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Abstract

Eastern Labrador is a region in Canada relatively unexplored both ecologicall y

and climatologicall y. In light of recent extensi ve dendroclimatic and dendroec ological

studies conducted in the northern and western regions of Labrador, eastern Labrador

represents the last area in a contiguou s sampling grid across this large forested area. This

thesis fills this gap by employing similar sampling and analytical methods to other studies

in adjacent regions in order to form strong analytical tool s that are applicable both on a

local and regional scale .

This thesis employs a systematic sampling grid consisting of three north-south

transects and four east-we st transect s. Two tree-ring chronologies were developed from

the dominant species present at each node. In total eight chronologies of black spruce

(Picea mariana (Mill) B.S.P.), nine chronologies of balsam fir (Abi es balsamea (L.)

Mill) , two chronologie s of white spruce (Picea glauca (Moench) Voss) and one

chronolog y of eastern larch (Larix laricina (Du Roi) K. Koch) were developed .

This thesis is centered on two manuscript s. The first is focused on the radial

growth -climate relationship of the dominant tree species in eastern Labrador. This study

identifie s four distinct zones of growth response ; the ' maritime zone ' , a continuance of a

zone already identified in western Labrador ; the 's ubarctic zone ' a continuance of a zone

identified in northern Labrador ; the ' hyper -maritime zone ' a previously unidentified zone

in southern Labrador ; and the ' upland maritime zone' also a potential zone previou sly

unidentified zone along the southeastern coast of Labrador.



The second manuscript is focused on spruce budwonn (Choristoneura

fum iferanay outbreaks in eastern Labrador. This study identifie s three major outbreaks in

eastern Labrador in 1930s, 1950s and the 1970s. These outbre aks are consistent with

regional outbreaks in eastern Canada , and are found to be moving in a west-to-e ast

dispersal pattern from eastern Quebec , through western Labrador and finally into eastern

Labrador.
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Table 2.1 The site details of each location and statistics relating the each crossdated
master chronology. BS=black spruce ; WS=white spruce; EL= eastern
larch; BF = balsam fir. MSI = mean series intercorrelation (calculated on
50-year lagged segments) ; MTA = mean tree age; AMS = average mean
sensitivity; AC=unfiltered auto-correlation; MM = mean measurement
(annual increment). Eco-region : Based on Newfoundland and Labrador
Department of Environment and Conservation , Parks and Natural Areas
Division (see website at http://www.env.gov.nl.ca/parks /apa/eco.html)
(Roberts et al. 2006); HST = high subarctic tundra; LB = low boreal ; HBF
=high boreal forest; LSF = low subarctic forest; CB = costal barrens ; MB
= mid-boreal forest.

Table 2.2 A matrix of Pearson correlation r-values between each radial growth

chronology over a 90 year common interval between all chronologies
(1918-2006). The cells highlighted in black are significant above the 95%
confidence level. The labels indicate the nodal location and species. The
first two characters indicate site (see Figure 2.1), while the third character

indicates species (F=balsam fir, S=black spruce , L=eastem larch and

W=white spruce).

Table 2.3 The number of months that Cartwright's mean monthly temperature
illustrated significant correlations to annual radial growth at a 95%
significance threshold in a response function analysis performed by
program DENDROCLIM2002. The cells highlighted in black have a
positive relationship above the 95% confidence threshold . The cells
highlighted in grey have a negative correlation above the 95% confidence
threshold. The final letter in each chronology label indicates tree species F
= balsam fir, S=black spruce, L=eastern larch and W=white spruce .

Table 2.4 The number of months that Cartwright's mean monthly temper ature
illustrated significant correlations to annual radial growth at a 99%
significance threshold in a response function analysis performed by
program DENDROCLIM2002. The cells highlighted in black have a
positive relationship above the 99% confidence threshold . The cells
highlighted in grey have a negative correlation above the 99% confidence
threshold.

Table 3.1 The site details of each location and statistics relating the each crossdated
master chronology . BS=black spruce; WS=white spruce ; EL= eastern
larch; BF = balsam fir; TA = Trembling Aspen; MSI = mean series
intercorrelation (calculated on 50-year lagged segments); MTA = mean
tree age; AMS = average mean sensitivity ; AC=unfiltered auto-correla tion;

vii



MM = mean measurement (annual increment) . HST = high subarctic
tundra; LB = low boreal; HBF =high borea l forest; LSF = low subarctic
forest; CB = costal barrens; MB = mid-boreal forest; NA = not available

Table 3.2 Pearson product moment correlation r-values between the regio nal
trembling aspen chronolongy and the regional balsam fir, black spruce,

and white spruce chronologies.

Table 3.3 Pearson product moment correlation r-values between individ ual species at

each node and trembling aspen chronologies. Dark shaded cells represent

those values that surpass the 99% confidence threshold. The light shaded

cell surpassed the 95% confidence threshhold . n equals to the common
interva l between given pairs of chrono logies (see Table 3.1 for values).

Table 3.4 Percentage of sampled trees exhibiting signs of infestation at each node.
Data is displayed on an annual resolution. Grey cells indicate infestations
greater than 50%. Black cells indicate infestations over 75%. The upper
Table displays data of black spruce and white spruce. The lower Table
displays balsam fir data.

viii
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Chapter On e

Introdu ction and Overview

Dendrochronology is the study of events through time recorded in tree rings (Speer 20 I0).

By analysing the variation in the radial growth of trees we are able to examine the

environment in which the tree grew. This is useful in climatological and ecological

studies because each ring , as a repository of this environmental information, may be

incorporated into data sets that contain records of many types of past environmental

conditio ns. This information is particularly useful for remote locations and temporal

periods prior to instrumental records .

Dendroclimatology is a sub-discipline of dendrochronology that uses the

principles of dendrochronology specifically for climatic studies (Kaennel and

Schweingruber 1995). It is particularly useful in regions like Labrador (Figure 1.1) where

climate stations are relatively sparse and many records are incomplete due to missing data

or relocation of climate stations. Dendroecology is also a sub-discipline of

dendrochronology and it too has proven useful in ecological studies to uncover evidenc e

of past environments and disturbances such as insect infestations and forest fires (Kaennel

and Schweingruber 1995).

I.I. Lit erature Review

The first dendroc hrono lgical studies conducted in Labrador mostly consisted of point

location studies with limited capabilities for spatia l analysis (e.g. Cropper and Fritts 1981,

D'Arrigo et al. 1992, Schweingruber et al. 1993, Payette 2007) . These early studies

mainly sampled white spruce (Picea glau ca (Moench) Voss) and balsam fir (Abies



balsamea (L.) Mill) and focused on connections to sea surface temperatures and climate

at the limits of tree growt h in eastern North America.

A recent emphasis in dendrochrono logical studies in Labrador has brought

regional-scale studies to the forefront. Labrador has now become an area of extensive

dendrochronolgical study, with the notable exceptio n to this point being eastern Labrador.

More spatially comprehensive studies have been conducted within Labrador by Trindade

(2009), Nishimura (2009), and Kennedy (20 11). Trindade (2009) examined shifting

climate sensitivity of black spruce (Picea mariana (Mill.) B.S.P.) and white spruce across

an east-west transect through the center of Labrador. She found radial-tree growth limited

by temperature, mostly in the summer months of the growth year. Along the coast,

Trindade (2009) found a muted climate sensitivity in the trees . She attributed this to

reduced solar radiation due to increased fog along the coast. Trindade (2009) also found a

transition in climate sensitivity to a more continental climate along the Redwine

Mountains approxima tely 300 krn from the coast of the Labrador Sea.

Nish imura (2009) expanded on Trindade 's (2009) transect method extending it

into a gridded network of sites that included a pattern of nodes in north-south and east­

west direct ions. From this work, Nishimura and Laroque (2011) identified regions of

similar radial growth response in conifer species in western Labrador . Specifically , two

zones of growth response were identified . In the western side of their study area

contiguous with the Quebec border, a ' continental' zone was defined by a positive radial

growth relationshi p to June and August temperatures. In centra l Labrador, the eastern

portion of their study network , a zone with a 'maritime' influence was identified with a

positive relationship to July temperat ures (Figure 1.1).



Nishimura and Laroque (2010), using the same gridded network of sites, also

investigated past larch sawfly (Pris tiphora erichsonii) outbreaks with a host/non-host

analysis. Nishimura (2009) was also able to invest igate past spruce budworm

(Choristoneura fu miferana (Clem.) (Lepidoptera: Tortricidae)) outbreaks across his grid

in western Labrador. The study found several large synchrono us spruce budworm

outbreaks, one between the 1940s and 1950s and another in the 1970s. One critica l aspect

of this study was that he had no non-host species to define his budworm outbreaks

(Nishimura 2009). In the host/non-host method, a non-host is a species of tree whose

pattern of radial growth is determined by the same environmental control s as the study

species, yet this non-host species is not susceptible to defoliation by spruce budworm

(Speer, 2010). The non-host species is used as a control to allow observa tion of radial

growth depressions in the host species that are not seen in the non-host species.

Nishimura (2009) derived his outbreak data using a new, perhaps less robust method, that

incorporated an averaged regional mean instead of a non-host chronology (Nishimura

2009).

Kennedy (20 II ) systematically sampled and studied the treeline region of

northern Labrador adding ten more sites to those sampled in Labrador. His work studied

white spruce at its northern extremes to observe shifts in its radial growth to climate

relationship across treeline. Kennedy (20 11) identified two zones that he differentiated

by slight differences in ecological tolerances within the climate radial-growth

relationships experienced by white spruce at treeline, finding a north-south gradient

present. The 'arc tic maritime zone,' define solely by June/Jul y temperatures and the

's ubarctic maritime' zone that were defined not only by June/July temperatures, but also a



negative response in radial growth to spring temperatures (Figure 1.1). He further

projecte d the radial-growth rates of white spruce at treeline up to the year 2100 . He was

able to discern that the southeastern portion of the treeline was the most likely part of the

treeline to advance north and westward due to future projected climatic changes

(Kennedy 20 11).

Kershaw and Laroque (20 I I) changed the overall mode of the

dendrochronological investigations by, for the first time, studying a deciduous tree

species in Labrador. This study somewhat mimicked the sampling protocol ofTrindade

(2009) in that it investigated an east-wes t transect across southern Labrador utilizing the

recently completed Trans-Labrador highway corridor. This study identified that the radial

growth of trembl ing aspen (Populus tremuloides Michx .) in central and eastern Labrador

was responding to climate in a similar fashion to the conifer species in the marit ime

climate-growt h zone identified in Nishim ura and Laroque (2010) as a marked response to

July temperatures. This ' maritime' effect reached eastward to the extent of tremb ling

aspen stands, before their populations ceased along the coasta l barrens on the eastern

portions of Labrador adjacent to the sea.

Other than dendrochronologica l studies, there have been severa l other studies

published on the general environmental characteristics of Labrador. Most notably from

these studies is Banfield and Jacobs (1998) who conducted an extensive study of climate,

both on Newfoundland Island and Labrador. Their findings revea led trends in temperature

and precipitation that related to seasonal North Atlantic Oscillation (NAO) values.

Banfield and Jacobs (1998) also found increased variability in interannual winter



temperatures at Cartwright, a coastal weather station, and Goose Bay farther inland . They

attribute the Cartwright variability to late winter sea ice which increases the degree of

continentality along this coast region. A similar winter continental effect was present in

Goose Bay but was attributed to the more southerly position of the polar front during the

winter months . This variability in interannual temperature was reduced during summer

months . They do not mention the effect of Lake Melville which would freeze during the

winter and dampen its effect on the adjacent Goose Bay climate station during the winter.

As a general trend in winter temperature , Banfield and Jacobs (1998) found several

periods of altered variability from normal levels in Newfoundland and Labrador.

Specifically they found cooler periods between 1920-1935, and 1972-1995, with a

contrasted warmer period from 1951-1971. The periods of oscillating tempera tures were

not found during summer months. The only trend identified for summer temperatures was

a general overall warming throughout the zo" century.

Ecologically two general studies have focused on eastern Labrador. Roberts et al.

(2006) identified Labrador as a boreal and subarctic landmass with an overarching

climate forced from the Labrador Current. Roberts et al. (2006), citing Banfield (1981) ,

outlines four environmentally defined regions in Labrador, two of which relate directly to

this thesis . The first was the 'southeastern interior Labrador' region , which is less

continental than areas to the west, but has a greater amount of precipitation than other

regions in Labrador. The second is the ' coastal Labrador' region, which is defined as a

region with less continental characteristics, less precipitation than the interior, and cold

onshore circulation.



Foster 's (1984) study intensively enumerated vegetation in southeastern Labrador.

Within this portion of Labrador, five forest types were classified; (1) birch; (2) fir - spruce

- feather moss; (3) spruce-fir ; (4) spruce-PlellroziIl11l; and (5) spruce-SphaglllllllflisclI11I

communities . Within this region Foster (1984) identified the black spruce - balsam fir

forest as encompassing more than 95% of the forest canopy. These stands form a broken

canopy at approximately 15 metres high, with a generally open understory.

1.2. Research Questions

The recent activities in dendrochronological research in Labrador have provided a

significant foundation for spatial analysis across a regional scale of sampling transec ts

and networks (e.g., Nishimura and Laroque 2010, Trindade et al. 2011, Kennedy 2011) .

Although these studies have aptly investigated much of Labrador , a significant area in the

eastern portion of the region remains unexplored. This thesis aims to complete the

network by infilling the area between Kennedy (2011) and Nishimura and Laroque (2010 ,

2011), thus completing the sampled network of all forested regions of Labrador. The aim

is to place eastern Labrador into the context of the radial growth -climate response zones

already established in other locations of Labrador. Specifically this thesis asks; does

eastern Labrador exhibit the same radial growth response zones that extend outside the

boundaries of previous studies, or do the trees in eastern Labrador exhibit a different set

of radial growth-climate trends?

