COMPUTATIONAL ANALYSIS' OF THE EFFECT OF
SURFACE ROUGHNESS ON THE DEFLECTION OF
GOLD. COATED SILICON MICRO-CANTILEVERS
DUE TO MOLECULAR ADSORPTION

VICTOR HAYDEN

COMPUTATIONAL ANALYSIS OF THE EFFECT OF SURFACE ROUGHNESS ON THE
DEFLECTION OF GOLD COATED SILICON MICRO-CANTILEVERS DUE TO
MOLECULAR ADSORPTION

By
© Victor Hayden

A thesis submitted to the
Department of Physics and Physical Oceanography
in partial fulfillment of the requirements for the degree of
Masters of Science

Department of Physics and Physical Oceanography
Memorial University of Newfoundland

February 28, 2012
St. John’s Newfoundland

Table of Contents

List of Tables 6
List of Figures 7
Abstract 1
12

Chapter 1 Introduction 13
1.1 Micro-Cantilevers 13
1.1.1 Development of Micro-Cantilever Based Bi 14

1.1.2 Construction of a Micro-Cantilever Biosensor ..

12 ivati 19
1.3 Scope of Thesi 20
Chapter 2 Numerical Model. 22
2.1 Ball and Spring Model 22
2.2 Stress and Strain 24
2.3 Stoney’s Equation and Cantilever Curvature 27
2.3.1 Timoshenko Beam Theory 30

2.3.2 Applying Stoney's Equation to the “Ball and Spring” Model...

2.4 Modeling i i 33

2.5 Lattice Spring Constant: 37

2.6 Monte Carlo Family of Si i 41
261 Hastings Algorithm and Si Annealing 41
2.6.2 “Cooling” Schedule 49

Chapter 3 C i Method: 51

3.1 Lattice Creation 51
3.1.1 Lattice Creation Graphical User Interface (GUI) -}

3.2 of Atoms 60

3.3 Crystal Lattice Boundarit 63

Chapter 4 : Results and Discussion 69
4.1 il A i 70
4.1.1 Comparison to Finite Element Analysi 70
4.1.25i ion Output 72

4.2 Discussion 81

Chapter 5 : Conclusion 89

References 92

100
Appendix A: C i Random Number: 101

Appendix B: Random Number Generator Mersenne Twister..

Appendix C: Data Structures 108

Appendix D: OpenMP Parallel i 113

Appendix E: Simulated Annealing Source Code (C99) ..

BoundFit.c 119
BoundlLines.c. 120
c 120

cantilDeriv.c 122
Common.c. 126
Common.h 127
Energy.c 129
FilelnOut.c. 136
C. 143

LatticeCopier.c 145
Li & 146
Rotate.c. 154
SimAnn.c 155
pringlatCreate.c. 159

Structures.h 164

Appendix F: Graphical User Interface Source Code (Java, Bash, Expect, C99) ..

Atom.java. 167
MyCustomFilter java, 169
SAfilter.java 169
LatticePlot.java 170
LatticePlotFr java 174
InputlatticeViz,java 177

java, 178

Appendix G: Lattice Input File Creation Code (C99) .

List of Tables

Table 1: Coeffici of ituti 37

Table 2: Summary of Si i 73

Table 3: Mersenne Twister Periodicity for Common Variations. The highlighted variation was

the variation used in this numerical si i 106

List of Figures

Figure 1.1: Micro-cantilever based biosensor, here the thiol head group is indicated by the red
spheres, the alkane chain is represented by the yellow curls, the gold coating is in blue and the

silicon substrate s in grey 16

Figure 1.2: Functionalized Gold coated Silicon micro-cantilevers; (Foreground) adsorption of the
SAM (depicted here as purple spheres) on the surface has resulted in the deflection of the
micro-cantilever alkane chains removed for clarity. (Background) Un-deflected cantilever

system. 17

Figure 2.1: Spring Lattice Model. Atoms in blue are connected by means of ideal springs. ...

Figure 2.2: Cylindrical stress on a planar surface 2

Figure 2.3: A is the Yield Strength above which the material is no longer Hookean, B is the
Elastic region, C is the Strain Hardening Region, D is the Necking Region, the spot designated by
the X is the rupture or fracture point, the transition point between C and D is the Ultimate

trength. 26

Figure 2.4: Location of neutral axis and stress distribution according to Stoney's equation.

Figure 2.5: (A) Spring Energy of individual lattice spring, plot of equation 2.25. (B) Modified
Spring potential that is used in the simulation, plot of equation 2.27 . (C) Lennard-Jones
Potential (Equation 2.24). The modified spring potential mimics the behaviour of the Lennard-
Jones potential whilst reducing the total number of calculations required since squared terms

are faster to calculate then terms to the 6" or 12" power. 36

Figure 2.6: New and Remaining Surface bonds after removal of surface atoms..

Figure 2.7: Forces between an atom and the nearest and next nearest neighbours ..

Figure 2.8: Four State Markov Chain with transition pr iliti 45

Figure 2.9: Energy VS Configuration for an arbitrary sample lattice..

Figure 2.10: Simulated Annealing Algorithm Flow Chart .

Figure 3.1 Gold Silicon Lattice, Silicon (blue), Gold (Red). 52

Figure 3.2: Deviation in gold atom horizontal lattice parameter on silicon substrate .

Figure 3.3: Simulation control interface. 56

Figure 3.4: a) Application of Surface Fitting Function, b) Red atoms above line have been

declared virtual 58

Figure 3.5: The number of bonding sites decreases as the frequency decreases and also
decreases as the amplitude increases. Red dots correspond to the simulations with a film

thickness of 23.5 nm. 59

Figure 3.6: Atom Columns for Movement, red spheres are gold atoms while grey spheres are

silicon atoms 61

Figure 3.7: Algorithm has randomly chosen a and B and therefore has set the slope of column 3

to be equal to =a+p. 62

Figure 3.8: A) Un-rotated Lattice B) Rotated Cantilever with new prime coordinate system. The

coordinates of the atoms are rotated using a rotation matrix by 90 degrees, this prevents the

creation of infinite slopes once the boundary lines are calculated. The calculations are carried

out as if the rotation never occurred. 64

Figure 3.9: Boundary Rotation, dashed circles are the image of the boundary atom located at

the next boundary 66

Figure 4.1: The deflection calculated by the simulation (a) was 64.6nm while the deflection
calculated by ANSYS® (b) using the properties (Young’s modulus, Poisson’s ratio) of the

materials was 64.4nm. 71

Figure 4.2: AF, Di ion: -5.62 nm. 78

Figure 4.3: Wavelength (1/2) um, Deflection: -16.26 nm.

Figure 4.4: Wavelength (1/3) um, Deflection: -21.74 nm. ..

Figure 4.5: Wavelength (1/4) um, Deflection: -27.82 nm.

Figure 4.6: Wavelength (1/5) um, Deflection: -34.67 nm. ..

Figure 4.7: Max Film Thickness 11.7 nm, Amplitude 5.0 nm 78
Figure 4.8: Max Film Thickness 23.5 nm, Amplitude 5 nm 78
Figure 4.9: Max Film Thickness 23.5 nm, Amp 10nm 79
Figure 4.10: Max Film Thickness 23.5 nm, Amplitude 15 nm 79
Figure 4.11: Max Film Thickness 23.5 nm, Amplitude 20 nm 80
Figure 4.12: Max Film Thickness 23.5 nm, (1/5) um 80

Figure 4.13: Semi-elliptical surface defects. a) Wavelength = (1/3)um b) Wavelength = (1/6)um

85

Figure 4.14: Stress is concentrated (Red) at the tip, and causes a large amount of stress to be
transferred to the lower surface (yellow). 87
Figure A.0.1: Quasi-Random Number Generator randomizing coordinates for A) 100 Draws B)
1000 Draws C) 6000 Draws, using the Sobol Technique for random number generation......... 102
Figure A.0.2: Pseudo-Random Number izing c i for A) 100 Draws B)
1000 Draws C) 6000 Draws, using the Mersenne Twister Technique for random number

104
Figure A.0.3: Lattice Array Data Structure 110

Figure A.0.4: Memory hierarchy of a typical Advanced Micro Device (AMD) quad core computer

system, Intel/Sun/Apple/Others have very similar based systems.... . 112

Figure A.0.5: OpenMP Multi-Threading. 114

10

Abstract

In this work numerical simulations were performed in order to study the effects of
surface roughness on the deflection of gold coated silicon cantilevers due to molecular
adsorption. The cantilever was modeled using a ball and spring system where the spring
constants for the Si-Si, Si-Au, and Au-Au bonds were obtained from first principal calculations.
The molecular adsorption process was simulated by elongating the natural bond length at
available bonding sites chosen randomly on the cantilever. Increasing the bond length created
a surface stress on the cantilever causing it to deflect. In all cases the structure refinement was
performed by minimizing the energy of the system using a simulated annealing algorithm and a
high quality random number generator called Mersenne Twister. The system studied consisted
of a 1 micrometer by 1 micrometer portion of a cantilever of various surface roughnesses with
variable boundary condition and was processed in parallel on the ACEnet (Atlantic
Computational Excellence Network) cluster. The results have indicated that cantilevers with a
rougher gold surface deflected more than those with a smoother surface. The increase in
deflection is attributed to an increase in stress raisers in the gold film localized around the
surface features. The onset of stress raisers increases the differential stress between the top

and bottom surfaces and results in an increase in the deflection of the cantilever.

Acknowledgments

1 would like to thank my family for supporting me throughout my master’s degree.
Thank-you Mom, Dad, and Edward, without all of you | would never have been able to finish it.
My friends whom have been around when | have needed them, I thank you. My office mates
and friends whom have kept me company and provided a sounding board to discuss my
theories, Thank- you, Kathryn Manning, Nicole Brown, Samantha Payne, and Nick Butt. | also
would like to thank my high school technology teacher, Cliff Reid, without whom | may never
have gotten so involved with programming. | would also like to thank those who got me
interested in physics and math in the first place, my high school physics teacher, Doug
Sheppard, and my math teachers Rouse Brake and Don Sheppard without their encouragement
and patience | would have never had considered doing a Physics degree. | would also like to

thank my supervisor Dr. Luc Beaulieu.

Chapter 1 Introduction

Cantilever based sensors are a promising technology for use as a wide variety of sensors
including biosensors. However, before they can be used in any commercial application, it is
important to understand and better control how they work. In this chapter a brief history of
cantilever sensors, how a cantilever is modified to become a biosensor, and a look at previous

work done in the area of ion of a self on the thin gold film will be

presented. It is not the intention of this work to model the behaviour of a biosensor, but

instead to look at the surface stress effects related to the construction of a biosensor.

1.1 Micro-Cantilevers

Micro-cantilevers are small V-shaped or rectangular cantilevers (typically made of silicon
nitride (SisN,) or silicon (Si)) which are typically around 350 um in length, 35 um in width, and 1
um in thickness. Micro-cantilever spring constants are typically in the range of 0.01-8.75 N/m

depending on the dimensionality. Due to this small spring constant, it has been found that

13

micro-cantilevers are sensitive to changes in vibration, noise, humidity, surface stress and

temperature [1][2](3].

In order to be used as a biosensor the cantilever must be modified so as to be able to
detect target particles. However, modifying the micro-cantilever will obviously change how the
cantilever responds to changes in humidity, vibrations, adsorption, etc. For example, how will
the resonant frequency or deflection of the modified cantilever be changed upon exposure to a
change in humidity, vibration, adsorption, etc? This must be taken into consideration before

new sensors can be deployed commercially.

1.1.1 Development of Micro-Cantilever Based Biosensors

Originally micro-cantilevers were constructed to modify Scanning Tunnelling
Microscopes (STM) to allow for the measurement of non-conductive samples. This system

eventually evolved into the Atomic Force Microscope (AFM).

In 1994, researchers at Oak Ridge National L iesin j ion with

at IBM realized that they could modify micro-cantilevers to become a new family of biosensors.
They found that by measuring the change in the resonance frequency of the AFM cantilever
that they could determine the change in mass of the cantilever with greater accuracy than

conventional piezoelectric gravimetric sensors.

14

1.1.2 Construction of a Micro-Cantilever Biosensor

In order to create a biosensor the surface of a micro-cantilever needs to be

Surface i ization is the process by which one surface of the cantilever is

made to be physically, chemically, or biologically receptive to the specific physical phenomena,
molecule, compound etc to be detected. Functionalizing the surface is often accomplished
using a modified self assembled monolayer (SAM) that only interacts with the target molecule

to be detected.

In order to allow for the growth of a SAM, the sensing surface of a cantilever must first
be coated with a thin gold film. The deposition of gold on the silicon surface can be achieved in

avariety of methods such as sputter deposition or chemical vapour deposition.

Coating the cantilever with a thin gold film allows for the use of alkanethiol based
functionalized SAMs to be used. Alkanethiol based sensing layers are alkane chains, typically
with 4 to 12 methylene units, with a thiol terminal group at one end and a receptive end group
at the other. Thiol refers to a sulphur atom terminal group. It is known that sulphur has a strong
attraction to gold and will readily bond with it. Therefore it should be possible to use this strong
interaction in order to bond a SAM to the sensing surface of the micro-cantilever. This system

can be schematically seen in Figure 1.1.

15

Figure 1.1: Micro-cantilever based biosensor, here the thiol head group is indicated by the red
spheres, the alkane chain is represented by the yellow curls, the gold coating is in blue and the

silicon substrate is in grey

Once this SAM has been grown on the surface the micro-cantilever has been
functionalized and is ready to become a biosensor. The adsorption of this SAM on the surface
will induce a surface stress on the micro-cantilever, as depicted schematically in Figure 1.2. This
surface stress will cause a pre-bending of the cantilever before the target molecules have been

introduced.

Figure 1.2: Functionalized Gold coated Silicon micro-cantilevers; (Foreground) adsorption of the
SAM (depicted here as purple spheres) on the surface has resulted in the deflection of the
micro-cantilever alkane chains removed for clarity. (Background) Un-deflected cantilever

system.

The amount of pre-bending of these cantilevers is a subject of some controversy in the
relevant literature. Some publications report that micro-cantilevers with rough gold surfaces
will have a larger pre-bend than their smoother counterparts, while others report they will have
a smaller pre-bend [4][S][6]. In order to be able to determine the true deflection of a micro-
cantilever it is important to know the amount that the cantilever is bent before the experiment

begins.

The deflection of the micro-cantilever is measured by the optical beam technique
similar to that used in AFM. In the optical beam technique, a laser is focused towards the free

end of the micro-cantilever. The beam is then reflected from the surface (either top or bottom

17

depending on the desired configuration) of the cantilever onto a position-sensitive detector

(PSD)[7]. A small deflection of the cantilever will affect the path of the reflected beam and
change the position of beam on the PSD. This enables the detector to determine the position of
the cantilever. This PSD can measure displacements on its surface as small as 1 nm; which

corresponds to miniscule deflections of the micro-cantilever [8].

1.1.3 Current Simulation Software

The majority of publications in this area usually use a commercially available modeling
software called ANSYS® (discussed in detail in chapter 4) in order to model their cantilever
systems. It was found that in preparing for this work that ANSYS® suffered from a few deflects.
These were the difficultly in creating the surface mesh at the cantilevers scale and the
determination of the bulk properties of the materials (directionally dependent). Based upon

these discoveries it was decided to design a custom piece of simulation software.

There exist very few computational simulations in this area based upon established
theory, most of the simulation data that exists is based upon ANSYS® or other similar
commercial general purpose simulation software. Most depend upon the correlation of
experimental data with raw theory. Weissmiiller [9], and Baskaran [10] are a few of the authors
that developed custom software for solving this problem, the exact computational methods
used by these authors is not reported. Therefore the simulation presented in this work is fairly
unique in this regard and it will be shown that it can solve atomistically for the deflection of a

microcantilever.

18

1.2 Motivation

In a previous report by Godin et al. [4] it was found that the surface morphology had a
strong influence on the adsorption of alkanethiols on gold coated micro-cantilevers [4].
Roughness of the gold surface was found to significantly affect the magnitude of the induced
surface stress. It was found that for surfaces with a small grain structure experienced a smaller
surface stress as compared to a large grain surface [4]. This surface stress is responsible for the
deflection of the cantilever [3]. However other authors have found the complete opposite,
Mertens et al. [6] for example found that cantilevers with rough surfaces will deflect more than
those with smoother surfaces. Mertens found that the surface stress was actually increased as
opposed to decrease as observed by Godin [6]. However, some researchers, Desikan et al. for
instance, did not observe any significant increase in surface stress due to surface roughness [5].
Therefore there exists a large amount of contention on the subject of cantilever deflection with

a rough surface.

