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Chapter 1

Introduction

1.1 The 0 SFI Project

The Ocean Network Seafloor Instrumentation (ONSFI) Project is a multidiscip linary

resea rch and deve lopment project that aims to design , fabrica te and validate a proof-of­

co ncept sea floor array o f wireless marine se nsors for use in monit oring seabed processes.

It has four R&D streams: mar ine sensors; power generation; communi cation netw orkin g;

and final integration of the system s into a working prototype. Thi s thesis is a part of the

powe r generat ion unit. The objective of this work is to se lf powe r the pods, utilizing a

micro marine current energ y conversion system. Thi s wi ll elim inate the need for battery

replacement, which can be very expensive and cause sensor down time. The propo sed

marine current energy con version system consists of a twisted Savoniu s Turbine ,

Permanent Magnet Generat or (PMG), Rectifier, Power Electro nics Converter, and

Battery. The concept is based on a twisted Savoniu s turbine, direct ly coupled with a

perma nent magne t generator. The system is intended to be dep loyed on the seabed ; so,

simplicity and robustness are the main focus points. The co mprehensive design of the

system demand s less ro tating part s in order to have less maintenan ce and more reliabilit y,

becau se, once the system is deployed offshore, maintenance is both difficult and

expen sive. The block diagram of the proposed system is given in Figure 1.1.
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The twisted Savoni us rotor converts the marine energy into mechan ical energy . At the

same time, PMG converts the mechanic al energy into electr ical energy as it is direct ly

coupled with the rotor . The alternating current (AC) output of the generato r is the input of

the rectifier. Recti ficat ion is the conve rsion of alterna ting current (AC) to direct current

(DC) . Thi s invol ves a device that only allows one-way flow of electro ns. The output of

the rectifier is fed to the boost conve rter, which is a step- up de-de switching conver ter

with high effic iency. A low cost microco ntroller PICI 6f877 based Maxi mum Power Point

Tracking (MPPT) algorithm has been impleme nted . MPPT tracks the maximum power

point by contro lling the width of the Pulse Width Modul ation which is supplied to the

MOSFET (switch). The output of the converter is connected with a battery to store the

charges in it. The LCD display connected with the microcontroller disp lays d iffere nt data,

such as input curre nt, voltage and output voltage , curre nt, and RPM of the turb ine shaft .

These data are also displayed on the HyperTerminal of a host computer during testing.

1.2 The Seaformatics Pod

A schematic of the Seaform atics pod is shown in Figure 1.2.
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According 10 Project Engineer. Andrew Cook. it is esnma ted lhatlhe target is 100 Walls

of power at 1 m1s current speed. This is the target power for this thesis. If this is nol

reached. scaling laws developed in ea rner work ( I) will be used [0 scale: [he power from

Ihis work [0 that required by the prototype.



1.3 Th esis Outline

Thi s thesis has seve n chapters. Concise inform ation abo ut the chapt ers is give n below:

The First chapter gives the total outline o f this research work . It discu sses the total

propo sed sys tem in a compact way.

T he Seco nd chapter disc usses the marine energy so urces and curre nt. T he marine energy

co nd it ion is discussed in this chapter in det ail along with cau ses of currents and di fferent

types of marin e curre nt turbine s.

T he Third chapter focuse s on the theory behind CFD so ftware. It deve lops the governing

Partial Differential Equations o r PDE s for turbul ent wake flows. It focuses on the

discretiz ation of the PDE s and the treatment of mo ving bodies.

The Fourth chapter shows the exper imenta l set up of the twisted Savonius rotor. The rotor

has been tested in the Flum e Tank at the Marine Inst itute and the Wind Tunnel in the

Engineering Build ing at MUN. All the experimental result s are presented in this chapter.

T he Fifth chapter explores the simulat ion of the twisted Savon ius rotor in the CF D

software FLOW -3D . Differen t s imulation resu lts are present ed in this chapter. A simple

strip powe r mod el of the turbine is also developed.



The Sixth chapter provides discussion on the electrical system . This chapter deals with

the generator, converter, battery, and MPPT algorithm .

The Seventh chapter presents the conclusions of the research work . It also

suggestions for future work and research challenges.



Chapter 2

Marine Currents and Energy Conversion Technology

2.1 Introduction

This chapter focuses on the formation of the marine currents. It briefl y describ es surface

and deep water curre nts and their causes, along wit h the different parts need to implement

a mar ine current energy conversion syste m (MCECS) . One of the major parts of MCECS

is the turbin e. Thi s chapter discusses about some marine curre nt turbines in a concise way

from commercial view point.

2.2 Formation of Marine Curren ts

The continuous movement of water in an ocea n is ca lled a current. Curr ent s may flow

either on or far below the surface of the ocea n. They norm ally move in a specific

direction , and aid significa ntly in the circulation of Earth's moisture , the resultant

weath er, and water polluti on. As seawate r is nearly incompre ssible, vertica l movements

are associated with regions of convergence and divergence in the horizont al flow patterns,

The wind stress actin g on the surface layer of the ocean induces movement of that water

and causes surface currents. This is ca lled the Ekman Layer transpor t. In some cases,

strong currents are generated because a persistent wind blows in one d irect ion for a long

duration [2-11] . The strength and dept h of the current depend on the strength and power

of the wind . The Coriolis force and the gra vity force have significant impact on surface

currents . As surface currents trave l a long way, the Corio lis force tries to deflect them,



and help s to crea te a circu lar pattern [12]. Horizont al curre nts velocit ies vary from a few

centimeters per seco nd to as much as 4 meters per seco nd. A charac teristic surface spee d

is about 5 to 50 centime ters per seco nd. Curre nts dimini sh in intensity with increasing

depth .

Oth er than surface cur rents, there is also anot her type of curre nt that is presen t in dee p

wa ter. T hese currents are drive n by de nsity differe nces in wa ter, which in turn depend on

the water's temperature and salinity [ 13, 14]. This is a lso known as Ther mo haline

c irculatio n (T HC). Althoug h this happens most ly due to the density d ifferences, part iall y

there is also a role of gravity for deep water curre nts. In the case of co ld region s, the

surface wate r density is higher than deep wate r. Press ure gradients at depths resulting

from den sity grad ients of the surface wa ter causes circ ulatio n rII] . Basically, T HC is

dri ven by a push andpuJl system; in terms of time sca le, in the shor t term it is pushed

beca use of density changes in deep water, and if the density drop s too much, thcn the

dee p wate r formation is not possib le. But in the long term , it is pul led beca use of the

turbulent mixing of wa ter; deep water density drops until new deep water formations can

start . Atlantic warmer surface currents heat up the North Atlantic and Nort hern Euro pe.

This is show n in Fig ure 2. 1 by the red strea m, and the blue strea m represe nts co ld North

At lantic deep wa ter . T he volume transport of the ove rturn ing circ ulatio n at the North

Atlantic has bee n estima ted from hydrographic sectio n da ta. It is 17 Sv ( I Sv = 106 m3/ s),

with heat transport as 1.2 PW (I PW = 1015 W) [ 15-2 1].



Figure 2.1 Thermohaline Circulation 119J

Energy for turbulent mixing of the water comes from the tides. Tides are the vertical rise

and fall of water, and are one of the main factors in ocean current circu lation. Tides are

generated because of the gravitationa l unraction forces of the Sun and Moon on the Earth,

and the centrifuga l force caused by the rotation of Earth on its own axis around the Sun,

and the moon's orbit around Earth. The tide rises until it reaches a maximum height,

called high tide or high water, and then falls to a minimum level called low tide or low

water. Earth rotates on its own axis and the moon rotates around Earth approximately

every 24 hours lind 50 minutes. At the sub-lunar point. there will be two high tides during

the interval. One high tide happens when the moon is overhead, and anot her high tide

occurs 12 hours and 25 minutes later. at the antipode. There will be a low tide between

each high tide [22]. When Earth, the moon, and the Sun are in the same line, the Sun and

moon's attractive forces act in the same direc tion. So, the magnitude of the force is higher



than the average value. The tides created for this force are ca lled spring t ides. Figure 2.2

shows these tides . While the moon is at the right angle with Earth, and the Sun, the

tractive forces of the Sun act on moon's tractive forces at right angle. The resultant force

i ~ called neap udes in Figure 2.2. The Neap tides ' magn itude is less than the average.

Figure 2.2 Spring Tide and Neap Tide

2.3 ;\Iarine Curren t Energy Co nversion Devices

Nowadays, two issues are of major concern in this world: One is thai human beings are

using limited fossil fuel in at an extensive rate, and secondly. are gene rating too much

waste. Because of these issues . the environmental balance is in danger of d isproport ion.

That is why different systems have been developed to extract clea n energy, and new and

improved energy methods continue 10 be developed. Marine current energy conve rsion

10
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devices are used to harness energy fro m the oce an. Marin e current energy co nversion

devices may be e ither rota ting o r rec iproca ting [231.

2.3.1 Rotating Devices

Marine curr ent turbin es (MCT) are used as rotating device s. A num ber o f blades are

co nnec ted to the hub , which is ca lled the roto r. Depending upon the axis of rotat ion , the

turbin es may be of ver tical or horizontal axes.

2.3.1.1 Types of Marine Current Turbines

Hydrod ynami c forces ge nerated in the fluid flow act on the MCT s, to move the blades of

the turb ine that genera tes electrici ty. T he turbi nes may be placed on vertical or hori zontal

• Hori zont al axi s marine curre nt turbines - The se turbin es rotate aro und the

hori zont al ax is most likely para llel to the curre nt flow . Th e applica tion sce nario

determin es the num ber of blades of the turbin es. Multi -b laded turbin es deve lop

higher starting torqu e, but the hydrodynam ic eff iciency is lower. The turb ine

blade may be of co nstan t or variable pitc h. Even di fferent contro l tec hniques ca n

be applied to the turbines, depe nding on the energy requirements and its locat ion

[24] .

II



• Vertical axis marine curre nt turbines - These turbine s rot ate around the vertica l

axis, and most likely these rem ain perp endicul ar to the flow. Th ey a lso can be

multi -bl aded . St artin g charac ter istics are an important issue with this turb ine.

Sav oniu s turbin es have a higher starting torqu e, but Derriu sturbines have a lower

starting torqu e. The turbin e is mount ed on the syste m, and the ge nerator is

co nnec ted on the top or down the bottom of the system. Thi s type o f turbin e ca n

be drag or lift based . Sometimes a vertical ax is hybrid type turbin e is made with

both dra g and lift type devices, to satisfy the application requir ement s [25-27] .

2.3.1.2 Support Structure

Supp ort for the turbin es is a vita l issue for developin g suc h a sys te m. Sometim es the

output of the sys tem is influ enced by its support structure, and sometimes the sys tem has

to experi ence very harsh environments under the sea , while the curre nt veloc ity is too

high. Gravity Stru ctur e, Monopile St ruc ture, Floating Stru ctur e, and Trip od Stru cture are

different types of support struc ture [28] .

2.3.1.3 Gearbox

Under the ocea n the water speed is low. resultin g in a slow turbin e rotational spee d.

Ther efore, a gea r box is used when the turb ine is co upled with a genera tor. The gear-box

converts the high torqu e and low ang ular speed of the turbine to low torqu e and high

speed, in order to couple it with the ge nera tor. The gea r ratio depend s on the sys tem

design ; more over , the goa l is to always use gea rs with the least amount of frict ion.

12



2.3.1.4 Generator

The turb ine co nverts ocea n energy to mech anical energ y, and this mechan ical energy is

co nverted to electr ical energy by a ge nerator . Basically, generators can be c lass ified into

two gro ups: Alterna ting Curr ent Generator s and Direct Curr ent Generators. Many of the

marin e curren t ene rgy co nvers ion sys te ms use per manent magnet ge nerato rs.

2.3.2 Reciprocating Devices

Apart from ro tating devices, there is anoth er kind of tool called a rec iprocatin g device.

Fluid flow crea tes a hydrod ynam ic lift force on the hydr ofoil of the reciprocatin g devi ces,

which causes osci llat ion in them. T hey pro duce high torqu e but low speed. These dev ices

are genera lly hydrauli c power take-off syste ms utili zing high-pr essure oscill atin g ra ms.

These rams pressur ize and transfer the hig h press ure oil to drive a hydraulic mot or , which

in turn dri ves an e lectric generator. Efficiency is a major issue for this kind of device. If

this syste m is sto pped, it takes a long time to mak e it dynamic again, because lift force is

requir ed on the foil s [29J.

2.4 Current Status of Marin e Current Energy Devices

Th ere arc so me co mpanies working on marin e current energy devices. A numb er of them

are co mmercia liz ing their products, while other products are still und er development. Day

by day. the popul arit y of mar ine curre nt devices is increa sing, and Marine Current Energy

Devices are tak ing part to large-scale energy ge nera tion.
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Seallow Project: Marine Current Tu rbine Ltd . is one of the leadin g co mpan ies build ing

marin e curre nt turbin es. The wor ld's first eve r tidal tur bine was tested in 1994-5 in the

Corr an Narrow s, Loch Linnh e, Scotland. It could ge nera te 15 kw and had a diameter of

3.5 meters. Thi s turb ine is now in the museum of Scotland . Th e Sea flow project

developed the wor ld's first tidal turbin e and the most powe rful marin e renewable energy

de vice in the sea. They d id the designin g and build ing of a full scale tidal turbin e that

co uld ge nera te 300kw. It was insta lled 3 km NE of Lynm outh of north Devon coas t in

Ma y 2003 , and decommi ssioned in October 2009 . Recent ly, they installed a full sca le

commerc ial sys te m know n as Seagen, in May 2008 . Seagen is the largest and most

power ful tidal current turbine in the wor ld . Its 16 meter diameter twin rotors swee p over

200 square meters of flow. It can achieve an effic iency of 48% ove r a broad range of flow

velocit y. Th e Seagen is an axial flow pitc h co ntro lled ro tor. It is operational in St rangford

Narrow s, Northern Ireland , wit h a rated powe r of 1.2 MW at a current veloc ity of 2.4 mls.

When it expe rie nces a high flow , Seagen's rotor blades ca n be pitched to limit the power

to a pre determin ed rated power. It can eve n be pitched 180°, so it can run bidirectional

(on the eb b and flood tide). In cases that use a tidal curre nt turbin e sys tem , the turbin e has

to be mount ed on a strong structure, beca use flowin g marine curre nts genera lly produ ce

huge thrust , typically in the order of 100 tons per MW , showing that the mounting of the

turbine is also a very important issue. Seage n is mount ed on a struc ture sec ure ly sea ted on

the sea bed [30]. Figur e 2.3 show s the Seagen.

14



Figure 2.3 Scagcn [30)

Evupod . E vopod is a device for gene rat ing elect ricity from free flowi ng t idal strea ms,

ri ver est uar ies, and ocea n curre nts. It is five bladed, having a diameter o f 1.5 ITL and has

a hor izontal axis of rota tion . A IIIOth sca le Evo pod (Figure 2.4) and its moo ring systems

were tested in real tidal stream co nditions o f Strangford Narrows near Queen ' s

Univ~rsity, at Belfllst ' s Pona ferry Marine Labor atory. Testing of the 10th sca le unit

started in June 2008 and continued into 2009 . During 2010, the installation was extended

to allow the device to be grid-connected at the Marine Laboratory. A twin-t urbine version

of its Evopod semi-su bmerged tethered platfo rm is under developmen t. At full scale . the

unit would be fine d with twin 1.2MW rated generato rs. eac h cou pled to a 16m dia meter

three-bladed turbine. The unit would generate its co mbined rated o utput of 2.4MW in

flow speeds of 3.2 m1sor above [3 1)
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Figure 2.4 Evopod and Free Flow (31.32]

Free Flow System: The Free Flow Kinetic Hydropower System is a horizontal axis

turbine with three blades. It has a 4.68m diameter and was developed by Verdant Power

Ltd. during 2006 - 2008. Verdant Power successfully demonstrated this technology in a

tidal sett ing through the RITE Project in New York City's East River. Verdant Power

Canada will generate clean renewable energy from the natural currents of the SI.

Lawrence River near Cornwall. Ontario. Ultimately. the project could generate up to 15

MW of power locally. Figure 2.4 shows the free flow turbine [32/.
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Pulse Tidal: Pulse Generation Ltd, (UK) has developed a reciprocating device (Figure

2.5) that uses a hydraulic gencrmot. The device is currently in the design stage. In April

2008, permission was granted to dep loy the prototype in the Humber Estuary in the UK

1331.

Figure 2.5 Pulse Tidal and Open Centre [33,341

O pen Centre Tu rbin e: This system was developed by Open Hydro Ltd. (Ireland). It has

a 6 meter dta and an open centre rotor and starer (Figure 2.5). It has a horizontal axis of

rotation and was installed at EMEC off Orkney in Scotland. The turbine was connected to

the UK national grid in May 2008 1341.

Lunar t:m.''1ll ' Tid al Turh ine: Developed by Lunar Energy Ltd. (UK) 135], the desig n is

still under development. The company has agreed 10 a 500 million Euro deal to install 300

turbines oftthe coast of Korea. The proposed diameter is 11.5m (Figure 2.6).
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Figure 2.6 Lunar T idal Tu rbine and Tidal Fence Davis lI ydro [35,361

Tidal Fence na ~ i s Hyd ru Turbine: Blue Energy Lid. (Canada) has developed this

turbine (Figure 2.6). Turbines are filled in an array known as a Tidal Fence. It is a four-

bladed des ign and has a vertica l allis o f rotution. It is still in the design stage (36 ].

Xept une Tida l Stream Turhlne: This device is now in the design stage. Testing of this

device is expected to commence at the EMEC in 201 1. It has twin horizontal axes. and

three-bladed rotors (Figure 2.7). Aquamarine Power Ltd. (UK) is developing this turbine

137).

