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Abstract

The structural basis of cold-adaptation in a rod-shaped (a- helica l, coi led-co il) protein

tropom yosin was investigated by site-directed mutagenesis. An a -type tropomyosin from

Atlantic salmon skeletal muscle having twenty amino acid substitutions compared to a

warm-blooded count erpart (rabbit) was used as a model. Two adaptive-strategies were

elucidated. The conformational stability of tropomyosin was shown to be enhanced by the

presence of a polar amino acid, threonine-I 79, within the hydrophob ic core and the

presence of a pair of closely-spaced glycines at positions 24 and 27. The specific details

are outlined below in point form :

I) Four mutants of Atlantic salmon fast skeletal muscle alpha-tropomyosi n were

engineered using the Quik Change Lightnin g site directed mutagenesis kit. Mutations

were chose n in order to investigate the role ofa pair of unique glycines near to the amino

terminal end as we ll as threonine 179 which occurs in a core position of the coiled coil.

The four mutants were: Gly24Ala, Gly27Ala, Thrl 79Ala and a doubl e mutant,

Gly24AlalGly27A la. Mutations were confirmed by DNA sequencing.

2) Recomb inant (mutated and non-mut ated) tropomyosins were obtained by expressio n in

BL21 cells and induction with isoprop ylthiogalactopyr anoside. Enriched protein was

isolated, without exposure to organic solvents or high temperatures,by salt-induced

precipitation and chromatography on ion exchange column and hydroxyapaptite columns.



3) Far-UV circular dichroism was used to investigate the conformat ional stabili ty of the

recombinant tropomyosins (0.1M NaCI, 20mM sodium phosphate , 1-2 mM dithiothreito l,

0.01 % mass /vol NaN) . The observed melting temperatures of the three glycine mutants

were simi lar to each other and that of the non-mut ated recombinant tropomyosin:

Gly24A la, 36.9 °C; Gly27Ala, 37.3 °C; Gly24Ala Gly27A la, 38.1 °C and non-mutated,

37.0 °C. However, the Thrl79Ala mutant showed significa nt stabilization, 40.7 °C.

Me lting profiles of the four tropomyosin mutants and non-mutat ed recombinant

tropomyo sin showed that the four mutants displayed more cooperative unfoldin g profiles

compared to the non-mutated protein.

4) Limited chymotrypsin digestion (buffer: 50 mM NH4HCO) , 0.1 M NaCl , I mM OTT,

pH 8.5), as moni tored by SOS PAGE, revealed that the non-mutated tropomyosi n is more

susceptible to proteo lysis than the Thrl79Ala mutant (37 °C, -I :500 enzyme:s ubstrate

mole ratio). After 30 min, none of the intact non-mu tated protein was detected in the

reaction mixture whereas not all of theTh rl79Ala mutan t had been diges ted .

At -25 and - 10 °C, the difference in the rate of digestion betwee n the two, was not as

signi ficant.

5)From points3and 4 itcan bcconcluded that thrconine in the 179 position of sa lmon

tropomyosin is destabili zing compared to the alanine in the same position of rabbit

skeletal alpha-tropomyos in.



6) Sequencing of two fragments from the chymotryps in digestion of non-mu tant

recombin ant tropomyosin indicates that the initial cleavage site is between Leu II and

Lys l2 .

7) Omp-T digestion (buffe r: 0.1 M NaC I, 50 mM sodium phosphate,S mM EDTA, I mM

DTT, pH 7.0) patterns, as monitored by SDS PAGE, were compa red between Gly24Ala,

Gly27A la, Gly24A laGly27A la, and non mutated tropomyosi n at - 10, -25 or -37 °C. At

all three temp eratures, non-mutated tropomyosin was digested faster com pared to the

glycine mutants, which were different to each other. The observe d rate of breakdown

decreased in the order: Gly27A la > Gly24A la > Gly24AlaGly27A la, indicating that both

glycines influence the conformational stability of the amino-termi nal regio n and that

Gly24A la is more influ ential than Gly27Ala.

Note: Some of the above findings were reported in pre liminary form at this year's

Biophysica l Socie ty Meeting (Fudge, K.R. and Heeley, D.H (20 11) A mut ant of Atlantic

salmon fast muscle tropomyosin. ss" Biophysica l Socie ty (Baltimore)) . A full manuscript

is in preparation for submissio n to Biochemistry.
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Chapter 1

Introduction

The purpose of this thesis was to estab lish a role for key amino acids in the cold-

adaptation of the rod-shaped protein, tropomyosin . Tropomyosin is an a -helical coiled-

coil and an importa nt regulatory componen t in the muscle thin filament. This research

used as a model tropomyosin from Atlantic Salmon. Four recombinant mutants were

prepared by Quik change lightnin g site-direc ted mutagenesis. Mutations focused on one

site (spec ifica lly, residue-I 79) within the almost-continuous hydroph obic seam that is

principally responsible for stab ilising the coiled-coil as well as a pair of glycines (residues

24 and 27) in the amino termin al region that are solvent exposed. Tempera ture induced

unfo lding experime nts invo lving circular dichroism showe d that changi ng one amino acid

(specifically, threonine-I 79 to alanine) could significantly affect the conformational

stability of tropomyosin. The spectroscopic findings were confirmed by limited

proteolytic digestion (chymotrypsin and outer membrane protease T) and extended by

Edma n-based sequencing of fragments in order to locate sites having altered molecular

flexibility .

The introduction of the thesis will start by briefly describing the structure of the

stria ted muscle and the mechanism of muscle contraction. The thesis will then describe

the major proteins in the sarcomere: myosin, actin, troponin and tropomyosin . Following

the brief introduction of the proteins, tropomyosin will be explained in more detail

including its amino acid sequence and the sites of chymo tryps in and Omp-T digestion.



The thesis will then outline some of the current knowledge of psychro philic (low-

temperature) proteins, the reasoning behind preparing a chosen tropom yosin mutant, and

a depiction of the goa ls of the thesis.

1.1 Structure of Striated Muscle

Muscle is contractile tissue that is responsible for move men t inanimals. It is

composed of spec ialized cells which are responsible for its contractionand regulation.

Muscle tissues have adapted to perform a variety of functions which has resulted in three

types of muscle tissue: smooth, cardiac and skeletal. Smooth muscle is non-striated and is

responsible for involunt ary contraction in the walls of blood vesse ls, respiratory tract and

gastrointestinal tract. Cardiac muscle is striated muscle that is responsible for the

involuntary contrac tions of the heart. Skeletal muscle is stria ted muscle that is responsible

for voluntary contract ion.

Muscle sarcomeres (Figure lA ), which are generally 2-3 urn long and 1-2 urn in

diameter, link end-to-end in order to form long thin strands called myofibrils (Squire,

1997, review). These myofibril s run parallel to each other and form a muscle fibre

(Squire, 1997, review). At high magnification, the myofibr ils appear striated due to the

over lapping thick (15 nm diam eter) and thin filaments (6 nm diameter). The thin

filaments are comprised of actin , tropomyosin and troponin and the thick filaments are

made up of myosin (Figure IB and IC). Located at eithe r end of the sarcomere is the Z

line which links success ive sarcomeres within the myofibr ils. It also serves as the

attachment point of the thin filaments. In between two Z lines are two I bands which are
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Figure 1: The architecture of the skeletal muscle

A schematic representat ion of (A) the muscle fibre, (8) the myofibril , (C) the sarcomere ,

(D) the thick filament and (E) the major proteins of the thin filame nts.



on either side of an A band . The A band is darker than the I band because the forrner is

comprised of overlappin g thick and thin filaments whereas the latte ri s compri sed ofthi n

filaments only (Hux ley and Hanson, 1954; Aidley, 1991, pg 248- 249, review) (Figure IB

and IC).

Skeletal muscle has been divided into three catego ries based on the following

criteria: number of mitochondria present, importance of oxidation and glyco lytic

pathways in respiration, myosin ATPase activity, contraction time of the fibres and the

fibres resistanc e to fatigue. The three types of skeletal muscle are slow oxidative, fast

glyco lytic and fast oxidative fibres. Slow oxidative fibres have a high mitochondrion

content, low glyco gen content , and a long contraction time (Barnard et al., 1971). Their

red colour is due to the high concentrations of myoglobin , they are small in diameter and

they contain a higher supply of oxygen so they can sustain aerobic activity. In

comparison, the fast glycolytic fibres have a high glycoge n content, short contraction time

and a low mitochondri on content. They have a larger diameter and have a lighter colour

due to a decreased amount of myoglobin . The fast oxidative fibres are an intermed iate of

the other two fibres. These fibres have a high mitochondr ion content, high glycoge n

content and a short contra ction time . They also have a high resistance to fatigue and are

red due to their higher myoglobin content. The fast oxidative and fast glyco lytic fibres

constitute the majorit y of skeletal muscle in vertebrates (Barnard et al., 1971).



1.2 Mechanism of Contraction

Both thetroponin compl ex (troponin C, troponin I and troponin T) and

tropomyosin are involved in the regulation of muscle contrac tion, although the exac t

mechanism is not yet known. Acco rding to the steric blocking model, tropom yosin

completely cove rs the myosin binding site on actin in the relaxed muscle (Lehman et al.,

1995) and it therefore acts as a relay betwee n the troponin complex and actin (Potter et

al., 1985). Followin g an action potential, Ca2
+ is released from the sarcoplasmic reticulum

which increases the free Ca2
+ in the cytop lasm. These Ca2

+ ions bind to the specific sites

on troponin C (TnC) which causes a conformational change on the TnC. This

conformational change leads to increased binding of TnC to troponin I (Tnl) (relayed by

troponin T), which results in a decrease in bindin g between Tnl and actin. Therefore,

there is a decrease in the inhibiti on that Tnl has on the actomyos in MgATP ase (Zot and

Potter, 1987, review; Farah and Reinach, 1995, review; Perr y 1996, review; Lehman and

Craig, 2008, review ). It is believed that the bindin g of calcium ions to the troponin

complex shifts the tropomyosin on actin, thereby exposing the myosin binding sites of

actin (Vibe rt et al., 1997).

Us ing interference microscopy Huxley and Niedergerke showe d that during

shortening or stretching the length of the A-bands remained constant while that of the 1

bands changed (Huxley and Niedergerke, 1954). Phase contrast examination revealed that

the addition of ATP to myofibril s in order to cause contraction resulted in the

simultaneo us shortening of the I-band and the H-zone (Huxley and Hanson, (954). These

results led to the proposal of the sliding filament theory (Figure 2) in which the thick



Figure 2: Diagram of the slid ing filament th eor y of muscle contraction



(myosi n) and thin (actin and tropom yosin) filament move past each other. In this theory,

myosin under goes a conformational change so that it detaches and reattaches to actin. In

the absence of ATP, the myosin cross-bridge is strongly attached to actin. The bindin g of

ATP cause s the dissociation of actomy osin and the ATP is hydrol yzed to ADP and Pi

which ' cocks' the myosin head. This hydro lysis initiates a weak association of the

myosin head to actin and is followed by the release of Pi which is associated with the

power stroke. Dissociation of ADP then prepar es for another contract ion (Huxley and

Simmons , 1971 ; Huxle y 1974; Lymn and Taylor, 1971).

1.3 Major Sarcomeric Prot eins

The major proteins in the sarcomere are myosin, actin, troponin C, troponin I,

troponin T and tropom yosin . Although not discussed below, muscle also contains a host

of other proteins which are required for various aspects offilamentstructureincluding,

anchoring (eg a- actinin ), end 'ca pping ' (e.g. tropomodulin and CapZ) and spatial

organiza tion (e.g. titin and nebulin ) as well as enzymes for the production of ATP and

creatine phosphate.

1.3.1 Myosi n

Myosin, an enzyme that hydrolyzes ATP (Engelhardt and Ljubim owa, 1939),

accounts for greater than 50% of the total protein in the muscle myofibril (Furukawa et

al., 1972). In this tissue it is a hexameric protein containing a number of functiona l and

structural domains . Sedim entat ion experiments first suggested the corre ct molecular

weight of 470,000 Da (Lowey and Cohen , 1962). Later research showed that there are

7



two heavy chains (Mr - 230,000 Oa) (Gershman et al., 1969; Lowey et al., 1969), two

regulatory light chains (M, - 16,000 - 20,000 Oa) (Lowey and Risby, 1971; Weeds and

Lowey , 1971) and two esse ntial light chains (M, - 16,000 - 20,000 Oa) (Lowey and

Risby, 1971; Weeds and Lowey, 1971). The six chains are arranged to form two globular

heads attac hed to an a -helical co iled coil tail (Slayte r and Lowey, 1967). The C-terminal

portion of the heavy chains is mainly a-helical and forms the myosin tail. The N-terminal

part of the heavy chains forms the heads. Each globular head also has one esse ntial and

one regulatory light chain associated with it, and contains the ATP, actin and divalent

cation-binding sites and is the site of ATP hydrolysis (Gaz ith el al., 1970). Crys tal x-ray

diffraction reveals that the head is approximately 50% a-helica l in structure (Rayment et

al., 1993). The a-helical tails have the typical co iled coil heptapeptide repeat that is

described later in more detail in section I.3.4 (Crick, 1953).

Myosin molecules aggrega te to form a bipolar filament structure which makes up

the thick filament (Huxley, 1963) (Figure 10 ). Lowey el al. (1969) hypothesized that the

thick filament is formed because most of the myosin tail is water insolubl e while the

remainder of the tail and the globular heads are water soluble. The structura l role of the

inso luble myosin tail appears to be the organization of the thick filament (Lowey el al.,

1969). Thi s packin g arrangement results in the middle of the thick region being a head

free region and a region where actin-m yosin cross bridges cannot be formed (Harfo rd and

Squire, 1986). Importantl y, the globular heads project out from the body of the filament

(Figure 10 ). The organi zation of the myosin chains has two implicati ons: I) the myosin



polarity is reve rsed in each half ofthe filaments and 2) the ATPase and actin binding sites

are on the exterior of the filament (Aidle y, 1991 p 265-269, review ).

1.3.2 Actin

Actin was acc identally discovered in Szege d, Hungary in 1942 by F.B. Straub

(1942) . It is a pervasive protein which is found in nearly all eukaryotic cells and is the

main component of the thin filament (Kabsch and Vandekerckh ove, 1992, review).

Muscle actin can exist as either a monomer (G-ac tin) or as a filamentous polymer (F-

actin). G-actin, Mr - 42,000 Da, consists of 375 amino acids (Elzinga et al., 1973) and

the sequence has been highly conserve d throughout evolution. Sequencing of cyanogen

bromid e peptid es revealed that residue 73 is a 3-methylhistidine (Elzinga, 1971). It is

believed that this amin o acid is incorporated into the protein by enzymatica lly adding the

methyl groups at residue 73 with S-adenosylmethionine acting as the methyl group donor

(Asatoor and Armstrong, 1967). The first three codons in the skeletal muscle actin gene

code for Met-X-Asp (X is usually Cys but it can be Gly or Ala) whereas the mature

protein terminat es with an acetyl-Asp (Zakut et al., 1982). Research on the Drosophila

melanogaste r actin suggests a possible mechanism for removing the init ial two N-

terminal amino acids of actin: the methionine is removed by the ribosomal amino

peptid ase, followed by acetylation of the cysteine , removal of the ace tylated cysteine and

finally the ace tylation of the aspartic acid residue (Rubenstein andMartin, 1983).

