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Abstract

For many years, =M alloys have been widely used by the magnetic storage industry
in thin-fil form as the antiferromagnetic pinning laver in GMR (Giant Magneto Re-
sistance) and TMR (Tunnel Magneto Resistance) spin valves. Despite the technological
importance of this structure, it has not previously been noted that the magnetic Mu-ions

s normal to the

of fee IrMng reside on Kagome layers ABC stacked along < 111 > ax

film plane. Results of Monte Carlo simulations will be reported on the bulk fee Kagome

lattice for hoth XY and Heisenberg models including the cight NN exchange interactions
Degeneracics persist in the 3D ease and there is strong evidence for a fluctuation-driven

first-order transition to well-defined long-range order characterized as the layered -0

120-degree spin structure. Effects of varying the inter-layer coupling are also examined
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Chapter 1

Introduction

1.1 Magnetic Sensors

Sensors that detect a wide variety of phenomena which rely on thin-film magnetic tech-
wology are in everyday use. Those include magnetometers, hard disk read-heads, as well
as Magnetic Random Access Memory (MRAM). The technology in these devices is based

on the spin-valve, which consists of two thin-film ferromagnetic (FM) layers as well as a

stabilizing anti-ferromaguetic (AF) filin
Magnetometers are instruments to measure the strength and direction of 4 magnetic

field. Very high seusitivity to detect magne

fields hiave been reported in the spin-

valve magnetometers (1. Magnetometers are used in a wide range of applications. In

archeole

v. magnetometers can detect shipwrecks and other buried or submerged objects:
in mining. they are used to determine the direction of drilling; in the military they

monitor submarine activity's and in astronomy they pre

et cosmic activity, such as

anrora borealis (see Fig 1.1). A grid of magnetometers around the world constantly

e

sures the effect of the solar wind on the Earth’s magnetic field.  Also in mobile

telephones and Global Positioning S;

stem (GPS) devices, magnetometers are used for

1Om the defensive side, the Russi

oldfish” (tita
expense to thwart such systems (pure titanium is

binarines) were designed and built at great

anetic)



showing direction.
Hard disk read-heads are devices that read the orientation of nano-scale magnetic

ernal magnetic fields, coming

grains embedded in hard disks. This device converts the e

from hard disk, into the clectrical signals. High sensitivity in detecting small variation
i the magnetic fields improves resolution in detecting the orientation of the magnetic

grains over a small arca of the hard disk. In other words, spin-valves enable hard disks

with higher storage capacity. Fig 1.2 shows the effect on areal density by using spin-valve

structures in hard disk read-heads.

Magnetic Random Access Memory(MRAM) is widely used to save data. Unlike elec-

trical charge in conventional Random Access Memory (RAM), a magnetic field is used

to store data in MRAM, The magnetic clements, with a spin-valve structure, make up a
MRANM bit. The structure of spin-valves are also used to detect magnetic orientation of
cach cell on the MRAM. MRAM. as non-volatile memory, not only preserves information
during loss of power, but also consumes less electrical energy. The random accessibility
makes this device fast, as read-heads are able to select the shortest path over the MRAM

grid to access a specific cell

Figure 1.1: Aurora Borcalis
Picture from: travelezinemark.com



Figure 1.2: Gaint Magneto Resistance (GMR) spin-valve allowed for a significant progress
in the capacity of the hard disks since 1997

Picture from: www.physicscentral.com/explore /action/mr-rescarch.cfin
1.2 Spin-Valves and Giant Magneto Resistance (GMR)

A spin-valve is a device consisting of two or more ferromagnetic layers. The elcetrical
resistance of a spin-valve changes as a function of the relative alignment of the layer's
magnetizations with respect to cach other. This cffect has its origin in spin-dependent
monentum scattering. The electrical resistance for conducting electrons can be controlled

heen

by tuning the magnetic orientation of the layers. Spin dependent scattering ha

studicd as the main magnetic contribution to electrical resistanee

Iie sehematic behavior of spin scattering from the interface of a ferromagnet is shown
in Figg 1.3, As can be scen, the beam of electrons splits up into a reflected and transmitted
beam. The reflected beant ineludes mostly spin-down electrons while the transmitted
bean consists of spin-up electrons. When clectrons of one spin encounter the FA layer

with opposite magnetization, the clectrons have a probability to flip their spins. The

¢ which it gains from the electrons in the FM layer. The

spin flips consume extra enc
cnergy dissipation of the clectrons is measured as high resistance of the device. On the
other hand, when electrons with the same spin alignment as the FM layer magnetization

passes the device, 1o spin flip oceurs, and consequently, these clectrons do not. loose



energy because of their spin. This is measured as a low resistance in the device.

WZ?Y .
v Torque = 8L

(wzlowzt)'

Figure 1.3: Spin-dependent Momentum Scattering

Figure 1.4: Schematic of a Spin-Valve Structure

Fig. 1.1 shows the schematic structure of a spin-valve. The spin-valve consists of two
FM layers which are separated with a non-magnetic (NM) metal. In the spin-valve the
currentelectrons encounter two FA layers, and energy dissipation of clectrons depends

on the angle of their spin orientation with respect to the magnetization of cach FM layer

Due to this property, a spin-valve may act as a magnetic switch which is activated by
wiagnetic field. When the magnetic orientation of the two layers is opposite, the device
is highly resistive, and the electrical current drops down; on the contrary, when the
magnetizations are aligned, the deviee is highly conductive, and o significant drop in

clectrical current is measured

“The crucial part of the spin-valve is in pinning the magnetization of one of the FA

layers, so that its magnetization vector does not rotate in an external field. The method



used to pin the magnetization of the first layer should not affect the magnetization of the

other one. Therefore, using a permanent magnet or hard FA may not provide a solution.

A solution to this problem is to pin the FM layer by adding an AF layer adjacent to it [3].

cehange Pinning. The exchange pinning oceurs due

FNM/AF

This is known as Exchange Bias, or
to quantum mechanical exchange coupling between spins across the interface.
coupling causes a stable magnetization in the adjacent FM layer. Since the AF layer

has no magnetic moment, this layer does not respond to an external field. The study

of FI/AF coupling has drawn the attention of many rescarch groups [5]. Finding the

efficiency is the challenge in manufacturing

appropriate multilayer structure with hig]
applicable magnetic switches [6]. The efforts of Peter Grunberg and Albert Fert as pio-
neers in discovering the change in electrical resistance as a function of external magnetic

ficld, known as Giant Magneto-Resistance (GMR). was appreciated with the Nobel Prize

e Fig. 1.5)

in Physics in 2007

GNIR transfer curve

Figure 1.5: Change in electrical resistance as a function of relative angle between FAI
magnetizations
The read-head

Fig. 1.6 illustrates the schematic structure of a simple read-head.

consists of four parts; two FA layers (free layer and pinned layer), one NM layer (spacer

ver. The magnetization of the pinned layer is stabilized with the

layer), and one AF 1:

adjacent. AF layer
IrMuy is the most widely nsed material as the AF layer in read-heads due to its high

Nobelprize.ors,



Figure 1.6: Read-Head Structure
Picture from: Dr. M. Plumer
ordering temperature and suitable interface pinning properties. The magnetic field of the
media (black arrows in Fig. 1.6) causes a rotation in the magnetization of the frec layer,

but the pinned layer preserves

s magnetization due to exchange pinning phenomenon
The clectrical resistance of the system changes due to variation of the relative angle
Detween magnetization in the free Tayer and the pinned layer, and this is detected by

voltage from passing a current through the NM spacer layer. The high sensitivity of

the device in detecting smaller and weaker fields, allows the memory cell to shrink, and

consequently, the capacity of hard disks increases.

1.3  Exchange Pinning

The magnetic order of an AF material which consists of a spontancous anti-parallel
arrangenment of neighboring spins disappears at high temperature. This perfect magnetic
order at absolute zero temperature completely vanishes above the critical temperature

called the Néel temperature.

At the Néel temperature, Ty in Fig. 1.7, the thermal encrgy s enough to destroy the

wiaguetic order in the AF film. Note that exchange pinning leads to an exchange bias
field, Hys as shown in Fig. 1.7, which shifts the hysteresis loop (sce appendix A). Below

the Néel temperature, the spins in an AF film in a spin-valve interact with the adjacent



Fignre 1.7: Exchange Pinning and Temperature

spins i the FM layer. The exchange coupling pins the spins in the FM layer. As a

consequence, the orientation of the magnetization in the FA layer is not affected by the

applying field which is weaker than pinning bias field, Hy. Above the Néel temperature,
the exchange coupling is still present, but this interaction does not determine a unique

direction to pin the magnetization of FA layer duc to the absence of any magnetic order

on the AF interface. The temperature dependence of the magnetic order of the AF layer
contributes erucially to eveate the exchange pinning in the multi-layer FN/AF systen.

In this thesis, the thermal behavior of the magnetic order in the AF IrMug is i

tigated

Since the discovery of exchange pinning in 1956 by W. H. Meiklejohn and C. P
Bean [3], there have been many theoretical models presented to explain the mechanism
of this effect. Several of these models are reviewed below, and, despite the lack of com-
prehiensiveness, this may offer a general picture to partially understand this phenomenon
The majority of models foeus on the possible spin-configurations at the AF surface, em
phasizing the substantial role of thermal behavior of AF layer which must be considered in
any comprehensive study of exchange pinning. The Meiklejohn and Bean model, known
as the direct exchange model, was the first model to deseribe the mechanism of exchange
pinning. In this model, a direct exchange interaction between the magnetization of the

Mo, is assumed [3], and the

FAL layer, Moy, and the net spin per arca of the AF




energy of the system s given by:
Ep = J Mg My (L.1)

Another popular model is the Mauri model known as the AF spring model. I the
Mauri model, a domain wall in the AF substrate is assumed. As can bee seen in Fig. 1.8, in
the vicinity of the FM layer an interface of thickness € is formed where the uncompensated

inter-facial moments” at the interface AF couple with the FM moments. On the other

hand, in the centre of AF substrate, and far from

"M layer, the magnetic moment of
AF s aligned toward its uniaxial anisotropy (along  axis in Fig. 1.8). A domain wall is
formed between these two layers. The assumption of a domain wall reduces the caleulated
exchange pinning field in agreement with experiments. Morcover, the x-ray obscrvation

confirms the existence of domain walls in some AF materials.

“The coupling energy of this system is given by

E=—H-# v/[\/ mI + L[t =i (1.2)

where M is FAL orientation, s is the net spin of AF at the interface, @ is the direction

igure 1.8: Mauri Model

of the uniaxial anisotropy axis of the AF layer, and o is the energy of domain wall in
the AF. A defect of this model” is revealed when the exchange pinning field is measured

in very thin AF substrate. In very thin AF substrates, there is not sufficient space for

n zero mag ut over the su

i face of AF layer
Paul Haney Ref. at |,n,./,“““ phantexas.cdu/




domain wall; nevertheless, the measurements still show a significant

xchange pinning [4].

In the Malozemoff model, which is known as the random field model, a statistical
treatment of the random field model describes the effects of AF domain size on the
miagnitude of exchange pinning field. A random roughness on the surface canses a random

local magnetic field. The surface spins are affected by this local magnetic field. This

phenomenon on the surface eventually divides the AF into many domains. as shown
in Fig. 1.9, The exchange and an additional uniaxial in-plane anisotropy play main

roles in determining th

size of these AF domains and consequently in determining the
exchiange pinning field. Malozemoff further states that the balance between applicd ficld
— — — — —- — — —

— — — — — — — —

— — — — — — — —

— — v — — — —- —

e . . S o e

— — — — —— w— w—

e — — — ——
?# C— -“-’

Figure 1.9: Domains in Malozemoff Model

pressure 201 Myeyytar, on one hand, and the

ffective pressure from the inter-facial energy

difference Ao on the other hand, determines the exchange pinning field (7]

Ao

3
R Vo £

Results from Photo-Emission Electron Microscopy (PEI

1) confirm the theoretical pre-
diction of the Malozemoff model of the existence of an inverse linear relationship between
the excliange pinning field Hyy and domain size [8]. The Malozemoff model is successful
in explaining many of the features of the exchange pinning. However, this model fails
to justify some empirical results

As am example, the experimental observation of the

tendency of the FM to align perpendicular to the AF casy nx

is has no justification in

Malozemoff model (9]

10



Ihe last model discussed here is the Koon/Butler model which is known as the spin-
flop coupling model. Tn the Koon/Butler model, it is assumed that the AF spins in
the interface are inclined slightly out of plane toward the FM layer. This surface spin
confignration results in a net magnetic moment toward FM layer. The net magnetic

moment interacts with FM spins and the new term in the encrgy, a spin-flop term

deereases the exchange pinning [11]. Tn contrast with the Mauri model, the Koon/Butler

assumption does not require a thick AF substrate to give reasonable values for exchange

pinning,

The energy of the spin-flop coupling is /(A7 - )% This term must be added to

NARNININA|
A A A A
NARIRIANS |
FASAY AV AN

Figure 1.10: Spin-Flop in Koon/Butler Model
the energy expression 1.2; therefore, the encrgy in the Koon/Butler model is given as
follows [12]"

) #
E=—il-fi-J[ar mJ v./‘,[u m] =il (14)
A combination of the spin-flop coupling model and Malozemoff random ficld model has

been used to find the exchange pinning field. The results showed significant compatibility

with the measured values [9]
1.4 Phase Transitions

In a thermodynamic system, the transformation from one state of matter, or phase, to

another phase passes through a threshold temperature where the symmetry of the ordered

Paul Hancy Ref. at htp://www.ph.utexas.cdu/ macdgrp,

11



phase is broken in order to create a new state in the system. At this temperature, which
is callod eritical temperature (72), the temperature dependence of the free encrgy of the
thermodynamic system may not e a well-behaved function. The phase transition is often
accompanied by a discontinuity in the free energy at the critical temperature. A famous
example of a phase transition is melting phenomenon, while thermal fuctuations break

the microscopic symmetry of the crystal structure of a solid at the melting temperature,

absorbing thermal energy shows no change in the temperature of the system. The peak

in the specific heat curve, C, at this point reflects this behavior. Phase transitions can

of a material. The interaction between the

also oceur hetween different magnetic state

pins often forms a symmetric configuration in orientations known as a magnetic erystal

als oceurs at the some specific temperatures,

Breaking the symmetry of magnetic erys

To study the phase transition, it is conventional to define a parameter which reflects

btdoe bt
SRR A
SESEERER N

— —o— ——>

vstal in 2D

Figure 1.11: Schematic of an AF Magnetic Cr

. known as the order parameter, typically

the symmetry of the system. This paramete

varies from zero to one. At absolute zero temperature, where the thermal fluctuation is

mum value which is on I'he order paramete

winimum, order parameter has its mas

Al temperature, T, the order paranm-

decreases with inercasing temperature. At the crit

cter falls to zero. In FM systems, the magnetization can be used as the order parametc
while in AF systems the definition of order parameter is different. The fact that. cach
AF magnetic lttice consists of several FM magnetic sub-lattices is used to define an
order parameter based on magnetizations of these sub-lattices [13]. Fig 111 shows the
magnetic lattice of square AF in 2D. As can be scen, this magnetic lattice consists of

12



two FAsub-lattices which are illustrated in red and blue. Phase transitions, observed in

physical systems, are conventionally classified in two categories. The criteria of the clas-

sification is in discontinuity of the free energy of s

vstems. First-order phase transitions

exhibit a discontinuity in first derivatives of this energy with respect of thermodynamic

variables, while in second-order phas

e transitions, the first derivatives of the free energy
are continous, but discontinuities are scen in the second derivate. Fig 1.12 shows the

Variation of order parameter vs. temperature.