Figure 2.7 Neptune Tidal and Stingray T idal (37,38J 18



Stin gray Tidal Energy Converter: This is a reciprocat ing device and utilizes a hydraulic

generator (Figure 2.7). A prototype was installed in the Yell sound off the Shetland coast

in September 2002, and was removed weeks later. Engineering Business Ltd. developed it

[381

Oorlo v Helical Tu rbin e: This turbine is 2.5m in height and 1m in dia. It has a vertical

axis of rotation and has twisted blades (Figure 2.8). This device was installed in tbe

Uldu lomok Strait off the coast of Korea, It was developed by GC K Technology Ltd

(USA)139 j.

x ereu s and Solon Tid al Turhine: Nereuss dimension is 12m x 4m and Solon has a

diameter of 16m. Thcy both have a horizontal axis of rotation. Ncreus is a robust turbine

and Solon is a dueled deep water turbine (Figure 2.8). These were deve loped by Atlantis

Resourse Corporation PTE Ltd. (Singapore), and were tested in 2008. So lon produced in

excess of 500kW in 8 knots of water flow during testing, representing over 50% throat

efficiency 1401

Figure 2.8 Gorlov Helical Turbine and Ncreus and Solon [39,401
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2.5 Technology Challenges

Th ere are ma ny more technological challenges in developin g a co mplete marine curren t

energy co nvers ion sys tem:

• Firs t, the main challenge is to sync hronize the who le syste m with the ocea n's

environme nt. In dep th analysis of reso urce and devi ce interaction is req uired to

de liver the predicted desig n perfor mance.

• Tur bulence and cav itat ions effec ts ; the effec ts of increasi ng the size of a sca led

model and manu facturing methods are so me challenging issues for syste m design .

• T here are so me comp lexities to insta ll the sys te m undern eath the ocea n in a harsh

enviro nme nt, such as foundation or moo ring issues, electr ical co nnectors, and

submari ne cabling.

• T he sys te m wo uld be functioning undernea th the oce an's surf ace for a long time.

Th is can be add ressed along wit h the maint en ance, biofo uling, coa ting , and

sea ling.

• The cos t of the who le system and the expec ted output from the syste m should be

balanced.
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2.6 Conclusion

Newfoundl and and Labr ador might be a useful location for marin e current turb ines. With

proper se lectio n of locat ion s and techno logy. marine energy can be harne ssed on a large

sca le. In this regard. optim ization of the energy co nversio n sys tem is a challenge . T he

turbine is one of the majo r devices for MCECS . Worldwide. many comp anies are

co mmercializi ng differen t turbines. using many different co ncepts to meet the man y

challenges of MCECS.
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Chapter 3

Computationa l Fluid Dynami cs Study

3.1 Introduction

Th is chapter discusses the theory behind Comput ationa l Fluid Dynamic s (CFD).

beginning with the basic workflow of CFD . Con servatio n laws are subsequentl y

desc ribed, in a compre hensive way. As turbu lent wake is a common phe nomenon in

under ocea n flow . a synoptic discussion has been presented in this chapter. Non-linear,

transient , seco nd-o rder differential equatio ns are app lied to describe fluid motio n.

Defining a Mesh is a decisive issue for CFD analy sis. CF D does the calcu lation s to find

out different unknowns in the grid nodes. Physical space is divided into discrete point s,

depend ing on the number of cells in the space. Finer mesh in the space does the

ca lculat ions in very close points, but it is not always possible to do the simulations with

finer mesh, because of time constrai nts and co mputer capability. Mesh and numerical

so lution algorithms ca n be of diffe rent types. Flow-3D has been used as the

Computati onal Flu id Dynamics softwar e package in this work . It works on either finite

di fferen ce or finite volume algorithms. The Volume of Fluid (VOF) is appli ed to find the

surface of the fluid in Flow-3D. General movi ng objec ts will a lso be exami ned in this

chapter.
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3.2 Introduction to CFD

Computational complexity is the main challenge in flow analysis that limits the accuracy

of flow-related problems. Turbulence, chemical reactions, heat transfer, mass transfer,

and bubbles in the fluid make finding the solutions difficult. Hand calculation of

enormous numbers of equations for fluid flow is quite impossible. This is why CFO has

been introduced, to solve Ilow related problems. CFO gives a comprehensive analysis of

Ilow problems through proper selection of computational parameters, grid, and resolution

of the grid. It gives realistic results within a very short span of time, satisfying the cost

constraints. For a CFO analysis, the whole region of interest is divided into small cells.

Depending on the resolution of the grid, the set of differential equations is solved for the

Ilow. Calculations are done in every small place of the regime, and the results are

returned to the user interface. Calculations are done discretely. A block diagram of CFO

workllow is shown in Figure 3.1.
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Figure 3.1 CFD Workflow

First of all, the physical properties of the fluid must be recognized from a l1uid mechanics

point of view for a certain fluid problem. The mathemat ical equations arc written that

represent the physical properties of the fluid according to fluid mechanics. These

equations are usually a set of partial differential equat ions. Using them, the Navier-Srokes

Equation can be derived, and this is the gover ning equation of CFD. Tbe Never-Stokes

Equation is analytical; it is understandable and can be solved on a piece of paper. But for

a practical application involving a whole regime, numerous equations must be solved to

get the CFD solution. Thus, hand calculations are not possible, because of time constraint

and calculat ion comp lexity; they have to be done using computers. Therefore, these



Finite Vo lume methods are some of the numerical discret ization meth ods used to

d iscre tize the eq uations. T he who le prob lem dom ain is divided into small grids, or

e lements, as discretization is based on them. In itial and bound ary co nditions are very

import ant issues for a fluid prob lem, and must be defined to get CFO results. Then , the

pro gram is wr itten to so lve the eq uat ions . Th e typical languages are Fortra n and C. The

solutio n method ca n be either direct or iterat ive. As CFO analys is requires so lutio n of a

large numb er of d ifferential equations; therefore, works tations or co mputers wit h very

goo d co nfigura tions are required to run the program. Ouring the simulatio n, cer ta in

co ntro l parameters are used to control the co nve rge nce, sta bility, and acc uracy of the

method. After finishi ng the simulation, diffe re nt CFO so ftware represe nts simulatio n

results in their ow n way . Some of them give analysis result s fro m di fferent point s of

view, as well as exce llent visua lization s of the results [41,42] .

3.3 C FD vs Experimental Se tup

It is not possib le to replace the experimenta l se tup co mplete ly by the CF O, because

some times CFO inputs may invo lve extens ive guess ing, and avai lable co mputer

capabi lity may be an issue. But , CF O gives insight into the llu id flow s that are too

expe nsive , d ifficult or sometime s imposs ible for experimenta l setups. T he table shows the

co mpariso n of CF O and Experimental set up .
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Table 3- 1 Compar ison between CFD and Experim enta l Set up

CFD Experimental Setup

Cost Cheaper Expensive

Scale Any Small/Midd le

Opt imization Cost Lesser More

Informat ion All Measured point

Safety Yes Sometim es Dangerous

3.4 Application of CFD

CFD has a wide range of applica tio ns. It is extensively util ized in industries and research

areas. Some areas of CFD application are as follows:

Aerospace

Autom otive

Steel industry

Renewable energy

Sports

Water and wastewater

Architec ture Biomedicine

Chemical Processing Civil Engineerin g

Hydrau lics Power generation

Turb o machinery Glass industry

Marine applica tion Semicondu ctor Industry

Heat ventilation air condition
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3.5 Conser vation Laws

T here are often too many group s in the fluid flow to follow . So, the Lagran gian

Formulation is not that pract ical from a mathematical point of view , as it focuses on a

spec ific group of fluid particle s. Mathematically, the Eulerian For mulat ion is much mo re

practical, as it focuse s on a spec ific regio n of fluid . Using the T ransport Theorem it is

po ssib le to sw itch fro m the Lagrangian Formu lat ion to the Eulerian Form ulation . V is an

arbitrar y specific gro up of fluid volume and S is the surface anyw here in the flow . dV is

a d ifferential volum e within V vo lume having a density o f p that gives the mass pdV . v is

the veloc ity o f tluid . U,V, and W are veloc ity co mpo nents in x, y, and z direction . v is

repre sented as:

v = Ui + Vj + Wk

Accordi ng to the Con servat ion of Mass, the time rate of cha nge of the mass of the gro up

is zero . So,

DlDt f P dV = 0
«o

Using the Tr ansport Theorem this is written

f [ ap/ at + V.(pv) I dV = 0
vro

(3. 1)

(3 .2)

Accordin g to the Conser vat ion of Mass, the term in the square bracket s is zero.

Expandin g this term , it can be writt en

a p/at + paUlax + pav/ay + paw/az+ uap/Dx + v apta y + WDpta z = 0 (3 .3)

Accordin g to the definition of incom pressi b le fluid , the chan ge of density is zero . So,
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aU/a x + ay /ay + aw/az = 0

Eq. 3.4 is called the Continuity Equation.

(3.4)

For a differential volume dY, the momentum would be pdYv. The time rate of change of

the momentum of the group is equal to the net force acting on it, called Conservation of

Momentum. So,

D/Dd pv dY = f (J dS + f pb dY
vro sro Y(t)

(3.5)

Where (J is force per unit area at a point on the surface. Surface forces can be due to

pressure and viscous fraction. b is a vector representing the body force per unit mass at

any point within the volume. Body forces are basically due to gravity. The Transport

Theorem gives

f [a(pv)/at + ~ . (pvv) 1 dY = fadS + f pb dY
vro S(t) Y(t)

Manipulation gives

f [ Xi + Yj + Zkl dY = 0
Y(t)

Mathematics requires that

x , o y =o z =o

Expansion gives

X momentum

paUl at + P (UaUl ax + y aUl ay + WaUl az) =-ap/ax

+ a/ax (A laUl ax + aYla y + aw /az]) + a/ax ( ~l [aUl ax + aU/ax])

+ a/ay (11lay/ax + aU/a y]) + a/az (11raw/ax + aUla z])

(3.6)

(3 .7)

(3 .8)

(3.9a)
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Y momentum

pav /at + P (UoV/ox + v av /ay + WaV/8z) = - oP/oy

+ a/By(A.[oU/ax+ av/ay + aW/8z]) + %x (u lov/ax + oU/oy])

+ o/ay (fl [av/ay + oV/oy])+ %z (fl [oW/oy + ov/az))

Zmomentum

pow/ at + P (Uaw /ox + VoW/oy + waw /az) = - ap/az - pg

+ % z (A.IoU/ax + av /ay + aw /az)) + a/ax (fl law/ox + aU/az])

+ a/ay (fl [ov/az + aw /ay)) + a/az(fl [aw/az + aw /azD

(3.9b)

(3.9c)

Stokes' hypothesis states A.=-2I3fl. A fluid like water is incompressible and has constant

viscosity. In this case, Equation 3.9 reduces to

X momentum

poU/at + p (UoU/ox + v aU/ay + WoU/8z) = - ap/ax

+ I.l (au2/a x2 + au2/By2 + au2/8z2)

Y momentum

pav /at + P (Uav/ox + v av /By+ WaV/8z) = - ap/oy

+ fl (av 2/ax2 + a V2/By2 + a V2faz2)

Zmo mentum

paw /at + P (Uaw /ax + v aw /ay + wow /az) =-oP/az-pg

+(aw2/ox2 + aw 2/a/ + aw 2/az2
)

These are called Navier Stokes equations, which are the basis of most CFD [43].

(3. lOa)

(3.lOb)

(3. IOc)
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3.6 Turbulent Hydrodynamics

Fluid par ticle motion has a laminar or layered structure at low speed. In fluid, par tic les

can move as gro ups in small spinning bodies. T hey are ca lled eddies. At high speeds ,

there is a chao tic or random motion of the edd ies . Thi s flow patt ern is ca lled tur bulent

flow. A turbul ent wake flow conta ins lot s of sma ll edd ies a long with so me large edd ies.

Smaller eddies are carried along by the local flow and those are associated with

turbul ence. But the large eddie s remain roughly in place and the fluid in them swir ls

aro und and aro und or recirculates roug hly aro und close d or bits. T he smaller edd ies

re main near to the wake boundaries whereas large eddies remain inside the wakes .

Sm aller edd ies are generated in regions whe re velocit y gra d ients are high, like at the

edges of the wakes or the boundary layers close to the struc tures . They are d issipated in

the region where the veloc ity gradie nts are small, suc h as in sheltere d areas like corne rs .

Co nserva tion laws are app licab le for turb ulent wa ke flows but they are so co mplex that

analytica l so lut ions are not pos sible. T hat's why CFO has been developed based on the

co nserva tion laws to serve the purpose . Sma ller ed dies are so small that they req uire very

fine grids and sma ll time step s to follow the small edd ies. Sm ull edd ies are I mm in diu .

So , for CFO it requires a grid spacing less than 0. 1 mm to follow the edd ies. CFO works

on a se t of Alge bra ic Equations (AE) that are conver ted fro m the gove rn ing equa tions.

Enor mo us numb ers of AEs have to be ab le to handl e to follow the sma ll eddies. So ,

work able CF O is not possible, becau se a co mputer cannot handle the huge number of

AEs. For exa mple, if the grid spac ing is 0 .1 mm , a 100 m X 100 m X 100 m vo lume of

wa ter would need 106 X 106 X 106 or 10 18 grid po ints. It also req uires sma ll time steps to
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do the simulations. But, currently there is no computer that can handle so many grid

points with small time steps. The fluid appears more viscous than it is when the small

eddies in a turbulent flow diffuse momentum. Models which account for this apparent

increase in viscosity are known as eddy viscosity models. This type of model is obtained

from momentum equations by a complex time averaging process. The developed model

can estimate the variation of eddy viscosity throughout the flow. Now, it is not necessary

to follow the small eddies because, according to the modeling, they are already

suppressed by eddy viscosity. Considering this, a workable CFD is possible with larger

grid spacing and time stepping. However, it requires 102 X 102 X 102 or 106 grid points

whereas previously it required 1018
• Therefore, a workable CFD is only possible with a

turbulence model. As well, hydrodynamic flows are often turbulent flows. The governing

equations for flow with this model can be written as:

Momentum Equations:

p ( aUlat + uaU/ax+ vaU/ay+ w aU/az ) + A = - ap/ax

+ [ a/ax ( ~l aU/a x) + a/ay ( ~I aU/ay) + a/az (~ aU/a z) 1

p (av /at + uav/ax+ vav/ay+ wav/az)+ B = - apla y

+ l a/ax ( ~l av /ax) + alay ( ~l av /ay) + a/az ( ~l aVla z) I

p ( aw /at + uaw/ax+ vaw/ay+ w aw/az ) + C =-ap/az - pg

+ [ ala x ( ~l aw /ax) + ala y ( ~l aw /ay) + a/az ( ~l aw /az) 1

(3.1Iu)

(3. l lb)

(3. l lc)
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Where U V W are the velocity components in the x y z directions, P is pressure, p is the

density of water, and 11 is its effective viscosity.

Conservation of mass is considered as:

DP/Dt + p c2( DUlOx + DV/Dy + DWIDz) = 0 (3. 12)

Where, c is the speed of sound in water. Basically, water is incompressible but for mass

conversion CFD considers it as compressible.

Engineers are interested in creating models that account for the diffusive character of

turbulence rather than details of eddies. A popular turbulent model is the k-s model. K is

the intensity of the turbulence and e is its local dissipation rate. Governing equations for

this model are:

Dk/at+ UDk/Dx+ VDk/Dy + WDk/Dz= Tp- To

+ [ DIDx(ilia Dk/Dx) + DIDy(Ilia Dk/Dy) + DIDz(Ilia Dk/Dz) 1

DelDt + UDElDx + VDElDy + WDEIDz = Dp- Do

+ [ DIDx (Ill b DelDx) + DIDy(Ilib DElDy) + DIDz (u/b DElDz) 1

Where

(3. 13)

(3.14)

Tp= GIl ,/ p Dp=TpC, El k

To = Co e Do = C2e2 I k

III =C3 k
2

I e 11 =III + ~l l

Where, Co=1.0, CJ= 1.44, C2=1.92, C3=O.9, a=1.0, and b=1.3 are constants based on

data from geometrically simple experiments, ~lJ is the laminar viscosity, III is extra
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viscosity due to edd y motion and G is a comple x function of velocit y gradient. In

practi ce, the k-s equ ation s acco unt for the con vection, diffusion , produ ction, and

dissipation of turbul ence. Equation 3.13 is an inten sity equation where T p is the

production term and To is the dissipati on term . Equ ation 3. 14 is a dissipation equation

where Op is the produ ction term and 0 0 is the dissipation term . The time averaging

process introduces A, B, and C term s in the momentum equatio ns. They are complex

function of the veloc ity gradient. To simpl ify co nside ratio n of the sharp normal gradie nts

in ve loci tyand turbulencc ncarawa ll, specia l wall function s are used .

For the analy sis in CF O, the flow fie ld is discreti zed by a Cartes ian sys te m o f grid Iincs.

Small vo lumes or ce lls surround point s where grid Iincs cross. If there is any fixed body

in the flow, then flow is not allowed in the cell s containing part s of fixed body. For

general moving objects the position of the body keep s changing with time as the bod y is

changing its position continu ou sly. Boundary conditions are establi shed, accordingly flow

enter and leave thc region of inte res t. Actu ally. CFO work s on the governing equati ons o f

the flow. For CFO each gove rning equation is put into the form

aMlot = N (3. 15)

For CFO, eq. 3. 17 is thc template which is applied to eac h governing equation at each

point in a grid. T he equat ions are integrated numerically acro ss a time step . T he time

steppi ng equatio n is in the form of

M(t+Lit) = M(t) + Lit N(t) (3. 16)

Wh ere the various deri vat ives in N are d iscre tized using finite d ifference approx imatio ns.

Alge braic equa tion s for the sca lars P, F, k, and E at po ints where grid lines cross ca n be
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found by the discretization and equations for the velocity components at staggered

positions between the grid points.