With recent dendrochronological advancements in the study of the first deciduous

species in Labrador from Kershaw and Laroque (2011) , this thesis will also explore the

potential of these new chronologies to aid in the knowledge of past insect outbreaks



within conifer s in eastern Labrador. This opportunity holds the potential of a better

understanding of natural cycles in ecological disturbances in the vast region of eastern

Labrador. It also provides an opportunity to compare results against Nishimura's (2009)

analysis in order to observe these disturbances at the greater Labrador scale. This new

research may also help overcome the hurdle that Nishimura (2009) encountered of an

absent non-host species to identify spruce budworm outbreaks in Labrador. The spruce

budworm study in this thesis also concludes the last large region to be explored in an

attempt to understand the past ecological characteri stics of one of the most important

insect defo liators in the borea l forest of eastern Canada. It fills the one remaining

unexp lored area in an interprovinci al-scale scope of spruce budworm disturbances in

boreal eastern Canada.

1.3. Manuscript Approach

This thesis is written in a manuscript style with two manuscripts at its core. The aim of

the first manuscript is to explore the radial growth--elimate sensitivity across a gridded

network of nodes in eastern Labrador. This manuscript will employ response function

analyses using bootstrapped correlations to identify the dominant climate factor

influencing radial growth in the dominant coniferous tree species of eastern Labrador.

The aim of the second manuscript is to explore the temporal and spatial trends of

past spruce budworm outbreak s across the same eastern Labrador nodal sampling grid as

the first manuscript. This manuscript employs a host/non-host analysis to identify radial

growth reduction s caused by defoliation in tree species susceptible to spruce budworm

activity. Taken as a whole, the two manuscripts aim to help fill in the gaps and complete a



regional picture of past ecological and climatological characteristics of the forests of

Labrador. These studies aim to identify patterns bridging scales from the site-specific, to

the regional and even inter-provincial scale in order to aid in identifying the major

controls on forest development in eastern Labrador.
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1.5. Figure Caption

Figure 1.1 Map of Labrador with inset of North America and approximate boundaries
of the four zones of radial growth-climate relationships. The 'continental
zone' and the 'maritime zone' were defined by Nishimura (2009). The
'arctic maritime zone' and the ' subarctic maritime zone' were identified by
Kennedy (2011).
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2.1. Abstract

This study uses a dendroclimatological analysis to observe spatial shifts in the radial

growth-climate relationships of conifer species across southeastern Labrador. Ten sites

were sampled across a systematic grid consisting of three north-south transects and four

east-west transects all spaced approximately 100 km apart. Chronologies included black

spruce (Picea mariana (Mill.) 8 .S.P.), balsam fir (Abies balsamea (L.) Mill), white

spruce (Picea glauca (Moench) Voss) and eastern larch (Larix laricina (Du Roi) K.

Koch). They were developed from the dominant species present at each node. Pearson

product moment correlation s and response function analyses were utilized to identify four

zones of radial growth-climate relation ships within the study area; the 'maritime zone',

extending from the west, defined by a strong relationship to July temperatures; the

' hyper-maritime zone' along the eastern coast, defined by an extended growing season in

balsam fir; the 's ubarctic maritime zone' in the north defined by a June/July temperature

relationship ; and the possibility of the ' upland maritime zone' in the south, defined

predominantly by an ecological shift from fir to larch. Distinctions in the growi ng seasons

illustrates a radial growth-climate gradient from west to east and a north-south gradient is

also present in the northern regions of the study area.
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2.2. Introduction

Vincent and GulIett (1999) noted that northern climate stations are sparse in spatial extent

compared to more southern regions and they also cover a much shorter time span. With

scant instrumenta l records available in these more remote areas, it is necessary to develop

proxy records in order to gain a better understanding of how past climates relate to

ecologica l processes (Delworth and Mann 2000) , especialIy in these northern areas where

the most rapid changes in climate have been recently noted (Raisanen 2001, Hassol , 2004 ,

Johannessen et al. 2004, Chapin et al. 2005, Trenberth et al. 2007). By investigating the

radial growth-climate relationships of trees across a broad region, tree-ring analysis

studies typica lIy build the foundation for broader scale palaeoecological and

palaeoclimatological studies in a region where little research has been conducted and few

data records exist.

Early tree-ring studies in Labrador concentrated their efforts in most ly a few

locations in the northeastern region of Labrador (e.g., Cropper and Fritts 1981, D'Arrigo

et al. 1996, Schweingruber et al. 1993, and Briffa et al. 1994). Although usefu l in their

own right, these studies lacked a larger scale comparative perspec tive that newer studies

have incorporated in their design (e.g., Payette 2007, Trindade 2009, Nishimura 2009,

Kennedy 20 11), which have been better at unrave lIing many of the complexi ties of the

paleoclim ate and ecology of the Labrador region.

Payette (2007) was the first to illustrate a shift in dendroc hrono logical studies in

the region from a single point study to a larger, more comparative, regiona l assessment.



This seven site study was also the first to identify a shift in tree responses between coastal

and inland regions of Labrador. The study focused on northern Labrador's latitudinal

treeline from the coast into the adjoining province of Quebec. It found a distinctive

difference between the inland white spruce (Picea glauca (Moench) Voss) growing at

treeline in Quebec, which has receded over the past centuries (Lamb 1985, Payette 2007) ,

and coastal locations in Labrador where the treeline had advanced. Payette (2007)

attributed this to both climate changes and bio-geographical influences of the rugged

coastline and drastic shifts in topography. This likely has caused the lagged migration of

treeline northward in the post glacial landscape.

Trindade's (2009) research illustrated a shift of sensitivities between tree-ring

radial growth and associated climates of central Labrador. The study found changes on

both a spatial and temporal basis, tied closely to the proximity ofa tree 's location to the

coast. The study utilized a longitudinal transect extending from coastal Labrador near

Cartwright and reached westward as far as Labrador City, 670 kilometres to the west

(Figure 2.1). Trindade (2009) found a shift in responses across the transect and speculated

that parameters such as fog influenced the amount of solar insolation available to trees

growing in the near-coastal areas that helped distinguished their radial growth from inland

sites . She hypothesized that fog along the coast could account for a dampened July

sensitivity as it would block the solar radiation. She theorized that dissipation offog

caused by higher temperatures was in fact responsible for the more favourable growing

conditions , rather than a direct causal relationship between temperature and radial growth

in coastal regions . Trindade et al. (2011) investigated the temporal nature to the climate-
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radial growth relationship over the same transect as Trindade's (2009) research. They

found shifting climate to radial-growth relationships over the past century closely related

to changes in precipitation.

With support from the International Polar Year, recent studies have established a

large scale, spatially systematic sampling approach for dendroclimat ological studies in

Labrador (e.g. Nishimura and Laroque 2011, Kennedy 2011). By expanding the Trindade

(2009) transect sampling model across central Labrador, these studies attempted to better

understand any spatial shifts in the climate sensitivity of the trees at a greatl y refined and

contiguous scale than previou s studies have attempted in Labrador . The most extensive

tree ring investigation in Labrador was recentl y carried out in the western region by

Nishimura and Laroque (2011). This study used a spatial network of

dendrochronological sites, creating a grid of north- south and east-west transects covering

all of western Labrador . The results ofthis study illustrate a transitional shift in the

climate-tree ring relationship as one moves further eastward toward a maritime influence.

In particular , the study delineate s a transition between two distinct zones. The

'continental zone' defined by tree radial-growth responses to May and July temperatures,

and the 'maritime zone', characterized by a radial-growth response to mean July

temperature . Nishimura and Laroque (2011) attribute this shift to increased mid-summer

temperatures in western/continental regions of Labrador.

Kenned y (2011) furthered the large network by investigating the radial growth­

climate relationship in trees at their northern extent of growth in Labrador. He found

sparse white spruce stands growing in the protection of low-lying land, near bodies of
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water. The radial growth response of trees within these pockets, isolated by barrens , was

primarily defined by a correlation to June/July temperatures. A distinction was drawn

between northern sites, in an 'arctic maritime zone ', define solely by June/July

temperatures, and a ' subarctic maritime' zone that was defined not only by June/July

temperature, but also a negative response in radial growth to spring temperatures. This

negative response to spring temperatures is attributed to springtime desiccation caused

when the photosynthetic processes commence before the active layer thaws, which

restricts the tree's access to moisture.

These above recent dendroclimatic investigations in Labrador have revealed

gradients of shifting climate to radial-growth relationships across the region (e.g.

Nishimura and Laroque 2011, Kennedy 2011, Trindade et al. 2011). With well-defined

zones delineating the dominant climate controls in the majority of Labrador, eastern

Labrador represents the last significant gap in this body of research . This region has been

left relatively undefined in terms of the how the spatial patterns of climate to radial

growth relationships exist within southeastern Labrador, and in relation to its contiguous

regions.

The main purpose of this study is to better understand the spatial nature in the

radial growth characteristics of the tree-ring and climate relationship of the dominant

conifer species in southeastern Labrador. Specifically, this study predicts that the radial

growth-climate relationships identified in other regions of Labrador extend into eastern

Labrador, and that due to the adjacent Labrador sea, the radial growth-climate
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relationships in southeastern Labrador shift due to increased temperature changes as one

approaches the coast.

2.3. Study Area

The study area encompasses the entire southeastern region of Labrador . The area has a

varied topography , climate and ecology. In past studies, three zones have been delineated

by topographic and climate characterises in the region. An upland area (Foster 1984), the

'southeastern interior Labrador' zone, and the 'coastal Labrador ' zone, (Roberts et al.

2006). A fourth broad zone, not previously delineated , is defined in this study to the north

of Lake Melville.

The topography within the study region ranges from lowland regions along the

coast, to higher ground on the Eagle and Lewis Plateaus (Figure 2. I) in southeastern

portion of the region . These plateaus help define an upland region that runs in a north­

south direction approximately 100 km west of the southeastern Labrador coast. Elevation

in this region ranges up to 670 metres above sea level. In the center of the study region is

Lake Melville which transects the study area in an approximate east-west direction . The

Mealy Mountains, with peaks approximately 2000 metres above sea level, rise to the

south of Lake Melville and to the northwest of the Eagle Plateau. The 'south eastern

interior region' (Foster 1984) is the remaining area to the south of Lake Melville and to

the west of the uplands. This region is fairly homogeneous with elevations ranging from

300 to 400 metres above sea level. To the north of Lake Melville, the landscape

resembles more closely the landscape observed by Kennedy (201 I). It is a fairly flat

21



elevated region dropping into fjord-like coastline valleys . The coastal areas in the

southern regions do not exhibit the same dramatic fjord-like terrain as the northern coast

in the study region.

Climate studies in the region indicate Labrador to be particularly influenced by

maritime forcings (Banfield and Jacobs 1998). The longest continuous climate stations in

or near the study area are found in Cartwright and Goose Bay (Figure 2.1). The

Cartwright average annual temperature is -0.5 ·C and average annual precipitation is 583

mm. Figure 2.2 illustrates mean monthly temperature of both the Cartwright and Goose

Bay stations over the entire common record of the climate stations. Due to its relative

inland location, Goose Bay illustrates higher average summer temperatures and a sharper

decline to colder temperatures from August to December , than what is recorded at the

Cartwright station as it is positioned adjacent to the Labrador Sea (Figure 2.2). Banfield

and Jacobs (1998) found these stations to exhibit substantially less variability in winter

temperatures with muted variability in the summer.

Labrador precipitation on the other hand was attributed to convection or

conditional instability in interior areas in the summer months. This instability is common

along coastal regions during fall and early winter months when cold continental air

masses interact with warmer air over open waters (Banfield and Jacobs 1998). Upland

regions in the southeast are characterized by greater precipitation than most other regions

in Labrador. The costal region is defined by less precipitation than the interior, because it

is subjected to cold onshore circulation patterns (Roberts et al. 2006) .

22



Ecologica lly the majority ofthe region is dominated by black spruce (Picea

mariana (Mill.) B.S.P.) and balsam fir (Abies balsamea (L.) Mill) (Roberts et al. 2006).

Other species presen t in the area include white spruce, eastern larch (Larix laricina (Du

Roi) K. Koch), trembling aspen (Populus tremuloides(Michx.)) and paper birch (Betula

papyri/era (Marsh.)) (Foster 1984). In ' southeastern interior Labrador ' the black spruce

and balsam fir forests that dominate the landscape are slow growing caused by semi­

permanently frozen soil and short growing seasons (Foster 1984). Poor soil drainage is

the dominant factor that influences soil type and thus vegetation habitat and diversity of

the ' uplands' in southeastern Labrador. Here a thick organic peat soil caused by this poor

drainage (Roberts et al. 2006) help support the black spruce and co-dominant eastern

larch forests, rather than balsam fir present in other regions of eastern Labrador (Foster

1984).

The southern coastal areas are mostly barren with young stands of black spruce

and fir present only in low lying sheltered areas because of a lack of protection from

winds off of the open sea. Black spruce in particular grows in valleys when it is near its

climatic tolerance and seed regeneration tends to be more sporadic (Payette et al. 1982).

The salt intolerance of black spruce causes a particular difficulty propagating in regions

with greater salinity concen trations . Toxicity symptoms due to this intolera nce, including

shorter rooting structures, make the trees more suscep tible to wind loads (Croser et al.

2000). The younger stands are also likely related to an increased and unpredictable fire

regime in this region of reduced peat lands and varied topography (Foster 1983).
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The northern region was defined by isolated forest stands along the coast in low

lands and barrens with more contiguous forested regions inland . Balsam fir begins to

become sparse in this area, as it reaches its northern limit in these portions of Labrador

(Roberts et al. 2006). White spruce also begins to take the place of black spruce as the

dominant species in these parts of the region (Roberts et al. 2006).

