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Abstract

Analyzing categorical data collected over time is an important rescarch topic. Even
though there exists numerous studies on analysis of categorical data in cross sectional

s of this type of data in the longitudinal setup is, however, not

tup, the analys

adequately addressed. In this thesis, we develop two correlation models for multino-

d 1 linear ity based

mial (> 2 categories) longitudinal data, namely, a
model and a non-linear logistic probability based model; and provide likelihood infer-
ences for category effects, fixed covariate effects and correlations or dynamic depen-
dence parameters. The inferences are done for both complete history and contingency

also models the influences of

tables based data. For the history based data, the thesi
individual random effects in addition to the fixed covariate effects. Furthermore, as

in many practical situations the number of individuals involved in the study may be

small, in the thesis, we have examined the finite sample performance of the likelihood

estimates both in fixed and mixed model setups.
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Chapter 1

Introduction

1.1 Motivation

In practice there are many situations where categorical responses with more than

two categories along with information on multidimensional covariates are collected
from a large number of independent individuals over a small period of time. In such

a situation, it is likely that repeated categorical responses will be correlated. How-

s of such data

ions on the analy

ever, there does not appear to be adequate d

mainly because of the difficulties of modeling itudinal i for multino-

ither using time as a fixed covariate or modeling

mial responsc
association through "working’ equi-correlation or independence and/or adhoc transi-

tion probabilitics, we refer to Conaway (1989), Fienberg ct al. (1985), Agresti (1990,
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2002), Lipsitz ct al. (1994), Stram et al. (1988), and Li and Chan (2006). The

purpose of this thesis is to develop suitable correlation models and provide inferences

for the regression parameters under categories by taking the longitudinal correlations

into account.

As a motivation for the longitudinal multinomial data modeling, in this chapter,

ssion analys

we first briefly demonstrate how multinomial regr are usually done in
the independent setup. Next, we provide some historical development on longitudinal

binary modeling before we consider the multinomial generalization.

1.1.1  Multi ial Model in Independent Set-up

In the independent setup, there exist many analysis using multinomial models for
univariate categorical responses at cross-sectional level. For example, in the 'Aspirin
and Heart Attacks’ problem discussed by Agresti (1990, Table 2.3, page 17) the status
of heart attack, namely fatal attack, non-fatal attack and no attack, were recorded
from 22071 independent individuals along with covariate information on whether the
individual had aspirin or not during a clinical trial period. Here it is of interest to

understand the effect of aspirin on heart attack status. Similarly, in socio-economic

field, one may be interested in studying the effect of gender or say cducational level

on the categorical response variable, namely jobless spell in a given
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Sy Uiyttt .1/.;\-) (L.1)

be a univariate K-dimensional nominal categorical response variable for the ith (i =

1, -+, I') individual. Here the K-dimensional variable implies that the response of

the ith individual belongs to one of the K+1 categories. Suppose that a p
covarinte vector X, = (i -+ 2 ) i recorded along with the response , from
the ith individual, and all / individuals are independent. Since the response of the ith
individual can belong to one of K + 1 categorics, we denote the jth (j =1, -+, K)

category response of the ith individual by

L (RN )

= (01, 1,01%_)', (12)

ieyd =1land g =0forj#c,

so that the response in the last category can be identified by

K+ = (g, ...

% S0 =01

Suppose that 8; = (81, -+ , B,)’ denotes the effect of x; on y for j =1, -+
PP ] s} ip. ]

with By = (0, --+, 0)' by convention. Also suppose that
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»
exp (,’i,“ + 205 a-.‘,,,)

Pl ab) - g — L
Sew (;i,.. + 3 Ba .r.‘u,)

exp (/i,n + x:g,)

L+ Y exp (B + X8,
P~
= a9 say, i= 1 L= K (1.3)

denote the probability that the response from the ith (i =1, -+, I ) individual be-

long to the jth (j =1, -+, K) category. In (1.3), 3;¢ denotes an intercept parameter

under the jth category. One may then obtain the likelihood estimate of

= (Bro. By -+ Bjo, By -+, Bo, Br) (1.4)

by maximizing the multinomial likelihood function given by

Ui}y"
LiulX},, X)) = (15)

where gt = (1= £, 05) and 78 = (1- 2F, 72); which s cquivalent to

solving the log likelihood estimating equation for 8] = (0, B})’

oot ()}

dnLp) _ 9 L&
g~ oL w

Xi
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1
(1.6)
Xi
leading to
9ln L(p) L 1
—_— ) 1.7
e > |we (7
= -
where m; (nj“. S n}”’) corresponding to yi; X; is the p x 1 design vector

defined as x; = (i), +++ , i)’ and Ix is the identity matrix of order K.

Aspirin and Heart Attacks Data Example: An Illustration

Recall that in the *Aspirin and Heart Attacks’ example, / = 22071 individuals were
studied (Agresti, 1990) to understand the effect of aspirin on heart attack status. For

convenience we display this data sct in the Table 1.1.

In ordinal multinomial study, when cell obscrvations are small under a given
category, it is standard to combine tow such adjacent categories and deal with a
inferences based on a lesser number of categories. However, in the nominal study,

andard to assume that the

this type of merging does not make sense, where it
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Table 1.1: Cross-Classification of Aspirin Use and Myocardial Infarction.

Myocardial Infarction
Fatal  Non-Fatal ~ No
Attack  Attack  Attack Total

Placebo 18 171 10,845 11,034
Aspirin 5 99 10,933 11,037
Total 23 270 21,778 22,071

cell frequencies are reasonably large.

For p = 1, by using

for aspirin taken by the ith individual
i) =
0 otherwise

and multinomial response

(1,0)" when ith individual had fatal attack
¥i =4 (0,1)" when ith individual had non fatal attack

(0,0 when ith individual had no attack,

it is of interest to estimate the multinomial probabilities 77); for i = 1, ---

-+, K. Note that the aforementioned values for y; have been assigned by

J

treating the Myocardia infarction status as nominal, whereas it is more appropriate
to consider these status as ordinal. However, in the present thesis we develop the

longitudinal models for nominal multinomial variable. Thus, a detailed discussion
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on ordinal multinomial case will be beyond the scope of the present thesis. As far

as this example is concerned, we are using this data for the illustration of nominal

multinomial model only.

Turning back to the estimation of the multinomial probabilities, we solve the
likelihood equation (1.7) and obtain the estimates for the marginal category effect

Bio, Bur, o, Bn)'. Note

(intercept) and regression parameters (1.4), namely p =
that as far as the interpretation of these parameters are concerned, in absence of
any covariates, two intercept parameters fio and By will reflect the effect of "Fatal
attack’ (category 1) and 'Non-fatal attack’ (category 2) as compared to "No attack’

of the fact that

(category 3) on the corresponding multinomial probability, becaus

"No attack’ has been considered as the reference category. Similarly, 81y and 5 will

reflect the effect of aspirin on the heart attack status to be in "Fatal attack’ and "Non-

fatal attack’ category, respectively, as compared to the "No attack’ category. Thus,

the likelihood estimates of the parameters are

()?mv

= (—6.401, —1.289, —4.15, —0.555)" (1.8)

i, B 35) = (Bhos Bur, oo,

e (fn) = 0.5057, s.e (Bao) =

with corresponding standard errors; s.¢ (f10) = 0.2360.
0.0771 and s.e (fa) = 0.1270. These estimates lead to the multinomial probabilities

as in Table 1.2,
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Table 1.2: Observed and Estimated Multi LI ities Cor g to Table

Myocardial Infarction
Proportion/  Fatal ~ Non-Fatal No
Probability  Attack  Attack  Attack Total
Placebo  Observed  0.00163  0.01550  0.98287 1.00
Estimated  0.00164  0.01562  0.98274  1.00
Aspirin ~ Ob ed  0.00045  0.00897  0.99058 1.00
Estimated  0.00045  0.00897  0.99058 1.00

In Table 1.2, we have also displayed the observed probabilities. For example, the
observed proportion of individuals whose heart attack was cither fatal or non-fatal
is shown to be (5+99)/11,037 = 0.00942 for the aspirin group and (18+171)/11,034
= 0.01713 for the placebo group. These are also available in Agresti (1990, Section
2.2.4, page 17) where the author has exploited these to compute the relative risk of

heart attack as

(18 +171)/11,034 _ 0.01713
(5+99)/11,037 ~ 0.00942

Note that because of the availability of the estimated probabilities as in Table 1.2,

we may now compute the estimated relative risk of heart attack which is given by

0.01726 _
0.00942

which agrees well with the observed relative risk. Thus based on the estimated relative
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risk, unlike using the observed relative risk used by Agresti (1990), we can infer that
the proportion of individuals suffering heart attack was 1.83 times higher for patients

taking placebo than for the patients taking aspirin.

Note that the aforementioned multinomial model (1.3) and the inferences (1.7) for
this model are described for a cross-sectional study, where the multinomial response
with corresponding covariates are collected from a large number of independent in-
dividuals at a single point of time. There are, however, situations in practice where
this type of multinomial responses are collected over a small period of time. But, the
modeling and inferences for such repeated multinomial data are not addressed ade-
quately in the literature. As oppose to the multinomial case (K > 1) there, however,
exists some studies in the longitudinal binary (K = 1) set up. For example, we refer
to the binary logit models involving time as a fixed covariate considered by Agresti
[1990 (Chapter 11, page 395) and 1997, conditional lincar binary probability models
discussed by Sutradhar (2010) and a conditional non-linear binary dynamic models
suggested by Sutradhar and Farrell (2007). For convenience, we briefly discuss these

longitudinal binary models in the following sections.
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1.1.2 Fixed Binary Models in Longitudinal Set-up
1.1.2.1 Binary Longitudinal Models with Time as Fixed Covariate

(a) Individual History Based Model

Note that in a cros tional binary set up, when the history of every individual’s

standard to use a

covariates (common for continuous covariates) are available, it i

binary logistic model to fit such data. This model may be written as a special case

of the multinomial probability model (1.3), and is given by

exp (;’fn + z’: ) ;’i.‘)
usl (1.9)

R e T e
1+ exp (/iu + ) T A )

and

(@ ),

= 1-a wherei=1, -+, L

In a longitudinal set up, the binary responses are collected from all I individuals

over a small period of time 7. By considering time as a fixed covariate with T different
levels and assigning / individuals belong to p + 1 groups, Agresti (1990, page 396)

has used a model to accommodate the time effect on the response probability (see

table form. In the history based setup, one can write a general

1.15) in contingenc:
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model as

v
exp (ﬁu + ) T Bu + Al)

=l . (1.10)
< 0+ D T Bu + N)

u=t

) = P (Y = Uauq, -+ win) =

1+ exp

with 7 = 1 — 7, where i = 1,---, T and ¢ = 1, --- , T. In (1.10), similar to

(1.15), Ar = 0 s considered. Alternatively, one can consider the restriction Y7, A, =
0, 50 that 7'—1 effects are independent. Note that this model (1.10) can be considered

as a generalization of model (1.9).

(b) Contingency Tables Based Model

Suppose that in model (1.9), there are 7, fixed individuals with a common covariate

-, p+1. Also suppose that p+ 1 levels are identified as follows,

| i for u =

(1,0, -+, 0) — Level1
(0,1, -+, 0) — Level2

@iy o+ @) = (reeeeevrrenn ) (1.11)
(0,0, -+, 1) — Levelp

(0,0, -+-,0) — Levelp+1

In the cross-sectional set up, one may then write a contingency table of the form:
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cctional Set up (T' = 1) for Binary Re-

Table 1.3: Contingency Table in the Cros
sponse:

Level Total

T 2
7
U

ORCY
2 | Iy Iy | o

. o e |
LI /% R 1 I ()

g ] 5
p+1 I8, I [ Towm
Total | 1) 1 |1

Suppose that for the individuals with covariate level u (u = 1, -+, p +1), the

probability that the response of an individual in this group belongs to the first cat-
egory is denoted by (). Then, by using (1.11) and (1.9), the probability that the

response of the ith individual with uth level of the covariate belongs to this first

category can be expressed as

1 . i
”:u» = F(Y, =1|ziy, i) § § € lm)

exp (Bo + Bu)
PP+ la) = ep
T+oxp(ot i) . (1.12)
exp ()
. S
Trow)’ for u=p+

and ) = 1—n{}). Note that in writing the model (1.12), we however used 1 = 0

without any loss of generality. Now, the parameters in (1.12) may be estimated by
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maximizing the product binomial likelihood given by

Pl

L=T] tw (1.13)
L

where

o = () )

with 13) = Iy — I{)), where I, is fixed
When the history of response is known, in the binary longitudinal set up with
time period 7, one can construct a contingency table of dimension (p +1) x 27 as

a generalization of Table 1.3. We display this form in Table 1.4 for convenience for

T = 3. This table has similar structure as that of the contingency Table 11.2 in

Agresti (2002, sec.11.2.1, p.459) which was constructed for a cre

responses on depression at three times by diagnosis and treatment.

In Table 1.4, J111(u), for example, indicates the number of individuals out of I,
(total number at covariate level u) who responded under category 1 at all three time

points. Let

|
I + Tz + L + Tay = 1o
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Table 1.4: Contingency Table in the Longitudinal Setup Over T = 3 Periods for
Binary Responses.

Response at three times

Level | 111 112 121 122 211 112 221 222 | Total
T [ gy Tney hagy heey By Dy By By | 1y

2 | e hoe hae hoe boeo boe bae bee | T

U I Tiew D) Dz P Py Do T | Tw

P+ | hingen Dinzgen lingey Doz e Bipen Toipen) T | Ipy

denote the total number of individuals with uth level of covariate who responded in

category (1) at time point 1. Similarly
— 7@
L + o + Fng + Tany) = Iy

represents the total number of individuals with uth level of covariate who responded

in category (2) at time point 1. Thus,

W L@
Ty + Ty = Tw

(u

is the total number of individuals at uth level of covariate responded at time ¢
In general, for any ¢ we can write

10

0y + I = Tun (1.14)
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as the total number of individuals at uth level of covariate responded at time ¢. In

fact, if there is no missing, then

Tupy =+ = Iuy = -+ = Iun) = Iw, say.

Now to analyze the data in Table 1.4 and other lar data, the existing studies
such as Agresti (1990) used the marginal probability model at a given time point ¢.
For an individual i belonging to the group of I = I individuals, ic. i € Iy

(= I(w), by using (1.11), these marginal probabilitics at time point ¢ given by (1.10)

may be written as
\ .
woy = P(Ya =1z, Zupii € L)

exp(fo+ Bu+ M)

=1,,p;
T+exp(Bo+ Bu+ M)’ L &

exp (o + M)

_oxpllo + A) . (1.15)
L+ exp(fo+ M)

for

exp(fo + Ba)
T+exp(Bo+ A’

@ _q_ a0
and my =1-m,.
Note that by treating the time variable as a fixed covariate, the binary likelihood

in the longitudinal set up can be written by exploiting the marginal probability (1.15)
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c, the product binomial likelihood

and the tabular counts from Table 1.4. To be specifi

function has the form

T

L=TTTI Lo (1.16)

usl =1

with

T
= ()1
(w,t)

and 7%, arcasin (1.15), 1), 1, and I, for all w and ¢ are as in Table

X -]
where nl),

1.4. This likelihood can be maximized with respect to the desired parameters fy, f1,

s By My oy Ag—1. This likelihood analysis by treating time as a fixed covariate is
similar to that of Agresti (2002, Sec. 11.2.1, p. 459-461)
In practice, it is, however, not sensible to treat the time factor as a fixed covariate.