“
- -oo..l:.....
] ®ee e

. )

. °

& o, °
5 ]
)

@First Order
@5econd Order

Temperature Te

Figure 1.12: Order of Phase '

order parameters of two systems. As can be seen, in the second-order phase transition.
the order parameter curve rises more smoothly than its counterpart in the first-order
phase transition.

Around eritical points of any contimons phase transition, the physical quantities be-

have unive

sally. This means that this behiavior is independent of the details of the
physical interaction. The critical exponents, which are generally a function of the sym-

metry and dimension of systems and the range of interactions, are used to describe the

critical hehavior. The critical exponent, k. of any physical quantity, such as f(7). as a

function of temperature, 7' is defined as follows [14]*:
e = i 22O
log|
50

where 7 is the reduced temperature, and defined as 7 = (7' 1.)/1.

NAlso http:/ /en.wikipedin.org/wiki/Critical_exponc

13



“The above definition assumes that the asymptotic hehavior of the physical quantity, (7).

when reduced temperature gocs to zero, 7 - 0, s as follows:

Jr) = A+ bt 4o (1.6)
It is more conventional to write the equation 1.6 in the following form:

Jr)x 7t rx0 (L.7)

The calenlation of critical exponents, even for simple models, is nontri

L. Despite the

absence of a comprehensive theoretical proof for universality in the critical exponents,

this theory is confirmed by experimiental and computational data [10]
1.5 Magnetism in Condensed Matter

According to the Bolw-van Leeuwen theorem, there is no thermal equilibrivm magne-

tization in a ¢

al system [15]. €

ical physics completely fails in predicting the
existence of magnetism. In quantum physies. the concept of a partiele’s spin plays a
significant role to deseribe the intriusic maguetic moment of ions. The observable spin
wagnetic moment of a particle, ji,, with clectrical chiarge ¢, mass m, and spin angular

womentum S is given by:

where g, called g-factor, is a dimensionless mmber which depends on the type of particle

for example. the g-factor is 2.0023 for the clectron, while it s 5.586 for the proton. 1t is
assumed that all magnetic properties arise from the interaction between atomic magnetic
moments inside the materials. There are three well-known models, Heisenberg, ry and

Ising models, to describe the magnetism in condensed matter. A tremendous amount of

rescarch has been done, based on these three models; therefore, these models are discussed

in more detail in this thesis,



1.5.1 Heisenberg Model

In this model, atomic spin vectors S; = (S7,57,57) with a fixed length S, localized on
lattice site i, interact with other magnetic moments and magnetic fields according to the

following Hamiltonian:

H = Hep + Hyea + Haip + H. (1.9)

where the isotropic exchange interaction, 11, is given by:

(1.10)

“This term originates as a consequence of Coulomb interactions together with Pauli’s ex-
clusion principle and the antisymmetry of the total electronic wave-funetion(electrons
as fermions) [16]. This interaction usually is short range and usually only include the

nearest neighbors lattice sites. The symmetry condition, Jj; = Jj;, is always valid for

this term. rthermore, the sign of interaction coefficient,

5+ determines the type of

interaction between the ¢ spin with the j* spin and consequently their mutual arrange-
ments. A negative coefficient forces the spins align in an anti-ferromagnetic fashion (in
non-frustrated systems, anti-parallel), while a positive coefficient forces the spins to align

in a ferromagnetic fashion [17]

Another important term in Hamiltonian 1.9 is the magneto-crystalline anisotropy.

e The magneto-crystalline anisotropy (MCA), in its simplest form, represcuts the

tendency of the material’s spins to align along some specific axes in erystal structure, the

casy-axes of the magnetization

Hyea = Y D(SF)? (1.11)

In Eq. 111, the =-axis defines the easy-nxis of erystal providing D is negative

A positive

value for the anisotropy coefficient, 1, makes the 2-axis as the hard-ax

s, and the spins
prefer to lic in the wy-plane. This term is strongly affected by the spatial symmetry

of the magnetic electron orbitals; therefore, in erystal structures, the symmetry of the
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bravais lattice and the orbital angular momentum of magnetic electron in the atomic
structure determine the strength of the MCA. For example for itinerant electron structure,
where the orbital angular momentum is almost quenched, MCA is usually ignorable in

comparison with the isotropic exchange interaction. This condition causes a small MCA

in the bulk of transition-metals [17.
I the case of thin films, the MCA term for the surface atoms is more complex than the
corresponding translation value in the bulk duc to broken symmetry at the surface. The

surface MCA determines the domain size in the Malozemoff model for exchange pinning;

furthermore, the perpendicular net momentum predicted in the Koon/Butler model may

be explained by this term. Eq. 112 and Eq. 113 give the MCA encrgy for thin films

7). As can be seen, the encrgy is written separately as perpendicular and

and surfaces

llel terms with the respect to the surface plane (s-axis coincides with the surface

pa

normal axi

Mk DIY e
&

1)

how == 30 (KEASD? + KL (5D +(80) + KL (S + (509) (119)
where (S = S7 £i8Y). The most frequent terms are shown in Eq. 1.13. These terms
are used based on the symmetry of the film face. The unixial (twofold) term, the guar-

tic (fourfold) term, and the hexagonal (sixfold) term are explicitly considered in this

equation

The magnetic dipole interaction, Hy,, in Eq. 1.9, can be written as follows:
o Halty
Hp = 523 B¢

where jig is the vacuum permeability,

(1.14)

% 1077V /(Am), and the veetor 7, starts from

the ™ site and ends at the j. The dipole interaction energy hecomes important when
FAI thin filns or multi-layer systems are studied. Including this term in simulations
such as Monte Carlo simulations, makes the computer code slow since it is longe range;

win AF systems s small in comparison with the

and morcover, the magnitude of this te
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magnitude of other terms in Hamiltonian. Therefore, in simulations of AFs this term is
usnally ignored.
The Zeeman term, 1., gives the interaction between an external magnetic field, .

and the spins of the system

= —pop y_ 9.8+ (1.15)

where g, is the site-dependent Lande factor

1.5.2 XY Model

T this model, magnetic moments are described by S = (57,5Y) or S, = S(cos 6,,sin ;).
which is the two-dimensional spin localized on lattice site i. Due to the fixed magnitude for
spius, it is convention to use polar coordinates in the oy model. Thercfore the Hamiltonian
of this model can be written as follows:

is

cos(f, — 0,)8* ~ Zh, cos(0,) S (1.16)
e 7

where 0, € (7. ltopts 93] This model can be considered as the asymptotic

limit of the Heisenberg model when the z-axis is an extremely hard axis. In this case, the

wiagneto-crystalline anisotropy term, Eq. 111, forces the spins to stay in ry plane due
to D) = 5. It is clear in this casc, considering spins as quantitics with ouly one degree

of freedom, the polar angle, makes the simulation significantly faster.
1.5.3 Ising Model

In the Ising model, the spins are one-dimensional normal vectors; therefore, the spins only

have two possible values, 1. This model was invented by W. Lenz in 1920, but E. Ising
was the pioneer using this model to predict the magnetic property of one-dimensional

The 1D Ising model shows no phase transition. This model has

crystals in 1921 |

been used for more complex systems in higher dimensions. In this model, Hamiltonian



can be written as follows:

(1.17)

3y S8 = Y h

255
with S, =1 Many scientists used to believe that the partition function for 2D Ising
model as an analytical funetion of temperature conld not show any singularity in physical
quantitios. especially in finite systems. Eventually, L. Onsager established an argument

based on Tsing model to abolish this idea.[19]
1.6 Magnetic States and Frustrated Systems

I AF magnetic structures, each spin wants to align anti-parallel to its nearest-neighbor
due to the AF exchange interaction. Sometimes, the geometery of the lattice structure
i AF systems makes the perfect AF arraugement impossible. Geometrical frustration
oceurs when the geometry of some lattice structures forbids simultancous minimization
of the exchange energy all the nearest neighbor pairs of sites of an AF. At absolute zero

temperature, the spin-configurations of the system achieves its maximum order. Fig 1.13

Fignre 1.13: AF ground-state illustration frustration

indicates the AF maguetic structure in the square and the triangular lattices. As can

be seen, in the square lattice, AF exchange energies acting between near neighbor sites

are simultancously minimized, while minimizing the inte

acting energics between all sites

i the triangular lattice is impossible. Fig 114 shows the ground-state configuration for

AF triangular structure in vy model, the alignment is not. colincar: nevertheless, this
confignration has the lowest possible encrgy. In this spin-configuration, the direction of

cach spin makes an angle of 120° with its adjacent spin. This means that there arc only

18



Figure 111 120° spin structure of the triangular lattice.

three possible oricntations for spins in the triangular structure. These thrce orientations
are labeled A, B, and C in the picture [21].

1.6.1 Kagome Lattice
“The 2D Kagome lattice, as shown in Fig. 1.15, consists of a triangular lattice with one-
fourth of the sites removed. In nature some minerals like jarosites, KFej (OH)g(SO4 ).

g

name, Kagome, is derived from the Japanese language. 1t means the pattern of holes in

and HerbertSmithit

. ZnCuig(OH),Cly, are composed of the Kagome laye

a specific basket which are called “Kago™. Kagome, just like the triangular lattice, has a

frustrated magnetic structure at absolute

1o temperature; furthermore, this structure
shows a great flexibility to create domain walls. Domain walls can be considered as the
origin of the degeneracy in the energy of this system. This means because of forming

domain walls in the Kagome structure many different spin-configurations have the same

mininmm en

By

Ihis degeneracy of the system due to domain wall formation has an extensive char-
acteristic. This means the mumber of possible spin-configurations with the same energy

increases in direct proportion to the vohume of the system. Consequently, the order of

the degeneracy goes to infinity in a infinite system

116 shows two different spin-confignrations, o and /. with the same cnergy. In

the a structure, only one domain is formed; however, in the 3 structure, two domains

are formed. above and below a wall. This wall con

s of the horizontal line with the
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Figure 1.15: Schematic Kagome structure

C-type spin alignment and vacancies (black spots). Such a phenomenon is not seen in the

triangular lattice structure. The Kagome has this property due to the strategic position
of vacancies. These vacancies permit that the spins in cach domain rotate with the angle
of 120° with respect to their corresponding points in adjacent domains without costing

energy. Domain wall formation in the AF substrate plays a significant role in the theory

of exchange pinming,

q)
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BABABA  BY A BA Ui
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Figure 1.16: Degeneracy of two possible spin structures.

I three-dimensions, many interesting lattice structures can he composed by stacking

, face centered cubic (fee),

triangular and Kagome layers. Among all of these structure




pyrochlore, and ABC-stacked Kagome, as three-dimensional frustrated systems, are the

sular

most interesting. The fee structure can he viewed as stacked square lttices or tria
lattices along different erystallographic dircetions. Along [001] direction, fec is consisted

of square lattice, while along [111] direction, it is composed of stacked triangular lttices,

[y
o

Face Centered Cubie FCC
s by: Asheroft /Mermin, Fig. 4-

Figure 1.17
- Solid State Phys

In Fig. 117, layer structure of fee along [111] is shown with three different colors,

can be seen, each unit cell consists of three layers which are de-

black, red, and blue.

nd C, and each of these layers shifts with respect to the adjacent layers. In

noted by A,B.
the other words, fee is ABC-stacked triangular layers. Another interesting ABC-stacked
structure is the ABC-stacked Kagome lattice which describes IrMug, studied in this the-

sis. As can be seen in Fig. 118, the only magnetic ions (Mn) in the fee structure are

in the center of the faces. Along [111] directions in this structure, there are 2D Kagome

planes.

Pyrochlore is also composed of stacked layers, but this structure is formed from both
Kagome and triangular lattices. In pyrochlores, the triangular layers interleave Kagome

layers as shown in Fig. 1.19.
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Figure 1.18: ABC-Stacked Kagome [30]

Figure 1.19: Pyrochlore structure composed of both triangular (read) and Ka
layers.

gome (bluc)

1.7 Monte Carlo Simulations

Ilie Monte Carlo method provides a statistical approach to caleulate the behavior of a
system with many coupled degrees of freedom. A macroscopie system consists of many
microscopic components. The link between macroscopic measurements and all possible
microscopic configurations in many-body systems has raised erucial questions in scicnce.
Boltzmamn constructed a significant mathematical bridge between these two worlds. In
the microscopic frame, interaction encrgy tends to organize, while thermial encrgy is acting
to disorder the systent. In the Monte Carlo method, random numbers are used to produce
the microscopic ensembles with a particular probability distribution of states. The Monte
Carlo method, as a statistical approach, is usually compared with deterministic methods
I deterministic methods, the algorithin behaves predictably, and the sequence of states
produced in any two runs s the same. In this particular method, a long list of details

such as boundary conditions and the precise interaction equations are usnally used to




solve a system of equations in each iteration. The advantage of the Monte Carlo method

appears in dealing with systems with high de

rees of freedoms, where the deterministic
wethods do not cconomically work. The name, Monte Carlo, dates back to 1940, when

several famous scientist

ncluding S. Ulam, were working on Manhattan Project in the

Los Alamos National Laboratory. Monte Carlo casino was the place where Ulam’s uncle

would often gamble

“The Metropolis algorithm consists of a Markov chain of configurations. In this method,

an arbitrary first spin configuration, S, is updated to construct a subscquent configu-

vation, S, by using an appropriate probability function, W(S, -, = 5,). that satisfics the

condition of detailed balance:

exp ST

(1.18)

where AE

2 is the energy difference between final and initial spin-confignrations,

koo L38x 107 VR §5 Boltzmann constant and T is temperature. It can be shown that

it is possible to gon

ate aset of spin-confiy

ations that form a canonical ensemble, with
a probability, P, given by:

(k)

(1.19)

The following is a simple

ample of Metropolis algorithm

1. "Take an arbitrary initial spin-configurations; S = {s1. 2. .5}

2. Caleulate the energy of the initial spin-configurations, £(Sy)

Produce a new spin-confignration S,

(a) “Take i spin (randomly or in order of i€ {1.2,3,...,n})

(1) Change " divection randomly to mi

ke trial confign

ion S,

() Calenlate the new energy

2(S1,) of the trial configuration.

(d) 1t

) < B(Sk), accept the trial; that is, set Siyy = Spy



() 1 12(Sy) > E(Sk). accept with probability />

Choose a uniform random number:

0<

<1

i Let Sip

s i P > 1 aceept

i, Let S

i P <, reject

This part of the algorithm is used to make only one “move™. Equilibrivm is achieved

thr

g many “moves” of every spin in the lttice or Monte Carlo Steps (MCS). The Er-
goddicity of the algorithm assumes that all possible states are produced given a sufliciently
long simulation time. The length of required time, or the number of MCS, depends sub-
stantially on the geometry of the system and temperature. In highly frustrated systems
and low temperature, the simulation time can be very long. As a matter of fact, to achieve
areasonable confignration, the system must produce enongh accepted moves according to
above-mentioned algorithm. In complicated systems, the orientation of each spin makes

a small effect on the energy of the entire system. Producing an aceepted “move” in such

a sensitive system based on a random change is required; therefore, longer simulations
st he expected for this type of system. The ABC-stacked Kagome and fec lattice can

be classifiod as complicated structures requiring longer sinulation tine.