The adsorption of the SAM on the surface will result in a pre-bend to exist on the
functionalized micro-cantilever. This means that the cantilever is already deflected before

target particles have been introduced into the system.

For a cantilever the surface stress can be calculated by the use of Stoney’s equation
using either the deflection or curvature of the cantilever. The surface stress calculated by

Stoney’s equation will be isotropic. The bend of the cantilever is not strictly circular, but can be

assumed to be so, under the assumption that the deflection is much less than the length of the

cantilever [3].

Stoney’s equation is dependent on the film thickness, and assumes a uniform film
thickness over the length of the lever. Changing the surface roughness should affect the

amount of stress on the surface; this in turn will change the deflection of the cantilever.

The motivation for this thesis was to answer the following questions. Assuming that the
SAM has bonded to every possible binding site how is the deflection of the cantilever affected
by the rough surface? How much pre-bending is to be expected? Would it be beneficial for the

gold surface to be atomically smooth, or would a rough textured surface be more effective?

1.3 Scope of Thesis

In this thesis, a 2d "ball and spring" model of a one micron section of a bimetallic micro-
cantilever (gold/silicon) with varying surface roughness is simulated. The numerical simulations
seek to determine the optimum configuration of the lattice based upon a Monte Carlo

"Simulated Annealing" technique.

Chapter 2 outlines the numerical model used in this simulation. This includes a
description of lattice model used. Then the concepts of stress and strain are defined. Stoney’s
equation is then derived. This is the most accepted model for relating cantilever curvature to
surface stress. Since Stoney’s equation is the lowest order approximation for the curvature, a

more modern theory based upon Timoshenko beam theory is also presented. The concepts of

Monte Carlo simulations and simulated annealing are then presented. These are the numerical

methods used to determine the minimum energy of the lattice.

Chapter 3 outlines the i aspects of the sil ion, including the lattice

creation program as well as the control interface. The atom movement routine is then
presented, as well as the concept of the variable boundaries that are used in the simulation to

mimic a much larger system.

Chapter 4 presents the results generated by the simulations, explains the results, and

shows how surface is to the i of the deflection of the cantilever.

Chapter 5 contains a brief discussion, conclusions of this work and recommendations for

future work on this subject.

21

Chapter 2 Numerical Model

In this chapter the numerical model will be presented. This will include a description of
the model, as well as a derivation and modification of Stoney's equation to relate the change in
the curvature of the top and bottom surface of the cantilever. Following this the model inter-
atomic potential is outlined, as well as a description of the computational models used to

determine the minimum lattice energy.

2.1 Ball and Spring Model

One of the models that can be used to study the properties of a crystal lattice is the so
called “ball and spring” model. Here the atoms within the lattice are assumed to be balls or
hard spheres that are connected to each other by means of ideal springs. The atoms are

assumed to interact only through these springs, with all other atomic interactions ignored. The

spring constants have been determined by others in our group by means of ab initio

calculations using Gaussian'.

The model normally only connects an atom to its nearest and next-nearest neighbours,
and assumes that any interaction beyond that point to be small and un-important [11]. A
sample simple square lattice is shown in Figure 2.1. This model is commonly used to simulate

surface stress and compressive loading [11)[12).

Figure 2.1: Spring Lattice Model. Atoms in blue are connected by means of ideal springs.

! Gaussian is software developed by Gaussian Inc. for electronic structure modeling.

23

2.2 Stress and Strain

The idea of surface stress was first proposed by Josiah W. Gibbs in 1906. He defined
surface stress as “the amount of reversible work per unit area needed to elastically stretch a
pre-existing surface” [13] . Stress then is a measure of the internal resistance of a material to

the distortion caused by an external load.
The stress on an object is given by its stress tensor

Oxx Oxy Ox 21
Oyx Oyy Oyz

Ozx Ozy Oz

where dggis the stress associated with the a plane along the f direction.

Figure 2.2: Cylindrical stress on a planar surface

In the case of the modeled cantilever system this stress tensor is best rewritten in terms

of cylindrical coordinates (see Figure 2.2) allowing the stress tensor to be written as:

G Org Oy 22
o=|0 o0 oz

i
Ozr 026 Oz

The modeled system is planar, therefore any stress that is out of plane is zero leading to a two
dimensional stress tensor

o= (o cee) =

Referring to Figure 2.2 the values ,,and gy, must be zero, since the only stress in the system is

applied along the @ direction, therefore the only non-zero element of the stress tensor is 0.

Strain is a normalized measure of distortion representing the displacement between
configurations of a body relative to its original length. Strain is given by (in one dimension, or

for isotropic materials)

where AL is the change in the length of the object and L is the original length of the object.
Here the change in length for a deflected cantilever system will be the change in length of the

cantilever for a fixed radial value.

Plotting stress versus strain yields many properties of a material. The curve varies from
material to material. Figure 2.3 is a sample plot of a typical low carbon steel stress strain curve.

Most solid materials will have a Stress-Strain curve with similar features.

Stress

Figure 2.3: A is the Yield Strength above which the material is no longer Hookean, B is the
Elastic region, C is the Strain Hardening Region, D is the Necking Region, the spot designated by
the X is the rupture or fracture point, the transition point between C and D is the Ultimate

Strength.

If a material is still in region B of Figure 2.3 then its behaviour is considered to be
Hookean. Hookean materials when deformed will return to their original state once the
application of force has been removed, i.e. the total strain on the object is below the yield
strength. Therefore any point below point A the material is still in the elastic region. Above the
yield strength the Stress Strain curve becomes non-linear, see Figure 2.3, causing any
deformation to be permanent. Removal of the applied force beyond point A will not result in

the object reverting back to its original shape.

26

For any Hookean material the Stress (o) is proportional to the Strain (&) through

o =Es, 25

where E is the modulus of elasticity of the material.

Upon substitution of equation 2.4 into equation 2.5, stress can be then written as

AL

== 26
Lo

Again here the change in length for a deflected cantilever system will be the change in

length of the cantilever for a fixed radial value.

2.3 Stoney’s Equation and Cantilever Curvature

The classical model for an isotropic thin film coated cantilever was published originally
in 1909 by G. Gerald Stoney. In that paper Stoney argued that the tension per unit area for a
thin film could be determined using equation 2.7. Given is the tension per unit area and t is

the thickness of the thin film then,

27

where 1 is the radius of curvature, E is the biaxial modulus of the substrate, d is the thickness

of the cantilever, and b is the distance from the film/substrate boundary to the neutral axis of

the cantilever [14]. (See Figure 2.4)

Stress in Film

2/3d % ¥ Stress in Substrate
Ep

1/3d Neutral Axis/Surface

Figure 2.4: Location of neutral axis and stress distribution according to Stoney's equation.

By using the condition that the sum of the moments of forces about the X-axis is equal

to zero allows the depth to the neutral axis to be calculated from

a
B 28
[Fo-0max=0
7
0
Solving equation 2.8 yields,
bd? d* 29
T (T “3)7
or
b=2a
=34

28

Substituting the last result into equation 2.7 gives [14]

The substrate biaxial modulus E can be rewritten as

a-v)

where E is the Young’s modulus, and v; is the Poisson’s ratio for the substrate [15].

Substituting equation 2.11 into equation 2.10 and rearranging results in

a
v5) Aot

This equation relates the change in radius between the top and bottom surfaces to the

differential mechanical stress.

Equation 2.12 can be rearranged into the following,

v,) Aot
az”

Alternatively equation 2.13 can be re-written using the change in curvature, AK,

a-v)
e

t
AK = 6=

29

The curvature of a cantilever can be related to the deflection of the free end by

20z 215
=

substituting into the previous result yields the deflection of the free end of the cantilever as

2.16

2(1 —
PR L Al

== b

2.3.1 Timoshenko Beam Theory

Stoney’s equation serves as a simplistic method for looking at a thin film coated
cantilever. However, not all of the material properties of both the micro-cantilever and the thin
film are taken into account in the derivation of Stoney’s equation. For instance the stress/strain
of the gold/silicon interface is not included in Stoney’s derivation. Therefore to gain a better
understanding of the deflection of the cantilever it becomes necessary to look at the beam

theory proposed by Timoshenko in 1925 [16).

It has been shown by Yoshikawa that if a cantilever has been coated by a film that has
an induced isotropic internal strain (/) then its deflection verses stress/strain is different as
compared to the accepted Stoney’s equation. [17] However it will, under the assumption

that d > t, reduces to Stoney’s equation.

Stoney’s equation for the deflection of the free end of the cantilever (Az) is,

30

EaE s

Where L is the cantilever length, v, is the Poisson ratio of the cantilever, E, is the Young's

modulus of the cantilever, and g, is the surface stress.

Yoshikawa used the conditions for equilibrium (forces and moments), and the balance
of strains on the cantilever/film interface to demonstrate that the deflection of a bi-layered

cantilever is,

312(t + d) 218

A= HE T A D T 6t

with

here is the internal strain in the film, E; is the Young’s modulus of the film, wy width of the

film, w, is the width of the cantilever, and v is the Poisson ratio of the film [17].

Here & can be replaced by,

or o sy (1=v7) 219
7"t g

where oy is the internal stress (o; = E’—’:’L). Typically Stoney’s equation is written in terms of
the surface stress, therefore equation 2.18 becomes,

31

302(t + d) Tsury (1=vf) 220

M GTDEr A HETed ¢

Equation 2.20, relates the deflection of the free end of the cantilever with the applied
surface stress, without assuming that d > t. Applying the assumption, that d > t and w, = wy

to equation 2.20, yields upon simplification, Stoney’s Equation (equation 2.17).

2.3.2 Applying Stoney's Equation to the “Ball and Spring” Model

Equation 2.14 can be re-written in terms of the film modulus of elasticity and the
change in length by substitution of Equation 2.6 for the stress. Therefore Stoney’s equation
2.14 becomes

tER(1—vy) 221
(Kr = Ke) = 6—F 7= Ly — AL),

where Ky and Ky, are the top surface and bottom surface curvatures, respectively.
Similarly, ALy and ALy are the changes in the length of the top and bottom surfaces as
compared to the original length. The change in curvature can be calculated by fitting a circle to
the points that define the top and bottom surfaces, and the changes in length can also be

similarly calculated.

n

2.4 Modeling Interatomic Interaction

Itis known that the energy between two atoms can be modelled by the Lennard-Jones

12-6 potential given by
Lspring\ ' Lpring)®
V@ = ¢ () -2 (Umee)')
or
_ 9L\ _ (9u)®
v = 4e((F) - (7))

where R is the interatomic radial separation between the atoms, L,y is the natural spring
length of the spring, & is the depth of the potential well and gy, is the characteristic Lennard-

Jones length (typically the diameter of the smallest particle)[18]. A sample plot of the Lennard-

Jones potential is shown as plot C in Figure 2.5.

While this potential describes the dual attractive and repulsive interactions between a

pair of neutral atoms or molecules, it also covers both of the long range and short range forces.

The nature of this si ion is not i in long range i ions since the atoms within
the lattice are not expected to increase in bond length by a large amount. So it is possible to

use the most basic potential, this would be a simple harmonic.

33

2.4.1 Simple Harmonic Potential

One of the simplest models of a crystal lattice can be constructed from the assumption
that the lattice system can be modeled as if all the atoms contained within the lattice are
connected through a set of imaginary springs. This model works sufficiently well enough that it
can be used to model simple crystal lattices without having to involve complex inter-atomic
potentials. This model works well in systems where the expected amount of bond stretching is
low, i.e. the equilibrium bond distance is very close to that of the stretched bonds. The atoms

located within a solid crystal are not expected to change their position to a great extent.

The potential between two atoms can therefore be modeled as a simple harmonic, and

is given the form

2
Energy = kias (Radius = Lspring)'»

where the i ic spring restituti icient between the two atoms is k; 45, Radius is

the interatomic separation of the atoms, and Lgyying is the un-stretched natural bond length.
This potential can be as line “A” in Figure 2.5, and is favourable when it comes to computation
as it is faster to calculate as compared to the Lennard-Jones equation. This is a benefit as the
simulation will be running on a very large system, and should cut down on the total amount of

execution time.

Comparing the two potentials, both simple harmonic and the Lennard-Jones model (Line

C, Figure 2.5) it can be seen that the minimum for both potentials occurs at the same point and

34

that the behaviour about this point is similar. However the simple harmonic potential has a
problem. While it models the regime around the critical radius well it does not model the cases
where the radius becomes small, the potential is finite for zero radius, and becomes infinite as
the radius tends to infinity. Therefore this potential needs to be modified to mimic the defining
characteristics of the Lennard-Jones potential. This can be done with the addition of a simple

scaling term,

(

Combining equation 2.23 and 2.24 yields the new potential of the system to be defined

1 ring)? i
Energy = tkias (RZ22)" (Radius — Lspring)*- 225
This potential is shown as Line B in Figure 2.5 which shares similarities to the behaviour
of the Lennard-Jones model. As Radius tends to zero this potential tends to infinity, just like
the Lennard-Jones, and similarly as Radius goes to infinity the energy plateaus at a constant

value.

Computationally the potential given by equation 2.25 is faster to calculate then that as
given by equation 2.22, and applying the restriction on the simulation that the atoms will not
move by large amounts then the modified simple harmonic oscillator model is acceptable. If

indeed the atoms in the simulation move to a great extent relative to each other, then the

35

modifications made to the simple harmonic potential will help it behave like the Lennard-Jones

potential.

RadiUs i

Figure 2.5: (A) Spring Energy of individual lattice spring, plot of equation 2.23. (B) Modified
Spring potential that is used in the simulation, plot of equation 2.25 . (C) Lennard-Jones

Potential (Equation 2.22). The modified spring potential mimics the behaviour of the Lennard-
Jones potential whilst reducing the total number of calculations required since squared terms

are faster to calculate then terms to the 6 or 12™ power.

36

2.5 Lattice Spring Constants

The spring constants of the system were determined by others in our group using

Gaussian and can be found in Table 1. Gaussian reports the spring constants for each bond in

terms of the atomic units system; these can be found in column two of Table 1. The equivalent

converted Sl units can be found in column three of Table 1.

Bond Coefficient of Restitution k (H/A?)? | Coefficient of Restitution k(N/m)
Silicon - Silicon 0.28584 124.619
Gold - Silicon 0.14600 63.652
Gold - Gold 0.30608 133.443
Surface (Explained Below) 1x10° 4.35975x10™

Table 1: Coefficients of Restitution®

The spring constants of the springs that are determined to be along the surface are

assigned values that are approximately ten orders of magnitude larger than similar springs

located within the bulk. When a molecule is adsorbed onto the surface it will force the top gold

atoms to separate, this interaction is assumed to force and hold the atoms apart by a set

amount. Hence by setting the coefficient of restitution to be very large these springs then

? While not in SI units, these units are most commonly published for these values.

* Determined by previous members of Dr. Luc Y. Beaulieu's Research Lab Group and were provided at the onset of

this project

behave more like rigid rods, then actual springs, when compared to the rest of the springs in

the system.

In order to be classified as a surface bond a spring must be located on the top surface of
the gold film, it also may not have any spring that crosses it, and must start in the horizontal
position. Figure 2.6, shows an example of the bonds used in the simulation that will be used as
surface springs. These springs are considered to be the binding sites, these are the locations
where the thiol is expected to bond to the surface. When a thiol is adsorbed on the surface it
will induce a surface stress due to the interaction of gold and thiol. The thiol will force the gold
atoms surrounding the binding site to separate. Therefore only these springs will experience
the induced stretch, the rest of the springs that are on the surface but are not considered to be

a part of the surface springs or binding sites will be treated as if they existed purely in the bulk.

Figure 2.6: New and Remaining Surface bonds after removal of surface atoms

The spring constants in Table 1 are for the bonds that exist between the nearest
neighbour atoms within the lattice. However since the simulation considers both the nearest

neighbour and the next nearest neighbour bonds these coefficients need to be corrected since

38

the springs between the nearest and next nearest nei will have different

coefficients.