Suppose that time is an index variable and ), in (1.15) indicates the marginal effect

of time £ on the binary response y;. Under this set up, logit from (1.15) has the lincar

form

logit (Bu, A) = Bo + Bu + M (1.17)

which is the same as Equation (11.8) in Agresti (1990, p.396). Note however that

the binary responses g, -+ , i<+ , sir are supposed to be correlated as they are
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collected from the same ith individual over T time points. For example, in Table
1.4, Iy binary responses at time points ¢ = 1, 2and3, at category 1 with uth
level of covariate are correlated. It is necessary to write a joint probability function
in such a set up or use the conditional (correlated) probability models for proper
likelihood analysis. This observation that the marginal likelihood analysis cannot be
used in such a longitudinal set up, was also pointed out by Agresti (1990, Sec.11.3.1,
p. 395-396). In this thesis, as opposed to the marginal analysis, we propose two
correlation models for longitudinal multinomial data, namely, a conditional linear
probability based model in Chapter 2, and a non-linear logistic probability based

s to develop a likelihood es-

model in Chapter 3, and use conditional cell probabiliti
timation approach. This correlation modeling approach for the longitudinal binary
data has been recently discussed in the literature [Sutradhar and Farrell (2007), Su-
tradhar (2010)]. We review these models in the next sections for convenienc of their

generalization to the multinomial cases.
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1.1.2.2  Conditional Linear Binary Longitudinal Models with Time as an

Index variable

(a) Individual History Based Model

Sutradhar (2010, Section 2.2) has proposed a general non-stationary auto correla-

tions structure based longitudinal binary probability model. For the stationary AR(1)

case, the conditional linear probability model from Sutradhar (2010) [see also Qaqish

(2003)] may be written as

PYa=1) = =¥

P(Ya = 1Yo = gim) =

=+ (llw—\ = W.(”) t

with

o
L ; fort=1,

P #
1+ exp (au + Za‘.pq/&)

A,

0 o

ke

and 7 =

It can be shown that the means and variances of this model are

E(Yy) =7V and Var(i) = 701 — 2] = z02®;  for ¢

(1.18)

(1.19)
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Also, the stationary correlation between Y;,, and Yy for all m,t =

-, T, is given

by
corr(Yim, Ya) = p™™ for all m and t. (1.20)

where p parameter in (1.20) must satisfy the range restriction

For the purpose of estimation purpose, one can write the following likelihood
function by exploiting the marginal and conditional binary probabilities from model

(1.18) and (1.19),

! -
L=T] {/(.’m) TT sl 1/,,14)] (1.21)
r =
where
S) = {70} {1 - A0}
and

Vit 1-wie
SWit| gia—r) = {’I,(,“L,} {1 — uffﬂ,, } i for t =
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Then, for T = 3, by using (1.13), the log likelihood function for the conditional
counts in Table 4 can be written as

LG e ) = 3 (10 0 a2} + 1 1 (< 2,)]

5 5:: [0 (s} + 12w {12)] a2

+

where, by using the covariate levels as in (1.11),

exp (Bo + Bu) . 1.

o ) Treemeay @ 4D T (1.23)
(u,t) exp (/’0) .
1+ exp (o)’

for u=p+1; t=1

i (2)
with 72,

= 1=, and
Nty = Ty + 2 {.u..i,. —aly )i rus Lo gl =20 T (120)

ith @
with 12y = 1= Woleony

In this binary setup, for known p ; f, 1, -+ , f, can be estimated by exploiting
the log likelihood function (1.22). As far as p is concerned, p is estimated by method

of moment by checking its range restriction.
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(b) Conditional Contingency Tables Based Model (Without any Covariate)

It should be clear from (a) that the likelihood function (1.21) was constructed

by collapsing the history based counts from Table 1 However, in practice, the
longitudinal binary data collection can be casier when only the counts are recorded

t based on the outcomes from ¢ — 1 time only. Thus, the counts may

at a given tim
not be available in the history based form of Table 1.4. To reflect this conditional
data collection mechanism we display a format for the conditional counts as in Table
15.

In Table 1.5(a) and 1.5(b), I

(D, for example, refers to the number of individuals

who responded for category 1 at time point ¢ — 1 (¢ = 2,---,T). The cell counts in
Table 1.5(b) at time ¢ are conditional on the response category at time ¢ — 1. For

example, Iyyye-1) indicates the number of individuals who responded for category 1

at time ¢, given that these individuals also responded for category 1 at time t —

Note that the cell probabilities corresponding to the counts in Table 1.5 may be

written from (1.23) and (1.24) by using f, = 0 (u = 1,---,p) without any loss

of generality. In this case, the probabilities in (1.23) and (1.24) were written for a
model involving covariates, whereas Table 1.5 (a) and (b) are constructed for situation

without any covariates. Thus, corresponding to the cell counts in Table 1.5, we write
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cy Tables in the Longitudinal Setup for Binary Re-

Table 1.5: Conditional Continge
sponse Model.

(a)
Time, t
Category |1 Total
@ Timet-1| 1 |Jn@en Doy |1y | for t =2, T
2 Inn-1) Do) i
0} 27
Total | 1) 17
Ao By (1.25)

T+ exp ()

with 7® = 1— 7™ and

Mpoy@® = 79+ p{1l — 2} fort =2, T (1.26)

M) = 7 = pr® = 21— p); fort =2 (1.27)

with 7)) (1) = 1 -l (1) and 5{f)_1)(0) = 1=n(i_,(0)-

Now by using (1.26) and (1.27), one can write a product binomial likelihood for

the cell counts in Table 1.5, For example, for T' = 3 we can write the product binomial

likelihood function as
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L= 1 (1) £ (tews e LG 1) £ (R o | 18, 15)  (128)
where

/(,(t‘n)w) = (70 (1 - 20)E (1.20)

() oy - oy

<(5,) o)™ {1k} us

gz,

/(lu(zmv Incan | 1), '((n)

and

2 v I Ny
sy I | 10, 19) = (@) (1) )
1 (s B | 163, 13) ) () {1 -}

) ( I ) {ml‘;(o)}h...«u, {1- ,A;Zv(o)}'"“"" (131)

Do)

Now, the estimation of the parameters 3 and p can be done similar to the history

based approach.
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1.1.2.3 Conditional Non-Linear Binary Longitudinal Models with Time

as an Index variable

) Individual History Based Model

As opposed to the linear models dis

sed in the previous sections, to analyze
binary longitudinal data, Sutradhar and Farrell (2007) have used a non-linear binary

dynamic model [sec also, Amemiya, 1985, p. 422 and Manski, 1987];

»
exp (/’iﬂ +y ,.L,,p,,)

——wml (1.32)

1+ exp (ﬁu + Zhltuﬂ"u)

Wi = P(Ya = 1) =

Tl = P = Ugn)

?
exp <;i“ + Y wuwBe + Ve )

= . (1.33)

7
1+ exp (»3., + 3 Tl + 10 ,,.>
=t

fori = -+, T where, f is the regression parameter of z on y, and

is the dynamic dependence paramter.
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-, T, let

. (1)
e = T luei=o

»
oxp (/in +y x:,m,»ﬂu)

=\ e/ (1.34)
1+ exp (m + Z-mmdﬂ)
B = g
v
exp (uﬂ + D @b + 7)
- (1.35)

Y A
1+ exp (4, + D b + w)

Further let y;; denotes the unconditional expectation of y; for all ¢ = 1,--- 7. In
general by using (1.34) and (1.35), it then follows that s maintains a recursive

relationship given by

o = (1.36)
) = B(Ya) = P(Ya = 1)

T (1.37)

= i+ pigr (e = p);
and

Var(Ya) = ow = (1 — p);

(1.38)
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Next, following Sutradhar and Farrell 2007, equation (1.6)), we write the uncon-

ditional correlation between y,,, and y; as

.
I Gu-mp: m<t (39

jEmal

Corr (Yim, Ye) =

Note that this correlation in (1.39) ranges from -1 to 1, as 0 < fii;, puf; < 1.

As far as the inferences for 3 and 7 are concerned, they may be estimated by

maximizing the likelihood function given by

=
L=11 [/(yu) 1T Sl 'J:.x-!)] (1.40)
=)

i=1
where

S = {3 {1 -

and

(it giar) = {Trf,‘,:'_.}w {1 N ﬂ,',‘,,'l,}l_”"; for t =

with m) | as given by (1.33).
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(b) Conditional Contingency Tables Based Model (Without any Covariate)

In this covariates free conditional table set up, by following (1.32) and (1.33), we

now write

.
*(1) - — o
W) = T = ()

1 o
+(1) .. =
O ===

(1) (1)
i 7,0) = il

(1.41)

(1.42)

\
\ It then follows that the likelihood for the counts in Table 1.5 has the same form

(1.28) as in the conditional lincar binary set up. The difference lics in the fact that

conditional probabilities 7} ,(1) and ;" ,(0) have the formulas (1.26) and (1.27)

under the linear binary set up, where:

set up, these conditional probabilitics are given by (1.41) and (1.42).

s in the present covariates free non-linear binary

Now, one can use these marginal and conditional probabilities to construct the

likelihood function similar to (1.28) and obtain the maximum likelihood estimates of

the parameters 3 and 7.
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1.2 Objective of the Thesis

In section 1.1.2.1, we have reviewed the existing (c.g. Agresti, 1990) binary longitudi-

nal data analysis where time is considered as a fixed covariate. See, for example, the
binary logistic probability model (1.10) where A, was used to represent the ¢-th time
cffect on the probability of the response. As mentioned earlier, this approach does not
accommodate any correlations among longitudinal binary responses. The purpose of

the the

to take such longitudinal correlations into account in multinomial setup.
For this reason, we will not follow the fixed time covariate approach in the thesis any

more.

Note that by taking the longitudinal correlations into account, a conditional lincar

binary probability model is provided in Section 1.1.2.2 for the analysis of history and
conditional contingency tables based data. The objective of Chapter 2 is to gencralize
the history and conditional tables based longitudinal binary models to the longitudinal

multinomial setup. The basic propertics and the likelihood inferences for these modcls

are given in details

In Chapter 3, we consider a non-linear multinomial fixed effects model in longitu-

ed in Section

dinal setup as a generalization of the longitudinal binary model disc

sed in

1.1.2.3. Note that as opposed to the conditional linear probability model discu
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Chapter 2, this type of non-linear models produces longitudinal correlations satisfy-
ing full range. The basic properties and the likelihood inferences for these models are
given in both history and contingency tables setup. In this chapter, we also carry out

a simulation study to examine the small sample performance of the estimates in the

non-linear setup. The Three Mile Island Stress-Level data set is analyzed by applying

this non-linear model.

Note however that, in practice, it may happen that the longitudinal responses of an
individual may also be affected by an unobserved random effect of the individual. In
such cases, a longitudinal mixed model is used to accommodate both fixed regression

For

as well as individual’s random effect xample, for a non-linear longitudinal

binary mixed model, we refer to Sutradhar, Rao and Pandit (2008). The purpose of
Chapter 4 is to generalize this binary mixed model to the multinomial setup. The
properties and likelihood inferences for this multinomial mixed model are given in
details. Furthermore, an extensive simulation study is conducted in this chapter
to examine the small sample performance of the multinomial likelihood estimation

approach.

In Chapter 5, we provide some concluding remarks and also indicate some future

research in the longitudinal multinomial setup.




Chapter 2

Multinomial Linear Dynamic Fixed

Probability Model

Inferences in conditional linear dynamic binary fixed models (1.18)-(1.19) have been
studied recently in details by some authors such as Sutradhar (2010) [see also Sutrad-
har (2011)]. There are, however, many situations where one needs to deal with longi-
tudinal responses with multiple (more than two) categorics. For example, Conaway
(1989) has studied such repeated categorial data with an application to the Three
Mile Island Stress-Level data set with three categories, namely: low, medium and high

stress levels. Similarly, Agresti (2002, Section 11.2.3, p. 462) has studied for an in-

somnia problem to examine the relationship between using a hypnotic drug (sleeping

pill) and time to falling asleep with four categories.
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These authors have, however, considered the time as a fixed covariate in order

to understand the time effect on the multinomial responses. For this type of fixed

s, we also refer to Agresti (1989, 1099). As far as the inference

covariates based analy
technique is concerned, they have used likelihood approach for the estimation of
the category and time effects. But, in this thesis, we consider time as a nominal
or an index variable and develop the longitudinal correlation models for repeated
multinomial responses. Agresti (1993) used a correlation model where correlations
are generated through random effects which does not appear to address longitudinal

r that there

correlations as random effects remain the same over time. Note howeve
is no unique way to model the longitudinal correlations, whether the responses are
binary or multinomial. As mentioned carlier there exists certain conditional linear and
non-linear models in longitudinal setup for binary data. In this chapter, we generalize
the inferences in conditional linear binary dynamic models to the multinomial sctup.
This new model is refered to as the Multinomial Lincar Dynamic Fixed Probability
(MLDFP) model. This we do for two situations. First, for the history based data, i.c.,
when responses at every time point for all individuals are known. Second, when data

are available in contingency table forms. This history based generalized model and

ussed in Section 2.1. In the same section, we provide the

are disc

its basic properties

ed history based longitudinal

likelihood inferences for the parameters of the prop
multinomial model. In Section 2.2, we deal with longitudinal multinomial data in

when the covariates are time independent. In

contingency table form for the ¢
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the same section, we provide the product multinomial likelihood approach for the

of the of the contingency tables based stationary models.

Note that this extended multinomial model, similar to the conditional linear bi-
nary model, has nice features with respect to interpretation of the dynamic depen-
dence parameter. However, the linearity may require some heavy restriction for the
range of such parameter. Thus, for the sake of descriptive advantage we provide this
model as an extension of the binary model. Instead of showing further application of

this model, two non-linear multinomial dynamic models will be discussed in Chapters

3and 4.

2.1 History Based Non-stationary MLDFP Model

Recall from Section 1.1.1 that in a cross-sectional setup (ie. T = 1), the K-

dimensional multinomial response under K + 1 categories of an individual i (i =

- 1) was denoted by ¥i = (91, s Yijs s vix)'. We now consider T > 1, and

define

(21)

Yie = (Y, ak)'s

as the K-dimensional multinomial responsc for the ith individual at time point f. Sup-

»)' is the p-dimensional time dependent covariate vector

pose that Xi = (Zir, =+ , &
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associated with y;, from the ith individual at time ¢. Note that these time dependent
covariates will cause non-stationary correlations among the repeated multinomial re-
sponses. In the present history based longitudinal set up, it is assumed that all y;

and x;; arc available for all i = 1,--- , T and t = 1,--- T

«++, K) category response of

Suppose that in the longitudinal setup, the jth (j

the ith individual at time ¢ (t = 1,---, T') is denoted by

)
¥ = 6

= (01, 1,00%_,); -, K, (22)

ieyy) =landyf) =0forj #c jc=1,--, K. Note that the response in the

last (K + 1)th] category can be identified using

W = G,

= ot

Further note that because time is an index variable in our approach, by that
we mean it should be latent and there is no meaning of attaching any quantitative
value to any time points, even though as they can change the responses based on the
length. It should be understood that time intervals may be meaningful and there is

no reason to consider different regression effects due to change in time. Thus, we use
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the same regression parameter 8; = (Bj1, ==+, Bju, ==+ , Bjp)’ to explain the effect of

all time dependent covariates x; on y for j

ooy Kowith By, = (0,-+,0)
by convention. As far as the time effect is concerned, it will be assumed that the

multinomial responses collected over time will follow a suitable correlation structure.

