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Abstract

The ubiquitous nature of location tracking technologies has resulted in an increase
in movement data being collected. These data are used in many contexts, such as
understanding animal migration, aiding in fisheries enforcement, or managing fleets of
taxicabs. Such large volumes of data call for more efficient data visualization and analysis
methods. This research provides a general approach to the analysis of movement data,
named Hybrid Spatio-temporal Filtering (HSF), which allows analysts to filter data based
on characteristics of movement within a geovisual analytics environment. Filtering

signatures are defined by combining movement path ity (fractal dimension) and

velocity, to extract behavioural patterns from data sets. An evaluation within a fisheries
enforcement case study (using VMS data), and comparison to other approaches,

confirmed the approach is useful, easy to use, and superior to some other approaches.

“This research d the value of signature-building filtering for large

movement data sets.
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Chapter 1 Introduction

1.1.  Context and problem

Understanding physical and cultural features often involves the ability to represent
these features, locate them within a given coordinate system, and sometimes record their
changes or movements through time (Langran, 1992). The collection and analysis of
spatio-temporal data, such as GPS tracking data, population migration data, or socio-
economic data, has become an integral part of many decision-making processes

(Andrienko et al., 2007b; Tomaszewski et al., 2007). In particular, governments, as well

as public and private izations, have become i ingly reliant on data,
or data about how tracked objects change through space and time. These data are
routinely used to analyze traffic flows (Andrienko et al., 2007a; Chen et al., 2011;
Willems et al., 2009), manage infrastructure (Bomberger et al., 2006; Mano et al., 2010),
manage fleets of vehicles (Jeung et al., 2010; Lundblad et al., 2008; Pfoser et al., 2005),
or better understand animals or ecosystems (Bertrand et al., 2007; Focardi et al., 1996;
Meirell et al., 2002; Nams, 2005; With, 1994). Even individuals now have access to large
amounts of personal movement data, through mobile phone localization, or services such
as Google Latitude, FourSquare, or image geotagging (Eagle & Pentland, 2009;
Hollenstein & Purves, 2010).

These data can provide a rich source of information that can help understand
complex processes inherent to movement (Andrienko et al., 2008). Of particular interest
are behaviours and patterns. Behaviours are defined as being "the configuration of

characteristics corresponding to a given reference (sub)set” (Andrienko et al., 2008). In



other words, a behaviour is a set of characteristics that, when used to filter a data set,

consistently isolates related subsets of data (patterns). Andrienko & Andrienko (2007)

place behaviours into three sub- ies: Individual fours (IMB),
Momentary Collective Behaviours (MCB), and Dynamic Collective Behaviours (DCB).
The sub-categories can also be viewed as a hierarchy, with IMB focusing on individual

behaviours, such as transit between locations, MCB focusing on the behaviour of a pre-

set of indivi , such as co-location of two related indivi and DCB
focusing on global behaviours, such as migration. These categories can provide an
effective guide in defining a particular behaviour, and therefore how to detect it.

In contrast to behaviours, Andrienko et al. (2008) define patterns as
"representations of behaviour in some language, e.g. natural, mathematical, graphical". In
this sense, a pattern can be thought of as a single representation of a behaviour, with
many patterns potentially representing the same behaviour and one pattern being
potentially composed of multiple simpler patterns. Viewed another way, Dodge et al.
(2008) define patterns as "any recognizable spatial and temporal regularity or any

ip in a set of data". These are then divided into two sub-

categories: generic patterns, such as dispersion or symmetry, and behavioural patterns,
such as foraging or migration. Again, these sub-categories can be viewed as a hierarchy,
with behavioural patterns being composed of generic patterns. Conceptually, generic
patterns can be related back to the concept of IMB, whereas behavioural patterns are
composed of MCBs or DCBs. Therefore, to understand and detect behaviours, it is crucial

to start with generic patterns.



One of the issues when working with movement data is that the data sets can be
quite large, and many of the traditional analysis methods do not scale well to these sizes
(Andrienko & Andrienko, 2007; Jern et al., 2008). As a result, analysts trying to make
sense of those data often have to sift through a large amount of data with inefficient
methods, leading to potentially valuable information being missed, due to information
overload. This is compounded by the representational issues associated with large
amounts of data, wherein viewers can get into "needle in a haystack" types of situations
(Keim et al., 2004; Ware, 2004).

