and energy equations, an ur
ban heat island cirenlation is derived. To resolve the localized spatial features of such

e on wavelet

a cireulation, we have studied the nse of an adaptive mesh method bas

transformation.  We have proposed a sccond order fully implicit. time intesration

scheme such that the momentum and the energy equations are solved simultanconsly

on an adaptive collocated grid. At cach time step, a system of nonlinear equations is

solved using a multi-scale method, where we have used a Krylov method for improv-

ing the rate of convergence, which is s distinet feature of the proposed CFD model

To the best of our knowledge, this is the first time attempt to use an adaptive mesh

and a Krvlov method to optimize a multi-scale solver for heat istand circulation.
With a brief presentation of the scientific problem and the methodology in Chiap-

ice of the proposed model has heen verified in Chapters 425,

ters 13, the perfor

where we have simulated ashear-driven flow. a thermally driven natural convection

flow, and a heat island cirenlation. We have found that our mmmerical resnlts agree

well with previously published benelimark simulation results of similar flows. First.

1 tolerance. Second, a large CFL num-

the nmerical error is proportional to the give

ber does not affect the aceuracy significantly. Finally. the computational cost grows
linearly with the mumber of grid points if the mesh is refined locally. The proposed

model is a novel contribution to the field of mesoscale meteorology, which would help

ale metcorological modelling.

for further development of multis
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Chapter 1

Introduction

In mesoscale metcorology, the study of thermally driven cireulations has heen an ac-
tive area of research for the last contury, and it is a subjeet of great interest to weather
forecasters, research meteorologists, aiv quality scientists, and numerical modellers
Examples of mesoscale thermally driven motion include the sea- and land-breczes due

to differential heating between the land and the ocean, formation of thunder storms,

ravity current generation and propagation, and urban heat island circulations (c.g
sce Lin, 2007).

Rescarchers i the field of atmospheric modelling debate the proper techniques
for

aracterizing flow regimes; for example, whether a hydrostatic approximation is

sufficient or a non-hydrostatic model must be nsed (e.g. see Martin & Piclke, 1983)

CGienerally speaking, the air in the atmosphere is a compressible fluid, and hence, the
compressible form of the governing equations are more appropriate for atmospheri
modelling. Due to the propagation of sound waves, the numerical time integration of
the compressible flow system requires extremely small time steps. 1t is often a question
to understand the scales of atmospherie cirenlation, where an approximation to the

scales of o

tmospheric circulation, where an approximation to the compressibility can
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be adopted. In Fluid Dynamics. two approximations of a compressible system are

common. The anelsatic approximation, in which the velocity field is not divergence

free, perturbs the density field abont a stationary reference state that varies both

horizontally and vertically (Ogura & Phillips, 1962). The Boussinesq approsimation,

in which the velocity ficld is approximately divergence free, assumes that the change
in density oceurs due to a change in temperature, but neglects the variation of density
except in the gravitational forcing terms (Spicgel & Veronis, 1960). Clearly. one may
not be able to find a unique setof partial differential cquations that can be solved

mmerically for the purpose of weather forecasting or projecting climate change. A

more sophisticated and specific mathematical model as well as numerical methodology

st be adopted, depending on the specific dynamics that need to be modelled

In this thesis. we study the development of o computational model for simulating
a thermally driven cireulation that occurs naturally over the land. We also analyze
the flow regime, in which such a computational model wonld compute approximately

valid dynamics. First principle conservation laws will he used to derive aset of partial

differential cquations (PDEs) that models a class of thermally driven flows. Amon

mesoscale thermal cirenlations, urban heat istand flows are of great importance in
global warming and weather prediction, where a computational model may also be

useful to explain observational information

1.1 Urban heat island circulation in a large city

In fluid dynamies, a thermally driven circulation is often known as a conveetive flow
There are two basic types of conveetive flows: (i) natural conveetion, and (i) forced
convection (Bejan & Kraus. 2003). The main difference between anatural and a

forced conveetion lies in the mechanism by which a flow is generated. If the motion of
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the fluid oceurs naturally due to a thermodynamic change in the absence of an exter

nal mechanical or hydrodynamic

Lagent, the process is called natural convection. On
the other hand, if the flow arises mainly due to an external agent, such as the wind or

a fan, the process is called forced convection. If a forced convection ocenrs due to a

pressure gradient force, we eall this a pressure driven flow. A natural conveetion may

0 be classified as and a forced conveetion as “advection.” The most

conveetion,

common natural convections in engineering applications are mostly due to differen-

tial heating/cooling between two vertical planes, while the same i environmental

applic

tions are mostly due to differential or localized heating/cooling between two
horizontal planes.
I environmental sicnee, the urban heat island (UHI) is a phenomenon commonly

observed in metropolitan «

o where the city center is significantly warmer than its

surronndings (Kim & Bai

102). For example, Fignre 11(a) shows a snapshot of

the downtown arca in the city of Toronto, ON, Canada. In other words, localized

heating oceurs between the earth's surface and an elevated horizontal surface. The

phetomenon has been depicted schematically in Fignre 11(h), which shows that the

city's average surface temperature is highest in the downtown area. Such a tempor-

ature amomaly between the urban and suburban area, which also depends on nrban-

ization, is roughly about 100 F or 6° C. The increased temperature in the downtown

(.c. in the nrban) area is associated mainly with human activities such as industrics,

tional studies indicate that the

construction of buildings, transportation ete. Obsery

UHE may influence the Tocal weather system significantly by inercasing the average

monthly rainfall, the froquency of cloud ocenrrence, and lightning (e, Baik of al.

2001)

Since global temperature is measnred in urban areas (c.g. near an airport). the

UHI effect also accounts f rming trend. For example,

v predictions in the global wi
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Yang el al. (2011) analyzed monthly mean surface air temperature datashowing
that UHI effects contribute about 21.2% to the regional average warming trend. and
observed a significant effect of rapid urbanization on the surface air temperature after

000s. Due to the importance of UHT in examining the environmental effeet

the ea

been studied since the beginning of the last

on weather, its basic dynamics have

century (e.g. see Delage & Taylor, 1970; Niino et al., 2006).

1.1.1 A brief overview of urban heat island modelling

entific interest in the study of UHI effects due to its influence on

in

There is a growing s
precipitation and conveetion (c.g. Kim & Baik, 2002; Baik ef al, 2001). Niino of al.
(2006) used numerical experiments as well as mathematical analysis to investigate the
transition of different flow regimes of nonlinear heat island cireulation, and agreed
with the conclusions that were postulated previously by Kimura (1975) from labora-
tory experiments and mmerical simulations. Baik & Chun (1997) investigated the

ity on the possible precipitation change downwind of the UHL by

effects of nonlin
amalytically solving the problem of the weakly nonlinear response of a stably stratified
wniform flow to prescribed heating.  Han & Baik (2008) studied urban heat.istand

model

cirenlation and convection using a linear theory and a nonlinear numeri
UHI cireulation, in the absenee of synoptic winds, has heen investigated by Delage
& Taylor (1970). Dubois & Touzani (2009) presented a basic computational fluid
dynamics (CFD) model for sinmlating a steady state solution of a natural convection

an idealized two-dimensional heat island circulation,

flow that represents
The computational modelling of heat island circulation remains a difficult as well
as an active area of rescarch. Niino ef al. (2006) provided a dimensional analysis that

hvdrostatic limits. Dubois

identifies flow regimes of a hydrostatic and those of non
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& Touzani (2009) presented an idealized non-hydrostatic numerical model of two-

in that is extremely

dimensional heat island flow that requires a computational doma
large in the horizontal direction in order to simulate horizontally propagated circn-
lation - known as the horizontal convection. The work of Dubois & Touzani (2009)
indicates clearly that designing appropriate boundary conditions and numerical algo-
rithms are notable difficulties in developing a non-hydrostatic model of heat island

circulation.  Morcover, obstacles or solid bodies ( such as high-rise buildings) that

block air circulation in urban arcas, mean that wodelling of UHI is as diflicult as

modelling fluid-structure interaction problems or bluf-hody acrodynamics. In addi-
tion, there s a growing need for detailed simulation of turbulent structures above

the UHI circulation in a stratified environment. The development of a fundamental

nmumerical model of UHT cireulation has not been sufficiently examined. For example,
amodel that simulates UHT cirenlation in the city of Toronto, ON, may not cffectively
simulate the conditions in St John's, NL, due to the widely varied character of these

two citics, hecause computer models of UHL are often developed hased on specific

observational data analysis and ad-hoc mathematical assumptions.

1.2 Summary

Thi

thesis

tends the computational atmospheric modelling approach recently pro-
poscd by Alam (2011) to heat island cireulations modelling. The main contribution

of this thesis includes the following:

© A non-hydrostatic adaptive mesh model for heat island circulation is presented

esh is addressed.

ed spatial

® The time step restriction due to adaptively re

and a fully implicit time integration is studicd for space-time adaptivity.



1. INTRODUCTION G

Cuarr

gebraic system due to im-

o A multi-scale algorithm for solving the nonlincar «

plicit time integration is proposed and verified

d with previously published benchmark simulation

o The proposed model s verif

of forced conveetion, natural convection, and idealized heat island flows.

In Chapter 2, we present a mathematical model in which the density variation
ocers mainly due to temperature variation which can represent heat istand circula-
tion adequately. The set of partial differential ecquations (PDE) is derived from fivst
principles and has the form that is commonly nsed in CFD models. However, this
form of the equations is normally not used to represent circulations in the atmosphere,
The validity of these governing cquations is studied as well. In Chapter 3, the time
integration for an adaptive multi-scale numerical methodology is discussed briefly.
This munerical model is verified in Chapter 4 by comparing mumerical simulation

v heat island

results with previonsly published benchmark simulations. In Chapter
cirenlation is sinmlated, where the effeet of various non-dimensional parameters is

sults are summarized with a discussion of future

studied. Finally, in Chapter 6 the v

research directions.
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Figure 1.1: (a)

Temparature (Fahrenhelt)

Rursl  Sububan Commercial Downiown Uban —Park  Sububan '~ Rurt
Reidantal Resigontal  Residuntal Farmiand

()

A snapshot. of downtown Toronto, showing the city center with high

rise buildings; (b) A schematic profile for the temperature distribution between urban

and rural areas.



Chapter 2

Mathematical Model

This chapter presents the back

ound and the general governing equations of ther-
mally driven flows. The equation of thermally driven flows in the atmosphere is a
st of partial differential equations (PDE) governed by the conservation laws of s,
momentum and cnergy. However, we need some basic assumptions to get a sim
plificd mathematical model of the flow. The governing cquations are converted to

dimensionless form by choosing snitable characteristic scales.