In order to write a bility model for

jal responses de-
noted by (2:2), we, first, refer to the longitudinal correlated binary model (1.18)-(1.19)

and then extend it to the multinomial setup as follows. Similar to the binary case,

the marginal probability for the multinomial response to be in jth (j = 1,--- , K)
category at time ¢ = 1 may be written as
»
exp | Bjo + Z/,urum)
/) PR I — A
P(Ya=y0) = -
P (e B Zma'.uw)
= =
_ o (Bjo + xiBy)
= TR\t alf)
1+ Y exp (Beo + X
= 23)
the probability for the response to be in the last category is being given by
L 1
R e B 4

L+ Y exp(feo + X4,
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ies at time ¢ (t = 2,--- ,T) given the response at time

Now, the conditional probal

¢~ 1, may be written as

P(Yiu =y Yirmr =¥}

K
U) [0}
=10+ pi (.'/...A.u-

-
.
=l + g (v - M)

= i, (), say,

o) _ o (B0 + XiB))
ll .

where forany t =1,-- T, =
1+ Y exp(Beo + XiuBe)
=

For j = K +1, i.e., for the (K + 1)th category, the conditional probability is

K
W) = (1 - qu:‘:_,u)) (26)
5

Note that in (2.3), Bjo represents an intercept parameter under jth category for

, )’ represents the regression

j=1-, K, and B in B; = (Bjr, -+, Bju, -
effect of the uth covariate for the individuals belonging to the jth category. Further

note that as opposed to the binary variable y; in (1.9), y; in (2.3) is a multinomial

variable defined as in (2.1). C in the present multinomial setup, the
parameters are denoted by B0 and Ay, for j = 1,--- , K categorics, where as in the
binary model (1.18) these parameters were denoted by fy and f,, respectively, for

K =1, e, for 2 categorics.
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As far as the correlations among multinomial responses are concerned, they are gen-

fer

s to the dynamic dependence

crated by the conditional model (2.5), where pj ref
parameter relating the multinomial response belonging to the jth category at time ¢
with the previous response being in Ith category at time ¢ — 1. Note that it is enough
to consider py; for [ = 1, , K, because of the fact that pj k41 = 0 by convention,

forall j=1,-- K +1.

Note that as it is not easy to model the longitudinal correlations, some authors

such as Miller et al. (1993) and Lipsitz ct al. (1994), used *working correlations

(equi-correlation or independence) approach which however suffers from definition

problem as discussed by Sutradhar (2003) [sce also Crowder (1995), Sutradhar (2011)].

However, because it is most likely that the correlations for longitudinal data decay

as lag increases, in the thesis, we have considered an autoregressive type dynamic

model that accommodates this decaying property for the correlations. For some

alternative modeling for itudi ions for i ial responses, we refer

to Sutradhar and Kovacevic (2000), and Molenberghs and Lesaffre (1994).
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2.1.1 Basic Properties of the History Based Model

Note that it is standard to interpret the data through their mean, variance and
correlations. For the purpose, in this section, we provide these basic properties for

the longitudinal multinomial responses following the model (2.3)-(2.6). Further note

that as these basic statistics will be functions of the parameters fjo, fu and py

(6] 9.4

L Ku -, p) involved in the model, it will be nec

ary
to estimate them as efficiently as possible. We will use the well-known likelihood

method for such inferences in Section 2.2.

We provide the means and the variances of the multinomial responses in Lemma
2.1 and the covariances between multinomial responses at any two time points in

Lemma 2.2.

Lemma 2.1: Fori=1,--- [ and t =1,--- T, the unconditional mean vector and
the covariance matrix of the multinomial response vector Yy, = (Yir, -+, Yijo -+ Yak)

have the forms

E(Ya) = (nll, oo,

) = M, (@7)

and

Var(Ya) = diag [n,‘,",--- el - (28)
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where 7/ is defined in (2.5) for all t =1,-++,T; and j =

Proof: At initial time point ¢ = 1, for a given individual i (i = 1,-+,1) the

categorical response vector Yy marginally follows a fistribution with

density function

.
1 vt
Py =g Yax =vaw) = ——————=—= [ (="
! ! " = yarhs (1= Egm itg)! g. ( ! )

(=50, wiaa)
x ( -3 f:”) \ (29)

=t

yielding the marginal mean and marginal variance of Ys

E(Ya) = My = (xo o, ) (2.10)

Var(Ya) = diag [W}P,-n e, all?] - Ma TG (211)

++, T, we can write the conditional distribution

Now, in general, at time point t =

of the multinomial response vector Y, given yi (-1 as

K

1 (@) i
P(Yir = yinn, -+ Y = el ¥1) = —————<— I] (% ®
i y.u!,ufzf:,y.,.,>!11( f0)

X (St )
x (1721,5:"1,,(1)) . )

=1
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where the conditional probability 5{)_, (1) are defined in (2.5). 1t then follows from

(2.5) that the conditional mean and conditional variance have the formulas
By = T = (00, e i, ) (2.13)
Var(Yulyil) = diag [ @+ i@, ), 0] - BT @)

We now derive the formulas for E(Yy) and Cov(Yy,) for ¢ = 2 using conditioning
and unconditioning properties of the expectations. Note that for ¢ = 2, it follows

from (2.12) that

B(Yaly) = Mo = (0. a0, o)

! 0w
) o pu e i -

B ) O _ o0
o Ty e o e Pk * Yinj — m
(K SO

) PKY DKL PRK ik —

= Iy + py (v}{’ = n,‘) . say.

Consequently, we can write the unconditional mean at time ¢ = 2 as

B(Yi) = By,

(v,,\y,.) = By, {n,_, +our (Y - n,,)] =1,
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because By, (Yi) = Tl by (2.10).

Since E(Yi2) = iz has the same form as E(Y) = TT; and because by (2.13)
the conditional mean i.c., E(Yilyi.—1) = I has the same structure as in (2.15) for

allt =2,--,T, it then follows that

E(Yy) =T, forall t=1,--,T. (2.16)

Next to derive the unconditional covariance matrix of Yy, we will use the same

and itioni ies of expectations as we have used for the

derivation of the unconditional mean vector. To be specific, we first write

VE[Yu

Var(Ye) = By, ,Var [Yu|Yi] + Vary, ] @11

Now by using (2.14) and (2.16), the first term in the right hand side of (2.17) may

be expressed as

By, Var [Yu|Yia] = By, {diag [10_,@),- niy @, i, )
1

~ 10, I,

= diag [10 e D e

where

esaden,m®)] - By [BG], @a8)
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n..)]

- II._H) (Y...-n = l'l.,.-n)']ﬂfu

= Py, [l‘l., +p,‘,(Y.,H = l'l..:-n)] [H.: + pu(Y.‘:..

(v

= LG, + gy Var [Yiee Joly, (219)

= ILL, + py By,

because £(Yioy - Migy) = 0.
Similarly, the second term in the right hand side of (2.17) may be expressed as

[

= Vary,_, [l'l., + ﬂ.u(Y-..-x = H,‘M)]

Vary, E Y| Yim] = Vary,

gmry (220)

= puVar
Now by using (2.18) and (2:20) in (2.17), we obtain
Vur(Y,,) = diag [n,‘,”,--«.n,'}’.-u,n,‘“"’ — M IL,; for t=1,--,T. ¢

Note that the multinomial mean vector and the covariance matrix given in Lemma

2.1 are simply the generalization of the binary case (K = 1). That is, for K = 1,

E(Ya) = 7 and Var(Yy) = 74(1 = 7). Also, it follows from the formula for

it it

Var(Y;) that at time point f,

Cou(?,¥) = —ada.
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at two consecutive times maintain

is shows that even though multinomial respons

JKil=1,-,K),

a relationship through the pit (=

the mean, variance and covariances (between categories) at any given time are same

as those of a marginal multinomial distribution at that time point.

We now proceed to understand the covariances between any two multinomial
responses recorded at two distinct time points m and ¢ such that m < t. For the

small which is practically meaningful

purpose, we, for clarity, do this when ¢ — m

vely for lags 1,2 and 3;

To be specific, we compute the covariance matrices succe
and then provide a general formula. Thus, for lag 1, we compute Cov(Yiz, Yi),

Cov(Yia, Yiz) and write the general form for Cov(Yar, Yiuo1).

Computation of Lag 1 Covariances:
We first compute

EVaYil = By E Yo ¥} |a]
= b {fa¥i} by @13)
= By, [{Tlz + py (Yo - Ta)} Y]

= Tally + pu Var(Ya) (@21)

Thus,
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Cou(Yi, Ya)

Similarly,

BYaYg] =

by Lemma 2.1. Thus,

Cov(Yis, Yia)

Note that because E(Y; Y/,_,) for any ¢ =

= B[YaYj] - E(Ya) {E(CQ)Y
= MpTlj; + py Var(Ya) — Mg 1T,

= puVar(Ya)

By, B [V Y|y
By, {flaYp} by (213)
By, [{Tla + pur (Yer — )} Vi)

i IT, + pa Var(Ye), (2.22)

= E[YaYy) - E(Ya) {B(Y2)Y
= Myl + pu Var(Yie) — T Tl

= puVar(Va)

-, T, have the same structures as

those of E(Yip Y4) in (2.22) and E(Y Y) in (2.23), it then follows that

Cov(Yig, Yigr) =

puVar(Yier);  fort (2.23)
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Computation of Lag 2 Covariances:

We compute

ElYaYy] = By, By, E[Ys Y |y yal

Ey,

By (i Yy [ya] - by (2.13)

By, [By, {Tis + par (Y = M)} Yy |y

By [{1s + o (2 - 12)} i) by 213)

By, (Mg Y + par {2 + par (Yo = Ma)} Y5 — par T Yy

= Mg Ily + py M Iy + piy Var(Ya) = pa i T,
= Tl + pf, Var(Ya). (2.24)
Thus, we obtain

Cov(Yia,Ya) = E[YaYi] = E(Ya) {E(Ya))’
= Il + gy Var(Ya) — Tl

= Var(Ya). (2.25)

Similarly,

E[YaYy] = By, By, E[YaYa | vyl

= By, By, [T Y5 |va)

Ev,y By { i + par (Yis = ia)} Yl | 4o
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By ({1 + par (T = 1) } v)
= By (MYt par {Tha + par (Yo = )} Vi = parTla i)
= Ml + pa Tl Tl + piy Var(Yia) = par T 1Ty

= Mally + oy Var(Ye) (2.26)

Thus,
Cou(Yia,Ya) = E[YuYh] = E(Yi) {E(Ya)Y
= Ml + gy Var(Ye) — Ma Il

= o Var(Ya). (2.27)

Note that as the formulas for E(Yy Y{,_y) for t = 5,--- T will have the same

structures as in (2.25) and (2.27), we can write

(2:28)

Cov(Yi,Yiuma) = piy Var(Yie-a)i

o fon of Lag 3 C

Here, we compute
EYaYil = By, By, By, B [Ya Y | vis viz va]

= By, By, By Ta Vi lyia ya

= By, By, By, [{Tia + par (Yis = Tia)} Vi iz ]

= By By [{ T+ o (Tl = 1) } Yi 1]
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= By, By, [Ma Y+ pa {Tia + par (Yo = Ta)} Yii = par Mg Y[ wa ]
= M By, Va] + By [ (e = M) Y]

= My + By, [ph {Te + pur (Ya — )} Y] = 7, Tz By, [Yi))
= Mally + M Iy + piy Var(Ya) = pj, T 1T

= Il + pfy Var(Ya) (2.29)

Thus,
Cou(Yu, Yu) = E[YuYi] = E(Ya) (E(Ya)Y'
= Il + pyy Var(Ya) — T T,

= o Var(Ya) (2.30)

Note that because the formulas for the lag covariances in (2.23), (2.28) and (2.30)
reveal a clear dynamic pattern, one may exploit this pattern and write the lag (¢ —m)

(m < t) covariance between Yy and Yy, as
Cov(YuYin) = ol Var (Yin) (231)
where

Pzt Pk

popn ot Pk

PKY PK2 t PRK |
KxK
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and

Var

Yin) = diag [ 7o 7l - Wi TH,

as in (28). ¢

2.1.2 Likelihood Estimation for the History Based Model

ch as mean, variance

In the previous section we have derived the basic propertic

and covariances under the conditional lincar dynamic multinomial model (2.3)-(2.6).

Since these basic properties are interpreted in terms of the parameters S0, B, and pyi,
we now estimate them efficiently by exploiting the well known likelihood approach.

Note that the regression parameters 3jo and f; are also of primary interest.

Now by writing 8 = (B0, Bju) and p = () for j = 1,-

u=1,-+,p, it follows from the model (2.3)-(2.6) that the likelihood function has

the form

, .
LB,p) = [T |foa) IT fviel yie) (2:32)

i=1 =2

where f(yu1), the multinomial density of y;, has the form as in (2.9), and f(yi | yie-1),

the conditional multinomial density of yy given yi—1 has the form given by (2.12)
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Thus, by using (2.9) and (2.12) in (2.32), one writes the log likelihood as
'
Wi(B,p) = C+ 3 [a(8) + (B, p)] (233)
=
where

X K
a8 = Y vae(fuo+21B,) ~n {1 + Y e (o + X8 } (2.34)
=l I=1

h(B, p) =

e
> il’:, (o8 - i) }] (2.35)

= =1

For convenience of estimation, we denote the clements of 3 as

B= (BB B)

where

B = (B Bire s Biuree 2 i)

]

(B0, By)'- (2.36)
And the corresponding (p+1)-dimensional covariate vector is denoted by

 Tagy e Tu) = (1, Th)' - (2.37)

@iy = (1, @i,
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Similarly the elements of p are expressed as

p= (P k)
where

Py = (i pitye=  Pixc)

We now write the likelihood estimating equations for 8; and p; for all j =

, K. These cquations are given by

Aln L,

and

A L(B,p) (B, ﬂ)}
—_— i - —_— | =0,
9p; o,

respectively. The derivatives in (2.39) have the formulas as

268 _ [ o

s Yaj — i

OMlBp) _ ( i )7 (1- T
08 ZZH a0 (1= S 8-.0)

=2 4=1

g

)

a0
ap;

)|

(2.38)

(2.39)

(2.41)

(242)
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where

) (; .
0 (1) 5 s (1)
Zlm{ D \}":!—lv forg=j

4 (2.43)
=P 7t = py e, (1=

K
!
+er{ o mily Yl forq#j
7

Similarly the derivatives in (2.40) have the formulas

dg:(8)
dp;

hi(B. p) e - (1 -
Top z ( Y ) N (

= \WG-0/)  (-Ea9.0)

) 1
x(n’a“f)’l‘()ﬂ : Kx1, (245)

= 0: Kx1, (2.44)

where

LX) angfy () ;
ot = (s M) and oy =Vi i (@4

with g1 = im0 Yia-1s 7 Yig-1,x)’ as in (2.1)

and T, = ( 1O I | IR ,",‘L’.) as in (27).
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Next by using the well known Newton-Raphson iterative procedure, we compute

the likelihood estimates for 8 and p by

; . & nL(B .
Bisy =By + {W} —8 (247)
and
. . P L(B,p)]” 0 L(B,p) o
Pery = Py + [70‘”](# ] 7{72 (2.48)
where
omLB,p) _ [0mLBp) | OmLBp) . ImLBp)]
o8 B o T aEy T ogy
OmLB,p) _ [0WLB,p)  OnLB.p)  OwmLBp)]
o - o T ey T ool ’
1