Kabsch et al . (1990) first determin ed the atomic structure ofG-actin in complex

with DNase I at 2.8 and 3.0 A reso lutions in the presence of either ATP or ADP. In the

structure, the nucleotide was situated in a cleft between a small and large domain . The

9



small domain consists of residues 1-144 and 338-375 and the large domain is made up of

residue 145-337. Each domain can be further divided into two subdomains. The small

domain is comprised of subdomain I (residues 1-32, 70-144 and 338-37 5) and subdomain

2 (residues 33-69) . The large domain enco mpasses subdomai n 3 (residues 145-180 and

270-337) and subdomain 4 (res idues 181-269). They determin ed that subdomain I

contain s a five-strandcd Bvsheet surrounded by five helices and subdomain 2 consi sts ofa

lhree-stranded antiparallel~-pleated sheetwith ahelix connectingthe two edge-s trands.

Subdomai n 3 is a five-stra nded ~-sheet surrounded by three helices and subdomain 4

contains a two-stranded anitparallel ~-sheet and four a-helices .

Monomeric aetin (G-ac tin) can aggrega te to form a filamentous polymer (F-ac tin)

in the presence of Ca 2+ and Mg 2+ and higher ionic strengths. Upon polym erization, the

bound molecule of AT P is hydrolyzed to leave bound ADP (Szen t-Gyorgyi, 1951).

Muraka mi et al. (20 10) recently proposed a model detailing the form ation of filamentous

acting and the hydrolysis of ATP. They hypothesized that a newly incorpora ted actin

monomer enables the rotation of the outer domain of the penult imate actin molecu le. An

interactio n betwee n this actin and the neighbouring actin orientsthe subdomai n2 of the

former so that its DNase I loop reaches outward. Part of this loop fits into a hydrophobic

cleft while another part causes a downward shift to a proline-rich loop. This shift triggers

ATP hydrolysis and Pi is released. F-actin is the form involved in contraction and it is

compose dof twostrands thatarearranged ina double helix.F-actin, as determined by

electron microscopy, is helical with 13 actin molecules per 6 turns and a repea l of

approxima tely 360 A (Ho lmes et al., 1990). In the non-muscle sys tem, the polymerizatio n



of actin is dynamic and the monomers attach and detach from the ends of the filament at

different rates (Wegne r and Engel, 1975). The ends are labeled as the barbed (Plus) end or

the pointed (minus) end. Actin monomers will bind at either end, but it has a preference to

attach at the barbed end and to detach at the pointed end (Woodrum et al., 1975).

Formation ofF-actin stimulates the actin ATPase but the release of phosphate is slower

than the formation of the filament resulting in an ATP-actin cap at the barbed end.

Monomeric actin containing ADP and phosphate accumulate in the rest of the filament

(Carlier M-F, 1991, review) .

Warm-blooded vertebrates contain six actin isoforms that are tissue specific: two

striated muscle actins (cardiac and skeletal), two smooth muscle actins (vasc ular and

viscera l) and two non-muscle actins (pandy) in all non-muscle cells(Kabschand

Vandeke rckhove, 1992, review) .

1.3.3 Troponin

Troponin, discovered in 1965 (Ebashi and Kodama, 1965), is a complex of three

regulatory proteins (Ebashi et al., 1968). The molecular masses of the three troponin

subunits were first determined from the amino acid sequences of the proteins obtained

from rabbit skeletal muscle: troponin C (TnC, M, = 18,000 Da) (Collins et al., 1977),

troponin T (TnT, M, = 30,500 Da) ( et al., 1977a) and troponin I (TnI, M, = 21,000 Da)

(Wi lkinson and Grand, 1975). TnC is the calcium binding subunit, TnT binds to

tropomyos in and TnI is the inhibitory subunit (Greaser and Gergely, 1971, 1973). The



atomic structure of most of the complex, the so-called core, has beenreportedinboth

Ca2+ _ bound and free froms (Takeda et al., 2003; Viongradova et al., 2005).

1.3.3.1 Tropo ni n C

Troponin C is the smallest of the three troponin sub units con taining about 160

residues andhas apI of4 .1-4 .4 (Hartshome andDreizen, 1973). It is a dumbb ell-shaped

protein with a long central helix connecting the amino and carboxy -terminal domains

(Sundaralingam et al., 1985). Greater than 65% of the amino acids are in a-h elical

conformation (Herzberg and Jame s, 1985). It utilize s the common helix-lo op-helix (HLI-I)

Ca2+binding motif where a 12 residue loop is flanked by two a-helica l segments (Collins

et al., 1977). Trop onin C is capable of bindin g one or two Ca
2
+ ions, depending on the

isotype, in low-affinity Ca-specific sites and two Ca2
+ ions in high affinity sites (which

can also bind Mg2+ ions) (Potter and Gergely, 1975). The two high-affin ity binding sites

(111 and IV, K, - 107 M·I) are located at the C-terminal (struct ura l dom ain) and the low

affinity bind ing sites (I and II , K, _ 105
- 106 M· I

) are located at the N-terminal

(regu latory domain) (Sundaralingam et al., 1985; Pearlstone et al., 1997). It is the latter

which serve as the ca leium sensor.

1.3.3.2 Tropon in I

Trop onin I is blocked by an N-acetyl group and it has an isoelectricpoint of 9.3.

The rabbit skeletal TnI is compri sed of 179 amin o acids (Wilkinson and Grand, 1975). It

inhib its actomyosin ATPase and is capable of bindin g to actin, tropom yosin, TnC and

TnT (Zot and Potter, 1987, review). The atomic structure of TnI is not yet known ,



however, biochemical, chemical and biophysica l investigations have shown that the

protein can be divided into three regions. The N-domain (r-res idues 1-95) interacts with

the C domain ofTnC when sites III and IV are occupied by Ca2+(stron g interaction ) or

Mg2+(wea ker interac tion) (Farah et al., 1994). This interaction is partially responsible for

anchoring TnC to other memb ers of the troponin complex and has both Ca2+-dependent

and - independent components (Pearlstone et al., 1997). The second domain (r-residues

96- 116) is mainly respon sible for actomyosi n ATPase inhibitory activity in the absence of

TnC and TnT . Residue 105-11 5 is the minim al length requir ed for inhibition to occur

(Talbot and Hodges, 1981). In the absence of Ca2+, it is believed that this region is bound

to actin and when exposed to Ca2+, it forms a complex the TnC (Pearlstone et al., 1997).

Residues 117-156 have a criti cal regulatory role for the Ca 2+dependent interaction of the

third domain (r-residues 117-181) with the N domain of TnC (Fara h and Reinach, 1995,

review).

1.3.3.3 Troponin T

Troponin T is acetylated at its N-terminus (Pearlstone et al., I977b) and the major

isoform found in the rabbit skeletal muscle consists of 259 amino acids and has a pI of 9.1

(Pearlstone et al ., 1976 ; Pearlstone etal. , 1977b). It is required fortheCa2+sensitive

inhibi tion of ATPase activity (Greaser and Gergely, 1971). Thi s subunit directly interacts

with TnI, TnC and tropom yosin and it links the troponin complex to tropomyosin (Zot

and Potter , 1987, review) . Also, TnT influenc es the binding of actin and tropomyosin in

the presence and absence of Ca2+(Heeley et al., 1987). The N-terminal domain of TnT

interac ts with tropomyosin (Jackso n et al ., 1975; Mak and Smillie, 1981b; Pearlstone and

13



Smilli e, 1981; Pearlstone and Smillie, 1982) whereas the globular C-terminal domain

interacts with tropom yosin, TnI and TnC (Malnic et al., 1998).

1.3.4 Tropomyosin

Tro pomyosi n was first isolated in 1946 (Bailey, 1946). It is found in skeletal,

cardiac and smoo th muscle and (at lower quantities) in non-mu scle tissues (Smillie,

1979). The muscle tropom yosin contains 284 amino acids whereas as the non-mu scle

form is shorter with approxim ately 247 amino acids (Smillie, 1979). The protein is a

coiled-coil dimer (Crick, 1953; Cohen and Szent-Gyorgyi, 1957 ; Woods, 1967) and

Smillie (1979) determ ined that a subunit of a-tropomyos in from rabbit fast skeletal

muscle has a molecul ar weight of 33,000 Da. Sarcomeric tropomyosin has a diameter of

approx imately 20 Aand is approximately 400 Along (I-litchcoc k-DeG regori , 2008,

review). In a muscle, tropomyosin molecules are arranged in a head-to-t ail manner along

the length of the actin filament (Figure IE). It was proposed that the N- and C-terminal

ends of the 284-res idue trop omyosin overlap by nine residues (McLachlan and Stewart,

1975). A more recent study of an NMR structure of the over lap between tropomyosin

molecules indicates that II residues on the N-term inal of one molecule fits into the cleft

at the C-terminal of another molecule that is created when the two strands spread apart

(Greenfield et al., 2006) . Astbury et al. (1948) showed that tropomyosin exhibited a

distinct periodicity that was characteristic of the k-m-e-f (keratin-myos in-epidermin-

fibrinogen) group of proteins. The diffraction patterns of tropomyosin were a result ofa

left-handed coiled-coil structure involving two right-h anded a -helices that were at a 20°

angle to each other (Crick, 1953) (Figure 3C) . In order for this to occur, a strip of non
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Figure 3: The Structure of Tropomyosi n

(A) Amino acid positions of the coiled coil tropomyosin as viewed from an axial position.

Residues ' a ' and 'd ' are typically hydrophobic and help keep the two helices in contact

with each other. Residues 's' and 'e' are typically charged amino acids that stabilize the

protein through ionic interactions. Residues 'b'; 'c' and 'f are usually charged. (8) Side

view in which the cylinders represent the helical back bone. (C) Molecular ribbon

diagram of a tropomyosin dimer.



polar resid ues run dow n one side of each of the two a -helices . The helices wind around

each other to form the coi led-coil that is stabilized by the "knobs and holes" packing

arrangement (Crick, 1953). In order to create the non-polar sides of the helices ,

tropomyosin can be thought of as having a heptapeptide sequence (a bed efg) where 'a'

and ' d' arc non polar amino acids. Residues 'a' and 'd' on one strand are in contact with

residues 'a ' and 'd ' on the other strand and acidic and bas ic residues are located on the

exterior of the coi led coil (Figures 3A and 3B). The remaining residues are usually polar

or ionic and sa lt bridges between residues 'e ' and 's ' often appear in order to further

stabilize the coiled-co il structure (McLachlan and Stewart, 1975). John son and Smillie

( [975) have show n that the two subunits are in register and in para lIel due to the fact that

it is possible to form an intramolecular disulfide bond between the cys teinesat position

190.

Tropo myosi n has an unbroke n series of 40 heptads that is known to be unusua l

for fibrous proteins (Parry , [975). As well, additio nal stabi lizatio n is added to the protein

because the charged residues in positions 'e ' and 's' on neighbo uring chains form salt

bridges which results in the two chains being in-register (McLac hlan and Stewart , [976).

Most tropomyosi n molecules also have an unusually high number of alanine resdiudes in

the core regio n compared to other a-fi brous proteins. In vertebrate skeletal muscle, as

many as > 35% of the 'd' position residues are alanines (Conway and Parry, [990).

Brown et al. (200 I) describes seven alanine clusters in the tropom yosin molecule. These

clusters which cause the chains to pack closer together (compared to the remainder of the

molecule) are stagge red which results in a bend. The bend is important as it allows the



tropo myos in to wind arou nd the actin filament (Brow n et al., 200 I; Singh and Hitchcock

DeGregori, 2003).

Tropo myosi n is highly a-helical with the N-terminal half ofth e molecule having

the greatest amount of hel ical content. Progressively less hel ical content exis ts towards

the C-terminal (Smillie et al., 1980). Consistent with this, Greenfield et at. (2003) showed

that the N-terminal forms a continuous coiled-coil up to residue 279 and that the last five

residues are in a random conformation. It has been shown by Phill ips et at. (1980) and

confirme d by Brown et at. (200 1) that the N-term inal part of tropo myos in is more rigid

compared to the C-te rminal part. Li et at. (2002) determined that the C-termina l section of

tropomyosi n (residues 254-284) does not form a coiled coil and that the two helices splay

apart at this end of the molecule. The site of splaying involves a small group of

destabilizi ng core residues includi ng Gln263 Cd') and Tyr267 Ca') that pack

asymmetrically at the interface of the helices (Li et al., 2002) . The mid-region of

tropomyos in has three core alanines in a row (resid ues 151-158) which causes a 6° bend

in the coiled coi l and there are also isolated alanines which ereate gaps along the protein

(Brown et al., 2005) .

More recently, Gly l26 Cg) and Asp l37 Cd'), both of which are strongly

conserved, have been shown to impart flexibility and instability to the middle region of

the tropomyosin molecule (Nevzorov et al., 20 I I; Sumida et al., 2008) .



/ .3.4./ Tropomyosin/so/arms

Tro pomyosi n is present in virtually all eukaryot ic cells. The forms of the protein

which have been found in non-muscle tissues are shorter in length by one (platelet, Lewis

et al., 1983) two (yeas t Tpml , Liu and Bretscher, 1989) or three (yeas t Tmp2, Drees et

al., 1995) actin bindin g sites compared to those in muscle, with a few noted exceptions

(MacLeo d et al., 1985). The first evidence that there are multiple forms of tropo myosin

came from electrophores is separations performed in the presence of SDS (Cummins and

Perry, 1973). Two variants were observed, so-ca lled a and p. The basis of the separation

is not due to a true difference in mass but net charge which affec ts the interaction with

SDS. Protein sequencing showe d that 39 amino acid differences ex ist between these

isoform s in rabbit skeletal muscle tropomyosin, with the C-terminal half being more

divergent (Mak et al., 1980). Further, p-tropomyos in is predicted to have a higher net

negative charge at neutral pH than a due to Ser229G lu and His276Asn (Mak et al., 1980).

The sequence analysis also confirmed a difference in cysteine content (Cummins and

Perry, 1974). Subsequently, four tropomyosin genes were discovered in mamm als from

which at least 20 isoform s are expressed by alternative promoters and RNA processing

(Pittenger et al., 1994). In humans, the four genes have been labeled TPM I, TPM2,

TPM3 and TPM4 (Cutticchia and Pearson, 1993). TPMI and TPM 2 correspond to the

genes that are responsible for the a- and p-tropomyosins located in skeletal muscle

(Helfman et al., 1986; Ruiz-Opazo and Ginard 1987). TPMI contains 15 exons, and

through alternative splicing, can give rise to at least eight other isoforms including

smoot h muscle a-tropomyos in. The p-tropo myosi n gene contains nine exons (five of



which are in all isofonn s) and codes for skeleta l and smoot h muscle tropomyosin and

fibroblast tropomyosin isofonn s (Perry, 200 1, review). The TPM3 gene codes for the 248

residue fibrob last tropomyosi n and a 284 residue slow twitc h skeleta l muscle a-

tropo myos in (TM3) (Clayto n et al., 1988; Gunning et al., 1990; Smillie, 1996). The

TPM4 gene contains eight exons and codes for fibroblast TM4 (Lees- Miller et al., 1990;

Macleod et al., 1987). It should be noted that the tropomyosin which was selected for

study in this thesis speci fically, salmon fast skeletal, is of the a- type, as determined by

sequencing (Hee ley et al., 1995).

1.3.4.2 Post-Translational Modifications

Skeletal muscle tropomyosin undergoes two post-t ranslat ional modifications

which are: N-tenni nal ace tylation and phosphorylation of serine283 (Hodges and Smill ie,

1973; Mak et al., 1978). The acetylation of the N-tenni nal meth ion ine is necessary for the

tropo myosin to have a strong binding affinity to actin (Urbancikova and Hitchcock-

DeGregori, 1994). The absence of acety lation in p-tropo myosi n causes an eight-fo ld

reduction in actin affinity and its absence ina-tropomyosin results in a 40-foId reduction

in actin affinity (Coulton et al., 2006). Although acetylation is not necessary for homo- or

heterodim er fonn ation, it appears to stabilize the coiled-coil (Greenfield et al., 1994).