N

1 w P E

y 5

I

- 6, -
Figure 3.2 2-DG rid

Central differences are used to discretize the viscous terms in the momentum and

turbulence equat ions. For a 2D grid, like Figure 3.2, if a diffusion term in the governing

equations would be 8U2'0 )(2, this can be approximated by central differences like

Again, most of the equations have convective terms. like V (cUl o)(). By using centra l

differences it becomes

V(iJUlJx)<:: Upl{U" + Up)/2 - (Up+ Uw)/ 2j 16 x '" Up(UE - Uw) 126 .... (3.17)

This treatment of convect ive terms usually leads to numerical instability. To avoid this

CFD codes use upwind difference. That gives

U(DV lox) <:: VI' [(Up- Uw) /6xj flow from west

U(i' Ul ox) ::= V I' I(V" - VI') 16)( J flow from east

(3. 18a)

(3. ISb)
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To ensure numerical stability, a combination of central and upwind differences is used for

the convective terms. Sometimes upwind differencing generates a false diffusion. It

makes the tluid appear more viscous. So, another scheme named skew differencing has

been developed to counteract it. Collocation or lumping is used for the T and 0 terms. To

march the unknowns forward in time, the momentum equations are used to update U, V,

and W ; the mass equation is used to update P and correct U, V, and W. The process is

repeated until velocities and pressure both converge. The turbulence equations are used to

update k, and e [43].

3.7 Volume of Fluid

The volume of tluid concept is used to track water surfaces. A special function F is

known as the volume of tluid or VOF function which is used to locate the surface of the

water. Material volume considerations give:

aF/at + uaF/ax + v aF/ay + waF/az = 0

In CFD, for water F is taken to be unity and for air F is taken to be zero.

(3. 19)
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Figure 3.3 F Value in CFO Grid

Figure 3.3 shows a 20 view of the gr id in CFO. However, F has go t differ ent value in

Figure 3.3. If F= I, there is water in that grid, and if F= 0, there is air in that grid. But F

having a value in betw een 0 and ) signifies the water surface. In the Figure 3.3, values of

F determin e the position of the wa ter surface . The VOF equati on , equati on 3.22, is used

to updat e F and the location of the water surface [4 3J.

3.8 Mov ing Bodies in Flow

CFO can handl e genera l mo ving objec ts. It can hand le co nstant pressure bubbles in now,

such as, the air bubbl es behi nd a body impacting a fluid surface. A moving bod y can be

looked upon as a bubbl e with pressure that varies along its surface. The pressure must be

such that it produ ces a bubble that has the same shape as the bod y. In fact , bubbles can be

of any shape 146] . Figure 3.4 shows a tria ngular bubbl e where pressure acts from inside

the bubb le.

36



Figure 3.4 Pressure in a triangular bubble

Flow 3D can include moving objec ts. It allow s more than one moving object in a

proble m. Each roov'ing object can have differe nt movement. The objec t moves with six

degree of freedo m or lhe movement of the object can be user defined. In this work. it has

been worked wilh only one moving object thai moves wilh six degree of freedo m (.HI.

This chapter examines the theory for CFD. 1be neXlchapte r discusses the eJ.perlmcnts

on the twisted Savcnius turbine in Flow-3 D. To find lhe fluW;! surface. !he F value is

calcu lated for every ce ll in lhe proble m doma in. Flow-3 D has a feature volume of fluid

for finding the P vafue.
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Chapter 4

Experiments on the Twisted Savonius Turbine

4.1 Introdu ction

This chapter describe s the experiments on the drag type device . the twisted Savonius

turbine. which has been acknowledged to meet the desig n requirements for the North

At lantic Ocean Curre nt. T his chapter also discusses the equations that determine the

charac teris tics of the turbin e. The fina l sec tio n of this chapter deal s with the turbin e

tes ting in the Flume tank . T he turbine has also bee n tested in a wind tunn el, to obse rve its

behavior in wind . Therefore, the results of the turbine in both wate r and wind have been

studied.

4.2 Twisted Savonius Turbine

The twisted Savonius rotor is a vertical axi s machine with a high starting torque and a

reasonable peak power output [44 ]. The twisted Savonius rotor has an "S-shaped" cros s­

section. The concept of the Savonius rotor is based on the principle developed by Flettner

[45]. The power from the rotor is based on the difference in pressure across the blade

retreating from , and advancing into, the fluid. This is, in turn , re lated to the differe nce in

the dra g coefficients associated wit h the co nvex and the co ncave side of the blades [46,

471. The Savoniu s ro tor has a simple struc ture. Thou gh it has goo d starting

charac teris t ics, it operates at relatively low speeds and has the ability to accep t fluid fro m

any direc tion . Its hydrodynamic efficiency is lower compared to other types of turbines,
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like Darrieus and propeller rotors. The drag force of fluid acting on its blade is the driving

force for the twisted Savonius. However, at low angles of attack, lift force also

contributes to torque production [46). Hence, the rotor is not a pure drag machine, but a

compound machine, and can go beyond the limitation of Cp of a primarily drag type

machine. Because of the high static torque, sometimes Savonius is used as the starter with

other types of turbines having lower static torque, like the Darrieus Savonius Hybrid

turbine. Though the static torque is high, it is not uniform at different rotor angles. At

certain rotor angles, Savonius rotors cannot start on their own, as the coefficient of static

torque is negative. The twisted Savonius design is very consistent in operation, and also

has a much higher average power output compared to conventional ones. Therefore, the

twisted Savonius is one of the best rotors for generating small scale power from a

turbulent fluid flow. But the process of constructing a twisted Savonius turbine is

extremely complex, requiring expensive materials and machinery, making the

manufacturing cost very high. Though the conventional Savonius turbine has a very

simple shape, the twisted version has a complex three dimensional geometry by

comparison. The radius of the turbine is squeezed as the turbine is twisted, which occurs

because of the geometric principles of the blade, not just the limitations of the materials.

A greater angle of twist results in a greater potential efficiency in operation. Kamiji,

Kedar and Prabhu completed experiments on a helical rotor (48). The Savonius rotor and

the twisted Savonius rotor both have the same cross sectional shape, like two semicircles

in an'S shape' throughout the turbine body, but three dimensional views are completely

different. Figure 4.1 shows the CAD view of the conventional Savonius, and Figure 4.2
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sbows (he three di mensiona l view o f the twis ted Sa vomu s turbine . Solidwo rks has been

used ro design tbe turbmes

Figure 4.1 Con\'enlional Savoe ius Turbine (Three Dimensional CA D View)

Figure 4 .2 Twisted Savoniu s Turbine (Three Dimensional CAD View )



11le twist ed Savomus is SOl'l"Cwhat similar 10 the:Savo nius, but il has a twist of Iscfaklng

ils vertica l axis . This is why it changes the direction of ils body shape in e \"CT)' single srep.

Figure ~.3 shows the: side vjew and the top view after rerooying the: end plate of the

turbine.

(.) (b)

Figure 4.3 a) Left View (b) To p View (removmg tbe end plate) o f Twisted Savomus

Turbine

A Germa n ph)sici~t, Albert Bctz, concluded in 19 19 lhal 00 wind lurbine can convert

more than 16127 (59.3 %) of the kind ;; energy of lhe wind into mechanica l energy.

lurning a ro tor. To this day. this is known as the Betz limit o r Betz' law. The theoreuc al

maximum power efficiency of any design of wind turbine is 0.59. The conce pt of the

Savonius rotor is based on the principle developed by Flen ner. The coe fficie nt of

perfor mance is of the o rder of 15% for Savo nius [441. Experiments on conventiona l

Sa vonius rotor s with an over lap ratio of 0.15 aoo an aspec t rallo of 1.0 have been

reponed to have a maximum coefficient of power at 0.173 (49J and 0.17. when tested in
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an ope n jet wind [50]. In an effort to improve the efficiency, minor cha nges are made in

the shape of the conventional Savcnius rotors. and these rotors have been referred 10 as

modi lied Savonius rotors. A modified Savonius rotor with a shaft is reported !O have a

maximum coefficient of power of around 0.32 151]. Figure 4.4 shows the efficiency of

different types of turbines .

0.61 - - - - ----==========-1

Turbinetip speedratio

Figure 4,4 Power coefficient vs TSR Curve of Different Types of Turbines [48]

If a turb ine is placed in the wate r, the powe r available in the area is

p•••i1• b1e= O.5pA,vl

Where P.... I. b1. is Power available in water (Watts)

(4.1)
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p is Density of wa ter (kg/m3)

As is (Height xDiameter) = (HsxDs) , is the swep t area of Savoniu s rotor (m2
)

v = Velocity of wa ter (m/s)

If Cp is the power coefficient of the twis ted Savonius turb ine, the power capt ured by the

tu rbine is

P=P availabltCp

The tip periph eral velocity o f the rotor is Us= wx R

Where , wi stheangul arvelocity of Savoniu srotor

R (= D/2) is the radiu s of the Savoniu s rotor

Now the Tip Speed Ratio (TS R) of a Savon ius turbine is defin ed as

wR
TSR = ). = V

(4 .2)

(4.3)

The aspect ratio (A) repre sent s the heigh t (Hs) of the rotor relative to its d iame ter (Ds).

Thi s is also an importan t criteri on for the performance of the Savonius roto r:

H
04 = ­

D

(4.4)

There are a numbe r of geometrical parameters that affec t the efficie ncy of the Savo nius

rotor. Among these, the aspect rat io plays an import ant role in the hydrod ynami c

performance. Value s o f A aro und 4.0 see m to lead to the best power coefficient for a

co nventiona l Savonius rotor. As well, end plat es lead to bett er hydrodynamic

performances. The inllu ence of the d iameter Dr of these end plat es in Figure 4.5 relati ve

to the diam eter D of the rotor has bee n experimenta lly studied. The higher value of the
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power coefficient is obta ined for a value of Of around 10% mo rc than D. whatever the:

veloc ity coefficient [521. Tbere is another geome trical factor the:called overlap ratio . It is

o - ~
(4.5)

wbere e is overlap between two buckets .

D is rbe diarrerer of esch becket sbown in Figurc4 .5.

Better efficiency can be achieved for ~ values of 0 .2 to 0 .3.

Figure 4.5 Top View ofT..... isted Savo nius Roto r



4.3 Material Selection

In a marine environment, a sub-marine structure ha. to withstand salty water , abras ive

suspended particle s, and fouling growth. Therefore, it is challenging for a sub-marine

structure to be there for a long time , because of the aggressive undersea environment. The

designers first con sider producing the required marine rotors in steel. However, achieving

the necessary compound-curved profile in steel is expensive. Moreover, stee l is very

heavy, pro ne to fatigue, and su sceptible to corrosio n induced by sa lt water. Because of

these disad vanta ges, a dec ision was made to use co mpos ites instead . If pla stic materi als

are used, they ease the fatigue problem, bot h through their inhere nt fatig ue tolerance and

reduced blade weight. Temperature of the water is ano ther issue. but the temperature

range in water is much more limited than atmo sphere making the material selection ea sier

[53] . In this work , fiber gla ss has been used for building the twisted Savonius turbine

prototype. Fiberglass is a fiber reinforced polymer made of a plastic matrix reinforced by

fine fiber s of glass. It is a lightweight and strong material. At the very beginning of the

research work . it was planned to design a twisted rotor with ribs shown in Figure 4.6 . But

due to the complexity of this, the ribs were left out. The turbine itself has a complex

geometry. It was impo ssible to build this turbine at the Technical Division of Memoria l

Unive rs ity. The Tec hnical Divi sion asked for a huge amou nt to get the turbine built from

so me other place. and this quote was too much to spend for the Seaformatics project.
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Figure 4.6 Twisted Savonius with Ribs

As a result. building a prototype of the turbine in the rapid prototype machine was

attempted at Memorial University. Unfortunately, problems with the rapid prototype

machine cccured . It could make 50'1 of the model perfect ly. but after that machine could

nol remain in the proper track to build the model !()()%. according 10 the design. At this

lime, Seacraft International was a\ked 10 build this lurbine. 'They also asked a huge

amounllo build the full size lurbine of I meier in heighl. At la'I, ~tr. Wallace Robert. of

Seacraft Imemat jonal, gave lhe pectorjpe of lhe turbine free of charge 10 perform lhe

experiments on il. Tbe turbine used in this work is a handmade turbine. built by Wallace

Roben , SeaCraft Internat ional.



4,4 I'ru lul)'pt"of Twi..ted Savonius Turbine

Figure 4.7 ~hows the prototype of the twisted Savon ius turbine, It i~ held vertically by

using the frame lhal can be sbow n in Figure 4.7.The dimen~ion~ of the rotor an: 18 inches

in heighl and 6 inches in diameter. II has two e-ndplale-S and docs not have-any centra l

shah. It does not have-any gap between the IwO semicircular beckers.

Figure 4.7 Prototype of tbe Twisted Savonius Turbine
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Characterist ics for the prot otype of the twisted Savoniu s turbin e are as follow s:

Height

Diameter

Overlap rati o

Aspect rat io

Swept Are a

18 inche s or 0.4572 meter

6 inche s orO .1524 meter

108 square inche s or 0.07 square meter s

4.5 Experimental Setup in Flume Tank

Th e twisted Savo nius prototype was tes ted in the flum e tank at the Marin e Inst itute of

Memorial University of Newfoundland, Canada. It contains 1.7 million liters of water in

tot al. If the tank is full o f water, it is d ivided into two sections: the upper and the lower

sec t ion. The upp er sec tion is the test sec tion and allow s obser vation from above and from

the s ide, and the low er sec tion allows water to flow. In the return sec t ion, there are three

impellers, or pump s, that are used to circulate the water around the tank . Each pump is

driven by a 125 HP DC mot or . The Flume tank in the Marine Institut e is the world ' s

largest tank of its type . The Flume Tank is 22.25 m long , 8 m wide and 4 m deep [54 ].

Water ve loc ity began fro m 0.1 mls. It increased by 0.05 mls in every step, and the test

result s were recorded. 0.98 mls is the highe st current speed pro vided by the Flume tank.

Figure 4 .8 shows the turbin e when it is submerged vertically in the water .

48



Figure 4.8 Tellting ofT..... isted Savonius in Flume Tank

The turbine was hooked up ..... ith the frame arxl a shaft .....as ta ken ou t to integrate the load

cell arxlthe torque arm with it. The turbine was held with two bearings on the t.....o ends

with the frame. All the instruments were attached on the top of the turbine for data

collection. The rota ting shaft of the turbine is connected to a magnelic brake. The brake is

impo sed on the turbine by applying voltage across it. Voltage is proponionalto the brake

and once the brake is applied to it, il tries 10 stop the turbine. Voltage is increased ont il

the turbine is fully stopped. During this time, data is encoded by the load cell. A l50mm

lo ng torque arm has been used in this expe ri ment. The frame ho lding the turb ine was

attached with the plat form above the Flume lank with a cla mp. Angular speed is

measured by the Nikon rotary e ncode r R X A IOOO-22-IA attached on the top of the

shaft. T he e ncode r is shown in Figure 4.9.
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Figure 4.9 Rotary Encode r

All the mstrurrera s, itlClud ing load ce ll, torq ue arm. and rotary encoder, are connected

..... ith ue DAQ system w here data are processedand fed to the lapto p by USB. Labvjew

has been used for the observing the data in the U!>Cr interface . Figure 4.10 sbows the

C'Ofl1)Jele ~t up for the twisted Savomes turbine in the fl ume Tan k.
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Figure: ·1.10 Experimental Setup for Twi ..led Savonius
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4.5.1 Test Results in Flume Tank

The turbine was tested in the Flume Ta nk at differe nt curre nt speeds. Currents varied

from 0.1 m/s to 0.98 mls.The turbine started to rotate whe n the current speed reached 0.4

m/s, The current speed in the tank was constant for different torque imposed on it by the

attached magnetic brake . MATLAB has been used to plot the data. Figure 4.1 1 shows the

rpm of the turbine considering data at different current speeds (Appendix A).

CunenlSpeed-.d RPMcurveoflhe lu rbone

~ 120
ofr:
ct 6lJ~ :/""' 1

Figure 4.1 I RPM at Different Current Speeds

Figure 4.12 shows the maximum power available at the turbine shaft at different current

speeds . Thi s curve has been generated. cons idering only the peak power at certain curre nt

speeds.
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Figure 4.12 Maximum Power Output at Different Current Speeds

Figure 4.13 shows maximum power output of the turbine at different rpm of the turbine.
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Figure 4.13 Maximum Power at Different RPM
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In the experiment. data is recorded for different currem speeds. If all the data are

considered togetber, a curve can be generated using the bin method. Figure 4.14 ~ws

the curve for the power output of the turbine vs current speed. This prolotype can

generate more than 2 watts at a current speed of 0.98 nYs, wbereas theoretically it was

expected to generate more than 3 wans at that speed. Frcr o n causes this difference.

I'l:
j:

!.

Figure 4.14Turbine Output vs Current Speed Curve

I
j"

Figure 4. 1:lTurbine Torque vs CUITCnl Speed Curve



Figure 4.1 5 shows torque of the lurb ine at diff~nl curre nt o;p«'ds. Tbe Cp-J. curve for

each individual current speed is shown in Figure 4.1b. The bouom curve is at 0.0$ rrVsand

gradually the current speediocreases by 0.1rrVs. Aftt'f 0.0$ rrVs. the figure sho ws curves

for 0 .5 rrVs,0 .6 rrVs,0 .7 rrVs. 0.8 rrVs, 0 .9 rrVs.and O.91irrVs.

