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Abstract

The ubiquitous nature of location tracking technologies has resulted in an increase

in movement data being collected. These data are used in many contexts, such as

understanding animal migration, aiding in fisheries enforcement, or managing fleets of

taxicabs. Such large volumes of data call for more efficient data visualization and analysis

methods. This research provides a general approach to the analysis of movement data,

named Hybrid Spatio-temporal Filtering (HSF), which allows analysts to filter data based

on characteristics of movement within ageo visuala nalyticse nvironment.F iltering

signatures are defined by combining movement path complexity (fractal dimension) and

velocity, to extract behavioural patterns from data sets. An evaluation within a fisheries

enforcement case study (using VMS data), and comparison to other approaches,

confirmed the approach is useful, easy to use, and superior to some other approaches.

This research demonstrates the value of signature-building filtering approaches for large

movement data sets.
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Chapter 1 Introduction

1.1. Context and problem

Understanding physical and cultural features ofte n involves the ability to represent

these features, locate them within a given coordinate system, and sometimes record their

changes or movements throu gh time (Langran, 1992). The co llection and analysis of

spatio-temporal data, such as GPS tracking data, populati on migration data, or socio­

economic data , has become an integral part of many decision-m akin g processes

(Andrienk o et aI., 2007b ; Toma szewski ct aI., 2007). In particu lar, governments, as well

as public and private organizations, have become increasingly reliant on movement data,

or data about how tracked objec ts change through space and time. These data are

routinely used to analyze traffic flows (Andrienko et aI., 2007a; Chen et aI., 20 11;

Willem s et aI., 2009), manage infrastructure (Bomberger et aI., 2006; Mano et aI., 20 10),

manage fleets of vehicles (Jeung et aI., 20 I0; Lundblad et al., 2008; pfoser et aI., 2005),

or better understand animals or ecosys tems (Bertrand et aI., 2007; Focardi et al., 1996;

Marell et aI., 2002; Nams, 2005; With, 1994). Even individuals now have access to large

amounts of personal movement data, through mobile phone localization, or services such

as Google Latitud e, FourSquare, or image geotagg ing (Eag le & Pentland, 2009;

Hollenstein&Purves, 2010 ).

These data can provid e a rich source of information that can help understand

comple x processes inherent to movement (Andrienk o et aI., 2008). Of particular interest

are behaviour s and patterns. Behaviours are defined as being "the configuration of

characteristics corresponding to a given reference (sub)set" (Andr ienko et aI., 2008). In



other words, a behaviour is a set of charac ter istics that, when used to filter a data set,

consis tently iso lates related subsets of data (patte rns) . Andrienko & Andrienko (2007)

place behaviour s into three sub-categories : Individu al Moveme nt Behaviour s (1MB),

Momentary Co llective Behaviours (MC B), and Dynamic Co llective Behaviours (DCB).

The sub-categor ies can also be viewed as a hierarchy, with 1MB focusing on individual

behaviour s, such as transit between locations, MCB focusing on the behaviour ofa pre­

determined set of individual s, such as co-location of two related individu als, and DCB

focu sing on global behavi our s, such as migration. These ca tegor ies can provid e an

effective guide in definin g a particul ar behaviour , and therefore how to detect it.

In contrast to beha viour s, Andrienko etal. (2008) defin e pattern s as

"represent ations of behaviour in some language, e.g . natural , mathematica l,graphical". In

this sense, a pattern can be thought of as a single representat ion ofa behaviour, with

many pattern s poten tiall y representing the same behaviour and one pattern being

potent ially composed of multipl e simpler patterns . Viewed another way, Dodge et al.

(2008) define patte rns as "any recognizable spatia l and tem poral regu larity or any

interestin g relationship in a set of movement data". T hese are then d ivided into two sub­

catego ries: generic pattern s, such as dispersion or symmetry, and behav ioura l patterns,

such as foraging or migration . Aga in, these sub-catego ries can be viewe d as a hierarchy,

with behavioural pattern s being composed of generic pattern s. Co nceptua lly, generic

pattern s can be relat ed back to the concept of 1MB, whereas behavioural pattern s are

composed of MC Bs or DCB s. Therefore, to understand and det ect behaviour s, it is crucial

to start w ith generic pattern s.



One of the issues when workin g with movement data is that the data sets can be

quit e large, and many of the traditi onal analysis methods do not sca le well to these sizes

(Andrienko & Andrienko, 2007; Jern et a I., 2008). As a result , ana lysts trying to make

sense of those data often have to sift through a large amount of data with inefficient

methods, leadin g to potenti ally valuable information being missed, due to information

overload. Thi s is compounded by the representational issues assoc iated with large

amount s of data , wherein viewer s can get into "needle in a haystack" types of situations

(Keim etal., 2004 ; Ware , 2004) .