To understand the thermal behavior of a system, multiple Monte Carlo simulations
at different temperatures are usnally used. It is assumed that the result at each tempera-
ture s completely independent of the result at any other temperature, This fact permits

desiggning Monte Carlo simulation programs in a parallel fashion. In parallel programing.

amassive task is broken down into many smaller tasks

These small tasks are separately
performed by many CPUs: and eventually, the results are gathered in one ontput file
Runming time is dramatically shortencd with parallel programing. As a matter of fact,
parallel programing is the only feasible way to simulate some systems. On the other hand,
some complexities, such as race conditions, ave involved in parallel programing, In pro-
sraming, especially parallel programing, the race condition is a challenge when the result

depends significantly on the sequence of events in sueh a way that the answer is quite



unpredictable due to different timings in using several processors. In the other words,

the race condition occurs when the output is influenced by the timing of two

gnals.
The Monte Carlo algorithm does not involve the race condition as long as the parallel

programing is designed based on independent temperatures.

The result of Monte Carlo simulations is a canonical ensemble of possible spin-
configurations of the system. From this measurable quantitis can to be caleulated in

order ton

ke contact with experimental data. Thermodynamics provides the mathemat-

ical instrument to perform this ta

sk. In the statistical simulation, the probability that

the system is in a specifie state, labeled by a,

iply related to the mumber of times

that this state is reproduced in the ensemble. On the other hand, in thermodynamics

this probability is given as follows:

= (1.20)

where 3 = 7 and

2, is the energy of the state a. Z is the normalization factor, callod

partition function, and it is defined as follows:

Z=y exp (1.21)
As o matter of fact, the expectation value of a quantity corresponds to the experimental
measurement. The expectation value is the average of the quantity taken over the entire
ensemble. This value for a measurable quantity, denoted @, is caleulated as follows:

N
> Quesp™tx % >aw (12

1

ile the second

where the first sum is over all possible states (a represents a state) | w

sum s over the sequence of N states obtained from a Monte Carlo simulation and which

are therefore selected with a probality P, = .

o

< exp™ Among the thermodynamic
quantities, the magnetization A7, specific heat C.

. and susceptibility y are caleulated in

this thesis. The specific heat of a system, which is the amount of the heat required to




chiange a substance’s temperature, is defined as follows

(1

Eq. 123 is not the most useful form for statistical simulations. To caleulate an equivalent
formula of the specific heat i a statistical approach, the partition function plays an
important role. From the partition function definition Eq. 1.21, we find

)7 .~
% =) Eacxp™ (1.24)

comparing Eq. 121 to the formula of the expectation value

Eq. 1.21we g

. 10z OlgZ
7 oy — _LOZ _
Z‘ Ex exp Z0p 3

From Eq. 1.23 and using Eq. 1.2

L specific heat s thus given by:

(1.26)

From Eq. 1.

Substitution of Eq. and Eq. 1.25 in (E2) — (E)? gives ©

1Pz A
oy o L 23
{5 = (6 Z0FE ( 708 (1.28)
From Eq. 1.28 and Eq. 126, specific heat s then given by:
CT) = Kyl ((BX(1) = (E()Y) (1.29)

I statistical simulations, the average values of cuergy and squared encrgy are casily
calculated: therefore, Eq. 129 is applicable for a statistical approach.
The wagnetization per spin is defined as follows:

M(T) (1.30)

where N is the mumber of the lattice sites. The magnetization can be considered as an
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order parameter (OP) only for FM systems. In AF structures, the definition of order
parameter depends on details of the spin structure; therefore, it must be caleulated on a
case by case basis. In statistical simulations of the magnetic structure of a system, the
OP is caleulable from the spin-configurations of each state. Furthermore, the expectation
value of this quantity is simply caleulated by accumulating the OP of all states divided
by the mumber of the states in the ensemble. The thermodynamic susceptibility is the
response of the system to a change of coupling field, and is defined as follows:

(A1)

e (1.31)

where (M) is the average OP and 17 is the field which couples to M. From 122 the

average OP and squared OP are given by

(M) 7{2 M, exp (1.32)

DAL exp (1.33)
I the energy Eq. 19, the only term which includes the field is the Zeeman term; therefore,
the derivative of the partition function to the respect of external field is given by
az g
) M, expFe 3
55 Z\I,(q (1.31)

From 131 and using 1.32, \ is given by

oy 1 Y, M,exp =
x=—t Z(“_—“—) 3 My esp

oIt ol (£38)

Thus, the susceptibility is given as:

(‘1 (Z“’f exp M z) ,ﬂz"l/‘, exp

) BN = (1))
(1.36)
Eq. 129 and Eq. 136 are actually the energy and OP variance which are known as the

specific eat and susceptibility. Generally, variance shows how far a set of measurements

are spread outfrom cach other. In the case of a magnetic material, it is expected that




there will be peaks in the variance of energy and order parameter at phase transitions.

In studying phase transitions of magnetic systems using Monte Carlo methods, the
order of the phiase transition is often difficult to determine due to finite lttice size effects.
True critical behavior only oceurs in the thermodynamic limit of an infinite system

e

One of the suitable methods to investigate the order of a phase transition is finite

scaling method. This method is based on the fact that for a first-order phase transition

v and magnetization of the system behaves

the characteristic discontinuity in the ener

differently from the second-order phase transition. As can be seen in Fig. 120 [26],
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Figure 1.20: Histograms of the magnetisation illustrating first and second -order phase

transitions.

[S. "Usai, Brazilian Journal of Physics 28, 58 (1998)]
i the first-order phase transition the caleulated distribution in the absolute value of
agnetization splits up in two separated regions. In a second-order phase transition,

there is a single continuous distribution. The same behavior is also observed in the energy

)

of the system. The existence of two peaks in the histogram of maguetization (or ener

of a system around the eritical temperature is a sign of the coexistence of two phases
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(with different energy and magnetization). This phenomenon is scen in first-order phase
transitions. On the other hand, in second order phase transitions. one phase switches to
another phase smoothly through broadening the histogram of magnetization (or encrgy),
and no sign of the coexistence phases is seen in the histogram of magnetization (or
energy).

In a first-order phase transition, the following expression can represent the partition

function of the system [27):

Z(B, 1) = q oexp!=# OV KD . oyl SaB) 15 (1.37)
where [ is lattice size, d is dimension of system, J; is the free encrgy of the ordered states,
f2 is the free energy of disordered states, and q is the relative weight coefficient. Eq. 137
shows the separation in the energy values around eritical temperature. In Eq. 137, when

fi — foand 1 — o, the partition function presents only one phase. For temperatures

which are close to the eritical temperature a Taylor expansion gives the following:

31:(B) = Be [i(Be) — Beeil — 1( W2+ O (1.38)

Where £ = 1= % << Lis the reduced temperature, ¢, = “%

WL, s the encrgy of i bulk
phase, and €, = =32 (22|, is the specific heat of the i bulk phase. Eq. 137, with

Eq. 135, can e rewritten as follows

(1t Jays?)

Z = qexp i) g exp

¢ < 1oand y = C2/Cy. The partition

where . = gyl a = C/RELR r
function defined in Eq. 139 can be used to caleulate (£, and (E2);, and define Binder's

fourth cumulant, Vi(L), as follows:

(1.40)

Binder's fourth cumulant can be used to distinguish between first-order and second-order
phase transitions. In first-order phase transition, when 7 # 7, and in thermodynamic

limits, this fnction converges to 2, but at the critical temperature it shows a mininum,
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and these minimums have a linear relationship with L~ (sce Fig. 1.21).

Figure 1.21: Example of Binder's fourth cumulant
IMLS.S. Challa, D. P. Landau and K. Binder. Phys. Rev. B 34, 1841 (1956)]

1.8 Periodic Boundary Conditions

To eliminate surface effects, periodic boundary condition (PBC) are implemented. In
this method, the entire space is covered by repeating the finite system (sce Fig. B). In
sinmlating a crystal structure, it is logical to assume that the system is repeated in space;
however, the system size must be mueh larger than the correlation length in the system to
see the periodic behavior. The PBC is also used in other fields of computational physics
which involve less periodicity such as molecular dynamics of liquids. Nevertheless, the
PBC shows little effect on the thermodynamic property of system with a short-range

the opportunity to simulate the

interaction in such systems [20]. Also using PBC g
system with less spatial symmetry such as thin-films. I this case, the system is only
repeated in two dimensions (for example . and y). and the third dimension (=) is limited

with the surface of system.
1.9 Outline of Thesis

icance of the binary alloy Iry My, . surprisingly little

Despite the techmological sigr

theoretical or experimental work has been done to study the magnetic properties of
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Periodic Boundary Condition

Figure 1

Ir Mg, In this work. we present one of the most complete simulation studies to
date of the magnetic properties of bulk IryMug,,. The simulation studies focus on the
fact that the maguetic lattice composed of the Mu atoms form a stacked 2D Kagome
lattices, which we refer to as the fee Kagome lattice. While stacked Kagome lattice
has been studied extensively both theoretically and by simulations, little work hias heen
done on the fee Kagome lattice. The results of this work suggest that the degencracy

inherent in the stacked Kagome lattice may play an important role in the exchange

pitming mechanism observed in Try Mg, .

The remainder of the thesis s organized as follows. In Chapter 2, the propertics
of IrMlny are discussed. This describes the magnetic, clectrical, and erystallographic
structure of this material in bulk and as a thin flm. Chapter 3 is dedicated to the
Monte Carlo sinlation results of the two-dimensional Kagome lattice. The simulation
of triangular lattice is also performed in order to compare the thermal behavior of the
magnetic propertics of the two systems. In Chapter 4, the three-dimensional ABC-

gome lattice) is studied and the results are compared with

stacked Kagome lattice (fec K

the corresponding quantitics of the usual fee structure. The type of phase transition is

in chapter 5, the main results are

determined by using Binder’s fourth cumulant. Finally

summarized as are the conclusion of this thesis, and also some suggestions are offered for

future work



Chapter 2
Properties and Models of IrMnj3

Mgy Iy alloys are of interest to many research groups. The bi-layer consisting of AF

Mgy Iy and FM Cogy ) Fe,) is widely used in the manufacture of spin-valves [30]
Mulr alloys are widely used as the AF pinning layer in magneto-resistance junctions for

iwvo important reasons. First, the magnitude of exchange pinning field produced in the

biclayer made of a F layer and this AF layer is appreciable. Second, this AF structure,

as a magnetic system, is quite stable over a wide temperature range
Ihe maguitude of the exchange pinning field, i, depends on the thickness of the

FM layer, tgay. It may be expressed as [31

Ao
1 _ 2.1
B8 = Y faia Uit @

where Ag is the inter-facial unidirectional energy density, and this quantity is determined

by the properties of the AF pinning layer. A recent measurement of A for the above-

mentioned alloy shows a value close to 0.19 erg /e his amount is decreased by different

2 (32

temperature of this alloy increases from 600 A to 750 K, when the concentration of Mu

annealing process to 0.16 erg/c The experimental results also show that the Néel

increases from 10% to 30% [33]. The hig Néel temperature indicates the more stable

AF magnetic order in the structure. T this chapter, some literature on Ir—Mu alloys are
reviewed to establish a general picture of the relevant. physics.

According to Szamyogh et al. [31], the magnetic anisotropy (MA) of the AF alloy plays
asubstantial role in the exchange pinning phenomenon. The MA can be used to predict

the mean blocking temperature, Ty, The mean blocking temperature is the temperature
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at which the sign of the exchange pinning ficld changes through thermal activation
Recent studies indicate a quite different amount for the MA in Tr—Mn depending on the
quality of the crystal ordering in the thin filus. For example, in rescarch performed in

2007, the MA s reported to be 5.5 107 erg /e, while a value of 3.3x 107 erg/ec is reported

by another group [35, 36]. Higher degrees of crystallographic order give larger MA

Despite experimental interest, the MA of Mn-based alloys has rarely been investigated

theoretically. Szumyogh and colleagues have performed self-consistent calculation of the

fully relativistic screened Korringa-Khon-Rostoker (SKKR) method. The SKKR method

structure. As a first step,

is used to solve the Kohn-Sham-Dirac equation for the alloy
the fixed orientations for Mn atoms have been considered based on the results of previous
rescarch [37. 38], and the results were in agreement with the earlier caleulations [37, 39]
In the next step, the following Hamiltonian is used to investigate the effect of symmetry

in the energy per cll.

Z JunSuSh— 5 Z SiDuS, = > SiKaSh (22)

ab=1 ab=t =

“The Hamiltonian 2.2 includes two MA terms. The second term gives the anisotropic two-

site (exchange) coupling. Tn this term, D, are symmetric and traceless matrices, Eq. 2.3,
“The third termn is one-site anisotropy. In this term, K, are also considered matrices as

shown in Eq. 2.4 below

0
Dap = Dy 0
0 01
000
Ki.=K|o o0 o0 (2:4)
001

The rotations of the AF configuration are simply considered in the Hamiltonian

selecting the appropriate coefficients, Dy, For example; when Dy =Dy =D and Dy — 1



are taken, it means the AF configuration rotates around(100) axis.

The symmetry of
system, which affects the MA, is investigated by caleulating energy change, AE, upon

changing the rotation angle, ¢, Szunyogh and colleagues also analyse the results, which

Y S

Figure 2.1: Energy Change vs Rotation Angle.
L. Szunyogh.B. Lazarovits, L. Udvardi, J. Jackson and U. Nowak, Phys. Rev. B79,
0204 H‘.’“Il!ln

are plotted in Fig 2.1, to find the MA of the system. As ean be seen, energy is degenerate

for some specific angles. For example, for the rotation angle, ¢ = 109.47°, around (110)

axis, the caleulated energy is the same as at ¢ = 0. The single-site anisotropy is also

caleulated for cach ca

The results show a strong second-order MA in IrMug. While

it may seem suprising given the cubic symmetry of IrMng, it is due to the fact that the

cubie symmetry is broken by non-magnetic Ir atoms.
The authors g0 on to perform finite-temperature simulations based on the Landau-

Lifshitz-Gilbert equations. For this, the following Hamiltonian is used:

PR YT

s
where J,; are the isotropic Heisenberg, exchange parameters. The second term in Hamil-

3 is the second-order anisotropy term. In the anisotropic term, 7, are the unit

tonian 2

veetors along the local uniaxial axis. The relativistic torque method is nsed to caleulate

excliamge interactions as function of the distance between magnetic sites [0, 41]. As can
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Figure 2.2: Isotropic Exchange Interaction vs Distance.
L. Szunyogh.B. Lazarovits, L. Udvardi, J. Jackson and U. Nowak, Phys. Rev. B79,

020403 (2009)]

2.2, the isotropic interaction is almost negligible beyond 6.4; furthermore,

De seen in Fig,
the AF interaction of the nearest-neighbor is almost four times stronger than the FAI
interaction of the second nearest-neighbor in these structures. Only the nearest-neighbor
interactions were used in our simulations. In the last part of this article, they caleulate

the sub-lattice stagzered magnetization, M,. as follows:

V&)
ML ;%“.\z;, YA 4 .\/,,:> (26)

=
where A, = Y3, S is proportional to the magnetization of sub-lattice a, and 1 is the

munber of sub-lattices in the AF structure. As matter of fact, the sub-lattice staggered

gnetization defines the order parameter of the system. The Fig, 2.3 illustrates the

phase transition at 1360 K in the Iy alloy and 1005 K in the IrMn alloy. These Neel
temperatures are also confirmed by experimental measurcments. The most. interesting
result of this researeh is detecting a giant second-order MA for IrMny. This giant MA
suggests the (111) divection as the uniaxial axis of this structure. The (111) direction
in fee lattice of Iy coincides with the z-axis of ABC-stacked triangular lttice (s

Fig. 1.17).