2.1 Background

"he air flow in the carth’s atmosphere constitutes a compressible Fluid Dynamics

systen, and the fully compressible set.of governing equations can be derived from

first. principles or conservation laws. In this chapter, we have adopted an approsima-

tion to the basic equations of a compressible flow. In our derivation, there are two

fundamental principles. First, the effect of molecular viscosity has been neglected be-
canse the scale of viscous effect is much smaller than the resolved seale. Second, the

assumption is that a fluctuation in the density ficld ocenrs due to the thermal effeet
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as opposed to the effect of pressure. In the latter case, a fully compressible model is
needed. However, in the former ease (thermal effect), the conservation laws for mass
and momentum take an approximate form, where the density variation is contained in
the forcing terms associated with the carth’s gravitational ficld. In the study of ther-
mal conveetion problems in CFD applications of engincering interests, this approach
is commonly known as the Boussinesq approach. However, in the field of atmospheric

modelling, the approximate conservation of mass takes two forms. I one form, the

density field is perturbed over aslowly varying base state, which is known as the

anelastic approsimation (e.5. Ogura & Phillips, 1962). Tn the other form, the density
field is perturbed over a base state such that the mass conservation is represented by

a velocity ficld that is approximately divergence free. Mathematically, this form is

similar o the classical Bonssinesq approsimation. A more detailed discnssion using

aformal dimensional analysis of the conservation laws is given by Pielke (2002).

2.2 An approximation to the conservation law of

mass

The conservation of mass for a compressible flow is expressed by the partial differential

cquation,
ap

7 Ve (pu) =0,

where a is the velocity, pis the density and £ is the time,

“The fully compressible form (2.1) of the conservation of mass introduces a mumber
of diffieulties when we adopt a mumerical modelling approach, Without providing a
detailed discussion of a compressible model of the atmosphere, we want to study an

approximate form of the mass conservation, where density is not a constant, but a
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change in density occurs due to the change in temperature. As explained in Kundu
& Cohen (2008), such an approximation is often known as the Boussinesq approx
imation, and is used commonly in the study of thermal convection (c.g. Spicgel &
Veronis, 1960)

First, we note that introducing the notation

D o
== 4.V,

oot

and expanding the divergence term, cquation (2.1) can be written as

-—- =V u. (22)

Faquation (2.2) states that the fractional rate of change in the density ficld. 2 is

cqual in magnitude 1o the divergenee of the velocity field. This means that if the
1Dp
» DI

divergence free. We can also see that the divergence of the velocity field accounts

density field varies only slowly; i.c..| 1, the velocity field is approximately

for the fractional rate of amsion of a material volume of fluid. I the study of

atmospheric science, an alternative to the density field is the specific volume defined
by
1
v=-,
»
where perturbation analyses are often done using the specific volume, V. instead of

2). Following Batehelor (2000) and replacing V for

the density field, p (Pielk
i equation (2.2), we can see thatthe relative change in the rate of specifie volume is
also related to divergence of the velocity field, i.c.

1 DY

. 93
vor =V (2:3)

3) show that the fractional rate of change of density, and

Equations (2.2) and

that of volume expansion of a material clement of fluids are equal in magnitude,
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To proceed further, let us now consider a dimensional analysis of equation (

and use physical propertics of the lower atmosphere to verify tha

the conservation
of mass can be represented by the divergence free velocity field. We assume that (7
and L are characteristic scales for the velocity and the length respectively, and that
the horizontal scale of cirenlation is much larger than the vertical scale of cireulation
This means that the horizontal gradients of specific volume are negligible compared
to its vertical gradient. As explained in Pielke (2002), the temporal variation in the
basie state of the specific volume can also be neglected i dimensional reasoning

Using & typical scale Ap for the density perturbation, we can wite

Dp  ApU
Dt L’
Hence
1Dy
Ap
r / 3
L, SR o BAT,
vou

where /4 is known as the thermal

pansion cocfficient, and A7 is the temperature

perturbation corresponding to the density perturl

ation Ap. The last oquality stems
from the assumption that a change in density s the result of a change in temperature.

T the lower atmosphere, the thermal expansion cocfficient,  is Q107 K.
Clearly, s temperature difference AT ~ 10 K may introduce only a small fraction of

isity variation because

=0(107%)

Observation of thermodynamic propertics of the dry atmosphere indicates that at
altitudes higher than about 8 ki, the above estimate is fully violated. Using dimen-
sional analysis, Piclke (2002) showed that the fractional rate of change of volume
expansion is negligible if the vertical seale, L. of circulation is much smaller than the

density scale height, e.g. 8 km. Insuch a cirenmstance, the divergence froe velocity
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field represents the conservation of mass sufficiently aceurately, where the magnitude
[ the thange of de 1Dp o [ B S e
of the fractional change of density, 122 and fractional change of volhme, |2 is very

small in comparison to the magnitude of the velocity gradient, V-w. In other words,

a mumerical model can be developed by replacing equation (2.2) with equation (2.1)

Vou=0

We also note that if L = O(8km). equation (2:4) must be replaced with its anclastic
form (e.g. Ogura & Phillips, 1962; Piclke, 2002). The approsimate conservation of
s (21) is commonly wsed in the study of mesoscale meteorological phenomena (e.g
Piclke, 2002; Lin, 2007: Alam & Lin, 2008; Alam, 2011). For numerical modelling of
mass conservation in thermally driven flows suel as heat island cireulation, the use
of equation (2.1) is appropriate hecause the vertical scale of this cirenlation is much

smaller than the density seale height of the atmosphere (e, Niino of al.. 2006)
2.3 Approximate conservation law for momentum

transfer

Corresponding to the approximate mass conservation law for mesoscale atmospheric

wtion to the fundamental momentum

circulations, we need to obtain an approxit

fon law. In vector form, the momentum conservation law in the atmosphere

conserva

using a non-rotating frame of reference s given by

Du
)—=-Vp+ V-0 -pg, 2.5
o 4 rg (2.5)
where pis the pressure and o is the deviatoric stress tensor exerted in a material vol-

ume or parcel of fluid (Kundu & Cohen, 2008). Here, the effect of molecular viscosity

is contained in the divergence term V- o Molecular interactions occur at a small
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length scale that cannot be resolved ina numerical model when the characteristic

length scale of the circulation is in the order of kilometres. Hence the stress term

5).

V -0 is normally removed from the momentum equation

) is obtained

Commonly, an approximation to the momentum conservation (2
by considering an average circulation so that the flow is resolved up to a certain

and the effects of the flows at smaller scales are modelled. This concept is the

scale

principal assumption that is used in the ficld of atmospheric modelling. However, the

we

actual process of averaging differs in different. applications. In the present work

use this fndamental approach to derive a model that represents the cireulation for

arange of length seales. Let us consider the perturbation

u=uy+u +u’, (2.6)

where w represents a dependent variable such as u, v, . Also define

w=ugtu

Henee
w=utu (2.8)

e reference state that can be considered as

I this decomposition, uy is a large sci

a synoptic scale value, @' is a resolvable small scale perturbation that covers scales

le but larger than the scale that cannot be resolved ina

smaller than the synoptic sc:

lor scale perturbation. With g heing a synoptic

numerical model, and u” is a si

scale reference value, @' can be considered a mesoscale perturbation that will be

resolved in the numerical model. Furthermore, the mean of w = w and u” ~ 0.

Sy

holically (u) = . (u”) = 0.

When we subs

itute cquation (2.8) into the momentum conservation law (2.3),

rd, and consider the average

where the molecular viscosity term V-or has heen remoy
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or mean conservation law, d.c. (cquation (2.5)), the nonlincar advection term takes
the form

(u-Vu) =a- Vi + fla. Vi, u" Vu"),

where £ is an unknown nonlinear function that represents the effeet of the unresolved
perturbation «”. Without loss of generality, we can take f = V- o, where o is an
wnknown vector valued function. Thus, the mean momentum cquation retains its

5) with a term V- o that needs to be determined (for details, sce

original form (2

Piclke, 2002, Ch.1)

In N

tonian Fluid Dynamiics, the stress tensor is linearly proportional to the ve-

locity gradient tensor, and the constant of proportionality accounts for the coefficient

of molecular viscosity. This theory can be used to obtain an ad-hoe model for . As

deseribed in Lin (2007) as well as in Kundu & Cohen (2008), instead of looking at

the molecular interaction, we consider the interaction between parcels of fhaid having

vortical cirenlation: these parcels of fluid are often called eddies. Tn this case, the

constant of proportionality accounts for the interaction between eddies, and is known

s the eddy

scosity coefficient. Tn principle, this approach calenlates only mesoseale

eddies, and the effect of smaller eddies mated with an ad-hoe eddy viscosity

appros

model. The constant eddy viscosity model results in

Vo=V

where ji/p stands for the coefficient of eddy viscosity, which has a dimension m? !

that is the same as the dimension of kinematic viscosity. Here w is used instead of @
for simplicity. The typical suggested value for a vertical eddy viscosity cocflicient is
10 m2s !, which is much larger than the value of kinematic viscosity 105 m !

Suppose a density perturbation, p = py + 7/, where py is the backgronnd density

and pr is the fluctuation over the backgronnd density. Substituting the perturbed
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density, p, using the eddy viscosity model, and dividing both sides by o, cquation

(2.5) implics that

'\ D 1 ) !
(I + ﬁ) 2 _ypy Lyt (l + "—)y (2.9)
m) Dt ” o o
Let p = pl2) + p/(a, 1), where p is the hydrostatic pressure and 7 is the non

hydrostatic pressure. Applying hydrostatic balance

LoG) _ g, @10
m

and subtracting equation (2.10) from cquation (2.9) results in the momentum con-

servation law for a non-hydrostatic cirenlation.

7\ D [ . ¥
<HL)—E— —vy+ Ly - 2 (@211
m) Dt M I ”m
As presented in Seetion 2.2, the fractional change in the density field s given by

= O(107%) < 1; clearly. the density variation makes a small correction to the

inertia term. This means that 2 92 is a negligible correction of £ due to density
change and can be neglected
Hence
% 7iv, ' /%V"uf (/”T:_q (212)

The momentum conservation law for modelling thermally driven flows in a1 non-
rotating frame is given by equation (2.12). This derivation explains why the density

variation is neglectod everywhere except at the gravitational forcing term

2.4 Conservation of Energy

ined from the first law of thermo-

The principle for the conservation of cnergy is obta

dynamics. The energy conservation law is reduced to an advection-diffusion cquation
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for the temperature. However, the potential temperature 0 is the most appropriate
quantity to deseribe temperature in the atmosphere. The potential temperature of a
fluid parcel is the temperature that the fluid pareel would acquire if it were brought
adiabatically to a standard pressure. Kundu & Cohen (2008) and Piclke (2002) have
articulated details on how an equation for the potential temperature can be derived
from first the prineiple. The mean encray conservation law is expressed by the partial

differential cquation,
o0

%+ w. VO = wV*0, (2.13)

the thermal diffusivity in the sense of an eddy viscosity model

where

Suppose a temperature perturbation, 0 = 0y + 0(=) + 0'(ax, 1), where fy is the

backgromnd temperature, (=) is the vertical fluetuation and @ s the fluctuation over

the background temperature. The temperature perturbation 0 can e expressed in

terms of the density perturbation o/ using the ideal gas law,

=, (2.11)

where €, is the specific heat atconstant pressure and €, s the specific heat at
constant. volume, Assuming [£] < 1, the relation hetween density perturbation pf
and temperature perturbation ¢ is given by
) I
APy (2.15)
m t