Cova lently bound phosphate was first detected in tropom yosin from the skeletal muscle

of a frog that had been injected with 32p orthophosphate (Ribulow and Barany, 1977).

Subsequently it has been found in the striated muscle tropom yosins of rabbit , chicken,

fish, rat and mouse (Mont arras et al., 1981; Heeley and Hong, 1994; Heeley et al., 1982).

One theory for the role of phosphorylation of tropom yosin sugges ts that it has
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significance for myofibrillo genesis (Heeley et al., 1982), while another proposes that it

plays a role in stabilizing the head-to-tail interaction during polymerization (Mak el al.,

1978; Heeley et al., 1989). Heeley (1994) demonstrated that tropom yosin

phosphorylation increases the steady-sta te rate of hydrolysis of actomyos in MgATP ase.

Later research using phosphorylated and unph osphorylated shark tropomyosin confirmed

this activa tion (Hayleyelal., 2008) . It is important to note that the phospho rylation is

uniqu e to striated tropom yosin because smooth and non-mu scle isoform s do not have a

serine at position 283 (Sanders and Smillie, 1985).

1.3.4.31I1t eract;olls w;th Se/faml otherProte;lIs

Trop omyosin is associated with the I-band and thin filament of skeletal muscle

and it interacts with actin, troponin T (Corsi and Perry, 1958; Perry and Cors i, 1958;

Eisenberg and Kielly, 1974). Trop omyosin lies along the narrow groove of the actin helix

(Mc Lachlan and Stewa rt, 1976). One tropomyosin molecule spans seven polymerized

actin monomers even though tropomyosin contains 14 quasiequ ivalent repeating regions

of acidic and non-polar residues that could serve as bindin g sites (Stewart and

McLac hlan, 1975). In a tropomyosi n dimer, there are 28 acidic zones on the surface

which are arranged in 14 opposing pairs to produ ce four sets of seve n zones which are at

90° to each other (Stewart and McLachlan, 1975). Tropom yosin binds cooperatively to

actin, but the ionic conditions that are necessary in vilro dependo n the spec ies (Ya ng el

al., 1977; Yang et al., 1979; Lehrer and Morri s, 1982). Mg2
+ is important in formin g the

actin-tropomyos in complex and it is thought that Mg2
+ bridges form between carboxylate

groups on both protein s (Martonosi, 1962). Local instabilit y and side chain flexibilit y of
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tropomyosi n is necessary for actin binding (Singh and Hitchcock-DeGregori , 2006) .

Singh and Hitchcock-DeGregori (2006) pred icted that in addi tion to the flexible coiled

coil, a spec ific recogniti on site on the surface of the coiled-co il is also important for actin

binding. McLach lan and Stewart (1976) first showed that tropomyosin had seven periods

that were quasi-equ ivalent for actin binding. Further research by Singh and Hitchcock

DeGregori (2007) illustrated that these periods also had specific regulatory functions.

Period 5 (res idues 166-207) was the most conserve d period and it was also the most

important for bindin g to filamentous actin (Hitchcoc k-DeG rego ri el al., 2002) . It is

thought that period I is also very important for maximal bindin g affinity to actin because

iti s the only other period that contains alanine clusters embedded within theconsensus

repeats (Singh and Hitchcock-D eGregori, 2007).

Troponin T is responsible for the interaction of the troponin complex with

tropomyosin (Zot and Potter, 1987, review) . It is a stable com plex that forms

independentl y of ca lcium but is sens itive to the ionic strength of its surroundi ngs (van

Eerd and Kawasaki, 1973; Jackson el al., 1975). Tropo myosin and TnT inte ract with a I: I

molar ratio (Grease r el al., 1972). There are two tropomyosin interaction sites on TnT.

First site is located within the N-terminal half of TnT, between residues 7 1-151

(numbering syste m corresponding to rabbit skeletal protein) and the seco nd site is within

the C-terminal half of TnT (residues 159-259) (Jackso n et al., 1975; Ohtsuki, 1979). It is

genera lly believed that the majority of the C-terminal fragment of TnT is needed for

interaction with tropomyosin (Pearlstone and Smill ie, 1981; Jackson el al.. 1975). Site I



on TnT is thought to bind to the C-tenni nal part of tropomyosin whereas site 2 binds near

Cys190 (Pato et al., 1981b; Chong and Hodges, 1982, Morr is and Lehrer , 1984» .

1.4 Atlantic Salmon Tropomyosin

The bulk of the biochemical tropomyosin litera ture describ ed above , pertains to

mamm alian and avian sources of the protein. Less work has been carried out with

tropomyosin from cold dwelling organisms such as fish. Despite a wide phylogenetic

separation and a substantial difference in growth temperature, the numb er of substitutions

that exist between tropomyosins from fish and higher (warm-blooded) vertebrates is

small. For exa mple, the sequence of Atlantic salmon fast myotomal tropomyosin (below),

inferred from its cDNA sequence (accession numb er NP_00 1117 128) (Heeley et al.,

1995), contains a mere 20 amino acid replacem ents compared to rabbit alpha (accession

numb er NM_OOII 05688) (Stone and Smillie, 1978). Yet NP_00 1117 128 has been shown

to vary sign ificantly from the mammalian version in terms of its conformat iona l stability

(Goonasekara and Heeley, 2008). Further, both halves of salmon tropomyos in were found

to be of comparative ly lower stability (Goonasekara and Heeley, 2008).
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Of the 20 substitutions (Tab le I), only one affects a core amino acid specifically,

residue -l 79 which is a threoni ne in salmo n and an alanine in rabbit. In the amino-terminal

half, there is a unique pair of glycines at positions 24 and 27. These substitutions were

viewed as pote ntially important determinants of the unique properties of salmon

tropomyosin.

1.5 Sites of Proteol ytic Digestion in Tropomyosin

Throughout this study Omp-T and chymo trypsin were used to study the digest ion

patte rnsof tropomyos in. Patoetal.(l98 la)examinedthedigestionpatterns of rabbit

striated a-tropomyosin by limited chymot rypsin proteo lysis . They showed chymotrypsin

initially cleaved tropo myos in on the C-terminal side of Leu-169. This resid ue is in the

core of the protein and was believed to be fairly inaccessib le to theenzyme. The

researchers proposed that this residue is in a destabilized area due to the presence of

several bulky hydrophobic residues at positions 169-172 (-Leu- Val-Ile-Ile-). They also

speculated that an aspartic acid (AspI75) ina 'g ' position results in an electrostatic

repu lsion with Glul80 which contributes to that region's instability.

The Omp-T digestion patterns of muscle tropomyosin were first explored by

Goonasekara et al. in 2007 . Edman sequencing was used to prove that Omp-T cleaved

betwee n Lys6 and Lys7 on salmon skeletal tropo myosi n. The researchers showed that the

cleavage occurred at the same site on tropomyosin from severa l different sources

including shark ske leta l trunk muscle, bovine heart, chicken breas t, chicken gizza rd and

rabbi t skeletal muscle. Goonasekaraetal. (2007)alsodemonstrated that sal mon skeleta l
23



Table 1: Differences between the rabbit and salmon fast muscle tropomyosin

Position Heptapeptide Salmon Rabbit
desiznation

~4..}.~Lk~~ c Gly GIn

: ,~1,~ f Gly Ala

35 g Lys Arg

42 g Asp Glu

45 c Ala Ser

63 g Ser Ala

73 c Val Leu

77 g Thr Lys

111 f Thr GIn

132 f Asn Ser

135 b Ser GIn

143 c Leu lie

145 e Asp Glu

157 c Glu Asp

r![~~'i?fIA~. d Thr Ala

191 b Ser Ala

229 e Thr Ser

247 b Ala Thr

252 g Thr Ser

276 c Asn His

Shaded boxes denote substitutions of interest that were mutated in the current research.
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muscle tropomyosin is more susce ptible to digestion than the rabb it counterpart and that

the unacetylated salmon tropom yosin is compl etely digested at 30 min whereas the N

acety lated salmon tropomyo sin was main ly intact at this time .

1.6 Psychrophilic Proteins

Organisms can be placed in three catego ries based on the surrounding temperature

that they thr ive on. Mesophile sthrive in temperatures of 17-40 °C, therrnophil es thrive at

temperatur es of greater than 50 °C, and psychrophil es thrive at temperatures below 15 °C

(Gerday et al., 1997; Greave s and Warwicker, 2007 ). Most of the research that has been

carried out on proteins from psychrophilic organisms has been from the standpoint of

globular proteins. It has been shown, in a given famil y of globular proteins, that

compared to mesophil es and therrnophiles, psychrophil es have increased loop sizes and

decreased numb ers of ion pairs, hydrogen bonds and hydrophobi c contacts (Greavesand

Warwicker 2009; Greaves and Warwi cker 2007 ; Gianese et al., 2002). These differences

provide psychrophilic protein s with the necess ary flexibility to function at low

temperature . They also account for the fact that such protein s are generally unstable at

mesophili c temperatur es and higher.

Spec ific amino acid differences often occur when comparing psychrophiles to

therrnophil es: arginine and glutamine are replaced by lysine and alanine on exposed a

helices sites, valine is replaced by alanine at buried regions on a -helices, there isa

significant increase in alanine and asparagine at exposed sites and a decrease in arginine

and the bur ied sites of Bvstrands are depleted of valine (Gianese et al.,2 00 [). Some



research has been done on the stability of the non-globul ar protein tropomyosin which

confirms thatthe core position amino acids ('a' and 'd) are cr itical to its stability.

Hayley et al. (2008) reported that shark tropomyosin (psychrophile) has three core amino

acid substitutions compared to rabbit tropomyosin (Stone and Smilli e, 1978). In each

case, the equiva lent amin o acid is replaced by a hydroxyl-containing one, with the

associa ted loss of two alanines: Thrl 79Ala, Serl 90Cys and Ser2 11AJa. Examination of

shark and rabbit tropomyosin indicates that the shark isoform has a reduced

conform ational stability throu gh most of its structure comp ared to the rabbit isoform

which isa result of the core amino acid substitutions (I-1ayley et al.,2 0 11).

1.7 Mutant Tropomyosins

Four mutants of salmon fast muscle tropomyosin were used throughout this

research project - three single mutations and one double mutation (Table I). Each mutant

involved the site-directed mutagenesis of a core amino acid and was selected for a

spec ific reason. Thr ee of the mutants (Gly24Ala, Gly27A la and Gly24A lalG ly27A la)

were chose n because of the unique double glycines that are present at the N-terminal of

the salmon tropomyosin (Jackman et al., 1996). Glycine residues are more comm on on

the C-terminal half of a- helices and in loops, (Richardson and Richardson, 1988).

Research indicates that glycine allows for a more flexible protein compared to alanines

because the former can adopt more phi and psi angles (Creighton, 1993; Serrano et al.,

(992). The salmon tropomyo sin glycines were mutated to alanines for a couple of

reasons. Prim arily, alanine was chosen because it is the standard replacement. Also, in



rabbit skeletal tropom yosin there is an alanine at position 27 instead of a glycine. All

three glycine mut ants wer e made to examine both the individual and additive effect of

that residue on the conformational stability .

The threonine mutation was of interest because it is the only substitution (salmon

vs. rabbit a) that occurs at a core position on the tropomyosin molecule (Hee ley et al.,

1995). It is also import ant to note that this isomorphism places a polar side chainin a

region of known instabilit y (Lehrer, 1978). As a result of having a threonine in position

179,thercarcthreeconsecutive 'd ' aminoacidsthat containdestabili zing amino acids

(lie at 172 and Ser at 186). Thi s threonine occurs in a region (172- 192) of the protein that

is known to be susce ptible to familial hypertrophi c cardi omyopath y causing mutations

(Thierfelder et al., 1994; Golitsina et al., 1997; Bing et al., 1997). The threonine residue

was mutated to an alanine because alanine is the residue that ispresent at the same

position in rabbit skeletal tropom yosin (Stone and Smilli e, 1978).

1.8 Goals of Study

The main goal of this study was to chara cterize the influen ce that parti cular amino

acids in salmon fast muscle tropomyosin have on the protein ' s flexib ility. The three

residues that were of interest were Gly24, Gly27 and Thrl 79. It was hypothesized that the

ThrI 79 increases flexib ility because it is a hydroph ilic amino acid located in a

predomin antly hydr ophobi c core region of the protein. The glycines were hypothesized to

enhance flexibilit y owing to the hydrogen side-chain which allow s for a great er range of

phi and psi angles.



Theeffect that these residues haveon theconformat ionals tabilityofsalmon

tropomyosin was inves tigated by charac terisi ng the consequence of mutating a give n

residue to alanine using heat-induced unfolding in conjunct ion with circular dichroism

and limited proteolysis in conjunction with Edman-based sequencing. The findings

described herein offer insight into the factors which modulate conformational stability of

rod-shaped proteins in psychrophil es, which have not been studied to the same extent as

globular prote ins.

The specific goals are enumerated below :

I) Use site directed mutagenesis to create four mutant salmon fast skeletal

tropom yosin : Gly24Ala, Gly27Ala, Gly24A Ia/Gly27A la, Thrl79Ala

2) Isolate enrichedproteins samplesusing salt-precipitation andion-exchange and

hydroxyapatite chromatography

3) Use a circular dichroism spectrophotometer to monitor the heat-induced unfolding

of the four mutant and the non-mut ant recombinant tropomyosi ns in order to

determ ine their melting temperatures

4) Use Ornp-T digestion to compare the rates ofN-te rminal cleavage of the non

mutant tropomyosin, Gly24Ala, Gly27Ala and Gly24A la/G1y27Ala at 10, 25

and 37 °C

5) Use chymo trypsin digestion to compare the cleavage pattern s of the non-mutant

and Thrl 79Ala tropomyosin

6) Sequen ce electrobl otted fragments in order to determin e the initials iteof

chymotrypsin cleavage



Chapter 2
Material and Methods

2.1 pH Meas urements

A refill able combination calomel glass electrode (Futura™ , 12 x 130 mm,

Beckman) attac hed to a Beckman 11J32 pH meter was used for all pH meas urements . The

electrode was calibra ted daily using standard solutions of pH 7.00 and pH 4.00.

2.2 Electro phores is

SDS PAGE was performed according to the methods described by Laemmli

( 1970) using 12% (w/v) acrylamide (BioRad) diluted from a stock solution (30% w/v

acry1amide and 0.8% bis acry lamide) with separat ing buffer (0.75 M Tri s-HCI, 0.2 1%

w/v SDS, pH 8.8) (tota l volume of20 ml). Polymerization was achieved with the addition

of 17.5 ul N, N, N', N' - tetramethyleth ylenediaminutese (TEME D: Promega) and 120).l1

of a 10% (w/v) so lution of ammonium persulfate (APS: Promega). Stack ing gels were

dilut ed to 3% (w/v) from the same stock solutions (total volume of 5.5 ml) and

polymerized with 80 ).l1of APS and 6 ).l1of TEME D. A BioRad Protean" appara tus was

used for elec trophoresis . Gels were genera lly 7.0 ern long, 10.0 ern wide and 0.75 mm

thick. All samp les were dissolved in SDS samp le buffer (bromop heno l blue, glycerol ,

SDS and DTT). Electrophoresis was carried out at a voltage between 120-l 80V until the

bromophenol blue dye ran off the gel. Gels were stained in 0.25% (w/v) Coo mass ie

Brilliant Blue R-250 (BioRad), 50% (v/v) ethanol (or methanol) and 10% (v/v) acetic ac id

and then destained in 15% (v/v) acetic acid and 20% (v/v) ethanol (or methanol). A



volume of 10 II I of Precision Plus Protein Unstained Standard s (Bio Rad, cat # 161-0363,

10-250 kDa) were used to estimate the molecular weight of the protein.