A systematic gridded sampling protocol was applied across the entire eastern portion of

Labrador. Each site was selected at the closest accessible point at the intersection of 52,

53, 54, and 55 degrees north latitude and 56, 58, and 60 degrees west longitude (Figure

2.1, Table 2.1). A similar spatial framework and resolution was applied in western

Labrador by Nishimura (2009). The node at 55 degrees north latitude and 62 degrees west

longitude rested immediately adjacent to the coast in its theoretical position (Figure 2.1).

For practical reasons it was sampled to the southwest of the theoretical node point in the

nearest forest. Two nodes at the intersections of 54 and 55 degrees north latitude, with 60

degrees west longitude rested over the Labrador Sea and were eliminated from a

completed grid square leaving only the remaining 10 nodes on land to be sampled (Figure

2.1).

Each node was labelled according to their position in the grid. The nodes were

labelled by column, with a "w" designation used for the most westerly nodes, a "C" used

to designate the central column, and an "E" used to designate the most easterly nodes

(Figure 2.1). In the north-south direction, a numerical system was applied. The most
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northern row of nodes were designated as 1, and then each row was sequentially

numbered until the most southern row, which was labelled as 4 (Figure 2.1).

The sites can also be classified from their geographic location. Nodes that were

not sampled near the coast (W2, W3, W4, C2, C3) were inland nodes. Sites with in close

proximity (maximum often kilometre s) to the open coast of the Labrador Sea (E3, E4)

are considered ' coastal Labrador '. Node C4 rests on the Lewis Plateau (Foste r 1984) and

thus is considered an upland node. The northernmost nodes , which border between

coastal barrens and high subarctic tundra were considered subarctic sites (W I, C I)

(Roberts et al. 2006) .

At each node, the two most co-dominant tree species were selected and sampled

following the protocols ofTrindade (2009) and Nishimura (2009) . Two increment cores

were extracted at breast height from 20 mature trees from each species for a total of 40

cores per species, 80 cores per node. The cores were brought back to the Mount Allison

Dendrochronology Laboratory , glued into slotted mounting boards, sanded to a fine

polish, and visually checked for a shared radial-growth pattern . The total annual ring

widths were measured with a Velmex system to the nearest 0.001 mm, and then

crossdated. The rings were statistically evaluated to check for homogeneity within their

radial-growth patterns using COFECHA (Holmes, 1983, Grissino-Mayer, 200 1). Each

core was divided into 50-year increments overlapping every 25-yrs. These increments

were statistically compared through a correla tion analysis to the master chrono logy made

up of all cores within a series.
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Descriptive statistics generated by COFECHA were analysed to insure the

statistical rigour of each chronolo gy (Table 2.1). Mean series intercorrelation (MSI), was

used as a measure of the commonalit y of the radial growth between a core and a master

chronolog y within a set of cores. The MSI was developed by taking the mean of all of the

correlation coefficient s within a set (Wigley et al. 1984, Trinidad 2009). Segment s that

did not exceed the mean series intercorrelation threshold above p>O.OI (values above

0.3281) were visually checked and corrected using pointer years (exceptionally narrow or

wide rings used as waypoint s within a pattern) (Table 2.1). Average mean sensitivity

(AMS) was used to analyse the relative change in ring width on an interannual resolution

(Fritts 1976). Autocorrelation (AC) is a measure of the autoregressive structure within a

series. This is commonly seen in radial-growth series due to the influence oft he

environmental condition s in a previous growing season that affects the radial growth of

the tree in the next year (Briffa and Jones, 2001).

In order to eliminate non-environmental growth signals present in individu al trees,

each chronology was standardi zed. Using the comput er program ARST AN, a single

detrending negative exponential curve, similar to that used by Trindade et al. (2011),

Nishimura and Laroque (201 1) and Kennedy (2011) , was fit to each series (Cook 1985;

version ARSTAN_4 Id). The program was also used to average all of the cores in a series

down into a master chronology by using a weighted mean function (Cook 1985).

DENDROCLIM2002 (Biondi and Waikul 2004) was then used to run a response

function analysis on each chronology. DENDROCLIM 2002 uses bootstrapped

correlat ions to analyze the annual radial-growth response to climate factors that may be
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influencing radial-tree growth. The analysis was run using a sampling window of 18

months. The window starts in April of the previous year (t-1) and ends in September of

the growth year (t=O). This window was selected based on the growing season of the

sampled species and the climate data available in the region. A similar window was used

by Nishimura and Laroque (20 11) and Trindade et al. (2011).

2.5. Climate Data

Two Environment Canada climate stations are located at the eastern and western margins

of the sampling grid: Cartwright to the east and Goose Bay to the west (Figure 2.1). The

common interval of study record for the two climate stations is 65 years, from 1942 to

2006. Although other known stations are within the greater region [e.g., Hopeda le on the

coast approximately 50 km north of node C1; and Battle Harbour, which was moved in

1983 to near Mary's Harbour, on the coast approximate ly 30 km north of node E4 and 80

km south ofE3; (Figure 2.1)], these records are short and discontinuous due to relocation

and/or miss ing data.

The Cartwrigh t station data were solely used for climate analyses in this study .

The location of Goose Bay was outside of the western edge of the study region and,

although it was within close proximity the western sites it was deemed too distant from

the eastern nodes of the gridded network. Conversely, Cartwrig ht is central to all nodes

within the network of study sites .
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Of the 20 sampled chronologies, eight were black spruce, nine were balsam fir, two were

white spruce, and one was eastern larch (Table 2.1). The average length of each

increment core within the total sample population was III years. The coastal nodes (E3

and E4) with mean ages of72 years tended to be much younger than those farther inland

(Table 2.1). The northern sites (WI and C l) had slightly older chronologies with an

average age of 109 years, mostly due to the length of the white spruce chronologies. The

interior sites and the upland site were of similar age with an average of 124 years.

2.6.1. Correlation Analyses

Table 2.2 presents the results of an interseries Pearson' s product moment (r) correlation

between all 20 chronologies. The strength of the significant positive correlations ranges

across the sampling grid from 0.22 to 0.88 (n=90; all values above 0.21 have p>0.05

level). There are significa nt correlations between most chronologies at most nodes (130

of 190 combinations, 68%), particularly between western and central nodes. Most of the

60 non-significant correlations between chronologies occur between different species

(n=47, 78%), while the non-signific ant correlations between the same species occur

exclusively at coastal nodes. These results illustrate that there is a high degree of

similarity in growth pattern s between all chronologies of the same species, particularly

inland ofthe coastal nodes. In light ofthis, we conducted a response function analysis to

better understand the role of climate , the most likely overriding effect on radial-tree

growth in the region .
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2.6.2. Response Funct ion Ana lyses

Tables 2.3 and 2.4 identify significant correlations between the 20 chronologies and mean

monthly temperature for Cartwright over the 18 months test period for two significance

levels: p>0.05 and p>O.OI, respectively. At p>0.05, July temperature of the growth year

is consistently correla ted with radial growth for all 20 chronolog ies (Table 2.3), whereas

at p>O.OI neither the coasta l nor upland sites are significantly correlated and only WI,

W2 and C3 are corre lated across all measured species. Nodes W3, W4 and C2 are

significantly correlated for black spruce and C I for balsam fir chronologies only (Table

2.4).

At p>0.05, white spruce is significa ntly correlated with mean June and September

temperature of the current growing season only at the two northern nodes (WI and C I),

whereas at the p>O.OI level, only white spruce at CI retains a significant corre lation with

mean September temperature. Both balsam fir at the two coastal nodes (E3 and E4) and

eastern larch at the upland node (C4) are significantly correlat ed with mean September

temperature at p>O.OI (Table 2.4).

At p>O.OI, black spruce at nodes W2, W3, W4, C2 and C3 and white spruce at

WI are significan tly correlated with mean July temperature of the preceding growing

season, while at p>0.05, balsam fir at nodes WI and W3 show a similar correlation .

Eastern larch at the upland node (C4) has the greatest number of significant correlations

with mean monthly temperatures for both the current (n=4) and the preceding (n=5)

growi ng seasons at p>0.05, extending from summer to fall months in both years (Tables
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2.3 and 2.4). Balsam fir is significant ly correlated (p>0.05) with mean October

temperatures of the preceding growing season at the two coastal nodes.

As observe d in other studies in the region the dominant factor in the radial growth-climate

relationship is July temperatures in the year of growth (e.g. 0'Arrigo et al. 2003, Payette

2007, Nishimura 2011, Kennedy 2011). The ' maritime zone ' , previously identified by

Nishimura and Laroque (2011) is solely defined by strong radial growth relationship to

July temperatur es. The significant correlations (p >0.05) to July temperatures in western

and central columns (W2, W3, W4, C2, C3) of this study denotes an extension of the

'maritime zone' towards the coast. Severa l of these nodes also exhibit negative growth

relationships to April temperatures, which has been identified in other region of Labrador

(e.g. D'Arrigo et al. 2003, Kennedy 201 1) and is attributed to moisture deficits relating to

frozen soils in early spring. If photosynthetic processes commence before the active layer

has thawed, trees can desicca te because the moisture is inaccessible in its frozen state

(Kennedy 201I).

To the north, the ' subarctic maritime zone ' identified by Kennedy (20 1I) is

defined by a June-July growi ng season with an extension into the fall. The earlier

commencement to the growing season and the significant correlation to September

temperatures within the white spruce chronologies at WI and C I indicate that these nodes

are closely related to the 's ubarctic maritime zone'. Although Kennedy (20 11) typified

his sites to be dominated almost exclusively by white spruce and not balsam fir which
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was present at WI and C I, his sites are also well above the 54° northern limit of balsam

fir growth (Roberts et al. 2006). The close proxim ity to the coast and the relatively

southern location of the nodes, in relation to the 'suba rctic maritime zone', accounts for

the slight deviation in transition from the purely subarctic radial growth -climate response

zone to the north. Neverthe less it is clear that Kennedy' s (2011) defined zone extends

southward through a transitional region into the 'ma ritime zone ' illustrated in this study's

gridded network.

When the higher significance threshold of99% was used to analyze July growth

responses, a distinction could be drawn which demarcates the nodes in the eastern

portions of the study region (E I, E2) with a muted response. This is likely caused by cold

onshore air circulating off the Labrador Current which could very well shift the

phenological cycle of the trees putting less emphasis on July temperat ures . This

hypothesis is strengthened by the response to an extended growing season relative to the

node farther west as illustrated in these node's response functions (Table 2.3 and 2.4).

The interaction of cold ocean currents meeting with a warmer air mass could also be

responsible for the increased fog discusse d by Trindade (2009) ultimately resulting in this

dampened effect. The balsam fir in the easternmost nodes also illustrated a significant

relationship to September temperatures which is indicative to a later growing season.

These more subtle distinctions in the radial growth-climate relationships from the other

nodes in the study region are supported by the interseries correlations which clearly

illustrate that the eastern nodes have a similar growth trend to each other, and a dissimi lar

trend to all other nodes (Table 2.2).
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The data also illustrate that the most extreme eastern coastal sites had distinctly

younger trees (Table 2.1). There are several possible causes for this division in the data.

The first is the general lack of protection near the open sea. Tree stands in easternmost

Labrador tended to be found in lower lying areas surrounded by barrens. With little

protection from harsh weather condition due to smaller stands constrained mostly to

valley bottom s, trees may not have had the chance to mature to the stage observed at the

inland sites. Younger stand ages may also be related to the possibility of slow and

unpredictable development offorested regions in a post glacial landscape that has

recently emerged from isostatic uplift (Rupp et al. 2001, Payette 2007). This effect would

be pronounced by increased fire disturbance s relative to adjacent areas (Foster 1983), as

well as increased salinity causing a particular susceptibility to winds loads (Croser et al.

2000).

The distinctions , in radial growth-climat e sensitivity, interseries growth trends,

as well as younger stand ages seen in the extrem e eastern nodes indicate a radial growth­

climate relationship as yet unseen in Labrador. We now title it the "hyper-maritime

zone". This zone is limited to the coastal regions of southern Labrad or (Figure 2.3) and

encompasses nodes E3 and E4.

The geographic location ofC4 on the boarder of the Lewis Plateau, the presence

of eastern larch and the lack of balsam fir, ecologically place it in the same ecoregion as

the plateau upland s (Foster 1984). The larch response extending to fall temperatures

roughly corresponds to Trindade ' s (2009) study, yet her results regarding eastern Larch

were rather inconclusive. We hypothesize that the results from this node can be titled the
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"upland maritime" radial grow th-climate zone (Figure 2.3), but further study of eastern

larch and black spruce responses on the Lewis and Eagle Plateaus is requ ired.

2.8. Co nclusion

The spatial nature of conifer grow th respo nses in Labrador is complex. This study

identifies the continuation of two transitional zones, a new distinct coas tal zone and a new

possible upland zone of grow th response. The eastward cont inuation of the ' mari time

zone' previously identifi ed by Nishimura (2009) extends until approx imately 10 km of

the Labrador coast where it transitions to the newly defined ' hyper-maritime zone' . This

maritime zone is possibly interrupt ed by the Lewis and Eagle Plateau, where we have also

establish evidence of a possible ' upland maritime effect'. The southerly continuance of

the ' subarctic maritime zone' defined by Kennedy (200 1) now can be extended

approx imately 100 km south of PostviIle (Figure 2.3) .