I the field of atmospheric modelling, equation (2.15) conples the momentun cqua-

tion (2.12) with the energy equation (2.16). Withont going into the mathematical
details, we ean express the energy conservation law in terms of the perturhed tem-

perature 0/ by

w o ;
& VO = iV (2.16)
[ -
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In this thesis, we will use equation (2.14) to model encrgy conservation law in terms

of perturbation potential temperature ¢

2.5 Governing equations of thermally driven flows

The governing cquations for a three-dimensional thermally driven flow. representing
& dry atmosphere at mesoseale using a non-rotating frame of reference, arc given by

the equations (2.4), (2.12), (2.15) and (2.16). These equations can he written in the

scalar component form, where the prime () and the over bar () have been droppod

for simplicity,

e oo ow )
ar oy Lot
Du o ow o on  Vop (i G i o
w i e s e o o) (218
Qo D0 v v 10 (e Fo Py @i0)
o e oy T 0: T oy ot o
dwow ow 0w 1dp Pw 0
o oy TV T oz T \oE T a2 e
a0 a0 o0 a0 a0 P00 P
- u Ve + W + —w =+ + > "
a " oe ey s T b: oo o

where u, v,

and w are velocity components, 0 is the potential temperature,

fluid density, » = # is the constant eddy viscosity in the present model,

m

constant. thermal diffusivity

For the purpose of developing a general mmerical modcl

pis the

il g s the

that would simulate

different flows, let us define the dimensionless form of the governing equations.
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2.6 Dimensionless governing equations ,

For numerical solution, the dimensionless form of the governing cquations of fluid
flow is very important. After making the equations dimensionless we obtain some
dimensionless parameters that are also very important for the explanation of flow
regimes, the importance of the different terms and the effect of a given flow. There
are some propertics of the fluid dynamics system that can be observed withont solving

the system of equations by analyzing dimensionless pa rters only

We have non-dimensionalized the governing equations by using appropriate scalos
for the dependent and independent. variables. For a natural convection flow, the
length scale is L, and the time scale is L/U, where U = /gFLAD is the velocity

scale, A is a scale for the temperature, and 3 is the thermal expansion coefficient

The characteristic parameters for the dependent and independent variables that are
used to make the governing equations dimensionloss are listed in Table 2.1.

After making them dimensionless, the governing equations of the thermally driven

flow arc given by:
du dve Ow

oyt

du ! u N u + u iap " Pr (Pu . >Fu ; Pu
AR T L N (TR (B .
o YV awtVra\o=top

o, [Pr (i
b Vita

— +
ay ot

Qoo oo
oo oy

i
i

e ow ap \/77 Pw e P

— +us LoV (55 + + R0,
a o o: "Vra\oz Pzt o !
a0 o0 o0 a0 i 1 )
=t o o =— st sz +tas ),
o toe oy o VRaPr \oa? Oy 02

where the nondimensional parameters, Ra, Ri. Pr and Froare defined in Table 2.2.

The above system of equations will be used in this thesis to represent mathemati-

cally a natural convection flow. However, all simulated flows that are presented in this
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thesis are approximately two-dimensional, and henee the effect of the spatial deriva-

a
tive %”' has been neglected where appropriate. In order to solve these equations,

we must consider appropriate houndary conditions and initial conditions. Since these
conditions are different for different cireulations, those are provided in the appropriate

section, where a specific flow I

ariables Seales

velocity (u, 0, w)
time (1)

pressure (p)

temperature (0)

large seale vef. state density | py

Table

s of the dependent and independent variable.

Parameters name Definition | Dimen
Rayleigh L 5',,‘,%’7; N bﬂ )7
Richardson munber, Ri | 3fg o(1)
Prandtl mumber, Pr | £ (1)

7-‘ onde number : o(1)
Bioyaney. froqiaitay, IV \/ ow

Table 2.2: Definition of dimens and di isionle
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2.7  Summary

ation laws of mass,

I this chapter, we have explained briefly the approsimate consc

momentum, and energy for thermally driven flows in the atmosphere. We have also

presented the scales of dependent and independent variables, and the dimensionless
form of the governing cquations of thermally driven flows
In the next chapter, we will discuss the mumerical teehniques for simulating ther-

mally driven flows in atmospheric science.




Chapter 3

Numerical Methodology

In order to solve a system of partial differential cquations nmerically, we have to

derive a diserete system of the given continions equations. A system of prognostic

cquations (Alam & Lin, 2008; Alam, 2011) describing a thermally forced flow can be
compaetly written ais

np

fu VY- R
a

3.1)
where a s the d-dimensional velocity vector, 9 s a vector of p (p > d) state variables
including w, and R = R(y") is a vector that represents all forces and sonree terms,

Equation (3.1) is a compact representation of the conservation laws that were studied

in Chiapter 2. The vectors w, 4 and R can he defined by

P = [t
u = [uy, 1y, wl" (3.2)
R =[[i(¢). fav). L) (3.3)

Consider the following 1D example, (3.1) can be written as

udu P
u s (3.0
o oe o

21
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where

= [ul. v = [u] and R(y) = 54

Consider another 1D example

D Pw

o Hoe T Voer

oo 20
i = K>
oo T o

where

= [u) and R [v

For 2D, equation (3.1) takes the form

T T TR LTI A S
o T e = o T ) T D

ow - ow

o ar s o0

a0 o0 o0 (w‘(/ ; a0
Ik

T TR 7 o T o

) FQu. w,0),

the veetors 9, w and R(i) are given by

W= (w0 u

v (G ) + i)
)+ ol )+ (0)

R(1)
+ Qu, w,0)

- Fuo P
Fwlt =y (’ el ”) b o) + g(0).

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

This chapter presents an officient mumerical methodology for solving equation (3.1)
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3.1 An adaptive mesh approach for spatial dis-
cretization

There is a growing interest in using the adaptive mesh approach in the field of atmo-
spheric modelling (e, see, Skamarock ¢f al., 1989; Jablonowski, 2004; Jablonowski

etal.,

001; Alam, 2011). A distinet feature of the present development is the use of an
adaptive mesh methodology for computing multi-scale dynamics of thermally driven
fows. In the present work, we aim to study how to extend an adaptive mesh approach
for simulating two-dimensional thermally driven cirenlations. Detailed study of the

present adaptive mesh technique were given by Vasilyev & Bowman (2000), Vasilyev

& Kevlahan (2005), and Alam (2011). Tn this thesis, only additional study of those
materials have heen presented bricfly, which we have studied for the purpose of the
proposed multi-scale model

For a brief description, let. us consider a numerical solution u of any problem on

a grid (c.g. a solution of (3.18)), and suppose that d = W represents the wavelet

transform of u, where W denotes a wavelet transform operation. The wavelet. trans-
form d provides information on the local regularity of the corresponding solution
More specifically, only those grid points that are associated with large wavelet coefli-
cients represent or approximate u numerically, where the mumber of such grid points
is usually small if the solution u is highly localized. I the wavelet cocfficients are
filtered based on a tolerance ¢, the error of such adaptivity remains O(c). The com-
putational complexity of this adaptivity is O(N). where the nmumber of the largest

retained wavelet cocfficient s

~“The a priori error control and the optimal con-
putational complexity are promising properties of the wavelot based adaptive mesh
methodology. Vasilyev & Kevlahan (2005) developed an algorithm to implement a

wavelet based adaptive mesh method for solving linear elliptic PDEs.
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If the method of Vasilyey & Kevlahan (2005) is used to develop an adaptive

mesh method for solving time dependent advection-diffusion PDEs that are gener-

ally nonlinear, additional care must be taken to design a time integration scheme.,

This becomes more challenging in Flnid Dynamics, where the determination of the

prossure gradient terms is an nnresolved diffienlty. Lot us now present onr analysis
and development of a suitable time integration method so that an adaptive mesh

methodology can be developed for solving (3.1).

3.2 Time discretization

In order to present the temporal diseretization, let us denote the diserete time at
n-th step by 1, = nAf. Let us also nse uf to represent afunction (. f) at i-th grid

point and at n-th time step. A numerical time integration method is generally called

a time marching scheme becanse aue of u(e,t) at (4 1)-th time

approximate

step, u)t Iy known approsimation . Since this thesis

is obtained using previ

aims to study a computational model of thermally driven circulations, which is a

conveetive phienomenon, we want to analyze and select an appropriate time marching

scheme so that the time steps are not constrained by a stability restriction. To explain

key properties -advantages/disadvantages - of classical time marching schemes, let us

consider equation (3.4 asimplified model of (3.1). Note that a conditionally stable

scheme for (3.4) would reduce the time step whenever the mesh is refined. and this
restriction is point-wisc. In other words, the stability condition must. be satisficd on
cach individual grid point. Such a stability condition must he addressed carcfully

since we have employed an adaptive mesh technique. For example. if the mesh has

been refined only locally, the stability condition requires that the time step be reduced

only on the refined mesh. However, a classical time marching scheme would reduce
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the time step globally on both the fine and coarse grid points - even though the spatial

mesh is refined only locally if a conditionally stable scheme is nsed

Lot us now present a basic time marching scheme for equation (3.1)

et ou" Pul"! Pul"
Fe(l—a) st | =vasa| 4 u(l-a) L0
or2|, I

orl, o

ou|"t u
arl, e

where a € {0.3, 1}, Here, the scheme (3.10) is known as Euler explicit (EE), Crank-

Nicolson (CN), or Euler implicit (1) if o = 0,4, or 1 respectively. The temporal
diseretization of PDE should be handled carefully, because the advection term de-
seribed in the model equations may introduce an unexpected instability in the nu-
merical scheme. Let us now study the stability conditions of the implicit and explicit

schemes.

3.3  Explicit and implicit schemes

Inorder to study stability conditions and long time hehaviour of the solutions of
explicit and implicit schemes we consider equation (3.4), which is known as one di

mensional Burger's equation, as a simplified model of (3.1). Let us now study the

temporal discretization scheme of the Burger’s equation (3.1). For a = 0. the EE

scheme (3.10) takes the form

I
arl,

ol
‘0

(3.11)

Discretizing the spatial derivative with the upwind method for the adveetion term

and the central difference method for the diffusion term, equation (3.11) gives

T -, ullyy — 2uf 4+ up

w0 Ly 0 3.12,
A Ly (Ar)? o

Wt -y " <o (3.13)
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Here Af s the time step and A is the grid spacing. 1t is first order accurate in
both time and space, and conditionally stable. There s a time step restriction for
the stability condition.  However, we do not need to solve any algebraic system
Discretizing the spatial derivatives with centered in space gives

—

At

wtd 2u

HER

Ay (3.11)

It is also called a forward in time and centered in space (FTCS) scheme that s first

order intime and second order in space, and is also conditionally stable. There is

also 10 need to solve an algebraic system,
Now using a = 1 in (3.10). the B scheme takes the form,

g ,‘.\7’/ﬁ,u|. -

“or O

du
o

Discretizing the spatial derivatives with centered in space gives

o 2+ !

=L (3.16)

B R T S AV
N N LA L Wk L1
Al 2Au (An)?

scheme that is

It is also called a backward in time and centered inspace (BT

first order in time and second order in space. The BTCS scheme is unconditionally
stable, but needs 1o solve a system of algebraic equations at cach time step. Note
that the FTCS scheme is conditionally stable, which roquires a small At and needs

more CPU time. On the other hand the BTCS scheme may use large Af. but also

istem.

requires large CPU time becanse of the algebraic s

The aceuracy of the BTCS method can be improved by using o = 4 in (3.10)

in (3.10), the ON scheme takes the form

,H,Jr u o "
i 2 i drl;

Using o

du

il 317,
ol (3.17)
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Discretizing the spatial derivatives with centered in space vields

uftl —

Y] 2
v (uf [
2 (any?