1°12

-s "!
~ OOBs

Figure 4.16 Cp- J. Curv e at Differ ent CUlTCnt Speed

Figure 4. 17 sho ..... s the Cp- J. curve for the twist ed Sa vomu s considering data at all lhe

current speeds. The collec ted data has been smoothed wit h a spa n o f 10%. A span of datu

has bee n considered and then smoo thed by a moving avera ge filler. The twisted Savo nius

turbine she ..... s a pea k e fficiency o f 12.50% around the Tip Speed Rat io o f 0.8
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Figure 4.17 Cp- ACurve of the Twisted Savonius

4.6 Wind Tu nnel Test of the Twist ed Savuniu s Turhine

The twisted Sa vonius turbine has a lso been tested in the wind tunne l. For wind tunne l

testing, the turbine was mounted on a structure with a plate of higher d iameter than the

turbine . The plate of the structure was g lued to one end of the turbine. and the plate was

direct ly connected with the shali. The turbine body was mounted vertically inside the

wind tunnel. Other urrangemenrs for instrumentation remain out of the tunnel. and the

structure was attached to the wind tunnel's wooden floor using screws. Figure 4.18 show s

the turbine inside the wind tunnel.
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Figure 4 .18 Tbe Twisted Savomus in the Wind T unnel

To measure dala from the wind tunrel tesring , lhe torque arm works as a brakc 100 . Figure

4.19 shows the 100 mm long torque arm.Whe n tht' turbine srans 10 IOIa1C. Iht' screw o n

lhe torque arm is lig htcned manua lly 10 app ly Iht' brake. 11It' brakt' is appl ied 10 lhe

turbine until il SlOpS .
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Figure 4.19 Torque Arm used in Wind Tunnel Testing

Tbe torque ann does 00( cause any significant friction to the rree rotation of the turbine. If

(he screw is tightened. the brake is applied to the turbine. and the load cell is already

in..au mented. At the bonom end of the:shaft. a rotary encoder is anacbed to determinethe

angular speed of the turbine. One bearing is used, through which the turbine shaft ra"-'iC'S

toward the encode r. Figure 4.20 mow, the in~t1Jmen(a(ion in the wind tunnel.
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Figure 4.20 Instrumentation in (he Wind Tunnel

4.6.1 T~ Rt'MlI l.§III Wind Tu nnel

T'IJeturbine has been rested for two wind speeds only. FlI"sllhe turbine has been tested ill

10 mls wind speed. Figure 4.21 shows the po\\ef coefficient vs TS R curve for the turbine

in the wind tunnel. Figure 4.22 shows the POWef coemcenr vs TSR curve for 13 mls

wind speed in the wind tunnel. For both 10 mls and 13 mls wind speed, the twisted

Save nius shows 14% efficiency at a TSR of arou nd 0.8.
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Figure 4.22 Cp-A. Curve of the twisted turbine at wind speed of 13 m/s



4.7 Conclusion

For the whole exper imenta l se t up, the prop er combination of magnet ic brake and load

cell is very impo rta nt. Vibrat ion is a vita l fac tor in the instrume ntation of the sys te m. T he

turbin e was tested both in wind and wa ter, and a magneti c brake wa s used to test the

turbin e in water. For wind tunn el testin g, a torqu e arm with a screw was used for less

friction and the brake was appl ied manua lly for di fferent speeds. Th e same load cell and

rotar y encoder were used for testing in both wind and water. For both the experiments , it

g ives almost the sa me res ults. In water, it gives a highe st efficiency of 13% around 0.8

TSR . In wind tunn el testing, the turbine has been tested for two wind speeds. At 10 mis,

the turb ine shows 14% efficie ncy. At 13 mis, it also gives 14% effi c iency around 0.8

TSR . The turbin e TSR remains within 1.4 for wind and water . The twisted Sa voniu s

turbin e allows for bett er efficie ncy than the co nve ntional Sav on ius turb ine. Con venti onal

Savoniu s g ives 4.5% efficie ncy [55] .
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Chapter 5

Simulation s of the Twisted Savo nius Turbine in Flow-3D

5.1 Introduction

This chapter introduces the simulation of the turbine in a Computational Fluid Dynamics

(CFD) environment. Flow-3D which is developed by Flow Science Inc. of Los Alamos,

New Mexico, USA, has been used as a CPO software package. This chapter presents the

CPO results of 180° and 90° twisted Savonius rotors, and focuses on the sensitivity testing

of the mesh and drag model of the turbine. The sensitivity test of the mesh validates the

mesh configuration for the simulations, and the Drag model gives a rough idea as to the

efficiency of the turbine.

5.2 Computational Fluid Dynamics and Flow-3D

The solutions and proper visualizations of fluid dynamics problems are limited by their

computational and design complexity. As these problems are associated with enormous

numbers of differential equations, hand calculations are impossible. However, CFD has

been introduced to solve fluid flow problems. CFD works with numerical methods,

utilizing the Navier-Stokes and allied equations, to solve the fundamental nonlinear

differential equations that describe fluid flow for predefined geometries and boundary

conditions. CFD analysis results present a plethora of information, saving both money

and time. Moreover, optimization of the analysis can easily be demonstrated. ANSYS

FLUENT, ANSYS CFX, and Flow-3D are the most popular among the available CFD
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software packages [56-58]. Flow-3 D has bee n chose n for this work beca use of its

excep tional features; mos t notably, Flow-3 D can hand le all so rts of co mplex pheno mena,

such as wave breaking, and pha e changes includi ng vaporizat ion and solidification. 0

other CFD package can handle these phenomena. Flow-3 D determ ines simu lation results

by invest igat ing the dynamic behavior of fluids . It is part icularly adep t at so lving time­

depend ent (tra nsie nt), free-surface problems in one, two , and three dim ension s. It also

models confined flows and steady -sta te problems. Flow-3D can be appli ed to any kind o f

flow, becau se the pro gram is wr itten based on the fundam enta l laws of mass, momentum

and energy conv ersion. Flow -3D is an all-inclus ive package . No special additio nal

modul es for meshin g or post-processing are needed . An integrated graphical user

interface tics every thing together, from prob lem setup to post-p rocessing. FAVOR

(Fract ional Area /Vol ume Obstacle Representation) along with Tru e VO F are also very

powerfu l and unique features of Flow-3 D. TrueVOF helps to track the locatio n of free

surfaces accurately, and to apply the dyn amic boundary cond itions to these surface s.

Flow -3 D fluid modeling goes beyond the traditional Volume of Fluid technique to

achieve the most accurate tracking of fluid surfaces to cap ture wave dynamics. In this

researc h work, Row-3 D exhibit s a magnificent visualizatio n of real t ime turbine rotation,

along with di fferent da ta after the sim ulatio ns. T he simulations were run in Flow-3 D

vers ion 9.4.1. An ex tensive discussion of the different tabs and options of Flow-3D, for

running the twisted Savo nius turbin e simulat ions, has bee n presented in Appendi x B [59].
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5.3 Flow 3D Simula tion Result s

A series of different simulations were run in Flow 3D. Results are discussed in next

sections.

5.3.1 Simu lation Resuh s of Twisted Sa vunius Rotor with Overlap Rati o

The twisted Savonius turbine has two end plates, but no central shaft. Rather, it has an

over lap ratio of 35%. The turbine is 0.32 m high and has a diameter of 0.2286 m. Small

shafts are attached to both end plates. in order to hook up the turbine. Figure 5.1 shows

the CAD view of the turbine.

Figure 5.1 Twisted Savonius Rotor

The simula tion was done for a SCi of variab le torques at a constant curre nt speed. The

current speed was conside red as I m1s for the simulat ions. The turbine was imported into
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the mesh, and its cross sectional view is illustrated in Figure 5.2 by slicing the mesh along

the z-axis. In Figure 5.2 ,the turbine has a gap between the two buckets.

Figure 5.2 Cross Sectiona l View of the Mesh Block

A set of variable torques has been imposed on the body, and the angu lar speeds of the

turbine arc audited. The RP~ of the turbine can be calculated from two dimensional

analyses of the results .
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Figure 5.3 Time Frame at 16.8 Second

Figure5.4TimeFrameaI17. 1 Second
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Figure 5.5 Time Frame at 17.3 Secon d

Figure 5.6 Time Frame at 17.5 Second
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Figure 5.3-5.6 shows a complete revolution of the turbine. Flow-3D also generates the

angular speed curve by itself. which is shown in Figure 5.7.

Figure 5.7 Angular Speed of the Turbine at T=O.5 Nm Torque
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As angular speed is found from the simulatio n resul ts and imposed torque is already

know n as an input parame ter, the power ava ilable in the turbine shaft can be calculated.

(5.1)

Where r is pow er capture d by the turbine, t is tor'lue imposed on the turb ine, and cois the

angular velocity of the turbine . The powe r coefficient can be calc ulate d from Equation

4.2 . The Tip Speed Ratio (TS R) can be ca lculated from Eq uat io n 4.3. !vIATLAB has been

used to plot the Cp -), curve of the twisted Savonius rotor. Figure 5.8 shows the Cp-),

curve of the twisted Savoniu s having an overlap rat io o f 35% .
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Figure 5.8 Cp-), Cur ve of T wisted Savo nius T urbine
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The twisted Savomus turbine with 35% overlap ratio shows more than 8% effic iency, at a

TSRof0.3118.

5,3.2 Simulation Results of Twisted Savonlus Roto r with a Ze ro Overj ap Ratio

Simulations have been run in Flow-3D for the twisted Savoniua with a zero over lap ratio.

This turbine does not have any gap between the two buckets. A CAD view of the turbine

is given in Figure 5.9.

Figure 5,9 Twisted Turbine with Zero Overlap Ratio

A cross-sec t ional view of the turbine is given in Figure 5.10, slicing the mesh when the

turbine is imported in it

Figure 5.10 Mesh Slice with Zero Overlap Ratio 70



Thi s simulation was done under same enviro nment as the previous one. The turbin e ' s

angular spee d was observed for a set of variabl e torqu es. Figur e 5. 11 displ ays the

simulation result s.

0.12,----,-----,-- --r------, .-------.----,------,

0.1
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8 0.04
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1.41.20.2
0'lL.------'-------'----'------'------'--~-------'
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Figu re 5 .11 Cp-A. Curve of Twisted Savo nius Turbine with Zero Overlap Rat io

Thi s twisted Savo nius turbin e with no ove rlap provi des bett er efficiency co mpared to the

twisted Savoniu s turb ine with the over lap ratio. It shows a maximum effic iency of 12%,

whereas the turbin e with the overlap ratio gives 8% maximum e ffic iency . T urbine with

zero overlap pro vides max imum efficiency aro und 0.7 TSR . The maximum TS R for this

type of turbin e is c lose to 1.2, whereas it is 0.9 in case of the turb ine with the ove rlap

ratio. Experime nta l testing has bee n performed for a turbine with a zero ove rlap ratio and
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the experimental results validate the simulation results, The turbine shows a maximum

12% efficiency around 0.7 TSR both in experiment and simulations. Though the

prototype of the turbine has different dimensions than the simulated one, the Cp-), curve

is almost same for both cases. This is because of the scaling laws.

5.3.3 Hori zontally Mou nted Postnc n-I fur the Twisted Savonlu s Turbine

The twisted Savonius turbine has been regarded as a vertical axis water current turbine in

the previous simulations. This topic, however, highlights the twisted Savonius as a

horizontal axis turbine. In this simulation, the x-axis is indicated as the axis of rotation of

the rotor. The rotor, as studied in this simulat ion, has an overlap ratio. Figure 5.12 shows

the turbine when it is imported in the mesh

Figure 5.12 Twisted Savonius as a Horizontal Axis Turbine
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Current swipes the turbine from the negative y-axis. Simulations have been carried out to

allow a compa rative study among turbine angu lar speeds, for different positions. There is

a sma ll variation of RPM between this position and the previous positio n. For Im1s

current, the turbine rotates at 85 rpm, whereas for rotation around the z-axis, the twisted

Savonrus with an overlap ratio rotates at 83 rpm for freewheeling. Accordmgly, the

follow ing two axes of turbine reunion endorse the same Cp-J".curve.

5.3.4 lIo rl lllntall~' xtountcd Posruc n-z for Twisted Sa vonlu s Turbine

In this simulation, some changes have been made to the structure of the turbine. Two end

plates have been removed, and a centra l shaft has been attached in between the two

buckets. Figure 5.13 shows the CAD view of this turbine .

Figure 5, 13 Twisted Savonius Turbine with No End Plates



1be turbine has been mounted accord ing 10 Figure 5.14 in Flow-3 D, in oroer 10 study ilS

angular speed

Figu~ 5. 14 Horizonta lly ~tounled Turbine at Pos ilion 2

In this case . the axis of rOialion is the y-axis, Currents move towards lhe 1'OI0rfrom lhe

reganve y-aais . Under th is ccrdieon, Figure 5.15 sbows the Cpo). curve of the lurbine.

Tbe lurbine gives 14'1>effICiency for this position. at approximately 0.7 TSR.
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Figure 5.15 Cp-), Cur ve for Horizontally Positioned

5.3.5 Simulat ion o( a Qu a rter Pitch ed Savonlus Turbine

This thesis also considered a quarter pitch twisted Savonius roto r. and est imated its

performanc e using Flow-3D. The roto r has 0.35 overlap ratio. It has two endplatcs with

two sma ll shafts attached. Figure 5.16 shows the CAD draw ing of this turbine .
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Figure 5.16 Quarter Pitch Twisted Savonius Turb ine

In the simulations, the current speed was set up at I mls. The rotational speed of the rotor

goes through a transition state to reach the steady state within a few seconds. The

simulat ion results show that the quarter pitch twisted Savomus attains an efficiency of

7%. at a TSR of approximately 3.6. Figure 5.17 shows the Cpo).curve of the quarter pitch

twisted Savomus turbine.
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Figure 5.17 Cp-), Curve of Quarter Pitch Twisted Savomus Turbine
76



5.4 Senslrlvlty of Mesh

To examine the sensitivity of the results to the size of the mesh, three differen t meshes

were used for the mesh block I which holds the turbine, The standard mesh used 144

cells in the x and y directions and. 44 cells in the 1 direct ion, For freewheeling of the

turbine. it gives 84 RPM. When a mesh with 160 cells in 1I and y direction and 50 cells in

1 direction was used, the simulation gave 85 RPM. Figure 5,18 shows the angular speed

When a mesh with 136 cells in x and y direction and 44 cells in z direction was used, it

gave 84 RPM. So the standard mesh seems adequate. Simulation results also agree with

the experimental results.

Figure 5.18 Angular Speed of the rotor
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5.5 Drag Model

Figure 5. 19 shows the cross sectio nal view of the basic Savoniu s turbin e.

/
l

\ I r- )

~
Figure 5. 19 Sc hema tic of Basic Savoniu s

If a current is flowin g downwards in Figure 5. 19, a wak e drag load would be produced at

the bottom of the right bucket and a stag natio n pressure load would be produ ced at the top

o f the left bucket. The gap bet ween the bucke ts wo uld tend to make pressur e roughly the

same at the center of each bucket. This press ure wo uld be rou ghly the stagnation pressure.

Eac h of the bucke t loads has a momen t arm. It creates a torqu e about the rotor ax is.

Multipl ying torqu e by angular speed g ives power. T he twisted Sa voniu s turb ine can be

co nside red to be made of up of a large numb er of basic Sa voniu s strips as shown in

Figur e 5 .20 . Summing the power of the strips gives an estimate of the tot al pow er from

the turbin e.

78



Figure 5.20 Strip Model of Twisted Savonius

Figure 5.2 1 gives a power coefficient versus tip speed ratio based on the strip model. It

assumed a drag coefficient of2 for the left bucket and a drag coefficien t of 0 for the right

bucket. It gives a power coefficient peak of around 0.09 at a tip speed ratio around 0.8.

This is obv iously very rough but it does give roughly the same result as the eFD

simulation and the tests.
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Figur e 5.21 Str ip Model Power

5.6 Conclusion

Flow -3D offers a significant numb er of features to work with . Th e main objec tive is to

deplo y this turbine under the ocea n on the seabed, so the simulations have been

perform ed in the und erw ater enviro nme nt. The simulation result s determine that the

twisted Savoniu s turbin e can ach ieve more than 8% efficiency, which is higher than the

conventional Savoniu s [34] . [f there is no gap betw een the two bucket s, the efficie ncy

increases. The eff iciency of the turbi ne has been stud ied for different posit ion s of

mounting. [fthe turbin e has an x-ax is or z-axis as axis of rot ation , they give almo st the

80



same angular speed. If the turbine has the y axis as the axis of rotation then the turbine

speed ramps up compared to the other two positions, giving more than 90 rpm. Different

types of results have been studied with Flow 3D, without any expensive experimental

setup.
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Chapter 6

Ma rine Current Energy Conver sion System

6.1 Introduction

The concept present ed here is based on a twisted Savoniu s rotor coupled with a

Perman ent Magnet Generator (PMG), to conver t the mar ine current energy into electrical

energy for se lf-po wering the Seaformatics pod s. Thi s co upling can be eith er di rect drive

or geared. Presently, direct drive coup ling is beco ming popular because of its simplicity.

T his chapter discusses the PMG and the des ign and implement ation of a boost co nverter ,

alon g with the Maximum Power Point Trackin g (MPPT) algorithm. In the proposed

MPPT algorithm, the T ip Speed Ratio (TSR) of the turbine and gene rat or' s co upling shaft

has been optimize d based on the pertu rbatio n and observatio n meth od . A marin e curre nt

turbin e emulato r has been developed to test the electrica l sys te m in the lab . However, this

chapter focuses on the eleme nts to co nvert the mechanic al energy into e lectrica l energy .

6.2 The Twisted Savoni us Wat er Current Tur bine Emulator

The twisted Savoniu s turbin e is used to convert water current into mechani cal energy,

which is co nverted to e lec trical energy by a PMG . A twi sted Sa voniu s rotor emulator was

impl emented to test the power electro nics e lements in the lab. The emulato r develop s the

torque on the PMG ' s shaft. A manu al co ntro l of variable supply has been uti lized to vary

motor shaft speed, as the torque, deve loped on the mot or shaft, is prop ortional to the

armature current. The motor basically mimics the shaft angular speed ge nerated by a full
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size t .....isred Savomes turbine of 0.33 m2 s....'cp1 area. ..... ith an a<opcd ralio of 3 and a 1:4

gear ratio . Thi<o <ocIup pc:rforms only the steady- slat~ analysi<o of the system Figure 6.1

<oho..... s the water currerururbire emulator .

Figure 6. 1 ~tCEC Emulator

Figure 6.2 illustrates genera tor OUlput voltage and currem w irh respect 10 angular speed

1601.