By focusin g on behaviour s and patterns, one can begin to analyze phen omen a

such as group dyn ami cs (Andersson etal., 2008; Jeung et al. , 20 10), temp oral cycles

(Andrienko et aI., 2008 ; Eagle & Pentland , 200 9; Wood et aI., 2007), movement patterns

(Demsar & Virrant aus, 20 10; Kwan, 2000; Mura wski et aI., 2005), or attraction/repulsion

dynam ics (Gott fried, 20 11), whil e filter ing out much of the data which are not relevant to

the analyst. Stud ying beha viour s and pattern s can a lso provide considerable insight into

the extern al phenom ena drivin g behaviour, as well as helpin g in their prediction

(Andrienko & Andrienko, 2007). For instance, a better understandin g of what external

phenomena cause "road rage" behaviours could lead to the e laboration of a predict ive

model , helping urban planner s that want to prevent these types of behaviour s.

Many appr oaches have been proposed to gain a better understandin g of these

movement processes, with some inspired from biological beha viour s. Optim al Foraging

Theory (OFT), for instanc e, attempt s to model the way in whi ch pred atory animals

foragin g for food might behave (Bartumeus & Catalan, 2009; Charnov, 1976). It does this

by lookin g at the energy balance between energy spent foragi ng aga inst energy derived



from the prey. Thi s energy balance often results in a form of co rrelated random walk

model which exhibits fractal properties, such as a Levy flight (Mare ll et aI., 2002) .

Deviations from the optimal foraging behaviour can then be analyzed to provide insight

into the particular behavi our being exhibited by the animal.

Another approach is that of representin g the movement data to promote its visual

analysis. Thi s is typicall y addressed by either traditional cartographic approaches,

interactivegeovisualization approaches, orautomatedclusterin g appro aches, each having

their benefit s and drawb acks. Cartographic approa ches such as Hagerstand ' sspace-time

cube (Hagerstrand , 1970), which plots two-dimen sions of space aga inst time with in a

three-dimen sional cube, allow the viewer to quickly understand how movements and

interaction took place, both through space and time. However, using traditional

approaches the viewer cannot directly manipulat e the data, unlike interactive

geovis ualization techniqu es (Andrienko et aI., 2007a; Kraak, 2003; Turdukulov et aI.,

2007; Wood et aI., 2007; Zhao et aI., 2008). These allow for more spec ific questions to be

studied through visual representations and interactive filtering and highlighting. However,

they also requir e more time and effort than automated clustering techniqu es, such as Self

Organizing Maps (SOMs) (Choi et aI., 2006; Koua & M.-J . Kraak, 2004). Automated

clustering enables rapid analysis of large data sets, but with a high computational cost and

limitedcustomizabilit y ortransparency.

Movement data can also be analyzed using purely mathematical modelin g (Franke

et aI., 2004) , statistic al (Gurari e et aI., 2009; Underwood & Chapman, 1985), or data­

mining approaches (Li etal., 2006). These approa ches analyze the data and report results

without necessarily having to visualize the data set. In cases wherethe results are



visua lized, usually only the extracted patterns are represented . For very large data sets ,

this is an obvio us advantage, as is the primarily algorithmic natu re of these approac hes .

However, th is can also lead to analysts missing spec ific aspects of behaviour, or

anomalous pattern s, which they may have not iced had the data been visually represented .

These approaches a lso suffe r from a lack of transparency, in that analysts may not be able

to identi fy the effec ts of the autom ated processes on their data.

Most of these proposed approac hes adopt a particular perspect ive, be it biological,

geovis ual, or mathematical. However, few approac hes combine these multipl e

perspectives, to achieve a more integrated and hol istic approac h. Integrated approac hes

may help analysts deal wi th the very large amount of data that are ofte n associa ted wit h

movement data sets. Parti cul arly, combining forag ing theory (Bartumeus & Cata lan,

2009) and complex filter ing in an interactive geo visual analytics environme nt (Ho & Jern,

2008; Johansson & Jern , 2007; Lundblad et aI., 2008 ; Tomaszewski et aI., 200 7) can

provide a genera lized hybrid approach to ana lyzing these large movement data sets .

Further, many of the proposed approac hes in this domain have not been evaluated

in terms of usab ility or usefulness, nor have they been compared to one anot her in any

meanin gful sense . Doin g so could provide conside rable insight into the situat ions where

one app roach may be superior to others. It may also identi fy potenti als for improve ment

or integration of various approac hes .



1.2. Questions and hypothesis

The prim ary resear ch que stions to addresse d in this thesis are:

• Which movem ent characteristics can be used to build signatures that identi fy speci fic

behaviours?

• How can a geov isua l analytics environment be designed to effective ly allow for visual

exploration of large movement data sets?

• How can a geov isua l analytic s env ironment be designed to maximiz e usabilit y among

analysts?

• Does the approach developed improve analysts' abilit y to extrac t movement patterns

from their dat a sets?