The ON scheme is implicit. second order in both space and time. One may use the

— 2u} +uf ,) i

Vo Nemmann method to find the stability condition of EE, EI and CN schemes
According to the Von Newmann method. the EE scheme is conditionally stable, hut
both the ET and CN schemes are unconditionally stable. T this thesis, we study a
heuristic stability theory, to analyze a mmerical scheme for CFD applications. This
heuristic method is useful to understand stability as well as the accumulation of time
integration errors. Let us now explain the stability of the above schemes using the

henristic method.

3.3.1 The method of heuristic stability analysis

“To the best of our knowledge, the henristic stability analysis method appeared in Warm
ing & Hyett (1974) for the first time, and further details of this method were also
discussed by Tannehill ef al. (1997) in the context of CFD applications. The method
aim to obtain an equivalent PDE from the numerical scheme, which is known as the
maodified partial differential equation (MPDE).

To explain briefly, let us find the MPDE for the scheme (3.12). In order to obtain

the MPDE, the numerical approsimations u ', and a2, in the scheme (3.12)

are replaced with their corresponding exact values i (o by ) (b)) (e 4,

and u (r41.4,). One may consider v = 0. for simplicity. to get

u(wi, by) = ulwiy ta)

e L E B (3.19)
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Using Taylor series expansion with respeet to (a5, 4,). the algebraic equation (3.19)

can be converted into the following partial differential equation

A Al " 2
w+en, =S5 (1= 20 0, 10 (A2 Aran, (A1) (3.20)
3 A

As discussed in Warming & Hyett (1971), the oquation (3.20) is called the NMPDE

of (3.19). The hearistic method states that the numerical scheme would solve equa-

tion (3.20) instead of solving the actual PDE (3.4) with » = 0. Hence the numerical

solution would behave like the solution of the MPDE, which is the key concept in
this heuristic stability analysis method.

The heuristic stability theory states that a scheme is stable if
(=1)*'Ca. > 0,
where Cy represents the efficient of the lowest order i.e. leading order even derivative
crror term of the MPDE (Warming & Hyett, 1974). If the leading order error term of
the MPDE contains an even derivative, then the resulting error is called a dissipative
error, and the nunerical solution behaves like a “diffusion phenomenon.”  On the
other hand. if the leading order error term is an odd derivative, then the resulting
error is called dispersive error. We refer to the work of Warming & Hyett (1971) for a
discussion on higher order terms. We can see this by ignoring all higher order terms
from the right hand side of (3.20) as well as the adveetion term from the left hand
side. and by looking at the time evolution of a single Fourier mode, a(f). When the
second order even derivative term on the right hand side has a negative cocflicient
cach Fourier mode will grow, thereby leading to an unstable solution. Clearly, the
solution of the MPDE (3.20) will be stable if the coefficient of the term with the
second order derivative is positive, when all other higher order terms are neglected
In other words, we must ave
. oAl

o< st (3.21)
:
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Note that the condition (3.21) that is obtained from the MPDE is the same as the
CFL condition that one would obtain from the Von Neumann stability analysis. The

leading order error term in the truncation error contains the even derivative, henee the

MPDE is useful to understand that the solution has dissipative error. With henristic

analysis, we not only understand the stability but also understand the lon

behavionr of the solution. This analysis, in particular, is well suited for an adaptive
mesh method, where A is a variable with respect to grid points

The explicit FTCS schome (3.14) s first order in time and second order in space.
Using; Von Newmann stability analysis we can easily observe that the 1CS schene
is unconditionally unstable if v = 0. The source of numerical instability may he

identified using the Heuristic stability analysis proposed by Warming & Hyett (1971),

In a similar manner the modified equation of the FCTS scheme (3.14) is given by

w+cu, = ——'u,, +O (A1 (Ar)?) (3.22)

According 1o the Heuristic stability analysis, the FTCS scheme is unconditionally

mstable becanse the coefficient of the leading order second derivative term on the
vight hand side is negative. Hence the first order explicit scheme is conditionally stable
and the second order explicit scheme is unconditionally nnstable for cquation (3.1)
with v = 0.

This analysis shows that the choice of an explicit scheme is not appropriate for
simulating thermally driven cirenlation when advection or convection is a dominant
phenomenon,

To explain further, let us now consider the scheme (3.12) or (3.14) for ¢ = 0, 7.¢

the modified equation of the heat equation is given by

iy — il = ( "./»’A: i "A") Urrer + O (D)2, MDY, (Ar)')
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The seliene is stable if 0 < (534 < L which makes the coeflicient of the leading order

error term positive. The leading order error term in the truneation error is an even
derivative, so the solution has dissipative crror.

However, the stability condition states that if Ar is reduced by a factor of ¢. then

A must at least be reduced by a factor of ¢°. For an adaptive mesh refinement mesh

approach, the scheme wonld require an extremely small tine step,

Furthermore, the modified equation of the FTCS scheme (3.11) for ¢ # 0 is given

by
ety = <,/ — —)’) e + O (A1), (A, (Ar)?) (3.21)

Here, we can compare (3.21) with (3.22). We see that in the absence of a diffusion

term e, with » = 0 the FTCS scheme is unconditionally nnstable. at in the

presence of a diffusion term, the scheme becomes conditionally stable. This indicates
how the eddy viscosity model is useful in a muerical model of fluid motion. However,
equation (3.21) states that Af < 2. Thus, despite the FTCS scheme being stable
according to mathematical analysis, it is still not useful in a CFD model becanse 1
is often very small, i.e. O(107Y)

Let us now discuss the stability conditions of the implicit scheme. The modified

equation of the BTCS scheme (3.16) for v = 0, i.e. the MPDE of the wave equation

is given by

AAt 2 >
w+ e, = ——,, + O (A1, (Ax)*) (3.25)
Again the modified cquation of the BTCS scheme (3.16) for ¢ = 0. .c. the MPDE of
the heat. equation is given by

s the cocfficient of the leading order error term of cquation (3.2

(3.26)

5) and cquation (3.26)

is always positive, both the schemes are unconditionally stable. The leading order



CaPTER 3. NUMERICAL METHODOLOGY 31

crror term in the truncation error contains an even derivative for hoth equations

The BTCS scheme is O(AL (Ax)?) and unconditionally stable but it suffers from

dissipative error

The modified equation of the BTCS scheme (3.16), i.e. the MPDE of the Burger's

cquation is given by

u+ cu, = (11 + "ﬂ) U + O (A, (AN (Ar)?) . (3.27)

Therefore, we can compare the approach hetween (3.27) and (3.24). As the coclficient

of the leading order error term is positive and contains an even derivative, the scheme
is unconditionally stable and the solution contains dissipative error. The larger the
At, the higher the dissipative effect

In order to improve the scenario, consider the CN scheme (3.17) with v = 0 for

simplicity, where the MPDE is given by

T
e + ity = — (' (IA” + LA(',) tare + O (A (DAL (AR)') . (328)

The leading order error term of the truncation error contains an odd derivative, so the

solution has only dispersive error. Further, the modified equation of the scheme (3.17)
for ¢ =0, i.c. the MPDE of the heat equation is given by
/() y
S ) Lo +O (AN, (Ar)Y) . (3.20)

12

Howover, comparison between (3.20) and (3.26) shows that the dissipation error in a
CN scheme depends only on A, Hence the aceuracy can be controlled by adaptive
mesh refinement. Morcover, the adveetion term does not introduce any dissipative

error

This analysis does not fully explain how the dissipation error can be controlled

by the adaptive mesh refinement approach without controlling the time step. We
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agree that a suitable time-space adaptive method is needed. Clearly, there is no time
step control in the ON scheme. Advanced analysis of this MPDE method for a fully
non-lincar equation remains an active area in mmmerical analysis.

Following this analysis, we have informed rescarchers in the field of atmospheric
modelling on how to select a scheme so that the solution remains acceptable after a
Tong time in a physical sense. I the present work, we have adopted the CN scheme
for solving the fully nonlincar conscrvation laws, which is motivated from the above

analysis. We will also discuss how to solve the resulting nonlinear system efficiently

3.4  The proposed numerical algorithm

Applying the fully implicit. CN scheme, the discretization for equation (3.1) subject

1o equation (2.4) is given by

S

= (w"' -Vt V) = 5 (R + R (3.30)
V.ut! =0, (3.31)
Using % = w and the ON scheme (3.30), the NSE takes the form
= P et vy —

pl ! 20t 1 20m g
- 3.32
T (TR ) (3.32)
V-u't =0, (3.33)

In order to solve the above system. one main diffienlty is pressure caleulation, as

there is no dynamical equation for pressure. The most commonly used methods for

pressure caleulation are Marker and Cell (MAC), and the Projection method,
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3.4.1 The MAC method of Harlow and Welch(1965)

Harlow & Weleh (1965) developed a method for solving the incompressible Navier-
Stokes equations (NSE) (3.32)-(3.33). This method is also commonly referved to s

the Marker and Cell (MAC) method. The MAC method is based on the staggered

rid, where the pressure is computed on the cell center, and the velocity components
are on the cell interfaces. The temporal diseretization of the original MAC method

adopts an explicit treatment. of advection, pressure gradient, and diffusive terms.

The solution is caleulated by using the pressure from the previous time step, where

pressure is calenlated from the Poisson equation. In the original MAC method, the

equation (3.32) was obtained using Euler explicit method

Likded W " 0y Loy ’
) +(u" - V) ' 4 ”'T u”, (3.31)
Veurt =0, (3.35)
Taking the divergence of the equation (3.31) yiclds
RIS
Vol =V g V) = -9+ - vv )
A e

Assume that the initial velocity field satisfies the divergence free condition, i.c. V-
then the equation (3.36) reduces to

;. art

Vi F V- ((u" - V)u") i (3.37)

At

In order to satisfy the divergence free condition V- u*! 0, for the computed

velocity field w't', it requires that

Ve = =V ((u" - V), (3.38)

which is the required Poisson equation for pressure. Using the Crank-Nicolson method

for the viscons term and an explicit method for the adveetion term, the MAC method
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retains the same Poisson equation for pressure calenlation. From the MAC method,

we see that (i) the grid is staggered (i) the velocity field is divergence frec ic. ¥

!

0 at cach time step, (i) the pressure p is obtained explicitly from the explicit
velocity field, and (iv) the nonlinear term is treated explicitly but the viscous term

may be treated implicitly. Since the MAC method treats the advection term explicitly.

it must always satisfy the CFL condition,

3.4.2  Projection method

Chorin (1968) developed a method for solving incompressible

SE, which is referred
to as the projection method. This method is also known as the fractional step method,
and was formulated on the regular (nonstaggered) grid (Tannchill ef al., 1997). 1t is
an implicit method, so there is no stability condition or time step restriction. How-
ever, it requires solving two algebraic systems for the velocity field w1, and the
pressure p** U at cach time step, which is highly cost effective. The main advantage

of the projection method s the application of u time-splitting discretization scheme

that decouples the computation of velocity field and pressure, instead of satisfying

the momentum equation and the divergence free condition | Iy (B & Lin,

In the first step, compute an intermediate velocity u* by ignoring the diver-
genee free condition and the pressure gradient term from the momentum equation.
Therefore cquation (3.32) gives
w-u 1 - . (P

i i 2((n SV)u' o+ (u" - V)u") T (VPu' + V") (3.39)
In the second step, obtain the pressure p™* ! and the velocity field u*! by using the
intermediate velocity u for the space of the divergence free vector field. The pressure
is obtained by considering,

T

— ==Vt 3.10
g p (3.10)
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and taking the divergence of equation (3.10), i.c.
—v3pntt (3.11)
Inorder to satisfy the divergence free condition Veu ' = 0. for the computed velocity
field "1, we now solve
Vi = A‘[v ',

for computing u”"*' = u* — AV, This approach requires an iterative method for
a large algebraic systen.
Here, we need to solve the non-linear cquation (3.39) and the linear equation (3.12)

at e

I time step. In this thesis we study the development of a nonlinear solver for

solving (3.39). Let us now bricfly introduce our approach in this dircction.