]
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2.1.2.1 Formulas for the Second Derivatives With Respect to 8

Note that to compute the second derivative matrix in (2.47), it is sufficient to compute

the following two derivatives

:
3[R0 {1 - A} anai - w00
In L(B,p) -

_ ”
amon {249)

[\/]~

[r i i + (5, 0]

i1

where

I T K ‘)2”1‘1} (’)) ( 1 )
Yitg it]t—1

i (B, v s @ )

" ZZZK:‘J >>{(W*m )
(auf;af.,m) (an,‘,';f ,())}7( 1- 7K g )

5 5, 1= L0
Py i) 1 O

W05 \1-o 0]\ 05

o
5 ("
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Ayjea

P

W0 _

where

At

Bujt

Distine

Bzl ~ [

5

K
Paj At = Y_pat B:u.:—l] Tl T,
%

vy + [ﬂu Bimjt-1 + Pjm Bijm-1

-
-2 pu D

,,,.] Ti
[x

=Bijm x}y x} + | Pmj Bimje=1 + prm Bijm,i-1

K
-2 put D,

#im

2 Dijgme % + [ﬂq, Bimja-1 + pgm Bijme-1

%
-2 pot Distm

#5.m

P (1-22) (1-20)
P al (1-22)

APl

.
= [!’u Asjaer = it Bujam | Thea 2t

Tie-1i

=1 Tie-13

for g

forq#j=m

forg=j#m

forq=m#j

forq#j#m
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2.1.2.2  Formulas for the Second Derivatives With Respect to p

Similarly to compute the second derivative matrix in (2.48), we note from (2.46) that

o (1) 0,
=17 s free from pj for any j. Thus, M = 0. Consequently, we obtain
i 7 1
; 9,07,
PInL(B,p) iZ'Z

g
;07 =i | (9-0)

1= 50 Y

- - 5 (2.50)
(1-2i.0)
, K, and
PLB.p) 5
00l 0 (251)

, K. This completes the computation for the second order

forj#m;j,m=
derivatives needed for (2.48).

Note that we have shown in (2.48) how to obtain the MLE for p parameters in
a standard fashion. However, it is understandable that solution by (2.48) requires
the knowledge of the range restrictions for p which are functions of the marginal
probabilitics containing the given design covariates and 3 parameters. But, finding
these restrictions, unlike in the binary case, may be cumbersome, which we do not
emphasize much any way as our main intension is to deal with a more robust model

that we present in Chapter 3 and 4.
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2.1.2.3  Asymptotic Properties of the Likelihood Regression Estimator

Let Bve = Bi/ane Biivne = B aan) and pyes = (B arns o aarn Beoann)'

be the likelihood estimates for 3 and p, respectively.

For known p, it follows from likelihood iterative equation (2.47) for 3 that

B -8 (2.52)

=0'in (2.47) and when covariates are bounded,

L . dn L(B, p)
This is because E (—r')li )

) )
E (3———'('7‘% ”)) in (2.49) is finite. To show B (%(f”)) =0, we note that

and

E(Yig|Yie-10)

U)
e

leading to E‘( ) =0and E (%‘—")) = 0 by (2.41)-(2.42). Thus by
)

(2.39), onc obtains

E(""%fiﬁp)) =0.
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It also follows that conditional on the history, the variance of the estimator B

is given by

v = (C58) " (G0t (i)

N (az ';‘,‘,ﬁfi p)) e (az 13:5;3 p)) (a" n;ij; p))" ) ©53)

which converges to

eﬂlnL(ﬂ,p))]"

Jim Var(Bya) = [E( 505 [V""(%fﬂ))] [E (%ﬁ)]l

Thus, asymptotically as I — 00, By, follows a Gaussion distribution with mean 3

9 In L(B,p))] "_

[by (2:52)] and covariance matrix [E ( Si0r

Note that the derivation of the above asymptotic properties is quite standard [sce
for example, Rao (1973)]. Also we would be able to derive the asymptotic properties of
similar likelihood estimators in the future chapters by using such standard approach.
However, throughout the thesis, we will concentrate on the finite sample performances

of the likelihood estimators, which is more practical to examine.
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2.2 CONDITIONAL CONTING

2.2 Conditional Contingency Table Based Infer-
ences

Note that in the last section we have dealt with non-stationary multinomial mod-
els where covariates were considered to be time dependent for a given individual.

here may be a simpler situation where this covariates are time independent and

consequently for a given combination level of multiple covariates, the same stationary
multinomial response probability will be obtained for a group of individuals. For sim-
plicity, we now consider only one covariate with p+1 levels, and use 2,4, -+ , i) as
in (1.11) to represent the p + 1 levels of the covariate for the ith individual. Suppose

that under the uth level of the covariate there are 1(/, individuals belonging to the

Jjth category at time ¢ = 1 with the same probability. These marginal counts at time
¢ = 1 are shown in Table 2.2(a) for convenience. Under this circumstance, for an
individual i belonging to this group of 1/, individuals, the marginal probability in

(2.3) may be written as

+ Bju)
P(Y.; DNy, @iy i € I((u”n) = —— Py eep
L+ Y exp(fo + Aiu)
i
= a0 sy, =1, K (2

K
and 7{i Y = ( -3 f,[’,) Note that in (2.55), fjp+1 = 0. Further note that this
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probability in (2.55) is a direct generalization of the binary marginal probability at
T =1 (cross-sectional) shown in (1.11). By the same token, under the uth level of the
covariate, let Iy g1y be the number of individuals transmitted from Ith category
at time ¢ — 1 to the jth category at time ¢. Consequently under the uth level of the
covariate, for an individual d; i € Ijji-1) , the conditional multinomial probability

in (2.5) may be written as

K
4 «
P ( Vo =49 | Yoo = g5 i € Ium.mfl)> "f,',), + pit (T - W?J)) - Z Pik "?,‘f
7
I
i} ®)
= m o= Y el

= WD), s

where j =

JK; u=1,--,p+1land

x
iy l) = (1 *Zm‘ﬂw,n(lﬂ- (257)

For convenience, for the uth level of the covariate, we now summarize the multi-

nomial marginal probabilities (2.55) and corresponding counts in Tables 2.1(a) and

2.2(a), respectively. Similarly, the conditional probabilities (2.56)-(2.57) and corre-

sponding counts are summarized in Tables 2.1(b) and 2.2(b), respectively.

The likelihood estimation for the parameters involved in the model (2.55)-(2.57)

is discussed in the next section.
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Table 2.1: Marginal and C ability Tables in the Longil ! Setup for
the Multinomial Response Model at a.s uth Level of the Covariate foru=1,--- ,p+1.
Table 2.1(a): Marginal
or any time t
[ Category [ 1 j_ - Kl | Total]
o 1T Gy (I\u)
| Counts | #() LA il
Table 2.1(b): Conditional
Time t = 2, T
Category 1 i - K+1 Total
1 M@ Magy@ nf,’f,?,‘l.,m L0
Time i i H H
1 1 Bdeen® o i@ n::r," o | 1o
Kl |l g +1) oy (K41 - n{.(‘j;,',‘,,uwl) L0

Table 2.2: Conditi

Tables in the L dinal Setup for
Response Model at the uth Level of the Covariate foru =1, ,p+ 1.
Table 2.2(a): Marginal
For nny time t
[Category | 1~  K+1[ Totl |
7
[ Counts [ 73, 1{17” o I = 1w |

Table 2.2(b): Conditional

Timet=2,---,T
Category 1 e 3 e K+1 Total
1 Loy o ity FAPTTRTR 7
Time : : - : i
t1 ! Ingae-y 0 Dty Iacrween | I8y
: : . : : '
K+1 lmn(um y o Tk T4 1( 1) M
T KFI)
Total iy - 12 i Lut) Iw
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2.2.1 Product Multinomial Likelihood Inferences

It is clear from the last section that at uth (u = 1,---,p+ 1) level of the covariate

there are I(,) individuals with their distribution as in Table 2.2 with corresponding
probabilities as in Table 2.1. Let L, denote the likelihood for the I, individuals

2.1 and 2.2, has the form

which by using the notations from Tables

v Kk
Lo = Jun I IT [wnten®) (258)
=g

where f,,1) is the marginal multinomial probability at time ¢ = 1 given by

Kn »
Tw! et
= I8 (=8}, (2:59)

m)
!

and f,,qi-n(0) is the conditional multinomial probability at time ¢ given that the
response was in the Ith category at time ¢ — 1. This conditional distribution has the
formula

ka0

Soen® = T 720 (0, @} 260)

)
i Hgua-n!

Next, because the p + 1 levels of a single covariate are mutually exclusive, we may

now write the overall likelihood function as

pHl

II £ (261)

L)
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yielding the log likelihood function given by
ph

mL,p) = C+ Z[q,’,w) + hi(B, p) (2.62)

u=1

where for u = P+l

x K
(8 = 31y (Bio + B) = Iy In {1 +Yexp
=

and

T K4LK4L

&
MCEDS) Tjue-n I {ni(,ﬁ o= 3 Pk n:,‘,:} (2.64)

=2 1=1 =

and C is a normalizing constant.

For convenience of writing a single equation for the derivatives of all B and 4,

(u

wo,p), we use u = 0,---, p to represent them. Thus, we now write the

likelihood estimating equations for 3, for all j = 1,--- K and u =0, ,p as

—+M} 0, for u=0

[

1)

WBju

Bju
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Next for j =1,-++, K and l = 0,--- , K, we write the likelihood estimating cquations

for pj1 as

p o g
’ (g -3,
OmL(B,p) _ 20.0) , 216, ) 246)
pjt L oein Ipjt
The derivatives in (2.65) have the formulas as
99.(8) G) 6 ¢ 26
T [1[,“”4(;,],, e K u=0,000p (267)
and
- T K )
01:;(;’1, P _ i'm (S { ’:;w ) a"fvy’\;—n(’) . (268)
00 S ey P
where

K
"
3 (1 - w{jﬂ,) (1—pi)+ S piunnd, form=j
ki

(m)
e @) _ 259)

a5,
- (m) () ) ()
— i) 7D = g 1) (1= 7))

P
+Y pmemnd), form# j
ki
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2.2 CONDITIONAL CONTIN:

Similarly, the derivatives in (2.66) have the formulas

0 27
it (2.70)

Ah:( T K a,.(m)
ampn) _ §SESE {M‘)”ww—n(’) o

9pit S o st O

where

Ay —a) 5 for m N
) - (2.72)

" I

For convenience of writing the iterative equation, we denote the regression param-
cters, B as follows

«/:I;,)' L Kp+1)x1

where

Bra) s foru=0,---.p (2.73)

Jjar®
Similarly the dynamic dependence parameters p's are expressed as

K*x1

(pl]....,p;_..._

where

£ = (P s Pity =+ PiK) - (2.74)
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Hence we write the the Newton-Raphson iterative equation for the likelihood

estimates of 8 and p as

5 _ & InL(B,p)]”" dInL(B,p) -

Besny = By + {[73”2)”, o . (2.75)
and

R o 9 InL(B,p)] " dInL(B,p) -

Psr) = Py + {[W T . (2.76)

where the elements of and can be obtained from (2.65)

I L(B,p) dn L(B,p)
B ! ap
and (2.66) respectively. Furthermore, B, in (2.75) and p,, in (2.76) the rth iterative
value for B and p, respectively. Also, in both (2.75) and (2.76), { }) represents that

the quantity in { } is evaluated at 8 = B, and p = p,), respectively.

The formulas for the second order derivatives in (2.75) and (2.76) are given in

Section 2.2.1.1 and 2.2.1.2, respectively.
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2.2.1.1 Formulas for the Second Order Derivatives With Respect to 3

Note that to compute the second derivative matrix in (2.75), it is sufficient to compute

the following four derivatives

,
z[ o (1= 70} + 500, m}
.

I L(B,p)

= 2.77
BBj0 00 (277)
ey + Riyoo(B, m]
a8 [t = =] + Kissoul8 )
91n L(8,0)
S5 r— = \ —"d - 2.78)
0B 0Bjw () [' m] + higiu(By P) (2.78)

)G
T + M5, p)

with

K 92,.(m)
P > {JH {m,‘.m,,m o
it (By ) = B:0 0B o)
. = O | 0w (1)

My ®) dn(.. 0
* [
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where for any v = 0 or u; and w = o or u, we may write

P
= pin Bl

ki

A (L= ps5
=B = pmj Al + Z Pk Bl s forj=j'#m
7]

F ol ()
35 0B

=q By (L= pii) + iy Biyy

K
2" pik Digy; forj=m#j'
k#j

K
=By = (i = pyy) Blyy +2 3 pirk Dy fori#7
¥

K
2D+ (P = Pmyr) Bl +2 3 Pk Digyps form # i, '

k#,3"
where

.0 D) (1 _ 970)
Ay = "'m(l ’”(ux) (1 2"«.»)
. (k) (7) ()
Bl = e (1-2n8)

o _ (k) () (")
Dijy = Ty T Ty

This completes the calculation for cond order derivatives needed for (2.
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2.2.1.2 Formulas for the Second Order Derivatives With Respect to p

The computation for the second derivative matrix in (2.76) with respect to p is much

simpler as compare to /3. Note that by using (2.70) and (2.71) into (2.66), we write

Phnilg) DhI KK

pjidpjrr [m(utlt-1) Don e

e
g
Lamtae=y (P @) -
4 mate) [ e . (2.79)
(@) \ Pt dpye

Because the first derivative in (2.72) is free from p, it follows that the second quantity

within the square bracket [ ] in (2.79) is zero. Next, by using the first derivative from

(2

, the first term within [ ] in (2.79) can be caleulated casily, yiclding the final

form as

PILB,p) 7%;’:*2*”‘2“ Tyt tit=1) (éJn:ijl,,,”(q))
EinlBo) _ 7}‘ =S

9pj1 dpyrr e e e {u:,’]fﬁ“,”(q) Ipju

O 1y(0)
x (T (2.80)

3 In L(B, p)
p o

This completes the caleulations for the second order derivatives, namely,

in (2.76).




Chapter 3

Multinomial Dynamic Fixed Logit

Models

bability model for the

In Chapter 2, we cod fonal linear dynamic
analysis of multinomial longitudinal data under two situations, (1) when the categor-
ical data are available from an individual over the whole period of study; (2) when
individual identity is not recorded, rather, his/her categorical responses are recorded
at time ¢ conditioning on time ¢ — 1. Also, in the second situation, the covariates were
stationary, i.c., time independent. This type of models however can not accommodate

the longitudinal correlations with full range. That is, the range for the correlation in-

dex parameters, namely pj (j =1, , K; 1 =1,-++, K) can be narrower than from

-1 to 1. As a remedy to this range issue, there exists situations both in Economics
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(Amemiya, 1985) and Statistics (Sutradhar, 2011, Chapter 7) literature using a con-
ditional non- linear probability model for longitudinal binary data. In this chapter,

we follow these studies and generalize the binary dynamic fixed logit (BDFL) model

to the multinomial longitudinal sctup. We refer to such a model as the multinomial

dynamic fixed logit (MDFL) model

In Section 3.1, we use this MDFL model for history based data. This means that
multinomial responses are available from all individuals over the whole period of time,
as in Section 2.1 of Chapter 2. The basic properties of the proposed MDFL model are

also disct

ssed in this section. In the same section, we provide the likelihood inferences
for the parameters under the proposed history based longitudinal multinomial logit
models non-stationary data. A simulation study and a real life example are also given
in the same section. In Section 3.2, we consider longitudinal multinomial data in the
conditional contingency table form and use the proposed MDFL models to fit such
data. In the same section, we describe the product multinomial likelihood approach

for the estimation of parameters of such MDFL models.