---+ --+- ......--~.-". ...
., ,.:;-~"'"

(.) , b)

Figure 6.2 Output (a ) Voltage and ( b) Curren t c f Gereraror at Different RP~t 83



6.3 Generator

Although many people focus on the gear box to couple the turbine, direct drive requires

fewer components, less maintenance and lower cost [6 1-63]. A recent study suggests that

a generator coupled with a gear box is more prone to failure [64]. Because of these

concerns, direct drive is gaining popularity.

The electrical frequency of the generated voltage can be determined by the number of

poles in the generator, and the angular speed of the rotor expressed in RPM.

(6. 1)

According to equation 6. 1, electrical frequency is directly proportional to the number of

poles. If the number of poles is high enough to achieve the frequency, it makes the size of

the machine bigger, as RPM is lower in direct drives. In the case of a vertical axis water

current turbine, the size of the generator has less impact [65] . But, for a wide range of

water speed operations, direct coupling is more popular because of fewer rotating parts.

The generator works on the principle of Faraday' s Law of induction. The time-varying

electromotive force (emf) or induced voltage in a close circuit is equal to the change of

magnetic tlux through the circuit.

E(t) = - N ~ (6.2)

Where E(t) is the induced emf. N is number of turns of coil in stator, and <[> is tlux

through the closed path.
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The electromotive force induced in the coil depends on some of the parameters . These are

the number of turns in the winding N, electrical frequency f, and amplitude of magnetic

nux density Bm. Equation 6.3 shows the relation among them:

(6.3)

6.3.1 Generat or Losses

A generator cannot convert the full input mechanical energy into electrical energy

because it has some sources of loss. A genera tor has both mechanical and electrical

losses, which is contributed to by friction in the bearing and comm utator, and air friction

in rotating armature. There might also be vibration in the system, which is a kind of

mechanica l loss.

There are two types of electromagneti c losses: copper losses and iron losses. Copper

losses are basically resistive losses in the windings. Copper losses can be calculated by

equation 6.4,

Pc, = RiI.
2

Where RJ is the internal resistance of the generator and I. is the armature current.

(6.4)

There are three kinds of iron losses in the generator: hysteresis losses,eddycurrent losses

and excess losses. Because of the reversal of the magnetization of the laminated iron

stator core, Hysteresis losses occur 1661.

(6.5)
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whe re, B,.. is maximum flu", densily, f is ejecrrical frequency , and V is volume of lhe

!>tator. Actually. hyMCf'esiskls\Cs are an inhC'rcnl propcny of the gencrator's material. The

kiss cannot be entirely avoided. but can be reduced.

During the operarion of a generato r, a current is induced in the windi ng. Sometimes a

curre nt is also induced in the stator iron (67). This is ca lled eddy current loss. It depends

o n maximum flu", de nsity 8 .... frequency f. thickness o f lamina tion d. and volume o f

srator v .

In so me of the literature. e xcess los.ses are mentioned 16KI. such as

p.. "".. a (B.... f) Y1V

6..1 Permanent :\ I a~l.'l Gt"nt"rato r

(6.6)

(6.7)

To convert rrecbamca t energy into eleetrical ener8Y in renewable energy app licalio n!>.,

different kind.. of generaton can be coupled with the turbine, loUCh a.s:

Squirrel-Cage roto r Ird ucro n Generator (SCrG)

Doubly.Fed Induct ion Genera tor( DFlG)

w ou nd-Rot or lrd ucro n Generator (WR IG)

Permanem Magnet Gener ator (PMG)

A PMG ca n be used for a wide range of applicat ions. It can be utilize d in low speed

applicat io ns. like gear less wind and hydro app licatio ns. as well as in high speed

applicatio ns in some rege nerati ve and co genera tive technolog ies [69 1. A PMG ca n be of
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different types, sueh as with surface mounted magnets, buried magnets, and damper

windings. Moreover, PMGs posses several advantages over electrically excited machines:

• Higher effieieney

• Permanent magnets are used, so it does not require further power supply for

magnetic field excitation

• Better reliability because of absence of mechanical components like slip rings

• Improved thermal characteristics due to absence of field losses

• Higher power to weight ratio

However, a PMG has some drawbacks including cost and demagnetization at high

temperature. As time passes the performance is increasing, and the cost is decreasing. For

these different features, PMG technology is becoming more attractive for direct drive

applications [70J. Figure 6.3 shows a cross section of a typical PMG.
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Figure 6.3 Cross Section of a PMG

6..1.1 C~in~T(l"lue

Cogging torque i.. an inherenl property of a permarenr magnet geTX'rator. due to its

geometry. It can be reduced in different way s. It has an inftuerce on the genenl1or ' s self

srarling capability, and it produces eoise and vibration when the generator runs . Cogging

torque is produced in the generator shaft when it fOCates. with respect to SlalOr, at the 00

load condition.

6..1.1.1 StartinRo ra Turhlne

To get the besl output fro m a turbine, il should be operated at the maximu m power

coefficie nt po int. Accordin g 10 equation 4.3. TSR is a function of the angu lar speed of the

turbine. At the beginn ing o f rotat ion, angu lar speed is very lo w: hence, TS R is also low.

giving a low value for Cp. Ultimately, hydrod yna mic e fficiency of the tur bine falls. If tbe
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turbine is direct coupled with the generator, then cogging torque has a negative impa ct on

starting the gener ator. Thu s, coggi ng torque should be low at the beginn ing ; other wise, it

is hard to start rotating with the sma ll Cp overcoming the cogging torque. Somet imes, the

turbine may rem ain in a locked co ndition if the coggi ng torque is too high .

6.4.1.2 Turbine Running Condit ion

T he small turbine has lower inerti a compared to the large one, as it has smaller blade s and

less mass. T he turbine st ruc ture is exci ted by the coggi ng torque, and the inertia

smoo thing effect is not significa nt. T his is more obvio us in cases of smaller turbin es.

Durin g low curre nt speed, a lower angu lar speed develops; as a result , coggi ng torque,

noise, and vibration increa se in the sys tem. T his kind of vibration cau ses problems for the

integrity of the mechanical structure. At a high current speed, the turbine rotate s at a

higher angular speed. Durin g this per iod of high speed, the kineti c energy stored in the

turbine and torqu e in the shaft is significantly higher than the cogging torque .

6.4 .2 Reduction of Cogg ing Torque

Co gging torqu e can be redu ced in severa l ways :

Magnetic pole shape: Sometimes, magnet ic pole s in the generator have such a shape that

there are uniform air gap s in the rotor. If the shape of the po les resemble s a loaf of bread,

the air gaps in the rotor are non-uniform, whic h ca uses reduction in the coggi ng torque.

Pole width to optimum pole width ratio: If po le width is changed, the cogg ing torque

varies . If the op timum po le width is reached , coggi ng torque comes to a red uced value. In

cases ot her than optimum pole width , cogging torque increases.
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Skewi"g t:tf ect: Skewing the stator stack or magnet pole can almost eliminate the

cogging torque in a PMG. But, this raises the system complexity and cost.

6.5 Twisted Savoniu s Testin Awith Generator

The turbine has been tested in the wind tunnel, having been coupled direc tly with II de

motor 10 study the electrica l output of the twisted Savonius turbine . The objective was 10

get electrical energy from freewheeling of the turbine regardless of the rating of the

generator . Figure 6.4 shows the experimental setup in the wind tunne l.

Figure 6.4 Turbine Coupled with Generator in the Wind Tunnel
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Genera tor output was connected with a 50 ohm resistor. Data has been co llected for

di fferent wind speeds. Figure 6.5 shows voltage at different wind speeds.
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Figure 6.5 Wind Speed vs Voltage Output Curv e

Figure 6.6 shows current output at differe nt wind speeds.
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Figure 6.6 Wind Spee d vs Current Output Cur ve
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Figure 6.7 show s power output of the generator at the following wind speeds.

Figure 6.7 Wind Speed vs Power Output Curve

6.6 DC - DC Conver ters

A de-de converter converts de voltage from one level to anot her level. A de-de converter

is like a de equiva lent to an AC transformer with a con tinuo us variable turns ra tio. A

de-de switch mode converter convert s the unregulated de into contro lled dc ou tput. The

net power input must be equal to the output powe r, so, no energy generation occu rs in the

co nverte r; rather, there are losses because of its com ponents. The power flow in a

converte r is

Where Pin is the input power to the co nverter

Pout is the output power form the conver ter

Plo,,",,, is the power losses in the converter

(6.8)
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For ideal converters, PI"",., = 0 in equation 6.8. In fact. there are no ideal converters in real

world . All converters have losses. For an ideal converter

Pin = Pout

Or, Yin X lin = Vout X lout

Or, Vir/Vout=I'"Jl/Iin (6.9)

If vol tage is stepped up then current has to be stepped dow n in the ou tput according to

eq uatio n 6.9.

Efficiency ofa co nverter is

Effic iency = (Pou/ Pin) X 100% = POUI/ (POUI + Plo" . , ) X 100% (6. 10)

Th e de-de co nverters ca n be used for motor contro l in auto mobi les, marine hoists, and

mine haulers. They can also be used for the regenerat ive braking of a dc motor, in dc

voltage regulators, and in conjun ction with an inductor to generate a dc current source.

There are differ ent type s of de-de co nverters. Depending upon the dielectric isolation,

converters can beclassified into two different type s:

>- on Isolating convert er

,. Iso lat ing converters

If voltage is stepped down or up in a small ratio , then non iso lating conve rter are used .

No n iso lating co nverters can be of differe nt types:

• Buck co nverters

• Boost co nverters
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• Buck- Boost conve rters

• Cuk converters

• Full-bridge converter

Isolat ing converter can bedivided into two types:

• Flyback type

• For ward type

Buck co nverter s can step down the vo ltage level , wherea s a boost converter steps up

volt age level. Buck-Boost is the co mbinat ion of buck and boost type co nverters. It can

ei ther step up the vo ltage or step down . But , the output of this type of co nve rte r is of an

o ppos ite po larity re lat ive to the input. A Cu k conve rter doe s the same thing as buck-boost

converters, in that it also invert s the polarity of the ou tput voltage. But . a Cuk converter

has less current ripple. T he gain of the converter depend s on the duty ratio . Figure 6.8

shows the gain vs duty ratio curve for differen t converter s.

94



Figure 6.8 Gain vs DUlYRat io Curve for Different Co nverters

Figure 6.9 DC-DC Switching Mode Co nvener System
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Figure 6.9 shows the de-de converter system. The input source may be either the rectifier

output. or the battery output to the converter. The input filter capacitor lessens the ripple.

and then the supply goes to the converter . A control signal is a lso sent to the converter, to

alter the voltage to the desired level. In the output, a small filter can be used that is an

mtegra l part 01 the converter. The output of the following system feeds a regulated de to

the load

6.6.1 Ih wlSI Con verte r

A boost converter has been clinched to implement in the proposed system. Figure 6. 10

shows the circuit diagram of the boost converter. The supply voltage is V, and it is

assumed constant throughout its operation. M is the MOSFET. L is inductance, D is the

diode, and Cis capacitance in the circuit diagram.

Figure 6.10 Boost Converter
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A Boost converter has two modes of operatio n: Continuous mode and Discontinuous

rnode. The waveforms for the continuous mode of operation are shown in Figure 6. 11. All

the waveforms have been presented in the same time scale in Figure 6. 11. V, is the supply

voltage, I, is (he source current and II. is the inducto r current, Vo is (he capacitor voltage

and Vo is the output voltage.

"

Figure 6.11 wavefo rms for Boost Convene r

Iu scont fuuoos l\lod e

If the inductor current falls to zero before (he next cycle comes, the operation ot thc OOOSI

convene r is called Discontinuous Mode. Figure 6. 12 shows waveforms of the b oost

converter for discontinuous mode of opera tion
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V,lfl

Figure 6.12 Voltage Current Waveforms for Discontinuous Mode Operation

An extensive discussion of continuous and discont inuous mode of operations is presented

inAppcndixC[71-731.

6.6.2 1>l'Sl~n of a Roust Con vert er

Figure 6.13 shows the schematic of the proposed Boost converter in this research work.

The parameter values have been chosen based on the different equations of 000.<;(

converter (Append ix D). A microcontroller based control system restra ins the switching

of the logic level MOSFET, which has VGs= 5 volt. Microcontroller supplies controlled

signals with 20mA current to turn ON and OFF the MOSFET. Tab le 6-1 shows the

required components 10 implement the converter . Different converters with comparative ly

higher rat ing are available in the market. None of them are compatible with this work. If a

customize d one is ordered. that would take higher cost. So, the converter has been

constructed fur this work .



Figure 6.13 Schematic of Boost Converter

Table 6- 1Components for building the boost converter

Component Valuefl) escriplinn Qua ntity

CI,C2.C3.C4.C5,C6 Electrolytic Capacitor 0.01 I-I F 6

C7,C I2 Electrolytic Capacito r 250 IJF 2

C8 Electrolytic Capacito r 470 IJF I

C9,C II Electro lytic Capac itor 6ROIJF 2

Ll Inductor l50IJ H I

L2 InduclOr 260 IJH I

LJ ,LA Inductor 3ROIJH 2

QI MOSFET JRF630 I

Dl Diode ~mRR 15 I
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Figure 6.14 shows the Boost conver ter buill in the lab.

Figure 6.14 Proposed Boost Converter

Figure 6.15 shows the input voltage vs ou tput voltage curve for the designed conve rter.

Figure 6.15 Input vs Output vonage of the Boost Converter
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Figure 6.16 Input vs Output Current of the Boost Con verter

Figure 6.16 shows the input current vs output current curve for the designed converter

(Appendix D). Figure 6.17 shows the input volta ge vs output power curve for the

designed converte r [60] .
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Figure 6. 17 Input Voltage vs Out put Power of the Converter
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A co nverter has vario us sources of loss, such as induct or resistance and MO SFET

sw itc hing. Th e diode has a forwa rd biased voltage dro p. There are also losses in the

capac itors used in the co nverter. Because o f these losses, co nverter efficie ncy is red uced.

The designed co nver ter has an efficie ncy of 65%. For de-de co nverters, swi tching loss is

a major so urce of loss.

6.7 Maximum Power Point Tracking Algorithm (MPPT)

In the MCECS . MPPT is implemented to achieve an optimized power output at variable

turbin e spee ds. MPPT works on the de-de conve rter to match the turb ine output with the

batt ery chargi ng. Basicall y MPPT concep t or igina ted fro m algorithm used in PV ce lls

sys te m. MPP T see ks to deliver maximum power to the load. There are seve ra l algo rithms

used to implem ent MPPT . These are:

• Per turb at ion and Observation Met hod

• Increment al Co nductance Method

• Co nstant Volt age method

Some resea rch uses the sign of the difference power ~P. Dependin g on the sig n of ~P, the

dut y ratio of the PWM signal varies . PWM variatio n rate is es tablished by CPU regis ter

of the microcont roller [74J. Sometimes. a dummy load is used if the supp ly vo ltage is

greater than the rat ed value [75]. Severa l studies have impl emented MP PT with a

capaci to r in se ries with the battery thus achievi ng higher effic iency [76] .
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6.8 Proposed MPPT Algorithm

The Perturbation and Observation method is the most commonly used MPPT algorithm.

In most cases, voltage, current , or power is perturbed in an iterative cycle . When a steady

state is reached, the system operating point oscillates around the MP P. The oscillation

ampli tude depends on the step size of perturbation. causing some power loss . For very

fast varyi ng systems, this a lgorithm fails to track the MPP. In th is work, the Perturbation

and Ob servat ion method has been applied to opt imize the TSR of the turbin e. Th e Cp-A.

curve o f the flume tank test ing has bee n d iscussed in Chapt er 4. Th e MPPT co ntro ller has

been aimed to opera te the turbine at 0.7 TSR, so it will ex hibit the maximum e fficie ncy .

T he instan taneous TS R is perturbed in every cycle to reach the steady sta te. Once the

steady state is reached, it keeps oscillating around that optimum TS R.

Cp:lmum TS~

Figur e 6. 18 Pertu rbat ion and Ob ser vation Meth od Co ntro l Ac tion

At the optimum TSR , turbin e efficie ncy is high est (Figure 6. 18). So, at the maximum

point

dCp/dA. =O
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If an instantaneous TSR is larger than the optimum one, then there is positive action to

return back to the optimum TSR. Accordingly, if an instantaneous TSR is lesser than the

optimum TSR, then negative action to go forward to the optimum TSR.

Figure 6.19 shows the flow chart of the algorithm. Input current and voltage, along with

output current and voltage, are collected by the ADC. A speed sensor encodes the angular

speed of the shaft. Data are logged in the computer and displayed in the HyperTerminal

of the computer, as well as in a LCD display attached with the control unit. Angular speed

of the generator shaft is taken iteratively, and it is compared with the optimum speed of

the shaft at which the turbine gives its maximum efficiency. If the shaft speed is higher

than the optimum one, then the width of the PWM is increased to manage the load, in

order to slow down the angular speed at the optimum speed. Again, if the shaft speed is

lower than the optimum speed, width of the PWM is decreased to speed it up to the

optimum speed. If the shaft remains at the optimum speed, then the same width of PWM

is supplied to the switch. PWM remains within a predefined maximum and minimum

range.
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NO
If D) D~ .<

e-c-o..

Return

Figure 6. 19 Flow Chart of MPPT Algorithm

The code has been written in programming language C. CCS C compiler has been used

that is not Al"S I C compatible. The programmi ng code has been given in Appendix 0

Serial port was used to log the data and to debug.

105



6.8.1 Hardw a re Set up

The system operate s around lhe opnmum TSR because of the ~IPPT algorithm Oetpcr of

the converter is fed to the battery until il is charged 10 ils rated value. Figure:6.20 shows

lhe laboratory selup of the energy conversjon system,

Figure:6.20 Hardware Setup

To implemenl the conrrot strategy, low power oort"umption CMOS rrucroconuoner

PIC I6f&77 has been used. It l\ a 16 bit. four channel rnlcroconnoller, having 39,2 lH l

maximum frequency when it is driven by 20 MHl clock. It has two PWM outputs those

arc full)' controllable. One o f them has been used to supply control signal to the MOSFET

of the boost converter, Port D has been used for display data on the LCD screen, A

Toshioo Satellite Pro with Intel (R) Core (Tf\.I) 2 Duo CPU of 2 Gil l has been used to

program, and load the program 10 the microco ntrollcr, Omcrving the instantaneo us
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angula r speed of Inc roto r shaft is the most importan t factor in this case. In order to

measure the angula r speed of the rotor shaft , a high reso lution encoder with 256

cycles/ rev has been used. The encode r is from Grayhilf. The sensors and sig nal

cond itione r of the system are connected to the microco ntroljer N O conveners.