3.5 Iterative methods for a linear system

In order to present our methodology for solving systems of algebraic equations. lot
us begin with iterative methods for a linear system. T this thesis, we use both the

stationary and the non-stationary iterative methods. Suppose that

is a given n x 1 linear system of ¢

Sy =b i=

1

o (3.11)

Aniterative method aims to calenlate the error e, so that an approximate solution

1 of (3.43) is corrected according (o
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where the inte

er K refers to an iteration step (Barrett ef al., 2002). We will discuss
in the next section that the above iterative approach remains the same, regardless
of whether the given system is linear or nonlinear. There are several methods to

determine the crror ¢, When the error is small, we must have cither [[r411 44|

"
5o lrll, € 6. where & > 0 is a small mumber, and the residual r i defined by

r=b—

Aok, This is known as the convergence eriterion or the stopping condition

Note that the required number of iterations for convergence depends mainly on the
propertics of A, and a theoretical development is not. the purpose of this thesis.

A stationary iterative method aims to calenlate ¢ such t

where M is a matrix and ¢ is a veetor. Thus, we get

We will show that the matrix M needs to be defined directly, but the veetor ¢ can

be ignored. Commonly used stationary methods for CFD applications are the Jacobi

and Ganss:

cidel methods (Kelly, 1995)

3.5.1  Jacobi method

The naive iterative method for solving a linear system of equations is probably th

Jacobi method, which is named for the German mathematician Carl Gustayv Jacob

Jacobi (Press et al., 2007). The iteration matrix M can be found by using an additive

splitting of the given matrix

= B+ D+ U, where the matrix D contains the

diagonal clements of A, B contains the lower-diagonal clements and U contains the

upper-dingonal elements . We can write

Jbt o _pl 7 2 1
= D (B U + DN

N G
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Using the form (3.41), we get

1
S bi— 2 345
! o < : Zu,, " (3.15)
Using the matrix form, we can also write
2+ = 58 4 D! (b — AxW) . (3.16)

In this last form (3.46), we can see that the error ¢ is given by ¢ = D' (b — Ax™)
and no information about M and ¢ is required

Clearly,

arting with an initial guess, cach equation of the system is solved only

for the corresponding clement of the solution vector, keeping all other clements un-
changed, thereby finding an updated approximation of the solution. The updated
solutions are used for the nest iteration. The process continues until the desired

convergence criterion has been satisficd.

5.2 Gauss-Seidel method

The Ganss-Seidel iterative method of solving a linear system of cquations aims to im-

prove the rate of convergence of the Jacobi method. T this method. the most current
approximate values of the solutions are used in each of the subsequent. caleulations,

The Jacobi iteration (3.145) can be modified to obtain the Gaus:

1

W o) ®

A = == S ay S ), =1
a ””<, 0! H,> i

videl iteration

n,
= i~
which can be expressed using @ matrix notation as
) = x® 4 (D + L)™' (b— AxV) (3.47)

In this case, the error ¢ is caleulated as ¢ = (D + B) ' (b — AxV)
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CHAPTE]

ssion, we see clearly that one necds to calenlate the error

From the above dise

w a stationary iterative method until the desired convergence has

¢ sequentially 1

been reached. However, the rate of convergence depends on the method of compnting

e as well as on the properties of the matrix A, For example, the matrix A neds
to be diagonally dominant or symmetric and positive definite for the convergence of
both the Jacobi and Gauss-Scidel iterations. The Ganss-Scidel method often requires
fewer iterations than the Jacobi method to produce the same degree of accuracy

that the crror often docreases very quickly by s certain

In practice, one noticc
factor during the first few iterations, and afterwards, the rate of convergence slows
down. This happens particularly for most CFD applications where the Poisson or
Helmholtz like equations are solved. For this reason, we cannot. consider Jacabi or

Seidel method as the technique to solve most CED applications. (Tannehill

el al., 1997).

5.3 Krylov method

Krylov method is a non-stationary iterative method that is used 1o solve large and
sparse linear systems, if the coefficient matrix, A of the system Ar = b exists implic-

stem (3.43) by repeatedly

itly (van der Vorst, 2003). A Krylov method solves the
performing matrix-veetor multiplications involving A. Starting with an initial guess
g, it gives more aceurate approximations o 10 a desired solution. In iteration k, a

Keylov method produces an approximate soltion . from a Krylov space generated

by the veetor 1y = b — Ay (Ipsen & Meyer, 1998),
Ki(Aorg) = span{ry, Arg, A%rg, S AR}

An example of a Krylov method is the generalized minimal residual method(GMRES)

which was published by Saad & Schultz (1986). The GMRES method finds an ap-



Cuarter 3. NUMERICAL METHODOLOGY 30

proximate solution % =y + 2% from the Krylov space Kp(A, 1) so that the resid:

wal s as small as possible over the spaces e,y solves the least square problem

i [~ Azl in the Enclidean norm |

3.6 Iterative method for a nonlinear system

The nonlinear system of PDE gives a nonlinear system of equations after diseretiza-

tion. The solution of a non-lincar system is more difficult than a linear one,

3.6.1 Newton method

I order to solve the nonlincar system of cquations iteratively, we consider the Newton
iteration scheme based on Tinearization of the problens. Using the current approx

Iving the linear system of equations that arises from

imation of the solution and s
the linearization, involving a Jacobian matrix. one determines the next approsima-
tion (Leveque, 2007). The solution of the linear system arising from the Newton
iteration can he obtained from any one of the above methods. Consider nonlinear
system of equations

L{u) = 0. (3.18)

where L is a nonlincar function. Supposing u¥ is an approximate solution of (3.18)

the Newton iteration is given by
mEHi=y (3:19)
where i the solution of the linear system
JE = —L(u*), (3.50)

here J* s the Jacobian of the nonlincar system. In order to solve the nonlinear system

of equations (3.18) for each onter or global iteration we have to solve a lincar system
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curacy of

of equations (3.50) with some inner or local iterations.  Therefore, the a

the solution for (3.48) may depend on how accurately the linear system (3.50) has

emeof equations (3.50) can be solved using any one of

been solved. The linear sy
the methods discussed i section 3.5, In most of the CED applications, the system of
cquations is very large. Therefore, the application of a method .. Jacobi, Gauss-
Seidel or Krylov, for solving a large lincar system of cquations is expensive, hecanse

the CPU time increases drastically. However, we are secking an efficient method for

solving this type of large system of equations so that the computational cost is O(N).

I other words, the cost remains proportional to the mamber of grid points A"

In order to optimize the rate of convergence, we have developed a multilevel

[) complexity

which has O(/

algorithm on an adaptive n

3.7  An optimized multilevel method for non-linear
problems

The multigrid method is an efficient and popular iterative algorithin for solving a large
linear system of cquations. The main advantage of this method s that, enploying,
arids of different mesh levels, it provides rapid convergenee, i.c. the convergence rate
is often independent of the size of the discretized systen (Jones & Woodward, 2000)
Tterative relaxation is applied for smoothing of the crror. A coarse grid correction
is used, in which the smooth error is determined on a coarser grid. This crror is
interpolated o the fine grid, and is used to corvect the fine-grid approximation

For noulincarproblems, the Full Approximation Scheme (FAS) is an extension
to the linear multigrid algorithi that noeds an appropriate relaation scheme for

smoothing the error. The present nonlinear algorithn is similar to what was devel-
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oped in Alam (2011). The same algorithm has been adapted to thermally driven
circulation. One main technical difference includes the use of a restarted GMRES

approach for smoothing the nonlinear sys

em. Although the development and verifi-

fon of a solution method for nonlinear flow problems is one significant contribution
of this thesis, we have not provided a detailod description, to keep the thesis con-
pact. Briefly, the algorith takes advantages of the Krylov method, FAS method.
and wavelet transform i the way these informations are presented in section 3.5

and 3.6. Note however that we have not introduced the wavelet transform method in

this thesis,

3.8  Summary

I this chapter, we have briefly introduced the mmerical methodology. The proposed

method aims to take advantages of powerful but independent technigues - Krylov

wethod, FAS method, and wavelet methad - in order to develop a new computational
wodel for fluid flow simulation. We have presented our analysis towards the noed of
developing this new technique.

We have presented the heuristic stability analysis, showing why and how a finite

difference scheme may hecome nseful or useless for CFD applications. This analysis

is ot afamiliar approach in the field of atmospheric modelling. We have also dis
wssed the difference between MAC and the projection method and analyzed why the
projection method is more applicable if an adaptive mesh is wsed.

This mumerical methodology is verified by simulating a shear driven flow as woll

as a natural convection flow in the nest chapter.




Chapter 4

Model Verification

This chapter presents the performance of the proposed adaptive mesh model. In
order to verify the model, two types of flow have been considered, (i) lid driven cavity
flow and (ii) thermally driven cavity flow. Since these flows are commonly used for

verification of CFD codes, the results are useful to understand computational benefits

of the present work

4.1 Lid-driven cavity flow

The lid-driven cavity flow is a classical test problem that is often used for the assoss-
ment of a new Computational Fluid Dynamics algorithm. Botella & Peyret (1998)
computed henehmark solutions of the lid driven cavity flow for Reynolds numher 10°
wsing a Chebyshey collocation method. Ghia ef al. (1982) studied the effectiveness of
the multigrid method for high Re flow, where the fine mesh solutions of lid-driven

flow i a square cavity have heen obtained for Reynolds mumbers up to 107 and

meshes consisting of as many as = 7 points. Bruncan & Saad (2006) studied 21

lid-driven cavity flow for various Reynolds mmmbers and provided benelmark results

12
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for steady and periodic solutions. Peng ef al. (2003) observed the diveet mmmerical
solution about the transition process from laminar to chaotic flow in square lid-driven

cavity flows.

/9L, and obtained a

In Chapter 2, we have defined the velocity sea

dimensionless set.of equations for coupled heat and mass transfor phenomena. We

see that /B2 = = b wehere U can be considerod a typical characteristic velocity

scale, which is independent of A for Ri = 0. Henee, the equations of two dimensional

lid-driven cavity flow can be derived from the three dimensional equations (2.22

25), using 4 (+) = 0. v = 0 and Ri = 0 such that

duOu '
a0 4
o B du o dp 1 (Pu . Pu 12)
a M or T T T T e o o2 ) 2
D w D ap 1 (Pw Pu
St s = - — [ 13
o e T + R ( “3)

where u and w ave the velacity components in the horizontal and vertical directions

oL

vespectively, p s the pressure, and e = U5 is the Reynolds number.