• How does the prop osed appr oach comp are in term s of usabilit y and effectiveness with

existin g approaches?

The resear ch hyp othesis is that a geovisual analyt ics syste m allowing filterin g on

mu ltiple char acteri st ics of movement will improve analysts' abilitie s to both deal with

large amounts of movement data and find interesting pattern s within them.

1.3. Goal and object ives

T he goa l of this research is to elabora te, implement, and test a novel hybrid

appro ach to the analysis of movement data, combining the characterist ics of movement in

ageovisua l analytics env ironm ent , as well as studying the situations where this method,

and others, may be most suitable for use.

To attain this goal, the spe cific research objectives of this thesis are:



1. Study characteristics of movement that can be used to filter the data, and their relation

to movement patte rns and exhibited behaviour s.

2. Design an effic ient geovis ual analytics enviro nment for the visual exploration of large

movem ent data se ts.

3. Design a generic app roach to complex filtering of movement data such that spec ific

movement pattern signatures can be elaborated.

4. Implement the approach using a prototype so ftware sys tem.

5. Validate the usabilit y and usefulne ss of the approach, using fisherie s enforcement as a

case study.

6. Compare the approac h to other approaches within this same fisher ies enforcement

case study sett ing.

1.4. Methods

The research methodology followed by this thesis is summarized in Figure 1.1,

and has proceed ed in a generally linear fashion, from ident ificat ion of research questions,

to design, implement ation , valid ation , and finally comparison. Literature review and

communication with experts, the research community, and various other interested parties

was ongo ing throughout the proj ect. The informati on gained from these interactions, and

from rev iewing existin g work s, informed eve ry aspect of the project and helped in

identi fying direct ions. The application of the concept s into a prototype sys tem and the

validation proces s both gener ated issue s that requir ed communication with experts. As a

result , there was continual intera ction betwe en the practic al and theoretical aspects of this

work.



The initial literature review helped identify the current state knowledge in fields

related to movement data visuali zation and analysis. The fields of behavi oural ecology,

pattern detection , and geovisual analytic s, provided information as to how to support the

analysis of large movement data sets. From these, the combination of fractal dimension,

to characteri ze movement path comp lexity, and velocity was hypothesized to lend itself to

the detection of specific behaviours. This, combined with the concepts of interactive

filtering , signature building , and geovisualizatio n, compo sed the core of the design .

Literature review

Rapid Applieation Developm enl (RAD)

Design

• HYbrj~ fi~~;~~1 dimension

o Ve/oeity
a Temporal

• Behaviour signatures
e lnteractive geovisualization

I: NA~~£~~:~~~~~~~rk
IItera tive approach

Approach validation
• Part ieipanlreeruitmenl,byDFO
• Meetings

~~:~b:eu:e
o Questionnaire
o Comments

I:

Compar ison study 'I
Partieipanlreeruilment. byDFO
Meetings
Use of mullip/e systems
Feedbaekt hrou ghlnterviews

Communicat ions
• Presentations: departmental, conrerences
• Meetings: domalnex perts, study participants, other researchers
e Publications: journal articles, conference proceedings, thesis

Figure 1.1. Flow of research a nd related meth ods.



The design was then implemented on top of an ex isting virtual globe

geovis ualizatio n sys tem, i.e. World Wind. An iterative approac h similar to that of Rapid

Application Developm ent (RAD) (McCo nnell, 1996) was followed, wit h design and

implementation proceed ing feature by feature . Features were imp leme nted from a user­

centered viewpo int, ensuring that eac h e lement of the implementation was usable and

understand abl e by the target user group, in this case data analysts .

T he final phase of the RAD process was the valid ation of the approac h

implemented by the prototype sys tem. This was achieved by the use of a field trial

method app lied to a fisheries enforcement case study. Fisher ies and Ocea ns Ca nada

(DFO), a partn er in the larger project this thes is falls under, were asked to se lect a number

of fisheries enforcement office rs which were familiar with the analys is of vessel

movement data. T he data used for this project were provided by DFO, and extracted from

their Vessel Mo nitor ing System (VMS) database for the year 2009. It cove red a ll of

Atlantic Canada , from the GulfofSaint Lawre nce to the edge of the Grand Banks of

Newfo undland, and from the Southern coast of Nova Scotia to Nort hern Labrador.

The field trials were conducted in both St. Jo hn's, NL (Apr il, 2011) , and

Dartm outh , NS (June, 20 II ), on an individual basis. In total, nine enforce ment office rs

participated in the approac h validation. Office rs were aske d some bac kgro und

inform ation to assess experience levels, used the prototype sys tem, and then answe red a

questionn aire. T his questionnair e, based on the Tec hnology Acce ptance Model (TAM)

(Davis, 1989), yielded quantit ativ e and qualitative feedback astotheusefulnessandease

of use of the sys tem.
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