Figure 2.7: Forces between an atom and the nearest and next nearest neighbours

In order to calculate these new spring constants the forces between the atoms are
needed to be considered (Figure 2.7). The lattice constant a, for a square lattice is determined

by finding the value that minimises the total lattice energy for the entire rigid structure.

The nearest neighbour energy, given by —J; = V; (a), is purely attractive and thusly allows for

atomic cohesion. The next-nearest neighbour energy, given by —J = V;(v2a), can either be

repulsive or attractive ing upon the exact nature of the

neighbouring atoms.

The total energy of an ideal rigid lattice can therefore be written as,

Ua)= 2N (v,(u) + Vz(ﬁn)).

In order to determine the lattice parameter that results in the optimum lattice
configuration it becomes necessary to determine the minimum of equation 2.26. The condition
for the minimum energy

dua) _
da

implies that
—V'y(@) = V2V, (V2a). 228
Figure 2.7 shows the forces that are acting on an atom. To maintain the atom in
equilibrium, no external forces have been applied, the force between the atoms is such that

NFl = 1Rl = IFsl = Il = oo, 229

and

NIFsI = IIFgll = IIF; 1l = IIFgll = %ﬂn» (1)

This change in the force is due to the elongation of the natural spring length of the
springs between the next-nearest neighbour atoms. This change is reflected in the reduction of

the next nearest neighbour spring constants.

40

2.6 Monte Carlo Family of Simulations

The Monte Carlo family of algorithms utilize the repeated random sampling of a variable
in order to determine the desired results. Historically the name Monte Carlo is derived from
work done during the 1930s and 1940s on the Manhattan Project, many computer simulations
were performed to estimate the probability that the chain reaction needed for the atom bomb

to function would work successfully (19].

2.6.1 Metropolis-Hastings Algorithm and Simulated Annealing

The Metropolis-Hastings algorithm has its origins in 1953 through the work of Nicholas
Metropolis et al., who were attempting to develop a model to calculate the properties of a
collection of interacting particles that obey classical statistics [20]. This method was updated in
1970 by Keith Hastings, and has since become known as the Metropolis-Hastings Algorithm

[21). According to classical statistics the probability of a system being in a state E; is given by

1k
PE) = e g,

where Z is the partition function, ky is constant, Ty is and Ej is
the energy of state i.

Referring to the systems to be solved in this work, the number of possible microstates
makes the computation of the partition function in equation 2.30 to be practically impossible.

The Monte Carlo algorithm is able however to get around this, by sampling this microstate

41

space randomly. This random selection can lead to problems, where the variable sampling may
miss important portions of the domain or are located very far away from the minimum energy
[22]. In order to avoid these problems the concept of importance sampling was integrated into
the Monte Carlo scheme to form a new technique[22]. The concept of importance sampling
states that instead of using a uniform distribution as proposed under the standard Monte Carlo
scheme, a biased distribution ¢ is used where ¢ is the collection of microstates that contribute

the most to the determination of the minimum energy [22].

Consider here two possible i i Aand B. The ility that the transition
from state A to B will occur under the condition for detailed balance using the same definition

for temperature as detailed above is

-4

P(E)) e TE (EET;-EA)

= =2 —=e .
P(Ep) -y

The partition functions for both of these probabilities are the same and thus can be
eliminated, leaving equation 2.31. However, a system is not energetically isolated from its

surroundings, and may exchange energy with them. Here T, from equation 2.30 has been

from i into a measure of how willingly the environment

shares its energy (T = kyT,). “Temperature” here now has units of energy. The greater the
“temperature”, the more willing the environment is to give energy to the system; the smaller
the “temperature”, the more influence the environment puts on having the system in a low-

energy state.

42

In 1983, Kirkpatrick et al. began to examine methods to computationally solve the
“travelling salesman problem” [23]. This problem is classified as being an NP-hard problem
in combinatorial optimization. NP-hard problems are a defined complexity class of decision
problems in theoretical computer science that are intrinsically harder than those that can be
solved by a nondeterministic Turing machine in polynomial time. Solving this type of problem

would only be possible, in afinite time, on a computer that would allow for infinite parallelism.

The travelling salesman problem states that given a list of cities and their locations on a
map find the shortest possible route that visits each city exactly once. Kirkpatrick et al.

proposed to use a method of simulated annealing in order to solve problems of this nature [23].

Simulated annealing is not annealing but a computational analog to the process of
annealing that can be applied to large combinatorial optimization problems. It is then called
simulated annealing due to this similarity, and due to historical reasons the name has
remained. However, this technique falls under the much broader family of Monte Carlo

simulation algorithms.

Annealing is defined as the process in which a solid sample is heated to the point where
the particles are allowed to freely rearrange themselves into a random distribution. The system
is then allowed to cool at a very slow rate. To allow the particles to rearrange themselves into
the lowest energy state crystal lattice. The key steps here are that the initial temperature must
be sufficiently high to allow for this free rearrangement and that the sample is cooled at a slow

enough rate to not inhibit the formation of the lowest energy lattice. Cooling at a rate that is

43

too fast can result in the sample forming a higher energy lattice or leading to a non-optimum

configuration.

Similarly large combinatorial optimization problems can be thought of in a similar way
since the algorithm is searching for the lowest energy configuration or the best configuration
within a very large complex system. Simulated annealing seeks to find the deepest local minima

to the starting position. *

The algorithm is an application of a Markov Chain to sample configuration space to
determine the optimum configuration using transition probabilities [24]. Here the configuration
space is defined to be the collection of all possible configurations for the lattice. A.A. Markov
proposed the methodology of looking at probabilities that occur in complex changing systems
to determine the most likely state that a system will have after a time that began in a particular

state [24](25]).

A simple four state Markov Chain is presented below in Figure 2.8, if it is assumed that
the system begins in state A, then after a period of time it has a 25% chance of now being found

in state C, similarly for state B, and a 50% chance of remaining in state A.

“There is no algorithm for determining the true global minimum; however simulated annealing
searches to find the best local minimum that is closest to the starting point.

44

0.5 05

0.18

Figure 2.8: Four State Markov Chain with transition probabilities

Now consider the problem of optimization of the positions of the atoms within a crystal
lattice. Given the configuration space set C = {Cy,Cy, C3, Cy, .., Cpiy -, Coo}, Where iy is the
initial configuration. The Markov process would seek to minimize the lattice energy by looking

at the transition iliti i with each of the confi ions and would select the

highest transition probability and that would result in the most optimized configuration.
However, it is not possible to sample every configuration in this set, as it is unrealistic to

analyse every possible lattice at once.

a5

®

Configuration

Figure 2.9: Energy VS Configuration for an arbitrary sample lattice

Referring to Figure 2.9, thinking about the Markov chain that contains all possible
configurations of a crystal lattice, some configurations will have a lower energy than others. Let
the sample begin in state A. Now consider state B; its energy is lower than A so it is accepted
right away. The next state is C, whose energy is higher than B is clearly not a minimum and
typical minimization techniques will report that state B is the minimum energy configuration for

the system. However is B the best minimum that is possible?

The method of simulated annealing allows for the temporary and random jumping back
into less optimized states. Here the algorithm will hold onto position B and then temporarily

allow the transition to state C. The determination of whether or not to move to State C is made

46

by the Markov chain probability between the two states. It is a random process whether or not

the transition will occur.

From Figure 2.9 is can be seen that state C is at a higher energy state then B, but the
transition has been allowed temporarily to see if a better configuration can be found. This
random exploration of solution space around the current best configuration is the real power of
simulated annealing as it will allow for the transition from C to D, and thus replaces B as the
new best configuration until it reaches the configuration at point F. The algorithm then will only
accept configurations of the lattice that are around the current one, and will ignore the rest,

and hence will ignore the bulk of configuration space.

Referring to Figure 2.9, why was State B chosen over State D? Under the random
perturbation of State A, State B was the first minimum value that was found and so was
assigned to be the best minimum. Why then was the decision made to randomly jump to state

c?
In this simulation the form of equation 2.31 becomes

(Ecurrent—ETemp) 232
T e

Equation 2.32 is the acceptance probability. This can also be seen in Figure 2.10, where
the current best is Ecyrren and Eremy is the energy of the new configuration. Here Ecyrrent

can either be the value of the minimum or can also be the value of a temporary jump to a

47

higher energy state. If Erepy < Ecurrent then the configuration is accepted as being better

since the acceptance probability becomes large.

If Ecurrent < Eremp and the value calculated by equation 2.32 is larger than a high quality
random number® chosen in the range of zero to one, then the system moves into a temporary

higher energy state, this is how the transition from State B to C in Figure 2.9 is allowed to occur.

The Simulated Annealing algorithm is shown below in Figure 2.10. The value of T within
the algorithm controls the amount of solution space that the algorithm is allowed to explore.
This allows for the initial free exploration of the surrounding states from an initial state. Once
the “Temperature” begins to cool the amount of exploration that can be done decreases and a

solution to the problem is determined.®

* A high quality random number comes from a long periodicity pseudorandom number generator with an even
distribution of generated points, such as Mersenne Twister. Refer to Appendix A and B.

© Refer to Appendix E, for the Simulated Annealing source code

48

Reached the
maximum Number
of terations?

Evaluate Temperature
according to Cooling

Perturbate System by small
Schedule biserse i |

Finish, Accept

Is Temperature i
below lower limit? Configuration Evaluate Current
Energy with Bond
Lengths stretched

No, Calculate Acceptance Probability
= e(Ecur—Eremp)/T

Yes, Accept

urrent
Configuration

Figure 2.10: Simulated Annealing Algorithm Flow Chart

2.6.2 “Cooling” Schedule

In the simulated annealing algorithm the value of the “cooling” variable is controlled by

way of a cooling schedule. The cooling variable is to the

decrease that a system would experience if it were in an actual annealing process. There are
established schedules that are commonly used, and some problems require the creation of new

schedules.

49

This simulation utilizes the simple cooling schedule, which obeys the equation

Tnext = T Tcurrents 2.33

here Tyexe and Teyrrene are the next iteration “temperature” and the current iteration
“temperature”. The value of 7 controls the decrease in “temperature”, which in this work was
set to 0.75. Under a simple cooling schedule this value can be in the range of 0.5 < 7 < 0.99,

and is dependent on the problem [26].

The initial temperature for the system is selected to have a value of three million
degrees (where temperature is in units of energy as detailed in section 2.6.1). This high
temperature allows for the free movement of the system into multiple high energy states

allowing the system to select the best starting point to cool the system from.

50

Chapter 3 Computational Methods

In this chapter the methods used for the lattice creation, movement of atoms and
variable boundaries will be presented. These methods are incorporated into the program used
in this work to solve for the minimum energy for different systems of large numbers of
variables (~15 million). The systems studied in this work are approximately 1 micrometre long
by 1 micrometre high of silicon with varying amounts of gold. Firstly the initial lattice creation

program is described.

3.1 Lattice Creation

In order to be able to produce the input lattices required for the simulations an
additional program was designed to create the array of atoms including all the necessary atom

information required to complete the simulation. This program can be found in Appendix G.

51

e

Silicon has a diamond cubic lattice i ion while gold is a f: tered cubic. The

silicon cantilever’s top surface will be (001) therefore the selection of the cross section can be
made along the (100) plane, this will give a cross section for the silicon that can be seen in
Figure 3.1. The selection for the orientation of the thin gold film was made by rotating the unit
cell until the orientation formed flat layers. This orientation of the unit cell was determined to
be along the (111) plane. Therefore the model assumes that the flat layers of gold lie parallel to

the (111) plane.

Figure 3.1is a sample ion of the lattice configuration that will be used in

each of the simulations. Gold is aligned on the surface of the silicon as to force the boundaries

to match on both the left and right.

Gold we v e e e e e .
H Y
o« o .
e o e
o« o .
e o e e
Silicon| « o e

Figure 3.1 Gold Silicon Lattice, Silicon (blue), Gold (Red)

52

This code takes as input the number of silicon atoms, the number of gold layers, and the
destination file name. Because gold and silicon have different crystal structures it is necessary
to optimize the position of the gold film on the silicon cantilever. The code alters the horizontal

lattice parameter of the gold film atoms until both end boundaries fit within the required

space. Modifying the hori lattice of the gold film results in the slight
compression or elongation of the film as compared to its natural length. However, increasing
the width of the sample reduces the deviation of the horizontal lattice parameter from its

expected value. Figure 3.2 shows the decrease in the deviation as the width of the sample

increases.
0.04,
E
£
e
2 002
8
<
13
2
—
o 500 1000 1500 2000
]
‘Z Number of Silicon Atoms in X
£-0.02)
k]
3
a
—=0.04]

Figure 3.2: Deviation in gold atom horizontal lattice parameter on silicon substrate

The determination of the deviation in the horizontal lattice parameter of gold is
calculated using the interface of the silicon atoms in the top surface of the substrate with the
bottom surface of the thin gold film. The length of each of these rows is required to be the
same to force the gold to fit on the silicon. Therefore the deviation of the horizontal lattice

parameter can be calculated by,

((N = 1)Lg) = RINT (
(N -1
RINT (ﬁ_,_r_l)

where Nis the number of silicon atoms in the X direction, L; and L is the next-nearest

W=D, 31
Ts d

Horizontal Lattice d Deviation =

neighbour distances of silicon and gold respectively. Here RINT rounds the value inside

brackets to the nearest integer.

In equation 3.1, (N — 1)Ly is the total length between boundary silicon atoms in the

layer. While ((N;—”') is the number of gold bonds required to span the same distance this
G

number must be an integer so the boundaries will match, therefore it is rounded to the nearest
integer. Multiplying this number by the length of a normal gold bond gives the total length of
the gold surface for the number of bonds. Subtracting the total length of gold from the total
length of silicon gives the difference in the lengths, dividing by the number of gold bonds gives

the amount that each bond must be elongated or compressed to fit on the silicon surface.

In this work the samples analysed were 1,842 silicon atoms wide in the horizontal

direction which resulted in having 2002 gold atoms in the X direction. Therefore the amount of

54

deviation in the gold atom bond is 10~*3m, which is an acceptable amount of positional error

that is of the same order as the resolution of the initial atom position coordinates.

3.1.1 Lattice Creation Graphical User Interface (GUI)

In order to create multiple lattices with varying surface roughness, and to provide a
generalized interface to perform all of the related tasks, a java based Graphical User Interface

(GUI) was created. This same interface was also used to generate the final plots, modify the

code for ACEnet, and submit the code to a server for processing. The code for this interface was
written using NetBeans’, and can be found in Appendix F. This code generates the following

interface:

” NetBeans is a Integrated Development Environment (IDE) for the creation of Java desktop applications made by
the Oracle Corporation

55

Figure 3.3: Simulation control interface.
This program modifies the input files that are required for the simulation. The input files
are initially created using a program that can be found in Appendix G. This program creates a
perfect 2D lattice based on the number of silicon atoms in the X direction, the number of silicon
in the Y direction, and the number of layers of gold.
In this work a cosine function was used to define the surface roughness of the gold film.
Based on the user defined frequency and amplitude of the cosine function that defines the
surface the wavelength is calculated so that a maximum occurs at the boundaries. Forcing the

maximum to be at the boundaries makes it possible to use variable boundaries as discussed in

56

section 3.3.1. Figure 3.4a illustrates the application of the surface line, for this case it has a
wavelength of 1/3 um and an amplitude of 1 nm. Any atom located above this line is declared

inactive.

The red atoms shown in Figure 3.4a have been declared to be inactive. Any spring
located within the red zone contributes zero energy to the total lattice energy. Therefore the
equivalent system is as shown in Figure 3.4b. The roughness simulated in each of the samples is

realistic for the dimensions of actual gold deposited on silicon cantilevers [27].

Figure 3.5 shows how the number of bonding sites decreases as the frequency and
amplitude of the surface is changed. The number of bonding sites decreases as the frequency

decreases, and also decreases as the amplitude increases.

57

WURTRTETE W W TR TR W TR N T e TR e W T e

& Sicon & Goa — s

Figure 3.4: a) Application of Surface Fitting Function, b) Red atoms above line have been declared virtual

58

1959

% Number of
Bonding Sites

m
s
s 1657
1
i 1
Amplitude (nm) 1581
v
0.26 0%
20 0.44 28 o
Wavelength (um)

Figure 3.5: The number of bonding sites decreases as the frequency decreases and also

decreases as the amplitude increases. Red dots correspond to the simulations with a film

thickness of 23.5 nm.