Tomeno and his colleagnes used magnetic nentron scattering (MNS) to investigate

magnetic order I\ in 1999 [30]. T this project, for a wide range of temperatures
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gure Sub-lattice Staggered Magnetization vs Temperature

Szunyogh,B. Lazarovits, L. Udvardi, J. Jackson and U. Nowak, Phys. Rev. BT9,
020403 (2009)]

L.

the ordered magnetic moment and lattice parameter are measured from the (100) Bragg
reflection. Tn the first stage of this rescarch, single crystals were grown by the Bridgeman
method. To avoid defects in the crystal structure, samples were annealed at 1000 K for

three weeks, and then they were cooled to room temperature in a furnace. In the neutron

scattering process, large absorption by Ir atoms is observed. Tomeno and his colleagues

used the di

form of specimen to diminish the absorption effect

1

The neutron beams
with wavelength of 2.

are used. The results show that the annealed samples have
the CugAu-type erystal structure which is the ABC-stacked Kagome structure.
Fig. 2.1, which includes four plots, illustrates the longitudinal scans taken by Tomeno

and colleagnes at room temperature. Tn this figure, the Gaussian fits (solid lines) are used

to find the intensity peak positions. As can be seen in Fig. 2.4, the result around (100),
plot (a). is quite similar to the result around (110), plot (¢), and also, the result around
(111). plot (b). is similar to the result around (200), plot (d). The broad Gaussian curves
in plots (b) and (d) arc interpreted as an indication of the many disorder phases which
canses nuelear diffuse scattering around (200) and (111). From the experimental data in
these plots, the ratio of reflection integrated intensitics, are also evaluted; for example,

the value of 9.2 x 107% is caleulated for 111y /Iig. The squares of the nuclear structure
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Figure 2.1 Longitudinal scancs around a.(100), b.(111), ¢.(110), and d.(200) Bragg Peak
Positions,

[I. Tomeno, H. N. Fuke, H. Twasaki, ot al., J. Appl. Phys. 86, 3853 (1999)]



factors are calculated as follows:

Fio = (bir = ba)?

S0 = (bry 43 bara)

where the by, = 10.6 x 10" Bem and by, = —3.73 x 10" ¥cm are the nucle:

cattering
lengths. The (111) reflection is the muclear peak: while, the (100) Bragg reflection is the
sum of mclear and magnetic peaks. Thus the integrated intensity ratio, fi11/Foo, is ex-

pected to be less than 2, /F2,,. Surprisingly, the caleulated value

11/ Floo=1.7x10%,

is e less than the excepted value. “Tomeno and colleagues explain this discrepancy

by the presence of the disordered phase which causes the enhancement of the integrated
intensity ratio, /y1/po, and the broadening of the (111) linewidth. Furthermore, they
state that the (200) reflection occurs due to magnetic and nuelear scattering; the (111)

reflection is caused only by muclear scattering. The absence of magnetic scattering around

the (111) suggests that the M magnetic moments are in the (111) plane. Fig,

the possible magnetic structure suggested by Tomeno and colleagues.

Figure AF Structure of IrMuy.
[I. Tomeno, H. N. Fuke, H. Twasaki, et al., J. Appl. Phys. 86, 3853 (1999)]

“Tomeno and colleagues also measure the Néel temperature of the AF structure using
MNS. As deseribed, the disordered phase broadens the intensity of reflected neutrons

beam; and consequently, it decreases the intensity of the peak. This is shown in Fig. 2.6.

As can be scen in Fig. 2.6, the maximum intensity decreascs with inceasing temperature

due to thermal fluctuations; therefore. the height of the peak in the integrated intensity
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Figure 2.6: Decrement of intensity due to thermal disordered.
[I. Tomeno, H. N. Fuke, H. Iwasaki, ct al., J. Appl. Phys. 86, 3853 (1999)]

has adireet relationship with the order parameter of the system. This is used to determine

the Néel temperature of the system by investigating the thermal behavior of the integrated

intensity peaks around the (100). The (100) direction is selected due to

istence of the

strong magnetic seattering direction. The peak of the integrated intensity can be affocted

[re————

Figure 2.7: Temperature dependence of the integrated inte
1. Tomeno, H. N. Ful

sity.
H. Iwasaki, o al., J. Appl. Phys. 86, 3853 (1999)]

by disorder in both the erystal structure

and magnetic structure of the sys

em. The

unelear-scattering part, shown with the dashed line in k

. 2.7, can describe the disorder

in erystal structure, while the squares illustrates the entire scattering. In the selected

temperature range, erystal disord

, the dashed line, r

ns almost fixed; therefore, the
entire change in the integrated intensity can be assunmed as the result of the magnetic

order. Based on this

argument, Tomeno and his colleagues depict the magnetic scattering
part, which represents the order parameter vs temperature.

As can be seen in F

2.8, the results show the Neel temperature

round 960410 K

“The Tattice parameter s another quantity which is measured by Tomeno and colleagues.
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ature dependence of the magnetic part of scattering.
L et al., J. Appl. Phys. 86, 3853 (1999)]

meno, H

“The measurements of the lattice parameter in Ir\Mug also shows that in the ordered phase,
it is slightly smaller than in the disordered phase. Almost the same hehiavior has heen
reported for Pty [12]

“The Magnetic structure of ordered and disordered Ir-Mn alloys has also been studied
by Sakuma and colleagues [39]. Some experimental and theoretical rescarch had previ-

ously |

o performed to invest

ate the magnetic and erystallographic properties of other
Mu-based alloys. These indicate that the Néel temperature of the AF samples is sub-
stantially affected by the type and the concentration of the additional clements (such as

Ru, Cu, Au, Pb,

Ni. Ir, and Pt). Generally, the magnetic property of Mu-based alloys
is described by the number of magnetic electrons and spatial distribution of 3d orbitals
of Miatoms in crystal structures [13). Despite these efforts, the magnetic structures of
Mu-hased alloys are still not completely understood; furthermore, these alloys are widely

used in many applications in industry. These facts motivated Sakuma and colleagues

to perform the fivst-principle study of the magnetic of Mu-Ir alloys. The tight-binding

(TB) lincar muffin tin orbital (LATO) method was used to study the clectronic and
the magnetic structure of disordered e, Miggo—, and ordered [rMug by Sakuma and his
colleagnes. Based on the TB-LMTO method 4], the effective exchange constant, Jy, is
wiven by

1
In .
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kg
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where the (w) is the potential function difference for an electron due to changing its spin,

pHw). and ¢ (@) is called the auxiliary green function (AGF). The AGF

is composed of the potential function, 7 (w), and the screened structure constance,

g'(w) = [p( is valid to deseribe the non-collinear magnetic structure

of hoth ordered and disordercd alloys. In the next step, the generalized molecular field

theory is used to caleulate the Néel temperature as follows [41]:

2.y

3 ky

Ty (2.9)
Sakuma and colleagues in their article claim that two kinds of erystal structures for IrNng
alloy exist Lly-type (1-phase) ordered (0) and 3-phase disordered (DO) alloy'®. Fig, 2.9

shows the Lla-type ordered IMng. As can be seen in the figure, this structure consists

of triangular (T1) in (111) plane as in F

The same structure has heen reported

for RhMug and Pt g [16]

Figure 2.9: Triangular (T1) Maguetic Structure of IrMuy. Open circles represent Ir
atoms.
[A. Sakuma, K. Fukamichi, K. Sasao and R. Y. Umetsu, Phys. Rev. B 67, 021
(2003).]

20

Sakuma and colleagues have also studied the density of states (DOS) of these systems
The DOS curve of I atoms for clectrons with spin up and down is completely synunetric

with respect to ene

axis. It means the number of the clectrons with upward spin is

cqual with the number of the clectrons with downward spin in Ir atoms. However, the

The DO structures have been observed in the Ir, Miggo— alloys, wh

31 [19].

1



DOS curve of Mu atoms show a significant spin polarization, this spin polarization gives

a magnetic moment to the Mn atoms. The magnetic moment of Mu is caleulated from

the ditference of DOS for spin up and down. The magnetic moments for the Mu and Ir

2 juss and zero, respectively.

atoms in the Lly-type order IeMing ar
They have also caleulated the effective exchange constant, J, for the Lly-type order

cctive exchiange constant is around

IrMug by using Eg. 2.8, The result shows the ¢
160meV in Eq. 2.9

I'he Néel temperature caleulated by substituting the J,

~“This is around thirty percent larger than the experimental value. The

Iy 12501

higher values have been reported for Mualloys before this research. It seems the molecnlar
ficld approximation gives the higher Néel temperature [47, 48]

The disordered alloys of IrMung can form three possible magnetic structures which

are illustrated in Fig. 2,10 [44]. The DOS of these three magnetic structures, named

$=45

Q

0: Magnetic Structures of Disordered IrNIng,
sao and R.Y. Unmetsu, Phys. Rev. B 67, 024120

(2

Figure
ukamichi, K. Sa

1Q, 2Q. and 3Q, have been calenlated, the DOS curves in all configurations are quite
similar to the order structure of T Such a phenomenon has not been reported in Mn
alloys with Pt The most similar disordered DOS to the DOS of the ordered structure
of T1is the 3Q structure; therefore, it is expected that the 3Q structure is the most
stable disordered structure. The lowest energy has also been calenlated for 3Q structure,

able 2.1 shows the caleulated energy and the corresponding magnetic properties for

12



IrMuy alloy

“The most surprising data in the table are the Néel temp

ures given for

2Q and 3Q magnetic structures. Eq. 2.9

ives Néel temperatures of 648 K and 735 K

for 2Q and 3Q magnetic structures ac

ording to caleulated values for Jg, so there may
be a misprint in the article.  As can be seen in Table 2.1, the closest energy to the

ordered configuration, 3Q. shows the energy differences around 5.6 mRy /atom. Also, as

the diserepancy with the caleulated Néel temperature of ordered structure, the calculated
Néel temperature for 1Q magnetic structure is much less than experimental report. This
may confliet with the the claim that the molecular field approximation may be the reason

for higher calenlated D

ol tempe

ures. Sakuma and colleagucs explain this discrepancy

by considering the fact that difference between 1Q and 3Q magnetic

structure is not
clearly distinguishiable by using the powder neutron diffractions method; thercfore, the
Neel temperature measured experimentally for 1Q) structure could actually be the Neéel

temperature of 3Q structure [49]. According to this explanation, the caleulated Neéel

temperature, T

K. is close to and higher than the experimental Néel temperature,
{7730 K. of 3Q magnetic structure. The table also shows that in all disordered

guctic structures, Ir atoms have magnetic moments. This means that the symmetry

of the DOS of Ir atoms brea

s duc to the binding with magnetic Mu atoms in disordered

structures. This phenomenon is not observed in the ordered structure, T1

Table 2.1: The Energy and Magnetic Results of IrMug Alloys [30].
Phase  Mag. St. AE pa e o TS THY
L1y type Tl 0.0 0.00 162 1253 960
DO 1Q 6.9 0.09 41 317 730
DO 20 6.0 011 85 66
DO 3Q 5.6 012 95 0

Sakuma and colleagues also discuss the effect of Ir concentration on the stable mag-
netic structures. The energy is caleulated as a function of the angle 6 to show which

disordered magnetic structu

is the most stable structure in different concentrations of



I (0, 5. 15, and 25% of Ir). As can be seen in Fig. 2.11 part (a), # is defined as the angle

between magnetic moments and z-direction. Based on this definition, #=0°, 50.7° , and

90° correspond to 1Q, 2Q, and 3Q. As can be scen in Fig, 2,11 part (1), the energy curves

E(8)-E(0) (mRy/atom)

Figure 2.11: Energy of Disordered IrMn Alloy
A. Sakuma, K. Fukamichi, K. Sasao and R. Y. Unietsu, Phys. Rev. B 67, 024420
(2003).]

mum at # = 54.7° when the Ir concentration is 15 and 2

show the mis

%. T

is angle

presents 3Q) structure as the most stable disordered structure. Tt is important to note
that when x=25% the ordered structure, T1, s the most stable. Sakuma and colleagues
have also investigated the phase diagran of two disordered structures, 2Q and 3Q. by in-

creasing the concentration of Ir in alloys. Fig. 2.12 shows that the 2Q magnetic structure

is the stable phase when the Ir concentration is less than x,, ~13 %. Above this critical
concentration, x,,. the system prefers the 3Q maguetic structure. The assamption of an

fee structure for alloys with every concentration of Ir is not obvious. Therefore, Sakumia

and colleagnes have performed Xeray diffraction tests to investigate the effect of the con-
centration on the structure distortion. It scems that the face-centered tetragonal (fct)

structure, with ¢/a>1, converts gradually into face-centered cubic (fec), with ¢/a=1, by

increasing temperature. The structural phase transition from the fet to fec at the temper-
ature T g, causes 1o anomaly on the magnetic behavior of the specimen. Sakuma and

colleagues have investigated this assumption by measuring the magnetic susceptibility of

"
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[A. Sakuma, K. Fukamichi, K. Sasao and R. Y. Umetsu, Phys. Rev.
(2003)]

B 67. 024420

the TrysMug alloy in a field of 10 kOe, and there is no sign of unusual magnetic behavior

at the temperature of '

et fee

The majority of rescarch on Tr, Muyg_; focuses on the pinning role of these AF alloys
in the AF/FM biclayers. The effect of AF thickness on exchange pining has heen studicd
by Ali and colleagues [50]. This work consists of experimental and MC simulation parts.

For simplicity in the simulations, they have used the simple cubic (sc) lattice instead of the

true fee Kagome lattice. The observed results in the experimental part of the rescarch are
restudied by using simulation. The simulation results show significant compatibility with

the experimental measurements. As can be seen in Fig. 2.13, the exchange pinning fields.

H,.. and cocrcivity, H,., (sce appendix 1) as finction of the AF thickness are depicted

at different temperatures. The same behavior have been observed in experimental and
simulation data. These compatible results confirm the validity of the Hamiltonian which

i used in simulation code, given by:

H=-JrY =3l
—dar Yy G0 G = 5 lkeo? + G, - B) (2.10)
—Jivr Caigs S

In Eq. 2,10 the spins of FM and AF layer are denoted by §

and d, respectively. The
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Figure 2.13: Exchange Pinning F
and simulation

[M. ALi, C. HL Marrows, M. AL Jawad, B. J. Hickey, A. M
Usadel, Phys. Rev. B 68, 214120

el H,, and Coercivity He in IrNug from experiment

U. Nowak and K. D.



external magnetic field. I, is along the z-axis, while the r-axis is normal to the layers

s hias been considered as an easy axis of the magnetic system

In the simulations, the =
by selecting d. > 0, and the r-axis as the hard axis of FM layer, d, < 0. Defining the

plane.

r-direction as the hard axis canses the FM spins to remain in the y

Mag. Field —»
Easy Axis —-

Figure 2.11: Orientations and Geometry of Exchange Pinning System used by Ali et al

Based on the article by Ali and colleagues the geometry and orientations of the simu-
lated system are schematically shown in Fig 2.14. Another important parameter in this
Hamiltonian is the quenched disorder parameter, ¢, This parameter can have one of only

zero as the value for this parameter,

two values, (¢ = 0,1). It seems that by selecti

S

avacancy in AF is introduced in the simulation. This could be interpreted as causing

ronghness in the AF layer as the Malozemoff model (See chapter 1). Three different ex-

M, FM-AF, and AF-AF interaction.

change interactions exist in this Hamiltonian: FAI-

The strength of these interactions is defined by the magnitude of Jp, Jyp. and Jiyy. Ali

and colleagues have chosen Jp=—2xJ3=2xJpv7 in the simulation. Temperature plays

a crucial role i the simulation of exchange pinning systems. As described in chapter
1. the exchange pinning occurs below the Néel temperature. Ali and colleagues have

initialized the system at a temperature, Ty, below the Curic temperature.