Note that under the longitudinal setup, a non-lincar multinomial mixed model

will be discussed in Chapter 4.
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3.1 MDFL Model For the History Based Data

Recall from Section 2.1 in Chapter 2 that the marginal multinomial multinomial

(

probability 7% for t =1, , T, has the formula

exp (;ij o+ ﬁ,)

7 = P(Ya = ) (31)
T+ Y exp (/iu. -+ JT:;ﬁA)
=1
[see (2.5) and (2.3)], whereas the conditional probability for yu = (yier,+~ \ Y~ +Yuak)'

ay yie1 = ] was modeled by a linear dynamic relationship (2.5)

given ypoy [
denoted by 7fy_,(1), where p; = (pj1, <+, pity++, pyc)’ involved in nf) (1) is &
vector of lincar dynamic dependence index parameters.

In contrast to that lincar model (2.5), we now write a multinomial logit (non-

linear) model consisting of the marginal probability at ¢ = 1 given by
i = P =)
exp (B0 + 7uB;)

14+Y e (rim + ﬂ‘llﬁA)

=i

. (3.2)

-, T, unlike in (2.5), a non-linear conditional probability

as in (3.1), and for ¢

given by

.
[0}
ozt + D 0ietforc)
.
P(Ye =y | Vi =) = 7

= P K
Sexp (ﬂk ot z’: Braisy + 3 One 17
= i
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+oul)

p (ko +alB + O

= (), say,  forj,l K. (3.3)

For the remaining cases, i.c., when [ = K + 1, the conditional probability in (3.3)

reduces to

14+ Y exp (m + -f;li‘-)

= (K +1), say, forj

PV =y | Yot

K, (34)

and for any | K, the probability for the responsc to be in the last category

K +1 (i, for j = K +1) at time ¢ is given by

1

()
711:\:*1 0 =1- Z’Em B =

gt
o+ 2B+ 04l

1+ Y e (

Note that 78 = 78 as in (2.3). However, the marginal probabilities, say 7', for

under the proposed conditional model (3.2)-(3.5) will have a recursive

relationship relating 7’ and #_,. As far as the parameters are concerned, 8 =

Bos ) for j=1,-+, K and u=1,-- , p, arc the same regression parameters as
o, Bju) for j 7 2

in (2.3), but 8 = (6;1) for j,

| K in (3.2)-(3.5) are referred to as the dynamic

dependence parameters, whereas p = (p;1) in (2.5) are correlation index parameters.
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We use different notation for the dynamic dependence parameters in this non-linear

multinomial model (3.3) as compared to (2.5). This is because, 8 in (3.2)-(3.5) is not
restricted for its range unlike p under the model (2.5). More clearly 6, ranges from

-00 to 00, yielding the correlation between yy; and -1 from -1 to 1. This would

be clear from the basic properties of the model which is given in Section 3.1.1. Some

authors such as De Rooij (2011) has used a non-linear dynamic model to analy
repeated multinomial data, which is, however, similar but different than our model
(3.2)-(3.5). The difference lies in the fact that De Rooij (2011), unlike (3.2)-(3.5),
uses an exponent of squared distance function in dynamic variables to define the
conditional multinomial probability. This model is extremely complicated leading to

very i ion for the

Further note that in time series setup, i.c., when T — oo and I = 1, this multino-
mial logit model (3.2)-(3.5) has been recently studied by Loredo-Osti and Sutradhar
(2011). See also Fahrmeir and Kaufmann (1987), and Fokianos and Kedem (2003).
Thus, basic properties of this model for i = 1 to be discussed below will be the same
as in Loredo-Osti and Sutradhar (2011). Nevertheless, as in longitudinal set up 7' is
small such as T=3 or 4, we provide these properties for T up to 4 in Section 3.1.1 by

diti and itioning principles.

using directly the
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3.1.1 Basic Properties of the History Based MDFL Model

Note that the MDFL model given by (3.2)-(3.5) is referred to as a history based model.

This is because, this model all responscs and

for all individuals (i = 1,--- , I) over the whole duration of the study for t =1,---
We now provide the means and the variances under this model in Lemma 3.1 and the

covariances between multinomial responses at any two time points in Lemma 3.2

Lemma 3.1: Fori=1,--- [ and t = 1,--- T, the unconditional mean vector and

the covariance matrix of the multinomial response veetor Yy = (Yi, -+, Yigjo -+, Yak)

have the forms

B(Y) = Mg + [ Wi = migea
= () )

= I, (3.6)

(K

and

Var(Ya) = diag [0, 70, ,#00| - T IT,, 3.7)

JKandt=1,---

forall j =1,

setup, a direct proof of this lemma is available from Loredo-

Proof: In the time seri
Osti and Sutradhar (2011). Nevertheless, we verify this result for some of the smaller

lags which is practically useful. These are shown in the Appendix A (page 133). ¢
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Lemma 3.

vector Y and Yy for t = 1,-- ' = 1; ¢ =2,--- T i given by

Cov (Y, Yir) = Var (Ya) ﬂ [Wie = 7] e<t

s=t41

where

()

W = 1 Q) - a0

(1) e a0

e (K)

e (K)

A (K)

: For all i = 1,--+ 1, the covariance between the multinomial response

(38)

et (K +1)

oK +1)

e (K +1)

Proof: Similar to the proof for Lemma 3.1, a dircct proof for this lemma under time

series setup is given in Loredo-Osti and Sutradhar (2011). We, however, provide a

detailed induction based proof of the lemma in the Appendix A (page 142). &
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3.1.1.1 Understanding the Correlations Through Special Cases

Trinomial (K = 2) and Binary (K = 1) Cases:

For the special trinomial case when K = 2, we use (3.8) and write

Cov (Ya, Ya) = Var (Ya) [Wa = g ¥

iPa-x) Pl
T e
g || e iRe
) iGhe) W) e
A=A A A - 5E) @ - e
T e ara-an | [ Bo-ge Be -5

Thus we can write the covariance and correlation between gy and yiay as

Covtyar,ven) = 7 0 = 70 (b 0 - 1h@ } - 702D (i 0 - iR @ }

Corr(yin, yin)

) (a0 - i@} - 5 {ih - ihe}
Vaa - aPa -+

(39)




3.1 MDFL MoDEL FOR THE HISTORY BASED DATA 76

Similarly when ¢ = 1 and ¢ = 2, the correlation among g1 and yizz, for example, has

the formula

Corr(yin, Yizz)

Var(yim)Var(viz2)
- w0 (i@ - i@} - #0A i@ - e}

w0 -0 AP0 -9

(3.10)

Now, for the binary case when K = 1, the correlation between gy and g in

(3.9) will reduce to the following formula

Corr(yanyin) =

-'7.)] x {;,jz‘fl(l)fy‘,j;"](z)}, (3.11)
2 (1 7iz')

which matches with the correlations discussed by Sutradhar and Farrell (2007, Eqn
(1.6), p.450). Note that because

exp 4,81+ 0n)
i200 +011)

77}1‘"‘(1) e (3.12)

1) (o exp (Bro + i) 213
=0 T 3.13
1@ = T3 xp (Gro + o) (3.13)
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by (3.3), for —00 < Oy < oo, it then follows that 0 < 73 (1), ii3h(2) < 1. Fur-
thermore, when 8y — oo, (1) — 1, yielding {73)(1) = 7}\(2)} as a positive
fraction. Similarly, for 3 — —oo, 7} (1) — 0, yiclding {if})(1) - i@} asa

negative fraction. Consequently it follows from (3.11) that

=1 < Corr(yar,yin) < 1

This full range property for the correlations appear to hold for any two components
of a multinomial response vector over two different time points. When compared
to the lincar dynamic fixed probability model discussed in Chapter 2, it is natural
that the present non-linear model has advantages over the lincar dynamic model
with regard to the ranges for the correlations. The inferences for this non-linear
dynamic model is, however, not discussed in the literature. In the following section,
we exploit the well-known likelihood approach for such inferences. In Section 3.1.3, we
provide a simulation study to examine the finite sample performance of the likelihood
approach. Also, a real-life data on "Three Mile Island Stress-Level is re-analyzed by
using this likelihood approach, which was carlier analyzed by Fienberg et al. (1985)

and Conaway (1989), for example.
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3.1.2 Likelihood Estimation for the History Based MDFL

Model

To understand the mean, variance and covariances under the MDFL model, we need
to study the parameters of the model such as Bjo, Bju and .. We use the maximum
likelihood approach to estimate all parameters involved, even though the regression

parameters 3jo and 3, may be of primary interest.

3.1.2.1 Log-Likelihood Function

Now by writing 8 = (Bj0, Bu) and 8 = (6) for j = 1.+, K, ¢ = 1+, K,
u=1,--,p, it follows from the model (3.2)-(3.5) that the likelihood function has

the form

' P
Le.e) = I1 [/(.v.:) 1T £l _.,,_,,,)] (3.14)
wi

where

) =

70}

. K
i garcl, (1= X ving)! H {
K (=55, viag)
x {1 7277,‘?} . @15)
=1

and
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il yier) =

(3.16)

(a)

where 7%)__ is written from (3.3) for 7% _, (1) simply by writing y;,_1 for known y_
i1 e-1 8 Ui -1

without any loss of generality. Thus, by using (3.15) and (3.16) in (3.14), one writes

‘ the log likelihood as

.
nL(B,6) = ¢+ [aB) + kB, 0)] @17)

where

K
WB) = Yy (/i.,u + z:.[i,) ~In {1 +Y exp (/im o+ z:,ﬂ)} L (318)
=

k=1

and

hi(B,0) =

via (Bro + B, + O

«
“In {1 + 3 exp (Ao + @B+ B ) }] . (@19)
=

with C is the normalizing constant.
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3.1.2.2 Likelihood Estimating Equations

By maintaining the same notation for the vector of regression parameters as in Chap-

ter 2, we write
B= (B By, BR)
where
B; = (Bjo, Bins++ » Bjur=++ » B’ (3.20)
Similarly, we denote the (p+1)-dimensional vector of covariate as
zh = (L 2y » T+ » Tign) = (1, @) - (3.21)
For the dynamic dependence parameter we use
0= (0,05, 0)
where
6 = (B, 0, O3k) - (322)

We now write the likelihood estimating equations for 8 and  as in the following

lemma.
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Lemma 3.3: For the MDFL model (3.2)-(3.5), by using the log-likelihood function

(3.17), we can write the likelihood estimating equation for o = (ﬁce') as follows

(')lnL(a) _ ZZ[”" Mua] © it -0 3.23)

SLEL Yit-1

where for convenience we use gio = (0, ,0)" implying that 7 = 77}

Proof: Using the notation from (3.20)-(3.22), we can write the log-likelihood function

(3.17) as

[T K
L@ = C+ 330D v («i/B; + Opiar)

- Z Z In |1+ Zcxp 3! By + O ie-1) (3.24)

=

By taking derivatives of the log-likelihood function with respect to f; and 6; we

obtain

i) g s
m m

= 3 [ -] =i (3:29)
:
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9ln L(c)

- = @)
a0, ’Z;y‘/,mf\ ;mm,.!/.,y 1
= 3 oo = ] e 3.26)

i

Thus, we can write the derivatives of the log-likelihood function with respect to §

and 6 in vector form as follows

oI L(a) .

5 - ;[:uxt>n««\.,.]®r,, (3.27)

oL

% = 3 [ = M) @ viam (3.28)
m

Now, estimating functions in (3.27) and (3.28) together yield the

imating equation

(3.23) as in the lemma. &

Lemma 3.4: For the MDFL model (3.2)-(3.5), we can write the Hessian matrix of

the log-likelihood function (3.17) with respect to & = (5’.9')' as

HinL(@)] = %}

1) A F(K)
= Zldzny(m,,,,,.---,u,,"’,,,,v» MI.”H)
m
i £
® (3.29)

Yie-1 Yia-1

= Mg Wi
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Proof: Note that

B; = (Bios iy~ » Bjur+  Bi) s by (3.20), and

8; = O, Oy, Ok by (3.22).

Now, taking the second derivatives of the log-likelihood function (3.17), that is, taking

another derivative of the cquations (3.25) and (3.26) with respect to 3 and 6;, we

obtain:

- SN @y for V=W=4
T M ahh for V=W =0

T M g thyas for V=W=9;

avawr
T84 ahayl; for V=g, W =4

T8 anyt, ;. for V=B, W =6

T gathy;  for V=05, W =0m,
where
e =
A =i 1 -]
and

(jm) ) s(m)
DA R e

(3.30)




3.1 MDFL MobEL FOR THE HISTORY BASED DATA

84

Hence we can write the second derivatives of the log-likelihood function (3.17)

with respect to 8 and 8 as follows:

& In L(a)

o~ o ["'"” (s
=

&*InL(a) =
“opor - Z[d"w (G

and

P 5 g (i

9000

respectively.

70) HK)
)

=g o] ® (i),

70 (K
e )

=M1 vi,...,] ® (Ti Yia1)-

50 H(K)
ey )

= Mgt Wie-1] © Wia—1 Yimn)s

(331)

(3.32)

(3.33)

Now by combining (3.31), (3.32), and (3.33), we obtain the Hessian matrix as in the

lemma. ¢




3.1 MDFL MoDEL FOR THE HISTORY BASED DATA

85

Lemma 3.5: For the MDFL model (3.2)-(3.5), we can write the Fisher information

matrix which is the expected value of the Hessian matrix of the log-likelihood function

(3.17) as
Ia) =
where
P InL(a)
awvow |~
with

eln{me@}] - [ E{%}]

{Enten pfonua
s{Thtic) o{eil)

m
—Z[D,’,—lln], for V=W=60
m
- [D,, - li',i] i for V=BW=0
m
Dy 0 0
] 0 Dy - 0
KpxKp
0 0 - Dak

KpxKp

(3.34)

(3.35)
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Vi Vi oo Vik
Vi Ve o Vi
Wi = Vi) kprcn =
Vi Vie - Vi
Kexkp
p
D;z[@n;,,} ] Wi = (V) gager a0d
= PP

o

,‘
e e,

where Dy =

R CAOLG) <)] !

Viy {Z

Pz

pxp

S (KR

Dy; = diag [ (1)

i

(K) ]
o1 |

£ [nfi&f.() @m0 ﬂ,‘,,\]

Vi = diag [ (VA (DR T (VT ()

i " i
Dug =i [0 @ ] 0 e

with 70,0 = (1), Jifh-1(K)) s and @ denoting the Hadumard, ic.,

elements wise product.