59

3.2 Movement of Atoms

In order to model molecular adsorption on the thin gold film an algorithm for moving
the atoms for the simulated annealing algorithm was developed. This algorithm increases the
natural spring length (Lgyring) of the surface springs, which changes the minimum energy
radius to be at the desired bond elongation. In order to reduce the energy of the system the

atoms need to be moved to eliminate the new compression of the surface.

Within the one micron section of the cantilever under consideration there are a total of
6,785,928 silicon atoms as well as 200,200 gold atoms. The algorithm attempts to determine
the minimum lattice energy of a system that has 13,972,256 variables (X and Y coordinates). It
is computationally expensive to vary the position of each atom randomly as dictated by the
simulated annealing algorithm. The execution time can be reduced beginning with the

reduction of the number of free variables.

The first assumptions that are made is that the thickness of any thin cross-section of
cantilever will not change and that for a cantilever undergoing bending that the shape of the
beam does not change along its width [28]. This is due to the fact that any stress or strain that
does not contribute to the elongation of the cantilever along the longitudinal axes can be
relieved as nothing exists to hold any residual stress or strain in these directions. Therefore any
compression or expansion of the beam is released immediately. This forms the basis for
Stoney’s equations. Bucciarelli also states that for a “beam in pure bending, plane cross

sections remain plane and perpendicular to the longitudinal axis”[28]. This allows the lattice to

60

be divided, both silicon and gold parts, into distinct columns as shown in Figure 3.6, in this case
the columns of atoms take on the role of the planes in the typical deflection model. This
simplification reduces the number of independent variables from 13,972,256 down to 3,684 or

twice the number of silicon atoms in the X direction.

ik
""[1]1[1

\'%

Figure 3.6: Atom Columns for Movement, red spheres are gold atoms while grey spheres are

silicon atoms

The function for moving the atoms randomly sets the angle between the columns,
moving every subsequent column by the same angle. This algorithm for moving the atoms is
implied within Stoney’s equation since the surface of the cantilever has a constant curvature.

61

Referring to Figure 3.7 for a visual representation of the algorithm. The code for the movement

starting at column 2 is:

Step 1

Step 2

Step 3

Step 4

Generate pseudo-random number in the range (0,1)
U = RANDOM(0,1)
Multiply random number by the maximum possible rotation angle
Uy = U * (max rotation angle)
Increment current and subsequent column rotation angles by Uy

Move to next column and repeat steps 1-4, until no columns remain

Bonding Site

1\.2

'3\ Induced Surface Stress

Figure 3.7: Algorithm has randomly chosen a and B and therefore has set the slope of column 3

to be equal to h=a+B

Once the angle of each column has been set the algorithm then rotates the columns of

atoms about the global origin. This simulates the deflection of the cantilever.

3.3 Crystal Lattice Boundaries

The one micron section of cantilever to be considered within this calculation is a section
of a much longer cantilever. Modeling the entire cantilever is done through the process of

repeatable and variable boundary conditions.

In this system the first and last atoms in each row are considered to be the atoms that
exist within the boundary. These atoms form the basis for the lines that define the boundary.
The boundary atoms are fitted to a straight line using a fitting algorithm that was modified from
the one found in Numerical Recipes in C (NR). This NR algorithm was modified to remove the
weighted code. The code was also modified to use the LatticeArray data structure that contains
all of the information on the lattice. This modified code can be found in Appendix A. The lines
that define the boundaries are determined by a line of best fit of the atoms in each boundary. If
these lines are vertical or near vertical the calculated slope will be very high. In fact there is
nothing in the NR code that guarantees that the resulting lines will be sensibly defined in the

case where the calculated lines are vertical or near vertical.”

® The compiler may allow the special INF value to be assigned

63

Figure 3.8: A) Un-rotated Lattice B) Rotated Cantilever with new prime coordinate system. The
coordinates of the atoms are rotated using a rotation matrix by 90 degrees, this prevents the creation of
infinite slopes once the boundary lines are calculated. The calculations are carried out s if the rotation
never occurred.

The lattice and its coordinate system can be seen in Figure 3.8 A. To avoid this situation
and any situation where the slope becomes very large, after the lattice is inputted and the
springs within the lattice are assigned, the lattice is rotated by -90°. This results in the new
lattice as can be seen in Figure 3.8B. This coordinate rotation changes the large slopes in the
original lattice to small slopes within the rotated lattice thus preventing the creation of infinite

slopes.

3.3.1 Variable Boundary Rotation

The silicon cantilever is expected to bend with a constant curvature. Therefore to model
the boundary interaction it is possible to use the intersection point of boundary lines as defined
above as a temporary origin about which the boundaries are rotated. If the slopes fitted to the
boundary atoms are large or infinite then the intersection point may not be able to be

determined.

This procedure creates a set of variable periodic boundary conditions. The
establishment of periodic boundary conditions (PBCs) is often used to simulate a much larger
systems by only considering a smaller sub-section of the system that is located away from the
edges of the system. PBCs can only be used when the system can be broken down into a
periodic array of similar systems. These simulations were designed to use a variable set of

periodic boundaries to allow for the cantilever to naturally undergo deflections.

To model the boundary interactions, atoms located on the left boundary are rotated to
create an image of themselves on the right boundary of the sample, and vice versa for the

atoms located on the right boundary. This is illustrated in Figure 3.9.

65

Slope = my,

Figure 3.9: Boundary Rotation, dashed circles are the image of the boundary atom located at

the next boundary

To determine the boundary rotation, the interception point of the boundary lines must
be calculated. This interception point along with the slopes of the lines allows for the
calculation of the rotation angle that each boundary needs to rotate. The boundary line

intersection point is determined by

66

by~ by
Mpy, — My,

and

Yy = mp, X+ bpy.

Where m and b are the slopes and intercepts respectively, with RL and LL representing Right
Line and Left Line (Figure 3.9). This set of XY coordinates becomes the new temporary origin
about which the boundaries are rotated. This rotation is done for any spring that extends across

the boundary.

In order to perform the rotation of the boundary atoms the angle between the right and
left boundary lines must be known. This operation is preformed multiple times within the
simulated annealing algorithm so it would be of great benefit to determine the angle with

minimal additional calculations.

Referring to Figure 3.9, it can be seen that

a=a+0 33

or upon rearrangement,

0=a,—a. 34

67

Therefore it can be said that

tan6 = tan(a, — a,). 35

Using the trigonometric identity for the tangent of the difference between two angles yields

36
tan @, — tan a,
tanf = ——————,
1+tana, tana;
By definition
My, = tan az,
my, = tana,, 37
with
Mpy, > My
Therefore
| 38

N

From equation 3.7 the slopes of the lines are known due to the fitting of the boundaries. This

results in a method by which to calculate the required rotation angle.

68

Chapter 4 : Results and Discussion

In this chapter the results from the simulated annealing minimization algorithm are
presented. Initially each algorithm was executed on a very small lattice of approximately 100 to
1000 atoms. This was done to aid in the process of debugging the algorithm, sorting out
memory overhead, and making each algorithm efficient. After all of the bugs were removed and
the program was tuned to be as efficient as possible, a collection of lattices with varying film

and i were created and processed (each lattice had its own

instance of the program running in parallel and took over 3.5 months to complete). The
minimum energy configurations were determined for each lattice, and the results are

presented below.

69

4.1 Simulated Annealing

4.1.1 Comparison to Finite Element Analysis

To verify the output of the algorithm an ANSYS®® finite element analysis was conducted
for an atomically flat lattice that consisted of a silicon block that was 0.5 pm x 1 pm with a 10
nm thick gold film. The same system was also analyzed using the software found in appendix E.
The deflection of the sample calculated by ANSYS® was 64.4 nm while the calculated value
using the simulated annealing algorithm was 64.6 nm. ANSYS® uses finite element analysis in
order to solve for the resulting deformation of an object and is accepted both commercially and
academically as being accurate (There are many published papers that use ANSYS® as their
primary means of performing calculations). In order to perform its calculations ANSYS® needs
to mesh an object in a triangular grid, the grid spacing varies depending upon the surface. This
grid does not map very small details very well, but can map smooth surfaces at the scale used in
this work. Since the value calculated by ANSYS® for the deflection is approximately equal to
that calculated by the simulation, the results from the simulation should be approximately
correct. See Figure 4.1 for a comparison between the deflection calculated by ANSYS® versus

the deflection calculated by the simulation.

? ANSYS is a general purpose commercial finite element modeling package.

70

a)

Tota Deformation
Type: Total Deformation
Uni

Time: 1
18/05/2011 11:14 AM

Figure 4.1: The deflection calculated by the simulation (a) was 64.6nm while the deflection
calculated by ANSYS® (b) using the properties (Young's modulus, Poisson’s ratio) of the

materials was 64.4nm.

71

4.1.2 Simulation Output

Once the program output was verified the program was used on a variety of lattice
configurations. Excluding the test cases 26 separate unique configurations of the lattice were
analysed. A summary of the samples studied in this work are shown in Table 2. This table gives
the initial film thickness, the frequency, amplitude, and the final calculated end deflection of
the cantilever. Due to the presence of the surface features the thickness is assumed to be the

average film thickness, equation 4.1.

1
Average Film Thickness = Maximum Film Thickness — (E) Amplitude a1

The final end defection was determined from the position of the last silicon atom in the
first row (Right hand side) of the lattice. This deflection is measured from the initial position of
the atom, since the initial position of the first row of atoms in the lattice is along the y=0 axes.

The samples are designated by AF in Table 2 are for systems that are atomically flat.

72

Table 2: Summary of Simulations

— — Wavelength .
Thickness | Thickness | . _ I(\tt:“rr)ncally Am(zlr:;de De;;:il;":nm)
(Average) (Maximum)

Flat

11.7 nm 11.7 nm AF 0 -5.62155
9.2nm 11.7 nm 1/2 5.0 -16.2676
9.2nm 11.7 nm 1/3 5.0 -21.7456
9.2nm 11.7 nm 1/4 5.0 -27.8265
9.2nm 11.7 nm 1/5 5.0 -34.6724
23.5nm 23.5nm AF 0 -5.68008
21.0nm 23.5nm 1/2 5.0 -16.2133
21.0 nm 23.5nm 1/3 5.0 -21.6955
21.0 nm 23.5nm 1/4 5.0 -27.8736
21.0nm 23.5nm 1/5 5.0 -32.2895
18.5nm 23.5nm 1/2 10.0 -27.7857
18.5 nm 23.5nm 1/3 10.0 -39.7912
18.5nm 23.5nm 1/4 10.0 -50.8246
18.5nm 235nm 1/5 10.0 -63.3947
16.0nm 235nm 1/2 15.0 -39.8358
16.0nm 235nm 1/3 15.0 -56.7751
16.0nm 23.5nm 1/4 15.0 -73.5547
16.0 nm 23.5nm 1/5 15.0 923374
13.5nm 23.5nm 1/2 200 -51.0599
13.5nm 23.5nm 1/3 20.0 -73.9471
13.5 nm 23.5nm 1/4 20.0 -100.606
13.5nm 23.5nm 1/5 20.0 -122.372
50.0 nm 50.0 nm AF 0 471116
75.0 nm 75.0nm AF 0 -4.73244
100.0 nm 100.0 nm AF 0 -4.7361
150.0 nm 150.0 nm AF 0 -3.86491

73

The results of the simulations can be seen in Figure 4.2 to Figure 4.6. These correspond
to the film thickness of 11.7 nm. The silicon substrate has been removed from the plots for
clarity since it is a few orders of magnitude larger than the gold film. Due to the number of

atoms used in the calculations the plots appear to be solid, however they are distinct points.

74

1020

1010

1000

990

980

Cantilever Y Axis (nm)

970

9600 200 400

0
Cantilever X Axis (nm)
Figure 4.2: Wavelength AF, Deflection: -5.62 nm.
1020

800

1000

1010

1000

990

Cantilever Y Axis (nm)

9600 200 400 0
Cantilever X Axis (nm)

Figure 4.3: Wavelength (1/2) um, Deflection: -16.26 nm.

800

1000

1000

990

980

Cantilever Y Axis (nm)

970

9600

200 400 600

Cantilever X Axis (nm)

Figure 4.4: Wavelength (1/3) um, Deflection: -21.74 nm.

800

1020

1010

1000

990

980

Cantilever Y Axis (nm)

970

250 200 300

00
Cantilever X Axis (nm)

Figure 4.5: Wavelength (1/4) um, Deflection: -27.82 nm.

800

1020

1010

1000

990

980

Cantilever Y Axis (nm)

970

9600 200 400 600 800 1000

Cantilever X Axis (nm)
Figure 4.6: Wavelength (1/5) um, Deflection: -34.67 nm

In order to compare systems the bottom surface of the each lattice was plotted. The
plots shown as Figure 4.7 to Figure 4.11 show the bottom silicon layer for samples with the
same film thickness and amplitude but different frequencies. Figure 4.12 is similar to the series
of figures (Figure 4.7 to Figure 4.11) with the exception that instead of looking at the change in

wavelength this figure looks at the change in surface amplitude.

77

0
Wavelength
AF
_-10
€
£
% -15
3 1/2 ym
> -20
g 1/3 um
2 -25
2
38 1/4 um
-30
-35 1/5 um
200 400 0 800 1000 1200
Cantilever X Axis (nm)
Figure 4.7: Max Film Thickness 11.7 nm, Amplitude 5.0 nm.
0
Wavelength
= AF
£-10
£
2 _15
3 172 ym
320
35 173 um
5
8-25
1/4 ym
-30
/5 um
=35
200 400 600 800 1000 1200

Cantilever X Axis (nm)

Figure 4.8: Max Film Thickness 23.5 nm, Amplitude 5 nm.

78

Cantilever Y Axis (nm)

~————— Wavelength
AF

172 ym
1/3 pm

1/4 ym

1/5 um
200 400 600 800 1000 1200

Cantilever X Axis (nm)

Figure 4.9: Max Film Thickness 23.5 nm, Amplitude 10 nm.

Cantilever Y Axis (nm)

Wavelength
AF

1/2 ym

1/3 pm

1/4 ym

1/5 ym

800
m)

200 1000 1200

400 600
Cantilever X Axis (ni

Figure 4.10: Max Film Thickness 23.5 nm, Amplitude 15 nm.

79

-20
E _a0
o
f -60
I
g
2
Z -80
s
3

-100

-120

200 400 600 800 1000 1200
Cantilever X Axis (nm)

Figure 4.11: Max Film Thickness 23.5 nm, Amplitude 20 nm

0
_20 Amplitude
_ 5.0 nm
E a0
"
H
<
& =60 10.0 nm
]
g
K]
T -80
5
o 15.0 nm
-100
-120 L 20.0 nm
200 400 600 800 1000 1200

Cantilever X Axis (nm)

Figure 4.12: Max Film Thickness 23.5 nm, Wavelength (1/5) um

80

4.2 Discussion

The total amount of cantilever deflection due to the adsorption of an alkanethiol SAM is
asource of contention between various published papers. This controversy applies to both

and theoretical ications [5][4][6][9]. In the work of Godin et al., they

conducted a study on the adsorption of alkanethiols on gold coated cantilevers [4]. In this work
the authors analysed the surface stress effects of the formation of the alkanethiol SAM on the
surface, including looking at the difference between the three phases of the SAM (stacked
lying-down, un-stacked lying-down, and standing up). It was found that the sensitivity of the
cantilever (the amount of deflection) was highly dependent on the thin film morphology where
cantilevers that had surfaces that consisted of small grains (rough) deflected less than their

larger grain counterparts[4].

Mertens et al. also studied the surface stress responses of cantilever based sensors to
molecular adsorption. In their work they used alkylthiol mercaptohexanol (MCH) as opposed to
alkanethiol SAMs [6]. The adsorption of MCH on the thin gold film resulted in an average
deflection that was larger for rougher surfaces [6]. Therefore they determined that for
cantilevers whose gold film was smoother (larger grains) deflected less than ones with rougher

surfaces [5] [6].

From Figure 4.7 to Figure 4.11 it can be seen that as the wavelength of the surface
decreases (roughness increases) the total deflection of the lattice increases. This indicates that

the wavelength of the thin film surface profile affects the deflection of the cantilever. Referring

81

to Figure 4.7, the deflection increases by 18.36 nm as the wavelength is reduced from 1/2 to
1/5 pum. This was the same trend for each of the samples studied in this work, as the
wavelength decreased the total end deflection increased. Therefore the cantilevers with the

smallest wavelength (greatest roughness) deflect more.