). then

FM layer and above the Néel temperature, Ty, of the AF layer (Ty <'T) <

throngh a cooling process fin the absence of any external magnetic field], the tempera-




ture of system is reduced to Ty, below the Néel temperature (T, <Ty <T¢). Then the

external magnetie field s been applicd while the temperature of system was kept fixed

at Ta. and an MH loop for the FM layer caleulated. The hysteresis loop of the system
(see appendis 1), the curve of the magnetization vs external magnetic field. indicates the
the exchange pinning field, H,,. and the coercivity, H. of the systems with the different

AF thicknesses. According to the results shown in Fig. 2.13, Ali and colleagues conclude

shows a sha

that the exchange pinning field at low temperatures 1p peak for a very thin

AF layers and by increasing the thickness of the AF layers, the exchange pinning ficld
decreases until it levels off. This phenomenon scems to be a fundamental property of ex-
change pinning; therefore, this rescarch suggests that any significant theory of exchange
pinning must be capable to explain this interesting functionality of the pinning field on
the thickness of the AF layer. On the other hand, they show that the in-plane domains,
as predicted in Malozemoff model, play a crucial role in the exchange pinning, especially
in very thin layers.

To explain the exchange pinning in bi-layers, knowledge of the interface anisotropy

and exchange interactions are erucial. The surface anisotropy plays an essential role in

widely-used Malozemoff model. On the other hand, exchange interaction strengths show
the influence of the number and ordering of ncighbors of the energy of system

Inanother research by Szmyogh and colleagues the form and strength of the anisotropy
i I /Co(111) interface has been studied [51]. T this work, the ordered bulk phase
(L1y) for I\ and fee phase for Co were studied. The sereencd Korringa Kohn-Rostoker
(SKKR) miethod was used to caleulate the magnetic structure of the Ir\ng/Co(111) in-
terface. Tt scems this rescarch can be useful for future simulations to determine the

magnetic interaction and anisotropy of the bilayer FM/AF with AF of Mu-Ir alloys.



Chapter 3

MC Simulations of the 2D Kagome
and the 3D Triangular Stacked, and
fcc Lattices

As a precursor 1o the simulation on the fee Kagome lattice, we present MC simulation
vesults on three lattices which are structurally close to the fee Kagome. Results from these
simulations are compared with previously published simulations. All computer codes are
written in Fortran 90, and Perl is used to make links among the Fortran codes and also in

post processing of the data. Most graphs are plotted nsing xmgrace and Mathematica?
3.1 2D Kagome lattice

As diseussed in the chapter 1. the Kagome lattice is constructed by removing one fourth
of the lattice points of the triangular lattice. The interesting behavior of the 2D Kagome
lattice at very low temperature (around absolute zero) has attracted the attention of
miany rescarch groups. The 2D Kagome AF lattice was theoretically studied by Harris
wd colleagues in 1992 [52]. The essential results of this comprehensive work are used to
evaluate the validity of the computer code written for this thesis which was eventually
expanded to simulate the fee Kagome lttice(3D).

In the 2D Kagome structure for XY and Heisenberg models with only the nearest
neighbors AF exchange interactions, there is no single stable ground-state due to a high
degree of degencracy (see chapter 1), This theoretical prediction is confirmed by our
Monte Carlo results. Results for the encrgy caleulated for a 12x12 Kagome lattice are

plotted as a function of temperature in Fig. 3.1, The data were averaged over 150,000

19



Lo oo (i o e tie )
15 S 85 668 778
Temp.

Figure 3.1: MC sinulation results for energy vs temperature,
In the 2D Heisenberg Kagome lattice, no phase transition is observed

MCS. The results show no indication of a discontinuity or sudden change in slope. As a

3.2 does

1 function of temperature in Fi

consequence, the specific heat. C. plotted a
o

ond order pha

or discontinuities, indicative of a first or s

not show any local peal
It s impossible to define the

is consistent with previous results

transition. T

order parameter for such a system due to the absence of the well defined ground-state
configuration,

Zhitomirsky has shown that in wsing MC simulation to caleulate the specific heat of the
nearest-neighbor AF 2D Kagome lattice, just like our simulated system, particular care

hias to be taken at very low temperature, 10! <T<107!, as the acceptance rate decreases

ing the

exponentially [53]. There are two strategies to tackle this problem; first, iner

number of Monte Carlo steps in order to produce enough accepted ‘moves’, second, using

economic, and it may

a modified form of the algorithm. The first method is not ver

ions based on random trials. An

take a long time to produce enough accepted configu

alternative approach, discussed by Zhitomivsky, is the Metropolis rejection schem

T this scheme, the acceptance rate is increased by imposing a new condition of AS* < 7',

(this formula can be the reduced form of J x AS* < k; x T). This means that only the
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Figure 3.2: MC simulation results of specific heat vs temperature
In 2D Heisenberg Kagome lattice, no phase transition is obscrved
random changes in spin-configuration with the energy cost less than the thermal energy
of system are taken as trial configurations. This method makes the code faster to produce

accepted "moves™. As can be seen in Fig. 3.3, the published results by Zhitomirsky (part

o0
1z

+ 3.3 Specific heat vs temperature for 2D Heisenberg, Kagome lattice at very low
rature.(A) from Ref. [33), and (B) from our Monte Carlo simulations.
Zhitomirsky, Phys. Rev. B 78, 094423 (Qll(m)]

A) is confirmed by our results shown in the part B. The interesting fact is the number of
MCS required to produce a smooth curve for the specific heat is around a million MCS.

The need to use such a huge number of steps on the modified version of the MC code

51



shows how long the standard MC method takes to give results

Ihie possible ground-state configurations for the 2D Kagome lattice have been sim-
ulated including first, second, and third nearest neighbors exchange interactions. There
are two usual schemes to determine ground-state of a lattice; the first scheme is by ap-
plying the standard Monte Carlo algorithm at very low temperature and then caleulating

the thermal average of spins. This scheme can take a long time and the final result is

ate spin-configuration (the configuration docs not show

only an estimation of ground.
the exact configuration at absolute zero temperature). The second scheme is designed in

a deterministic way. In this

scheme the initial configuration is updated by imposing the
AF constraint. The spin-orientation of cach point is alinged anti-parallel to the magnetic

ficld produced by the result of all its neighboring spins [45]. The simulation results for
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NEvYevYrY YOy YN TN TN LT
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vy 7oAy L
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v gy R AR )
X X

Figure 3.4: Ground-state 2D. (A) q=0, and (B) v3 x V3

the ground-states of the 2D XY Kagome (12x12) after 108 steps are shown in Fig. 3.4
As can be seen, there are two possible ground-states for the system defined to as the -0

state (B). Each of these configurations minimizes the energy of

state(A) and the /3 x
the system based on which pair of exchange interaction coefficients, Jy and Jy. is selected
for the following Hamiltonian;

1 '_’)‘L~
“ NN

§ (3.1)

As theoretically discussed by Harris and colleagues, the q=0 state is the ground-



3.5: Nearest Neighbors ( ccond Nearest Neighbors (€
ghbors (TNN) in the 2D Kagome lattice

), and Third Nearest

state of the system for Jy>J5 and V3 x V3 state is the ground-state for Jo<Jy [52]
To check our simulation code, the output ground-state configurations, shown in Fig 3.4,
are used to caleulate the energy of the system by changing the exchange coefficients,
Jy and Jy. Blue in Fig. 3.6 shows the area where the =0 structure is the minimum
) —
i ""HI““HI"H""“" g
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i Illllﬂl I
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Figure 3.6: Stable arca for =0 (in blue) and v3 x /3 (in red)

cnergy state, while red is used to illustrate the arca where the V3 x V3 structure is
more stable. As can be seen, above the line y=x the stable structure is q=0 and below
the line V3 x V3 structure possess lower encrgy, completely consistent with theoretical
prediction. Harris and colleagues also have caleulated the encrgy of the ground-states for

both configurations. The following relationships between the ground-states energy, o



and Jy. have been derived by minimizing the encrgy

and the exchange cocfficients, J

of system

g=0 ; Eyox—Ji=Jh+2J;

V3 x V3 Eyox-

I the nest stage of chiecking the simulation results, the finctionality of energy with

(32)

B+ 20— Jy

respect of exchange coefficients has been evaluated.  The results of this evaluation is

shown in Fig. 3.7, As can be seen, the energy has a lincar relationship with the exchange

PPN PR PRV TN T TR
(T T G
hane it ot

Ve bctrn ot

Encrgy as a function of exchange interaction coefficient

Figure 3.

cocfficients with the slopes that agree with the expressions (3.2). In part (A) of Fig. 3.7,

the q=0 structure shows the exact -1, -1, and 2 as the slopes for encrgy lines vs J

L and -1, respectively

and Jy, and i the part (B), the slopes for v3 x V3 are -
3.2 Stacked Triangular Lattice

3.8. As can be seen, cach lattice

The AA-stacked triangular lattice is illustrated in Fij

point hias cight nearcst neighbors in this structure (six in the plane and one above and one

below). This erystallographic structure is seen in materials with ABX; chemical formula

such as CsN . The Heisenberg model is used to simulate the stacked triangular

lattice, and then the results are compared with the results published in 1990 by Maillot

and colleagnes [13]. The Hamiltonian includes the exchange interaction between the



Figure 3.8:

A-Staked Triangular Lattice

nearest neighbors and uniaxial anisotropy as follows;

For .J

—1 (AF interaction) and D

energy. E, and specific

results were obtained

1

(3.3)

-y nst

1 (z-axis as uniaxial easy axis), the results for the

heat, C, are plotted in Fig3.9 and Fig. 3.10, respectively. These

on a 12x12x12 lattice after 10> MCS.

500

o

s

4500

s

Figure 3.9: MC simula

As can be seen i

tion results for ener

T
Temn

s temperature in the AA-stacked triangular

the Fig. 3.9, the curve shows sudden changes in the slope of the
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Figure 3.10: MC simulation results for specific heat vs temperature in AA-stacked trian-
gular lattice.

energy at two temperatures (1T=0.6 and T=1.2) indicating two possible phase transitions

The specific heat curve, in Fi

3.10, also suggests the existence of two possible phase
transitions in the stacked triangular lattice. These phases mateh with the critical temper-

atures reported by Mailhot and colleagues [13]. The interesting property is the existence

of two eritical temperatures. In Ref. [13], a scheme is used to understand the character of

these two pl

transitions through thermal behavior of various order parameters.

The

order pars are defined separately for =-

I s and ry-comy 5 of spins

follows;
My = (3/N) (M2 + MG+ M2y /3)
Mo = (3/N){((M3)? + (M) + (ME)) /3}'7 (3.4)
Mey = (3/N) {{{M5)? + (ME) + (ME)? + (MY)? + (M})? + (ME)?)/ 3}'72
where N is the mumber of the sites and M and M2 are defined as follows;
Mg -1y, sy

= LAY LS @5)

ME = (M) 4 (ME)? + (M3)?

with o € {o.y. 2} and g indicates the magnetic sub-lattic

as mentioned in Sec. 14,

There are three sub-lattices A, B, and C, in the triangular lattice. These sub-lattices are



Ihis scheme has been used to caleulate order parameters and the

D, VaARAV.YA!
\VaV.LVAVAY,
LVAYaAYAYA

-lattices in the triangular lattice.

The 120° spin-structure)

shown in Fig.3.11

Figure 3.12: Order parameters in triangular lattice vs temperature from our MC simula

tions

As can be seen, below the higher critical temperature,

results are shown in Fig. 3.1

1.2, only -components of spins start to be ordered and the ry-components take

T

their ordered orientation below a lower critical temperature, T, = 0.6. These results are

confirmed by Ref. [13]. The same scheme is used later for the fee Kagome lattice, as

discussed in chapter 4



3.3 Face-Centered Cubic (fcc)

The AF fee lattice was also simulated in order to check the computer code. The fee
lattice can be viewed as an ABC-stacked triangular lattice along [111] directions. The
only difference between fee Kagome and regular fee is vacancies of 25 percent of lattice

points i the Kagome lattice. A previous study of a Heiseuberg AF on fee lattice as

been preformed by Puma and colleagues [55]. Their results show a phase transition at

23.13, the energy of our simulations also shows a dis-

I ™ 0.4 /ky. As can be seen in F
continnity around T=0.445 which is close to the result obtained by Puma and colleagues.
Also the discontinuity in the energy curve suggests the existence of a first order phasc

transition. In Fig. 3,14, the specific heat shows the critical temperature with a clear peak

his result has heen produced for the lattice size of 18 x 18 x 18 with MCS=2.0x 10",

ool

waoo)

L T L ¥ ¥
Teme.

Figure 3.13: MC simulation results for the energy vs temperature in the Heisenberg fee

lattice.

3.4  Summary

ne lat-

Ihe agreement between onr results and previously published results on 21 Kag
tice, A=A stacked triangular lattice and fee lattice confirms the validity of our code in
simulating the strnctures close to the fee Kagome lattice. Also, the written subroutine

2 was confirmed in practice. This method is

based on the method described in Se
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T R
Figure 3.14: MC simulation results for the C vs temperature in the Heisenberg fee lattice.

used to caleulate order parameters in chapter 4. In the following chapter, we focus on
the fee Kagome lattice as a new structure. There are no published results available about

MC simulation of the fee Kagome lattice.
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Chapter 4

MC Simulations of the FCC Kagome
Lattice

4.1 Crystallographic and Magnetic Structure of the
Fce Kagome Lattice
T this chiapter, simulation results of the AF Heisenberg and xy fee Kagome (ABC-stacked
Kagome) lattices are presented. The crystallographic structure of the fee Kagome is
illustrated in Fig. 4.1, As can be seen, this three dimensional structure consists of 2D
Kagome layers which are shifted with respect to the adjacent layers. In ABC-stacked
triangular lattice, cach point in the lattice has 12 nearest neighbors: however, in the fec
Kagome, 1 of these positions of ncarest ucighbors are vacant. Therefore, each point has
8 nearest neighbors; 4 nearest neighbors in the plane and 2 on the upper layer and 2 on

the lower layer

Figure 4.1: fee Kagome structure. ABC planes shown are in the xy plane. <111> is

along the 7 axis
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Based on previously published results on the 2D Kagome lattice (sce chapter 2 and
3). the existence of three magnetic sub-lattices in the fee Kagome is assumed to define
the order parameter of the system, as will be described in this chapter, this assumption
is confirmed numerically by the MC simulations. In Fig. 4.2, we show the ground-state
spin-coufiguration for a single layer of the fee Kagome lattice, with different sub-lattice
shown in different colors (blue (sub-lattice A), red (Sub-lattice B), and black (sub-lattice
©)). As can be scen, the spin-configuration of this ground-state corresponds to the q=0
state found in the 2D Kagome lattice. It is important to recall that the q=0 structure for
the 2D Kagome lattice is achieved only when second and third nearest neighbors exchange
interactions are included. Another important fact about the magnetic structure of the

fee Kagome lattice, which must be taken into account, is the possibility of the existence

acy due to the location of the vacancies (see Sect. 1.6.1).
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Figure 4.2: Magnetic sub-lattices of the fee Kagome lattice

4.2 Energy and Specific Heat of the Fcc Kagome Lat-
tice

o investigate the magnetic structure of the fec kagome lattice, three simulation processes,

heating, cooling, and runs at independent temperatures, have been performed. In the

hieating processes, the q=0 structure was used as initial spin-configuration of the system
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at the lowes

t temperature, and in a serial run of increasing temperature, the initial

sin-configuration at next temperatures was the final spin-configuration of the previous

lower temperature. T the cooling processes, a random spin-configuration was used as

uration of the sy

initial spin-confi tem at the highest temperature, and in a serial run of

decreasing temperature, the initial spin-confignration at next temperatures was the final
spin-configuration of the previous higher temperature. In the independent. temperatures

simulations, a random spin-configuration was used as initial spin-configuration at each

temperature. Morcover, runs at different temperatures were completely independent and

performed on different CPUs,

1o |-

13000 J

s |
17000 f- 4
1800 B
1000 - N

20000

001 02 03 04 05 06 07 0% 09 1 11 L2 13 14 1§
Temp,

Figure 4.3

Simulation results of energy

s temperature for the ry fee Kagome lattic.