Eastern Labrador is unique in the Labrador region as it is best represented as a

large transitional area where the greatest numb er of radia l growth-climate relationships

within Labrador can be observe d. What is clea r from this study is that Labrador is

characterised by both north- south and east-west gradients and that eastern Labrador

contains the convergence oft hese gradients. The north- south gradient, contained mos tly

in northern treelin e regions and the east-wes t gradient can now be seen in its entirety as a

Trans-Labrador temporal shift in growin g seasons in southern regions of Labrador. This

gradient can be observe d from the western extreme, where conifers in the 'co ntinental

zone' commence their growing seaso n in May, shifti ng to central Labrador, where radia l
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growth becomes more concentrated in July, again shifting near the coast where the

growing season extends into September.

The gridded approach to sampling has provided a strong spatial analysis tool as

yet unseen in the southeastern area of Labrador . Combined with the Nishimura (2009)

and the Kenned y (2011) data sets, there is now the capab ility to observe trends in radial

growth and ecologic al growth responses on both the refined spatial scale of specific areas

of Labrador, as well as the more general scale of all of Labrador and adjacent areas of the

province of Quebec . This information provides the opportunity to expand our knowl edge

and lend evidence to begin to answer questions such as: How will the ' continental',

'maritime' and 'hyper-maritime' zones of tree growth be affected under the project ed

changes in the climate of Labrador? Will the ' hyper-maritime zone' begin to experience a

heat related stress caused by elevated mid-summer temperatures if the growing seasons

continue s to warm, or will they continue to lag behind inland areas because of the

influences of the cool Labrador Sea (Lazier , 1988)?
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Table 2.1 The site details of each location and statistics relating each crossdated master chronology. BS = black spruce; WS
= white spruce; EL = eastern larch; BF = balsam fir. MSI = mean series intercorrelation (calculated on 50-year
lagged segments); MTA = mean tree age; AMS = average mean sensitivity ; AC = unfiltered auto-correlation; MM
=mean Measurement (annual increment) . Eco-region; Based on Newfoundland and Labrador Department of
Environment and Conservation, Parts and Natural area Division (see website at
http://www.env.gov.nl.ca/parks/apa/eco.html) (Roberts et al. 2006) ; HST = high subartic tundra; LB = low boreal;
HBF = high boreal forest; LSF = low subarctic forest; CB = coastal barrens; MB = mid boreal forest.

Elevat ion
Period and length

No. of Eco-
Distance

Site Site Name Species Latitud e Longitude
(m asl)

(years ) of
Cores

MSI MTA AMS AC MM
region

to Coast
Chronology (km)

WI Bush Pond WS 54.8141°N 59.9345°W 28 1666-2007 (342) 36 0.534 156 0.198 0.803 0.43 fi ST 40

WI Bush Pond BF 54.8141°N 59.9345°W 28 1807-2007 (201) 33 0.504 113.8 0.195 0.788 0.43 li ST 40

W2 Bug Tussle BS 53.884~N 6O.0025°W 283 1751-2007 (257) 34 0.525 199.6 0.189 0.820.41 LO 170

W2 Bug Tusse OF 53 .884~N 6O.0025°W 283 1845-2007 (163) 34 0.47 117.3 0.205 0.723 0.43 LA 170

W3 Kenamu Lake OS 52.98700N 59 .9483 °W 357 1789-2007 (219) 380.495 122.2 0. 176 0.733 0.5 1 1101' 215

W3 Kenamu Lake OF 52.98700N 59.9 483 °W 357 1855-2007(1 53) 360.514 109.8 0.2 16 0.7550.4 IIIII' 215

W4 Lac Betaux OS 5 1.945SON 59.92WW 332 1803-2007 (205) 310.466 125.1 0.184 0.764 0.49 LSI' 130

W4 LacBetaux OF 51.945SON 59.921lOW 332 1871-2007 (137) 320.433 92.60.149 0.650.49 LSI' 130

C I Tanya' sTic kle WS 54.8042°N 58. 1885°W 4 1852-2007 (156) 380.541 97.90.258 0.6950.8 CO I

C I Tanya' sTickle OF 54.8042°N 58. 1885°W 4 1789-2007 (219) 350.523 67.70.212 0.824 0.88 CO I

C2 Mariana Lake BS 53.0006°N 58. 1401oW 90 1746-2007 (262) 380.529 143.2 0. 187 0.8 17 0.42 MB 25

C2 Mariana Lake BF 53.0006°N 58. 1401oW 90 1859-2007 (159) 350.514 112.9 0. 189 0.788 0.45 MB 25

C3 Freema n' s Pond OS 52.99400N 57.8402°W 236 1734-2007 (274) 34 0.452 147.4 0. 187 0.7630.4 MO 150

C3 Freeman' sP ond OF 52.99400N 57.8402°W 236 1840-2007 (168) 300.495 110 0.1830.7 0.5 MO 150

C4 Dumaresq Lake OS 52.04400N 57.9904°W 347 1858-2007(15 0) 320.451 103.5 0.202 0.768 0.42 LST 80

C4 DumaresqLake EL 52.04400N 57.9904°W 347 1831-2007 (177) 330.498 104.1 0.298 0.767 0.65 LST 80

E3 Hawk Bay IlS 51.9805°N 55.9788°W 12 1837-2007 ( 135) 320.478 88.70.213 0.807 0.68 CO 0

E3 Hawk Bay Ill' 51.9805°N 55.9788°W 12 1892-2007 (116) 330.465 81.80.209 0.86 1 0.6 1 CO 0

E4 Temple Bay IlS 51.9805°N 55.9025°W 20 1918-2007 (90) 330.483 61.50.214 0.727 0.88 CO 0

E4 Tern leBa Ill' 51.9805°N 55.9025°W 20 1906-2007 ( 102) 330.487 56.50.198 0.853 1.\3 CB 0



Table 2.2 A matrix of Pearson correlation r-values between each radial growth chronology over a 90 year common interval
between all chronologies (1918-2006). The cells highlighted in black are significant above the 95% confidence
level. The labels indicate the nodal location and species. The first two characters indicate site (see Figure 2.1),
while the third character indicates species (F=balsam fir, S=black spruce, L=eastem larch and W=white spruce).
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Table 2.3 The number of months that Cartwright's mean monthly temperature illustrated significant correlations to annual
radial growth at a 95% significance threshold in a response function analysis performed by program
DENDROCLIM 2002. The cells highlighted in black have a positive relationship above the 95% confidence
threshold. The cells highlighted in grey have a negative correlation above the 95% confidence threshold. The final
letter in each chronology label indicates tree species F = balsam fir, S=black spruce, L=eastern larch and W=white
spruce.-WlW WlF W2S W2F W3S W3F W4S W4F ClW ClF CZS C2F C3S C3F C4S C4L E3S E3F E4S E4F

APRT -0.10 11m -0.13 -0.09 -0.10 -0.19 -0.12 -0.12 0.02 -0.10 -0.12 -0.16 -0.16 -0.16 -0.15 0.01 -0.11 0.00 -0.10m
MAYT 0.02 -0.15 -0.03 0.11 0.04 -0.06 -0.02 -0.05 -0.06 -0.08 -0.13 -0.03 -0.02 -0.02 -0.10 0.09 -0.16 0.04 -0.19 -0.20

~ 0.07

Ii
-0.05 0.03 0.04 -0.03 -0.01 -0.19 -0.12 0.08 -0.08 -0.11 -0.01 -0.11 -0.08--0.05 0.00 0.05 -0.19

~-- m 0.24 .' .. • 0.10 0.00 0.21 m 0.03 m 0.19-I 0.22 0.07 0.14 0.04

~~ -0.12 -0.12 -0.07 -0.13 - 0. 19~ -0.12 -0.17 -0.15 -0.10am-0.05 -0.09 0.23 -0.05 0.08

SEPT 0.10 -0.20 0.00 0.04 0.04 0.04 -0.19 • -0.02 -0.16 -0.15 0.01 -0.15 0.10

:"

0.06 mE 0.03 0.20

OCTT 0.10 0.06 -0.04 lID 0.02 0.17 -0.17 -0.09 0.14 0.19 -0.14 0.16 -0.03 0.06 0.02 0.15m -0.01III
NOVT 0.13 0.07 0.09 0.06 0.05 0.01 0.00 -0.17 0.00 0.18 0.00 0.04 0.06 -0.01 -0.07 0.08 0.03 0.05 0.09

DECT -0.08 -0.12 -0.07 0.07 -0.01 0.00 -0.03 -0.16 -0.11 0.21 -0.15 -0.04 -0.04 -0.07 -0.11 0.29 -0.03 0.19 -0.01 -0.08

Jan T 0.16 0.02 0.08 0.15 0.02 -0.09 0.08 -0.07~ -0.01 0.01 -0.13 0.11 -0.06 0.05 0.04 -0.03 -0.12 0.15 -0.13

Feb T 0.08 -0.01 0.05 0.02 0.02 -0.17 0.09 -0.01 -0.20 0.11 0.03 -0.20 0.09 -0.12 0.04 -0.15 -0.09 -0.13 0.19 -0.13

Ma rT 0.04 0.00 -0.06 0.06 -0.05 -0.13 0.03 -0.02 -0.08 0.15 0.04 0.05 -0.02 -0.02 -0.18 -0.02 0.03 0.09 0.05 -0.03

Apr T -0.10 -0.21 DPIP -0.08 -0.17--0.10 -0.06 -0.18 -0.02--0.11 -0.221m1- 0.12 -0.04 0.07 -0.12 -0.16

~II
0.07 -0.11 0.17 -0.06 -0.03 0.08 0.13

i
0.15 -0.09 0.12 -0.04 0.01 -0.10 0.10 0.04 0.19 0.03 0.03

~ -0.05 0.01 0.05 0.08 -0.01 0.03 -0.02 0.16 0.06 0.14 0.05 0.08 0.02Dl 0.11 0.21 0.18 0.10

~ .: .. . .'. .. .' .. .'.. : . .' .. .. .. .: . ~ .. ..
Aug T 0.11 -0.14 -0.06 -0.07 -0.06 -0.03 -0.22 -0.21 0.08 0.04 -0.07 -0.17 -0.09 -0.19 0.061m] 0.03 0.18 0.09 0.21

SepT IIiD -0.03 -0.02 0.07 0.04 0.06 -0.18 -0.15em 0.18 -0.01 0.02 0.01 -0.01 0.08ED 0.15m 0.06 mE
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Table 2.4 The number of months that Cartwright's mean monthly temperature illustrated significant correlations to annual
radial growth at a 99% significance threshold in a response function analysis performed by progra m
DENDR OCLIM2002. The cells highlighted in black have a positive relationship above the 99% confidence
threshold. The cells highlighted in grey have a negative correlation above the 99% confidence threshold.

-W1W W1F W2S W2F W3S W3F W4S W4F C1W C1F C2S C2F C3S C3F C4S C4L E3S E3F E4S E4F

APRT -0.10 -0.26 -0.13 -0.09 -0.10 -0.19 -0.12 -0.12 0.02 -0.10 -0.12 -0.16 -0.16 -0.16 -0.15 0.01 -0.11 0.00 -0.10 -0.24

MAYT 0.02 -0.15 -0.03 0.11 0.04 -0.06 -0.02 -0.05 -0.06 -0.08 -0.13 -0.03 -0.02 -0.02 -0.10 0.09 -0.16 0.04 -0.19 -0.20

JUNT 0.07 -0.18 -0.05 0.03 0.04 -0.03 -0.01 -0.19 -0.12 0.08 -0.08 -0.11 -0.01 -0.11 -0.08 0.26 -0.05 0.00 0.05 -0.19

JULT BE 0.21 II!D 0.24 11!El 0.20 II!D 0.10 0.00 0.21 mm 0.03HE 0.19 0.23 0.21 0.22 0.07 0.14 0.04

AUGT 0.01 -0.31 -0.12 -0.12 -0.07 -0.13 -0.19 -0.29 0.00 -0.12 -0.17 -0.15 -0.10 -0.32 -0.05 0.29 -0.09 0.23 -0.05 0.08

SEPT 0.10 -0.20 0.00 0.04 0.04 0.04 -0.19 -0.32 0.22 -0.02 -0.16 -0.15 0.01 -0.15 0.10•0.06 0.28 0.03 0.20

OCTT 0.10 0.06 -0.04 0.25 0.02 0.17 -0.17 -0.09 0.14 0.19 -0.14 0.16 -0.03 0.06 0.02 0.15 lID -0.01 0.25

NOVT 0.13 0.07 0.09 0.06 0.05 0.01 0.00 -0.17 0.00 0.18 0.00 0.04 0.06 -0.01 -0.07 0.13 0.08 0.03 0.05 0.09

DECT -0.08 -0.12 -0.07 0.07 -0.01 0.00 -0.03 -0.16 -0.11 0.21 -0.15 -0.04 -0.04 -0.07 -0.11 0.29 -0.03 0.19 -0.01 -0.08

JanT 0.16 0.02 0.08 0.15 0.02 -0.09 0.08 -0.07 -0.22 -0.01 0.01 -0.13 0.11 -0.06 0.05 0.04 -0.03 -0.12 0.15 -0.13

FebT 0.08 -0.01 0.05 0.02 0.02 -0.17 0.09 -0.01 -0.20 0.11 0.03 -0.20 0.09 -0.12 0.04 -0.15 -0.09 -0.13 0.19 -0.13

MarT 0.04 0.00 -0.06 0.06 -0.05 -0.13 0.03 -0.02 -0.08 0.15 0.04 0.05 -0.02 -0.02 -0.18 -0.02 0.03 0.09 0.05 -0.03

AprT -0.10 -0.21 -0.26 -0.08 -0.17 -0.24 -0.10 -0.06 -0.18 -0.02 -0.23 -0.11 -0.22 -0.27 -0.26 0.12 -0.04 0.07 -0.12 -0.16

MayT 0.11 0.07 -0.11 0.17 -0.06 -0.03 0.08 0.13 -0.05 0.15 -0.09 0.12 -0.04 0.01 -0.10 0.10 0.04 0.19 0.03 0.03

JunT 0.26 -0.05 0.01 0.05 0.08 -0.01 0.03 -0.02 0.24 0.16 0.06 0.14 0.05 0.08 0.02-0.11 0.21 0.18 0.10

JulT I I : I · I 1 '1 0.26 liD 0.30 0.31 Em mE 0.22 liDIE 0.26 0.26 0.28 0.24 0.29 0.26

AugT 0.11 -0.14 -0.06 -0.07 -0.06 -0.03 -0.22 -0.21 0.08 0.04 -0.07 -0.17 -0.09 -0.19 0.06 0.29 0.03 0.18 0.09 0.21

SepT 0.26 -0.03 -0.02 0.07 0.04 0.06 -0.18 -0.15HI! 0.18 -0.01 0.02 0.01 -0.01 0.08 BE 0.15Em 0.061!1E



Figure Captions

Figure 2.1 Labrador with the sample nodes and the associated three north-south
columns of sites (W= west C= central and E= east). These placements
represent the theoretical placement of sample nodes. The exact nodes were
selected within a 5 minute radius of these points (with the exception ofC4
which extented the radius to accommodate its location over the Atlantic
Ocean).