The amplitude also plays a role in the deflection of the cantilever. This is shown in Figure
4.12. In this case the studied systems had the same maximum film thickness as well as the same
wavelength. The amplitude was varied from 5.0 to 20.0 nm in 5.0 nm increments. The final end
deflection for the system increased as the amplitude of the surface undulation increased. The
increase in the amplitude from 5.0 to 20.0 nm resulted in an increase in the end deflection of

90.1 nm.

Hence the deflection of a cantilever is dependent upon both the wavelength and
amplitude. From Figure 3.5 it is shown that the number of bonding sites decreases as the
wavelength decreases and/or the amplitude increases. This would imply that the total amount
of surface stress that could be applied would also decrease, as the stress is only applied at the
bonding sites. Referring to Stoney’s equation (2.17) if the applied surface stress is reduced the
total deflection of the cantilever is also reduced. Therefore the expected result based upon
Stoney’s equation is that cantilevers with increased roughness deflect less than their smoother

counterparts.

The results shown here indicate the opposite behaviour as expected by Stoney’s

equation and the reduction of bonding sites. The results demonstrate that for samples with

larger roughness the total amount of end deflection increases as the roughness increases. Why
then did the simulation report the opposite of the predicted theory? Stoney’s equation
depends on the fact that the surface stress is uniform over the surface. For rough surfaces this
is no longer true since the induced surface stress, originating from the bonding sites, varies over
the surface due to the loss of bonding sites. Therefore it becomes necessary to consider more

than just the application of Stoney’s equation [9].

The results shown in Figure 4.7 to Figure 4.11 demonstrate that the profile of the sample plays
a large role in the total expected deflection indicating that the geometry of the top surface of
the thin gold film affects the transmission of the surface stress into the film and substrate.[9]
The stress experienced by an object must be continuous throughout the object.[29] However,
in the presence of flaws, the resulting stress must be routed around the flaw to maintain the
continuity of the stress [29]. These flaws are responsible for fatigue based failures in an object.
The reason why some objects fracture is due to the concentration of stress around flaws [29].
This increased local stress can alter where the material is on the stress-strain curve, possibly

pushing it out of the elastic region.

The application of the cosine function to the thin film introduces stress raisers into the
surface. A stress raiser is a region in a material that forces the stress in an object to be
“concentrated” in a localized region. The presence of stress raisers in a surface will change the
behaviour of an object as a whole [29]. The concept of stress raisers is normally applied to
fatigue and crack analysis. At positions far removed from cracks the stress is just the nominal

stress, provided that the applied stress is below the elastic limit. However, in the vicinity of

83

small cracks or flaws, the applied stress can be amplified beyond the levels predicted by normal

strength of material analysis'.

The di inuities in the thin film i by the cosine function are approximately

semi-elliptical. Therefore according to fracture mechanics the amount of stress that is

concentrated at the tip of an ellipse is given by

4.2

b
|

where a and b are one half of the length of the minor and major axes respectively, o
is the stress experienced by the normal film, and 6, is the concentrated stress at the

discontinuity [29].

tructural members with loads, deformations and

™ strength of materials refers to various methods
forces acting on the material.

84

t

Figure 4.13: Semi-elliptical surface defects. a) Wavelength = (1/3)um b) Wavelength = (1/6)um

Figure 4.13 shows the approximation of the thin film for wavelengths of 1/3 um and 1/6
um. For Figure 4.13 the total amount of stress transferred into the substrate by the surface in a,
is less then that transferred by b. This comes from the amount of stress raisers as well as the

geometry of the stress raisers. The stress concentration in Figure 4.13a is

85

b 23
omac =me(142(3))

while the stress in Figure 4.13b is given by

s =om (142575 = (1+4(2)) .

Assuming that the number of bonding sites does not change dramatically (Figure 4.13a
opp ~ Figure 4.13b o) the amount of concentrated stress in Figure 4.13b will be larger than
Figure 4.13a. Figure 4.14 shows the transmission of the stress through the material into the

substrate.

86

Figure 4.14: Stress is concentrated (Red) at the tip, and causes a large amount of stress to be

transferred to the lower surface (yellow)

Therefore the cantilevers with an increased wavelength (Figure 4.13 a) will experience a
lower amount of overall stress as compared to those that have a smaller wavelength (Figure
4.13 b). The amount of stress generated by the inclusion of the stress raisers overcompensates
for the loss of the bonding sites on the surface. Therefore the cantilevers that have smaller
wavelengths (more surface defects) will deflect more than their smoother counterparts. This is
due to the increase in the differential surface stress in the rougher filmed cantilevers. The stress
raisers increase the amount of stress that is experienced by the silicon substrates top surface,

this results in an increase in the differential surface stress causing an increase in the deflection.

As well, equation 4.2 demonstrates how the increase in the amplitude (b) will increase the

translated surface stress and as a result will increase the deflection of the cantilever.

In the results shown here, when the wavelength of the function was decreased (more
flaws) the deflection increased, as predicted by the stress concentration theory. Similarly as the
amplitude is increased the theory predicts that there will be an increase in deflection, which is
what is observed in the numerical simulation. Combining both the decrease in wavelength and
the increase in amplitude corresponds to the increase in observed deflection between the

figures (Figure 4.7 to Figure 4.11).

88

Chapter 5 : Conclusion

5.1 Summary

In this work the effect of surface roughness of a thin gold film on the deflection of a
silicon micro-cantilever was analyzed. A simulation was developed to model the effect of

surface rougl on the ion induced ion of the cantilever. In order to determine

the final configuration of the lattice an energy minimization was performed. Here the top
surface bonds detailed in section 2.5 were stretched and the lattice was rearranged to its
lowest energy configuration. The lattices used in this work were approximately 1 um by 1 um of

silicon coated with thin gold films of varying thicknesses.

Ce i this can be consi to be a NP-hard problem. In order to determine

this minimum energy a simulated annealing algorithm was used. This proved to be an adequate

method for determining the minimum energy state of the studied systems. Although each

89

system had a very large run time (approximately 3.5 months when running in parallel'* using

OpenMP) the simulated annealing algorithm was capable of solving very large systems.

Confusion exists in the literature about the adsorption induced deflection of the
cantilever. Some authors have observed that the deflection of a cantilever with a rough surface
is larger than that of a similar smoother cantilever, while other authors have reported the

opposite [4][6][5).

It was found in this work that by including a sinusoidal surface roughness in the mono-

crystalline thin gold film the total deflection experienced by the micro-cantilever increased. It

was found that by increasing the i and/or ing the of the surface

defects the final calculated end deflection of the cantilever increased.

In the case of mono-crystalline films the inclusion of surface defects alters how the
stress is transmitted throughout the film and substrate. In this case the shape of the defect

must be considered to explain the effect on the deflection characteristics [29]).

The results of the numerical simulation correspond to the theory based on the rough
surface geometry causing stress concentration at distinct points forcing more stress to be
transferred into the substrate. It was found that the amplitude as well as the wavelength had
an influence on the magnitude of the deflection. Decreasing the wavelength, increasing the

amplitude, or both, will increase the cantilever deflection upon molecular adsorption.

" Refer to Appendix D

90

5.2 Future Work

This work lays the groundwork for multiple possible future projects. It would be
beneficial to model a cantilever with a rough substrate to see how the substrates surface
roughness affects the deflection. It would also be of benefit to model the system to include
grain boundaries since they will affect how the stress is transmitted over the length of the
cantilever. It may also be of benefit to model internal pours, between the thin gold film and the
substrate. Another possible project would involve looking at the intermixing of the gold/silicon
at the boundary layer to see what affect it has on the deflection. It may also be of benefit to
change the geometry of the surface defects or generate a random surface to see how various

surface profiles affect the deflection.

91

References

[1]). Mertens et al., "Effects of temperature and pressure on microcantilever resonance

response,” Ultramicroscopy, vol. 97, pp. 119-126, October - November 2003.

[2] Rong-Hua Ma, Chia-Yen Lee, Yu-Hsiang Wang, and Hao-Jen Chen, "Microcantilever-based
weather station for temperature, humidity and flow rate measurement," Microsystem

Technologies, vol. 14, no. 7, pp. 971-977, July 2008.

[3] M. Godin, V. Tabard-Cossa, P. Griitter, and P. Williams, "Quantitative surface stress

measurements using a microcantilever," Applied Physics Letter, vol. 79, no. 551, 2001.

[4] M. Godin et al., "Surface Stress, Kinetics, and Structure of Alkanethiol Self-Assembled

Monolayers," Langmuir, vol. 20, no. 17, pp. 7090-7096, 2004.

(5] Ramya Desikan, Ida Lee, and Thomas Thundat, "Effect of nanometer surface morphology

. .'

on surface stress and ion kinetics of ol st

Ultramicroscopy, no. 106, pp. 795-799, 2006.

(6] J. Mertens, M. Calleja, D. Ramos, A. Taryn, and J. Tamayo, "Role of the gold film

nanostructure on the ical response of i sensors," Journal

Applied Physics, vol. 101, 2007.

.

[7] L. Y. Beaulieu, Michel Godin, Olivier Laroche, Vincent Tabard-Cossa, and Peter Griitter,
"Calibrating laser beam deflection systems for use in atomic force microscopes and

cantilever sensors," Applied Physics Letters, vol. 88, 2006.

[8] Rebecca Howland and Lisa Benatar, A Practical Guide to Scanning Probe Microscopy.:

ThermoMicroscopes, 2000.

(9] J6rg Weissmiiller and Huiling Duan, "Cantilever Bending with Rough Surfaces," Physical

Review Letters, vol. 101, January 2008.

[10] Arvind Baskaran, Jason Devita, and Peter Smereka, "Kinetic Monte Carlo simulation of
strained heteroepitaxial growth with intermixing," Continuum Mechanics And

Thermodynamics, Volume 22, Number 1.

[11] Vitaly A. Shchukin, Nikolai N. Ledentsov, and Bimberg Dieter, Epitaxy of Nanostructures.

Berlin/Heidelberg: Springer, 2003.

[12] Yukio Saito, Hideaki Uemura, and Makio Uwaha, "Two-dimensional elastic lattice model

with spontaneous stress," Physical Review Series B, vol. 63, January 2001.

[13] J.W. Gibbs, The Scientific Papers of J. Willard Gibbs, Vol. 1. London: Longmans-Green ,

93

[14] G.G. Stoney, "The tension of metallic films deposited by electrolysis," Proceedings of the

Royal Society of London. Series A, Containing Papers of a Mathematical and Physical

Character, vol. 82, no. 553, pp. 172-175, May 1909.

[15] E. Suhir, Y. C. Lee, and C. P. Wong, Micro- and Opto-Electronic Materials and Structures:

Physics, Mechanics, Design, Reliability, Packaging. New York: Springer, 2007.

[16] S. Timoshenko, "Analysis of Bi-Metal Thermostats," Journal of the Optical Society of

America, vol. 11, no. 3, pp. 233-255, 1925.

[17) Genki Yoshikawa, " ical analysis and optimization of a microcantilever sensor

coated with a solid receptor film," Applied Physics Letters, vol. 98, no. 17, April 2011.

[18] Luca Peliti, Statistical Mechanics in a Nutshell.: Princeton University press, 2011.

[19] N. Metropolis, "The beginning of the Monte Carlo method," Los Alamos Science, pp. 125—

130, 1987.

[20] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller,

and Edward Teller, "Equations of State Calculations by Fast Computing Machines," Journal

94

of Chemical Physics, vol. 21, 1953.

[21] Keith W. Hastings, "Monte Carlo Sampling Methods using Markov Chains and Their

Applications," Biometrika, vol. 57, pp. 97-109, 1970.

[22] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes: The Art

of Scientific Computing, 3rd ed. New York: Cambridge University Press, 2007.

[23] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by Simulated Annealing,"

Science, New Series, vol. 220, no. 4598, 1983.

[24] A.A. Markov, "Rasprostranenie zakona bol'shih chisel na velichiny, zavisyaschie drug ot

druga," lzvestiya Fizik i pri iversitete, 2-ya

seriya, tom 15, 1906.

[25] A.A. Markov, "Extension of the limit theorems of probability theory to a sum of variables
connected in a chain," in Dynamic Probabilistic Systems, volume 1: Markov Chains.: John

Wiley and Sons, 1971.

[26] Peter J. M. van Laarhoven and Emile H. L. Aarts, Simulated Annealing: Theory and

Applications. Dordrecht: D. Reidel, 1987.

95

[27] Jaroslaw Drelich, Calvin L. White, and Zhenghe Xu, "Laboratory Tests on Mercury Emission
Monitoring with Resonating Gold-coated Silicon Cantilevers," Environmental Science &

Technology, vol. 42, no. 6, pp. 2072-2078, 2008.

(28] Louis L. Bucciarelli, Engineering Mechanics for Structures.: Dover, 2009.

[29] A.F. Liu, Mechanics and isms of fracture: an ion.: ASM International, 2005.

[30] William Press, Saul Teukolsky, William Vetterling, and Brian Flannery, Numerical Recipes in

C: The Art of Scientific Computing, 2nd ed.: Cambridge University Press, 1992.

[31] M. Liischer, "A portable high-quality random number generator for lattice field theory

calculations," Computer Physics Communications, vol. 79, pp. 100-110, 1994.

[32] P. L'Ecuyer, "Combined Multiple Recursive Random Number Generators," Operations

Research, vol. 44, no. 5, pp. 816-822, 199.

[33] P. L'Ecuyer, "Maximally Equidistributed Combined Tausworthe Generators," Mathematics

of Computation, vol. 65, no. 213, pp. 203213, 1996.

[34] M. Galassi et al., GNU Scientific Library Reference Manual, 112th ed.: Network Theory Ltd.,

96

[35] Makoto Matsumoto and Takuji Nishimura, Mersenne Twister: A 623-dimensionally
equidistributed uniform pseudorandom number generator.: ACM Trans. on Modeling and

Computer Simulation Vol. 8, No. 1, 1998.

[36] OpenMP Architecture Review Board, OpenMP Application Program Interface., Veersion 3.0

May 2008.

[37] M.D. Hill and M.R Marty, "Amdahl's Law in the Multicore Era," Computer, vol. 41, no. 7, pp.

33-38, July 2008.

(38] D. Moncrieff, R. E. Overill, and S. Wilson, "Heterogeneous computing machines and

Amdahl's law," Parallel Computing, vol. 22, no. 3, March 1996.

[39] Barbara Chapman, Gabriele Jost, and Ruud van der Pas, Using OpenMP: portable shared

memory parallel programming, Volume 10.: MIT Press, 2007.

[40] Ronald G. Larson, The Structure and Rheology of Complex fluids. New York: Oxford

University Press, 1999.

[41] Vincent Tabard-Cossa et al., "Microcantilever-based Surface Stress Sensors: Effect of

97

Morphology, Adhesion and Cleanliness of the Sensing Substrate.," Analytical Chemistry,

vol. 79, pp. 8136-8143, 2007.

[42] D. R. Hartree, "The Wave Mechanics of an Atom with an Non-Coulomb Central Field. Part I.
Theory and Methods," Proceedings of the Cambridge Philosophical Society, vol. 24, p. 89,

1927.

[43] W.J. Stronge and T. Yu, Dynamic models for structural plasticity. London: Springer, 1995.

[44] A. E. H. Love, A treatise on the mathematical theory of elasticity, 3rd ed. Cambridge,

England: University Press, 1920.

[45] J. M. Hammersley and D. C. Handscomb, Monte Carlo methods, M. . Bartlett, Ed. London:

Methuen, 1965

[46] B. Liu, Y. Huang, H. Jiang, S. Qu, and K.C. Hwang, "The atomic-scale finite element method,"
Computer Methods in Applied Mechanics and Engineering, vol. 193, no. 17-20, pp. 1849-

1864, May 2004.

[47] Elijah Polak, C ional methods in optimization: a unified approach.: Academic Press,

1971.

98

[48] P. M. Marcus, "Bending of a film-substrate system by epitaxy," Physical Review B, vol. 53,

no. 11, pp. 7460-7465, March 1996.

[49] Filippo G. Bosco et al., "High throughput label-free platform for statistical bio-molecular

sensing," Lab on a Chip, no. 11, pp. 2411-2416, May 2011.