Proof: The proof of the lemma requires the expectations of various elements involved
in the sccond derivatives. For convenience, the derivation for these expectations for

are shown in the Appendix A (page 148). &

some special c
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3.1.3 A Simulation Study for the History Based Data

Asymptotic properties of the likelihood estimators are well-known. In this section, we
rather examine the finite sample properties of such estimators through a simulation
study. Recall that the parameters involved in the MDFL model (3.2)-(3.5) are 8 =

(Bjo, B) and 8 = (6) for j = 1, K, u =

,poand L =1,---, K. For

the simulation purpose, by using a true set of values for the components of 8 and

0, we generate the initial multinomial response yi = (g1, -+ yax)' (i =

)

following (3.2), and yi = (yiurs--+ +Yax) for ¢ , following (3.3)-(3.5)
The true parameter values B and @ will then be cstimated by solving the likelihood
estimating equation (3.23) as in Lemma 3.3. This data generation and estimation
process will be repeated for 500 times. Finally, these 500 likelihood estimates will be

summarized to examine the performance of the MDFL model in estimating the true

parameter values

3.1.3.1 Simulation Design

We consider I = 100 independs ividuals with trich s responses over T' =
4 time points. As far as the time dependent covariates for these individuals are

concerned, we select two covariates as follows:
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1 fort=

0 fort=1,2,3; i=1,...,25

1 fort=3,4; i=26,...,50

Tay={ 0 fort=1,2 i=26,...,50

1 fort=2,34; i=51,...,75

0 fort

1 fort=1,2,34; i=76,...,100

iy ~ bin(p=0.6); fort=1,2,3,4; i=1,..,100

The above time dependent covariates values are chosen hypothetically, where, we
have, however, followed four different patterns for four groups of individuals in selec-
tion of the first covariate. The second covariate, in contrast to the first one, has been

chosen a random covariate allowing random differences among the individuals,

For the selection of the elements of the regression parameter vector 8, i.c., the
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category and covariate effects, we consider the following two sets of parameters;

: (0.1,0.0,00,0.2, 0.0,0.0)
B'= (Bro, Bur, Prz, Boo, B, P2) = ’
(0.1,03, 0.1, 0.2, —0.2, 0.0)

ion of the clements of the dynamic dependence parameter vector 6,

and for the sel

i.c., the transition cffects, we consider following four scts of parameters;

(02, 00, 0.0, 0.1)
’ (08, 03, 03, 0.8)
8= (011, 012, O, 02) =

(03, 0.7, 08, 0.5)

(0.8, 0.5, =0.5, 0.8)
Note that the values of the elements of 6 were chosen to reflect large and small
correlations both for an individual remaining in the same category and transiting to

the different categories.

3.1.3.2 Simulated Estimates

Note that we have selected eight parameter combinations and for each of these com-
binations we compute the likelihood estimates for 8 and  for cach of the 500 simula-
tions. The simulated mean (SM) and the simulated standard errors (SSE) calculated

from the 500 simulation results are reported in Table 3.1.
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Table 3.1: Simulated Means (SMs) and Simulated Standard Ervors (SSEs)of the Like-
lihood Estimates for the Regression and Dynamic Dependence Paramet
Selected Values of 6 and the True Value of B = (B0 = 0.1, By = 0.0, 3

0.2, By = 0.0, B = 0.0), Under the MDFL Model.

s for Some

Category 1 vs 3 T Category 2 vs 3
True 011 =0.2, 012 = 0.0 ; 0 = 0.0, 6 = 0.1
Bro P Pz P B B
SM | 0.11552 | -0.00581 0.00490 | 0.20714 | -0.01081 ~ 0.00088
SSE | 0.26896 | 0.27167  0.26180 | 0.26389 | 0.27296 025171
O Oy O3 O
SM 0.19725  -0.00858 0.01456 0089217
SSE 030111 0.30654 029626 0.28396
True 011 = 038,012 =03 ; 01 = 03, 00 = 0.8
Bro Bu Bz B B )
SM | 0.14938 | 0.02928 0.01089 | 0.24043 | 0.02373  0.01021
SSE | 0.28772 | 0.20446  0.27812 | 0.28791 | 0.20591 0.28558
O 2% O O
SM 073028 0.21649 025696 0.72751
SSE 030808 0.31691 034542 0.30724
True 011 = 03, 012 = 0.7; 01 = 0.8, 02 = 0.5
Bro Bu Pz P B P
SM | 0.12221 | 0.01980 0.03138 | 0.23099 | 0.02147  0.02714
SSE | 0.28124 | 0.30340  0.27766 | 0.26336 | 0.28877  0.25840
O 61y 0 0
SM 0.23801  0.66745 076224 0.44223
SSE 0.30000  0.31130 0.32821  0.30810
True 011 =08, 01 =-05; O
B n Bra Pn B B
SM | 0.11550 | 0.02822  0.01142 | 0.20945 | 0.02680 0.01295
SSE | 0.27413 | 028632 0.27192 | 0.27746 | 0.27686  0.26380
O (2% O Oy
SM 075467 -0.51821 -0.54053  0.77984
SSE 032020 0.38801 038426 0.29824
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Table 3.2: Simulated Means (SMs) and Simulated Standard Ervors (SSEs)of the Like-
lihaod Estimates for the Regression and Dynamic Dependence Parameters for Some
Selected Values of 6 and the True Value of B = (S0 = 0.1, fuy = 0.3, fra = 0.1, o =
0.2, 421 = ~2.0, 32 = 0.0), Under the MDFL Model.

Category 1 vs 3 I Category 2 vs 3
True 011 = 0.2, 013 = 0.0 ; O3y = 0.0, 0 = 0.1

B Bu Pz B B B
SM | 0.12068 | 0.32086 0.09633 | 0.22241 | -0.20433 -0.01038
SSE | 0.26271 | 0.25500 0.25078 | 0.27245 | 0.26928  0.25383

O 012 O O
SM 0.17008  -0.01423 -0.02041  0.07084
SSE 027584 0.30363 031529 0.30380
True 011 = 03, 013 = 03 ; 01 = 03, 0z = 0.8
Bo An b Bao e B

SM | 0.13009 | 0.35445  0.09255 | 0.23090 | -0.15832 -0.01879
SSE | 0.26569 | 0.27808  0.26330 | 0.28284 | 0.29780  0.26793

On (25 O O
SM 072712 0.25674 0.23634  0.75366
SSE 0.28862 0.34281 0.32000  0.35244
True 11 = 03, 013 = 0.7 ; 021 = 08, 02 = 05

Bio Bu Pz o B B
SM | 0.12427 | 0.32509  0.10172 | 0.22767 | -0.15598  0.00768
SSE | 0.28296 | 0.28629  0.27321 | 0.28069 | 0.28881 0.27561

O [ O O
SM 0.26451  0.65446 075837 0.40014
SSE 030139 0.32535 032132 0.36367
True 01, = 08, 01 = -05 ; 031 = 0.5, 0z = 08

Bro Bu O Bao B B
SM | 0.13230 | 0.32497  0.09711 | 0.23023 | -0.17362 -0.01400
SSE | 0.28145 | 0.27740  0.26058 | 0.28077 | 0.20269  0.29067
[ [ 02 253
SM 0.75217  -0.54321 -0.53428  0.76220
SSE 0.28441  0.35641 0.37447_ 0.32001
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It is clear that the likelihood estimation works very well. For example, when 8’ =
(0.1,0.0,0.0,0.2,0.0,0.0) and 6’ = (0.2,0.0,0.0,0.1) the results in Table 3.1 provides
the estimates of B as B = (0.11552, —0.00381, 0.00490, 0.20714, —0.01081, 0.00088)
and of 0 as 6 = (0.19725, —0.00858, 0.01456, 0.089217), with respective standard er-
rors SE(3) = (0.26896, 0.27167, 0.26180, 0.26389, 0.27296, 0.25171) and SE(6') =
(030111, 0.30654, 0.29626, 0.28396). Because the biases are quite small along with
not too big standard errors, the estimates are consistent. However, as expected,
when the element of @ are relatively large indicating large dynamic dependence, the

estimates of the regression parameters become slightly biased in some cases.

3.1.4  An Illustration for the History Based Data

In this section, we provide a numerical illustration for proposed MDFL model (3.2)-
(3.5) by re-analyzing the Three Mile Island Stress-Level data (Fienberg et al., 1985),
collected from a psychological study of the mental health effects of the accident at the
Three Mile Island nuclear power plant in central Pennsylvania began on March 28,
1979. This data set was analyzed by Fienberg et al. (1985). However, these authors

This

have used a dichotomized stress responses instead of trichotomous respo

makes the use of binary dynamic model only [sce Fienberg et al. (1985, Eqn. (8))]
which is the same as the binary dynamic model considered by Sutradhar and Farrell

(2007).
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Note that later on, Conaway (1989) has re-analyzed the same data using these

three stress levels. However, Conaway used time/wave as a deterministic factor and
ing time on the responses. Thi

found the time effects regres quite different from

our MDFL model, where we consider time as a stochastic factor and develop correla-

tion model among multinomial responses over time. Also note that Conaway (1989)

analyzed the data for a given level of the covariate, whereas we consider this distance

covariate (greater or less than 5 miles from the plant) as a dichotomous variable.
Thus, with regard to the covariates, Conaway has done marginal analysis, whereas
our joint analysis is more appropriate for understanding the effects of the covariate

due to its levels.

For the purpose of the application of our methodology we present the same set of data

in the Table 3

.3. The study focuses on the changes in the stress level of mothers of

within 10 miles of the nuclear plant. The accident was followed

young children livi
by four interviews; winter 1979 (wave 1), spring 1980 (wave 2), fall 1981 (wave 3),

and fall 1982 (wave 4). In this study, the subject were classified into one of the three

response categories namely, low, medium and high stress level, based on a composite

checklist. There were 267 subjects who completed all four

score from a 90-item
interviews. Respondents were stratified into two groups, those living within 5 miles

of the plant (LT5) and those lives within 5 to 10 miles from the plant (GT5).
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Table 3.3: Three Mile Island Stress-Level Data.

For less than 5 miles distance (LT5)

Distance  Wave 1 Wave 2

Wave 4

Wave 3 Low4 Med4 Highd

LT5 Lowl Low2

| Med2

|

‘ High2

| Medl  Low2

‘ Med2

|

i High2

Highl  Low2
Med2

High2

Low3
Med3
High3
Low3
Med3
High3
Low3
Med3
High3
Low3
Med3
High3
Low3
Med3
High3
Low3
Med3
High3
Low3
Med3
High3
Low3
Med3
High3
Low3
Med3
High3

2
2
0
0
2
0
0

cocovwomuoo

c-cocococcoos

o

MO ECOCORNONEN O A ~COOC s oW
N CCR®WOCOO~OOWAOOOOOOOOO 00O o
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Table 3.3 (Continued): Three Mile IslandStress-LevelData.

For greater than 5 miles distance (GT5)

Wave 4

Distance  Wave | Wave 2 Wave3 Lowd Medd Highd
GT5  Lowl Low2 Lowd 1 2 0
Med3 2 0 0

High3 0 0 0

Med2  Lowd 1 0 0

Med3 0 3 0

High3 0 0 0

High2 Low3 0 0 0

Med3 0 0 0

High3 0 0 0

Medl  Low2 Lowd 4 4 0
Med3 5 15 1

High3 0 0 0

Med2 Low3 2 2 0

Med3 6 53 6

High3 0 5 1

High2 Low3 0 0 0

Med3 0 1 1

High3 0 3 1

Highl Low2 Lowd3 0 0 1
Med3 0 0 0

High3 0 0 0

Med2  Lowd 0 0 0

Med3 1 13 0

High3 0 0 0

High2 Low3 0 0 0

Med3 0 7 2

High3 0 2 7
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Note that our methodology is based on lag 1 time dependence. For this reason, for
preliminary understanding of the data set, we also provide all possible lag 1 transition

counts over time in Table 3.4.

Table 3.4: Al possible Lag 1 Transition Counts Over Time for Different Covariate
Levels from the Three Mile Island Stress-Level Data Set.

Time t =2
LT5 GT5
Category || Low Med  High [ Total | Low Med High [ Total
Time t =1 Low 7 7 0 14 5 4 0 9
Med 1 54 4 69 29 5 G 110
High 0 12 20 32 1 14 18 33
Total 18 73 24 115 35 93 24 152

Time t =3
LTS GTH
Category || Low Med High [ Total || Low Med High [ Total
Time t =2 Low 8 10 0 18 12 23 0 35
Med 6 57 10 3 5 82 G 93
High 0 5 19 24 0 11 13 24
Total 14 72 29 115 35 116 19 152

Time ¢ = 4
LT5 GTS
Category || Low Med High | Total | Low Med _High | Total
Time t =3 Low 10 4 0 14 8 8 1 17
Med 8 57 7 | 72|14 9 10|16
Hgh | 0 9 20| 2 |0 10 9|19
Total | 18 70 27 | 115 | 22110 20 | 152
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Next, we also provide a summary statistics in Table 3.5 for the distribution of
individuals under three stress-level categories verses the covariate levels for all time
points t = 1, 2, 3, 4.

Table 3.5: Distribution of Individuals Under Three Stress-Level Versus the Covariate
Levels from the Three Mile Island Stress-Level Data Set.

Time t = 1 Time t =2

Catcgory [ Low Mcd _High | Total Category | Low  Me Total

GT5 | 9 110 33 | 152 GT5 | 3 152

LT5 14 69 32 115 LT5 18 115

Total | 23 179 65 | 267 Total | 53 27
Time t =3 Time t =4

Catogory | Low Mcd _High | Total Catogory | Low Mcd _High | Total

GT5 | 17 116 19 | 152 GT5 | 22 110 20 | 152

LT5 14 72 29 115 LT5 18 70 27 115

Total | 31 188 48 | 267 Total | 40 180 47 | 267

The exploratory data in Table 3.4 indicate that irrespective of time, the transition
from low to high or high to low is a rare event. It happens only once in cach of the
cases. But the transition from low to medium is more common and almost half of
the times responses belong to the low level transit to the medium level irrespective

of the time.

In the whole data set, 62 (166 out of 267) to 70 (188 out of 267) percent of the
individuals always belong to the medium stress level and 72 to 84 percent [sce Table
3.5] of the individuals under this level remain in same level. Individuals belong to

medium level, approximately 7 to 22 percent transit to low level and 5 to 10 percent
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[see Table 3.5] transit to high level. Approximately 35 to 40 percent [see Table 3.5)
of the individuals transit from high to medium level irrespective of time.

We now apply the proposed MDFL model (3.2)-(3.5) to the Three Miles Is-
land Stress-Level data and provide the MLE for 8 = (810, 811, B20, 1) and 8 =
(011,012,021, 05)" as in Table 3.6.

Table 3.6: The Likelihood Estimates for Regression and Dynamic Dependence Pa-
rameters for the Three Mile Island Stress-Level Data.

Category 1 vs 3 | Category 2 vs 3
B Bu B Bn
SM | 20373 -1.6618 | 01035  0.6233
SSE | 01748 0.1636 | 0.1210  0.1201

O b2 0 O
SM | 57594 23666 | 3.6497  1.8824
SSE | 1.0101  0.1924 | 1.0092  0.1606

The estimates of Bjo (j = 1,2) from Table 3.6 indicate that when other variables

are fixed, an individual has higher probability (with A = 0.1035) to have medium

stress-level and smaller ility to have low stress-level (with 3o = —2.03732) as

compared to the high stress-level.