By focusing on behaviours and patterns, one can begin to analyze phenomena
such as group dynamics (Andersson et al., 2008; Jeung et al., 2010), temporal cycles

(Andrienko et al., 2008; Eagle & Pentland, 2009; Wood et al., 2007), movement patterns

(Dem3ar & Virrantaus, 2010; Kwan, 2000; Murawski et al., 2005), or attraction/repulsion
dynamics (Gottfried, 2011), while filtering out much of the data which are not relevant to
the analyst. Studying behaviours and patterns can also provide considerable insight into
the external phenomena driving behaviour, as well as helping in their prediction
(Andrienko & Andrienko, 2007). For instance, a better understanding of what external
phenomena cause "road rage" behaviours could lead to the elaboration of a predictive
model, helping urban planners that want to prevent these types of behaviours.

Many approaches have been proposed to gain a better understanding of these
movement processes, with some inspired from biological behaviours. Optimal Foraging
Theory (OFT), for instance, attempts to model the way in which predatory animals
foraging for food might behave (Bartumeus & Catalan, 2009; Charnov, 1976). It does this

by looking at the energy balance between energy spent foraging against energy derived



from the prey. This energy balance often results in a form of correlated random walk
model which exhibits fractal properties, such as a Lévy flight (Marell et al., 2002).
Deviations from the optimal foraging behaviour can then be analyzed to provide insight
into the particular behaviour being exhibited by the animal.

Another approach is that of representing the movement data to promote its visual
analysis. This is typically addressed by either traditional cartographic approaches,
interactive geovisualization approaches, or automated clustering approaches, each having

their benefits and C; i such as Hiig d’s space-time

cube (Higerstrand, 1970), which plots two-dimensions of space against time within a
three-dimensional cube, allow the viewer to quickly understand how movements and
interaction took place, both through space and time. However, using traditional
approaches the viewer cannot directly manipulate the data, unlike interactive
geovisualization techniques (Andrienko et al., 2007a; Kraak, 2003; Turdukulov et al.,

2007; Wood et al., 2007; Zhao et al., 2008). These allow for more specific questions to be

studied through visual ions and i ive filtering and highlighting. However,
they also require more time and effort than automated clustering techniques, such as Self
Organizing Maps (SOMs) (Choi et al., 2006; Koua & M.-J. Kraak, 2004). Automated
clustering enables rapid analysis of large data sets, but with a high computational cost and
limited customizability or transparency.

Movement data can also be analyzed using purely mathematical modeling (Franke
etal., 2004), statistical (Gurarie et al., 2009; Underwood & Chapman, 1985), or data-
mining approaches (Li et al., 2006). These approaches analyze the data and report results

without necessarily having to visualize the data set. In cases where the results are



visualized, usually only the extracted patterns are represented. For very large data sets,
this is an obvious advantage, as is the primarily algorithmic nature of these approaches.
However, this can also lead to analysts missing specific aspects of behaviour, or
anomalous patterns, which they may have noticed had the data been visually represented.
These approaches also suffer from a lack of transparency, in that analysts may not be able
to identify the effects of the automated processes on their data.

Most of these proposed approaches adopt a particular perspective, be it biological,
geovisual, or mathematical. However, few approaches combine these multiple
perspectives, to achieve a more integrated and holistic approach. Integrated approaches

may help analysts deal with the very large amount of data that are often associated with

data sets. Parti ining foraging theory (Bartumeus & Catalan,

2009) and complex filtering in an interactive geovisual analytics environment (Ho & Jern,
2008; Johansson & Jern, 2007; Lundblad et al., 2008; Tomaszewski et al., 2007) can
provide a generalized hybrid approach to analyzing these large movement data sets.

Further, many of the proposed approaches in this domain have not been evaluated
in terms of usability or usefulness, nor have they been compared to one another in any
meaningful sense. Doing so could provide considerable insight into the situations where
one approach may be superior to others. It may also identify potentials for improvement

or integration of various approaches.



1.2.  Questions and hypothesis
The primary research questions to addressed in this thesis are:

‘Which movement characteristics can be used to build signatures that identify specific

behaviours?

How can a geovisual analytics environment be designed to effectively allow for visual

exploration of large movement data sets?