99

Appendices

Each section of the program is grouped based upon the file in which the information is
contained. The language that that section is coded in is included in the title, if applicable, since
some of the relevant code has been done in different languages to take advantage of the power
of the language. Code comments have been added to assist with clarity, and to attempt to

explain some of the more unusual sections.

100

dix A: C dom Numbers

In order to perform Monte Carlo based simulations a high quality random number
generator is required. Most random number generators do not create a long period set of high
quality random numbers, i.e. the number of ‘numbers’ that can be selected before the set loses

randomness is low.

Itis not possible for any computer to generate truly random numbers, this is inherent
within the strict logical rules that computers are based upon. The exception here of course is to
use a external random number generator based upon radioactive decay, however these do not

operate at speeds that are for the of large quantities of random

numbers. Therefore computers are reliant upon pseudorandom number generators.

number produce an ion of a truly random
number sequence, however they are predictable since they are of course determined via
mathematically logical methods, and will as a result exhibit a specific, repeatable pattern. These
sequences are based upon initial seed values; the seed determines the numbers that will follow
within the sequence by defining the internal state of the algorithm. Given knowledge then of
the algorithm used to create the numbers and its internal state (i.e. seed), one could then
predict all the numbers returned by subsequent calls to the algorithm, whereas with genuinely
truly random numbers, knowledge of one number or an arbitrarily long sequence of numbers is

of no use whatsoever in predicting the next number to be generated.

101

These are often confused with the concept of quasi-random numbers; in fact the terms
are periodically interchanged as being the same. However, they dramatically different but are
related. Most native random number routines are quasi-random. Quasi-Random numbers can
only be considered to be random over a limited number of draws, as given a large number of
draws the numbers generated from the sequence will form a Gaussian distribution. Extending
this to a two dimensional grid, will result in discernable regular patterns as can be seen in figure
4(C) for large numbers of draws. Figure 4’s data was generated using the Sobol Technique, a

known generator for quasi-random numbers [30].

Figure A.0.1: Quasi-Random Number izing ce i for A) 100 Draws B)

1000 Draws C) 6000 Draws, using the Sobol Technique for random number generation.

Quasi-Random number generators then fail the conditions for random numbers after a
fairly limited number of draws. They become predictable and thus can be considered to have a
very short periodicity, i.e. the period in which that the numbers become less random and

predictable occurs over a very limited number of draws. This of course is fine for instances

102

where the program uses a low number of random numbers. However if large quantities of
random numbers are required, such as in Monte-Carlo based simulations or algorithms, then

quasi-random number generators do not work.

Most if not all higher level computer languages contain a random function for the
generation of random numbers. If the language is capable of mathematical operations then it
more than likely has one. These native random functions are included for small scale testing
and for low quantities of random numbers, they are quasi-random. This is done to minimize the
size (memory wise) of the math libraries associated with each language. Lower level languages
do not contain randomization techniques, as they are not typically used in situations where

random number generation is required.

It therefore becomes necessary to design a better random number generator if it is to

be used to perform any of the Monte-Carlo techniques.

103

Figure A.0.2: Pseudo-Random Number Generator randomizing coordinates for A) 100 Draws B)
1000 Draws C) 6000 Draws, using the Mersenne Twister Technique for random number

generation.

One of these better i for the ion for long periodicity high quality

random numbers is the Mersenne Twister technique. The results of this technique can be seen
in Figure A.0.2. A quick comparison of part C between Figure A.0.1 and Figure A.0.2 reveals that
while using the Sobol technique for low numbers of random numbers is fine, it forms patterns
the more the numbers are drawn, unlike Sobol, Mersenne Twisters to do have this issue and
have very long periodicities, as discussed in appendix B. The Mersenne Twister algorithm was

selected for this work. However other pseudorandom number generators also exist.

A few examples of high quality pseudorandom number generators are RANLUX (luxury
random numbers)[31] , CMRG (combined multiple recursive generator) [32], and the

Tausworthe generator{33].[34] More generators can be found in the GNU Scientific Library

104

Manual.[34] The selection of the random number generator depends upon the nature of the

simulation itself.

105

Appendix B: Random Number Generator Mersenne Twister

First described in a paper by Makoto and Takuji Nishi the

Twister Pseudo-Random number generator has a periodicity of 2 — 1 [35). Periodicity refers
to the number of numbers that can be generated before the series starts to lose randomness.
In this work N =19937, so that corresponds to a periodicity of 4.3154 x 10°°*numbers that
can be drawn. Since this original paper multiple versions of the Mersenne Twister have been
released with N values ranging from 521 up to 216091. (See Table 3) For a sense of scale of how
impressive this pseudo random number generator is, the lagged Fibonacci series, considered to
be a very good random number generator, has a period of (22* - 1) x 2 ~ 211 ~ 1.298 x

10%* Draws.

N Number of Draws before loss of randomness
4253 1.9080x10**
11213 2.8141x10""
19937 Ty i.b:;mq”"

44497 8.5451x10""

86243 5.3693x10""

Table 3: Mersenne Twister Periodicity for Common Variations. The highlighted variation was

the variation used in this numerical simulation.

106

The values of N are known as the Mersenne Primes, these are defined by

_oN
pP=2 1 01
If Pis prime and N is also prime then, N is said to be a Mersenne prime.
The algorithm is based upon the linear recurrence relationship
= U\l =
Tan = Tpam @ (F|xf) A (R=01,.), 02

here x is a word vector, and A is matrix. A word vector is a w-dimensional row vector over the
two-element field F, = {0,1} [35]. Here n is the integer degree of recurrence, m is an integer

intherange 1 <m < n.Where A s given by:

@

The algorithm generates a series of these word vectors, which can be considered to be a
uniform pseudorandom number between 0 and 2% — 1, division by 2" — 1 results in a real

number in the range [0, 1][35].

Appendix C: Data Structures

Lower level computer languages, those that offer little to no abstraction from a
processor's instruction set architecture, have no means to provide a quick reference to a
collection of data in memory. Here level refers to the amount of abstraction. All data that is
stored in memory in this case is referenced by the memory address in which the data is stored.

This makes writing complex or long programs very difficult.

In order to reduce this difficulty in creation of complex and long programs the higher
level languages were developed. These languages provide a greater amount of abstraction from
the instruction set architecture of the processor. It was in the creation of these languages that a

was now referred to as a data structure, in

order to organize and sort data so that is can be accessed as one common reference. The data
does not need to be of any particular type within the structure, so any given structure can
contain any data type, including other data structures. This offers a few obvious benefits,
movement of vast quantities of data through the use of only one variable, and organizing data

associated with a particular concept are a pair of examples.

The simplest form of a data structure that can be thought of is an array, it is a special
type of data structure. The array is known as a homogeneous data structure as all of the data

contained within the array must be of the same type.

Consider one of the data structures that is located in the "Structures.h" file located in

Appendix E, transcribed below:

108

typedef struct{

unsigned long int AtomNumber; //Atom Number

Point Coords; //Location in Real Space

char AtomsSB; //Surface VS Bulk

char AtomType; //51VS Au

bool AtomBound; //Atom In Boundary?

bool First; //First in the row?

bool AtomVirtual; //1s the Atom Real, Virtual Atoms DNE
JAtom;

Every piece of information that defines an atom within the simulation is contained
within the structure. This then is a heterogeneous data structure since it does not contain just
one type of data. It contains three primitive data types and another structure (Point - contains
the X/Y coordinates of the atom). Building upon this and expand the concept further. Certain
languages, such as java, are based largely on this concept. A great portion of the coding done in
java is based upon the creation and manipulation of data structures or as they are referred to in

java ‘objects’.

It is now possible to create an array of atoms, since Atom is now considered to be a valid

data type. This hierarchy can be seen in Figure A.0.3.

109

Lattice Array

Atom Array

<OOO>

Repeated for N Atoms

Other Variables
and Structures

[Coordinates][Other Variables] [Coordinates][Other Variables]

Figure A.0.3: Lattice Array Data Structure

Using data structures in programming, allows vast amounts of information to be routed

around very quickly and efficiently.

Referring to Figure A.0.3, one can see how data is transferred around the main
analysis program. The pointer to the LatticeArray variable is passed around the program, not
the entire array itself. Everything about the lattice is connected to this one variable, except for
the array of springs in the lattice, this makes moving data around easy. The spring array is not

included to save space, since the simulated annealing algorithm requires three copies of the

110

data to work, it is not updated beyond the initial creation, and therefore it is made into a global

variable so that it can be accessed by any function at any time.

The majority of the code in the appendices is coded in C99, i.e. the version of the C
language that was released in 1999. Therefore it becomes a necessity to understand code wise
how €99 implements data structures. For instance if the LatticeArray variable CurrentArray is
passed into a sub function, and the algorithm is required to access the X coordinate of the i*"
atom then the code segment used to access the information becomes the following:
CurrentArray->AtomArray([i-1].Coords.x . Here “->" is a reference to a passed pointer,
CurrentArray is passed to the function, this pointer can be considered to be an external pointer,
as it does not exist within the structure, it is the structure. However, if the structure has not
been passed to a sub-function it is actually an internal pointer denoted by “.”, so here Coords is
a local variable to AtomArray hence it is denoted with “.” . This also applies to anywhere where
the structure is local. For instance in order to access the same X coordinate in a local scope, the
code segment would be: CurrentArray.AtomArray[i-1].Coords.x . Therefore “->” indicates a
passed not local scope data structure, whereas “.” indicates a local scope data structure;

everything inside the structure itself is local.

The reason why data structures are used, beyond the simplification of routing
information around the simulation, is that it keeps most of the data together and contiguous in
memory. Looking back at Figure A.0.3, the other data and structures may or may not be
contiguous with the atom array, since the arrays are of variable sizes they are allocated after
runtime. Most of the data however is stored within the atomarray structure, which is

111

contiguous within memory. This is important once the memory/processor architecture of a
typical multi-core computer system is considered. Having the data in a contiguous structure
means that it will typically spent more time in the faster portions of memory and less time in
the dramatically slower regions of memory. It is desirable to have the data in this lower
memory as the access times are orders of magnitude smaller as compared to the upper level
memory. Refer to Figure A.0.4, for access times as well as storage capacity of the different

levels of memory.

=1ns =0.25ns
CPU
(Registers)
Access Times >
Ve = e N
aries 5ms 100ns 5ns cPU
Other Virtual Random Upper (Registers)
Storage Memory Access Cache
(HDD) (HDD) Memory Memory. [cpU
Virtually Many GB Few GB ~6MB
Unlimited (Registers)
Memory Capacity=>
= CPU
Speed of Data Access (Registers)

512kB <500 Bytes

Capacity of Data Storage

Figure A.0.4: Memory hierarchy of a typical Advanced Micro Device (AMD) quad core computer

system, Intel/Sun/Apple/Others have very similar based systems

112

Appendix D: OpenMP Parallel Programming

The OpenMP API (Open Multi — Processing Application Programming Interface) was introduced
in 1997 by a consortium of major computer hardware and software companies to serve as a
common base for multi-core shared memory processing. This group of companies desired to
provide a standard that could be utilized among a variety of shared memory
architectures/platforms. This gave programmers the ability to utilize the power of multi-core
shared memory processing without having to expressly program every parallel step. However, it
is not automatic parallelization, but it is instead semi-automatic based upon the inclusion of
complier pre-processing instructions. This APl then allows a programmer to explicitly

direct multi-threaded, shared memory parallelism within a program.[36]

This API is written in a couple of languages, notably C/C++ and FORTRAN, but is usable in

a multitude of other languages as well.

The benefit of using the OpenMP API is the ease of which a program can be transformed
from being executed in a serial nature into one that is executed in a combination serial and
parallel nature, this is done through the use of compiler pre-compiler instructions. In C and
Fortran these are known as Pragmas. The ‘#pragma directive is the method specified by the C
standard for providing additional information to the compiler, beyond what is conveyed in the
language itself. These directives allow for programmers to explicitly dictate which sections of
the code are to be executed in parallel. This creates a fork in the program execution, i.e. when

the program reaches a section of program that can be executed in parallel it splits the

113

execution thread into multiple threads that are distributed over a number of cores (see Figure
A.0.5) and once the parallel section has finished the multiple threads are then merged back into

the execution thread[37](38).

Split program
—>{ execution into
Separate Threads

Merge
Threads

Figure A.0.5: OpenMP Multi-Threading

There is no restriction on the number of threads that can be created with the execution
of a program, however the number of currently running threads is limited to the number of
physical processor threads. This means that if you create 8 threads on a program and execute it
on a processor that has only 4 physical threads then only 4 will be executed at a time, the other

4 will wait until the rest have finished.

OpenMP Parallel Commands

The OpenMP API defines an assortment of various commands for running calculations in
parallel. Referring to “Energy.c “ in Appendix C, reveals how OpenMP is implemented within the
simulation. The OpenMP library is only included if the correct compiler option is included, as it
is not required to be active when running small test systems this is done through the use of the

ifdef (if defined) pre-compiler option. This section of code below indicates to the compiler to

114

check if OpenMP has been defined in the compiler options, if so then include the library that

makes OpenMP work.

#ifdef _OPENMP
#include <omp.h>
#endif
Once these libraries are included the program can then be compiled to execute in
parallel, these libraries contain the instructions for the compiler on how to change the following
code into a parallized code. A simple example of this is the conversion of a for loop into a

parallel structure.

Hipragma omp for

for(int n=0; n<10; n++)

printf(" %d ", n);

The pragma tells the compiler to follow the rules specified by the OpenMP directives (omp) for
the conversion of the for loop. In this case the loop will simply print the numbers from 0to 9.
Once converted the code executed by each individual thread and will be converted into the

section below.

115

int this_thread = omp_get_thread_num();

int num_threads = omp_get_num_threads();
int start = (this_thread) * 10 / num_threads;
intend = (this_thread+1) * 10 / num_threads;
for(int n=start; n<end; ++n)

printf(" %d ", n);

Here the first four lines assign the loop iterations to each of the threads; each thread has a
number associated with it. Therefore the result from running this code in parallel on two cores
may be: 0516273849, Each thread gets a different section of the loop, and they execute
their own sections in parallel. [39] The code used in “Energy.c “ is similar, but has a few

additions as can be seen below.

#tpragma omp parallel for shared(Array,SpringArray) private(i)

Here “parallel” is a short notation for the creation of a new set of threads, “shared ()" is
used to specify any data structures that are to be shared among the threads, any thread can
access and modify the data contained within the structure. “private()” is the opposite of
“shared()", the variable “i” is unique to each thread and cannot be modified by another thread,

and is often used to specify the iteration variable.

116

The purpose of the algorithm specified within the Energy.c file is to calculate the total
lattice energy of the system. However, once this is moved into the parallel regime it is no longer
a safe operation to add the energies for each spring to determine a total energy. This operation
is not thread-safe i.e. it does not prevent two or more threads from trying to access and write
to the same location in memory at the same. This can happen here if two or more threads
attempt to modify the total energy variable at the same time. This is obviously a problem, as it
is indeterminate what value will be written to memory, it may be the value from one of the

threads, and it could also be a randomized indeterminate value.

To prevent this situation OpenMP includes a pragma command called atomic, this
command prevents threads from writing to the same location in memory at the same time, but
will in fact let only one thread update the value at a time, and will queue the rest until each has

updated the value. This works only on the combinatorial operators, i.e. ++, --, + ,and /=.

The atomic code seen below must be included with every instance of the medication of the

Energy variable, as it only applies to the next line in the code.

#pragma omp atomic

Energy += Expression

There are a variety of other pragmas associated with the OpenMP API however they are not

required for the calculations in this work.

117

E: Si ing Source Code (C99)

Files are listed in alphabetical order. Not included are the standard numerical recipes library
files, as well as the mersenne twister algorithm. The mersenne twister algorithm is available
online and can be found at http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/. All

other files in this program unless otherwise stated are ©Victor C. Hayden.

118

BoundFit.c

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <stdbool.h>
#include "Common.h"

* This is the linear regression algorithm found in Numerical Recipes in C, it
= has been updated to work with the LatticeArray Data Structures.
* Reference NR 15.2 Fitting Data to a Straight Line, these are unweighted points.