Figure 2.2 Average mean monthly tempertures in degrees Celcius for the common
instrumental record (1942-2007) of the Goose Bay (#71816) and Cartright
(#71818) Environment Canada stations. Available from Environment
Canada website :
http://www.climate.weatheroffice.gc.ca/climateData/canada _e.html

Figure 2.3 Map of Labrador with approximate boundaries of the six zones of radial
growth-climate relationships. The 'continental zone' and western part of
the 'maritime zone' were defined by Nishimura (2009). The 'arctic
maritime zone' and the northern part of the 'subarctic maritime zone' were
identified by Kennedy (2011). The extension of the 'maritime zone'
eastward, the ' subarctic maritime zone' southward, the delineation of the
'hyper-maritime zone' and the ' upland maritime zone' are from this study.
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Figure 2.3
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3.1. Abstra ct

Spruce budwonn (Chortston eura fumiferana (Clem.) (Lepidoptera : Tortricidae) is a

major defoliator of coniferous trees in eastern Canada . Many studies have investigated

past disturbance frequencies , intensity , and dispersal of spruce budwonn throughout most

of this interprovincial region and found several regionally synchronous defol iation events.

This study examines past spruce budwonn disturbance over a spatially systematic gridded

network often sites in eastern Labrador, one of the few remaining spatia l gaps in this

body of research.

Using trembling aspen (Popu lous tremuloides (Michx .) as a non-host species,

balsam fir (Abies balsam ea (L.) Mill), black spruce (Picea maria na (Mill .) B.S.P.) and

white spruce (Picea glauca (Moench) Voss) radial growth chronologies were analysed

using a host/non-host analysis . Events in the 1930s, 1950s and the 1970s were identified

as substantial outbreak s periods . The intensity of these outbreaks suggests an eastward

migration of the spruce budwonn from eastern Quebec, through western Labrador, and

into eastern Labrador. At the northern extreme of the study area, a shift in species

preference of the spruce budwonn from balsam fir to black and white spruce is also

observed . A shift in the climate-radial growth relationship in the easternmost sites along

the coast restricts the ability to use trembling aspen as a non-host species to delineate

spruce budwonn defoliation events within this part of the zone.
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3.2. Introduction

The effects of spruce budwonn (Chortstoneura fum iferana (Clem.) (Lepidoptera:

Tortricidae)) are a natural endemic process in a forest, but can build to have severe

effects, particularly those dominated by balsam fir (Abies balsamea (L.) Mill.) (Blais

1952) and spruce trees (Picea sp.)(Maclean 1980). Budwonn larvae emerge in spring and

search for suitable feeding sites (Nealis and Regnier e 2004) consisting of new bud growth

on host species (Volney and Fleming 2007). The defoliation by this feeding can cause

more than a 90% decline in radial growth (Ostaffand Maclean I995) , and lead to severe

tree morta lity (Coyea and Margo lis 1994). Spruce budwonn larvae have been known to

feed on a variety of conifer species but have demon strated a preferred palatability

primaril y for balsam fir, secondarily white spruce (Picea glauca (Moench) Voss) , and as

a tertiary food source, other species such as black spruce (Picea mariana (Mill.)

B.S.P.)(Blais 1957, Albert and Jarrett 1981).

The record of past spruce budwonn activity in the mixed balsam fir and spruce

stands of southeastern Labrador is poorly documented (Figure 3.1), even though there is

strong potential for infestation (Nealis and Regniere 2004). Recent studies of

neighbouring regions also have revealed several major budwonn outbreaks over the past

century (Nishimura 2009, Nishimura and Laroque 2010). This paper attempts to fill this

gap by reporting the results of a dendroecological study of spruce budwonn activity in

southeastern Labrador, comparing outbreak chrono logies with adjacent regions of western

Labrador, Eastern Quebec and Western Newfoundland. In this, it also aims to document

the trajectory ofbudwonn dispersal on this region and interpro vincial scale.
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3.3. Spruce Budwor m Outbr eaks in Eastern Canada

Eastern Canada has experienced on average, large spruce budworm outbreak cycles on a

regional scale every 35 years (Royama et al. 2005), and many factors have been shown to

influence the frequency and intensity of these outbreaks. For instance, Greenbank (1956)

was the first to identify climate as a major contributing factor to outbreak severity, citing

a series of three to four particularly warm and dry summers coincident with severe

outbreaks (Otvas and Moody 1978, Hudak 1991). Greenbank (1957) emphas ized the

effects of dispersal on stand-altering, intense infestations, and later showed that outbreaks

were dependent on movement between regions , at times reaching up to an interprovincial

scale (Greenbank et al. 1980, Williams and Liebhold 2000). Morris (1963) outlined

endemic populations of budworm in eastern Canada as very low to the extent that they

could be considered a 'rare' species. During stand-altering epidemic levels, severe

defoliation is seen by sharp increases in budworm populations (Greenbank 1963).

Numero us studies have investigated budworm outbreaks in eastern Canada

(Figure 3.1). Central and eastern Quebec have been particularly well studied (e.g. Morin

1994, Simard and Payette 2001, Bouchard and Pothier 2010) (Figure 3.1). These studies

have found spruce budworm outbreaks dating as far back as 1678 (Boulanger and

Arseneault 2004) . Quebec has experienced three notable outbreaks in the 20th century .

The earliest outbreak occurred between 1910 and 1915 and has been documented in

several studies (Bouchard et al. 2006, Bouchard and Pothier 20 I0). In eastern Quebec ,

two outbreaks are prevalent in virtually all studies on the subject, the first one in 1950

(e.g., Morin, 1994, Bouchard et al. 2006, Simard et al. 2008; Figure 3.1), although Blais

(1983) reported a somewhat similar outbreak on the north shore of the GulfofSt.
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Lawrence in 1940. The second major outbreak was slightly less clear. There is

inconsistency between studies as some show an outbreak in the 1970s (e.g., Blais 1983,

Simard et aI. 2008), while others found a slightly later outbreak in 1980 (e.g., Bouchard et

al. 2006, Bouchard and Pothier, 2010).

The only study to extensively investigate spruce budworm activity in Labrador

was by Nishimura (2009) . He identified outbreaks consistent with the timing of those in

Quebec. Twen tieth century outbreaks in the 1940s, through the 1950s, and in the 1970s

coincided with the Quebec data. The 1910 outbreak reported by Bouchard et aI. (2006)

was not present in Nishimura's (2009) analysis, but there was visual evidence of growth

depressio ns in his tree-ring data.

Atlantic Canada has also been the focus of severa l studies on spruce budworm

(e.g., MacLean 1980, Ostaff and Maclean 1989, Hudak 1991; see also Figure 3.1).

Royama (1984) conducted an extensive study of New Brunswick, identifying three major

regional outbreaks during the zo" century. The first outbreak commenced in 1912, and

was also identified by Greenbank (1956). The second outbreak was dated to 1950

(Greenbank 1956, Royama 1984) and this was followed by a severe outbreak in the mid­

1970s which was also identified by Gray and Mackinnon (2007).

Nova Scotia outbreaks were mostly confined to Cape Breton. Neily et aI. (2007)

identified an outbreak between 1910 and 1915, which was exclusively confined to Cape

Breton. Another large outbreak in the early 1950s reached mainland Nova Scotia (Nei ly

et aI. 2007), while the largest outbreak occurred in the 1980s (Piene 1989, Ostaff and

Maclean 1995, Maclean and Piene 1995). The scale and intensity of this last outbreak

surpassed all the previous reports for any location in Nova Scotia .
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Newfoundland is one of the few regions without well documented outbreak

records for the zo" century (Blais 1983). Studies have identified an outbreak in the mid­

to late-I 970s (Raske and Alvo 1986, Morini and Harris 2010) . An outbreak in 1955 was

isolated to the Northern Peninsula (Otvos and Moody 1978).

Moth flights have been recorded by radar over the Cabot Strait traveling with the

prevailing winds in a west to east direction (Greenbank et al. 1980). This would indicate a

migration route through New Brunswick, and then Cape Breton, to get to Newfo undland .

The question remains whether possible outbreaks in eastern Labrador originate from

Newfoundland in the south, or instead come from western Labrador.

3.4. StudYArea Sett ing

The study area encompasses a rough triangle in the southeastern portion of Labrador from

the Quebec - Labrador border in the south to near Postville in the north and running along

the coast to near Henley Harbour along the Strait of Belle Isle (Figure 3.2). The region

has a varied topography, climate and ecology.

Eastern Labrador raises from the coastal region to uplands which consist of

severa l topographic features such as the Eagle Plain, the Lewis Plain, running in a north ­

south direction approxima tely 100 km west of the southeastern Labrador coast (Foster

1984) and the Mealy Mountains approximately ISO km to the northwest of the Eagle

Plain. To the north of the Mealy Mountains, Lake Melville transects the entire study

region in an approximate east-west direction. To the north of Lake Melville uplands occur

in the west and lowlands occur in the east toward the coast.
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Along the coast lower-lying land is subjected to cold onshore climatological

circulation patterns (Foster 1984, Roberts et al. 2006). Precipitation along the coast is

lower when compared to the uplands farther inland (Roberts et al. 2006).

The majority of the region is dominated by black spruce and balsam fir (Roberts et

al. 2006) . Other species present in the area include white spruce, eastern larch (Larix

laricina (Du Roi) K. Koch) , trembling aspen (Populus tremuloides (Michx.) and paper

birch (Betula papyrifera (Marsh.j) (Foster 1984). The interior upland regions are

dominat ed by slow growing forests which are caused by semi-permanently frozen soil

and a short growing season (Foster 1984). Soil drainage is the dominant factor that

influence s soil type and thus vegetation habitat and diversity (Roberts et al.. 2006). The

Lewis and Eagle plains, have a thick organic peat soil caused by poor drainage in this

region. Black spruce is co-dominant with eastern larch in this zone, rather than with

balsam fir (Foster 1984). In the northern part of the region, balsam fir populations

declines (Siroi s 1999). Tree density of all species begins to wane until treeline conditions

are found just north of the study zone (Kennedy 2011). As one moves closer to treeline

towards the north, black spruce is slowly replaced by white spruce as the dominant tree

species (Kennedy 2011). The coastal zones , to the east of the Eagle and Lewis plateau are

mostly barren (Roberts et al. 2006), composed of exposed headland s and protected inlets

with conifer trees growing only in low-lying sheltered areas.

The domin ant conifer species in eastern Labrador exhibit shifting radial growth to

climate relationships on a spatial basis (Dumaresq et al. 2011). Four zones are present

within the study area . Central to the region is a 'maritime effect' which is defined by a
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dominat e radial growth response to July temp erature s (Dumaresq et al. 20 11). To the east,

along the coast, a ' hyper maritim e effect' shares the July temp erature respon se but is also

delineated by an extended growing season into September. On the Lewis Plain an ' upland

maritime effect' is less explored but appears to have similar radial growth to the

expressed climat e patterns of the hyper maritim e zone, yet it does not share the same

proximit y to the coast (Dumaresq et al. 20 II). In this zone, the common co-dominate

species are black spruce and eastern larch rath er than black spruce and balsam fir. To the

north of the study area the ' subarctic maritim e zone ' is characterized by a growth

response to July temperat ure and also illustrate s a switch in dominance from black to

whit e spruce. White spruce in this zone exhibit s an earlier comm encement to the growi ng

season (Dum aresq et al. 2011). This species domin ance and the growi ng seaso n shift can

be seen on a large sca le extendin g inland and northerly extending beyond the range of this

study (Kenned y 20 II).

3.5. Sampling Appr oach and Methods

A gridded sampling approach was employed to facilitate a systematic spatial analysis of

the study region. Each site was selected at the closest access ible point at the intersection

of 52, 53, 54, and 55 degrees north latitude and 56, 58, and 60 degrees west longitude

where these intersections occurred over or within 10 kilometers ofland (Figur e 3.2, Table

3.1). This sampling method was selected in order to create a homog eneous grid acro ss

eastern Labrador that connect s to Nishimura ' s (2009) spruce budworm investigations and

Nishimura and Laroque's (2011) larch sawfly study. As a whole this sampling method

compl etes a continuous, homogeneous sampling grid that extends over virtually all of
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Labrador's contiguous boreal forest. In total, 10 study nodes were samp led. Accessible

points were defined as locations of mature mixed conifer stands within five minutes

latitude of the intersection point (c.f., Nishimura 2009). A suitable sampling stand

consisted of two co-dominant tree species and the absence of fire disturbance (c.f.,

Nishimura 2009) .