4.1.1  Geometry and boundary conditions

Let us assume that the flnid is contained in asquare domain, © = [0, 1] x [0, 1] with
known flow conditions on all sides. Normally one side is kept moving so that the
fuid inside the container is driven by a shear stress. The geometry and houndary
conditions are shown in Figure 1.1. Boundary conditions for the velocity field are the
moving lid velocity at the top wall and no-slip conditions for the velocity components
at the bottom wall and two side walls. The fluid inside the cavity is initially at rest

Therefore the houndary conditions are:
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u=-1
w=0
71
w0
w0 w0
w0
20
X0 u-0 vl
w0

cure 4.1z Lidedriven eavity flow configuration. and honndary conditions. The top

wall moves af a dimensionless constant speed. All other walls are fixed with respect

1o the coordinate system.
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15
u=-l, w=0atz=1
wu=w=0at =0 o=0andr=1I,
w=w=0atf=0Yry) e

The proposed fully implicit adaptive multilevel method has been applied to sinulate

the lid driven cavity flow in order to test the numerical aceuracy and the effectiveness

of the model

4.1.2  Referenc

numerical results

‘The mumerical model was described by Botella & Peyret (1998) and Ghia ef al. (1982

which is considered as a reference model. The governing equations of the reference

model are also given by the cquations (1.1-13). The houndary conditions and the
problem geometry of the reference model are the same as discussed in section L1.1

Thus, the equations, boundary conditions, and parameters of the reference model are

the same as those we have considered in this seetion,

4.1.3  Numerical results

The time dependent equations (1.1-1.3) have heen solved using the proposed method.
where the boundary conditions were interchanged so that any of the four hound-

aries moved at a constant speed. For a fixed Re, we have 8 numerical experiments,

depending on the choice of the moving boundary and the moving dircction. These

experiments provide a good cross chiecking for numerical error, and results from one

of these experiments have been presented with boundary conditions, as described in

Figure 1.1

The horizontal velocity field

or Re = 107 at t = 10,

5. and 50 are shown in
Figure 1.2 Clearly, we see that the velocity field has reached a steady state; e, the
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velocity field does not change significantly if time, £, is increased. At low Re, such a

ady state solution, which means that the wumerical method

shear driven flow has a
has computed the solution of the PDEs. The horizontal velocity profiles, u(0.5, =),

along a vertical line at = 0.5 for resolution 160 % 160 and e = 107 are shown in

ling, numie

Figure 4.3, The comparison of the present result with the correspor
data presented in Ghia ef al. (1982) is shown in Figures 1.3(a), and the comparison
with the corresponding numerical data presented in Botella & Peyret. (1998) is shown
in Figure 4.3(b). From Figures 4.3(a) and 4.3(h), we observe that the present result

is i good agrcement with the reference result

Let us present. the vertical velocity field (w) for Re = 107 at £ = 40, 15, and 50 in

ontal line at = = 0.5

Figure 4.4. The vertical velocity profiles, w (. 0.5). along a hor

in Figure 4.5, The comparison

for resolution 160 x 160 and Re = 10% are show,
of the present result with the corresponding mumerical data presented in Ghia ef al.
(1982) is shown in Figures 4.5(a). and comparison with the corresponding mmerical
data presented in Botella & Peyret (1998) is shown in .5(h). From Figures 15(a)
and 4.5(h). we observe that, the present result is in good agreement with the reforence

results.

4.1.3.1  Space and time adaptivity

The spatial mesh is adapted based on the tolerance ¢ that is used to filter wavelet
transform coefficients. One promising advantage of the wavelet based techmique is

that the wavelet transform identifies the grid points that are statistical outliers. In

other words, discarding those grid points that are marked as ontlicrs according to
given eriterion, the computed solution that is obtained among the remaing grid points

will retain an aceuracy based on the tolerance. It has been shown from mathematical

analysis as well as from numerical experiments that the error of such a wavelet filterin,
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is O(c). Fignre 1.6(a) shows the horizontal velocity through the vertical centre line of
the cavity for Re = 10%, and for e = 1072, 1075, 107", 1072, 107% The number of grid
points corresponding to different values of ¢ are also given in Table 1.1 Clearly, the
number of grid points increases if ¢ deereases. The result, presented in Figure 1.6(a)
shows that the houndary layer is resolved aceurately despite a large error tolerance ¢
or if a small mumber of grid points being used

Morcover, in our adaptive mesh approach, we need only 3,116 (for « = 10°%)
grid points out of 160 5 160, which is about 5.2% compared to the grid points used

in Ghia el al. (1982), and about 13.31% compared to what was used in Botella &

Peyret (1998). From this comparison it is apparent that the numerical results are
in good agreement with the reference solutions, despite using a small mumber of grid

points.

| Grid points

Table 4.1: Number of

In this adaptive miesh approach. the spatial step size A is small in the region of
the boundary Tayer, where a small Az is needed. We could use a large Af away from
the boundary layer, where Au is large. However, the time integration scheme requires
that. the time step must be cqual for cach grid point, unless an advanced local time
stepping scheme is used. T the present work, we have used a second order accurate

Crank-Nicolson method for both the advection and the viscous terms with a fractional
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step projection method for the pressure gradient ter. However, the time step, Af,
has also been adapted based on the CFL number. A maxinmm CFL munber with
the smallest Ar indicates how small a time step should be if an explicit method wore
wsed. Figure 4.6(b) shows the horizontal velocity through the vertical centre line of

1and 6. The time st

the cavity at Re = 10* for CFL

o for corresponding

CFL=1, 2,

1. 6 are presented in Table 1.2, These results confirm that a large

CFL mumber or alarge tolerance ¢ does not affect the solution significantly.

CFL | Time step (Af)
1 620 1070 |
2 1.25 x 1072
3 200 % 102
1 249 x 1072
G 3.72x 1072

Table 4.2: Time step corresponding to the CFL mumber

The houndary layer is also resolved despite a large CFL mimber being wsed. Ac-
cording to the houndary layer theory, the thickness of a laminar houndary layer is
given by (e... Batchelor, 2000)

(11)

Figure 4.7 shows that houndary layer width, 8, decreases with the inerease of Reynolds
wmber, Re, where the theoretical logarithmic slope is 0.5, In Figure 17, a line
with a logarithiic slope —0.6 fits well with computed houndary’s width. This means
that the mimerical result of onr adaptive mesh model is in good agrecment with the

theoretical result
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velocity does not change significantly if t is increased
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Figure 4.3: The horizontal velocity profile (1), along a vertical line at x = 0.5. (a)
Comparison of the simulated results from the present model with the corresponding
results adapted from Ghia ef al. (1982), (b) Comparison of the simulated results from
the present model with the corresponding results adapted from Botella & Peyret

(1998).
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Figure 4.4: Vertical velocity ficld (w) at (a) £ = 40,

velocity does not change significantly if t is increased

(b) 1
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Figure 4.5 The vertical velocity profile (w), along a horizontal line at

Present model
Ghia et al. (1982

04 06 08

1

Present model
Botella & Peyret (1998

T 02 04 06 08 1

XL

(b)

0.5. (a)

Comparison of the simulated results from the present model with the corresponding

results adapted from Ghia ef al. (1982), (b) Comparison of the simulated results from

the present model with the corresponding results adapted from Botella & Peyret

(1998),

&



CHAPTER 4. MODEL VERIFICATION 53

g5 s
uly

()
Figure 4.6: The horizontal velocity profile (1), along a vertical line at = 0.5. (a)
Spatial mesh adaptation results for the wavelet filter tolerance, « = 1072, 10°%, 10"
1075, 1079 Clearly we see that the error is controlled according to tolerance ¢ (b)

1. 6. where a large CFL indicates a

8

The time step adaptation for C
large Af. Note that an explicit scheme would require CFL < 1. Using the large CFL

value is a distinet feature of the present model
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10

Figure 4.7: Boundary layer width(3)

a function of Reynolds number(Re). A line

with a slope of —0.6 fits well with the computed results
4.2  Thermally driven flow

As asecond test, consider another popular problem, the thermally driven square cav-

ity flow that solves the Navier Stokes equation and encrgy equation for incompressible

flows. De Vahl Davis & Jones (1983) organized a comparison excreise to calenlate

laminar natural convective flows in a square cavity up to Ravleigh number 10° About
30 groups participated in this excreise. Most of them used a finite difference method
and confirmed the accuracy of benchmark solutions. As the boundary layer along the
wall gets thinner, the flow becomes more diffienlt to caleulate for large a Rayleigh
number. Quere (1991) obtained the solutions of natural convection in a square 21

differentially heated cavity with adiabatic top and bottom walls for values of Ra up to

10% using a pseudo-spectral Chebyshey algorithm. Mayne et al. (2000) provided the
steady state and transient solution of thermally driven cavity flow by the h-adaptive

finite clement method for Reynolds number up to 10% From this comparison exper-
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iment, we see that the munerical results are in good agreement with the reference

solutions

The dimensional form of the governing equations of the thermally driven cavity

flow is similar to the form explained by Mayne et al. (2000) and the nondimensional

form s very sinilar to the form explained by Quere (1991).
The equations of two dimensional thermally driven cavity How can be derived from
the three dimensional cquations (2.22 - 2.26), using 2 (+) = 0.0 =0, U/ = \/" TETH
Ri=1and Pr = oo. Hence we get
o
L (15)
or i
Du o ow op Pro(Pu i 0
2 gy E o P T [0S O 5
o o T T Toe t e a2 T ¢
o ow o Pro (e O _
s = — (S5 + S5 )+ pro, (1.7
o D 9z VRa\0a2 " 0z
a0 ' o o0 1 >0 D0 (1.9)
i e . :
o o T 0: T e \oe oz

We will explain that

e defined in Table

where the non dimensional paranicters
this dimensionless form of governing cquations helps us to compare onr model with

results.

previously sinmlated heneln

4.2.1  Geometry and boundary condition

The fluid is contained in a square domain, € = (0, 1) (0, 1), where €2 is the houndary
of . Known flow conditions are used on all sides. Adiabatic boundary conditions are

imposed on the top and bottom walls for the temperature, and the velacitics at all

boundaries are zero. The geometry and houndary conditions are shown in Figure 1.8

Initially the fluid inside the cavity is at rest. The houndary conditions are:

= w =0 on the houndary 9 of €.
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Figure 4.8: Thermally driven cavity flow configuration, coordinates, and boundary

conditions.

The proposed fully implicit adaptive mesh method has been applicd to simulate the
thermally driven cavity flow in order to test the numerieal accuracy and the effective-

ness of the model

4.2.2  Reference numerical model

The numerical model deseribed by Quere (1991) is considered as the reference model

overning cquations of this reference model are also given by the cquations (1.5

-4.8). The boundary conditions and the problem geometry of the reference model
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is the same as discussed insection 1.2.1. We have also considered the dimensional

cquations from Mayne ef al. (2000) for mumerical conversion.