2.3 Dialysis

Dialysis was performed using either narrow (10 mm width; 12,000 - 14,000 Da

MWCO) or wide (50 mm width; 6,000 - 8,000 Da MWCO) dialysis tub ing (Spectrum,

California). Dialysis tubin g was prepared by heating to -7 0 °C in - 1.8 L of 10 mM

sodium bicarbonat e and I mM EDTA. This was followed by extensive washing (3-4

changes) of deio nized water (dH20). The tubing was left to soak overnight in dH20 and

was then stored at - 4 °C in 70% (v/v) ethanol. Prior to use, the dialysis tubin g was

thoroughly was hed with dH20.

2.4 Spectroscopy

2.4.1 UV-Visible Abso rbance

Protein concentrations were determin ed using UV absorb ance measurements in

either a Beckman DU-64 spectrophotometer or an Agilent 8453 Diode Array

spectrophotometer. Tropomyosin was dialyzed (narrow dialysis tub ing, 12,000 - 14,000

Da MWC O) overnight at - 10 °C against a given buffer and the und issolved protein was

removed by centrifugation at 12,000 rpm (Eppendorf microcentri fuge 54 15D, F45-24-1 1

rotor) for 2 min . For the Beckman spectrophotometer, the instrum ent was calibrated using

dH20 and the absorba nce of both the dialysis buffer and the protein sample was measured

at relevant wavelengths. Measurements were between 0.1-1.0 absorbance unit s. For the



Diode Array spectrophotometer, the instrument was calibrated with air, and the

absorbance of dH20, dialysis buffer and protein were measured at relevant wavelengths.

An extinction coe ffic ient, E280 I mglml,ofO.25 was used after correct ion for scatter by

subtracting 1.5 x A32o(l ohnson and Taylor, 1978). The molar mass of tropomyosin was

taken tobe 66,000 glmole.

2.4.2 Circular Dichroism

Approximately 10 mg of freeze-dried tropom yosin (either mutat ed or non

mutated) was disso lved in 2 ml of buffer (0.1 M KCl, 20 mM potassium phosphate ,

0.0 1% Na azide , I mM EGTA, 1.5 mM OTT , pH 7.0) and dial yzed (narrow dialysis,

12,000 - 14,000 Da MWCO ) overnight against I L of the buffer in the cold room .

Following dial ysis, the sample was centrifuged to remove any insolubl e protein . A protein

concentration of either I or 2 mglml sample was used. Spectra were recorded using a

Jasco 8 10 spectropolarimeter. Mutant and non-mut ant tropom yosins were heated from 5

°c to 65 °C in jacketed cells of varying light path (0.1 mm or 0.2 mm) whil st

simultaneously measurin g the ellipticity at 222 nm . The temperature was controlled by a

CTC-345 circulating water bath. The temp erature increase was perform ed at a rate of

either 30 or 60 °C/hr. The scanning speed of the instrum ent was set at 100 nm/min with

normal sensitivity. The melting temperature was obtained by determining the temper ature

of the norma lized data at 50% unfolding .



2.4.3 Nanodrop

A Thermo Scient ific Nanodrop 2000 machine was used to determ ine the

concentrati on of DNA. The machine was first blanked using 2 III of nuclease free water

and then the absorbance of the sample was measured . Absorbances were measured at 260

and 280 nm and the ratio of the two absorbance measurements indicated the nucleic acid

purity of the samp le.

2.5 Site-directed muta genesis

2.5. / Oligonu cleotide Primers

Custom-made oligonucleotide primers were obtain ed from Operon (Huntsville,

Alabama) . All primers had a melting temperature between 73 and 75 °C. The underlined

nucleotide is the one that differs from the original cDNA. The following primer s were

used for the site-directed mutagenesis :

Mutat ion: Gly24Ala 5 ' TGGACAGAGCTGAGGf AGCCGAGGGAG ACAAGA 3 ' FORWARD

5 ' TCTTGTCTCCCTCGGCT~CCTCAGCTCTGTCCA 3 ' REVERSE

Mutation :Gly27Ala 5 ' GCTGAGGGAGCCGAG Gf AGACAAGAAGGCAG 3 ' FORWARD

5 ' CTGCCTTCTTGTCT~CCTCGGCTCCCTCAGC 3 ' REVERSE

Mutation : 5 ' GCTGAGGCAGCCGAGGf AGACAAGAAGGCAG 3 ' FORWARD

Gly24Ala/Gly27Ala
5 ' CTGCCTTCTTGTCT~CCTCGGCTGCCTCAGC 3 ' REVERSE

Mutation : Thr179Ala 5 ' AGTGA TCTGGAACGT Gf AGAGGAGCGCGCTGAG 3 ' FORWARD

5 ' CTCAGCGCGCTCCTCT~CACGTTCCAGATCACT 3 ' REVERSE



2.5.2 Purification ofpTRC99A Plasmid from BL2] Cells

In this section , all centrifuga tion steps were performed in an Eppendorf

microce ntrifuge 54 15D, F45-24 - 11 rotor at room temperature (RT) . BL21 cells (60 ~ I)

with the expressio n vector pTrc99A (Pharmacia, 27-5007-0 1), which contains the

Atlantic Salmon fast skeletal muscle tropomyosin cDNA, (Jack man et al., 1996) was

used to inoculate 6 ml of LB broth containing 25 ug/ml chloram phenico l and I00 ug/ml

ampici llin was incubated overnight at 37 °C with agitat ion. The DNA from the overnight

culture was purifi ed using the Wizard plus minipr ep kit (Promega) in accordance with

manufactur er ' s instruction s. The cells were sedimented at 12,000 rpm for 2 min and

resuspended in J uo ul of cell resuspension solution. Cell lysis solution (300 ~ 1) was

added and the samples were inverted several times. Neutralization so lution (300 ~I) was

added to and the sample was again inverted several times. Samples were pelleted by

centrifugat ion at 15,000 rpm for 10 min and the supernatant was purified using the resin

provided in the kit. The mini-column was washed using the wash solutio n provided

followed by centrifugatio n at 12,000 rpm for 2 min. 50 ~I of nuclease-free H20 was used

to elute the DNA followe d by a short centrifugatio n at 12,000 rpm .

2.5.3 Site Directed Mutagenesis

Site -directed mutagenesis was carried out by means of the polymerase chain

reaction using the QuikChange Lightnin g Site-Dir ected Mutagenesis kit (Stratagene) . All

reagents, unless otherwise stated, were provided in the kit. Doubl e-stranded DNA

templ ate (10-100 ng), containing the Atlantic Salmon tropomyosin cDNA (Jackman et

al., 1996) was mixed with 5~1 of lOX reaction buffer, 1 ~I of dNTP mix, 1.5 ~I of



QuikSo lution reagent and 125 ng of each of the two custom- made oligonucleotide

primers (Ope ron). The sample was diluted to a final volume of 50 III with sterile dH20

and I III of QuikC hange Lightnin g enzyme was added. DNA was amplified using a MJ

Research Pelt ier Thermal Cycle r 200 machine using the following parameters:

Segme nt Cvc les Temoerature Tim e
I I 95 °C 2 min
2 18 95 °C 20 sec

60 °C 10 sec
68°C 2.5 min

3 1 68°C 5 min

Following amplifi cation , the reaction mixture was digested by addition of2 III of Dpn 1

restriction enzyme and incubation at37 "C for 5 min.

2.5.4 Transformation ofDNA with XLIO-Gold Ultracompetent Cells

p-merca ptoethanol (2 Ill) was added to 45 III ofXLlO-Go ld ultraco mpetent cells

in a pre-chill ed tube and incubated on ice for 2 min. 2 III of Dpn 1 treated reaction mixture

was added to the cells and incubated on ice for 30 min. Afte r 30 min, it was heat pulsed in

a 42 °C water bath for 30 sec followed by incubation on ice for 2 min. 0.5 ml ofNZY+

broth (preheated in a water bath to 42 °C) was added to the reactio n mixture and

incubated at 37 °C for 1 hr with shaking. 100 and 200 III of the transformation reaction

was plated onto LB agar plates containing 251lglml chloramphenicol and 100 ug/ml

ampici llin. The plates were incubated overnight at 37 °C. Follow ing ove rnight

incubation , a colony from the plate was used to inoculate 5 ml of LB broth containing

251lg/ml chloramph enicol and 100 ug/ml ampicillin. The culture was incubated overnight

at37 °C withshaking.



1.5.5 Transformation ofDNA with BL1I Cells

450 ul of O.IM CaCI2 was added to 50 ul of compet ent BL21 cells in pre-chill ed

tubes. 10-100 ng of DNA (purifi ed from XL IO-Gold ultra competent cells, using the same

procedure for purification of DNA from BL21 cells) was added and the sample was

incubated on ice for 30 min; The sample was heat shocked for 60 sec at 42 °C and

incubated on ice for 2 min . 900fil of preheated (42 °C) Super Opt imal broth with

Catabolite repress ion (SOC) medium (Invitroge n) was added and the transformati on

reaction was incubat ed at 37 °C for I hr with shaking. The cell s were concentrated by

centrifugation at 12,000 rpm for 2 min and the entire transformati on reaction was spread

onto LB agar plates containing 25fig/ml chloramphenico l and 100 ug/ml ampicillin. The

plates were incubated overnight at 37 °C. A white colony was used to inoculate 10 ml of

LB broth containing 25 ug/rnl chloramphenico l and 100 ug/ml ampicillin. The cell

culture was incubat ed at 37 °C overnight with continuous agitation. The cell culture was

stored at-8 0 °C in equi- volum e glycerol.

2.6 DNA Sequencing

Mutations were confirmed by DNA sequencing at CREA IT (Memoria l Unive rsity

of Newfo undland, NL, Canada) . The primers (from Operon) used to sequence the

tropomyosin insert of the express ion vector were:

M13/pUC reverse 5 ' AGCGGATAACAA TTTCACACAGG 3 '

pB a d -rev 5 ' ATCA GACCGCTTCTGCGTTC 3 '



CREA IT uses an Applied Biosystems ABI3730x I sequence r that is automatic

exce pt for some prelimin ary set-up. For each sample, 2 ul of 5x sequencing buffer, 0.5 ul

of sequencing mix , 3.2 pmol ofa primer, DNA templat e (at least 500 pmol) and nuclease

free water to obtain a volume of20 ~I was added at RT. Samples were mixed by

vortexi ng briefly in a table top microcentr ifuge. pGEM was set up as a control. A 9800

thcrmocycler (Applied Biosystems) was used for PCR amplificatio n using the following

program: six minut es at 96 °C, 25 cycles at 96 °c for 10 secon ds each, 50 °C for five

seconds, 60°C for four minut es and then 4°C until the samples were removed from the

thermocycler. The samples were again briefly centrifuged at RT.

The Agencourt CleanSEQ system (Agencourt Bioscience) was used to purify the

PCR product for sequencing. Briefly, 10 ~I of Agencourt CleanSEQ magnet ic beads was

added to each sample followed by 62 ~I of85% ethano l (vo l/vo l) and mixed thoroughly.

Samples were placed onto a magnetic plate (Agencourt SPRIPlate 69R). When the

solution was clear (3-5 min), it was aspirated from the sample and discarded. A 100 ~I

aliquot of 85% ethanol (vo l/vol) was added to the sample and after 30 seco nds, the

ethanol was discarded. Thi s ethanol wash was performed again and the sample left to air

dry for 10 min. Deoinized water (40 ~I) was added to the sample after which it was

removed from the magnetic tray. After 5 min, the sample was returned to the magnetic

tray to isolate the DNA. Afte r 5 min, 35 ~I of sample was loaded into the ABI 3730x l for

sequencing. Sequencing results were analyzed using FinchTV from Geos piza and

compared to the cDNA of Atlantic Salmon fast muscle tropom yosin (Access ion #

NM_00 1123656).



2.7 Expression of Tropomyosin in Bacteria

In this section, unless otherwise stated, centri fugation was performed in a

Beckm an J6-HC centrifuge at 4 °C. Bacterial expression of the recombin ant tropomyosin

(mutated and non-mut ated) was performed as described by Jackman et al. (1996). Briefly,

40 ml of LB broth containing 25 ug/ml chloramphenico l and 100 ug/ml ampicillin was

inoculated with 400 J.lIof cells containing the mutated tropomyosin DNA. The cell

culture was incubated overnight at 37 °C with agitation. 4 L of LB broth containing 25

ug/ml chloramphenic ol and 100 ug/rnl ampicillin was inoculated with the 40 ml of

overnight cell culture .

The culture was incubated at 37 °C with shaking and the absorbance at 600 nm

was measured. When the absorbance reached 0.6 - 0.8, express ion of tropomyosin was

induced using 0.5 mM isopropyl P-D-thioga lactopyranoside (IPTG) (overnigh t, 37 °C,

with shaking) . The followin g mornin g, the cells were pelleted in a centrifuge at 4,000 rpm

for 20 minute s. The cells were dispersed in 100 ml of 0.2 M NaCl , 50 mM MOPS , I mM

OTT at pH 7.0 and passed through a French pressure cell at RT. The lysate was mixed

with 1200 ml of the above buffer and stirred for 15 min (RT) following the addition of

PMSF (saturated, in 95% ethanol). Samples were centrifuged at 4,000 rpm for 20 min.

The supernatant was pI precipit ated (4.6) and centrifuged at 4,000 rpm for 30 min .

The pellets were dispersed in 800 ml total of buffer (0.2 M NaCl , 50 mM Tris, 0.5

mM EDTA, 0.25 mM OTT pH 7.9) at - 10°C for 15 min (with PMSF ). Samp les were

centrifuged at 4,000 rpm for 20 min in a Beckm an J6-H C centrifuge. The supernatant



precipitated by ammonium sulfate (45%) followed by centrifugation at 4,000 rpm for 30

min in a Beckman 16-HC centrifuge. Centrif ugation was followed by 70% ammonium

sulfate precipitation of the supernatant. The sample was then centrifuged at 8,000 rpm for

45 min in a Beckma n 12-2 1 centrifuge (JA-1O rotor) at 4 DC.

The pellets were disso lved in dH20 and dialyzed (wide dia lysis, 6,000 - 8,000 Da

MWCO) against dH20 (containing ammoni um bica rbona te and mercaptoethanol) at - 8

DC for 2 days with 4 water changes (for a total of20 L). Fina lly, the dialyzed sample was

lyophili zed .

2.8 Enrichment of Tropomyosin

2.8. / Ion- Exchange Chromatography

Approximately 300 mg of protein was dissolved in 40 ml of filtered starting buffer

(75 mM NaC!, 30 mM Tris, I mM OTI, pH8.0, -10 DC). A 2.5 x 14 em Q Sepharose Fast

Flow column (vo lume of-70 ml) (Ameris ham Biosciences) was equilibrated with -300

ml of the above buffer (fi ltered) at a flow rate of - 15 ml/hr , in the cold room . The pre

spun protei n solution was loaded onto the column at a rate of - 20 ml/hr. The colu mn

was then washed with - 100 ml of starting buffer, at the same rate . The protei n was eluted

from the column by a sa lt gradient of 75 - 500 mM NaC! . Elution occurred at a rate of 

30 ml/hr and fract ions were collected every 9 min. The collected fractions were analyzed

via absorbance at 280 nm and conductivity measurements (COM 80 conductiv ity meter



from Radiom eter) to determin e which fractions contained tropomyosin . Fractions

believed to contain tropom yosin were confirmed via SOS 12% PAGE .