Each node was labelled according to their position in the grid: western , central and

eastern nodes were designated W, C and E, respectively. The nodes were further labelled

numerically one to four, from north to south, except along the eastern grid line where

only two coastal nodes occur in the southeast (Figure 3.2). Species were also signified

with a letter designation, balsam fir, black spruce and white spruce were assigned F, S,

and WS respectively.

At each node, the two species whose foliage was known to be most palatable to

spruce budworm were selected if available (i.e., balsam fir, white spruce, and black

spruce, respectively). The target species at most nodes were black spruce and balsam fir,

except at nodes WI , CI and C4. At W I and C I white spruce, generally the rarest host tree

species within the entire study grid was found in sufficient quan tity to make a

chronology. At C4 the only species that was susceptib le to spruce budworm was black

spruce.

Two increment cores were extracted at breast height from 20 mature trees from

each species, at each node, for a total of 40 cores per species , 80 cores per node, where

two species were sampled. The cores were processed and tree rings measured, crossdated,
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and standardized according to standard protocols (see Dumaresq et al. (20 12) for further

description). Both a master chronology for each species at each node, and a master

regional chronology (average of all nodal chronologies) were generated for subsequent

analyses.

3.6. Analvtical Methods

To discern outbreaks of spruce budworm, radial growth depressions with a classic

radial-growth defoliation signature (an 8-12 year reduction of growth, followed by an 8­

12 year restabilization of growth) were identified in each tree-ring chronology at each

node. This approach followed the host/non-host analysis protocol of Swetnam et al.

(1995) and employed both visual and statistical methods . Trembling aspen was used as

the non-host species . Nealis and Regeniere (2004) characterized aspen to typically

experience an increase in radial growth during budworm outbreaks. They attributed this

to a reduction in competition for resources from tree species affected by the spruce

budworm. Local aspen chronologies from Goose Bay, Cartwright and Port Hope

Simpson generated by Kershaw and Laroque (20 11) were available for the non-host

record in this study. To test whether all species were responding to similar external

growth influences and to select the most appropriate non-host standardized chrono logy

for the study, Pearson product momen t analyses were carried out between i) the regional

standardized chronologies for aspen, balsam fir, black spruce and white spruce and ii)

each of the three aspen standardized chronologies and individual species at each node,

respectively.
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Using non-host species with similar radial-growth trends to the host species is

necessary as it provides an indication that the radia l growth patterns were influenced by

similar overall environmental conditions (Speers, 2010). This is the basis for the

host/non-host analysis as it relies on identifyi ng radial-growth depressions in the host

species relative to that of the non-host, specifica lly during the times of infestation . By

using species with similar relationships to environmental parameters such as climate, it

then eliminates climate as a possible mechanism for changes in the radial-growth rates.

In the visual analysis, graphed radial-growth trends ofhost and non-host species

were compared. Periods were identified when the growth of a host species was reduced

below that of the non-host species, resulting in a decoupling of the radial-growth trends.

The statistical analysis was performed using the computer program OUTBREAK (version

1.50P; Swetnam et al. 1995, Holmes and Swetnam 1996, Speer et al. 2001). The program

identifies reduced radial-growth patterns specific to spruce budworm by adopting specific

growth depression thresholds and radial growth recovery periods. For this study an

individual tree was considere d to be experie ncing significantly reduced radial growth

when the period of growth reduction spanned a minimum of 8 years where at least one of

these year's radial grow was less than the thresho ld standard deviations of the non-host

(Swetnam et al. 1995). This standard deviation threshold was calculated based on radial

growth of the host trees in Labrador. In addition, an individual node was considered to be

experiencing an outbreak when for two or more consecutive years 50% or more of the

individual cores at a node were experiencing a significant radial growth reduction, as

defined above.
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Regional chronologies for the three host species had a similar growth trend to the regional

trembling aspen chronology based on the two-tailed Pearson correlation test (Table 3.2).

For individual aspen tree ring chronologies, the Cartwright chronology displayed the

strongest correlations with most (16 of 19) individual species chronologies by grid node

(Table 3.3). The other two aspen chronologies available to this study - Goose Bay and

Port Hope Simpson - had fewer significant correlations (15 of 38) with the host species

and thus the Cartwright aspen chronology was adopted as the most suitable non-host

chronology available for the study.

At the nodal level, all of the western and central host chronologies , with one

exception, correlated with the Cartwright aspen tree ring chronology at the 99%

confidence level. The exception C4S had a significant correlation at the 95% level. Of

the eastern nodes, the only chronology with a significant correlation with Cartwright

aspen was the balsam fir chronology at E3, the more northerly of the two eastern nodes.

Visual analyses of plotted host/non-host chronologies at each node illustrated the

strong similarity in growing trends with some clear departures . In particular the strongest

similarities in growth trends occur between aspen and spruce (both black and white) ,

although balsam fir also shows strong overlap (Figure 3.4a, 3.4b). The eastern nodes

displayed the greatest decoupling with aspen of any of the chronologies, particularly in

the earlier and later portions of each chronology, which supports the results of the

correlation analysis (Table 3.3).
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3.7.1. Outbreak chronologies and patt erns

The three threshold limits calculated for the OUTBR EAK values that were used, were all

found to be within a similar range to Nishimura and Laroque (2011) (black spruce = 1.19

standard deviations from the mean ring-width index; balsam fir = 1.23 standard

deviations; white spruce 1.33 standard deviations). These values are comparable to the

only other calculated threshold values that were previou sly used in Labrador (Nishimur a

2009, Nishimura and Laroque 20 11).

Evidence of periodic spruce budworm outbreaks is apparent in the results from the

OUTBREAK analysis (Figure 3.5a and 3.5b). During the 100-year window of this study,

three regional outbreaks are consistently apparent across the black and white spruce

(Figure 3.5a) and balsam fir chronologie s (Figure 3.5b). These major outbreaks, defined

by peaks in the number of trees infested by spruce budworm at the majority of nodes

across the study area, occurred approximately in 1932, 1950, and 1973. These years are

defined as the modal year of peak outbreaks across all sites.

During the early 1930s, 14 of the 19 chronologies experienced an outbreak. The

year 1932 was the modal peak across the affected chronolo gies, although peak years

ranged across the grid from 1927 to 1938. The sample depth in several chronologies is

low during this outbreak (C l S, E4S, E4F). This is likely due to their proximity to the

coast (exposure to harsh conditions) and that they are younger trees. The onset of this

outbreak is fairly abrupt , with little to no budworm evidence prior to the late 1920s and
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early 1930s. This is partly due to a reduction in sample depth toward the beginnin g of the

chronologies.

All eight western chronologies, whether spruce or fir, recorded a strong infestation

during this period, with at least 50% of the samples in each chronology affected (Table

3.4). The central and the eastern chronologies displayed more mixed results with nodes

C IF , C2S, C4S and the fir chronologies in the east, experiencing less than 50% affec ted,

and nodes C IS, C2F, C3F, and C3S and the spruce chronologies in the east exhibitio ng

more than 50% of the samples showing signs of infestation. Overall, the pattern suggests

a stronger outbreak intensity to the northwe st of the study region (Table 3.4).

Between 1932 and 1942 there is a decline in the relative frequency of trees

experiencing infestation at all nodes (Table 3.4). Most nodes drop below the 50%

infestation level during this period. Thirteen of the 16 nodes (80%) record their lowest

infestation level in 1942, while nodes C4S, E3F and W3F have their lowest levels in

1939, 1940 and 1948, respectively. The only node that recorded zero infested trees during

the recovery interval was CIF ; the remainder (12.5%) had between 24 and 65 percent of

the trees infested. Following infestation recovery, all nodes show a gradual increase

again in infestation levels with the onset of the 1950 outbreak (Table 3.4).

The 1950 outbreak was present at all sites (Table 3.4). Of the eight western

chronol ogies five record ed 80% or higher infestation rates. Nodes W2F and W3F had

percentages in the high 70s, while node W3S only had 53% of its cores displaying signs

of infestation. The chronologies of the central nodes all recorded early infestation peaks
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in the mid- to late-I 940s (Table 3.4). At node C2S both the spruce and fir chronologies

record their peak outbreak in 1944. The peak of infestation in the spruce chronology

spanned 7 years until 1951, while the fir peak lasted only 2 years until 1946. Farther

south, C3S and C4S infestations both peaked in 1949 with between 50% and 60% of their

samples affected (Table 4). Fir at node C3 peaked at 73% infested trees by 1951. The

most northerly (CI) node peaked in 1950 with halfofboth the spruce and fir samples

infested. All eastern nodes peaked early in the 1950s. Most chronologies (3 of 4) in the

east exhibited over 50% infestation with the exception of E4F which peaked at 39% in

1952. The 1950 outbreak shows a fairly uniform impact across the sampling grid with no

consistent pattern in its spatial onset (Table 3.4).

The year 1959 marked an abrupt decline in the number of infested trees at each

node (Table 3.4). From 1960 to 1965 all nodes experience little to no sign of infestation

and then between 1965 and 1975 there is an abrupt rise in the percentage of infested trees.

Of the 18 chronologie s in the study, eight record more than 50% of their samples infested

during the early 1970s, including all four northern spruce (WI S, CI S, W2S, C2S) and

W3S chronologies. Only fir chronologies at W2 and C2 nodes have greater than 50%

infested samples (Table 3.4). The remainder of the chronologies during this outbre ak have

less than 50% infested samples (Table 3.4). The 1980s experienced a gradua l decline seen

in Table 3.4, although not shown in this Table, the decline continues into the 1990s in all

chronologies.
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3.8.1. Host/non-host radial growt h relationships

The visual and statistical comparisons of each host chronology to the non-host aspen

chronology, revealed several regionally synchronous events with the exception of the

easternmost nodes (E3, E4). These nodes illustrated different growth trends compared

with the central and western sites (Figure 3.3, Table 3.2). Radial growth in these two

eastern nodes respond to hyper-maritime climate controls (Dumaresq et ai. 20 1I) in

contrast to the maritime influence on radial growth that have a significant control on the

radial growth of aspen (Kershaw and Laroque, 20 1I). As a result there is a fundamental

disparity in climate drivers and radial growth responses between the host/non-host tree­

ring chronologies in these eastern sites. For this reason, the hyper-maritime nodes are

excluded from further discussion of spruce budworm outbreaks in the sampl ing grid,

because any results would be at best, inconclusive.

Radial growth in the two northernmost nodes in the sampling grid (W1, C I)

responds to a sub-arctic maritime climate effect, first described by Kennedy (20 1I) and

identified in southeastern Labrador by Dumaresq et ai. (2012) . Despite this variation in

radial growth-clima te response, the host tree ring chronologies from these nodes closely

follow similar trends to the non-host aspen chronology (Figure 3Aa and 3A b, Table 3.3)

and consequently are included in the regional analysis of spruce budworm outbreaks .
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3.8.2. Spruce Budworm Outbreaks

Of the three spruce budwonn outbreaks recorded in southeastern Labrador, the

1950s outbreak was the most intense. This outbreak matches the timing of a mass

outbreak farther west in Labrador and Quebec (e.g. Nishimura 2009, Blais 1952, Krause

and Morin 1999) (Figure 3.1). The rapid onset, intensity, and prolific nature of the 1950s

outbreak made it difficult to identify a spatial pattern in the direction ality of the

infestation for the outbreak and thus no dispersal source can readil y be identifi ed in this

study . This infestation is consistent with above-average summer and winter temperature s

experienced throughout Newfoundland and Labrador (Banfield and Jacobs 1998). One

explan ation for this may be related to the fact that the earlier outbreak did not completely

dissipate in the 1940s and consequently the outbreak was caused by a recovery of a

population alread y well represented in the forests within the study region , rather than one

that migrated in from an adjacent region. The sharp decline in the infestation rate seen at

the end of the 1950s is likely due to a very sharp cooling in the winter of 1959 (Banfield

and Jacob s 1998). It is our belief that in the 1950s infestation instance , climate was the

driving factor that brought a native population up to epidemic levels (Greenb ank 1956),

rather than a dispersal following prevailing winds from western regions experiencing

epidemic outbreak s (Greenb ank 1957).

The less intense 1930s and 1970s spruce budwonn outbreak s provided a clearer

sense of dispers al patterns into southeastern Labrador. In contrast to the 1950s outbre ak,

the infestation intensity at all nodes was virtually zero prior to both the 1930s and 1970s

outbreaks. This strongly suggests a non-loc al source for both outbreaks. The pattern of
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infestation intensity and the timing of outbreak s across the sampling grid suggest a

stronge r and earlier presence in western nodes compared to central nodes. For example ,

all species in the western nodes fully experie nced the 1930s outbreak, in contrast to

species in the centra l nodes which experie nced a more scattered presence in extent and

intensit y. In the case of the 1970s outbreak, the infestation was more concentrated in the

northwestern comer of the grid and in black and white spruce trees (Table 3.4). For both

outbreaks, a dispersa l path from western Labrador appears most likely with a gradual

eastward fade towards the Labrador coast. Although the 1970s outbreak was clearl y

identified in western Labrador by Nishimura (2009) and eastern Quebec by Simard et al.

(2008), a similar source and correlative outbreak to the west is not obvious for the 1930s

outbreak (Figure 3.1).

The I970s outbreak exhibited a north-to-south gradient in infestation intensity and

dispersal where white spruce experienced the outbreak farther to the north than the

balsam fir chronologies. This northern influence on the spruce budworm outbreak may be

related to ecologica l tolerances as balsam fir distribution is less contiguous towards the

northern part of the grid. Although the density of fir becomes less contiguous in the north

from the coast westward across the study site, this does not necessary reflect the overall

densi ty of the forest as white spruce starts to become more dominant in northern regions

of Labrador (Kennedy 20 II ). It is also possible that the pattern reflects the timing of

budbur st and that this phenological factor plays a key role in the choice of target host for

the budworm . The emerge nce of budworm larvae has been strongly linked not only to

climate factors (i.e. degree days) but also to the synchronicit y with pheonlogical cycles of
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its host tree species (Volney and Cerezke 1991). With limited fir populations and a

shortened growing season near balsam fir's northern limit at 45"N (Roberts et al. 2006), it

is possible that budworm are responding more closely to the bud burst of the more

climate tolerant white spruce, than to the balsam fir.