4.2.3  Numerical results

3.1 Dependence on the Rayleigh number, Ko

The time dependent equations (41.5-1.8) have heen solved using the proposed method
In order to study the effeet of the Rayleigh number on the flow, we have conducted
simulations for 10* < Ra < 10°, and Pr = 0.71. These simulations help s to compare
the model’s performance with those results that were also presented in Mayne ef al.
(2000). For the comparison with the reference results we have presented the results
for 10 < Ra < 10% The temperature distributions (0), for 10° < Ra < 10" are
shown in Figure 1.9 using colour contours. We observed that the temperature fields
have reached steady states which are strongly dependent on Ra in the way that
the large Ba have been delayed to reach the steady state. The temperature profile,
0, 0.5), along a horizontal line at = = 0.5, near the boundary for 10* < Ra < 10%
is presented in Fignre 4.11(a). From Figure 1.11(a), we obscrve that if Ba increases,
the horizontal gradient of 0 decreases. The corresponding reference results adapted
from Mayne ef al. (2000) are also presented in Figure 4.11(b). From the comparison
we observe that the result is in good agreement with the reference result

Let us present the vertical velocity fields for 109 < Ra < 108 in Figure 110
The vertical velocity profiles, w(ar,0.5). along a horizontal line at = = 0.5, near the
boundary, are shown in Figure 4.11(¢) and the corresponding reference results are
presented in Fignre 4.11(d). From Figures 1. 11(c) and 411(d), we observe that for
large Ra the maxima increases. Despite a slight' disagrecment. at high Ra. that is

associated with the scales U7 and L, and also considering that the flow tends to
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a turbulent regime at Ra > 10 prosent results are ingood agreement with the

reference results.

The horizontal velocity fields for 10 < Ra

<108 are presented in Figure 112
From this Figure. we observe that if Ra increases, the strongest velocity oceurs near
the top (= = 1) and bottom (z = 0) houndaries. Such a velocity distribution is also
consistent with the temperature distribution that is shown in Figure 1.9, We see that
the development of the thermal boundary layer is a result of convective cirealation,
From Figure 4.12, we observe that the horizontal velocity depends on fa as well. The

adapted meshes for 107 < Ra < 10% are presented in Figure 113, These meshes show

the distribution of grid points for caleulating of the solution presented in Figure -1
From Figure 4.13, we observe that large fa requires more grid points and that grid

points are concentrated near the houndarics.

4.3 Summary

In this Chapter we have presented the performance of the proposed adaptive mesh

model for simulating two types of flows. First, we study the mumerical simulation of

a shear driven flow. Second, we simulate a thermally driven flow. These two flows are

commonly used for testing new CFD algorithms. From the comparison. it is apparent

that the adaptive mesh simulation of lid driven cavity flow is in good agreement with
the data presented in Ghia ef al. (1982) and Botella & Peyret. (1998). The adaptive
mltilevel simmlation of the thermally driven flow in a cavity shows a good agrecment
with that of Mayne ef al. (2000) and Quere (1991) and the references therein

I the next chapter we will present numerical simulation of a heat island flow and

study the effeet of the dimensionless parameter.
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Figure 4.10: Vertical velocity field (i) for different Rayleigh numbers. (a) Ra = 107

(b) Ra =10, (¢) Ra = 10°, (d) Ra = 10% (e) Ra = 107, (f) Ra = 10°
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Figure 4.11: (a) Temperature profile, 6 on z/L = 0.5 near boundary, (b) Temperature
profile, 0 on 2/L = 0.5 near boundary adapted from Mayne o al. (2000), (¢) Vertical
velocity profile, w/U on 2/L = 0.5 near boundary, (d) Vertical velocity profile, w/U

on z/L = 0.5 near boundary adapted from Mayne el al. (2000)
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Chapter 5

Numerical Simulation of Heat

Island Circulation

This chapter presents the numerical sinmlation of an idealized heat island cireulation

where the effeets of the carth’s rotation are neglected. The governi quations for
representing a stably stratified dry atmosphere are obtained from the dimensionless

() = 0and 0 = 0 for further simplification so that

cquations (2.22 - 2.26), using 5

we ean sinulate cireulation in a vertical plane

5.1 Governing equations

Similar to the mathematical model presented in Niino e al. (2006) as well as in Dubois

& Touzani (2009), we obtain the following set of PDEs.

o ow o

+ h )

or o ¢
Ou u ap - [Pr (P , u (52)
a o " or "V R \oaz " 022 s

[
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where the dimensionless parameters are given by Table 2.2, This model is governed

by the four nondimensional parameters Ra, Ri, Proand Fr. Using a fixed Prandt]
mumber (e.g. Pr=1in Lu et al. (1997); Niino et al. (2006) and Pr = 0.71 in Dubois
& Touzani (2009)), the flow regime is determined by the nonlinear parameters Ra,

Ricand Fr. We will discuss how the cirenlation is affected if these parameters vary

5.2 Geometry and boundary condition

Choosing the most approprinte houndary conditions for such a simplificd model of
heat istand cirenlation remains challenging. As deseribed in Niio ef al. (2006),
heat island fluid flow is a typical horizontal convection as a result of heating in the
vertical dircction, so the computational domain needs to be very luge or unhounded
in the horizontal divection, e.g. sce the discussion in Dubois & Touwzwi (2009)

The computational domain of the present sinulation extends non-dimensional

Yo 5] and [0.2] in the horizontal and vertical directions respectively:

ie, = ( £) % (0,2) and 99 is the houndary of Q. A characteristic length
seale L= 1 km, which is the width of the heat island, is nsed to make the domain

ent of the domain is X 10 kmand the:

dimensionless. Henee, the horizontal e
vertical extent is Z = 1 km unless otherwise stated. The computational domain is
presented in Figure 5.1, where the horizontal extent, L, of the localizod heat souree

is also shown. This domain is wide compared with its height

The imbounded propagation in the horizontal circulation can be modelled cither

using a periodic boundary condition or using a Nemann boundary condition in the



CHAPTER 5. NUMERICAL SIMULATION OF HEAT ISLAND CIRCULATION 66

horizontal direction, .c. on lateral houndarics. Tn the vertical direetion, the velocity
components satisfy 4 = w = 0 at 2= = 0 and 2 = 1, and the temperature satisfies
0 =0at z =1 (eg Niino ef al, 2006). At = = 0, an isolated surface heating is

introduced by

roz = 0,1) = Oy(x)

o) = & (u.m(z'f ') I‘\nll(.—)", )) (5.5)

Touzani (2009), the velocity boundary conditions

with

where ¢ = 2.5 % 1072, In Dubois &

are no-slip, 7.e. u = w = 0 on all boundarics. In Niino et al. (2006). the velocity

boundary conditions are free-slip, ie. w =0, 9 =0 on o = £X/2 and 2 = 0,
w=0o0nz=0andz= 1 Wehave found that the no-slip velocity conditions on
all four boundaries along with 0(+% 0 introduce mmerical artifacts for the

temperature profile on both lateral houndaries.

o
o

Figure 5.1: Computational domain and surface heating source of heat island circula-

tion

Numerical simulations have heen compared with the resnlts obtained from Dubois

on the model’s performance for

& Touzani (2009). providing quantitative estimate
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Ra = 10%, 10°, and 10°. Our results also have a good agreenment with those from Niino
et al. (2006) despite that different governing equations and houndary conditions were

used

5.2.1  Comparison with reference model

In Dubois & Towzani (2009), & numerical model for heat istand civeulation was pre-
sented where afilter function was used to madify the conveetive terms in the heat

equation, which was parametrized by 5. 1f 5 = 0. then the governing equations

of Dubois & Touzani (2009) are the same as those presented in 1)-(5.4). This
filter function acts like an artificial sponge layer near the Tateral boundarics, where

the conveetive temperature has been damped through the ontflow, From this paper,

we hiave compared the temperature profiles 0(e, 0.5, 7), (0, = ) and velocity profiles

w05, 7), w(0, 2, T), which serve as the quantitative verification of onr simulations,
The governing equations of Niino ef al. (2006) are the same as those nsed in
this thesis except. that Niino of al. (2006) wsed the buoyancy cquation to replace

the temperature equation. Using different scaling parameters, Niino el al. (2006)

provided a mathematical analysis, explaining varions flow regimes. These rogimes

are in agreement with what we have found from onr simulations.

5.3  Numerical results

on Rayleigh number, la

5.3.1  Dependency

In order to study how a heat island cireulation is affected by varying Rayleigh num-

bhers, we have conducted simulations for 108 < Ra < 105, Pro= 0.71 Ri = 1, and

F'r = 1. These simulations exhibit flow regimes with inereasing Ra, as well as help ns
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to compare the model’s performance with those results that were presented in Dubois

& Tonzani (2009) for 10* < Ra < 107,

First, we have observed that the flow has a strong dependence on Ra in the way
that a quasi steady state of 0 is reached as carly as £ < 15 for Ra = 10%. This has
been delayed with an increase of Ra, where 0 reaches a steady state at < 30 for

= 10°. Morcover, the flow docs not reach a steady state

Ra = 10" and 1 < 60 for Ra
for Ra > 10°. Since the governing equations, houndary conditions, and parameters,
e 10% < Ra < 10, for this simulation are equal or equivalent with those of Dubois
& Towzani (2009), a comparison ensures a cross checking for the present. model's

2 using colonr

performance. These temperature distributions are shown in Figure

contours. The temperature profiles, 0(r.0.5,60). along a horizontal line at = = 0.5

for 10* < Ra < 10" are presented in Fignre 5.3(a). From Figure 5.3(a), we observe

that il Ra increases, the horizontal gradient of ¢ along the line = = 0.5 increases.

The corresponding reference result adapted from Dubois & Touzani (2009) is shown
in Fignre 5.3(b). There is a slight disagrecment near the houndary. This is mainly
due to the smaller computational domain of the present. model compared to that of

the reference model. Note that the reference model used a filter function for damping

imilarity near the

ont the solution artificially near the boundary. Despite a little dis
boundary, present results are in good agreement with the reference results.

gain, the temperature profiles, 0(0, 2, 60). along a vertical line at + = 0, for

10% < Ra < 10" are presented in Figure 5.3(c). and the corresponding reference results
are presented in Figure 5.3(d). From the comparison, we observe that. the vertical
gradient of 0 decreases for large Ra. The temperature profiles along a vertical line
through the centre of the cavity have a good agreement with the reference results.
Let us consider the vertical velocity fields for 10° < Ra < 10%, which arc presented

in Figure 5.4 The vertical velocity profiles, w(r,0.5,60) along a horizontal line at
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2 = 0.5 for 10* < Ra < 10° are shown in Figure 5.5(a), and the corresponding

reference results are in Figure 5.5(b). From the comparison, we observe that for

large Ra the maxima that ocenr near o = 0 is also high for both cases. gain the

comparison for the vertical velocity profile w(0, 2,60) along a vertical line at & = 0

is presented in Figures 5.5(c) and 5.5(d). From the comparison we observe that the
ximum vertical velocity near the point (0,0.5), and such a

west Ra provides

ma

maximum decreases if Ra increases. This comparison shows a good agreement with

and vertical velocity profiles along a horizontal

the roference result. The temperatu

!

lineat = = 0.5, for 10* < Ra < 10% are presented in Figure 5.6. From Figure 5.6(a), we

observe that for large Ra the temperature maximun decreases and the temperature

profile becomes oscillatory. Figure 5.6(b) shows that for large Ra the vertical velocity
also becomes oscillatory.
Kimura (1975) found an interesting feature of heat istand cireulation from labo-

ratory and munerical studies. Kinura (1975) observed from experiments that heat

s of up-

island cirenlation has two types of flow regimes. One has a single

draft at the centre of the heat island, which is called type €', and the other has two

maxima of updraft at both edges of the heat island, which is called type £, When

the differential heating is strong, a strong narrow updraft is contentrated above the

centre of the island; on the other hand, when the differential heating is weak, the

ntre of the cireulation is located at the edges of the heat island. Niino ef al. (2006)

and circulation has two different types of flow

also observed that nonlinear heat is
regimes, and the transition between the two regimes is determined by a nondimen-
sional parameter  (for details see Niino ef al, 2006). From our simulation we also
observe that the flow regimes are characterized by the nondimensional parameter R

type C flow oceurs for Ra < 10° and type E occurs for Ra > 10, Figure 5.7 shows

two different types of flow regimes for Ra = 10°, and Ra = 10°. From our simulations,
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we observe clearly that the results are in good qualitative agreement with the results
provided by Kinura (1975) and Niino ef al. (2006).