2.8.2 Hydr oxyapatite Chromatography

A 2.5 x 16 cm hydroxyapatite column (volume of - 80 ml) (BioRad) was

equilibrated at room temperature with 300 ml of filtered starting buffer (I M NaC I, 0.0 I%

Na Azide , 30 mM sodium phosphate, I mM orr, pH 7.0) at a rate of -15 ml/hr. The

combined tropomyo sin containing fractions from the Fast Qcolumn were directly loaded

onto the column at 15 mllhr. The column was then washed with - 100 ml of start butTer. A

sodium phosphate gradien t of 30 mM to 250 mM was used to elute the protein at a rate of

- 30 mllhr. Fractions were collected every 9 min . SOS 12% PAG E and absorbance

measurement s at 280 nm were used to determine the tropomyosin containing fractions.

These fraction s were comb ined and dialyzed (wide dialysis tubing , 6,000 - 8,000 Da

MWCO) (in the cold room) over two days against dH20 (containing ammonium

bica rbonate and mercaptoethanol) whi le changing the water four times (for a tota l of

20L). The samp le was then lyophilized. The enrichment of the protein was assessed by

SOS 12% PAG E.

2.9 Proteolytic digestion

2.9.1 Omp-T Digestion

Outer membra ne protease-T (Omp -T) digestion of tropomyo sin was performed as

described by Goona sekara et al., (2007). Appro ximately 13 mg of protein was dissolved

in I ml of buffer (0. 1 M NaCI, 50 mM sodium phosphate, 5 mM EOTA, I mM orr,pH

39



7.0) and dialyzed (narrow dialysis tubing, 12,000 - 14,000 Da MWCO) overnight against

I L of buffer in a cold room. 100 III of E. coli JMI 09 cells were used to inoculate 10 ml

of LB broth and incubated overnig ht at 37 °C with shaking. Following incubation, the

cultures were centrifuged and the pellets were dispersed in I ml of buffer. The reactions

were perform ed at - 10, - 25 or- 37 °C. Usually, 500 ug of dissolved protein would be

digested in I ml of dispersed cells. 100 III of reaction mixture was stopped by I min

centrifugation at 12,000 rpm in a EppendorfCentrifuge 54 150 . The supernatant was

added to dissolving solution and then boiled. Digestion patterns were analyzed on a SDS

12% polyacrylamid e gel.

2.9.2 Chymotrypsin Digestion

Limited proteo lysis by chymotrypsin was carried out as described by Pato el al.

( 1981). 2 mg of chymotryps in was dissolved in 2 mM HCI and dialyzed (narrow dialysis

tubing, 12,000 - 14,000 Da MWC O) overnight. Genera lly - 10 mg of tropomyos in was

disso lved in 2 ml of buffer: 50 mM NH4HCOJ, 0.1 M NaC!, I mM OTT, pH 8.5. The

protein was dialyzed (narrow dialysis tubing, 12,000 - 14, 000 Da MWCO) overnight

against IL of buffer in the cold room. 400 ug of tropomyosin was digested with 0.61lg of

chymotrypsi n (Wo rthington) (- 1:500 enzyme to substrate mole ratio) at 37 °C for 30 min.

At varying time point s, 15 III of reaction mixture was removed and inhibited using - I IlM

lima bean trypsin inhibit or (Worthington) (dissolved in 20 mM Tris , pH 7.5). Digestion

patterns were analyzed on a SDS 12% polyacrylamid e gel.



2.10 Western Blott ing

Weste rn blotting was performed on a chymo tryps in digest ion of non-mut ant

recombin ant tropom yosin (desc ribed in section 2.9.2) as described by Heeley and Hong

(1994). The protein was transferred from SDS-polyacrylamide gels to polyvinylidene

diflou ride membran e (Bio-Rad) in a BioRad mini-Tran s-Blot Electrophoresis Tran sfer

cell. Blottin g was carried out in a buffer of 10 mM CAPS , 10% (v/v) methanol, pH I 1.00

at 60 V for 3 hrs. The membran e was briefly stained (2 min) in 40 % (v/v) methanol,

0.1% Coom assie Brilliant Blue R-250 and destained in 50% (v/v) methanol « 5 min) .

The membrane was then left to air dry. Edman-based sequencing was performed in the

Advanced Protein Technol ogy Center at Sick Children's Hospital, Toronto.

2.11 Calculating Mea n Residue Ellipticity

The mean residue ellipticity (0) of tropomyosin was calc ulated using the following

formula:

[O]=Oobs x 1I5g/mole
10 x L x C

Where: Oobs is theobserve dellipticityi n degreesat222 nm

L isthe length of the cell in cm

115 g1mole isthe averageresiduemolarmass

IOi sfor centimole

And Cistheproteinconcentrationin glcm3



Chapter 3

Results and Discussion

3.1 Purification of DNA from BL21 Plasmids

The initia l step in creating the tropomyos in mutants involved the isolation of the

pTrc99A express ion vector (with tropomyosin insert) from the BL2l cells. A Nanodrop

(Thermo Scient ific) was used to measure the concentration of the DNA. The Nanodrop

gives the ratio for the measurem ents of 260/280, which indicates the nucleic acid purity.

A ratio betwe en 2.0 - 2.2 indicates an acceptable level of protein content. The DNA

samples that were used had a 260/280 ratio of 1.8-2.1. The concentrations of the DNA

were determined to be betwee n80- 120 ng!l!1.

3.2 Nucleotide Sequencing

The mutations of the cDN A of tropomyosin had to be confirmed prior to any

work being done with them. The nucleotide sequencing was carried out in CREAIT and

the results were compared to that of Salmo salar (Atlantic Salmon) fast myotomal muscle

tropomyosin mRNA (access ion # L25609). For each mutant , four samples were submitted

for sequencing and only the samples that contained the desiredmutated nucleotide base

were used for further analysis.

Sequencing of the nucleotid es from the four mutant tropomyosins (by CREA IT)

confirmed that site-directed mutagenesis had mutated the nucleotide s of interest. For the

Gly24A la mut ant, nucleot ide 152 was mutated from a guanine to a cytos ine (Figure 4) . In



Figure 4: Confirmation of the Gly24Ala tropomyosin mutation compared to the
cDNA of Atlantic salmon fast muscle tropomyosin

Only a partial DNA sequence is shown to confirm the mut ation. The mutated base (#

152) is in bold type, und erlined and circled in red.

105 r?frfTrTr? ffr?r?rf?f fnnffrr? ?Hrrf?nf rTrrn@f
GCAGATGCTC AAGCTCGACA AGGAGAATGC CTTGGACAGA GCTGAGGGAG

155 CCGAGGGAGA CAAGAAGGCA GCAGAGGACA AGAGCAAACA GCTCGAGGAT
1111111111111111111111111111 1111111111111111111111
CCGAGGGAGA CAAGAAGGCA GCAGAGGACA AGAGCAAACA GCTCGAGGAT

205 GACTTGGTAG CTCTGCAGAA GAAGCTGAAG GGAACAGAGG ATGAGTTGGA
11111 11111111 1111111 11111 11111 1111111111 1111 111 111
GACTTGGTAG CTCTGCAGAA GAAGCTGAAG GGAACAGAGG ATGAGTTGGA

255 CAAGTACTCT GAGTCTCT TA AGGATGCACA GGAGAAACTT GAGGTGGCTG
111111111 11111111111 1111111111 1111111111 1111111111
CAAGTACTCT GAGTCTCTTA AGGATGCACA GGAGAAACTT GAGGTGGCTG

305 AGAAGACAGC CACGGACGCT GAGGCCGATG TCGCTTCCCT TAACAGACGT
1111111111 1111111111 1111111111 1111111111 111111111 1

AGAAGACAGC CACGGACGCT GAGGCCGATG TCGCTTCCCT TAACAGACGT

355 ATCCAGCTAG TTGAGGAGGA GTTGGATCGT GCTCAGGAGC GGCTGGCAAC
11111111111111111111 1111111111 1111111111 1111111111
ATCCAGCTAG TTGAGGAGGA GTTGGATCGT GCTCAGGAGC GGCTGGCAAC

4 0 5 TGCCCTGACC AAGCTGGAGG AGGCTGAGAA GGCGGCTGAT GAGTCTGAGA
1111 111111 111 1111111 11111111 11 1111 111 111 1111 111111
TGCCCTGACC AAGCTGGAGG AGGCTGAGAA GGCGGCTGAT GAGTCTGAGA

455 GAGGCATGAA GGTCATTGAG AACAGGGCCT CCAAGGATGA GGAGAAGATG
1111111111 1111111111 1111111111 1111111111 1111111111
GAGGCATGAA GGTCATTGAG AACAGGGCCT CCAAGGATGA GGAGAAGATG

505 GAGCTGCAGG ATATCCAGCT GAAGGAGGCC AAGCACATCG CTGAGGAGGC
1111111111 1111111111 11111111 11 111111111 1 1111111111
GAGCTGCAGG ATATCCAGCT GAAGGAGGCC AAGCACATCG CTGAGGAGGC

555 CGACCGCAAA TACGAGGAGG TTGCCCGTAA GCTGGTCATC ATTGAGAGTG
111111111111111111111111111111 1111111111 1111111111
CGACCGCAAA TACGAGGAGG TTGCCCGTAA GCTGGTCATC ATTGAGAGTG

43



Figure 5: Confirmation of the Gly27Ala tropomyosin mutation compare d to the
cDNA of Atlantic salmon fast muscle tropomyosin

Only a partial DNA sequence is shown to confinn the mutation. The mutated (# 161) is in
bold type, underlinedand circled in red.

105 GCAGATGCTC AAGCTCGACA AGGAGAATGC CTTGGACAGA GCTGAGGGAG
111 1111111 11111 111111 1111111 111 111 11111 1 I11 111 1111
GCAGATGCTC AAGCTCGACA AGGAGAATGC CTTGGACAGA GCTGAGGGAG

155 ???n®?f ?ff?ff???f ??f?n?f?f f?f??fff?f ??r??f??fr
CCGAGGGAGA CAAGAAGGCA GCAGAGGACA AGAGCAAACA GCTCGAGGAT

205 GACTTGGTAG CTCTGCAGAA GAAGCTGAAG GGAACAGAGG ATGAGTTGGA
11111111111111111111111111111111111111111111111111
GACTTGGTAG CTCTGCAGAA GAAGCTGAAG GGAACAGAGG ATGAGTTGGA

255 CAAGTACTCT GAGTCTCTTA AGGATGCACA GGAGAAACTT GAGGTGGCTG
11111111111111111111 1111111111 11111I1111 1111111111
CAAGTACTCT GAGTCTCTTA AGGATGCACA GGAGAAACTT GAGGTGGCTG

305 AGAAGACAGC CACGGACGCT GAGGCCGATG TCGCTTCCCT TAACAGACGT
111111111111111111111111111111 1111111111 1111111111
AGAAGACAGC CACGGACGCT GAGGCCGATG TCGCTTCCCT TAACAGACGT

355 ATCCAGCTAG TTGAGGAGGA GTTGGATCGT GCTCAGGAGC GGCTGGCAAC
1111 1111111 11111 11111 1111111 111111 11111 1 111 111 1111
ATCCAGCTAG TTGAGGAGGA GTTGGATCGT GCTCAGGAGC GGCTGGCAAC

405 TGCCCTGACC AAGCTGGAGG AGGCTGAGAA GGCGGCTGAT GAGTCTGAGA
1111111111 1111111111 1111111111 1111111111 1111111111
TGCCCTGACC AAGCTGGAGG AGGCTGAGAA GGCGGCTGAT GAGTCTGAGA

455 GAGGCATGAA GGTCATTGAG AACAGGGCCT CCAAGGATGA GGAGAAGATG
11111111111111111111111111111111111111111111111111
GAGGCATGAA GGTCATTGAG AACAGGGCCT CCAAGGATGA GGAGAAGATG

505 GAGCTGCAGG ATATCCAGCT GAAGGAGGCC AAGCACATCG CTGAGGAGGC
1111111111111I11111111111111111I111111111111111111
GAGCTGCAGG ATATCCAGCT GAAGGAGGCC AAGCACATCG CTGAGGAGGC

555 CGACCGCAAA TACGAGGAGG TTGCCCGTAA GCTGGTCATC ATTGAGAGTG
11111111111111111111111111111111111111111111111111
CGACCGCAAA TACGAGGAGG TTGCCCGTAA GCTGGTCATC ATTGAGAGTG



double mutant, Gly24A la/G ly27A la, showed that the gua nines at position 152 and 161

were mutated to cytosines (Figure 6). For the Thr l79A la mutant, nucleo tide 6 17 was

mutated from cytos ine to guanine (Figure 7).

3.3 Expression of Tropomyosin

Isopropyl P-D-I thioga lactopyranosi de (IPTG) (500 11M)was used to induce the

expression of tropomyosin from cultures ofBL21. Sma ll sca le (app roximate ly 8 ml of

bacteria) induction of tropomyosi n was carried out prio r to large sca le (4 L) inductio n to

ensure that the tropom yosin would be expressed .

Electrop horetic analysis (Figure 8) shows that tropomyosin expression was indeed

induced by IPTG and that it was now one of the major protein components. Enrichment

of tropomyosin was obtained by isoelectric point precipitation and salt-induced

precipitation followed by ion exchange and hydroxyapatite chromatography. Figure 9

shows the elution profile of protein from a Q Sepharose Fast Flow column with a salt

gradient of75-500 mM NaCi . Elect rophoresis (not shown) confirmed that the protein was

eluting in fractions 126-152. These fractions were pooled and loaded direct ly onto a

hydroxyapatite co lumn. This column works because negative ly charged groups within

tropomyosin are adsorbed by Ca2
+ sites and then eluted by a phosphate gradient (10-250

mM phosp hate) . Tropomyosin eluted in fractions 122-145 (Figure 10) were pooled,

dia lyzed agai nst dl-hO and lyophilized. To analyze the enrichment of the various mutants,

the samples were analyzed electrophoretically using loadings of > 15 I1g (Figure II ). At

such a high loading a few trace contaminants are evide nt, but it is clear that the main

compo nent of the protei n



Figure 6: Confirmation of the Gly24Ala/Gly27Ala tropom yosin mutation compared
to the cDNA of Atlantic salmon fast muscle tropom yosin

Only a partial DNA sequence is shown to confirm the mut ation . The mutated base s (# 152
and # 161) are in bold type , underlined and circled in red .