3.9. Conclusion

One of the main goals of this paper was to better understand if spruce budworm

infestations acted in a synchronous manner throughout eastern Labrador. Evidence from

the zo"century suggests that they do, as broadly-based regional synchronou s infestations

occurred in most of eastern Labrador in the 1930s, 1950s and 1970s. The exception to

this broad trend may occur in the extreme-eastern coastal areas where reliable results

could not be gleaned from this study. This was due to a decoupling of the radial growth

patterns between the spruce budworm host species (black spruce and balsam fir) and non­

host species (aspen) caused to a transition in the forest-climate relationship from the more

common maritime zone, to the altered climates of the hyper-maritime zone (Dumaresq et

al. 2011). Underlying this push of infestations up to the boundaries of the transition zone,

is the evidence that most of the major budworm events are derived from the eastward

expansion of budworm from eastern Quebec and western Labrador. Little to no evidence

indicates that outbreak events in the hyper-maritime climate zone are moving up the coast

from Newfoundland. Although a few decoupling events are present within the limited

coastal data points within this study, any speculation is baseless. Without suitable non­

host chronologies and a change in the relatively short host chronologies in the southeast

portion of the study site, the hyper-maritime zone will continue to require further
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sampling and analysis to try to understand the past disturbance regime from spruce

budworm activitie s.

Overlying all of these findings is the importance of climatic conditions within the

growing environment of the forests in eastern Labrador. Climatic conditions help define

where the trees are growing on the landscape in an east-west and north-south fashion

(Dumaresq et al. 2011, Kennedy 2011, Nishimura and Laroque 2011), and climatic

conditions also define the locations where major infestations of spruce budworm build

and disperse from adjacent regions (Greenbank 1957, Greenbank 1980). It will be the

nature and location of these shifting boundaries of the climates of eastern Labrador in the

face of rapid climate change that will ultimately define the ability of spruce budworm

occurr ences in eastern Labrador to expand or contract.

Rapid spring warming of up to two to three °C by 2050 is predicted for Labrador

(Trenberth, et al. 2007, Bell et al. 2008), but the timing and location of such warming , in

concert with the changing bioclimatic interaction s along the boundarie s of the subarctic

maritime /maritime /hyper-maritime forest zones may very well define future spruce

budworm effects in the forests of eastern Labrador. If the bound aries continu e to be

present becau se of strongly positioned climate forcers such as the effects from the

Labrador Sea, then a continuation of budworm cycles similar in frequenc y and magnitude

to the 20th century are probable. MacCarthy and Weetman (2006) and MacCarth y (2001)

found the isolation and humid climate of coastal Newfoundland and Labrador forests to

have longer stand and forest scale disturbance cycles, ranging up to 500 years (Foster

1983). If the rapidly warming climates change the location, and more interestingly, the
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timing of specific ecological processes that are deemed to be key within the ecology of

the forests and or budworm life cycles (e.g., bud burst), then the freque ncy and magnitude

of future outbreaks in eastern Labrador will likely be altered. With Labrador climate

scenarios predicting increased spring temperatures (Bell et al. 2008), the possibility of

increase d budworm frequency and intensity is possible. Coupled with predictions of 10%­

20% increase in rain events (Bell et al. 2008) and the proximity to the Labrador Sea, there

is also a possibility of reduced budworm events . Overall with the uncertainty in changing

climates and precisely how budworm will react to such changes emphasize the need for

continued study and monitorin g both climatic ally and ecologica lly.

3.10. Acknowledgements

We would like to thank Mariana Trindade, Phil B1undon, and the MAD Lab for

assistance in the field, as well as the financial assistance from the International Polar Year

project: Present processes, Past changes, Spatiotemporal dynamics (PPS) Arctic Canada

and NSERC for funding to Laroque and Bell. Funding support for this projec t was also

provided in part by the Northern Scientific Training Program research grant from Indian

and Northern Affairs Canada and Memoria l University of Newfo undland .

70



3.11. References

Albert, PJ . and Jarrett, P.A. 1981. Feeding preferences of spruce budworrn

(Choristoneura fu miferana clem.) larvae to some host-plant chemical s. Journal of

Chemical Ecology 7:391-402

Bell, T., Jacobs, J.D., Munier, A., Leblanc, P., and Trant. A. 2008 . Climate change and

renewable resources in Labrador : Looking towards 2050. Proceedings and report

of a conference held in North West River, Labrador. 11-13 March . St. John ' s

Labrador Highland s Research Group, Memorial university of Newfoundland, 96

pp and CD Rom.

Blais, J. R. 1952. The relationship of spruce budworrn (Chorisoneura fum iferana, clem.)

to the flowering condition of balsam fir (Abies balsamea (L.) Mill.). Canadian

Journal of Zoology 30 (1):1-29.

Blais, J.R. 1957. Some relationships of the spruce budworrn, choristoneura fumiferana

(clem. I) to black spruce, Picea mariana (moench) voss. The Forestry Chronicle

33:364-372.

Blais, J.R. 1983. Trends in the frequency, extent, and severity of spruce budworrn

outbreaks in eastern Canada. Canadian Journal of Forest Research 13: 539-547 .

Bouchard , M., Kneeshaw , D., and Messier, C. 2006 . Forest dynamics following spruce

budworrn outbreaks in the northern and southern mixedwoods of central Quebec.

Canadian Journal of Forest Research 37(4):763 -772.



Bouchard, M., and Pothier, D. 2010. Spatiotemporal variability in tree and stand mortality

caused by spruce budworm outbreaks in eastern Quebec. Canadian Journal of

Forest Research 40:86-94.

Boulanger , Y., and Arseneault , D. 2004. Spruce budworm outbreaks in eastern Quebec

over the last 450 years. Canadian Journal of Forest Research 34:I035- 1043.

Coyea, M.R., and Margolis, H.A. 1994. The historical reconstruction of growth efficiency

and its relationship to tree mortality in balsam fir ecosys tems affected by spruce

budworm. Canadian Journal of Forest Research 24:2208-222 1.

Dumaresq, A.D., Laroque , C.P., and Bell, T. 2011. Tree-ring radial-growth relationships

to summer temperature across a network of sites in eastern Labrador. Master's

thesis. Memorial University, St. John ' s, Newfo undland and Labrador. Chapter 2.

Foster, D.R. 1984. Phytosociological description of the forest vegetation of southeastern

Labrador . Canadian Journal of Botany 64:899-906.

Gray, D.R., and MacKinnon , W.E. 2007. Historical spruce budworm defoliation records

adjusted for insecticide protection in New Brunswick, 1965-1 992. Journal of the

Academ y of the Entomological Society 3: 1-6.

Greenbank , D.O. 1956. The role of climate and dispersal in the initiation of outbreaks of

spruce budworm on New Brunswick: II.The role of Climate. Canadian Journal of

Zoology 34:453-476.



Greenbank, D.O. 1957. The role of climate and dispersal in the initiation of outbreaks of

spruce budworm on New Brunswick: II. The role of dispersal. Canadian Journal

of Zoolog y 35:385-403.

GreenbanK, 0.0.1 963. The Development of the outbreak. Memoirs of the Entomologica l

society of Canada 31:I9-22

Greenbank, D.O. Schaefer , G.W., and Rainey, R.C., 1980. Spruce budworm

(Lepidoptera: Tortricidae) moth flight and dispersal: new understandin g from

canopy observations , radar, and aircraft: introducti ons. Memoirs of the

Entomological Society of Canada 112:1-49.

Hudak, J. 1991. Integrated pest management and the eastern spruce budworm. Forest

Ecology Management 39:313-337.

Holmes, R.L., and Swetnam , T.W. 1996. (unpubli shed) . Detecting outbreaks of spruce

budworm and tussock moth in annual tree-ring growth , and distinguishing

between the insect species. Dendroecology program library - Program

OUTBR EAK Users Manu al. Laboratory of Tree-Rin g Research, University of

Arizona, Tucson, Arizona.

Kennedy, C. 2011. Dendroclim atology of Picea glauca at tree line in northern Labrador,

Canada . Master ' s thesis. Memorial University, St. John ' s, NL. 98 pp.

73



Kershaw, G., and Laroque, C. 20 I I. Ecozone differentiation using multiple species: a

case study using tremblin g aspen (Populus tremuloides) in Labrador, Canada.

Submitted to Canadian Journal of Forest research, manuscript #2011-0187.

McCarthy, J. 2001. Gap dynamics of forest trees: A review with particular

attention to boreal forests. Environmental Review 9:1-59 .

McCarthy, J., and Weetman, G. 2006. Age and size structure of gap-dynamic, old­

growth boreal forest stands in Newfoundland. Silva Fennica 49(2):209-230.

MacLean, A.M. 1980. Vulnerability of fir-spruce stands during uncontrolled spruce

budworm outbreaks: A review and discussion. The Forestry Chronicle pp213-

220.

MacLean, D.A., and Piene , H. 1995. H. Spatial and temporal patterns of balsam fir

mortal ity in spaced and inspaced stands caused by spruce budworm defoliation.

Canadian Journal of Forest Research 25:902-911.

Morin . H. 1994. Dynamics of balsam fir forests in realtion to spruce budworm outbreaks

in the boreal zone of Quebec. Canadian Journal of Forest Research 24:730-7 41.

Moroni, M.T., and Harris, D.O. 2010. Snag frequency, diameter and species distribut ion

and input rate in Newfoundland boreal forests. Forestry 83(3):229 - 244.

Morris , R.F. 1963. The dynamics of epidemic spruce budworm populations. Memoirs

of the Entomological Society of Canada 31:7-11



Nealis, V.G., and Regniere, J. 2004. Insect-Host relationships influencing disturbance by

the spruce budworm in boreal mixedwoo d forest. Canadian. Journal of Forest

Research 34: 1870-1882.

Neily, P.D., Quigley E.1., Stewart, B.1., and Keys, K.S. 2007. Forest disturbance ecology

in Nova Scotia. Renewable Resources Branch, Forestry Division, Ecosystem

Management Group, Truro. Natural Resources Nova Scotia. pp.36.

Nishimura, P.H. 2009 . Dendroclimatology, dendroecology and climate change in western

Labrador, Canada. Master's thesis. Mount Allison University, Sackville, New

Brunswick. 115 pp.

Nishimura, P.H., and Laroque, C.P. 2010. Tree-ring evidence oflarch sawfly outbreaks in

western Labrador, Canada. Canadian Journal of Forest Research 40: 1542- 1549.

Nishimura, P.H., and Laroque, C.P. 201 1. Observed continentality in radial growth­

climate relationships in a twelve site network in western Labrador, Canada .

Dendrochronologia 29: 17-23.

Ostaff, D.P., and MacLean, D.A. 1989. Spruce budworm populations, defolia tion, and

changes in stand condition during an uncontrolled spruce budworm outbreaks on

Cape Breton Island, Nova Scotia. Canadian Journal of Forest Research 19:1077­

1086.

Ostaff, D.P. and MacLea n, D.A. 1995. Patterns of balsam fir foliar production and growth

in relation to defoliation by spruce budworm. Canadian Journal of Forest

Research 25: 1128-1136.

75



Otvos , I. S. and Moody, B. H. 1978. The Spruce Budwonn in Newfoundland: History,

Status and Contro l. Newfound land Forest research Center, St. John's , NL.

Information Report N-X-150. 76 pp.

Piene, H. 1989. Spruce budwonn defolia tion and growth loss in young balsam fir:

defoliation in spaced and unspaced stands and individual tree survival. Canadian

Journal of Forest Research 19: 1211-1217.

Raske, A.G. and Alvo, M. 1986, Vulnerabi lity of forest types to spruce budwonn damage

in Newfo unland: and empirica l approach based on large sample size. Forest

Ecology and Management 15: 31-42.

Roberts, B.A., Simon, N.P., and Deering, K.W. 2006 . The forest and woodlands of

Labrador , Canada : ecology, distribution and future management. Ecological

Research 21:868 -880.

Royama, T. 1984. Population Dynamics of the Spruce Budwonn (Choristoneura

fu miferanay. Ecological Monographs 54(4):429-462 .

Royama, T., MacKinnon, W.E., Kettela , E.G., Carter, N.E., and Hartling , L.K. 2005.

Analysis of spruce budwonn outbreak cycles in New Brunswick , Canada , since

1952. Ecology 86(5):1212 -1224.

Simard, M., and Payette, S. 200 I. Black spruce decline triggered by spruce budwonn at

the southern limit oflichen woodland in eastern Canada. Canadian Journal of

Forest Research 31:2160-2 172.

76



Simard, S., Elhani, S., Morin, H., Krause, C., and Cherubini, P. 2008. Carbon and oxygen

stable isotopes from tree-rings to identify spruce budworm outbreaks in the borea l

forest of Quebec. Chemical Geology 252:80-87.

Sirois, L. 1999. Distribut ion and dynamics of balsam fir (Abies balsamea L. Mill.) at its

northern limit in the James Bay area. Ecoscience 4:440-352 .

Speer, J.H., Swetnam, T.W., Wickman, R E., and Youngblood, A. 2001. Changes in

Pandora Moth outbreak dynamics during the past 622 years. Ecology 82:679­

697.

Speer, J.H. 20 IO.Fundamentals of tree-ring research. The University of Arizona Press.

Tuscon . 333 pp.