6.8,2 R('Sults

The ~IPPT algor ithm has been developed to extract maximum power from the turbine.

The turbine is run in the optimum TS R based on PWM signal supplied to the co nvene r.

For experimental purposes, a generato r shaft was run at an optimum speed of 8 rad/sec.

Figure 6.21 shows the slab ilization of speed at 8 rad/sec. Figure 6.22 shows the PWM

genera ted through this mode of ope rat ion. PWM with a higher width is supplied to the

switch, to reduce the angular speed to the optimu m speed.

Figure 6.21 Angular Speed falls to 8rad/sec
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,nnn
Figure 6.22 PWM to red uce Angular Speed

Once the optimum a ngular speed is achieved, the width of the PWM keeps oscillating

aro und the steady state level. During too PWM hus an amplitud e o f5 volts. In Figure 6.19,

eac h square along y axis is 2 volts. Figure 6.23 shows the PWM signal w idth oscilla t ion

around 930 with l ime when angu lar speed is at the opti mum speed. Y axis is the value of

PWM widt h defined in the program code (Append ix E).

/
I

Figure 6.23 PWM Signal Variat ion at Opt imum Speed
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If the generator runs at a lower speed compared to the optimum speed, then it is speed up

by reducing the load. A smaller PWM is supplied to the converter. Figure 6.24 shows a

stabilization of speed at 8 radfscc for lower speed.

1': .---- ~__'---/
l- (
r: /

'2,/'

Figure 6.24 Angular Speed Siabilizes arouoolhe Opt imum Speed

Figure 6.25 shows the PW~( signal generated in this mode ofoperacion .

,~

Figure 6.25 PWM to increase Angular Speed

Ill'!



6.9 Volta ge Se nso r

A voltage senso r ts nolhing bul a voltage divider cscue. A PIC microcontrcljer needs a

supp ly vcnege of 5 VOllsin order 10 activa te. A voltage divider is used to sense \"Oliage

higher than 5 volts . The resisto r value of the vo hage d ivider should be chosen in such a

way that il causes a lo.....er loss to the system, and isolates the voltage source from lhe PIC

microcontroller. Figure 6.26 l>ho.....-s a voltage div ider circuit.

Figure 6.26 Voltage Divider C ircuil

A larger value of R~ cofl1>iUCd 10 Rj gives a large r oUlpul voltage . If lhe microconrrcljer

input resistance: is Ie.... than R2. it would dimin ish the outpu t voltage . demanding more

curren t and po ..... er from tbe source. BUI, a microccnuuller has an input resistance in rte

mega ohm range, which is parallel 10 R:. R: i.. smal l enough to lessen the possibi lity of

erro r. A ca libration facto r has been used 10 read the voltage. R I is 3kO and R2 is l kel .

The output voltage for the fo llo ..... ing voltage di vider in Figure 6.26 is:

(6.43)
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6.10 Curre nt Sen-o r

Cunenr sensors an: used 10 sense the flow of lhe current Ihrough a wire . It can sense

either AC or DC. Some of tbese sense currem by meawring lhe drop across a rni.<otoron

lhe current path. In this work, a current senso r Allegro ACS713 ~ been used. This

sensor senses DC rurrenta, and consists of a precise. lew-offse t, linear Hall sensor circuit

with a copper conduction path. Figure 6.27 shows lhe diagram of the curre nt sensor.

Figure 6.27 Curren! Sensor

Ccrrenr flows through a copper conduction path from pin I and 2 10 pin 3 and 4. where it

senses lhe current. When current flow increases. the dev ice has a posi tive slope . An

internal resistor causes a very low power loss, hav ing a value of 1.2 nul II can handle

five limes the over curre nt conditions because of the thickne ss of the copper conducto r.

The ACS713 is provided in a sma ll, surface mount sOles package. Conducting paths are

electrica lly isolated from tbe sensing IC (77) .
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6.11 Energy Storage

In genera l, energy can be stored in many ways, such as compressed air, battery,

tlywheels, adva nced electroc hemical capac itors etc. In this work , a battery has been

chose n to store energy . It is a very convenient storage device, making the system more

robust. The battery is co nnected to the POD s, hence the POD s are se lf powered by the

local current.

There are many types of batter ies avai lable on the market. Different batteries are suitable

for different applications.

Lithium Ion batteries have a high power density but light weight. They do not have any

memor y effec t. The charge time is about three hours and charge efficiency is 97 to 99

percent. In some cases, battery tempera ture rises 5° C when fully char ged . For this reason

it is bett er not to charge fully.

A Nickel Cadmium (Ni-Cd) type batte ry has very low internal resistance with high rate

charge and tlat dischar ge characterist ics. Thi s battery can handle deep char ging. It has

almost 1000 charge or discharge cycles with proper maintenance . Furth ermore , it can

tolerat e high temperatur e ranges up to 70° C. Coulombi c effic iency of a Ni-Cd batter y is

more than 75% in the first charge, but over time it slowly reduc es to 50%. They are

susceptible to the memory effec t, so they need to be fully discharged periodi call y and are

pron e to dama ge by overcharging. It is eco nomically priced per cycle.

A Nicke l- Metal Hybrid contains only mild toxins, so it is environmentally friendl y. It has

30 to 40 percent more capacity compare d to Ni-CD and it is also less pron e to the

memor y effect than Ni-Cd . Deep discharging reduce s its life span, and it generates heat in
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cases o f fast charging and load ing. This battery does self discharge. Temperatur e

degrades its performance, so it should be placed in a coo l locati on at a 40 percent sta te of

charge.

A Lead Acid battery has a lower cos t per watt-hour. Th is battery has a coulombic

effici enc y of 85%, a high specific power, and a low self discharge . But , it has a poor

weight -to-energy ratio and has an environmenta l impact. It takes a long time to charge

and should be stored in a charged co ndition. Both over charging or under charging redu ce

its life span . Its energy efficie ncy is about 70%.

6.12 Conclusion

Th is chapter discusses the steps needed to convert mechanical energy to electrical energy.

A generator with a high output rating at a very low rpm would be suitable for this sys tem.

An MPP T contro ller works to get maxi mum output from the turbin e. The converte r

output is connected with a lead acid battery . The battery supplies the pods, making them

se lf-powe red by the local curr ent.
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Chapter 7

Conclus ion

7.1 Project Overview

The Oce an Network Seafloor Instrument at ion (ON SFI) Project is a mul tidiscipl inary

research and developm ent project that aims to design , fabricate and va lida te a pro of-of-

co ncept seafloor array of wireless marine sensors for use in monit orin g seabed processes.

The sensor pod s, known as Seaforma tics, will be powered by ocean bott om currents and

wi ll be able to co mmunicate with eac h other and to the Intern et through surface master

units to facilit ate o bserva t ion of the ocea n floor from the shore.

T he ONSFI Project has worked with drag type dev ices and hybrid turbines in previous

commissions. In this work, the marine current ene rgy co nversion sys tem (MCE CS) has

been focused on a twisted Savoniu s turbine. Different analyses have been carr ied out to

explore the twisted Savon ius turbine based MCECS thro ughout this research wor k. In this

thesis, a Savon ius rotor has been desig ned with d ifferent twist angles. Exper iment al

testing of the turbine has been perfor med for the 180 degree tw isted Savonius vert ica l

axis turbi ne. One of the main challenges was to des ign the twisted Savon ius.

Co nve ntional Savo nius tur bines ca n be bui lt j ust by employ ing two semi c ircular bucket s.

But , the twisted Savonius has a co mplex helical geo metry . The protot ype of the turbin e

was built by Seac raft Internat ional Limit ed . A twisted Sa vonius rotor emulator has been

imp lemented to test a de-de co nverter , which include s a low cos t Maximum Power poin t
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T racking Algorithm. The MP PT algorithm track s the maxim um powe r point based on the

perturbation and observation method to charge the battery.

7.2 Research Contribution

Th e research co ntr ibutio ns are:

~ The Savoniu s turbin e has been designed with 1800 and quarter pitch twist alon g its

vertical axi s.

~ Simulation s have been done in the CFD so ftware packa ge Flow -3D, to determ ine

the Power coefficient vs TS R curve for the 180 0 twisted Savonius turbine, with

and without over lap ratio .

,. Power coefficient vs TSR characterist ics of the 1800 twisted Savonius turbine

have been explored for different axes of rotation .

r: A quarter pitch twisted Savonius turbine has bee n sim ulated to establish the Power

coefficie nt vs TSRcharacteristic s.

A 1800 twisted Savon ius turbine proto type has been ex perimenta lly tes ted in the

Flume tank , as well as in the wind tunn el. Simulation result s have been verified

with experimental result s.
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,. A low cost , low power microcontroller based MPPT algorithm has been

developed to work on the boost converter, which has been tested with a twisted

Savonius marine current emulator.

7.3 Future Work

This research work develops a marine current energy co nversion system . But, th is to tal

sys tem still needs so me future development. Some sugges ted works are:

,. Additi onal data on locations where the pods would be deplo yed is requir ed.

Depend ing upon the locat ion da ta, changes co uld be made in the design of the

tur bine, as well as the system.

Development is required for mounting the turbine on the ocean 1100r.

, In future, turbines with different twist angles like 45°, 120°, 270° and so on can be

simulated to find out their characteristic curves in order to determine the best one .

r: In future , effects of changing overlap ratio, aspect ratio, and the circular pattern of

blades could be analyzed .

, A better permane nt magnet generator has to be desig ned and developed to be

comp atibl e with this type of turb ine. A PMG should have a better output at a very

low angular speed. Dependin gupon generat or characterislics, the decision must be

made to implement either direc t drive or geared coupling.
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A bette r de-de converter could be built with more efficiency and with better

filters .

A better control system can be developed to track the maximum power point

instantaneously. and maintain the maximum point with the least oscillatio n.

r: Switching loss in the converter sho uld becons idered.

A bette r battery co uld be deve loped that can store the marine curre nt energy very

efficiently.

The whole system should be in a single box other than the turbin e. The box must be water

tight. The PMG would be coup led with the turb ine. and power would be supplied to the

PODs from that box. Fina lly, scaling laws, deve loped in ear lier work, could be used to

sca le the power generated by the turbi ne to grid levels. These pro totypes cou ld be

deployed in currents, such as the Labrador currents, or in major rivers .
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Appendix A

Power Coefficient vs Tip Speed ratio of the Turbine at Flume tank

clear all;

0=0 .1524;
H=0.4572 ;
R=0 /2;
A=H*O;
F=(2 *pi)/60;
const=0 .5* 1000*A;

hold on
tlum e40=l oad ('0.4.IXI');
tlum ctor40=tlum c40(:,13 J);
tlum erpm 40=flum e40(:,[8) ;
flumespf40=load ('sp0.4.IXI');
tlumcsp40=tlumcsp f40 (:,ll ]);
s l=sp40."3;
cp40=P40.l(co nst.*s I);
Cp40= smooth(cp40);
aa 1=smooth (tsr40,Cp40,O. 1.rloess'):
[bb,ind]=so rt(tsr40) ;
plot(bb,Cp4 0(ind),'w.',bb,aa 1(ind),'k.-')

tlume 50=Ioad ('0.5 .txt');
tlu metor50=flume50(:,13]);
flumerp rn5O=flume50 (:.18) ;
flumespf50=load('spO.5.lxt');
tlumesp50=tl umespf50 (:.11J);
s2=sp50."3;
cp50=P50.l (co nst. *s2);
Cp50= smooth (cp50 );
cc 1=smoo th(tsr50,Cp50,O. l .rl oess'):
Idd.indje sorttt srSfl):
pIOI(dd ,Cp50(ind),'w.',dd,cc 1(ind),' k.-')

tlurne60=10adCO.6.txt');
tlurnetor60 =flum e60 (:,[3) ;
flurnerpm60 =flurne60(:,[8]);
tlum espf60 =loadCspO.6.txl');
tlumesp60= tlumespf60 (:,[1J);
s3=sp60."3 ;
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ep60 =P60.l(eon st. *s3);
Cp60=sm ooth (ep60 );
ee I=smooth(tsr60 ,Cp60,O.1.rl oess ') ;
lff ,ind]=sort (tsr60 );
plot(ff,Cp60(ind ),'w. ',ff ,eel (ind ),'k.-')

f1l1me70 =load('O.7.txt ') ;
f1l1metor70=f1l1me70 (:,[3] );
f1l1merpm70=f1l1me70 (: ,[SJ);
f1l1mespf70=load ('spO.7 .txt ') ;
f1l1mesp70 =f1l1mesp f70 (:,[ I ));
s4=s p70."3;
ep70= P70 .l(eo nst. *s4);
Cp 70= sm ooth (ep 70 );
gg I=s moo th(tsr70, Cp70,O. I,'rloess') ;
[hh ,ind] =sort (tsr70 ) ;
plot (hh ,Cp70(ind ),'w .',hh,gg I(ind),' k.-')

f1l1meSO=load('O.S.txt' );
f1l1melorSO=f1l1meSO(:, (3 ));
f1l1merpm SO=f1l1meSO(:,[SJ);
f1l1mesp fSO=load ('spO.S.txt ');
f1l1mesp SO=f1l1mespfSO(:,[ 1J);
s5=s pSO."3;
epSO=PSO.l(eo nst. *s5);
Cp SO=sm oolh (epSO);
ii I=smooth(tsr SO,CpSO,O.l .r loess');
\jj ,indj=sort (tsrSO);
pIOI(ij,Cp SO(ind ),'w.',jj ,iil (ind ),'k.-')

f1l1me90 =load('O.9 .txl' );
f1l1metor90 =f1l1me90(:,[3 I);
f1l1merpm90 =f1l1me90 (:,[SJ);
f1l1mespf90 =load('spO.9.lxt ') ;
f1l1mes p90= tl llmes pf90(:, [ I J);
s6=sp90."3;
ep90=P90.l (eonst. *s6) ;
Cp 90= smoolh(ep90 );
kk I=s mooth(tsr90,Cp90,O.1,'rloess') ;
[11,ind] =sort(tsr90 ) ;
pIOI(II,Cp90 (ind),'w.',Il,kkl (ind ),'k.-')

flllme9S =load ('O.9S.t xt' );
f1l1melor9S=f1l1me9S(:,[3)) ;
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flumerpm98=flume98(:,[8]);
flumespf98=load('spO.98.txt');
flumesp98=flumespf98(:,[I]) ;
s7=sp98."3;
cp98=P98./(const.*s7);
Cp98=smooth(cp98);
mm I=smooth(tsr98,Cp98,0.1,'rloess');
[nn,ind]=sort(tsr98);
plot(nn,Cp98(ind),'w.',nn,mml (ind),'k.-')

set(gca,'XLim',[O 1.41)
set(gca,'YLim',[O0.2])
xlabel('Tip Speed Ratio (TSR)')
ylabeh 'Co-efficiern of'Power Cp')
titlef'Cp-Iambda curve of the turbine')
grid

sp=[flumesp40;flumesp50;flumesp60;flumesp70;flumesp80;flumesp90;flumesp98];
rpm=[tlumerpm40;flumerpm50 ;tlumerpm60;flumerpm70;flumerpm80;flumerpm90;tlum
erpm98];
torque=[flumetor40;tlumetor50;flumetor60;flumetor70;tlumetor80;tlumetor90;tlumetor9
8];

figure
yy I=smooth(sp,rpm,O.1,'rloess');
[xx,ind]=sort(sp);
plot(xx,sp(ind),'w.',xx,yyl (ind),'r.-')
set(gca,'XLim',[0.4 11)
set(gca,'YLim',[O 180])
xlabel('Current Speed in m/s')
ylabeICRPMof the Turbine')
titlef'Current Speed vs RPM curve of the Turbine')
grid

figure
bbl= smooth(sp,torque,O.I ,'rloess');
[aa,ind]=sort(sp);
plot(aa,sp(ind),'w.',aa,bbl (ind),'r.-')
set(gca,'XLim',[0.4 1])
set(gca,'YLim',[OO.3])
grid
xlabclr'Currcnt Speed in m/s')
ylabel('Torque in N-m')
titletT orque vsCurrent Speed curve of the turbine')
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figure
Powerthr=0.5* 1000*A*0. 1*(sp.1\3);
jj l= smooth (sp,Power,O.1,'rloess') ;
[ii,indl=sort(s p);
plot (ii,Power (ind),'w.',ii,jj I (ind),' r.-')
hold on
III=smooth (sp ,Powerthr ,O.1.rl oess'):
[kk,indl =sort (sp);
plot(kk, Powerthr(ind),'w.',kk,1l1(ind) ,'b+-')
xlabelr'Current Speed in m/s')
ylabelf'Power of Turbi ne in Watt s')
titlet'Output powe r of turbine vs current speed ')
gr id

%Power Co effic ient vs TSR curve

co nst=0 .5* 1000*A;
s=sp .1\3;
Cp=smoo th(cp );
figure
mm I=smooth(tsr,Cp,O.1,'rloess');
[nn,indl=sort(tsr);
plot (nn,Cp (ind ),'w.',nn,mm I(ind),'k .-')
set(gca,'XLim',[O 104))
set(gca,'YLim',[O . 16))
xlabel(Tip Speed Rat io (TSR )')
ylabel t 'Co-efficient of Power Cp')
title f'Cp-lambda curve of the turbine')
grid