105 rTfrnrTTT ffrTTWfTf fnnffWT TnrrfTfrf rTTrfr®r
GCAGATGCTC AAGCTCGACA AGGAGAATGC CTTGGACAGA GCTGAGGGAG

155 TTrfr@ff TffrffrrTf rTfrnrfTf frfrTmTf rTTTrfrrff
CCGAGGGAGA CAAGAAGGCA GCAGAGGACA AGAGCAAACA GCTCGAGGAT

205 GACT TGGTAG CTC TGCAGAA GAAGCTGAAG GGAACAGAGG ATGAGTTGGA
1 1 1 1 1 1 11 1 1 1 11 1 11 111 1 11 111 1 1 11 11 1 11 111 11 11 1I I 11 1 11 1
GAC TTGG TAG CTCTGCAGAA GAAGCTGAAG GGAACAGAGG ATGAG TTGGA

255 CAAGTACTCT GAGTCTCTTA AGGATGCACA GGAGAAACTT GAGGTGGCTG
111 11 1 111 11 111 11 111 1 11 111 1111111 11I 111 1111 111 111 11
CAAGTACTCT GAGTCTCTTA AGGATGCACA GGAGAAACT T GAGGTGGCTG

305 AGAAGACAGC CACGGACGCT GAGGCCGATG TCGCTTCCCT TAACAGACGT
11111111111111111111 1111111111 1111111111 1I11I11111

AGAAGACAGC CACGGACGCT GAGGCCGATG TCGCTTCCCT TAACAGACGT

355 ATCCAGCTAG TTGAGGAGGA GTTGGATCGT GCTCAGGAGC GGCTGGCAAC
111111111111111111111111111 11 111111111111111111111
ATCCAGCTAG TTGAGGAGGA GTTGGATCGT GCTCAGGAGC GGCTGGCAAC

405 TGCCCTGACC AAGCTGGAGG AGGCTGAGAA GGCGGCTGAT GAGTCTGAGA
111 1111111 1111111111 11111111 11 11 111I1111 I 1 11 1 1 1 1 1 1
TGCCCTGACC AAGCTGGAGG AGGCTGAGAA GGCGGCTGAT GAGTCTGAGA

455 GAGGCATGAA GGTCATTGAG AACAGGGCCT CCAAGGATGA GGAGAAGATG
1111111111 I 1 1 1 1 1 I 1 1 1 11I1111111 1111111111 111I111111
GAGGCATGAA GGTCATTGAG AACAGGGCCT CCAAGGATGA GGAGAAGATG

505 GAGCTGCAGG ATATCCAGCT GAAGGAGGCC AAGCACATCG CTGAGGAGGC
1111111111111111111111111111111111111111111\11111\
GAGCTGCAGG ATATCCAGCT GAAGGAGGCC AAGCACATCG CTGAGGAGGC

555 CGACCGCAAA TACGAGGAGG TTGCCCGTAA GCTGGTCATC ATTGAGAGTG
1 1 111 111 1 11 11 111 111111 111111111111111111 I1 11111111
CGACCGCAAA TACGAGGAGG T TGCCCG TAA GCTGGTCATC AT TGAGAGTG



Figure 7: Confirmation of the Thr179A tropomyosin mutation compared to the
cDNA of Atlantic salmon fast muscle tropomyosin

Only a partial DNA sequence is shown to confirmthe mutation. The mutated base (# 617)
is in bold type, underlinedand circled in red.

405 TGCCCTGACC AAGCTGGAGG AGGCTGAGAA GGCGGCTGAT GAGTCTGAGA
11111 11111 11 111 111111 1111111111 111 111 1111 11 111 11 11
TGCCCTGACC AAGCTGGAGG AGGCTGAGAA GGCGGCTGAT GAGT CTGAGA

455 GAGGCATGAA GGTCATTGAG AACAGGGCCT CCAAGGATGA GGAGAAGAT G
11 111 111 11 11111 111111 11111111111111 11111 1111111111
GAGGCATGAA GGTCATTGAG AACAGGGCCT CCAAGGATGA GGAGAAGATG

505 GAGCTGCAGG ATATCCAGCT GAAGGAGGCC AAGCACATCG CTGAGGAGG C
11111111111111111111 11111111 11 111111111 1 111 111111 1
GAGCTGCAGG ATA TCCAGCT GAAGGAGGCC AAGCACA TCG CTGAGGAGGC

555 CGACCGC AAA TACGAGGAGG TT GCCCGTAA GCTGG TCA TC ATT GAGAGTG
111111 111 111111 111111 111111111111111111 11 11111 1111
CGACCGCAAA TACGAGGAGG TT GCCCGTAA GCTGGTCA TC ATTGAGAG TG

6 0 5 nnrrff?r T®ffYrfY WWnrfr? TTT?fYffrr ?mWnn
ATCTGGAACG TACAGAGGAG CGCGCTGAGC TT TCAGAAGG CAAATG CT CT

6 5 5 GAGCTTGAGG AAGAGTTGAA AACTGTGACC AACAACCTGA AGT CACTGGA
1111 111 111 111111111 1 1111111 111 1111 111111 11111111 11
GAGCTTGAGG AAGAGTTGAA AACTGTGACC AACAACCTGA AGTCACTGGA

705 GGCCC AGGC T GAGAAGTACT CACAGAAGGA GGACAAGTAC GAGGAGGAGA
1111111 111 11111111 11 1111111111 111 11111 11 111111 1111
GGCCCAGGCT GAGAAGTACT CACAGAAGGA GGACAAG TAC GAGGAGGAGA

755 TCAAGGT CCT CACCG ACAAG CTGAAGGAGG CTGAGACTCG T GCTGAGTTC
1111111111 11111111 11 111111111111111111111 1111111111
TCAAGGT CCT CACCG ACAAG CTGAAGGAGG CT GAGACTCG TGC TGAGTTC

805 GCTGAAAGAT CAGTAGCCAA ACTTGAGAAG ACCATCGACG ACTTGGAAGA
111 1111111 111 1111111 111111111 1 11111 1111 1 11 1111 1111
GCTGAAAGAT CAGTAGCCAA ACTTGAGAAG ACCATCGACG ACTTGGAAGA

855 TGAGTTGTAT GCCCAGAAA C TGAAGTACAA GGCCATCAGC GAGGAGCTGG
111111111111111 11111 11111 11111 1111111111 1111111111
T GAGT TGTAT GCCCAGAAAC TGAAGTACAA GGCCA TCAGC GAGGAGCTGG



250 kDa -+

37kDa -+

15kDa -+

2 3 4 5
Figure 8: SDS PAGE ana lysis of a lysate of IPTG-indu ced BL21 cells contai ning

Gly24Ala tro pomyos in

5 ml ofLB broth (containing 25 ug/ml of chloramphenicol and 100 ug/rnl of ampicillin)

was inoculated using 5 III of BL2 1 cells containing the mutation. The samples were
induced with 500 Il M IPTG when the absorbance was between 0.6-0.8 at 600 nm and
then incubated overnight at 37 °C. 100 III of sample was pelleted and disso lved in 50 III of

SDS buffer. 4 III (lanes 2 and 3) or 8 III (lanes 4 and 5) were loaded onto a 12% (w/v)
polyacrylamide gel which was stained in Coomassie Brilliant Blue R-250. Lane I is a

collection of molecular weight markers; lanes 2 and 4 are uninduced BL21; lanes 3 and 5

are induced BL21. The arrow indicates the tropomyosin-containing band.
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Figure 9: Q Sepha rose Fas t Flow chro matog ra phy pr ofile of cr ude recom binant

tropomyosin

Column dimensions, 2.5 x 14 ern; buffer , 30 mM Tris, I mM DTT, pH8.0; salt gradient ,
75-500 mM NaCI; temperature , 10 °C. The absorbances (black circles) were measured at
280 nm using a Beckman DU-64 spectrophotometer. Conductivities (red diamonds) were
measured using a Radiometer CDM 80 conductivity meter. Data correspo nding to the
isolation of the double mutant Gly24A la/Gly27Ala were used to create the graph.

Fractions 126-152 contained tropomyosin (indicated by a horizontal bar).
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Figure 10: Hydroxyapatite chromatography profile of recombinant tropomyosin

Column dimensions, 2.5 x 16 em; buffer, 1M NaCl, 0.01% Na Azide" I mM DTT, pH
7.0; phosphate gradient, 30-250 mM sodium phosphate; temperature, -25 °C. Again the
absorbances from the double mutant Gly24Ala/Gly27Ala were used to create the graph.

Fractions 122-145 contained tropomyosin (indicated by a horizontal bar).
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Figure 11: SDS PAGE analysis of highl y-enriched mutant and non-mutant

tropomyosins

Lane I - Gly24A la; Lane 2 - Gly27Ala; Lane 3 - Gly24Ala/Gly27Ala; Lane 4 

Thrl79Ala; Lane 5 - non-mutant recombinant tropomyosin; Lane 6 - molecular weight
marker. More than 15ug of protein was loaded unto lanes 1-5. Lane 6 contained 10 ul of
molecular weight markers The 12% (w/v) polyacrylamide gel was stained in Coomassie

Brilliant Blue R-250.



samples is tropom yosin. The yield was - 20 mg of enriched tropomyosin per litre of

growth medium.

3.4 Heat-Induced Unfolding

Circular dichroi sm was used to determine the meltin g temperatures of the four

mutant tropomyosins and the recombin ant non-mut ant tropomyosin. Unfolding profiles

were developed by monitoring the ellipticity at 222 nm as a function of temperature. The

samples were exposed to temperatures from 5-65 -c, at a rate of 30 or 60 °C / hr. The

average of the first 5 data point s (5-6 "C) was taken to be the starting (100 %) ellipticit y

and the average of the last 5 data points (64-65 °C) was taken to be the end (0%)

ellipticity. Each sample was analyzed eight times, (exce pt for Gly24A la which was

analyzed three times) and the results were average d in order tocreate a normalized

melting curve of the samples. The formula used to calculate the norm alization was:

8- 8!mJj
8stan-8end

Where : a is the ellipiticity of the sample at thc particular temperat ure
aendis theaverageendingelIipticity and
asianis the average startingelIipticity

The meltin g temperature was taken to be the temperature at which there was a 50%

signal change.

As can be seen in Figures 12-16 there is close agreement of the melting

temperatures and the profil es amongst the samples for each of the four mutants and the

non-mut ant trop omyosin . Table 2 indicatesthatthe standarddeviations for the

tropomyosins ranged from 0.12 °C (Gly24A la) to 0.97 °C (Thr I79A la). Figure 14 and
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Figure 12: Normalized curve of the melting profiles of three samples of Gly24Ala
tropomyosin

Unfolding was monitored at 222 nm from 5-65 °C in a 0.1 mm cell. 2 mg/ml of
tropomyosin was dissolved in 0.1 M KCI, 20 mM potassium phosphate, 0.01% Na azide,

1 mM EGTA, 1.5 mM DTT, pH 7.0.
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Figure 13: Nor ma lized curve of the melting profiles of eight sa mples ofGly27Ala

tr opom yosin

Conditions as described in Figure 12.
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Temperature (degreesC)

Figure 14: Normalized curve of the melting profile s of eight samples of

Gly24Ala /Gly27Ala tropom yosin

Conditio ns as described in Figure 12.
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Temperature (degreesC)

Figure 15: Normalized curve of the melting profiles of eight samples of Thrl79Ala
tropomyosin

Conditions as described in Figure 12.
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Figure 16: Nor ma lized cu rv e of th e meltin g profil es of eight sa mples of non-mutan t

tr opom yosin

Conditions as described in Figure 12.
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Table 2: Aver age meltin g temperatures and standar d deviations of the non -mutant

and mutant salmon tropomyosins

Average r' C) Standard deviation

Non-mutated 37.0 ± 0.8 1
(n=8)

Gly24A la 36.9 ± 0.12

(n=3)

Gly27A la 37.3 ± 0.33
(n=8)

Gly24Al a/Gly27 Ala 38.1 ± 0.73
(n=8)

Thrl79Ala 40.7 ± 0.97
(n=8)



Table 2 indicates that Gly24Ala and Gly27A la have very similar me lting temperatures

(36.9 and 37.3 °C respectively) which were both lower than that of Gly24Ala/Gly27Ala

(38. 1 0C). Comparing these three mutants to the control tropomyosin (melting

temperatur e of37 .0 0C) it appears that a single mutation of glycine to alanine in either

position 24 or 27 does not have a significant effect on the melting temperature of

tropomyosi n. However, the presence of both mutations does have a small effec t because

the melting temperature has increased by approximately I 0c.

From the heat-indu ced unfoldin g experiment s, it appears that glycine (salmon

tropom yosin) as opposed to glutamine or alanine (rabbit tropomyosin) in positions 24 and

27, has a destab ilizing effec t on the protein. It was sugges ted by Goo naseka ra et at.

(2008) that the two glycines at the N-terminus end of salmon tropomyosin would resu lt in

flexibility of the protein at natural temperatures. It is evident in Ramachandran plots

(Creighton, 1993) that glycine allows the protein to adopt a larger range of phi and psi

angles which results in a more flexible protein.

Thrl 79Ala mutant had a significantly higher meltin g temp erature (Table 2)

compared to the non-mut ated tropomyosin and the Gly24A la, Gly27 Ala and

Gly24A la/Gly27 Ala mutants. Comparing the 20 amino acid differences amongst salmon

and rabbit tropom yosins (Table I), the mutation of alanine (rabbit) to threonine (salmon)

is the only one that occurs in either an 'a' or a 'd' position. It is also important to note that

this results in a polar side chain and it occurs in a region of known instabilit y (Lehrer,

1978). As a result of having a threonine in position 179, there are three consecutive "d'

amino acids that contain destabilizing amino acids (lie at 172 and Ser at 186). Thus



having the destabilizing threonine at residue 179 appears to reduce the stability of

tropomyosin by lowering the melting temperature from 40.7 (without the threonine in

position 179) to 37.0 °C.

Based on the results of the unfolding experiments, the conformational stability of

the various tropom yosin changes in the following order: non-mu tant (least stable) e

Gly24Ala ::::Gly27Ala < Gly24AIa/Gl y27A1a< Thrl79Ala (most stable). In comparing

the melting profile s of Gly24A la, Gly27Ala, Gly24AIa/Gly27Ala , Thrl79Ala and the

non-mutated tropom yosin (Figures 17-20), it appear s the mutated tropomyo sins unfo ld

more cooperati vely compar ed to the non-mutated form.

3.5 Chymotrypsin Digestion

Limited proteolysis was used to examine the effec t that a threonineat position l79

has on the conform ational stability of Atlantic salmon tropomyosin compared to alanine

in the same position , as occurs in rabbit tropomyos in. Chymotryps in cleaves peptide

bonds on the C-terminal side of phenylalanine , tyrosine, tryptophan, leucine and

methionine. The initial cleavage site of chymotrypsin in rabbit tropomyosin is residue 169

(leucine) (Pato and Smilli e, 1981), which is only 10 amino acids away from the threonine

at residue 179.

Time studies were performed at temper atures of 10, 25 and 37 °C. At the highest

temperature (Figure 2 1) both the Thrl79Ala mutant and non-mutant are rapidl y degraded

to a large fragment which runs just under the band correspondin g to intact protein ona



- Gly24AI.l

- Gly27AI.l

- Gly24Alal Gly27A1a

Temper l ure (degreesC)

Figure 17: Compari son of the averaged, normalized melting curves of the three
glycine mutants

The curves are color coded: Gly24Ala , blue; Gly27 Ala, red and Gly24Ala/Gly27 Ala,

green.
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- Gly24Ala

- Gly27Ala

Temperature (degreesC)

Figure 18: Comparison of the averaged , normali zed melting eurves of two glycine
mutants and the non-mutant tropom yosin

The curves are color coded: Gly24Ala, blue ; Gly27Ala, red and non-mutant, green
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Figure 19: Comparison of the averaged, normalized melting curves of th e doubl e
glycine mutant and the non-mutant tropomyo sin

The curves are color coded: Gly24Ala/Gly27Ala, blue; and non-mut ant, green
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Temperature (degreesC)

- Thr179Ala

Figure 20: Comp arison of the averaged , norm alized melt ing curves of the threon ine
mutant and the non-mutant tropomyosin

The curves are color coded: Thrl79Ala, blue; and non-mutant , green
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Figure 21: Comparison of the susceptibility of non-mutant and Thr179Ala

tropomyosins to limited chymotryptic digestion at 37 "C.

Buffe r: 50 mM NH4HC03, 0.1 M NaCl , I mM DTT, pH 8.5 . Enzyme to substrate mo le

ratio - I :500 . The reaction was stopped by mixing with lima bean trypsin inhibi tor and

freezi ng until prepara tion for electrophores is. The two tropo myosi ns were digested side

by-si de .