The value of 4, = —1.6618 indicates that an individual belong to GT5 has smaller
probability as compared to LT5 group to be in low stress level. This result appears
to fit the raw data evident by summary statistics shown in Table 3.5. For example,

17
irrespective of time, say for ¢ = 3, the individuals has observed probability ok
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level (with high stress-level as

0.112 under the GT5 group to be in the low str

reference), which is smaller as compared to the observed probability — = 0.122

under the LT5 group.

level (high stress-level as

When covariate effect is examined in the medium stres
the reference), A = 0.6233 indicates that the individual in GT5 group has higher
probability to experience medium stress level as compared to an individual belongs
to the LT5 group. This result (similar to that for 3y,) is also supported by the

distribution of individuals shown in Table 3.5, To be specific, for example, say for
110

= 4, an individual has observed probability 15 = 0.724 under the GT5 group to
5

be in the medium stress-level (with high stress-level as reference), which is higher as

0

115

compared to the observed probability —— = 0.609 under the LT5 group

concerned, fy; = 5.7594 and 6y, = 2.3666

As far as the dynamic dependence

-level

indicate that an individual has higher probability for remaining in the low stres

as compared to transiting from medium to low stress-level (with transiting from high
stress-level as reference). This appears to explain the observed counts well as shown
in Table 3.4 This is because, transiting from time 2 to 3, an individual in low stress-

20 "
level at time 2 has probability B 0.377 to remain in the same level at time 3 as
5.

stress-level with observed

opposed to an individual transiting from medium to low

11

probability —— = 0.066

166

One may similarly interpret the estimates 6y = 3.6497 and 0y, = 1.8824
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3.2 Ordinal Multinomial Dynamic Fixed Logit Model

Note that in Section 3.1, we have considered nominal categories for the response
variable in a longitudinal set up. Also, the Three Mile Island Stress-Level data set
was reanalyzed in Section 3.1.4 under the assumption that stress levels are nominal.
However, in some situations the categorical variables such as in the Three Mile Island
Stress-level example, can be considered as ordinal. For this type of ordinal multi-
nomial analysis the likelihood methodology remains almost the same except that
this ordinal nature should be taken into account which would reduce the number of

parameters involved in the model.

To accommodate the ordinal nature of the responses in the present set up, it is
appropriate to change its past response effects 6; to 6(v; — ) and effect of covariates
Zu, B to B(w; — w) in the nominal response based model (3.2)-(3.5), where v; and
w are suitable ordinal scorer for the jth ordinal category. For example, v; = j and
w; = j indicate the standard ordinal score. Thus, for the ordinal responses, the

probability model (3.3) reduces to

) = POu=yd Vi = 4i2)

exp {(w, — @) + (0, - 009, } o

14+ Y e {m — @)l + (o -0,

i=1. K l=1,- ,K+1,
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with,

K

: . 1

e @ =1= 3 i) =
=

1+ S exp { (= @)+ (o — 0)0'9)-

If the response is at (K + 1)th category at (t — 1) time point then we can write

DK +1) = PV = 3PV = 3550)
o3 p; — W)T}f
ool -l Gk a7

1+ 3 exp {(wn — w)a},8}
=

3.2.1 Likelihood Estimation of 3 and ¢

The likelihood function is

L(B,0) = IL[ 11 hf[l {a (338)

w1t il (1= 0, i) oy

T

where yio = 0, g = (1= S0, ), and iffy_, is in (3.36)-(3.37).

We now have B : px 1 and 0 : K x 1 parameters to cstimate, whereas in
the nominal model (3.2)-(3.5) we had Kp regression parameters and K? dynamic
dependence parameters. Note that these new parameters #: px 1 and 6 : K x 1

issed in Section 3.1.2.

can casily be estimated by applying the likelihood method dis

Thus, we do not provide any further details for their estimation.
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3.3 MDFL Model for the Contingency Table Based

Data

Note that in Section 3.1, for a given individual we have considered non-stationary
multinomial models with time dependent covariates. There may be some situations
in practice where these covariates are time independent and as a result for a given
combination level of multiple covariates, the same stationary multinomial response
probability will be obtained for a group of individuals. Similar to Chapter 2, here
we again consider only one covariate with p + 1 levels, and use @i1), -+ , @i as in
(1.11) to represent the p+1 levels of the covariate for the ith individual. Suppose that

under the uth level of the covariate there are 17, individuals within the jth category

at time ¢ = 1 with the same probability 7(}) for each individual. Also suppose that
under the uth level of the covariate for t = 2,3,4, there are Iy, qi-1) individuals cach

with the same conditional probability 7)), , (1) for transiting to the jth category at

time ¢ from the Ith category at time t-1. These common marginal and conditional

probabilities under the present non-linear dynamic model have the formulas given by

’ (3.39)

1+ > exp (Bro + Bra)

and
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Bacy® = P(Yu=of Vi =3,)

exp (Bro+ B+ 6,487,
5
1+ 3 exp (Beo+ o + 04y
P

forjl=1,--- K, (3.40)

respectively. For the remaining cases, i.c., when [ = K + 1, the above conditional
probability reduces to
. ! x
W B +1) = P(Yi=ul | Vs = of80)
exp (B0 + )

1+ Y exp (Juﬁrﬁu)
i

and for any L = 1,-++ , K, the probability for the response to be in the last category

sorj=1,0 K, (341)

K +1 (i.e., for j = I + 1) at time ¢ is given by

&
Tty ® = 1= 2 Ay () = (3.42)

—
1+Y exp ({ﬁ o+ Bru + 6;,,/‘(‘1,’,,>
=i

)

Note that the marginal and conditional counts 17,

and Ijjgu 1), respectively,
may be summarized in tabular form as in Tables 2.2(a)-(b). Similarly, onc may form
tables for the marginal and conditional probabilities as in Table 2.1(a)-(b), with a
difference that in Table 2.1, the marginal and conditional probabilities are given by

(2.55) and (2.56), respectively, whercas under the non-linear dynamic model these

formulas are now given by (3.39) and (3.40), respectively.
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3.3.1 Product Multinomial Likelihood Inferences

For the estimation of the parameters involved in the present non-linear dynamic model

(3.39)-(3.40), one may write the likelihood function as

£(8,60) = [ Lo (3.43)
]
\ where
_ Corkn
L = Jun TT T [fw-n®] (3.44)
& i

with f(,1) as the marginal multinomial probability at time ¢ = 1 given by

K+1

Jon = 11

I
I

{ ir;:;}"l:’” . (3.45)

u) |
()

and /],‘,,",.,(l) as the conditional multinomial probability at time t given that the
response was in the [th category at time ¢ — 1. This conditional distribution has the

formula

ket g0y

Ju-n®) =

iy

Hstuie—ny .
Tijeute-n! {ﬁ:{‘!""”(’)} e 50

Next by using the formulas for 7} from (3.39) and for i), (1) from (3.40),

| after some algebra we write the log likelihood function as
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pil

WL(p.0) = ¢+ [iB) + in(8,)] (3.47)

=1

where

K
3u(8) = ZI(J., (Bjo + i) = Iy ln{l+vap<m+m} (3.48)
f

and

P K41

h(8,0) = XI:

=2 =1

K
=10yl {l+Zox])(;’iu,+ﬁm+l)“)}j| (3.49)
k

K41
{Z Tjuaie-n) (Bjo + Bju + 012)

with C is a normalizing constant.

Note that the log likelihood function given by (3.47) can be maximized with
respect to Bio, By and O (j,l = 1+, K and w=1,-- , p) in the manner similar
to that of Section 2.2.1. The first and second order derivatives can casily be calculated

following Lemma 3.3 and Lemma 3.4 and hence details are not shown.




Chapter 4

Multinomial Dynamic Mixed Logit

Models

In Chapter 3, we have generalized the non-linear binary longitudinal model discussed

in Chapter 1 (Section 1.1.2 scussed, this multinomial

3) to the multinomial case. A
fixed logit model introduced in Chapter 3, allows pairwise lag correlations to be in
the range from -1 to 1. Also, the dynamic dependence parameter in this multinomial
dynamic model was estimated by likelihood approach in the same way the regression
parameters were estimated. Thus, there was no necessity of using any extra-equations
for the estimation of the correlations of the data. Note however that, there may be

situations in practice where the mean, variance and correlations of the data may

not be fully explained through regression and dynamic dependence parameters. This
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may happen mainly due to certain latent factors those are unobserved but perhaps
influential. This situation is usually accommodated by using suitable random effects

for the individuals so that the variation of the random effects may provide additional

information to understand the perfect nature of the observed multinomial data. For
the purpose, in this chapter, we generalize the multinomial dynamic fixed (MDFL)
logit models of Chapter 3 to the multinomial dynamic mixed logit (MDML) models.

This generalization is provided in Section 4.1 below.

Note that the non-linear binary longitudinal fixed models in Chapter 1 (Section

se. For example, we refer to

1.1.2.3) has also been generalized to the mixed models ca

Sutradhar et al. (2008). These author have used generalized quasi likelihood (GQL)

inference for the estimation of the parameters of such binary dynamic mixed models.
Also, this was applied to analyze a well-known SLID (Survey of Labor and Income

Dynamics) data set from Statistics Canada. However, it was limited to the binary

cases as opposed to the multinomial case. The proposed model in Section 4.1 may

therefore be treated as the g ion of such binary inal mixed model.

Following the model given in Section 4.1, in Section 4.2, we provide the likelihood
estimation for the parameters of the model including the random effects variances
under all possible categories. Because the exact likelihood computation under the
proposed mixed model is difficult, we use a simulation based approximation for such

likelihood computation. In Section 4.3, we conduct an extensive simulation study to
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examine the finite sample performance of the simulated likelihood approach.

Note that the random effects variances in multinomial dynamic models cause

overdispersion which also affects the correlations of the repeated responses. Some au-

thors, such as Wilson and Koehler (1991) discussed overdispersed model for multino-
mial data at cross-scctional level. Neerchal and Morel (2005) also dealt with overdis-

ctional level. Thus they

persed multinomial data in multivariate setup at cros:
model the multivariate multinomial correlations as opposed to longitudinal correla-
tions. Mixture multinomial models, similar to Morel and Nagaraj (1993) also has
been used by Cruz-Medina et al. (2004) for repeated data. Multivariate multinomial
analysis at cross-sectional level has also been done by Chen and Kuo (2001) through
random effects, whereas we deal with univariate multinomial data but in longitudinal

setup, also affected by random effects.

4.1 MDML Model For the History Based Data

Recall from Section 3.1 of Chapter 3 that the marginal multinomial probability 1?,‘{’

«, I, under the MDFL model, has the formula

fort=1andi=

exp (B0 + %18,
i@=p - ( E

= yff’) = 7
LY e (o + X484
:

[see also (3.2)), whereas the conditional probability for i = (Wi, +Yitjo+ +Yier)’
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given yiy [ using yier for y)_, ] was modeled by the non-linear dynamic rela-
tionship (3.3) denoted by 7,_, (1), where ; = (051, , 61,++ , 6;)' involved in

(1) is a vector of dynamic dependence parameters.

As opposed to the linear predictor x,8; (t = 1,++ ,T) defined corresponding to
the jth category under the MDFL model, in the MDML model a random effect v;; is
added to x{,3; in order to reflect the ith individual latent effect that may influence the

o iid

probability under the jth category. We assume that 35 ~ N(0,07) for j

For 75 = 7;/a; “ N(0,1) we may then write the marginal probability at ¢ = 1 under

the MDML model as

exp (ﬁ,n + Xi,B; +oﬂ.,) “2)

1+ Y exp (lim + XiBy +‘7k71k)
=

Similarly, by adding the random effects to the linear predictor in the non-linear con-
ditional model (3.3) we now write the non-linear conditional probability under the
MDML model as
K
o (/i,u 5T MO y:_':_,,)
u =1

P(Yu=yP Y =¥) = v
S e (/i,m + 3 B + o + Y ke .r/,‘f.'.u)
= wmt 1

exp (ﬁ;o +XB; + 0% + 6] yff.’q)

7
Ut Y oxp (Buo+ X+ own+ 83
=
= (1), sy, forj =1, K. (43)
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For the remaining cases, i.c., when [ = K + 1, the conditional probability in (4.3)

reduces to

) exp (Bo+ X8+ 0%
P(Yu=y® | Yim =y2") ( )

05
1+ Y exp (/i.n + X B+ vn..-)
=

(K +1), say, forj=1,--,K, (44)

and for any [ = 1,--- , K, the probability for the response to be in the last category

K +1 (i, for j = K + 1) at time ¢ is given by

1

(45)

et =1-Y

) "
o+ XiBy + o+ 0y )

4.1.1 Basic Properties of the MDML Model

Note that the MDML model given by (4.2)-(4.5) is referred to as a history based
model. This is because, this model accommodates all responses and covariates in-

formation for all individuals (i = 1,---,I) over the whole duration of the study

for t = 1,---,T. We now provide the means, variances and covariances under this

MDML model.

Following the Lemma 3.1, the conditional mean vector and the conditional covari-

ance matrix of the multinomial response vector Yy = (Yinr,- -, Yigj, - -+, Yux) have
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the forms

E(Y.,!*m) = Wuger + (A — 1o VT

_ (7?3”]- - ,ir,',(”,v»» )ﬁ(m)

and

Var (Y,,h,,) =

forall j=1,--- K and t =

Similarly, following Lemma 3.2, the conditional covariance between the multino-

mial response vector Yy, and Yip at two different time points ¢ and ¢, t < t', is given
by
i
Cov(Yis Yuws) = Var(¥a) T] (Au = miget 1, (@s)
where
A1) L@ e Bl ) (K 4+ 1)
A= | g0, o BP0 e B [ e = (K )

W) e AL AR (K +1)
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Next, by averaging over the distributions of 7; we can determine the uncondi-

and covariances of the MDML model. However, we don’t

tional means, variance

compute these unconditional properties because the conditional properties retain the

similar patterns as the unconditional propertics under the MDML model. We rather

concentrate to the unconditional likelihood inferences in Section 4

4.2 Unconditional Likelihood Estimation for the

MDFL Model

Let 8= (Bjo, Bju), 0 = (65) and o = (a;) for j = 1, K, e =1, K, u =

1,-++, p. As opposed to the likelihood function (3.14) under the MDFL model, we

may derive the unconditional likelihood under the MDML model as

U(8.0.0) = T1[ - [ o) ol £l
it s

dyig,  (4.9)

x ¢(yi) -+ $(vik) dvia

where ¢(x;) is the standard normal density, and 0?’s are additional random effects

variance parameters. In (4.9),

:
) = s 1

(=54 viag)
’} . (4.10)
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and
1 Ls i
Pl vm) = ——m—m————=—— il P
(ol -1 Yl Yy (1= 2 .1/.,,>!}J,{ & ‘}
K (-2 w)
% {172;,,',“':{,} L (a11)
=
where 7 in (4.10) and (¢’ in (4.11) are given by (4.2) and (4.3), respectively.

After some algebra, by using (4.10) and (4.11) in (4.9), we obtain the likelihood

function as

185 + 0jyie-1) }]

1 exp {Zﬁ‘:. s (T !/vu)}
| /m e T, {1 + S exp (@ BL + owvi +92y~,r—.)}

«
x [T #we) m] s (@.12)

where 3] and x;, are defined as in (2.36)-(2.37).