PointSlopeLine fit(LatticeArray *Array, Bound Boundary)

{

double t,sx0ss,5x=0.0,5y=0.0,5t2=0.0,55;

PointSlopelLine line;

line.Intercept=0.0;

line.Slope = 0.0;

for (int i=0; i < Boundary.NumAtomsInBound; i++) {
sx += Array y. i]].Coords.x;
sy += Array Y. i]].Coords.y;

}

ss=Boundary.NumAtomsinBound;

SXOSS=SX/SS;

for (int i=0; i < Boundary.NumAtomsinBound; i++) {
t=Array y. i].Coords.x-sxss;
st24=t*;
line.Slope += t*Array y. i]).Coords.y;

}

line.Slope /= st2;

line.Intercept=(sy-sx*(line.Slope))/ss;

return line;

}

119

BoundLines.c

#include <stdio.h>
#include <stdlib.h>
#include "Common.h"

* Creates both boundary lines for the LatticeArray Array and stores them in
* BoundLines Boundary
& Coded By: ©Victor C. Hayden (FLAG //GR645)

void CreateBound(LatticeArray *Array, BoundLines *Boundary){
Boundary->RLine = fit(Array, Array->RBound);
Boundary->LLine = fit(Array, Array->LBound);

BoundRotate.c

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "Common.h"

i This function is responsible for the Boundary rotations, it uses the

& boundarys located in BoundLines Boundary to do the rotations. This will
* work irregardless of how the lines are defined, they have been defined
d here to be between the fit of the first atom of every row

L Coded By: ©Victor C. Hayden (FLAG //GR645)

Point BoundAR(LatticeArray *Array, char B,
BoundLines *Boundary, double A1X, double A1Y){

Point tmp;
double x, y, x_tmp, y_tmp, Theta, Sep;

//small Slopes only need to be translated, not rotated
if(Boundary->LLine Slope - Boundary->RLine.Slope < 1.0e-9){

Sep = fabs(Boundary->LLine.Intercept - Boundary->RLine.Intercept);

120

)
tmp.x = A1X;
tmp.y = A1Y - Sep;

}else {
tmp.x = AX;
tmp.y = A1Y + Sep;

return tmp;

//Determine the Intersection Point of the two boundaries at this point

//they should not be parallel

x = (Boundary->LLine.Intercept - Boundary->RLine.Intercept)/
(Boundary->RLine.Slope - Boundary->LLine.Slope);

y = Boundary->RLine.Slope * x + Boundary->RLine.Intercept;

//Adjust the Coordinate system to be at this intersection point to use

//the Standard rotation matrix

X_tmp = A1X - X;

y_tmp =A1Y-y;

//Calculate the angle between the lines

Theta = fabs(atan((Boundary->RLine.Slope - Boundary->LLine.Slope) /

(1.0+ (Boundary->RLine.Slope * Boundary->LLine.Slope))));

//Select the correct value of Theta

if(B=="L'|| B=="I') Theta =-1.0 * Theta;

//Do the rotation

tmp.x = x_tmp * cos(Theta) - y_tmp * sin(Theta) + x;

tmp.y =y_tmp * cos(Theta) + x_tmp * sin(Theta) +y;

return tmp;

121

cantilDeriv.c

This program is designed to determine the resulting shape of a bi-layer
Gold-Silicon microcantilever once it has been exposed to an induced
surface stress. The resultant shape of the cantilever is due to the
minimization of the Lattice Energy of the system.

This program uses a Metropolis-Hastings Algorithm called simulated

e annealing to do this. There is more on this in the SimAnn.c file.

This File serves as the main controller for running the simulated
annealing algorithm for various amount of surface stretch, and handles
* reading in the data, and creating the outputs.

There is also a short tutorial on Datastuctures in Structures.h.

L Coded By: ©Victor C. Hayden (FLAG //GR645)

#include <stdio.h> //Std input output library

#include <stdlib.h> //Std c library that contains most functions
#include <time.h> //Time Library, to access the Current Time
#include <math.h> //Contains standard math functions

#include <stdbool.h>//Library to use Boolean Logic, i.e. true or false
#include "Common.h" //Contains required constants

extern void FileCleanup();

* This function groups together those functions that are required to create
* the LatticeArray Datastructure initially, only needs to be called once

* for each LatticeArray that you want to make. Best if this is done in

* pre-processing.

¥ Note after the data is read in from the csv file discribed in FilelnOut.c
* that it is rotated by 90 degrees. Since the program will be finding

. boundary lines to rotate it is best to avoid pure vertical lines. While

* the program will happily put the inf into the array, as it is allowed.

» It is best to avoid it, as it will cause the program to crash in places.

122

void LatticeCreator(LatticeArray *Array, char FileName[],

int argCommand,

char *argv[]){

Arraylnit(Array); //Array Initializer
inputFile y(Array,FileName, argCommand, ; in the file
createSpringLattice(Array); //Makes the Array of springs
MinLinelnit(Array); //Makes the 2D array for the LineMover
RotateEntireCantilever(Array, -M_PI_2); //Rotates by rad degrees
SurfaceSpringAssi ray,Array- ;

if (recovery) {PowerCrashRecover(Array);}

Steps here are explained as they appear, except where the same code is
* repeated

* 'WARNING : THIS FUNCTION CONTAINS AN INFINITE LOOP

* This Loop depends on a break in the if statement and is connected
* to CurStretch and AmtStretch, beware of modifications to these

* varibles.

*

* argy[] accesses the commandline.

* atof() converts the commandline string to double

*

int main(int argc, char * argv([]){
//\atticeArrays for Simulated Annealing
LatticeArray F_Array, CurrentArray, SpaceArray, BestArray;
BoundLines BoundOut; //Rotated version of the final boundary lines
double CurStretch = 0.0;//Current Percent Stretch
double NumStretch = 0.0;//Number of stretches to do
double AmtStretch = 0.0;//Amount to Stretch each time
//Output file name, gets altered to append current amount of stretch
//i.e Lat10_10_4_ with 1% stretch becomes Lat10_10_4_1_000.csv
char *FileNameString = NULL;
char *name; //Output file name initial string, i.e. ./Lat10_10_4_
char *Oname; //VizOutput file name initial string, i.e. ./Lat10_10_4_

123

2

double surfBonds = 0.0; //Surface Bond Length

//atof() converts from string to double

k_Surface = atof(argv[4]); //Surface Spring Constant
SBondstretch = atof(argv[5]);//Total Percent Surface Stretch
NumStretch = atof(argv(6]);

//Read in the data from the input file
LatticeCreator(&F_Array, argv[1], argc,argv);
LatticeCreator(&CurrentArray, argv[1], argc,argv);
LatticeCreator(&SpaceArray, argv[1], argc,argv);
LatticeCreator(&BestArray, argv([1], argc,argv);

printf("

name

"Number of Atoms in the Array: % ****\n", F_Array.ArrayIndex);

rgv(2];

Oname = argv(3];

AmtStretch = SBondStretch / NumStretch;

//Handling for both LatticeArrays with and without Gold

surfBonds = (F_Array.AUinX

0[] BestArray.AUnX =0 | |
SpaceArray.AUinX == 0 | | CurrentArray.AUinX == 0)?
(SIBL):(AU_L);

//*%***%//WARNING UNRESTRAINED LOOP//******//

for(;;)(

if (recovery)(
CurStretch = CPCurStr;

Jelse(
CurStretch += AmtStretch;
CPCurStr = CurStretch;

}

if ((double) CurStretch >= SBondStretch){
break; /DO NOT REMOVE

124

//stretching the surface bond lengths

F_Array.SurfaceBLength = surfBonds*(1.0 + (CurStretch / 100.0));
CurrentArray.SurfaceBLength = F_Array.SurfaceBLength;
SpaceArray.SurfaceBLength = F_Array.SurfaceBLength;
BestArray.SurfaceBLength = F_Array.SurfaceBLength;

DPrntf("STEP ***##* sk xxrrxssr 5 ofif\n" CurStretch); //Where are we?
//Running SA, May take a long time
RunSimANn(&F_Array, &BestArray, &CurrentArray, &SpaceArray,argc,argv);

CreateBound(&F_Array, &BoundOut); //Rotated boundarys for output
//Rotate Cantilever back to normal horizontal config for output
RotateEntireCantilever(&F_Array, M_PI_2);
//Create the output filename

i ing = Fi Curstretch);
//Outputs the LatticeArray to the csv file
arrayToOutputFile (&F_Array, &BoundOut, FileNameString);
FileNameString = NULL;
//Rotate Cantilever back to vertical config for further calculations
RotateEntireCantilever(&F_Array, -M_PI_2);

}
J/****%%//WARNING UNRESTRAINED LOOP//******//

//Evaluating last amount of Stretch

F_Array.SurfaceBLength = surfBonds*(1.0 + (SBondStretch / 100.0));
CurrentArray.SurfaceBLength = F_Array.SurfaceBLength;
SpaceArray.SurfaceBLength = F_Array.SurfaceBLength;
BestArray.SurfaceBLength = F_Array.SurfaceBLength;

printf("STEP > %If\n", etch);
//Running SA, May take a long time

RunSimAnn(&F_Array, &BestArray, &CurrentArray, &SpaceArray,argc,argv);
//Writing final atomic positions and boundary lines

//Create final Rotated boundarys for output

CreateBound(&F_Array, &BoundOut);

//Rotate Cantilever back to normal horizontal config for output

125

RotateEntireCantilever(&F_Array, M_PI_2);
//Create the output filename

F ing = F h);
//Outputs the LatticeArray to the csv file

arrayToOutputFile (&F_Array, &BoundOut, FileNameString);
//Clean-Up F_Array, CurrentArray, SpaceArray, BestArray
free(FileNameString);

free(F_Array.AtomArray);

free(CurrentArray.AtomArray);

free(SpaceArray.AtomArray);
free(BestArray.AtomArray);

free(SpringArray);
FileCleanup();
return 0;

}

Common.c

#include "Common.h"
#include <stdbool.h>
//Global Variables
double k_Surface;

int Numbersurface;
double SBondsStretch;
bool recovery;
double CPCursStr;
double CPTem;
Spring *SpringArray;
bool Spr;

//Surface Spring Constant

//Total Percent Surface Stretch
//1s this execution recovering data
//Crash Protection Current Stretch

//Crash Protection Temperature
//Array of Springs

126

Common.h

#include "Structures.h"
#ifndef _COMMON_H_
#define_COMMON_H_
//Global Varibles
extern double k_Surface;
extern int NumberSurface;
extern double SBondStretch;
extern bool recovery;
extern double CPCurStr;
extern double CPTem;
extern bool Spr;
extern Spring *SpringArray;
//Globally Availible Functions
extern PointSlopeline fit(LatticeArray *Array, Bound Boundary);
extern void CreateBound|LatticeArray *Array, BoundLines *Boundary);
extern Point BoundAR(LatticeArray *Array, char B, BoundLines *Boundary,
double A1X, double A1Y);
extern double DetermineEnergy (LatticeArray *Array);
extern void inputFileToArray (LatticeArray *, char FileName[],
int argCommand, char * argv[]);
extern void arrayToOutputFile (LatticeArray *,
BoundLines *Boundary, char FileName[]);
extern void printDerivArray (LatticeArray Array,
Point *DArray, char FileName[]);
extern void LatticeArrayCopier(LatticeArray *, LatticeArray *);
extern void LatticeArrayUpdater(LatticeArray *, LatticeArray *);
extern void RotateEntireCantilever(LatticeArray *, double Theta);
extern void createSpringLattice (LatticeArray *);
extern void VizOutput(LatticeArray , char InFile[], char FileNamel[],
int arge, char *argv[]);
extern void freelatticeArray(LatticeArray);
extern void RunSimAnn (LatticeArray *Array, LatticeArray *BestArray,
LatticeArray *CurrentArray,
LatticeArray *SpaceArray, int argCommand,
char * argv[]);

127

extern void Arraylnit(LatticeArray *);

extern void MinLinelnit(LatticeArray *);

extern void GoldLinelnt(LatticeArray *);

extern char* FileName (char*, double);

extern void Surfacelni(LatticeArray *);

extern void LatticeArrayCopier(LatticeArray *, LatticeArray *);
extern void LatticeArrayLine(LatticeArray *, LatticeArray *);
extern void PowerCrashRecover(LatticeArray *);

extern void CrashPowerProtect(LatticeArray *, int argCommand, char * argv[]);
extern void TUpdater();

extern bool RejectAcceptSurfaceLength(LatticeArray *);
extern void SurfaceSpringAssignment(LatticeArray *,int);
#endif

//Global Constants
#define M_PI_2 1.57079632679489661923 /* pi/2 */

//These are the natural spring lengths of the system in angstroms:
#define GG_L 2.884995 //Au-Au Nearest Neighbour Bond Length
//Au-Au Next Nearest Neighbour Bond Length ~ 4.9969

#define AU_L sqrt(2 * pow(2.04, 2) + pow(4.08, 2))

#define SS_L 3.840311 //5i-Si Nearest Neighbour Bond Length
#define SIBL5.43 //Si-Si Next Nearest Neighbour Bond Length

#define GS_L 2.439575 //Au-Si Nearest Neighbour Bond Length
#define AUSIBL 3.43 //Au-Si Next Nearest Neighbour Bond Length

#define VSep 1.1882 //Vertical Separation between the Au and Si interface

#define k_GG 0.30608 //Gold-Gold Nearest Neighbour Spring Constant
#define k_GGs 0.21643 //Gold-Gold Next Nearest Neighbour Spring Constant
#idefine k_GS 0.14600 //Gold-Silicon Nearest Neighbour Spring Constant
#define k_GSs 0.10323 //Gold-Silicon Next Nearest Neighbour Spring Constant
#define k_SS 0.28584 //Silicon-Silicon Nearest Neighbour Spring Constant

//silicon-Silicon Next Nearest Neighbour Spring Constant
#idefine k_SSs 0.20211

128

Energy.c

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <stdbool.h>

#include <string.h>

#include "Common.h"

// Coded By: ©Victor C. Hayden (FLAG //GR645)
#ifdef _OPENMP

#include <omp.h>

#endif

. This function determines the energy contained within the current

b LatticeArray Array, it includes the boundary rotations at the end for
* periodic boundary conditions.

¥ The energy for the lattice is determined through the use of a slightly

modified Spring energy equation:

* Energy = (1.0/2.0) SpringConstant (NaturalBondLength/radius)"2 *

* (radius - NaturalSpringLength)A2

*

* The additional h/radius)*2 helps the function to mimic a
* Lennard-Jones Potential. It goes to zero for large radii and infinity

* forvery small radii.