Non-m utated trop om yosin - Lanes 1, 3, 5, 7 and 9. T I79A mutant - Lanes 2, 4,6,8 and

10. Lanes I and 2 have no chymo tryps in and the ensuing lanes represe nt increasing

intervals of tim e (2, 10, 20 and 30 mins.) The entire 12% (w/v) polyacrylam ide gel which

was stained in Coo mass ie Brill iant Blue R-250 is show n.

The two fragm ent s that were sequenced follo wing wes tern blott ing are indi cated as either

Aor B.

Insert: Lane I - limit ed chymotrypsin digestion of non -mutant trop om yosin , Lane 2 

molecular we ight mark ers (BioRad).



12% SDS polyacrylamide gel (Figure 2 1, lanes 3 and 4), suggestive of a terminally-

located cleavage event (ie removal ofa small peptide). With cont inued incubation this

fragment breaks down such that there are larger changes in mobility, sugges tive of

cleavage at 'i nternal' sites (ie well within the molecule). The major sub-fragment after 30

min is positioned halfway down the gel, j ust above the 20kDa marker (Figure 2 1, insert).

Judging from the banding patterns changing the I79th amino acid has not led to the

production of a unique fragment. However, it has altered the proteo lytic suscep tibility of

some peptide bonds. For example, after 30 min the large fragment correspo nding to the

control tropomyos in has disappearedfrom thegel but thatcorresponding to the mutant is

present in detecta ble amounts (Figure 2 1, lanes 9 and 10). These results, which depict a

clear difference in the rate of digestion between the two tropomyosin s are strong evidence

to suggest that a threonine at position 179 in the salmon tropomyosin is destabilizing

relative to alanine.

Aswouldbeexpected, lessextensiveproteolysisisapparentat the lower

temperatures, although the terminal cleavage is complete after 10 min for both

tropomyosins (Figures 22 and 23). At 25 °C (Figure 22), the control (lanes 5, 7 and 9), but

not the mutant (lanes 6, 8 and 10) is seen to contain small amounts of a lower Mr peptide

in the middle of the gel. Figure 23 shows the same experiment repeated at 10 °C. Again

the large fragment is rapidly produced, but in this instance there is no distinction in the

rates of further degradation.

The results of these three experiments suggest that threonine 179 contributes to

the conformational stability of tropomyosin. However , these effects are most



10

Figure 22: Co mpa r ison of th e susceptibility of non-mut an t and T hrl79Ala

tropomyosins to limit ed chymotry ptic digestion at 25 DC.

The two tropomyosins were digested side-by-side. Buffer: 50 mM NH4 HC0 3, 0. 1 M
NaCl, I mM OTT, pH 8.5. Enzyme to substrate mole ratio - 1:250. The reaction was

stopped by mixing with lima bean trypsin inhibitor and freezing until preparation for

electrophoresis .

Non-mutated tropom yosin - Lanes 1, 3, 5,7 and 9. TI7 9A mutant - Lanes 2,4 , 6, 8 and

10. Lanes I and 2 have no chymotrypsin and the ensuing lanes represent increasing
intervals of time (2, 10, 20 and 30 mins.) The entire 12% (w/v) polyacrylamide gel which

was stained in Coomass ie Brilliant Blue R-250 is shown.



10

Figure 23: Compar ison of th e susceptibility of non-mutant and T hrl 79Ala
tr opom yosins to limited chymotry ptic digestion at 10 · C.

Conditions as described in Figure 22 except that a temperature of 10 · C was used.

Non-mutated tropomyosi n - Lanes 1, 3, 5, 7 and 9. T I79A mutant - Lanes 2,4, 6, 8 and
10. Lanes 1 and 2 have no chymotrypsin and the ensuing lanes represent increasing
intervals of time (2, 10,20 and 30 mins.) The entire 12% (w /v) polyacrylamide gel which

was stained in Coomassie Brilliant Blue R-2S0 is shown.



noticeable at a temperature near the melting temperature of the protein (-37 °C). The

difference in the relative stability of the Thrl79Ala tropomyos in and the non-mutant

tropomyosin at the three temperatures is in good agreement with the results of the heat

induced unfolding experiments in section 3.4. When the tropomyosin is heated to 10 °C,

the non-mutant tropomyosin is, on average, 97.2% folded, whereas Thrl79Ala is 97.9%

folded. At 25 °C, non-mutant tropomyosin is approximately 83.4% folded compared to

Thrl79Ala which is 85.7% unfolded. Howeve r, at 37°C the non-mutant tropomyosin is

50.6% folded whereas Thr l79Ala is stil164.8% folded. These compariso ns suggest that at

temperatures below 25 °C all of the chymotrypsin sites are equally accessib le on the non

mutant and Thrl79A la tropomyosin. However, at higher temperatures, some are

differen tiallyaccessible(witht heexceptionof theterminalsite)such thatthereis

enhanced breakdown of the mutant relative to the control.

3.6 Sequencing of Chymotrypsin Fragments

Sequencing was performed on two chymotrypsin digestion fragments of the non

mutant tropomyosin . Fragment A (as indicated in Figure 21), which in the previous

section was alluded to as the large fragment and which is the major product at short

incubation times was subjected to II cycles of sequencing and Fragment B (indicated in

Figure 21), a fragment which increases in prominence at later times , underwent six

sequencing cycles. The results from Fragment A were: Lys-Leu-Asp-Lys-Glu-Asn-Ala

Leu-Asp-Arg-Ala. Those results from Fragment B were: Lys-Leu-Asp-Lys-Glu-Asn. By

comparing these results to the known sequence of salmon skeletal tropomyosin (Heeley el



al., 1995), it was determin ed that the N-terminal residue for both fragments was Lys l2 .

These resu lts show that the initial chymotrypsin cleavage site on recombinant salmon

tropomyosin (at 37 °C) is between residues Leull and Lys l2. Althoug h chymo trypsin

usually cleaves proteins on the C-terminal side of aromatic amino acids, it occasio nally

cleaves on the C-terminal side of leucine. The initial chymo tryptic cleavage site on

recombinant salmon tropomyosin is not the same as that of rabbi t skeleta l tropomyosin

(Leu 169) (Pato and Smillie , 1981). One possib le explanation for this difference is that the

recombinant tropomyosi n is unacetylated. Research has shown that having an

unacetylated methionine at residue I causes the protein to be more destabil ized at the N-

terminus (Hi tchcoc k-DeGregori and Heald , 1987; Greenfie ld et al., 1994; Frye et al.,

2010) . This destabi lization could be the reason as to why the recombinant salmon

tropo myosin is initially cleave d by chymotry psin near the N-terminus. A second

exp lanation for the difference in initial cleavage is the presence of the double glycine in

the salmon tropo myosi n. Howeve r, this exp lanation is less likely since there is no

diffe rence in the site of Omp -T digestion (whic h cleaves near this site at residue 6) in

salmon tropo myosi n com pared to rabbit tropomyosi n (Goonasekara et al., 2007).

While the non-flankin g cleavage sites were not charac terized in this work

specu lation is possib le in the case of Fragme nt B. The electrophoretic mobil ity of B

corresponds to an appare nt molecular mass of -26,000 Da (Figure 2 1 insert) which is

consistent with the remova l of some 40 amino acids from the carboxy l term inus. In this

regard, there is a conserve d phenylalanine at residue-24 1. Thus, it is possible (but

obvio usly not prove n) that fragment B is com prised of residues 12-24 1.



The initia l internal cleavage site ofThrl79Ala was not determined but it appears

that it is the same as the non-muta nt tropomyosin because the fragment sizes look to be

identical. Figure 21 shows that following two minutes of digestion (lanes 3 and 4), the

two samp les had equa l amounts of the large fragment. This result suggests that the initial

cleavage site is not affected by Thrl79.

3.7 Omp- T Dige stion

Outer memb rane protease-T (Omp-T) is a bacteria l endoprotease (180,000

g/mole) having trypsin-like activity that selectively cleaves tropom yosin between Lys-6

and Lys-7 only (Goonasekera et al., 2007) . Removal of the amino-terminal hexapeptide

results ina small,but detectab le shift in electrophoret ic mobility (Goonaseka raetal.,

2007). Given the location of the scissile peptide bond , Omp-T digestion was carried out in

order to determi ne ifglycine (at res-24 and 27) influences the conformational stability of

theN-terminal end of tropomyosin.

Figures 24, 25 and 26 show the Omp-T digestion patterns ofGly24Ala and non

mutant tropo myosin at 10,25 and 37 °C respec tively . Incomplete Omp-T digestion

prod uces two closely spaced protein bands with no other bands appea ring on the gel. At

all three temperatures it is appa rent that the non- mutanttropomyosin is more readily

cleave d compared to the Gly24Ala mutant. For example, afte r one hour of digestio n at 10

°C (Figure 24), the non-mut ant tropomyosin is approxi mately 50% digested (lane 3)

whereas the Gly24A la mutant is largely intact (lane 4) . Figure 25 indica tes that after 30
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Figur e 24: Comparison of the Omp-T digestion of non-mutant and Gly24A la
tropomyosins at 10 ·C as analyzed by SDS PAGE

Two separate digestions were performed in parallel. 500 fig of a give n tropomyosin was
diges ted using a I ml suspension of JM I09 cells as described in Materials and Methods.
At set times aliquots of 100 ul of reaction mixture were removed and the reaction
immediately stopped by centrifugation and boilin g the supernata nt in the presence of an
equivo lume of SOS sample bu!fer.

Approximately I fig of protein was analyzed on a SOS 12% (w/v) polyacrylamide gel
which was stained with Coo mass ie Brilliant Blue R-250. The reason for the diffuse
staining apparent in lane 4 is unknown . The full (non-sec tioned) ge l is presented to
confirm that prote olysis had not occurred at multiple sites (Goo nasekara etaI 200 8).
Arrows in lane 3 correspond to intact tropomyosin and cleaved tropo myosin .

Lanes 1,3 , 5, 7 and 9 contain non-mutant tropomyo sin. Lanes 2, 4, 6, 8, and 10 contain
Gly24Ala. Lane s 1 and 2 contain non-dig ested protein and the subsequent lanes are from
samples taken at 1,2 ,3 and4hourdigestiontimes.
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Figure 25: Compa r ison of the Omp -T digestion of non-mut ant and Gly24Ala
tr opom yosins at 25 · C as anal yzed by SDS PAGE

Conditions are as described in Figure 23, except that T = 25 · C. In this and all ensuing
Figures only the tropomyosi n-containing section of the 12% (w/v) polyacrylamide gel is
shown.

Lanes 1, 3, 5, 7 and 9 contain non-mutant tropomyosin. Lanes 2, 4, 6, 8, and 10 contain
Gly24A la. Lanes I and 2 contain non-digested protein and the subsequent lanes are from
samples taken at 5, 10, 20 and 30 min digestion times.
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Figure 26: Compar ison of th e Omp -T digestion of non-mutant and Gly24Ala
trop omyosln at J'r X;

Conditions are as in Figure 24, except that T = 37 DC.

Lanes 1, 3,5 ,7 and 9 contain non-mutant tropomyosin. Lanes 2, 4, 6, 8, and 10 contain
Gly24Ala. Lanes 1 and 2 contain non-digested protein and the subsequent lanes are from
samples taken at 5, 10, 20 and 30 min digestion times.



minutes digestio n at 25 °C, the non-mut ant tropomyosin is completely cleaved (lane 9),

whereas the Gly24Ala tropomyosin is mostly intact (lane 10). The same trend is evident

for digestion at 37 -c (Figure 26).

Figures 27, 28 and 29 respectively show the Omp-T digestion patterns of

Gly27Ala and non-mu tant tropomyosin at 10, 25 and 37 °C. Similar to the Gly24Ala

mutant, the non-mut ant tropomyosin is more susce ptible to cleavage by Omp-T at all

three temperatures. Following one hour of incubation at 10 °C (Figure 27) , approxi mately

50% of the non-mutant tropomyosin had been cleaved (lane 3) whereas none of the

Gly27Ala had been cleaved (lane 4). Figures 28 and 29 show that after 30 minu tes, the

non-mut ant tropomyosin was 100% cleaved (lanes 9) whereas the Gly27A la mutants still

had some intact tropomyosin present (lanes 10).

The results of these digestions suggest that the mutations at residues 24 and 27

have affected the stability of the N-termin al end of tropomyosin. These result s show that

the stability of a protein can be affected by a mutation that is 20 and 17 residues away .

The glycine appears to make the N-terminus of the protein more flexibl e (compared to

alanine and glutamine in the same position) allowing Omp-T greater accesss to the

peptid e bond between residues 6 and 7.

Further digestions were carried out to determin e if the rate of cleavage varied

between the Gly24A la and the Gly27A la mutants and to see if having both mutations in

the protein had a different effect. Figures 30 (A and B) compare the rate of digestion by
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Figure 27: Co mpa r ison of th e Omp -T digestion of non-mut ant and Gly27Ala
tropomyosin at 10 °C

Conditions are as in Figure 24.

Lanes I, 3, 5, 7 and 9 contain non-mutant tropomyosin. Lanes 2, 4, 6, 8, and 10 conta in
Gly27Ala. Lanes I and 2 contain non-d igested protein and the subsequent lanes are from
samples taken at 1, 2, 3 and 4 hour digestio n times.
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Figure 28: Compar ison of the Omp-T digestion of non-mutant and Gly27Ala
tropomyosin at zS f'C

Conditions are as in Figure 24, except that T = 25 °C.

Lanes 1, 3, 5, 7 and 9 contain non-mutant tropomyos in. Lanes 2, 4, 6, 8, and 10 contain
Gly27Ala. Lanes 1 and 2 contain non-digested protein and the subsequent lanes are from
samples taken at 5, 10, 20 and 30 min digestion times.
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Figur e 29: Comparison of th e Omp- T digestion of non-mutant and Gly27Ala
tropomyosin at J r X'

Conditions are as in Figure 24, except that T = 37 · C.

Lanes 1,3 ,5,7 and 9 contain non-mutant tropomyosin. Lanes 2,4,6,8 , and 10 contain
Gly27Ala. Lanes 1 and 2 contain non-digested protein and the subsequent lanes are from
samples taken at 5, 10, 20 and 30 min digestion times.



Figure 30 A & B: Compar ison of the susceptibility of th e th ree glycine mutant
tro pomyosins to Omp-T digestion at 2S · C

Conditions as in Figure 24 except that T = 25 · C and three tropom yosins were digested
side-by-side.

A. Lanes 1, 4 and 7 contain Gly24Ala tropomyosin. Lanes 2, 5, and 8 contain Gly27Ala.

Lanes 3, 6 and 9 contain Gly24Ala/Gly27Ala. Lanes 1, 2 and 3 contain non-digested

protein and the subsequent lanes are from samples taken at 15 and 30 min digestion times.

B. Lanes I and 4 contain Gly24Ala tropomyosin. Lanes 2 and 5 contain Gly27Ala. Lanes

3 and 6 contain Gly24Ala/Gly27Ala. Lanes 1, 2 and 3 contain samples taken at 45 min

digestion time and lanes 4, 5 and 6 were from 60 min digestion time.



Omp-T between Gly24A la, Gly27A la and Gly24A la/Gly27A la at 25 °C. As can be seen

in Figure 30B, afte r 60 minutes, the Gly24Ala/G ly27 Ala mutant (lane 6) has only

approxi mately 50% cleavage whereas the Gly24A la (lane 4) and Gly27A la (lane 5) both

have a significa nt more amount of cleavage . There did appear to be a difference in the

rate of digestions between Gly24A la and Gly27A la. Figure 30A shows that after 15 min

of incubation, Gly27Ala (lane 5) had approx imately 50% of intact protein remaining,

whereas Gly24Ala (lane 4) had more intact protein remainin g.