The horizontal velocity. (), and vorticity, (w), are shown for Ba = 10 10", 10"
106,107,108, Pr = 071, Ri = 1and Fr = ©in Figures 5.8, and 5.9. We observe from
Figures 5.8 and 5.9 that the horizontal velocity. (u). and the vorticity. (w) are strongly

ure 510,

dependant on Ra. The adapted grid for these simulations is prosented in F
“The mumber of grid points used by these simulations is shown in Table 5.1, From this
Table we observe that for large Ra the mumber of grid points increases, as the flow

becomes oscillatory for large Ra.

Grid points

10°

10" 812

o 9665

100

107

108 72187

Table 5.1: Number of grid points corresponding to Ra

5.3.2  Dependence on Richardson number, 17/

The Richardson nuimber, i, is the most important dimensionless parameter for ther-

mally driven flows, which is defined by Ri = For thermally driven flows, R

measures the importance of natural conveetion compared to foreed conveetion. i

also indicates the relation between the Grashof mumber. G and the Reynolds mun

ber, Re. Commonly the Richardson wmber is also defined as Ri = . The natural
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ction is negligible for Ri < 0.1, forced convection is negligible for 1

neither is negligible for 0.1 < Ri < 10. However, if Ri = 1. then the circulation is
a buoyaney driven flow. Figure 512, shows the temperature profiles for Ra = 10,

Ri = 3,5,10, Pr = 071 and Fr = 1. From this Figure, we can easily realize how

the temperature field has been affected by Ric From Figure 5.12, we see clearly that

at island warms up, and

il the Richardson number inereases, the fluid above the he

hience rises upward due o the decrease of density with the inerease of temperature

(e.q. large AD)

on Froude number, /'

.3 Dependen

The dimensionless parameter Froude number, Fr, is defined by Fr ) ! The

Fronde nmber measures relative importance between inertin and gravitational force

I also indicates the relative significance hetween characteristic velocity and gravi-

tational wave velocity. Commonly, the Fronde muber is also defined as Fr /".

where the buoyancy froquency is given by N2 = 20 flenee, we can explain the effect

of Frif gravitational force is important, such as large scale flows in the atmosphere or
in the ocean. I the present work, we have conducted simulations of buoyaney driven
flow at R = 1 for various values of Fr in order to understand how abruptly a circu-
lation is affected if Fr is changed. Figure 511 presents the temperature distribution

for Ra 10%, Fr = 0.25,20, 1000, o0, Pr 0.71, and Ri L. From this Figure,

we can casily realize how the temperature field has heen affected with Fro Note here

that if the surface is heated, the fluid above warms up, and hence rises upward due

to the deerease of density with the inerease of temperature, When Fre < oo, we have
n

200, and the flow is stably stratificd. When £ = oo, we have % < 0, and the flow

is neutrally stable. The stability of the atmosphere is explained in Kundu & Colen
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(2008). In the stable atmosphere, if an air parcel is lifted adiabatically, the parcel
would tend to return to its original position becanse of the buoyaney frequency, N

Since N > 0 for Fr < oc and N = 0 for F'r = 00, we see the rising of the hot plime

above the heated island has been reduced.

5.4  Summary

In this chapter, the adaptive mesh sinulations of heat island cireulation have heen

observe that the flow has a

presented for 10* < Ra < 10%. From the simulations, w

strong dey on the sional pars Ra, Ri, and Fr. From the com-

parison, we also observe that the adaptive mesh simulations of heat island circulations
are in good agreement with those in Kimura (1975), Niino ef al. (2006) and Dubois
& Touzani (2009). From Table 5.1, we observe that for large Ra the mumber of grid
points increases, as the flow becomes oscillatory for Targe Ra. The simulations have
been condueted with resolution 1024 x 128 and 2048 x 256; however, from Table 5.1,
we observe that only a fraction of the grid points from a preseribed resolution is re-
quired for actual caleulation. Figure 5.13 shows the relationship between number of

wrid points and corresponding required CPU time used by these simulations. From

13, we observe clearly that CPU time for these simulations inereases linearly

Figure
with an inerease in the mmber of grid points.
In the next chapter we will diseuss potential benefits of the proposed model, and

future rescarch direction, where this model may he useful
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Figure 5.5: (a) Vertical velocity profile (w) at the centre of the vertical line 7/L=0.5.

(b) Vertical velocity profile (i) at the centre of the vertical line z/L=0.5 (adapted
from Dubois & Tonzani, 2009), (¢) Vertical velocity profile (w) at the centre of the
horizontal line x/L=0, (d) Vertical velocity profile (i) at the centre of the horizontal

line x/L=0 (adapted from Dubois & Touzani, 2009)
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for 10* < Ra < 108 Ri = 1, F'r = 1, and r = 0.71 at the centre of the vertical line

2/L=0.5.



CHAPTER 5. NUMERICAL SIMULATION OF HEAT ISLAND CIRCULATION

4
08
06
04
02
0 5
L
(a)
1
08
06
b
04
0 5
L
(b)
Figure 5.7: Vertical velocity field (w) for Fr 1. Ri = 1. and Pr = 0.71. (a) Ra

10%, (b) Ra = 10°.



CHAPTER 5. NUMERICAL SIMULATION OF HEAT ISLAND CIRCULATION 7

08 08
06 06
H b

04 04
02 02 .
[)
5 0 5 0 5
() ()
1 q
08 08 ‘
06 06
o ”
B ]
04 0.4
- " "
% 0 5 0 5
XL AL
(©) (
1 1
'1
" .
06 06
bl b
04 0.4
02 02
0 5 % 0
XL L
(©) f)
Figure 5.8: Horizontal velocity field (u) for #i = 1. Fr = 1 and Pr = 0.71. (a) Ra

10%, (b) Ra = 10", (¢) Ra = 10°, (d) Ra = 10° (¢) Ra = 107, (f) Ra = 10%



CHAPTER NUMERICAL SIMULATION OF HEAT ISLAND CIRCULATION 80

' w } w

9 5 5
XL L
(@) ()
1 I 1
08 08 |
06 06 |
" -
04 0.4
02 02
T d PV
0 5 5 0 5
XL XL
(©) ()
1 1
08 08
A
06 | 06
3 s A
04 0.4 (
I i\
02 02 b
A sl
% 0 5 % 0 5
XL XL
(© (1)
Figure 5.9: Vorticity field (w) for Bi = 1, Fr L and Pr = 0.71. (a) Ra = 10%, (b)

Ra = 10", (¢) Ra = 10°, (d) Ra = 10%, (¢) Ra = 107, (I) Ra = 10



CHAPTER 5. NUMERICAL SIMULATION OF HEAT ISLAND CIRCULATION

1 S
08 08|
06 N 06 N

Figure 5.10: Adapted grid for Ri = 1, Fr = Land Pr = 071 (a) Ra = 105, (b)
Ra = 10", (¢) Ra = 10%, (d) Ra = 10°, (¢) Ra = 107, () Ra = 10%.



CHAPTER 5. NUMERICAL SIMULATION OF HEAT ISLAND CIRCULATION

1 1
08 08
06 06
D]
04 04
02 02
% 0 5 0
XL L
() )
1 1
08 08
06 06
b b
04 0.4
02 02
% 0 5 %
L
(©)
Figure 5.11: Bffect of Froude number on temperature field (0) for Ha = 10°

and Pr=0.71. (a) Fr = 0.25, (b) Fr =20, (¢) Fr = 1000, (d)

Fr

i



CHAPTER 5. NUMERICAL SIMULATION OF HEAT ISLAND CIRCULATION 83

[]
XL

(a)

L
(b)

0
XL
(c)

2 Effect of Richardson number on temperature field (0) for Ra 10°,

Figure 5.

Fr=1and Pr=0.71. (a) Ri =3, (b) Ri =5, (¢) Ri = 10.



CHAPTER 5,

NUMERICAL SIMULATION OF HEAT ISLAND CIRCULATION

o v
Z 10

10°

10°
1000 E 11‘0 15

Figure 5.13: The elapsed CPU time[s] at each time step and the mumber of adapted

arid points,

between th

N is plotted as a function of simulation time, £

two curves indicates that CPU timels| has a linear relationship with

the number of grid points, N

A visual inspection



Chapter 6

Conclusion and Future Research

Direction

In the last chapter of this thesis, we smmmarize its main contribution. and briefly

outline future research direction,

6.1 Conclusion

We have analyzed and derived the governing cquations for thermally driven flows, and
proposed an adaptive mesh method for simulating thermally driven flows. We have
verified our proposed model with two of the most popular test cases, (i) lid driven
cavity flow and (i) thermally driven cavity flow, since these flows are commonly uscd
for verification of CFD codes,

The lid driven cavity flow has been simulated for e = 1000 and resolution,
N = 160%. Note that in the present work, only a fraction of the grid points from the
preseribed resolution is required for the actual simulation. For example, only 3,116

d points are significant for this simulation with ¢ = 10 %

arid points out of 16
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which is about 5.2% compared to the grid points used in Ghia ef al. (1982), and abont

13.34% compared to what was used in Botella & Peyret (1998). The simulation of
the lid-driven cavity is also conducted for large tolerance ¢ and large CFL. These
results confirm that a large ¢ or a large CFL does not affeet, the solution significantly.
10"

We have also conducted the thermally driven flows in a cavity for 10° < Ra <

We observe that large Ra requires a

and for a different resolution, = 128°

large number of grid points, which is also a fraction of the preseribed resolution and

concentrated near the honndary

Heat island flow cireulation has heen condueted for 10° < Ra < 10% and resolu-

1

tion 1024 5 128, 2048 x 256. However, the adaptive mesh simulations of heat isl
cirenlation require only a fraction of the grid points from a preseribed resolution for
the actual simulation. From the comparison, we obscrve that the adaptive mesh
simulations of heat island cireulations are in good agreement. with those of Kinura

(1975). Niino ef al (2006) and Dubois & Touzani (2009). We also observe that the

required CPU time for these simulations of heat island circulations inereases linearly

with an inercase in the mumber of grid points. Hence adaptivity saves CPU tine s

the model is O(N),

6.2 Future developments

The present two dimensional time dependent thermally driven flow in a heat island
simulation using an adaptive mesh method has the ability of resolving localized dy-
naics, so the extension of the present work for three dimensional simulations is a
nest step. This present work can also e explored in the field of atmospheric scicnce;
for example, the verification of the CFD model with observation would provide fur

ther enlighten to rescarch in the field of atmospheric modelling. Such a model wonld
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