Swetnam, T.W., Wickman, R E., Paul, G.H., and Baisan, C.H. 1995. Historical patterns

of western spruce budworm and Douglas-fir tussock moth outbreaks in the

Northern Blue Mount ains, Oregon.U.S. Forestry Service, Research Paper PNW­

RP-484.

Trenberth, K.E., P.D. Jones, P. Ambenje, R. Bojariu, D. Easterling, A. Klein Tank, D.

Parker, F. Rahimzadeh, J.A. Renwick, M. Rusticucci, B. Soden and Zhai , P. 2007 .

Observations: Surface and Atmospheric Climate Change. In: Climate Change

2007: The Physical Science Basis. Contribution of Working Group I to the Fourth

Assess ment Report of the Intergovernmental Panel on Climate Change [Solomon,

S.D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tigno r and H.L.



Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and

New York, NY, USA.

Volney , W,J . and Cerezke, H.F. 1991. The phenology of white spruce budworm in

Alberta. Canadian Journal of Forest Research 22:198-205.

Volney, W,J. and Flemming , R.A. 2007. Spruce budworm (Chori stoneura spp.) biotype

reactions to forest and climate characteri stics. Global Change Biology 13:1630­

1643.

Wiliams, D.W., and Liebhold , A.M. 2000. Spatial Synchron y of Spruce Budworm

Outbre aks in Eastern North America . Ecology 81(10): 2753-2766 .

78



;i

Table 3.1 - The site detail s of each location and statistics relatin g the each crossdated master chronolo gy.
BS=blaek spruce ; WS=whitc spruce; EL= eastern larch; BF = balsam fir; TA = Tremblin g Aspen;
MSI = mean serie s intercorrclation (calcu lated on 50-year lagged segment s); MTA = mean tree age:
AMS = avcra gc mean sensitivity; AC=unfi ltcrcd auto-corre lation: MM = mean measurement

(annu al increment) ; I·IST = high subarctic tundra ; LB = low borea l; HBF =high borea l forest;
LSF = low subarctic forest; CB = costal barren s; MB = mid-bore al forest: NA = not available

Sit e Sit e Na me Specie s la ti tu de Longit ude
Elevati o n Length of No. o f

MSI MTA AMS AC MM
(m a sl) Chro no log y Cor es

W1 W IS WS 5-1.XI-I I°:-; 59 .'H-I5 °W 2X 1666 -2007(3-12) 36 0.53 -1 156 0. 19X O.X03 0.-13

W1 WIF Ill' 5.J.X1-I1°:-; 59 .93-15°W 2X IX07·2007(201) 33 O.5O.J I I3 .X 0. 195 0.7X8 0.-13

W 2 W 2S IlS 53 .XS-l9°N 60.lX,25 "W 283 1751 ·2007 (257 ) 3-1 0 .525 199.6 0 . IX9 0.82 0.-11

W2 W 2F Ill' 53.88-19"N 6O.IX'25"W 2X3 18-15·21X)7(163 ) 3-1 0 .-17 117.3 0 .205 0.723 0.-13

W3 W 3S IlS 52 .9X70"N 59 .<)-Ill3°W 357 171N ·2IXl7 (219 ) 38 0 .-195 122.2 0. 176 O.7J 3 0.51

W3 W W Ill' 52 .987 0oN 59 .<)-Ill3°W 357 1855 -2007 ( 153 ) 36 0.5 1-1 109.8 0 .2 16 0.755 0 .-1

W4 W-IS IlS 5 1.9-158"N 59 .92 I I"W .132 1803·200 7 (205 1 3 1 0.-166 125. 1 0 .184 0.76-1 0.-19

W4 W4F Ill' 5 1.945 X"N 59 .92 11"W .\3 2 1871-21X)7( 137 l 32 0.-133 tJ~ .6 Il.l -l9 0 .65 0.-1')

C1 C IWS WS 5-1.80-l2 °N 58 . IXX5"W -I I852 -2IX)7 ( 1561 3X 0.5-11 97 .9 0 .258 0.695 O.X

C1 C IF Il l' 5-1.80-l2'N 5X. IXX5°W -I 1789-2IXI7(2 191 35 0.52 3 67.7 0.2 12 0.X2-1 O.XX

C2 C2S IlS 53.lX)06'N 58 . I-IOI"W l)(l 17-16- 2007 (26 2) 38 0.529 1-13.2 0 . 187 0.8 17 0.-12

C2 C2 F Il l' 53 .()(X)6"N 5X.140 1oW l)(l IX59-2IXl7 ( 159 ) 35 0.5 1-1 112.9 n.is» 0.788 0.-15

C3 C3S IlS 52 .99-100N 57.8402°W 236 17J -I·2IX' 7 127-1) 34 0.-152 1-17.-1 0 . 187 0.763 0.-1

C3 C3F Ill' 52.9lJ-IOON 57.8 402 °W 236 IX40 ·2IX'7 116X) 30 0.-195 1100.183 0.7 0 .5

C4 C4 S IlS 52.0·l-l 0'N 57 .'!90-l "W 3-17 1858-200 7 (1 50 ) 32 0.-151 103.5 0 .202 0 .768 0.-12

E3 E3S IlS 52 .lJ9-10"N 55 .9X90 ' W 12 IX.'I7·2IX)7 (1 35 ) 32 0.-178 88 .7 0 .2 13 O.X07 0.6X

E3 E3f' Il l' 52 .99-10"N 55 .98l)()"W 12 1892 -2007 (116 ) 33 0 .-165 8 1.8 0 .209 0 .861 0.61

E4 E-lS IlS 5 1.9805°N 55.9025 "W 20 19 IX-2IXl7 (90 ) 33 0.-183 6 1.5 0 .2 1-1 0 .727 0.X8

E4 E-II' II I' 5 1.9805°N 55 .9025°W 20 1906 -2IXl7 (Il l2) 33 0.-187 56.5 0 .198 0.853 1.13

CARTWRIGHT ASPEN T A 53.-1692 °N 57 . I3'!3 "W NA 1865· 2007 (14 3) -10 0.-199 NA 0.325 0.785 NA

GOOSE BAYASPEN T A 53 .2882 "N 6O.-I09-1"\V NA IlJ56· 2007 (5 2) -10 0.527 NA 0.239 0.777 NA

PORT HOPE ASPEN T A 52.7202°N 56.6923°W NA 1890 -2()(l7 II IX) .j() 0.55 1 NA 0.25 1 0.789 NA

Ii



Table 3.2 Pearson product moment correlation r-values between the regional
trembling aspen chronolongy and the regional balsam fir, black spruce ,

and white spruce chronologies .

Table 3.3 Pearson product moment correlation r-values between individual species at
each node and trembl ing aspen chronologies. Dark shaded cells represent

those values that surpass the 99% confidence threshold. The light shaded

cell surpassed the 95% confidence threshhold. n equals to the common
interval between given pairs of chronologies (see Table 3.1 for values) .
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Figure Captions

Figure 3. 1 Chart comparing results from past spruce budworm studies in eastern
Canada. The black dots indicate outbreaks identified by a specific year.
The elongated black bars indicate outbreaks identified over a multi-years
timespan.

Figure 3.2 Labrador with the sample nodes and the associated three north-south
columns of sites (W= west C= central and E= east). These placements
represent the theoretical placement of sample nodes. The exact nodes were
selected within a 5 minute radius of these points (with the exception ofC4
which extented the radius to accommodate its location over the Atlantic
Ocean). Aspen chronologies are denoted , dispersed throughout the center
of the study area.

Figure 3.3 Standardized regional radial-growth chronologies for black spruce, balsam
fir, white spruce and trembling aspen . Visually it is apparent that radial
growth of all four chrono logies exhibit similar long term trends .

Figure 3.4a Balsam fir (host) nodal chronologies graphed with Cartwright aspen (non­
host) standardized chronology. Graphs are arranged according to the
gridded sampling format based on their relative geographic position
(Figure 3.2)

Figure 3.4b Black spruce (host) nodal chronologies graphed with Cartwright aspen
(non-host) standardized chronology . Graphs are arranged according to the
gridded samp ling format based on their relative geographic position
(Figure 3.2)

Figure 3.5a Percentage of sampled black spruce trees infected by budworm over time
at each site complete and sample depth of each given chronology

Figure 3.5b Percentage of sampled balsam trees infected by budworm over time at
each site and sample depth of each given chronology.
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Figure 3.2
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_ Relal ive Frequency (%) - Sample Depth

Figure 3.5a (Spruce)
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Figure 3.5b (balsam fir)

_ Relat ive Frequency (%) - Sample Depth
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Chapter Four

Conclusions

4.1. Radial Growth-Climate Relati onship s in Eastern Labrador

Eastern Labrador contains four distinct zones of radial growth-climate sensitivity . All of

these zones are defined by a strong correlation to July temperatures but distinction s can

be found in the details of the remaining growing season characteristics. In the central

region of Labrador moving toward the eastern the area of sample grid establi shed in this

study, the 'maritime zone ' is distinguished exclusively by radial growth response to July

temperature. In the extreme eastern portion of the study grid, where cool onshore winds

come off the Labrador Sea (Roberts et al. 2006), and trees are blanketed more often under

fog (Trindade et al. 2011) , there is a shift in sensiti vity into a defined ' hyper-maritime

zone ' . This zone also exhibits a strong sensitivity to July temperatures , but the defining

characteristics of this coasta l effect are a prolonged growing season into September ,

caused by the modera ting effect on "summer" temperatures of the adjacent Labrador Sea.

To the north the 'suba rctic maritime zone' is defined by a dominance of white spruce and

a growing season commencing in June. Also present is eastern Labrador is an 'upl and

maritime zone' which is similar to the ' hyper-maritime zone' with an extended growing

season, but it is distinct due to its higher elevation away from the coast , a stronger radial

growth relationship to July temperatures and a strong presence of eastern larch (Larix

laricina (Ou Roi) K. Koch) rather than balsam fir (Abies balsamea (L.) Mill).
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4.2. Radial Growth-Climate Relation ships In Gr eater Labrador

Fundamenta l to the radial growth of most of Labrador's coniferous trees is a sensitivity to

July temperatures. Nishimura and Laroque's (2011) defined 'continentality' in the far

western portions of Labrador diverges from this with a response to the warmth of an

earlier growing season. Kennedy's (2011) northern treeline study also deviates slightly

from this fundamenta l aspect of similar radial growth with responses that are collapsed

into a shortened growing season of a few months . Examples from these two studies

illustrate a shift in radial growth responses while moving away from the dominating

maritime zone, which defines most of Labrador.

As one might not expect, the dominating gradient that exists in Labrador is not

from north to south, but instead from west to east (or inland to coastal), as the shift in

radial growth responses follow the west to east heating of the landscape, denoting a later

growing season that corresponds to the shape and proximity of the coast. The western

extreme of Labrador experiences an optimum growing season that occurs earlier than July

(Nishumu ra and Laroque 20 II), while the eastern extreme of Labrador has an optimum

growi ng season that starts in July, but reaches until well past August. A north-so uth

gradient does exist, although it is largely resigned to high latitude tree line (Kennedy,

2011).

4.3. Spruce Budworm In Eastern Labrador

In eastern Labrador, the zo" century bore three severe budworm outbreaks; the first in the

1930s, the second in the 1950s and the last in the 1970s. The 1950s was a particularly
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devastating outbreak that affected the entire western and central portions of the defined

study grid. The two other noted outbreaks were less severe, and the effects were

concentrated more heavily in the northwest portion s of the study grid.

Budworm food preference in the western and central portion s of the study grid

does not necessarily follow the classic species preference as seen in other regions of the

boreal forest (Blais 1983). In more northern regions of the study grid, white and black

spruce had a greater rate of infestation than balsam fir, the usual primary host. This is

most likely a result of the increased domin ance of white spruce (Kenned y 201 I) , and the

thinning of the balsam fir population due to the proximity to its northern limit of 45°N

(Robert s et al. 2006) . This mixed with the dendroclimatological results in the eastern

extremes of the study grid (which illustrate shifts in the radial growth-climate sensitivities

in conifer trees), raises question s regarding the effects of climate change on future

budworm outbreak frequencie s and spatial trends.

4.4. Spru ce Budworm In Gr eat er Labrador In Relation To Eas tern Ca nada

The addition oftrembling aspen as a spruce budworm non-ho st species in Labrador

provided the desired robust analysis that was needed to reinforce Nishimura's (2009)

findings in western Labrador that were made without a non-host species. In a sense, it

also validates Nishimura' s regional average methodolo gy. The outbreaks identified by

Nishimura (2009) were found to extend past the boundarie s of his study, into contiguous

areas of central and eastern Labrador covered by portions of the gridded network of this
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study. This evidence suggests that major spruce budworm outbreaks are commonly

affecting all of Labrador in a synchronous way when they do occur.

The regional synchronicity of past spruce budworm outbreak s in eastern Canada

(e.g. Raske and Alvo 1986, Blais 1983, Simard and Payette 200 I) is also present spanning

through Labrador and dissipating towards the eastern coast. Major events in the 1950s

and I970s, two substantial outbreaks in all eastern boreal regions, seem to be present in

Quebec (Boulanger and Arseneault 2004), and then span eastward into the Maritimes

(Ostaff and MacLean 1995), and also into Labrador (Nishimura 2009). Thi s thesis helps

identify the temporal and spatial dispersal of budworm populat ions eastward into

Labrador up to the coast. What this study was also able to shed light on, is the lack of

evidence of any movement of budworm infestations northward from the northern

peninsula of Newfo undland. That said, the shift in conifer tree responses to climate along

the coast of the Labrador Sea and the Strait of Belle Isle (with no viable non-host species

following the same radial growth trends as the host species in this region), provides an

avenue for further investigation into past budworm outbreaks in the newly delineated

' hyper-mari time zone' .
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