Figure s 3 1 (A and B) shows the Omp-T digestion patterns ofGly24Ala, Gly27A la

and Gly24Ala/Gly27Ala at 10 °C. The results are similar to those obtained by digestion at

25 -c.Following 30 min of digestion (Figure 31A), digestion had started on the Gly24Ala

(lane 4) and Gly27 Ala mutants (lane 5), whereas the Gly24Ala/G ly27 Ala (lane 6) is still

completely intact. There also appeared to be a difference in the rate of digestion between

Gly24A la and Gly27Ala. Figure 3 IB shows that after four hours of digestion, the

Gly27Ala mutant (lane 8) had - 50% cleavage compared to the Gly24A la (lane 7) which

showe d less digestion .

From these digestions it can be surmised that the rate of digestion is: (in

decreasing susce ptibility to Omp- T) non-mutant > Gly27A la > Gly24A la >

Gly24A la/Gly27A la. It was anticipated that the non-mut ant trop omyosin would have the

faster rate of digestion because there are glycines (as opposed to alanine or glutamine) at

both residues 24 and 27. The glycines causes the protein to be more flexible (and

therefore more conformationally unstable) because they allow it to adopt more phi and psi



Figure 3 1 A & B: Co mparison of th e susceptibility of the three glycine mut ant
tro pomyos ins to Omp -T digestion at 10 °C

Conditions as in Figure 24 except that T = 25 °C and three tropomyos ins were digested
side-by-side.

A. Lanes 1,4 and 7 contain Gly24Ala tropomyosin. Lanes 2, 5, and 8 contain Gly27Ala.

Lanes 3, 6 and 9 contain Gly24Ala/Gly27Ala. Lanes 1, 2 and 3 contain non-digested

protein and the subsequent lanes are from samples taken at 30 and 60 min digestion times.

B. Lanes 1, 4 and 7 contain Gly24Ala tropomyosin. Lanes 2, 5, and 8 contain Gly27Ala.

Lanes 3, 6 and 9 contain Gly24Ala/Gly27Ala. Samples were taken at 120 min (lanes 1, 2

and 3), 180 min (lanes 4, 5 and 6)and 240 min (lanes 7,8 and 9).



angles. As well, Serrano et al. (1992) showed that alanine stabilizes the glycine compared

to glycine.

The result s of the Omp-T study suggest that a substitution at positions 24 or 27

affects the stability of the protein at the farN-te rminus end ofth e protein at all

temperatures. It is also shown that the substitutions at positions 24 and 27 do not have an

equal affect on the stability of the far N-terminus. Having a glycine at position 24 causes

increased instability at the far N- terminus compared to having a glycine at position 27,

and a glycine at both residues causes greater instability.



Chapter 4

Conc lusions and Future Directions

4.1 Conclusions

The majority of research on amino acid contribution to the stability ofaprotein

has been carried out on globularproteins (Gianese et al ., 2001; Hayley et al ., 201 1). This

thesis focused on the protein tropomyosin in order to gain an understand ing of the role

that some amino acids play in the cold-adaptation of rod-shaped proteins. The specific

goal was to exa mine the effect that three amino acids have on the conform ational stability

of salmon trop omyosin . It was hypothesized that the threonine at position 179 increases

the flexibility of the protein because the presence ofa polar hydroxyl group in the (large ly

hydrophobic) corewouldreduce stabilit y ofth e coiled-coil.lt wasthoughtthatthe

glycines at positions 24 and 27 would increase flexibil ity due to the fact that the hydrogen

R group allows the main chain to adopt a greater range of phi-psi angles. Th ree single

mutations (Gly24A la, Gly27A la and Thr l79A la) and one double mutation

(Gly24AlalGly27A la) of Atlant ic salmon fast muscle tropomyosin were made by site

directed mutagenesis. Salt and pI precipi tation were used to enrich the protein followed

by Q-sepharose Fast Flow and hydroxyapatite chromatogra phy . Protein enrichment was

verified electrophoretica lly on a 12% SDS polyacrylamide gel (Figure I I).

Circular dichroi sm was used to study the global conformational stability of the

protein . Omp -T and chym otryp sin digestions were employed to examin e the

conformatio nal stability of the protein at localized regions . When protein unfolding is



monitored by circular dichroi sm, there is no indicati on that there is a difference in the

stabili ty ofGly24A la, Gly27A la and non-mu tated tropomyosin because all three had

simi lar melting tempera tures (36.9, 37.3 and 37.0 °C, respectively) (Figure 18 and Table

2). However, the resu lts of the Omp-T digestion experiments demonstrated that there was

a local dif feren ce, spec ifically within the amino-terminal region . At three temperatures

(10,25 and 37 °C), non-mutated tropomyosin was diges ted more read ily compared to

Gly24A la and Gly27Ala (Figures 25-30) . These results sugges t that replacing a glycine

with an alanine causes an increase in the flexibility at this end 0 f the molecule. This

finding confirms those from a previous study by Serra no eta l. ( 1992) which showed that

having a glycine instead of an alanine in a-helices leads to an increase in protein

flexib ility. Nevzorov et al. (20 11) reported simila r results when they replaced Glyl26 of

tropomyosin with an alanine.

The Gly24AlaJGly27Ala mutant had a higher melt ing temperature (38.1 "C)

compare d to the single glycine mutants and the non-mut ant tropomyosin (Figures 17 and

19 and Table 2). As well, the double glycine mutant was less susce ptible to Ornp-T

digestion compared to the single mutants (Figu re 30 and 3 1). These results infer that the

presence of both glycines has additive influence on the flexibilit y of the N-terminu s

compared to a sing le glycine. It also showed that, compared to a single glycine, the

double glycines not iceably affec t thestabi lityofa significa nt stretc h of the molecule,

such that the difference can be detected by circular dich roism.

In rabbit skeletal tropomyosi n the amino acids at positions 24 and 27 are

glutamine and alanine respectively. It can be hypothesized that the glycines are
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advantageo us to the protein at a temperature of 10 °C, which is ncarthe sa lmon's natural

temperat ure , beca use they allow for more flexibility in the protei n. Without the glycines ,

such as the case with rabbit tropomyosin, the protei n would be rigid at such a low

tempera ture . Excess ive rigid ity can be predicted to adversely affec t the functio n of

tropom yosin via its interactions with other proteins at the N-terminal end, including itself.

Research that has been done on globular proteins proposes thatpsychrop hiles have an

increased number of glycines compared to mesop hiles and thermop hiles and that the

glycines have a grea ter tendency to appea r in cluste rs (Felle r et a/.. 1997). The evide nce

presented in this thesis indicates that rod shaped psychrophili c proteins also incorpora te

glycine cluste rs in order to create a more flexible and less stab leprotei n. Glycine

residues increase the flexibility of the protein because it allows for more phi and psi

angles so that the back bone is not as constrained as it would be wit h other amino acids

(Creighton 1993).

Omp-T digestion revea ls that the glycine at posi tion 24 had a somewhat greater

influence on the N-terminal flexibi lity of the protein compared to the one at position 27. It

also shows that one mutation can affect the stability of the protein atleast 21 residues

away from the original mutation. The results of the Omp -T digestio ns sugges t the

influence that the glycines have on the stability of the protein increased in the order :

Gly27 > Gly24 > Gly24/G ly27 .

From the Omp-T digestions and thermal induced unfold ing experiments it can be

deduced that glycines 24 and 27 affec t the N-terminal flexibi lity of the protein but their

individual contri butions are not sufficien t as to be detected bycirculardichroism .
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However, their additive effects do bring about a change in the stability of the complete

protein as indicated by the thermal unfoldin g experiments.

It is unusual to have a threonine in a core position of tropomyosin because the

polar side chain hasa tenden cy to destabili ze the helix. An alaninei s atpositionl 79in

rabbit ske letal tropomyosi n. The Thrl 79Ala mutant had the greates t increase in melting

temperature compared to the non-mut ant tropomyosin. Replacing the threonin e with an

alanine at position 179 resulted in an increase in the meltin g temperature from 37.0 °c to

40 .7 °c (Figure 20 and Table 2). Chymotryps in digestion pattern s between Thrl 79Ala

and the non-mut ant tropomyo sin shows that the non-mutant sample was more susce ptible

to proteolysis at sites other than the initial cleavage site (Figures 21-23) . Both the heat

induced unfoldin g and chymotrypsin digestion experiments show that replacing the

threonine at position 179 with an alanine leads to an increase in protein stability and a

decrease in protein flexibility . This result is in agreement with a study performed by

Tripet et al. (2000) where they show that an alanine in a 'd ' position of a coiled-co il

peptide is more stable than a threonine in the same position. It is likely that the salmon

tropom yosin, whi ch naturall y occurs at marine temperature s of below 10 "C, has

incorpora ted a threonin e at this position in the helix in order to increase the flexibi lity of

the protein .

A mutation from threonine to alanine increased the melting temperature by 3.5 °c

(from the non-mutant tropom yosin), whereas the single glycine to alanine mutations did

not significantly increase the melting temperature and a double glycine to alanine

mutation increased the melting temperature by I "C (which is on the border line of



detection with the l asco 810 spectropolarimeter). The results of the heat induced

unfold ing experiments sugges t that the presence ofa threonine at position 179 has a

greater influen ce on the global stability of the molecule compar ed to glycines at positions

24 and/o r 27. This can be rationalized on the basis ofThrl 79 occupying a core "d'

position in the coiled-coil, whereas the Gly24 and Gly27 occur at 'c' and 'f positions

respectively. Further , res idue 179 occur s in a region of the molecule that, in the case of

the mamm alian protein, is intrinsically unstable (Lehrer, 1978; Betch er-Lange and

Lehrer, 1978) and contains disease mutations (Thierfelder et al., 1994).

Edman based sequencing of a fragment of the non -mutant recombin ant

tropom yosin produced by limited chymotryp sin digestion revealed that the initial

cleavag e site was betwe en Leull and Lysl2 . This site is different from the initial

cleavage site of wild type rabbit a-tropom yosin which initiall y cleaves on the C-terminal

side of Leu l69 (Pato et al., 198I a). The difference between the initial sites of cleavage

may be due to the fact that the recombinant tropom yosin that was used for the experiment

was not N-acety1ated becau se that has been shown to increase the stabilityof the N

terminal (Hitchcock -DeGregori and Heald, 1987; Greenfie ld et al., 1994; Frye et al.

20 10). It is also possible that the difference in cleavage sites is due to a decrease in

stability caused by the two glycines (residues 24 and 27) that are present in the salmon

tropomyosin but not the rabb it. The results of the chymotryps in digest prove that the

presence ofa threonine at position 179 causes the protein to be more susceptibl eto

chymotrypsin digestion at sites remo ved from the amino terminu s. Thi s fact is illustrated

in Figure 2 1 where the digestion pattern of the non-mut ant tropomyosin is compared to



that of the Thrl79Ala mutant. The effect that the threonine has on the protein's stability is

more noticeab le at 37 °C compared to 10 and 25 "C, although the reasons being are not

yet clear. It seems that Thrl79 does not affect the N-terminal stability of the protein

because the initial rate of cleavage between Leul l and Lys l2 appears to be the same for

the non-mutant and Thr l79Ala.

It can be concluded from the results of the heat induced unfo lding, Omp -T

digestions and chymotry psin digestion experime nts that the glycines at positions 24 and

27 and the threonine at position 179 all contribute to the stability of salmon skeletal

tropomyosin . The heat induced unfoldin g experiments sugges t that the threonine has a

greate r impact on the overa ll stability and flexibility of the protein in con trast with the

two glycines . Omp-T digest ions show that both of the glycines con tribute to the flexibility

of the N-term inal but they do not contrib ute equally. The stab ility of the four mutants and

non-mutant tropomyosinsdecreased in the order:

Thr I79A la>Gly24AlalGly27Ala>Gly27Ala>Gly24Ala>non-mutant.



4.2 Future Direction s

The resea rch presented in this thesiscanbeexpanded uponi norderto unders tand the

amino acids that are important in maintaining flexibility in rod-shaped psychroph ilic

proteins.

~ Chymot rypsi n digest ion can be performed to determine whet her the difference in

initial cleavage site of rabbit tropomyosin and salmon tropomyosin is due to the

lack of ace tylation of the recombin ant salmon tropomyos in or due to the presence

of two glycines at the N-terminu s. The rate of proteolysis at the initial cleavage

site would have to be compared amongst the wild -type, non-mutant recombina nt

and double glycine mutant tropomyosins. If they are the same for the double

mutant and the non-mutant but diffe rent for the wild type , then the cleavage site is

due to the lack of acetylation of the recomb inant proteins. However if they are the

same for non-mut ant and wild type proteins but di fferent for the double mutant ,

then the cleavage difference is caused by the glycines .

~ Omp-T digest ion of the Thrl79Ala mutant would conclus ively de termine if the

threonine at position 179 has any influence on the stabilityoftheN-terminal. A

difference in the digestion patterns between this mutant and the non-mut ant

tropomyosin would confirm that Thrl 79 contributes to the N-termi nal stability. If

there was dissimil arity, an Omp-T digestion between that mutant and the three



glycine mutants would give an indication as to how much of a contribution it

makes to the protein ' s N-terminal stability.

> An obvious future avenue of investigation would be to investigate the effec t of the

mutations on the interac tion of tropomyosin with other thin filament proteins. For

example, experiments performed by Singh and Hitchcock-DeGregori (2006)

indicat e that there are amino acids between residues 165-188 that are essential for

actin bindin g and it would be interesting to determin e ifresidue l79 wasone these

residue s. The interaction between tropom yosin and actin can be studied by

sedimentation in an ultracentrifu ge. - Howeve r, in this instance a requirement

would be to express the protein in a eukaryotic ce ll line so that the tropomyosinis

acetylated, because as stated early in this thesis unacteylated tropomyosin binds

weakly to act in (Hitchcoc k-DeGrego ri and Heald 1987).

> The core of the troponin complex (Take da et al., 2003; Vinogradova et al., 2005),

comprising the 1 and C subunits together with the T2 portion of T, attaches to

tropo myosi n approx imately two-thirds of the way along the molecule (Pirani et

al., 2006) in the vicinity of cysteine- I90 (summarised in Stewa rt and McLachlan

1976 and Heeley et al., 1987). Support for such an arrang ement includes the

results of chemical cross-linking (Chong and Hodges 1982) and the sensitivi ty of

a fluorescent probe attached at this cysteine to troponin-T fragment T2 (Morris

and Lehrer 1984). Thus, residue 179 again appears to lie in a critical region.

Tropomyosin-trop onin bindin g is conveni ently assaye d using Sepharose affinity
90



media to which one of the proteins has been cova lently attached (Pearlstone and

Smillie 1982). For example, tropomyosin (either mutant or non-mut ant) could be

chromatographed in a column containing imm obilized whole troponin or

troponin-T by linearly increasing the concentration of sodium chloride. Then, the

affinities of the various tropomyosins can be assesse d by comparing the

conductivi ties of the chromatography fractions having maximum UV absorption.

~ A mutation from a lysine (rabbit) to a threonine (salmon) at residue 77 ('g')

results in the loss of an ion pair in the salmon tropomyosin compared to the rabbit.

Heat-induced unfoldin g experiments and proteol ytic digestion (Omp-T and

chymo trypsin) can be used to determine if this mutation has any effect on the

stability and flexibil ity of the protein. Site-direc ted mutagenesis can be used to

mutate threonin e in salmon to a lysine.
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