Maximum Power , RPM and Current Speed

clear all;

flume40= load('OA.txt ');
flumepower40=data40(:,14]);
flumerpm 40=dat a40 (:,[8));

flume45=loadCOA5.txt');
flu mepower45=data45( :,[4 J);
flumerprn45=d ata45 (:,[8)) ;
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f1ume50= load('O.5.txt ');
f1umepower50=data50 (:,[4]) ;
f1umerpm50 =data50 (:,[8]);

f1ume55=load ('O.55.txt ');
f1umepower55=data55(: ,[4J);
f1umerpm55 =data55 (:,[8]) ;

f1ume60=load('O.6.txt');
f1umepower6 0=data60(:,[4) ;
f1umerpm60 =data60(:,[8) ;

tlum e65=l oad ('O.65 .txt ');
f1umepower65=d ata65 (:,[4]) ;
f1umerpm65 =data65 (:,[8) ;

f1ume70=load('O.7.txt');
f1umepow er70 =data70 (:,[4));
f1umcrpm70=data70(:,[8J);

f1umc75 =load('O.75.txt');
f1umepower75 =data75 (:,[4]) ;
f1umerpm75 =data75( :,[8)) ;

f1ume80=lo ad('O.8.txt');
tlumepower80 =data80(:,[4]) ;
f1umerpm 80=data80(:,[8);

f1ume85=load ('O.85.txt' );
f1umepower 85=data85 (:,[4] );
f1umerpm85 =data 85(:,[8);

f1ume90=load ('O.9.txt');
f1umepow er90=data90(:,14));
f1umerpm 90=d ata90 (:,[8]);

flume95=load('O.95 .txt ');
flumepower95 =data 95(:,[4) ;
flumerpm 95=dat a95(:,[8) ;

flume98=load('O.98.txt' );
flumepower98=data98 (:,14 J);
tlum erpm98 =d ata98(:,[8) ;



max40 =m ax (fIumepower40 );
max45 =m ax (fIumepow er45);
max50 =m ax(fIumepow er5 0);
max55=max(fIum ep ow er55 );
max60=max (fIumepow er60 );
max65=max(fIumepow er65);
ma x70 =max (fIum ep ower70 );
max75=ma x(fIumepow er75 ) ;
ma x80=max(fIum epow er 80) ;
max85 =ma x(fIum epow er 85) ;
ma x90=max(fIum epo wer90 ) ;
max 95 =max (fIumepower95 );
max98 =max (fIum epow er9 8);

maxpower=[m ax40 max45 max50 max55 ma x60 max65 max70 max75 max80 max85
max 90 max95 max98] ;
currentspeed =[O,4 0,45 0.5 0.5 5 0 .6 0 .650.70.750.80.850.90.950.98] ;
figure ;
plot (curr ent speed ,maxpow er );
xlab el t'Water Speed inmls');
ylabelt'Maximum Pow er in watt s');
tit le('Maximum Pow er vs wat er speed curve') ;
grid

maxrpm40=max (fIum erpm40);
maxrpm45=m ax(flum erpm 45);
maxrpm50=max(tlumerpm50);
ma xrpm55=m ax(flum erpm 55 );
maxrpm60=m ax (flum erpm 60 );
maxrpm65=max(flumerpm65 );
maxrpm70=m ax (fIumerpm70);
ma xrpm75=ma x(tlumerpm75);
maxrpm80=m ax (fIum erpm 80);
maxrpm 85=ma x(flumerpm85);
ma xrpm 90=max(fIum erpm 90 );
maxrpm95=max(fIumerpm95);
ma xrpm 98=m ax (fIumerpm98);

maxrpm=[maxrpm40 maxrpm 45 maxrprn50 maxrprn55 maxrpm60 maxrpm65 maxrpm70 .
maxrpm75 ma xrpm80 maxrpm 85 maxrpm 90 maxrpm 95 max rpm9 8] ;
figur e;
p lot (ma xrpm ,maxpow er );
xlabelt'Maximum RPM o f turb ine') ;
ylabe l('Maxi mum Power in wa tts ');
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titler'Maximum RPM vs Maximum Power curve');
grid

Power Coefficien t vs Tips Speed ratio of the Turbine at Wind Tunne l

clear all;

0=0 .1524;
H=0.4572;
R=0/ 2;
A=H*O;
F=(2*pi)/60;
fac=O.35
con=0.5*I *A;

wind1Oeload t'winddata1Oms.txt');
windtorI0 =windI0 (:,[3]);
windrpm1O=wind10(:,[8]);
windspfl O=load(' 1Otestspeed.txt');
windsp IO=windspfl O(:,[1I);
windw1O=(F.*windrpmI O)+fac;
windtsrlO=(windwIO*0 )./(2.*windspI 0);
windPIO=wind10(:,[4]) ;

s lO=windsp lO."3;
cp1O=windP IO./(con.*s10);
Cp lO=smooth(cp10);
figure
aa1=smooth(windtsr1O,CpI0,0. I,'rloess');
[bb,indJ=sort(windtsr10);
plotrbb.Cp IO(ind),'w.',bb,aa I(ind), 'k.-')
xlabel(T ip Speed Ratio (TSR)')
ylabelt'Co-efficient of Power Cp')
title('Cp-lambda curve of the turbine at 10m/s')
grid

windI3=loadCwinddata 13ms.txt');
windtor I3=wind I3(:,[3]);
windrpmI 3=windI 3(:,[8]);
windspfl 3=load('13testspeed.txt');
windspI 3=windspfl 3(:,[I ]);
windw I3=(F.*windrpm13)+fac;
windtsrI 3=(windw I3*0)./(2. *windsp 13);
windPI 3=windI 3(:,[4]);
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s I3=windsp I3."3;
cp I3=windP I3./(con.*s I3);
Cp13=smooth(cp13);
figure
cc1=smooth(windtsr 1O,Cp10,0.1,'rloess');
[dd,indJ=sort(windtsrIO);
plot(dd,Cp1O(ind),'w.',dd,cc1(ind),'k.-')
xlabel('Tip Speed Ratio (TSR)')
ylabelf'Co-efficient of Power Cp')
titlet'Cp-larnbda curve of the turbine at 13m/s')
grid
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Ap pe ndix B

Flo w.)J> Sim ulations

Flow-3D version 9.4. 1 has been used to do till: simu lations in this resea rch work.

Figure B I Flow·3D vers ion 9.4. 1

Main M enu

The main menu is displayed at the very beginning of start ing of Flow -Hi. Figure B 2

shows the Main Menu.

File Diagnostcs Preference lIli llties Simulate MatNials Help

Figure B 2 Ma in Me nu
Ftle vtenu

The file menu co ntains the options such as new work space, new simulation, save etc.

Figure B 3 shows File Menu.

Figure B 3 File Menu
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To create a simulation a workspace has to be created, using 'New workspace' available in

the file menu (Figure B 4). The name of the workspace and the directory for the following

workspace can be defined.

Figure B 4 New Workspace

The workspace can be saved using the option 'Save Workspace As'. Different simu lation

files can remain under the same workspace, having different names or the files might be

in different directory. 'Open Workspace' opens the Workspace which is already created.

The Workspace might be in different locations, so the directory has 10 be mentioned to

open a certain Workspace. New simulation can be introduced using 'add new simulation' .

Flow-3D simulation input file is in ' .prepin' format. A new .prepin file is generated when

'add new simulation' is used. Figure B 5 shows the dialog 00:0; for New Simulation.
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Figure B 5 New Simulation

If a simulation ex.ists in the workspace, simulation input .prepin file can be opened by

'A dd existing simu lation' . There are also some ot her optio ns, such as Import Existing

S imulation, Add Simulation Copy, and Add Example. 'Save Simulatio n' saves the current

worki ng simu lation in the curre nt d irectory. 'Save Simulation As' saves the simu latio n

under a d ifferent name of input file and save in a se lected d irectory . 'E dit S imulation'

ope ns the input filc in a te xt ed itor to modify. 'Rename' ca n be used to define a diffe re nt

name of the input file. In the structure tree, there might be either one Workspace or more

than one . 'C lose Workspace ' closes a workspace. 'Remove Simulation' removes a

simulation from the workspace but does not delete the simulat ion from the directory.

'Exit'closesF!nw-) D,

Dia~nosl ks M enu

The Diagnostics menu is used to view diag nostics ti les generated by Flow-3D in Figure B

6. This is very useful for troubleshooting.
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File Dlagnosbcs Preference

r''"- 0'

.;.. en

Repor1

PreprocessorErrors

PreprocessorSummary

SO"'erErrors

Oolve,Mesuges

Solver Summ ary

Simulate Malerials Help

Model Selup

Figure 8 6 Diagnostics

The number of computational cells used in a particu lar direct ion, the total number of celts

in the m ode l (includ ing boundary ce lls), open areas on boundaries , amount of fluid

initially in the mode l. etc. can be determined from preprocesso r report . It has some other

source of information such as RCJXlrt, Preprocessor Errors, Preprocessor Summary,

Solver Errors. Solver Messages, and Solver Summa ry. At the beginning of the simulation ,

So lver Messages gives some imporram information like the memory requirement for the

simulation results. Figure B 7 shows the Solver report for one of the simulations of the

twisted Savonius rotor. Simulation generates an outpu t file of 8GB. It also shows the

starting time of the simulation and sorre other information , as wel l
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program c a c Le : ,. L Oll - 3 D
p l:'og r am v e r s i o n: b Vd r 3 d : v e r S 1 0n 9."\ . 1 vl n32-1 :t l 20 1 0
v er s lonld: d o uble
DOU B L E p recls1o n v e l:'slon

p r ocessldenC11: 1caC l.Onnumber 1:o rC h lS)ob-

.) o b n ame : e l 1:d
problem dat;e: 09/ 10/20 10
problem ~ 1me: 17 :"'19:0400

Figure B 7 Solver Report

'So lver Summary' is used to view detailed information about the simulation, such as the

number of voids in the simulation at a specified time, the computed stability criteria, at

what cells the criteria are a minimum, etc. which are important to study simulation

efficiency.

Preference Menu

The options under the preference menu specify certain preferences for running FLOW-

3D. It has the options Sub-tab Color, Default Workspace Location, Runtime Defaults,

Add Existing Simulation starts in Workspace, Auto Save Before Simulating, and

Switching Between Simulations (Figure B 8).
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_9__.. 9wnuI ... "o_a--"""9 _ ................

Figure B SPreference ~lenu

In lhe simulations of the twisted Savenius turbine the double precision version has been

used, which is done: from Runtime Defaults (Figure B 9).

~... " Iil!! ::1

t«J... b.. ofll<~"..Of·I...._Ubl. :±I
r Run "n~ CC<l.r u'''~_n. ''' \I..

Figure B 9 Runtime Ikfaults

Dilities :\lt'nu

The utilities menu i~ used to eccev.. certain progtalm like Unco"¥CSsed and Auto update

Irrsoots. Figure B 10 shows the utilities menu.

Imlools

Figure B 10 Utilities Menu
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Simulate Men u

Either the preprocessor or the solver for Flow-3D can be launched in the Simulate menu.

Figure B II shows different options of the Simulate menu.

Simula te Materials Help

Preprocess Simulation

Simula te Workspace

r",rnndl mulatrun

r I, r'111JI.llonUq

cm-s.cm-s
cm-s.cm-s

cu -s.cm-w

Sel Max Simultaneous Simul ations (1) ...

Figure B II Simulate Menu

Preprocess Simulation launches the Flow-3D preprocessor for a selected simulation. Run

Simulation starts the simulation of the selected simulation tile, launching Flow-3D solver.

If a simulation runs, this option remains inactive and 'Terminate Simulation' is activated

(Figure B II ). Simulate Workspace is used to launch the Flow-3D solver for all

simulation input tiles in a certain Workspace. Simulate Portfolio is used to launch the

Flow-3D solver for all simulation tiles in all Workspaces. Multiple simulations can be run

either at the same time or one after another in a single session of Flow-3D, and then, they

are added in a queue drop down box in the Navigator tab. Thus, many simulations can

exist in the list that can be cleared by 'Clear Simulation List'. In this case, the running

simulation remains undisturbed. The maximum number of simultaneous simulations for
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users with multi-processor computers and license can be set by using 'Set Mall

Simu ltancous Simulations'.

If Navigator is pressed, the following window (Figure B 12) appears. The portfolio shows

the tree in the left side of the window. It shows that there are two w orkspace» and in total

four simulations. Every simulation has its own "pre pin' file.

_.".0"',--",_-"._",__--,..,----_.._-,...,..,-

Figure B 12 Navigator

The Portfolio summary gives information about total w orkspace, and simulation in the

port folio tree, Figure B 12 shows the Workspace directory, C:\D_Drive\Flow-3D

Projeets\emon\emon.Aow-3D_Workspace, and the simulat ion directory as C:\Documents

and Settings\lmtiaj\Desktop\.~ave\prepin.120 12044lastlorque .
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Mod el Set up

To create a simulation, d ilfcre nt parameters are setup under the tab Model Setup .

Modificat ion on the existing simulations can also be do ne. It has eight sub-tabs.

C eneral

The Genera l tab under Mode l Setup is shown in Figure Ii U lor the simulation of the

twisted Savonius

,. __.-_- ...
- .. _ ... I -

... - I - I .. 1- 1- 1

L d · -.-
~;=-

I • •

-1-..• 3__ ~-
r ...._ __.... _

Figure B 13 General Tab

The real world time 10 observe the behavio r of the turbine, is assigne d in 'General . The

simulation of the twisted Savomus is done for 20 seconds . No sharp interface has been

chosen from Interface track ing, Incompressible fluid has been assume d for all the

simulations. The turbine is supposed to be deployed under the Atlantic Ocean, so, one

tlu id has been considered. In the mentor options 'Offer sugges tions' has been chosen. SI

unit system has been taken for all the simulatio ns. Double precision version has been

activated
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m Gravity , Moving

d .

Physics

Many opt ions are show n in the Physics tab (Figure B 14). Among the

and defor ming objects, and Viscosity and turbulence has been activate

._-
" -- I- I - I- - _.

I 1- --1 - I - I - I, ~ -- II
, .__.

Ir~
-~-'-~E .- Ie

r"~ Ir:: -- If£:
I ._- II .. -_. Ir':
I -- 1[- -- - Ii ;
I ; - II -; .. 11-:
II -- IL . II-.
[-; -- In -- I

FigureB 14 Physics Tab

Gnlv it,

The turbine is placed a long z direction. In the gravity vector -9.RI mls2 has been chosen

for the gravity component in z direction (Figure B 15).
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Gravity vector

Gravitycomponent i n the X. di rectio n~

GraVityCOmponent in theY-dlrec ti on~

GraVityCOmponentintheZ.directio n~

~~

Fig ure B 15 Gravity Vector

Moving lind Deforming Object s

Th e Movin g objec t model has been activa ted using this opti on. Impli cit fluid couplin g has

been used (Figure B 16).



Figure B 16 Mo ving and Deforming Objects

Viscosit }' and Turbulence

Viscous flow has been considered, As this work deals with under water environment,

flow has been co nsidered as turbule nt. No slip or part ial slip has been co nsidered for wall

shear boundary co nd itions. Th is is a rcno rmalized gro up mode l a nd maximum turbulent

milling length is dynamic ally compu ted. Figure B 17 shows the boll for viscos ity and

turbule nce for the turbine simulation.
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Figure B 17 Visco sity and T urbulence

Fluid s

'Fluid s' basically deals with the fluid pro perties that can be used for the simulation. In

th is work onl y one fluid has been used.
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• ElastlcProperties

.Fluid2
RBfBrBnce Temperalure~

• Surface Tension
• Phase Change
• DilTusion

Figure B 18 Fluids

,'\.Ieshin g and Deomctry

The com putational mesh can be created or modified in this sub tab. Moreover. specify ing

ce rtain qua ntities and propert ies (therma l conductivities, heat transfer coeffic ients, and

moving object propert ies) can he fixed up in this sub-tab. Figure B 19 shows the window

for the meshing geome try
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Figure B 19 Meshing and Geomet ry

This feature has three primary paris: a set of menu and tool bars, a tree structure, and an

interactive Openrj t -based graphical window.

Under the Meshing and Geometry there is one menu bar (Figure B 20).

Ugh! Tools View lIlesh Subcomponent

Figure B 20 Meshing and Geome try Menu bar

Meshing & Geomet ry has a tool bar shown in Figure B 2 1.

Figure B 21 Tool Bar
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The Meshing and Geometry sub-tab has a tree structure on the left side, providing a

considera ble amount of information about the compone nts and the mesh blocks. Figure B

22 shows the upper portion of the tree structur e.

- Geometry
• Global

- Componentl _ ~;;;;;;==;;==Namll I
frUtenal Name I
ccm ccnent rsce IStanoar" ....:..J

_ SUbeomponentl :ClDocuments andS lln'n"sJlm t'ai!De
~:~~etry File.. r'~.....'- _
SUbtOmponent1'ype~

.1OI11\111l11'
• 'rransrcrmauons
• limiters

lIlaSSOensity r---
_lYP~:~ll~~g~~ject l~oHon :=J

· lYP::~~f~~~~~~~~e:~;N~n-1~loJmmq
.. Collis lOnPfOpertleS
• Sol,dPropert,es
• gu rtace prc pemes
• In~ial cc ousons
• Electrit al Propert ,es
• CoreO aslOlodelP fope rlies
• Los t Foam Prope rlies
• Porous Properlies

• Output
Bames
Springs lind Ropes

Figure B 22 Meshing and Geometry Tree Structure (Part I)

The very first optio n of this part is 'g lobal' . This is basica lly the dimension of the turbine

o r component that is import ed in the Flow-3D in the three dimens ional co-ord inate . The

.STL of the twisted Savon ius has been imported in Flow-3D using the option Geomet ry

File under Subco mponent I. Figure B 23 shows the Moving object properties.
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Figure B 23 Moving object properties

The moving objec ts properties include four more tabs. First of them is 'Motion

Constrain'. For the type of constrain , 6 degree of freedom has been used. All the motions

are prescribed motions, except the z rotation is a Coupled motion.