Figs. 1.3 and 4.4 show the energy of the fec Kagome system vs temperature for xy and

Heisenberg models. These results have been achieved with a 24x24x24 lattice after 107

MC

S in the heating and cooling processes and after 107 MCS in the independent temper-

atures

simulation. As can be seen, the results of the heating, cooling, and independent

temperatures proce

ses completely agree. The encrgy of the system is a function of num-

ber of spins (lttice size). the interaction types (Hamiltonian), and the temperature of the

system: morcover, the energy is independent of initialization of the system. Therefore,

G2
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1.1 Sinlation results of energy vs temperature for the Heiseuberg fee Kagome

for cach model (Heisenberg or ry) the results are completely independent of the selected

process (heating, cooling, or independent tempe

ature). These two figures show possible

phase trausitions at T=0.76 and T=0.47 for ry and Heisenberg fec Kagome, respectively.
Ihe obvions discontinuity in the curve of the y fee Kagome energy suggests a first order

phase transition, while the discontinuity observed in the Heisenberg model shows only a

possible weak first order phase transition at a lower temperature.

15 and 4.6 show the specific heat, C, of the xy and Heisenberg fec Kagome

Figs

systems. As expected, the specific heat vs temperature is completely independent of

initialization of system: therefore, the results of three different processes, heating, cooling,

and independent temperature, overlap cach other in both ry and Heisenberg cascs. Also,

the sharp peaks at T=0.76 and at T-0.47 for oy and Heisenberg models, respectively,

confirm our observation of the discontinuity in energy of the system (see Figs. 4.3 and

Iso as an addition check on the results obtained from our simulations, we note

11). 4

at low temperature, while the

that the specific eat of the ry results converge to 0.
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Heisenberg case. specific heat converges to 1

E T T T T, A T T e N A e R
e
Figure 1.5: Simulation results of C vs temperature for the ry fee Kagome lattice

4.3  Kagome Inter-L

yer Interactions

In the fee Kagome latt

cach spin interacts with its

jght ucarest neighbors. Four of
these nearest. neighbors are in the plane and two of them located in the layer above and
two in the layer below. 1 s of interest to study the effect of the inter-plane interactions
on the specific heat. As discussed in chapter 3, no phase transition is observed in the 2D
Kagome lattice when only nearest neighbors are in the exchange interaction. Based on
this fact, decreasing the inter-layer interaction cocfficient, 1/, to zero must finally destroy

long raw

because in the ¢

e o

se of =0, the system consists of independent 2D

Kagomes which have 1o phase transition. On the other hand, experiments show that

the effect of chianging J can explain the real system. As deseribed in chapter 2. the
foe strueture of Mg may show not a perfect cubic (¢/a # 1) lattice, with the vertical

lattice parameter, ¢, is slightly onger than in-plane Iattice parame

a [39]

I order o simulate the effect of changing 1 on the specific heat, we have used a
Perl code to simulate the independent temperatures process using around 400 CPUs on

ACEnet machines. Recall that the previous results of encrgy and specific heat shows the

Gl
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Figure 4.6: Simulation results of C vs temperature for the Heisenberg fee Kagome lattice,

cquivalence of the three different processes (see Figs. 4.3 to 4.6). Note that this part
of simulation requires very long times in serial rns. The 3D Kagome lattice with the

lattice size of 24x24x24 was simulated for ry and Heisenberg models by changing the

1< 0.95, with 107 MCS in the independent temperatures

inter-plane interaction, 0.05

process. We set J,-1

As can be seen in Figs. 4.7, 4.8, and 1.9, decreasing the inter-layer exchange inter-

action coefficient, J', reduces the temperature of the specific heat peaks values which

approach zero temperature. When =0 . this local peak in curve has completely disap-
peared. At low temperatures, much lower than the critical temperature, the temperature
dependence of the specific heat exhibits large fluctuating due to low acceptance rate. To
overcome this problem, significantly more MCS would be required. As a consequence the
low temperature data are not included in Figs. 4.7, 4.8. All the curves for the ry model
converge to 0.5 at zero temperature while the curves in the Heisenberg models converge
into 1.0, Also, the results show that the specific heat in the ry model is almost two

times more sensitive than Heisenberg model to the vatiation in J'. In order to compare
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Figure 4.7: Simulation results of C vs temperature in ry 3D Kagome with different

inter-layer exchange, J'

001 02 03 04 05 06 07 0% 09 1 Ll
temp

Figure 1.8: Simulation results of C vs temperature in Heisenberg 3D Kagome with dif-

ferent inter-layer exchange, J'.

66



001 02 03 04 05 06 07 0% 09 |
Temp. of Max. €

Figure 4.9: Simulation results of the position of C peaks for different J'.

sensitivity of specific heat. the relative variance of data shown in Fig. 4.9 is used.

XY Model 0.36
(4.1)
Heisenberg Model :  Gli=t) —0.19

where Vi(x) denotes the variance of x. This may mean that magnetic structure of Heisen-

berg model is more stable through a structural phase transition from fec to fet where the

inter-laver spacing changes.

4.4 Size Effects and the Order of the Phase Transi-
tion

To observe the effect of lttice sizes on the specific heat and eritical temperature, sini-

ulations with different lattice sizes, from 12x12x12 to 36x36x36, have been performed

throngh independent temperatures process and for 107 MCS. In principle, the critical

temperature, T must shift to the exact value when the lattice size goes to infinity. In
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the infinite

wstem, the peak of specific heat also has its maximum height and minimum

widih; therefore, the critical temperature can be determined more precisely with a bigger

lattice,
28T T T T T T T T T
I8E e 22
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Figure 4.10: Simulation results of C of the Heisenberg fee Kagome lattice with different
lattice sizes

As can be seen in Fig. 4,10, while the C curve with the lattice size of 12x12x12

is nearly a horizontal line. The result of 36x36x36 lattice size shows a clear peak at

aromd T=0.4756. Also, it se

us the peak of specific heat shifts to lower temperatures

by increasing the lttice size, such a hehavior has been reported in other simulations 28]

As Fig. 4.3 shows, the first order nature of the phase transition in the ry fec Kagome

model would appear obvious due to existence of the discontinuity in the ene at the

aitical temperature; however, the order of the phase transition in the Heisenberg case is
ambignous. As can he seen in Fig.4.5, this phase transition may be weakly first order ot
second order. The order of these phase transitions were studied by examining histograms
of the internal energy. First, the internal encrgy of every ensemble is saved in an output

file of the Monte Carlo code, then another code, in Fortran 90, produced the histograms
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at cach temperature. The Heisenberg fec, vy fee Kagome and Heisenberg fee Kagome

lected because

rams. The AF Heisenberg fec is

systems are nsed to produce energy histoy
the erystallographic structure of fee lattice is close to the fee Kagome and there are

able from previous MC simulation which shows a first order phase

published results ava

04470 for a lattice size of 16x16x16 [56]

transition at ’
As can be seen in Fig. 4.11, below (shown in A) and above (shown in C) T=0.4435,

. two peaks

there is only one peak in the histograms, but at the temperature of T, ~0.4435
are seen. At this temperature, there is a discontinuity in the possible values for internal

These results have been produced in the fee Heisenberg AF with the lattice size

energ
of 242024 after 107 MCS through the independent temperatures process. The slight
difference etween critical temperature in our results and the reported results ean be the
effect of lttice size on eritical temperature (Sce Fig, 4.10).

As cam be seen in Fig. 412, the histograms of y fee Kagome lattice show the same
pattern which observed in Heisenberg fee AF. Below (shown in A) and above ( shown
i C) T 0.760 only one peak shows the most possible encrgy for the system, but at

results have

0,760 two peaks appear. “To compare with the Heisenberg fee AF, thes

been produced with the same lattice size, MCS, and in the same MC process.

e tramsition of the Heisenberg fec Kagome

As can be seen in Fig. 4.4, the order of pha
lattice is not as clear as in the fee and ry fee Kagome. To produce more clear results, the
lattice size of G0x60x60 was used to plot histograms in the independent temperatures
process.

Fig 113 part B shows an obvious discontinuity in encrgy values: therefore, a first

order phase transition can be considered likely for the Heisenbery, fee Kagome lattice,

Also. the discontinuity in the internal energy in the Heisenberg fe Kagome for bigy

lattice size, 36 % 36 x 36 after 10° MCS, confirms the weakly first order phase transition

d on the definition

in this structure (See Fig. 4.14). It is important to note that bas

of the Delta used to plot the datain Figs. 4.11, 412, and 4.13 , the scales and ranges

of the Delta (x axises) depened on the values of Eypa, and Eyy, and are therefore not

9
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Figure 4.11: Simulation results of energy histogram in the fee Heisenberg model at around
101135,
Delta

(1= Eyal)
[y
Wiasinniin of the caleulated encrgy at each temperature.

% 2000, where Eyy, and Eygge are the minimum and the



Figure 1.12: Simulation results of energy histogram in ry fee Kagome lattice at around
1'-0.760.
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+1.13: Simulation results of energy histogram in Heisenberg fee Kagome lattice at
wonnd 104758
Delta — el e 8000, where By, and Eyg, are the minimum and the

Wiaintiin of the caleulated energy at each temperature




comparable at different temperatures.
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nlation results of encrgy vs temperature Heisenberg fee Kagome (L=36).

Figure 4.1

“The eritical temperatures of the three systems are listed in Table 4.1. There are some
publications which discnss the effect of the spins degree of freedom on the value of critical

me lattice,

temperature. Despite the fact that these studies do not focus on the fee Kag
they ontline the general effect of the degrees of freedom on the eritical temperature. Adler
and colleagnes, based on theoretical arguments, predicted the critical temperatures of

Heisenberg and ary simple cubic (s¢) structures [57). Despite the different structure, the

en
theoretical ratio of % is around 0.655 and the simulation ratio for the fec Kagome is

around 0.626. The only 4.4 percent deviation from this theory can be the cffect of the
different erystallographic structures

Another quantity which plays an important role in determining the eritical temper-
ature is the number of nearest neighbors. Because changing the number of the nearest

hbors causes a fundamental change in magnetic structure of these systems, the anal-

nel

ogy between (Heisenby fee and (Heisenberg) fee Kagome is not trivial due to the

3



» 1z Critical Temperatures in Heisenberg fee, ry fee Kagome and Heisenberg fee

Structure No. Nearest Neighbors  Degree of Free y
fee 12 0.4435
xy fee Kagome 8 0.7600
Heisenberg fee Kagome N

completely different magnetic order

ooy,

o 3

Figure 1.15: Simulation results of (A) Binder's Vi(L) vs temperature, (B) Minimum of
Vi(L) vs L% Heisenberg fee Kagome,

In Fig. 4,15, results for the Binder’s fourth comulant vs temperature show a mininum

for cach lattice size (L: 18, 24, 30, and 36)(see See. 1.7). The best curves are fitted to

the diserete points of the Monte Carlo results with using Mathematica software, Based

o the positions of minimums of these enrves. the V(L) ar vs L% is plotted in the part
B of Fig. 1.15. The best it line to the points in the part B of the figure has the slope of

-0.901781. "This linear behavior is almost matched with the published results shown in



Fig. 1.21, and provides further evidence of a first order transition
4.5 Order Parameter and Spin Structure

As explained in chapter 1. the ground-state (GS) spin-configuration plays a crucial role

in the definition of the OP. “To study the thermal behavior of the OP in the 3D fec

Kagome lattice, we generalize the 2D q=0 GS to 3D by stacking the layers as shown

in Fig. 4.2, such that the angle between nearest-neighbor spins is 120°. The q-0 GS
therefore consists of three inter-penetrating sub-lattices, denoted by A, B and €, which
the spins are arranged ferro-magnetically, and which are aligned at 120° to cach other
While it can be shown that this spin structure does indeed minimize the energy of the
system, we will show that it is not the only GS of the fee Kagome lattice.

Based on the 3D q=0 GS and using the expressions 3.4, and 3.5, the temperature
dependence of the OP for the fee Kagome lattice has been caleulated through the three
processes of cooling, heating, and independent. temperatures. As stated previously, our
simulations show no difference in the energy of the systems for the different initializations
in these processes; however, onr results show a significant role of the initialization in the
temperature dependence of the OP. This is a result of spin-configuration degeneracics.

Figs. 416 and 4.17 show the temperature dependence of the OP in the ry and Heisen-
berg fee Kagome lattices, respectively. As can be scen, the OP curves obtained by heating,
the system from its 3D ¢=0 GS in both models are smooth, monotonically decreasing
functions of temperature with OP=1 at zero temperature. The OP curves in the cooling
process are also smooth functions of temperature, but they do not converge to the 3D

of the independent

-0 GS value (Sce Fig. 1.2) at zero temperature (OP<1). Tn the ¢
temperatures process, the fluctuations in the OP below eritical temperature does not

1 show many possible configurations which ave the

show asmooth behavior, but inst
same energy. The fact that we simulate states with the same energy but with different

values for the OP implies that the system must be highly degenerate,

Anothier interesting point about the results of the independent temperature process is



the quantization of the OP at zero temperature. As can be sce in the figures, the values

he extensions of these

of the OPs usually lie between the heating and cooling curves.
curves to lower temperature cross the OP axis only at some discreet. points.

ieracy, it is useful to examine the OP of the A, B

I order to understand this deg

and C sub-lattices. According to the definitions 3.4 and 3.5 which are used to calenlate
the OP and the sub-lattice OP, the value of each sub-lattice in the total OP of 3D q=0
GS s §: consequently, all caleulated values shown in Fig. 4.18 and 4.19 are below 0.3, In
the heating processes in both models, all sub-lattices, A, B, and C, follow the 3D q-0
GS aligmment with a maximum possible value, 0.3, at zero temperature.

I cooling process, two of the sub-lattice OPs do not obtain the orientation of the 3D
-0 GS. while one of the sub-lattice OP completely matches with the 3D =0 GS (Sub-
lattice B for xy model and sub-lattice C for Heisenberg model converge to 3). The

. A and B oin the

interesting point is that two other sub-lattices (A, C in the ry ¢

Heisenherg case) show exactly the same deviation from the 3D =0 GS alignment. In the

vy system A and € sub-lattices finally converge to around 0.2, and in the Heisenberg

model A and B sub-lattices converge to 1.7 at zero temperature. This means that a

symmetric deviation has oceurred for these two sub-lattices.