*

* Depending on the current spring, it selects the correct spring constant

. for the system. There are five distinct spring types: Surface, Nearest

* Neighbour Gold, Next Nearest Neighbour Gold, Nearest Neighbour Silicon,
o and Next Nearest Neighbour Silicon. These are defined in the file

* Common.h.

double DetermineEnergy (LatticeArray *Array){
BoundLines Boundary;
double Energy = 0.0;
double k_Surf = k_Surface;

129

inti=0;
CreateBound(Array, &Boundary); //Creates the boundaries for the rotations
#pragma omp parallel for shared(Array,SpringArray) private(i)
for(i = 0; i < (Array->NumberSprings); i++){
double rad = 0.0;
double A1X, A1Y, A2X, A2Y;
Point tmp1, tmp2;

//Here we are checking to see if something has happened to the
//Energy that should never happen i.e rad -> 0
if(isnan(Energy)){
printf("Determine Energy has Failed with a NaN...Exiting");
exit(-1);} //Is Energy Not a Number(NaN)
if(isinf(Energy)){
printf("Determine Energy has Failed with a inf...Exiting");
exit(-1);} //Is Energy Infinity (inf) c99 will do calculations
//with Energy = inf, but they will not be correct
rad = sqrt(pow((Array->AtomArray[SpringArray[i].Atom1].Coords.x -
Array->AtomArray[SpringArray(i]. Atom2].Coords.x),2.0) +
pow((Array->AtomArray[SpringArray[i].Atom1].Coords.y -
Array y[SpringArray[i].Atom2].Coords.y),2.0));
if(isinf(rad)){exit(-1);} //We do not want radius to be infinite
//Here the Current Spring has a gold atom on each of its ends
if (Array->AtomArray[SpringArray[i]. Atom1].AtomType == 'G')&&
(Array->AtomArray[SpringArray[i]. Atom2]. AtomType == 'G')){
if((Array->AtomArray[SpringArray[il. Atom1] AtomSB == 's')&&
(Array->AtomArray[SpringArray[i].Atom2]. AtomSB == 's')){
#pragma omp atomic
Energy += (1.0 / 2.0) * k_Surf * pow((AU_L / rad),2.0) *
pow((rad - Array->SurfaceBLength),2.0); //Surface Energy

Jelse{
if (SpringArray[i].NNN){
#pragma omp atomic
Energy += (1.0/2.0) * k_GGs * pow((AU_L / rad),2.0) *
pow((rad - SpringArray(i].Length),2.0);
//Next Nearest Neighbour Energy

130

else {
#pragma omp atomic
Energy +=(1.0/2.0) * k_GG * pow((GG_L / rad),2.0) *
pow((rad - SpringArray(i.Length),2.0);
//Nearest Neighbour Energy

}
//Here the Current Spring has a gold atom on one end and a silicon
//one on the other
else if (Array->AtomArray[SpringArray[i]. Atom1].AtomType I=
Array->AtomArray([SpringArray[i].Atom2].AtomType){
if((Array->AtomArray[SpringArray[i]. Atom1]. AtomSB == 's')&&
(Array->AtomArray[SpringArray[i]. Atom2]. AtomsSB == 's')}{
#pragma omp atomic
Energy += (1.0 / 2.0) * k_Surf * pow((AUSIBL / rad),2.0) *
pow((rad - Array->SurfaceBLength),2.0);
//Surface Energy

Jelse{
if (SpringArray[i].NNN){
#pragma omp atomic
Energy += (1.0/ 2.0) * k_GSs * pow((AUSIBL / rad),2.0) *
pow((rad - SpringArray(i].Length),2.0);
//Next Nearest Neighbour Energy

}
else {
#pragma omp atomic
Energy += (1.0/ 2.0) * k_GS * pow((GS_L / rad),2.0) *
pow((rad - SpringArray[i].Length),2.0);
//Nearest Neighbour Energy
}

}
}//Here the Current Spring has a silicon atom on each of its ends
else if ((Array->AtomArray[SpringArray[i] Atom1] AtomType == 'S')&&
(Array->AtomArray[SpringArraylil. Atom2]. AtomType == 'S')){
if((Array->AtomArray [SpringArray[i].Atom1] AtomSB == 's')&&
(Array->AtomArray[SpringArray[il. Atom2].AtomSB == 's')){

131

}

else {

}

#pragma omp atomic
Energy += (1.0 / 2.0) * k_Surf * pow((SiBL / rad),2.0) *

pow(rad - Array->SurfaceBLength), 2.0); //Surface Energy

Jelse{
if (SpringArray[il.NNN){
#pragma omp atomic
Energy += (1.0/ 2.0) * k_SSs * pow((SiBL / rad),2.0) *
pow((rad - SpringArray[i].Length),2.0);
//Next Nearest Neighbour Energy

else {
#pragma omp atomic
Energy += (1.0 / 2.0) * k_SS * pow((S5_L / rad),2.0) *
pow((rad - SpringArray(i].Length),2.0);
//Nearest Neighbour Energy

printf("DetermineEnergy has failed due to
unknown Atom type in Lattice!"); exit(-1);

//Here we check to see if we need to do a rotation for the current spring

if((Ar

y i rayli]. Atom1]. == true)&&
(Array i y[i].Atom2].
((Array ray[SpringArray[i]. Atom1].
(Array ray[Spril i].Atom2].

A1X = Array->AtomArray[SpringArray[i]. Atom1].Coords.x;

A1Y = Array->AtomArray[SpringArray[i]. Atom1].Coords.y;

A2X = Array->AtomArray[SpringArray[i]. Atom2].Coords.x;

A2Y = Array->AtomArray[SpringArray[i]. Atom2].Coords.y;

//Determine the new rotated end coordinates of the spring

if(Array->AtomArray[SpringArrayli]. Atom1).Coords.y <
(Array->NAinX * $S_L / 2.0)}{

132

tmp1 = BoundAR(Array, 'U', &Boundary, A1X, A1Y);

tmp2 = BoundAR(Array, 'U', &Boundary, A2X, A2Y);
}
elsef

tmp1 = BoundAR(Array, 'R', &Boundary, A1X, A1Y);

tmp2 = BoundAR(Array, 'R', &Boundary, A2, A2Y);
}

rad = sqrt(pow((tmp2.x -tmp1.x),2.0) + pow((tmp2.y -tmp1.y),2.0));

if(isinf(rad)){exit(-1);} //We do not want radius to be infinite
//Here the Current Spring has a gold atom on each of its ends
if ((Array->AtomArray[SpringArray[i]. Atom1].AtomType =
(Array->AtomArray[SpringArrayli].Atom2].Atom Typ
if((Array->AtomArray[SpringArray[i].Atom1].Atoms|
(Array->AtomArray[SpringArray[i].Atom2].AtomSB == 's')){

#pragma omp atomic
Energy += (1.0/ 2.0) * k_Surf * pow((AU_L / rad),2.0) *
pow((rad - Array->SurfaceBLength),2.0); //Surface Energy
Jelse{

if (SpringArray[il.NNN){

#pragma omp atomic

Energy += (1.0/2.0) * k_GGs *

pow((AU_L / rad),2.0) *

pow((rad - SpringArray[i].Length),2.0);

//Next Nearest Neighbour Energy

}

else {
#pragma omp atomic
Energy +=(1.0/2.0) * k_GG *
pow((GG_L / rad),2.0) *
pow((rad - SpringArray[i].Length),2.0);
//Nearest Neighbour Energy

}

133

//Here the Current Spring has a gold atom on one end and a silicon
//one on the other
else if (Array->AtomArray[SpringArray[i]. Atom1].AtomType !=
Array->AtomArray|[SpringArray[i]. Atom2].AtomType){
if((Array->AtomArray[SpringArray[i]. Atom1]. AtomSB == 's')&&
(Array->AtomArray[SpringArray[i]. Atom2]. AtomSB == 's')){
#pragma omp atomic
Energy += (1.0 / 2.0) * k_Surf * pow((AUSIBL / rad),2.0) *
pow((rad - Array->SurfaceBLength),2.0); //Surface Energy
Jelse{
if (SpringArray[i].NNN){
#pragma omp atomic
Energy+=(1.0/2.0) * k_GSs *
pow((AUSIBL / rad),2.0)*
pow((rad - SpringArray[i].Length),2.0);
//Next Nearest Neighbour Energy

else {
#pragma omp atomic
Energy += (1.0/2.0) * k_GS * pow((GS_L / rad),2.0)
*pow(rad - SpringArray[i].Length) 2.0);
//Nearest Neighbour Energy

}
}//Here the Current Spring has a Silicon atom on each of its ends
else if ((Array ray[SpringArray[i]. Atom1].. ype =='')
&&(Array->AtomArray[SpringArray[i]. Atom2] AtomTyp
if((Array->AtomArray[SpringArray[i]. Atom1] AtomSB ==
&&(Array->AtomArray[SpringArray[i]. Atom2]. AtomSB == 's')){
#pragma omp atomic
Energy += (1.0 / 2.0) * k_Surf * pow((SiBL / rad),2.0) *
pow((rad - Array->SurfaceBLength),2.0); //Surface Energy
Jelse{
if (SpringArray[i].NNN){
#pragma omp atomic

'S

134

Energy += (1.0/2.0) * k_SSs

* pow((SiBL / rad),2.0) *

pow((rad - SpringArray[i].Length),2.0);
//Next Nearest Neighbour Energy

}
else {
#pragma omp atomic
Energy += (1.0/2.0) *k_SS *
pow((SS_L / rad),2.0) *
pow((rad - SpringArray[i].Length),2.0);
//Nearest Neighbour Energy
}
}
}
else {
printf("DetermineEnergy has failed due to unknown
Atom type in Lattice!"); exit(-1);
}

}

return Energy;

135

FileInOut.c

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <stdbool.h>

#include "Common.h"

#include <dirent.h> //Directory Access for remove

/I Coded By: ®Victor C. Hayden (FLAG //GR645)

o This function takes the properly formatted input file and converts it to
il an array of structures, these structures are defined in Atominfo.h, and
- contain all of the relevent information about the Atom in question.

. Systems both with and without gold are handled.

* Inputs: char FileName[] - Name of the Input File

i Output: AtomArray - pointer to the array of structures

» (i.e. the array of atoms)

void inputFileToArray (LatticeArray *Array, char FileName[],
int argCommand,char * argv[]){
FILE* in, *rec;
unsigned long int AtomNum, NAinX, NAInY, Arrayindex, LeverH, temp, AUinX;
int scan;
char tmp[10];
double PosX, PosY;
in = fopen(FileName,"r");
if(in==NULL){printf("Error: can't open file.\n"); exit(-1);}
if ((argCommand == 9) | | (argCommand == 10)){ //Pure Silicon Lattice
if(argCommand == 10)(
recovery = (argv[9][(0] == 't')?true:false;
}else {
recovery = false;
}
Array->NAinX=atof(argv(7]);

y 71);
Array->NAinY=atof(argv(8]);

136

}else iff

Array->Array y->NAInX*Array->NAInY;

Array ray = realloc(Array y, Array->Arraylndex *
sizeof(Atom));

if (Array->AtomArray == NULL){

free(Array->AtomArray);

printf("Memory allocation failed while allocating for AtomArray.\n");

exit(-1);}

for(int i = 0; i<Array->ArrayIndex; i++){

scan = fscanf{(in, "%u,%lf %lf %s\n", &AtomNum,&PosX,&PosY,tmp);

Array->AtomArray(i]. AtomNumber = i+1;
Array->AtomArrayli].Coords.x = PosX;
Array->AtomArrayli].Coords.y = PosY;
Array->AtomArrayli]. AtomType = tmp[2];
Array->AtomArrayli]. AtomSB = tmpl[0];
Array->AtomArray[i]. AtomVirtual = (tmp[4] == 'r')? false:true;
}
((argCommand == 11) | | (argCommand == 12)){
//Gold and Silicon Lattice
if(argCommand == 12){

recovery = ((argv[11][0] == 't') | | (argv[11][0] == 'T"))?

true:false;

}else {
recovery = false;

Array->NAinX=atof(argv(7]);
Array->NAinY=atof(argv(8));
Array->LeverH = atof(argv[9]);
Array->AUinX = atof(argv[10]);
Array. faceAtoms=; 10));
Array->Arrayindex=Array->LeverH*

Array->AUinX+Array->NAInX* (Array->NAinY);
Array ray = realloc(Array y,

Array->Arrayindex * sizeof(Atom));

if (Array-> ray == NULL) { y ray);

137

printf("Memory allocation failed while allocating for AtomArray.\n");
exit(-1);}
for(int i = 0; i<Array->Arrayindex; i++){

scan = fscanf(in, "%u,%lf,%If,%s\n", &AtomNum,&PosX,&PosY,tmp);

Array->AtomArray[i]. AtomNumber = i+1;
Array->AtomArray[i].Coords.x = PosX;
Array->AtomArray(i].Coords.y = PosY;
Array->AtomArray[i]. AtomType = tmp|[2];
Array->AtomArray([i].AtomSB = tmp|0];
Array->AtomArray/[i]. AtomVirtual = (tmp[4]

)? false:true;

Jelse(
printf("Usage::> InputFile OutputFile VisualizationOutputFile
SurfaceSpringConstant AmountToStretch NumberOfstretches SlinX SlinY
[OPTIONAL:: GoldThickness AUInX, Recovery]...Exiting");
exit(-1);

flose(in);

* This function takes the current Array of Atoms and writes it to a file
* Inputs: char FileName[] - Name of the Output File
* struct Atom *AtomArray - Array of Atoms to be written

void arrayToOutputFile (LatticeArray *Array, BoundLines *Boundary,
char FileName[]){
FILE *Out;
Out = fopen(FileName, "w"
if(Out==NULL){
printf("Error: Can't Write to file.\n"); exit(-1);

fprintf(Out, "Atom Number, X, Y, Atom Type\n");

138

for(int i = 0; i< Array->Arraylndex; i++){
fprintf(Out,"%u, %I, %If,%c \n", Array->AtomArray[il. AtomNumber,
Array->AtomArray[i].Coords.x, Array->AtomArraylil.Coords.y,
Array->AtomArray(i].AtomType);

fprintf(Out, "Final Boundary Line Sets: \n Right Line: Slope: %If,
Intercept: %If \n Left Line: Slope: %If, Intercept: %If \n",
Boundary->RLine.Slope, Boundary->RLine.Intercept,
Boundary->LLine.Slope, Boundary->LLine.Intercept);
felose(Out);

}
& LatticeArray initializer, gives default values to the elements in
. the LatticeArray

void Arraylnit(LatticeArray *Array){
Array->NumberSprings=0;
Array->SSpring=0;
Array->Arraylndex=0;
Array->NAin

Array->NAin)
Array->LeverH=0;
Array->SurfaceBLength=0.0;
Array->AtomArray=NULL;
Array->RBound.AtomsinBound=NULL;
Array->LBound.AtomsinBound=NULL;
Array->Slope=NULL;
Array->AtomsinLine=NULL;

}

L This function creates a series of files that are used to Recover the

* currently processed data in the event of a Power Failure, System Crash,
L Program timeout (ACENET limits the amount of time a program can run
* to about a month, this allows you to bypass this time limit), or other

139

* such event. This sub-function saves the current BestArray once a new
* one is found, thus perserving the data.

void CrashPowerProtect(LatticeArray *Array, int argCommand,char * argv[]){

FILE *Out, *OSpr, *Consts, *Slopes, *SlopesAU, *file, *file2, *CPTS;
Out = fopen("/globalscratch/vhayden/Sim1/CrashPowerDumpAtoms.csv”, "w");
for(int i = 0; i< Array->Arraylndex; i++){

}

fprintf(Out,"%0.14If,%0.14If\n", Array->AtomArray[i.Coords.x,
Array->AtomArray[il.Coords.y);

felose(Out);

Va

if (file = fopen("./Output/CurLatticeSprings.csv", "")}{
felose(file);

}

else {

}
*/

0Spr = fopen("./Output/CurLatticeSprings.csv","w'
for(int i = 0; i < (Array->NumberSprings); i++){
fprintf(OSpr,"%u,%u,%0.141f\n", SpringArray[i].Atom1,

SpringArray[i].Atom2, SpringArrayli.Length);

}
felose(OSpr);

if (file2 = fopen("<File Name Here>", "r")){
felose(file2);

}

else {

fopen("<File Name Here>","w");
for(int i = 1; i<argCommand; i++){
fprintf(Consts, "%s ", argv[il);

}
fprintf(Consts, "\n");
felose(Consts);

140

Slopes = fopen("<File Name Here>", "w");
for(int i = 0; i < 2*Array->NAinX; i++){
i "%0.14If\n", Array->Slope[

}
fclose(Slopes);
SlopesAU = fopen("<File Name Here>", "w");
for(int i = 0; i < 3*Array->AUinX; i++){
fprintf(SlopesAU, "%0.14I\n", Array->SlopeAUl[il);
}
fclose(SlopesAU);

CPTS = fopen("<File Name Here>", "w");
fprintf(CPTS, "%0.14If,%If\n", CPCurStr, CPTem);

felose(CPTS);

}

void TUpdater(){
FILE *CPTS;
CPTS = fopen("<File Name Here>", "w"
forintf(CPTS, "%0.14If, %If\n", CPCurStr, CPTem);
fclose(CPTS);

}

void PowerCrashRecover(LatticeArray *Array){

FILE *in, *Slopes, *SlopesAU, *Constants;

int scan;

double PosX, PosY, slope;

in = fopen("<File Name Here>", "r");

for(int i = 0; i< Array->ArrayIndex; i++){
scan = fscanf(in, "%If, %If\n",&PosX,&PosY);
Array->AtomArray[i].Coords.x = PosX;
Array->AtomArray(i].Coords.y = PosY;

}

fclose(in);
Constants = fopen("<File Name Here>", "r");

scan = fscanf(Constants, "%If,%If\n", &CPCurStr, &CPTem);
fclose(Constants);

141

Slopes = fopen("<File Name Here>", "r");

for(int i = 0; i < 2*Array->NAinX; i++){
scan = fscanf(in, "%If\n" &slope);
Array->Slope[i] = slope;

}

fclose(Slopes);

SlopesAU = fopen("<File Name Here>", "r");

for(int i = 0; i < 3*Array->AUinX; i++){
scan = fscanf{(in, "%If\n",&slope);
Array->SlopeAU[i] = slope;

}

fclose(SlopesAU);

void Fil