How can a geovisual analytics environment be designed to maximize usability among

analysts?

Does the approach developed improve analysts' ability to extract movement patterns

from their data sets?

How does the proposed approach compare in terms of usability and effectiveness with

existing approaches?

The research hypothesis is that a geovisual analytics system allowing filtering on
multiple characteristics of movement will improve analysts' abilities to both deal with

large amounts of movement data and find interesting patterns within them.

1.3.  Goal and objectives
The goal of this research is to elaborate, implement, and test a novel hybrid

approach to the analysis of data, combining the istics of in

a geovisual analytics environment, as well as studying the situations where this method,
and others, may be most suitable for use.

To attain this goal, the specific research objectives of this thesis are:



Study characteristics of movement that can be used to filter the data, and their relation

to movement patterns and exhibited behaviours.

2. Design an efficient geovisual analytics environment for the visual exploration of large
movement data sets.

3. Design a generic approach to complex filtering of movement data such that specific
movement pattern signatures can be elaborated.

4. Implement the approach using a prototype software system.

5. Validate the usability and usefulness of the approach, using fisheries enforcement as a
case study.

6. Compare the approach to other approaches within this same fisheries enforcement

case study setting.

1.4.  Methods

The research methodology followed by this thesis is summarized in Figure 1.1,
and has proceeded in a generally linear fashion, from identification of research questions,
to design, implementation, validation, and finally comparison. Literature review and
communication with experts, the research community, and various other interested parties
was ongoing throughout the project. The information gained from these interactions, and
from reviewing existing works, informed every aspect of the project and helped in
identifying directions. The application of the concepts into a prototype system and the
validation process both generated issues that required communication with experts. As a
result, there was continual interaction between the practical and theoretical aspects of this

work.



The initial literature review helped identify the current state knowledge in fields
related to movement data visualization and analysis. The fields of behavioural ecology,
pattern detection, and geovisual analytics, provided information as to how to support the

analysis of large movement data sets. From these, the combination of fractal dimension,

to i path ity, and velocity was hypothesized to lend itself to

the detection of specific behaviours. This, combined with the concepts of interactive

filtering, signature building, and geovisualization, composed the core of the design.

Literature review

Rapid Application Development (RAD)|
Design
o Hybrid fitering
 Fractal dimension
o Velocity
© Temporal
|+ Behaviour signatures
o Interactive geovisualization

| Implementation
| NASA WorldWind framework

o Herative approach

se—
Approach validation
'+ Participant recruitment, by DFO

B
Comparison study
Parlcipant recruitment, by DFO
Mostings
Use of muliple systems
Feedback through Interviews

T

1y

Communications
+ Presentations: departmenta, conforences
+ Moatings: domain experts, study participants, other researchers
+ Publications: journal artcles, conference proceedings, thesis

Figure 1.1. Flow of research and related methods.



The design was then implemented on top of an existing virtual globe
geovisualization system, i.e. World Wind. An iterative approach similar to that of Rapid
Application Development (RAD) (McConnell, 1996) was followed, with design and
implementation proceeding feature by feature. Features were implemented from a user-
centered viewpoint, ensuring that each element of the implementation was usable and
understandable by the target user group, in this case data analysts.

The final phase of the RAD process was the validation of the approach
implemented by the prototype system. This was achieved by the use of a field trial
method applied to a fisheries enforcement case study. Fisheries and Oceans Canada
(DFO), a partner in the larger project this thesis falls under, were asked to select a number
of fisheries enforcement officers which were familiar with the analysis of vessel
movement data. The data used for this project were provided by DFO, and extracted from
their Vessel Monitoring System (VMS) database for the year 2009. It covered all of
Atlantic Canada, from the Gulf of Saint Lawrence to the edge of the Grand Banks of
Newfoundland, and from the Southern coast of Nova Scotia to Northern Labrador.

The field trials were conducted in both St. John's, NL (April, 2011), and
Dartmouth, NS (June, 2011), on an individual basis. In total, nine enforcement officers
participated in the approach validation. Officers were asked some background

information to assess experience levels, used the prototype system, and then answered a

This i ire, based on the T I3 Model (TAM)
(Davis, 1989), yielded quantitative and qualitative feedback as to the usefulness and ease

of use of the system.
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