AMy =0
xy Model : (12)
AMy = AMe = 0.11

AMe =0
Heisenberg Model : (4.3)
AMy = AMy = 0.16
where AM,=0.3 - M, and 5= A, B, or C.

none of the curves show values lower than

Inindependent temperatures: processe
OP 015 at zero temperature. This suggests that there is a lower limit for the deviation
from the 3D g0 GS alignment. On the other hand, the majority of the caleulated OP
for both models in this process follow the same pattern for at least two of sub-lattices

Ihat the observed behavior of OP may be explained in terms of the domain wall
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model discussed in Sect

1.6.1

*—¥ Independent Temperatures
B Heating Process

06 07 091
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Figure 4.16: Simulation results of the OP vs temperature in the xy fee Kagome model

L=24. MCS=10" (He

cating and Cooling), and 107 (Independent Temperatures).
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Figure 1.17: Simulation results of the OP vs temperature in the Heisenberg fee Kagome
madel
24, MCS-10° (Heating and Cooling). and 107 (Independent Temperaturcs)



Figure 118

Kagome lattic

L=24, M
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Temp
Simulation results of the sub-lattice OP vs temperature for the xy fec
'S=10% (Heating and Cooling), and 107 (Independent Temperatures).
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Figure 4.19: Simulation results of the sub-lattice OP vs temperature for the Heisenber

fee Kagome lattice.

L=24, MCS=10° (Heating and Cooling), and 107 (Independent Temperature
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4.6 A Model for Degeneracy

1S

Figure 4.20: Domain wall in 2D q=0 C

Ihe positions the spins of sub-lattice are shown by Blue, Sub-lattice B by red, and
sub-lattice C by black

As described in Sec. 1.6.1, the locations of non-magnetic atoms in fee Kagome lattice
permit two of the sub-lattices to simultancously rotate by the angle of 120° without any
cost in the energy of the system. The result of such a rotation is shown in Fig. 4.20. As
can be seen, this rotation has to affect the entire row of spins in the lattice to conserve
the encrgy of system (part B of the figure). Tn the 3D system, this rotation has to occur
for all spins located on a sheet in 3D space, and this sheet defines the wall of a domain
Ie effect of this rotation is to interchange the spins ou the B and C sub-lattices, while
the spins on the A sub-lattice are unchanged. The observed pattern of the sub-lattice
OPs may be understood in terms of these domain walls. This possibly explains why in

cooling processes one sub-lattice OP converges to 0.3, while the other two sub-lattices O

converge to common value that is less than 0.3. In the following argument, we calculate



the effect of domains on OP of sub-lattices. First we confine our system to a subset of
the lattice consisting of nine spins (only including one switch in the orientation) of the
lattice shown by three orange circles in Fig. 1.20. Then, the result of this simple example

is expanded to whole lattice.
4.6.1  Sub-lattice OP in One B+ C Switch

Part Al of Fig. 1.21 shows arrangement of nine spins from q=0 GS . In the diagram
of spin configuration (part A2 of the figure), the spin orientation of A, B, and C sub
lattices are shown. The smmmation over all spins in sub-lattice C is illustrated in part
A3, The magnitude of the veetor, Ry, is used to caleulate the OP of Sub-lattice C (see

expressions 3.4 and 3.5). As can be seen in part BI of Fig. 4.21, the two spins in orange

ellipse are switched without any cost in the energy of the system. The new diagram of

the spin configuration of sub-lattices is shown in part B2 of the figure. After switching

hese spins, the magnitude of the (new) vector, Ry, has to be used to caleulate the O
of sub-lattice C.

BT BT
® 2 L .
\7” *w :
w7 B

\34
v
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Figure 1.21: The wall affects on sub-lattice O
re shown by Blue, Sub-lattice 13 by rod, and

The positions the spins of sub-lattice
sub-lattice C by black
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As shown in Fig. 4.21, the sub-lattice A (in blue) remains fixed. The order parameter

of sublattice C, Mc-, in part A3 Fig, 4.21 is given by:

Me (4.4)
Mex =% e S = Moy =% 05
; s
Moy =4 SiccSiy = Moy="
where N s the number of spins (N=9). Using Eq. 4.5 in Eq. 4.4 gives:
Ry
M N (1.6)

In the example shown Fig. 4.21, the [Ry|=3 giving Me=0.3, as we expected for the

perfect alignment with the ground-state. The same argument for the part B3 of Fig. 1.21
gives:

[Ra| -

Mo =2 1.7

N (.7

I'he magnitude of Ry is needed to caleulate the OP of sub-lattice C, It is preferred to

calenlate the magnitude of Ry, as a scaler quantity, in the X’OY” coordinate system

instead of XOY (See Fig. 4.22).

Fignre 41.22: The magnitude of Ry remains invariant due to rotation of the coordinate

system,

2[S| - sin(30°) [S] = (2 - 4) S|
‘ (1.8)
Ry = cos(30°) S| = %5 |S|
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Therefore, the magnitude of Ry is given by

IR,| \//cj, v R, /(j)z +( (1.9)

and the OP of sub-lattice C is:

M g 0.1924 (4.10)

Before expanding this example to the gencral case of the system with size of NxNxN,

two important facts about this simple example must be noticed:

L. The OP of sub-lattices of this system are quantized. The OP is changed by switching
spins and the number of switched spins are quantized. In this example, My and

M+ change by the step of 0.14 %,

5 0.1

“The minimum value for the OP of sub-lattices B and € . because in the case

of switching more than one spin from sub-lattice C to the orientation of sub-lattice
B. the same system, with the same OP, would be reproduced. The only effect of two

spins switching is only change the label of B and € sub-lattices which hias no effect

on the ealenlated values of the OP of the sub-lattices. As can be seen in Fig, 121
if two spins switeh, a similar system to what is shown in the B2 part of the figure,
would be reproduced, but a different label for B and C would appear. Generally, we
canassumie that switching of less than half of cach sub-lattice population s effective

on the OP value of the system. This fact sets a lower limit for the caleulated OP

which is seen in onr simulation results,
4.6.2  Sub-lattice OPs in Domain Wall

To expand the result of Sec. 4.6.1 to a system with NxNxN lattice size, first we must

consider the fact: that only # of lattice points are oceupicd by magnetic atoms; also, 4

of these magnetic atoms make cach sub-lattice. Therefore, in a case of spins making the

“he only possible values for My and M- are {0.1924,0.3), and M only 0.3,
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switch B+C the components of vector R in the X'OY” coordinate system is as follows:

Ro: 3xN*xi—n—nsin(d0°)={N-3n

(4.11)
Ry nocos(30°)

where s the number of spins making the switch Br+C. Thus, the magnitude of the

vector R is given by:

(4.12)

where the vector R is equivalent to Ry and Ry in the previous example. Therefore,

similar to Eq. 1.7, the OP of the sub-lattice is given by:

ALy (1.13)

where 5 can be B or C. Eq. .13 has interesting properties, some of these properties are
as follow
I The caleulated OP for finite lattice size (N=21 in our simulation) is quantized
The discontinuity in the sub-lattice OP, AM,, in switching the 0 spin from one
sub-lattice to another one is given by:

AM, = My(N.n) = My(N, (n — 1)) (1.14)

Note that in only one domain wall in 2D, all of spins on one row must switch, and

N/2. In the case of only one domain wall in 3D, the spins of one

his means n

shieet have to switch and this means n = N/2xN/2.

The OP of an infinite lattice is continuons, becanse the AM, drops to zero when

latti

size goes to infinity.

lim A, =0
(1.15)

N = oo

3. In the case of N=21. the population of each sub-lattice is |

The lowest OP,
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Myyi. is in the state that half of this population switches to another sub-lattice.

x 23=17:

This means n—}

Magin = My (N = 24,1 = 1728) = 0.166667 (4.16)
“This means that for the fee Kagome model the OP of sub-lattice is limited to lie in

[§:3]

The proposcd model of switching spins in a single sheet of one sub-lattice to another

one provides a possible explanation of simulation results for the OP, except at a few tem-

peratures in independent temperatures processes where three different OPs are calculated

for A, B, and C sub-lattices. It is important to recall such results are achieved only in the

independent temperatures process where the simulation at cach temperature starts from

xistence

cplanation for such unusual points can be the

random confignrations. One ¢

of some local domains in the system at finite te an be seen in Fig. 1.21,

iperature.

we assumed that the sub-attice A follows the perfect pattern of the =0 GS and the

spins of this sub-lattice do not switch in our model. As a matter of fact, there is nothing
special in sub-lattice A which makes this sub-lattice unique. As can be seen in the q=0
GS shown in Fig. 4.2, sub-lattices B and C also can play the role which was only assumed

stem starts to produce a

for sub-lattice A i our example. It is possible when the

spin-configuration from a random structure in some part of the sample, sub-lattice A and

in other parts sub-lattices B and C take the role of non-switching sub-lattice; therefore,

the caleulation of OP for sub-lattices could be three different numbers. The int

esting

point is that such local domains structure is not observed in cooling and heating pro-

cesses. This means that all the walls formed in the cooling and heating processes and

majority of the points in the independent temperatures processes are parallel: however,

at the msual points (with three different sub-lattice OPs) some of the walls interscet
cach other. The spin-configurations at.these interseetions impose an extra cnergy on the

cetions of

pin-configurations at the inter:

system. Ina slow cooling process, these e

tion, and finally all the domain walls

the domain walls are eliminated by thermal re




¢ aligned parallel. However, it may be possible to trap these costly spin-configurations

i fast cooling process (such phenomenon hias not seen in our results due to slow cooling)

€ Sub lattice:

x
nf 5 1
’M
1 1 1 1
T Y B T a— T

Temp.

Figure 4.23
the new al

mulation results for sub-lattices in the Hei
rithm,

enberg fec Kagome model using

Cooling process, L=24, MCS= 10°

To show that the proposed model for cooling and heating processes has a physical
sonrce, another spin-updating algorithm has been used. Tn this new algorithm, spins for

trial change are randomly chosen. Previous results are based on systematically updating

spins on the lattice, row by row. This new method removes the doubt about a biased

computer code. Starting from one point in the lattice and expanding the updating spin-
confignration from this point may make the computer code biased, and the existence of

only one sub-lattice non-switching in the entire system could be the result of this bias

computer code. As ean he seen in Fig. 4.23 this algorithm also gives the same pattern of
only one non-switching sub-lattice (B sub-lattice) and the same value of deviation from

the perfect ground-state for two other sub-lattices (A and C sub-lattices). This result
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not only confir

is the previous results, but also shows that the domain wall has a root in

the geometry of the fee Kagome lattice.

4.7 Suceptibility

The susceptibilities (see S 1.7) for the ry and Heisenberg fee Kagome lattices are

shown in Figs. 4.24 and 4.25, respective

. The figures include only heating and cooling

processes. The OP fluctuates b

ow the eritical temperature in the independent tempera-

LUIes Processes derivations of the OP also

5. .16 and 4.17). The susceptibility as
shows the same discontinuity for independent temperature MC runs. As a matter of fact,
the heating and cooling processes explain the real procedure of studying thermal ehavior
of quantities such as susceptibility as this mimies the experimental procedurc. The clear
peaks in the simulation results of the susceptibility vs temperature in the systen with
the L-21 after MCS=10° confirm the previous results of phase transitions at Te-— 0.76

and Te=0.

7 in g and Heisenberg, models, respectively.
Results for the susceptibility of each sub-lattice as defined based on the sub-lattice O
in Fig. 1.26, these simulation results, with L=24 and after MCS=10°, confirm the phase

transitions at the previous identified eritical temperature

- T addition, the figres show
almost the same hehavior in the heating and cooling processes. Note that the sub-lattice
susceptibility in heating and cooling processes show some hysteresis, especially near the

critical temperature. This is expected at a first order phase transition.
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Heisenberg and ry fee Kagome lattice.

4.8 Magnetic Cumulant and Phase Transition

The definition of magnetic cumulant is similar to energy cumulant, but the OP replaces

the encrgy in Eq. 1.40. The magnetic cumulant is given by:

ALY
Vi) ".;(u\/>l

3 (4.17)
)i
Simulation results for the magnetic cumulants are shown in Fig. 427, All the curves

10 0.6 at T-0 as expected from the definition and replacing the thermal averag

conver

values for the OP (almost 1) in the ordered phase which is formed below critical ten-
perature [26]. The important point can be the position of the minimum on these plots

I'he lower minimum value is related to to the strength of the first order phase transition
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In two first plots, the simulation results of the xy and Heisenberg fee Kagome lattice
with the size of L=21 are illustrated. As can be seen, in the same lattice size, the ry fec
Kagome shows a lower minimum and (from the previous results we know) strouger first

order phase transition. Also by increasing the lattice size to

36, the minimum of the
curve drops down to a number around 0.35. This plot is similar to the results published
by Challa and colleague [28]. but the published results show negative value at minimum

for the 2D square lattice.
4.9 Thin-films of the fcc Kagome Lattice

To simulate thin-filns of the Heisenberg fee Kagome lattice, we replace the periodic
boundary condition (BPC) along the z-axis with free boundary condition. Removing the

PBC reduces the munber of bonds of the surface spins, thercby inereasing the energy

spinn of the system. The results from simulations performed on systems 12x 12}

{3,6.9, 12}, after MCS=10° are presented in Fig. 4.2

The data show the encrgy per spin
decreasing as the mmber of layers deercases. This reflects the decreasing contribution

es. The

of the surface spins. The specific heat plotted in Fig. 4.29 for several thicknes

data show that the peak with increasing thickn

in the heat capacity becomes more
pronounced and shifts to a higher temperature with increasing layer thickness

Simulation results of the OP and susceptibility of the thin film are shown in Figs. 4.30

and 4.31. Note that in this quasi-2D system, we can expect that there is not a true phase
transition to long range order since the model contains no anisotropy. However, the

propensity toward long range order as N increases s evident in the sharpening for C vs

temperature and that the peak location is converging toward the bulk value Ty =017

91



oo Cooting P
¢ x Mt o,

L T T R T T T
[

XX 5030 30 00 0 0 30 2 2
x

ha

LR TN BTN S TF TR Y
T

Figure 1.27: Simulation results for the magnetic cumul
Heisenberg fee Kagome latti
In the two first plots: L

92

[T

ant vs temper:

ure in the ry and

21, MCS=10° in the last plot: L-36, MCS= 10",



Sayer
e 3 w6 layer

2 alya
oo [ee 12y

4
i - L il

0005 00 015 02 025 03 035 04 045 05 055
emp.

Figure 1.28: Sinulation results of energy per spin vs temperature for the Heisenberg foc
Kagome thin-filn

22 o o 3lya
s . w6l
: 4 aylyar
I 4 Rlya

08
06
04
02
b bbbl =
0 005 01 015 02 025 03 035 04 045 05 055
Temp.

Simulation results of C vs temperature for the Heisenberg fee Kagome thin-

93



Figure 1.30: S
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Chapter 5

Discussion and Conclusion

5.1 Summary and Conclusion

In this thesis, IrMng was studied to better understand its AF spin-configuration and
magnetic phase transition. This alloy is widely used for pinning the magnetization of FA
metals in spin-valve transducers. Various theories of exchange pinning were reviewed in
order to have a general picture of this phenomenon. As explained in chapter 1, almost

all the theories on e

change pinning are based on details of the AF spin-configuration

in the FM/AF bi-layer. This fact was our motivation to focus on the IrMng alloy. The
Malozemoff model, explaining the exchange pinning phenomenon based on random fickd

excha

e s widely used in the simulation of exchange pinning. According to this theory.
the roughness in FA/AF interface produces domains on AF surface which reduce the
idealized exchange field, . to more realistic values

The experimental results show that IrMug has an fee structure. No magnetic moment

is detected for Tr atoms which occupy 25 pereent of crystal points at the vertexes of the
fee structure. Therefore, the magnetic structure is the fee Kagome lattice viewed as ABC
stacked Kagome layers along < 111 > dircction. Monte Carlo computer code based on
metropolis algorithm was written using Fortran 90 to simulate the Mu-ion magnetic order
and phase trausition. The code was first tested by simulating the 2D Kagome lattice, A-A
stacked triangular lttice and pure fec lttices. As shown in the chapter 3, our computer

code is able to reproduce previously published results.