'Initial and prescribed velocit y' and 'Mass Properties' are other tabs. The last one is

'Control Forces and Torques' . It gives the option to impose the torque on the moving

body. A set of control torque was imposed on the turbine using this opt ion. Figure B 24

shows the'Contro l Force'S<lnll Torque
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Figure B 24 Control Forces and Torque

- Mesh-Cartesian
• Block l

• XD irection
• vtnrecnon
• z t nrecuon

-9lock2
• XDirection
• YDirection
• ZDirection

• Render Space

Figure B 25 Meshing and Geometry Tree Structure (Part 2)

Figure B 25 shows rest of the tree in Meshing and Geometry, Two mesh blocks have been

used for the simulation. Under the Mesh- Cartesian, two mesh blocks can be finalized. It

allows defining number of cells, starting point, and ending point of the mesh block in all

the x, y, and z directions, Turb ine has been imported in block 1. Figure B 26 shows the

turbine in the mesh.
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Figure B 26 Turb ine in the mesh

The orientation can be changed to x-y, x-z, or y-z views by using the appropriate icons in

the Toolbar (Figure B 27)

Figure B 27 Graphic Toolbar

If the mouse cursor is positioned on the surface of the object, 'Probe' shows the pos ition

of the cursor in the co-ordinate system (Figure B 28),

Probe : X: 00 Y: .0

Figure B zx Probc

z: 0
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Boundart es

The desired boundary cond ition can be fixed up from the sub tab 'Boundaries' , In Plow-

3D, each boundary of the computat iunal domain has an associated boundary condition,

Figure 8 29 shows the boundary conditions used for the simulations.
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Figure B 29 Boundary Condaions

To assign each of the boundary conditions , every boundary has a different dialog box:in

Flow 3D. Figure B 30 shows one of the dialog boxes for the out flow.
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Figure B 30 Dialo g box 10 fill: up Bounda ry Condition

In iti a l

Fluid and void initial conditions can be corrected fro m ' Initia l' along with the constant

pressures, velocities, and te mperatures. T his sub lab also gives the option to assign u, v,

and w velocity. This tab also deals with some other initial properties such as temperature .

Iluid rotation, ere. For this work only, the v velocity has been assigned, and there is

hydrostatic pressure In z direction only. as shown in the dialog box in Figure 8 3 1.
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Figure B 31 Initia l d ialog box

The frequency of plot output and an imation output can be determined from 'Ou tput'. For

th is work, a time interval of 0.1 second has been used in Figure B 32.
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Figure B 32 Output subtab

Numerics sub lab has been used 10 correct the follow ing op tions in Figure n 33 . For this

simulation first order momentum advect ion was used. Solve momentum and continuity

equation has been activated for the fluid flow solver option. Time step silt: is controlled

by Stabi lity and Con vergence.
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Simu lat lr

Plots for some of the perarreters are found in 'Si mulate ' , Figure B 34 is the simu lalion

re,ult of the t \\, hted Saveniuv rotor irfllOsing 0. 1 N·m torque.
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Figure B 34 Simulate Tab

An alyze

Once the simulation is done, the result is analyzed by the tab 'Analyze' , as shown in

Figure 8 35. In this tab, results can be customized according to the requirement. One-

Dimensiona l plots, display a computed value in the selected direction, along a row of

cells through the mesh. For the two dimensional analysis, different combinat ions can be

chosen to observe the output results. The simulation results can also be analyzed three

dimensionally. There are different subtabs named probe, 10, 20, and 30 as shown in

Figure B 35. The result can be visualized through rendering it. Flow-3D can generate text

output of the simulation too. Text Output generates data in text form in a data window.
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The data can be inspected in the window and can be saved as an ASCII file. Flow 3D also

generates a file named Neutral file, which can be saved as an ASCII file.
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Figure B 35 Analyze Tab

I>ispla}' Tab

The Display tab basically shows the results after rendering in the Analyze tab, The

graphical output generated by the postprocessor is shown in the Canvas Window. The

Control Panel of the display tab helps to change a variety of plo t settings . There is a Menu

bar and Toolbar both for 2D and 3D format display. There is a probe data 00\ in 3D

display. If thc mouse cursor is positioned on the object surface, the Probe Data Hux will

display the position in the coordi nate system. Figure B 36 shows the window tor 3D

display.
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Appendix C

Cent fnuous Mode

In mode I of continuous mode, MOSFET M is in ON state, which means switch is

closed. M is turned ON at t '" 0 and remains on the same state till t = Ion. Diode D is

reverse biase d. Figure C I shows the circuit d iagram lor mode I operat ion.

.[]. l

.

: : ::..•:. : :.. : ::: .=. v~: ,:: ,: >:. ,: .
................. .. .

F=1.•::••:.:.. •.•.•. ••. ••:.
1~ : : : : :: :' : : 1

T·c::.:..: :~... ... . . l.C(C

Figure C I Boo st convener equivalent circuit for Mode I operation

In the equivalent circuit in Figure C I, source current Is and inductor curre nt is same

I,=IL . Capac itor current is lc and load current is iu(t) which is the average output current

I. >In mode I, output voltage and current are due to the capacitor. T he capacitor value is

chose n carefu lly so that rt can supply the output current dur ing the t,.. period. Current

from the supply flows through the inductor; inductor curren t rises linearly, and energy is

stored in the inductor . Inductor current increases linearly from [ 1 10 h in a period oft"", so

Or, Vr = L :':::- =L~ (C. I)
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toncanbeexpressedast':quationC.2.

(C.2)

During O:5t:5t"" period energy stored in the inductor is

(C.3)

In mode 2, ~10SFET is turned OFF at time t=t.,.,. Inductor cannot change current

instantaneously thorough it. Polarity of the inductor voltage changes ( 0 maintain a

constant current. Diode D is on forward biased so conducting the current from the supply.

Current flows through the inductor , diode, C, and load and back to the source . In the

mean time, inductor current keeps falling until next cycle comes. In this mode, inductor

delivers stored energy to charge the capacitor through the diode to a higher voltage than

input voltage V•. Capacitor supplies the current ( 0 the load and charge is drained to the

load during I"., period. Figure C 2 shows the operation of mode 2.

Figure C 2 Boost converter equivalent circuit for Mode I operation

During this period of toff inductor current falls from 12 to II, and voltage across the

inductor is V,- V•.
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V,- V. =L :':':"
'ott

Or. V. -V , = L;;;;
turrcan be expresscd as

,,,,
toll = 1 ~ - t~

(C.3)

(C.4)

In mode I inductor current rises from 11to h and in rnode 2 inductor current falls from 12

to II. So, inductor ripple current is 6.1. For a steady state operation of the convener peak

to peak ripple current of the inductor is the same during t"" and loff period. So,

(C.S)

t"" = DT and t"ff= (I-D) T. Substituting these values into equation C.S.

VsDT = (Va - Vs)(l- D)T : Va(l -D)T - Vs( I-D)T

Simplification gives

Vs : va (\ -0)

Or, Va: Vs/{l- D)

(C.6a)

(C.6b)

Average output voltage of the converter is inverse ly proportio nal to ( I-D). Equation C.6a

and C.6b show the relation between input voltage and average output voltage. But, duty

cycle 0 can never be equal to unity. If 0 is zero that means the outpu t voltage is equal to

the input voltage. As the duty cycle tends to increase to unity output, voltage tends to

increase. So, vo is always greater than the input voltage, which means it always steps up

the voltage. For a los-less convener

V,I, : V. I. = V,I.! (I -D) (C.7)
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Input current to the converter can bc expressed as

Is= Ia/( l -D) rc.s:

Average o utput current is always less than that o f the input current. So, for boost

converter average out put voltage is higher than the input vo ltage and o utput average

current is always less than the input curre nt

Swi tching period T can be expressed as

T= l /f, = too+ totr = ~+ li:J~" =~

Where, fs is the sw itching freq uency. Peak to peak ripple curre nt is

to! = ,'f[~:';l = V.D/f,L

(e.9 )

(e. 1O)

T he magni tude o f inductor ripple curre nt is propo rt ional to supply voltage and dut y ratio

and inversely proportional to switching frequency and inductance. When M is ON ,

capaci to r supp lies the load current . So, the average o utput current is eq ual to the

capaci tance curren t for this period , When the sw itch is OFF , capacitor is charged,

Capacitor charging curre nt falls linearly from Ir-I, to It, I" In steady stale, average

capac itor chargi ng current time prod uct must be eq ual as average capacitor d ischarging

current time prod uct . So, there is also r ipple in the capacitor vo ltage because voltage

across a capaci tor cannot change instant ly, When sw itch is ON then average o utput

current co mes from the capacitor. So, voltage ripple

(e l l)

From equation C.bb

V. = VJ ( I-D) = V,T/ (T-DT )= V,Trr · too
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Or, T-too= V,T/V .

So, t... = (V.- V,l/f,V.

Voltage ripple !'wc = f.!;;~·;Zl~~~ .' =~

(C.12)

(C.I3)

(C.14l

T he ripple voltage is proportional to the average output current and duty ratio and

inversely proportional to switching frequency and capacitance.

Deceutlnuous vtod e

If the inductor current falls to zero before thc next cycle comes, thc operation ofthc boost

converter is said Disco ntinuous Mode.

Assuming input power of the boost converter is equa l to output power.

Average inductor current is

(C . IS)

Input current lis equalro inductor current IL

(C.16)

Cri tica l inductor L.:= RD( I_D)2/ 2f, (C.17)

If the nomina l resistance is greater than critical resistance, boost converter works in

discontinuous mode.

(C. 18)

Where R""",= 2f,L which is a design parameter.
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Average voltage across the inducto r during DT interval, is Vs and during DlT interva l is

ve -vs, So,

VsD - (va . Vs)D2 = 0

Where, D2= (trtool{[

Average inductor current is equal to average input cu rrent.

In d iscontinuous mode operation , open loop voltage convers ion rat io is

(C. 19)

(C.20)

(C.2 1)

(C.22)

From equation C.22, it is proved that in disco ntinuous mode, vo ltage conversio n ratio

increases in a higher rate with duty ratio compared to a continuous mode of operation. At

the beginning of operatio n, a higher current compared to the steady state current flows

befo re it reaches the steady state . Converter is designed in such a way that it can handle

th is. Value of the inductor should be suitable enough thm it does not get satura ted because

of the higher inrush current at the beginning of the ope ration.
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Appendix D

Boost Converter Design:

clear all;

fr=5000;
ripl=O.OOI;
n=0.8;
Vd=0.7;

gain=2.5;
vi=0 :O.5:8.2;
vo=gain.*vi;
D=(vo-vi).Ivo
t=l/f
ton=D.*t
toff=(I -D).*t

R=50 ;
Imin=(R.I(2*f). *D.*(I -D).*(I -D);
1=1.2*lmin ;
c=D/( R.*f*ripl);

vicxe loudt' inputvoltagc.txt'):
voexe loadf 'output voltage.txt');
iiexetoadr'input currenr.txr');
ioexel oadt 'output current.txt '):
piexevi ex.viiex:
poex=voex.*ioex;

io=vo/R;
po=io.*vo;
di=(vi.lI).*D.*t
iavg=io.l( I-D)
imax=iavg+(dil2)
imin=iavg-(dil2)
figure
plot(vi,po,'-*')
hold on
plot(viex,poex,'-r*')
xlabelf'Input VoltagefV)')
ylabelt'Output power(W)')
titlet'Output Power of DC DC Converter ')



grid
figure
plot (vo,io ,'-*')
hold on
plot (voe x,ioe x,'-r*')
xlabel ('O utput Volta ge(V)')
ylabe l('OutputCurrent(A)')
title('Output Voltage and Curre nt')
gr id
figure
plot(vi,vo ,'-*')
hold on
plot (viex,voex,'-r*')
xlabel('lnputVoltage(V)')
ylabe l('Output Vo ltage( V)')
tit le('Output Volta ge vs Input Vo ltage ')
grid
figure
plo t(vo,po,'-*')
hold on
plot (voex,poex,'-r*')
xlabel('Output Voltage(V)')
ylab el('OutputPower(W)')
tit le('OutputPowervsVoltage')
grid
n=poexlpi ex
figur e
plot (viex,n ,'*')
xlabel('Input Voltage(V)')
ylabe l('Output Pow er(W)')
title('Output Power vs Voltage')
grid
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Appendix E

MPPT Algor ithm

1*
-Start the pwrn to the MOSFET at some set value
-rneasure the current Input
-rneasure the voltage of the bus
-calculate the power
-increment the turn on period of the pwrn
-measure the current and bus voltage again
-calculate the new power value
-if the power has dropped, reduce the duty cycle of the pwm
-if the power has increased, increase the duty cycle of the pwm
-repeat the steps
*1
#include <16f877.h>
#DEVICE *= 16 ADC=IO
#use Delay(Clock=20000000)
#use rs232(baud=9600, xrnite Pl _C6, rcv=PI _C7)
#include<lcd.c>

Ili ntializecons tantsa ndvarible '

CONST long d_hill = -10;
CONST byte in_volt = 0, in_amp = I , out_volt = 2, out_amp = 3;
float input_current, outputj current. inputvoltage, output_voltage;
float D=O.5,H= 1.0,V=1.0,Cp=0. J2,tsr=0.7,opt_w,opu or,cap_pow,ins_w;
float input_power=O.O, output_power=O.O,old_output_power=O.O,error;
long u_hill = 10, pwm_max, pwm=500.0,pwm_min;
long boost = 0, boosi.gain:
boolean run;

II Global Variables
boolean meas_done = FALSE, once = TRUE ;
unsigned intS loops =0;
unsigned int32 RPM, sensor_pulses = 0;

#int EXT
EXT_isrOI

if(!meas_done){
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sensor_pulses++; // Sensor pulses into PIN_SO
)

)
#inc TIMER I
TIME RUsrO I

if(loopsH
loops--;
)
else if(loops==OH
meas_do ne=T RUE ;
}

)

//--------------------------------------------------------------------------------
// This function is used to set the duty cycle of the PWM outp ut. It uses the built
// in C compiler function set_pwm l_duty to set the duty cyc le.
1/-------------------------------------------------------------------------------

void start_measurementOI

if (once = TR UEH // only exec utes once until measurement is co mplete.

meas_done=FALS E;
loops = 19; 1/52.5ms * 19 = - IOOOms(997.6ms)

// Th is is the measurement window time

enable_interrupts(l NT_TIMER I );// To create a measurement window
enable_ interrupt s(lNT _EXT); // Generate an interrupt every pulse

1/comming from the sensor
set_timer I (0);
once = FALSE;
)

)
110atinput_chann el(byte chan) I

int i,avg_num = 10;
110at avg = 0;

set_adc3hannel(chan);
de lay_us(lOO);

for (i= I ; k =avg_num ; ++i ) I
avg += read_ad cO;
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delay_u s(I OOO);
}
return (avg/avg_num ) ;

}
II Input voltage,c urre nt and power

void in_p owerOI
input _volt age = inpur channeh in, vo lt)*O.O1955034 ;
inputcurrent =«0.0262 *( inpur channelu njimpjj) -(2 .8332» ;
input_powe r = input_c urre nt * input _volt age;
}

IIOutput voltage, curre nt and powe r
void out_powerO I
output_ voltage = inputchanneltout_volt)*O.O1902125 ;
output_current=«0.0258 *( inputchanneltoutnrnpj j ) -(2.8332» ;
output_po wer = outputcurrent * output_vo ltage;
}
vo id mainO

I

II initiali ze enco der

setup_timer_ l (T I_ INTE RNAL I T I_DIY _ BY_4); l/int errup s ever y 0.05 250 88s
exU ncedge( H_TO _L );
enable_interrupts(GLOBAL) ;

II initi alize hardware

Ilsetpwll1t085 % tostart

II set enable pin on FETdriver
II turn on gree n led

II de lay to get started

II se t upND channels
Il startND clocks

II pwmfrequen cy5kHz
II Confi gur e CCP I as a PWM

II maximum value for PWM based on frequ ency

setup_port_a( ALL_ANA LOG );
setup_adc(a dc_ c1oc k_d iv_32) ;
setup_timer_2( T2_ DIY _ BY_4, 249, I ) ;
sctupccpI(CCP_PWM );
pwrnjnax = 1000 ;
pwrnjnine lO;
pWIl1= 100;
lcdjnitf) ;
01ltpuU1i gh(PIN _C3);
output_high(PIN_CO);
delay_m s(IO);

for (;;) I
startjneasurement t):

II loop foreve r
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if (meas_ done) { II only upd ates when measur ement is complete.
disable_ interrupt s(lNT_EXT);
disable _interrupts(INT _TI MER I);
RPM = (se nso r_pulses * 60)/256;
senso r_pulses =0;
once = T RUE;
}

opt_w= 15;
cap_pow=0.5 * 1000 *H*D*Cp *(V*V*V);
opt_tor=cap_pow/o pt_w;
ins_w = (2*3. 142* RPM)/60 ;

in_p ower O;
outpowert) ;

if (output_voltage < 12){
output_high(PIN_ B I ) ;
outpuUow( PIN_ B2); }

if (o utput_ voltage > 12){
outpuUow(PIN_B I ) ;
output_ high(PIN_B2) ; }

er ror=ins_w-opt_ w;
if (errore-G){

pwm +=u_hill ;
set_pwm I_dut y(pwm );}

if (error< O){
pwm +=d_hill ;
set_pwm I_dut y(pwm) ;
}
pwm =p wm ;

if (pwm>= pw m_ max) pwm=pwm_m ax;
if(pwm<=pwm_l1lin) pwm =pwm_min ;

Icd_put c('\ f) ;
printf(lcd _put c,"input_ vo ltage=%4 .2F",input_vo ltage);
pri ntf(lcd _putc ,"input _curr en t=%4.2F",input _current );
printf(lcd _put c,"output, voltage= %4.2F" ,o utput_voltage);
print f(lcd _put c,"output _curr en t=%4.2F",output_curr ent );
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printf(" %4.2F %4.2F %4.2F %4.2F %4.2F %4.2F %041u %4.2F %041u \n \r "
input_vo ltage, inpuccurre nt, input_power,output_vo ltage,o utput_current,output_powcr, RP
M,ins_w,pw m);

delay_m s(1000);
run=TRUE;
) //endforevcr loop

) //end main
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