The main new results are discussed in chapter

The ry and Heisenber




ems were simulated through three different processes (cooling, heating, and indepen-

dent temperatures). The results suggest a first order phase transitions for the ry and

. and T=0.47, respectively. The magnetic order

Heisenberg fee Kagome lattice at T=0
corresponds to three spins on a triangle forming the 120° structure, also known as ‘=07

v of this

and T, Furthermore, our results for the OP illustrate the large degener:

cems to explain

spin-configuration. A proposed model, based on domain wall formation,

the degeneracy of this system. Formation of such domains in the fee Kagome lattice may

xchange pinning. Also, some

alozemoff model is relevant for

be a good indication that

imulations on thin-films have been performed. Peaks were seen in both the

preliminary

specific heat and the susceptibility curves of the quasi-2D system

5.2 Future work

I'he indication of domain formation would be of interest to study further in thin films.

em which gives long range order will be broken in the

The symmetry of the bulk

short range order observable in forming many

2D system. This phenomenon may caus
random domains on the surface spin-configuration of the thin-film. One of the future

nother important effect would be to study

works can be to investigate this possibilit

systen

Ided to the Hamiltonian on the thermal behavior of the

anisotropy terms
discussed in chapter 2, this term s necessary to compare model results with the real
system. Also, adding a FM layer to AF thin-filn and simulating the hysteresis loop

nulation of exchange pining was cxplained in chapter 3,

would he of interest. As the s

crated by removing the magnetic moments of some spins on

a random roughness is g

. where the existence of roughness of non-

the surface. In the case of a Kagome surfac

. it would be interesting

magnetic atoms in strategic locations may cause random domair
to check whether the random cancelation of spins is required to see exchange pinning or

not
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Appendix A

Exchange Pinning and Hysteresis
Loop

A.1  Hysteresis Loop of a Ferromagnetic Material

Ilie hysteresis loop of a ferromagnetic (FM) material shows the magnetization vs applicd
external field in a complete eycle. Generally, the hysteresis loop is a path-dependent
curve, and for simple ferromagnets, the hysteresis loops are symmetric with respect to

the magnetization axes (see Fig. A.1')

M

Figure A.1: Hysteresis Loop of a FA Material

Fig. A1 illustrates the hysteresis loop of a typical FA sample. As can bee seen, the
saturation point is indicated by M. Beyond the saturation point, the magnetization

Tt/ /el txstateedn
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remains fised. The remmant maguetization of the sample is demonstrated by M, . The

remmant magnetization is the residual magnetization when the external field is completely

removed. The coercivity, 11, shows the external field that is required to return the

wagnetization of system to zevo. 11, displays the external magnetic field corresponding

to the saturation point

A.2 Possible Hysteresis Loop for Some FM/AF Bi-
layers

As can be seen in Figure A2, the hysteresis loop a system composed of a sandwich of
thin FM and AF films can shift with respect to the origin and along the external field
axis. The average of feq and ey is not zero. This loop-shift. phenomenon which is scen

in FM/AF multi-layers is called exchange bias.

L}

Figure A Tysteresis Loop of a FM/AF Bi-layer

Ihe ved bar in Fig. A.2 shows the exchange bias/pinning field(/y:5). Around the
origin, the orientation of the magnetization of this system is more stable than magneti

Zation of the simple FM Tayer shown in Fig. A1 The exchange pinning field acts like an

external ficld which pins the direction of the magnetization of the system. From Fig. A2,

it is obvions when the systen is initialized in point A, a stronger negative exteral field

102



is required to flip the magnetization than corresponding point(A1,) in Fig. A.1
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Appendix B

Perl Code for Independent
temperature Process:

#1/usr/bin/perl

("paf90 HK3D. 190" );

$n<=48; Sn+=6)

("mkdir File $n°);
pl ./File $n°);

.0002)

np<=0.480; Stempe=(

ten("akdir ./File $n/tenperary $temp");
ysten(“cp ./a.out ./File $n/temperary Stemp/");
en(*echo \"sn 10000009 1 1 0.0 $tenp\">./File $n/tenperary Stemp/input’);

ile $n/temperary Stemp/sub.sh");

("echo \"#\S -S /bin/bash\">>
("echo \"#\S -cud\">>./File $n/temperary Stemp/sub.sh"
("echo \"#\s N Heis Kagone Stemp\">>./File $n/tenperary Stemp/sub.sh");
“echo \"#\$ -j y\">>./File $n/temperary Stemp/sub.s
echo \"#\5 -0 flels kagone Stenp.out\">>./File Sn/temperary Stemp/sub.sh");

0 \"#\$ -1 h vnem=2000H\">>. /File $n/temperary Stemp/sub.sh
0 \"#\ -1 h_rt=480:00:00\">>./File $n/tenperary Stemp/sub.sh");
echo \"./a.out\">>./File $n/temperary Stemp/sub.sh");

("cd ./File $n/te

erary Stemp &6 qsub sub.sh");

Note: HK3D.90 is the name of MC simulation code in fortran 90.
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Appendix C
Computer Code

I'he following is the Fortran90 code for the cooling process in the Heisenberg fee Kagome

lattice:
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prograa pr2
implicit none

dinension(:

real, allocatable,
real, allocatable,
real, allocatable,
real, allocatable,
real, allocatable,

real, allocatable,

oo 120301020,
aenergy, aenery2, o

double precision
X
e e s

Hy
My C M, My, M NAT,HBT T, &
GHAT, JMBT, JHCT, ta2,aM4, acnergyd &
Mz AWz B.Mz_C,HATX, MATy MATZ, 5
BT, MBTy  MBT 2, HCTx, HCTy HCT2.6
s sum s bap .k B.4ap C.6
T2,

it b, Lo counter, csd. coter2.
s1,5). k.01,

ttic size, loop, scsO=discarded Loops.

tinput file contains

)
)
Uocate (x(n,n.n)
Aocate(y(n.n.n)
Uocate(2(n.n.n)
)
)
)
ocate(s(

allocate(ssx(n,n,n))
allocate(ssy(n,n,n))
))

allocate(ssxt (n,n,n))
allocate(ssyt(n,n,n))
allocate(sszt (n,n,n))

call e
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neso=loog
pis3. 14159265

-hm
o

end
end do
end do

tcomputing the position of each spinor
do 1=1,n

XL, K =110, 50411+ (k1)
Y021 K1=(5:1) 000 866025400 +(k-1)*(0.577350269)
k-1)*(0.816496581)

-mm ‘/l\u(s
nunber(r
e J=picr
all wnber (r)
Wi Km0 20

Sx(d,).K)=8(1,1,K) s (Bh(1,1,K)) 5 1 (tald, ), K))
B T T
(ta(

counter2=0

t Temerature L00?
=0, 221B1G TEMP

Tempe 75 (18+0.03)

counter2scounter2el
ounter=(

2o i awcTze0
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do t:
wun(er-(uvn\enl
do i

do )
do el

Fiding earet seiptors
msu iok)eq. 1)

if (1.eq.n)then
sie

else

if (k.eq.n)then
skal

else
shekel
end if
if (k.eq.1)then
oken
else
ok |
end it
SUm x=Sx (51,09, K) 5 (51,0 K)o
sx(si, ), k)*s(si,j k)6
Sx(1,) K05 (1) K)o
sx(1,5],k)*s(1,5) k)&
sx(mi, ), k)*s(mi, ) k)+&
sx(mi,s),k)*s(mi,s) k) ek
S, A4S 1, k)46
sx(s1,) Ik)‘s(sx.l,mkl#l
)26
Sxin ni 0y k)6
snmu]akrsmij sk
i,mj, sk
w-yaybn-jnrns:m i
visi.) Jik
bl L e
5y(1,53,K)*5(1,5) k)46
sy(ni,j.k)*s(ni, j k)&

sy(n, ), k) s ni, ),sk) o6
sy(1,m),5K)*5(1,m) k)
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sum z=s2(si.m) k) s (s1,m) k)46
auh K)s(si, ) kv
S(1.0) k)46
Bt
sz(ni,),k) s(ni, ), k)&
45 (01,5), k)96

salsi, e S(51,5).0k) o6
sz(mi;m) sk *s(mi,m), sk)ob
S2iai.J15k1 s ake] K196
s2(i,m),5k)*s(i,m). )

150

energyl=)1sx(i,] k) *sun xvé
1%sy(1,).K) *sun yo
J1*sz(1,) k) sun 2

(e s fcection ot plal L)
ph2=ph(3, K
taz=tali, ), H

Ichang spin direction of spin(i,})
call sber (r)

Ph(i.g,
a Ler(r)
tali, k)= 0 (- (24))

Sx(ig k)= (tali, )
Sy ke nitali. et )
sz(1,), ta

calculating new part of Spin(i. ) in eneray 2

energy2ed

energy2=j1*sx(i, ), k) *sum x+b
Ty (1) k) tsum it
J1*s2(1,),k) *sum 2

we 0 (energyl-enerqy2) /tenp)
cll )

A (18.0) then ot accepted return
[T

kst

KUk = n(tali,§ k) * o (phid, k)
sy(L) k)= n(tali, ] k) (ph(, ) k)
s2(1,),k)= 00 (a1, ) k]

end if

end if! for anly S(1,).k)<1
end do
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end do

if (counter.gt.mcs0) then!discard first Hesd
1Conputing the Energy of Whole system
energy=

if (1.eq.n)then
sisl

else
sizisl

end i
if (1.eq.1)then
m:

end if
if Ij.el‘lrtheﬁ
n

!\it

ond it

it (k.eq.n)then
skel

else
skekel

end if

it (k.eq.1)then
aken

else
kel

end i
s setaistoal k;«sx?,,.. K16
(

Sx(1,m),K) s (1

uuxhn:uAan

sx(ni,) k) "s(ni

et g et

(] k) (L 51 k)
K

i o sh)'x(mx ). sx».a
s, 0vstel ok
Ly kst b
S gy (511 k115 510 K
LR ki
K1 (4,m) k) o6
R (1r5) Ko
ARk
sy(mi.s], k)*s(nd,5),K) o6
SyULL51,K)*S (1,5, 0K ) o6
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Sy(s1,3,mK)*s(s, ), 0K} 46
sy(51,5),mk) s (s1,5], 1K) +&
ey ok) stei ) sk}

i,
s2si.] k)7 (5i K46
e o
521,51k (1,5 K)o
selai, ) k) s(ai, ) K46
sa(mi,s], k) 501,55 k16
S2(1,51,0K)*5(1,51,0K) 46
s2lsi) k) s, ) k)6

silsi.s)
sz(mi

Soimt g 5k) (0] 10,
sz(i,nj,sk)*s

eerapeemap Lt ) vsom X6
sy(1,]k) *sun ys§,
[t

Sx(1,7,k)ssx(1,].K)
sy(1,),k)+sy(1).k)
s2(1.) k)esz(1,) k)

it ik, 2).00.ythen

"N ot Cosntzep,Loq k)
My CaMy Cosy(24p, 140, k)
Mz Chz Cosz(2ep, 10k}

®
Mx_B=Mx Bsx(i+p,2+q,k)
Hy Bty Besy (149, 90,K)
e BHz Besz(1+p, 90, K)
e Asix Avsx(1+p, 140,k)

Ay Aesy(i+p, 1sa,K)
He Atz Avsz(14p, 150.K)

else
1

Hx BHx Bosx(14p, 40, )
My BoMy Besy(1+p, +q.K)
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Mz Bz Besz(14p,20q.K)

i
e Gt (2, L 1)

.k
AR

+p,15a.Kk)
1p, 19.k)
e Az Avsz(1+p,1oq.K)

end if

Tt e At A ey At e
171 (M B BeMly B 2 B)
17 ot Coty oy ot Co )

ATHHBTHCT

e

tcalculating total mag for averag

aenergy2=aenergy2+ (energy**2)
aenergyd=aenergyds (energy**4)
aenergy=aenergysenergy

ATX-HATx Hx A
HATy=HATy oMy A
ATZHATZMZ A

BTX-HBTxolx B
HBTy=HBTy+Hy B
PBTz-HBTz+Mz B

MCTXHCTxotx €
HCTy=HCTy by C
MCTzHCTzz C
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end ifidicarding

end dotLoop
*Computing Cv and kapa
aenergy2 = aenergy2/ (Loop-scsd)
senergyd = senrgy/ losp 2cst)
ergy = aenergy, (1
Cuslacnerays- aeneray

HATX=HATX/ (100p-ncs0)
HATY-HATY/ (100p-ncs0)
HATZ-HATZ/ (Loop-ncs0)

HBTx=HBTx/ (100p-ncs0)
HBTy=HBTy/ (Loop-ncs0)
HBIT2-¥812/ (L00p-acs0)

HCTx=HCTx/ (Loop-ncs0)

HCTy=HCTy/ (100p-acs0)
HCT2-HCT2/ (Lo0p-acs0)

S lonp-acst]

ot Lomp mes0)

HAT2=aMAT2/ (00p-acs0)

aAHCT2=aMCT2/ (Lo0p

HT-oT (Lo0p-acsd)

Kapax(ah2- (aH*+2) )/ (temp)

koo pe Lo (o

)
{12 (1020 (renp)
oy Co(ancT2 (T )) /o)

S5tk -e0.1

Ssxt(1,) k] e §.K1+s5x(1,1,k)/(Loop-ncs0)) *s(1,1.k)
)/(Loop-ncs0))*s(1,1.k)
“K)sssz(1,1.k)/(Loop-ncse)) *s(1.1 k)

nor=1

+(s528(1,,K)*20)*4(0.5)

sszt(1,) k=552t (1,),k)/nor
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(

1,2).e.1.and.703(],2)..eq. 1)then

SRS (L) K] #5SXL(L, 101 K essxt (141, k)
sumy=ssyt(1,] k)sssyt(n,3e1 k)essytne] ) k)
sunzzss2t (1,1 k) essztn, Jo1 K esszt(ie] 1K)
tout put 4
ot tite- a4}

emp, 1, K, sumn, sumy, sunz
it

end do

end do

end do

ot put 1

opent(2,

[ e ———

tout put 2

open(, file="aic 1)

write{,")temp, kapa, cv, aenergy

tout gt 3

openl, 2')

(i R —

tout put 3

opent(s, file

write(5, ) tenp, AT HATy, MAT2, MBTx  HBTY, MBTz, MCTx, HCTy, MCTZ

tout put §
open(15, il
write(15,7)

')
S S

tout put 6
open( 16, file='s,
urue(w LK) sH1 1 k)20t
flush{i6
do
end do
end do

end do'BIG TEMP

deallocate(ph)
deallocate(ta)
deallocate(x)
deallocate(y)
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deallocate(z)
deallocate(sx)
deallocate(sy)
deallocate(sz)
deallocate(s)

deallocate(ssx)
deallocate(ssy)
deallocate(ssz)
e(ssxt)
deallocate(ssyt)
deallocate(sszt)

end progran pr2
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