Note that the integrations in (4.12) makes the likelihood computation compli-
cated, whereas under the MDFL model the likelihood computation by (3.14) is much
simpler. Consequently, the log-likelihood function under the present MDML model

as opposed to the log-likelihood function

also becomes i More 11y

(3.17), we now write the unconditional log-likelihood function as
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4.2 UNCONDITIONAL LIKEI

Tk !
(8,0,0) = C+ 33" D" vy (wi/B; + Oppcr) + 3 Vi, (413)
=] 7
where
Vim [ [ oxp{ahUn) - olo) - s (1.14)

Y,

K -1
L+ exp (3 Bi + 0w + zn.y,,,,.,)}]

with ;= (7.: TN

Lk ’
iy (@15)

Ui(n) =

and

K
siv) = o (
=

yn,) . (4.16)

4.2.1 First and Second Order Derivatives

4.2.1.1 Derivatives of the log-likelihood function with respect to 3;

Note that even though B; is the same regression effects of X, on y( as under the

MDFL model, the likelihood estimating equations for 3; under the MDML model are
different than those under the MDFL model [(3.25) and (3.30)]. For j = 1,--- K,
we now write the first and second order derivatives of the log-likelihood function with

respect to B; as follows:
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o (8,0,0)
— = (4.17)
;
1 ' .
i’zlnL(ﬂ,O,n) —ZW[V.MUB‘ + MyM];  for j=k
= it (4.18)

aB; 0B n

-Z%[- ViM,g + MyMj); for j#k
where

K

) TTo0u) dve, (419
i

My = Bﬁ' = / / oxp (8}

;
& _ oy, 3"‘”] _u ii]u ]+inxp(r“[3'+m’) +Oyie)
% o g 2 3 exp (/B + o+ O

_ T exp (385 + 0% + Ojpiea) i
{1+zk L exb (5B + e+ Osenn) |

-
= U Y i, (4.20)
=
and

IM;;
aB;

Mijs, =
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_ /1’”.../’.“(,,(,,(5.)1/. Z( .

4.21)

K
') fi.} T o) dvae,
ket

with

~of o) ael)
ond, | wi, (1-w)
aB;

for I=j 4z

) ) .
AR e for I=k

4.2.1.2  Derivatives of the log-likelihood function with respect to 6;

Further Note that even though ; is the same dynamic dependence parameters as
under the MDFL model, the likelihood estimating equations for 6; under the MDML

model are complicated as compared to those under the MDFL model [(3.26) and

(3.30)]. For j =

-+, K, we now write the first and second order derivatives of the

log-likelihood function with respect to 8; as follows:

owL(B.0,0) -

Ny ’
06, = % Yit¥ia-1 — 2 ‘—,.’ (4.23)
1 "
#L(p,0.0) ~ g [Vilun, + NyNjls - for

5,50 (4.24)

ViNya, + NyNi]; for j#k

=4

where
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MDFL MobEL

17

Wm [ [ ey (

.
) TT ¢va) dvae,
i

o, 8 &
AL/ =-U|=Y m{1+ (‘xp(.r:'ﬁ'+ﬂ‘»‘).x+1",y,‘_|)}
- exp (238} + 0775 + O5ia-) Vi
= ({1 SE exp @Bt + o + 00}
T
= —U Y il e, (4.26)
=
and
ON;
Nijo, = W,]
T i ) K
- / / ep (80 Y %)y.,,,.}r[om)m. (1.27)
l NK d k=1
with
Aol =+(i) _ 0 ; =
Ay _ Tije (1 ’l.uf-u) Yie-r; for 1=3j (428)
B

k

) st
i T e for
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4.2.1.3 Derivatives of the log-likelihood function with respect to o;

As opposed to the MDFL model, the MDML model contain a third parameter Uf

-+, K, we now write the

which represent the random effects variances. For j =

first and second order derivatives of the log-likelihood function with respect to o; as

follows:
OlnL(ﬂ,ﬂ,a) B 04 .
o H (4.29)
0’]||L(ﬂ,0,y) .
do, 000 Y 2 [YiOse = 050 ] (4.30)
il
where

0y =
with
dexpl)
O, exp {d:} %
and

Wi _ _py S o)
90, = -Ui ; Thgje—1 Wi+
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In (4.30),

80,
Oijey = Dot

- T 3
[ [ ewiapung (Z./.,,—Zrz:,ﬂﬁ\)
2

k(L —ﬁ.’,ﬁ!.)}] [ota) dva:  for 1=

k=1

_ (4.32)

"
- zm,..>

I3

e gﬁ;ﬂﬁ.) (Z

=

K
+ { TL Tl e, }] TTe0u) dries for
jn

/w / exp{0} Ui [(Z

4.2.1.4 Cross Derivatives of the log-likelihood function with respect to

B;, 6, and o,

The cross derivatives of the log-likelihood function with respect to 3;, 8; and a; have

the following forms:

[V Mijo, + MyNy; for Q=B Ri=0c

L(.0.0)
wQor, | 4
1
=Y e Vi + NyOuls for Qs =05, Ri=ow

Y VM, + MGOL]s for Q= Re=oi (43)

where
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My, = [ [ ewtay HZ@,&;H( - i) R':r/lH}
{Z’Ixm 1T Z .f\p.*/im}] T o0ve) i
=

1
+ (Z ﬁ:,ﬁfl,r:,)
=
.
Y = 3, f/fnﬁf’..)] JIEEDE™
r=1 =t

il (1- g

(Z

Mo, / / exp {6} Ut

and

Nijo, = / / exp {8} Ui {Zﬁ:f!ii] (1*77,',(‘11.)!/.‘,4
o
T K
+ (Zﬁ;‘,j’,,z/,,,,) S v — Zﬁ,‘,ﬂii.)] TLé0w .
P = =

4.2.2 Computation Aspect

Note that first and second order derivatives shown in Section 4.2.1 contain multiple
integrations over random effects. Because the exact likelihood computation s almost

due to fon problem, we imate the i fons over the

random effects by using a simulation approach [Fahrmeier and Tutz (1994), Jiang

(1998), Sutradhar (2011, Section 5.1.1)]. For example, consider the computation of
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V; which requires multiple integrations as shown in (4.14). To exploit the simulation

approach, we first generate 5000 standard normal vectors

2 = (w.‘}”’ . A

<, 5000, say

and then compute approximate V; as

Vo= [ [ o iabuietm) - 6w da- dr

5000

ﬁ ; exp {a’, (qf”")} Ui (—yf‘”’) (4.34)

4.3 A Simulation Study

4.3.1 Simulation Design

Recall that in Section 3.1.3 we examined the finite sample performance of the likeli-

hood estimation approach in estimating the of the MDFL model through

a simulation study. In this section, we conduct a simulation study for the MDML

model. Thus, in addition to the estimation performance for 8; : px 1 and 8; : K x 1

. K), we now also examine the performance for the likelihood estimation
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of rr:f, the variance component of the random effects v;;. Unlike Chapter 3, for the
simulation purpose, by using a true set of values for the components of 3, 6 and

@, we generate the initial multinomial response yi = (yar, -+ vak)' (i =1, 1)

following (4.2), and yir = (yiar, -+ »yiekc)’ for t o | T, following (4.3)-(4.5). As
far as the covariate design is concerned, we use the same covariate (1) and i) as
in Section 3.1.3.1 under the MDFL model. The truc values for the regression (8,)
and dynamic dependence (8;) parameters are also chosen to be the same as in Sec-

tion 3.1.3.1 under the MDFL model. Furthermore, we choose the same parameter

dimension and sample size as the MDFL model. Thus, we retain / = 100 individuals,

T = 4 time points, p = 2 covariates, and K = 2 (that is K + 1 = 3 categorics).

With regard to the selection of the additional variance components under various

categories of the MDML model, we now choose the true values of o; as

(05, 06)
o' =(o1,02) =1 (10, 09)

(12, 1.75)

These values of o are chosen to reflect small (such as o7 = 0.25) and large (such as

03=3.0625) random effects variances.
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4.3.2  Simulation Results

Using the covay and parameters as mentioned in Section 4.3.1, we generate the
multinomial responses under the present MDML model following the marginal proba-
bility (4.2) and conditional probability (4.3). Next we solve the likelihood estimating
equations (4.17), (4.23) and (4.29) for B;, 0; and o;, respectively. The data gen-
eration and estimation are repeated for 500 times. The simulated mean (SM) and
shown in Tabl

simulated standard error (SSE) of the estimates 1 through 4.6.

More specifically, corresponding to the Table 3.1 of Chapter 3, we now present the
simulation results in Tables 4.1, 4.2 and 4.3 for the selection of 3 sets of true values
of o, parameters. Similarly, corresponding to Table 3.2 of Chapter 3, we exhibit the

present simulation results in Tables 4.4, 4,5 and 4.6,

The results in the Tables 4.1, 4.2 and 4.3 show that the likelihood approach

performs well in estimating the regression effects and dynamic dependence parameters

even if the random effects variances are large. For example, for o = 0.5 and o3 = 0.6,
the results in Table 4.1 show that 3, = 0.0, Bi2 = 0.0, By = 0.0, B3 = 0.0, and
01y = 0.3, 01 = 0.7, 03y = 0.8, 0 = 0.5 are estimated as

P = 0015, Bya = —0.008, 0.007, B = —0.006
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and

1, = 0.245, 6, = 0.687, O

respectively, showing good agrement between estimates and parameters. In this case,

01 = 0.5 and 0y = 0.6 are estimated as 6; = 0.466 and G = 0.560, respectively,

ie, o =12

showing slightly underestimation. For large random effects variance

and oy = 175, Table 4.3 shows that the estimates for the same regression and dynamic

dependence parameters are as follo

B = 0.000, iz = —0.012, By = ~0.010, Sz = ~0.019

and

1y = 0.316, Oy = 0.717, Gy = 0.829, Oy = 0.545,

also showing good agrement between estimates and parameters. In this case oy and

2 are estimated as ) = 1,185 and &, = 1.769, respectively. As far as the estimation

of the intercepts under the categories

are concerned, they appear to be estimated well

when the variance components are large.

Furthermore, the results in these three tables indicate that as the values of ¢, and
2 get larger, the standard errors of the estimates for all parameters also get large,

as expected




4.3 A SIMULATION STUDY 125

Table 4.1: Simulated Means (SMs) and Simulated Standard Errors (SSEs)of the Like-
lihood Estimates for the Regression and Dynamic Dependence Parameters for Some

Sel Values of 6 and the True Value of B = (1o = 0.1,31; = 0.0, Bia = 0.0, By =
0.2, = 0.0, B2 = 0.0) and 0 = (01 = 0.5,02 = 0.6), Under the MDML Model.
Category 1 vs 3 I Category 2 vs 3
True 11 = 0.2, 013 = 0.0 ; 031 = 0.0, 3z = 0.1
L B Bz P P B

SM | 0.10363 | 0.03256 -0.00178 | 0.19006 | 0.02657  0.00924
SSE | 0.29809 | 0.28645  0.28501 | 0.28754 | 0.27405  0.30164
oy O b1z L 0 O

SM | 0.47692 | 0.12837  -0.02670 | 0.54607 | -0.02537  0.06701
SSE | 0.30933 | 0.35560  0.32677 | 0.31631 | 0.32704  0.33688

Truc 11 = 08, 013 = 03 ; 031 = 03, 0z = 08
B Bu Bz P B B
SM | 013777 | 0.00976  0.00045 | 0.23534 | 0.03344  0.00900
SSE | 031730 | 0.31178  0.31607 | 0.32033 | 0.31078  0.32799
& A 02 A Oy Oz
SM | 0.50048 | 0.70830  0.26930 | 0.59087 | 0.25251  0.71463
SSE | 0.34490 | 0.36446 035134 | 0.32659 | 0.38399  0.35333

True 011 =03, 012 = 0.7; 02 = 0.8, 0o = 0.5

P Bu Pz B P B
SM | 0.14582 | 0.01492 -0.00828 | 0.26312 | 0.00700 -0.00629
SSE | 0.29852 | 0.31315  0.30235 | 0.28481 | 0.29231  0.29329
a1 O by y O On
SM | 0.46633 | 0.24486  0.68738 | 0.55967 | 0.79998  0.46236
SSE | 0.31381 | 0.39242  0.34911 | 0.29625 | 0.37290  0.37073

True 01, = 08, 013 = 05 ; 01 = 0.5, 0 = 08

B n Pz B B B
SM | 0.12136 | 0.04280 -0.01321 | 0.25479 | 0.02150 -0.02059
SSE | 0.30215 | 0.32144 031154 | 0.30507 | 0.30877  0.31802
a1 O 2% a2 021 On
SM | 0.50738 | 0.69618 -0.55242 | 0.56418 | -0.56697 0.73605
SSE | 0.37023 | 0.35020  0.40835 | 0.36362 | 0.41108  0.33706
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Table 4.2: Simulated Means (SMs) and Simulated Standard Ervors (SSEs)of the Like-
lihood Estimates for the Regression and Dynamic Dependence Parameters for Some
Selected Values of 8 and the True Value of B = (B = 0.1, By = 0.0, 1z = 0.0, fag =

02,4 = 0.0, B2 = 0.0) and o = (01 = 1.0,02 = 0.9), Under the MDML Model.
Category 1 vs 3 I Category 2 vs 3
True 01, = 0.2, 012 = 0.0 ; 031 = 0.0, 03 = 0.1
Bro B Bz Bao B P

SM | 0.11328 | -0.01389 -0.01013 | 0.18593 | -0.00146  0.01343
SSE | 0.33838 | 0.30143  0.36727 | 0.32431 | 0.30654  0.33636
& O O a2 O O

SM [ 0.94639 | 0.21316  -0.00139 | 0.84404 | 0.00466  0.10633
SSE | 0.33425 | 0.38765  0.36730 | 0.32485 | 0.36618  0.37827

True 11 = 08, 013 = 03 ; 01 = 03, 03 = 08
B P Pz Po i Bn
SM | 0.12043 | -0.00228 -0.00656 | 0.23485 | 0.00873 -0.00939
SSE | 035486 | 0.32001  0.39558 | 0.32429 | 0.33636  0.34599
o1 O O a2 O Oy
SM | 095077 | 0.81424 025035 | 0.86523 | 0.28420  0.76166
SSE | 0.36430 | 0.40539 036712 | 0.33894 | 0.40915  0.36935

True O = 0.3, 61 = 0.7 ; 0y = 0.8, b3y = 0.5

Ao n Bra P P P
SM | 0.11072 | 0.02053 -0.00026 | 0.21294 | 0.03159  0.01799
SSE | 0.33224 | 0.32068  0.35647 | 0.32516 | 0.31950 0.34641
o N 012 L O O
SM | 0.95097 | 0.29976  0.68266 | 0.88419 | 0.77818  0.45466
SSE | 0.30267 | 0.41894  0.36644 | 0.31672 | 0.37439  0.37802

True 01 = 08,01, =-05;
Bo Bu Bra P B B

SM [ 0.11451 | 0.01850 -0.01449 | 0.21345 | 0.01067  0.00661
SSE | 0.35498 | 0.33556 037708 | 0.33965 | 0.31250  0.35241
o1 O 612 G2 0 O

SM | 0.94604 | 0.80465 -0.55410 | 0.86399 | -0.55415  0.77572
SSE | 0.39291 | 0.38365 044344 | 0.40684 | 0.45211  0.36983
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Table 4.3: Simulated Means (SMs) and Simulated Standard Errors (SSEs)of the Like-
lihood Estimates for the Regression and Dynamic Dependence Parameters for Some

Selected Values of 6 and the True Value of B = (fro = 0.1, 1 = 0.0, fra = 0.0, o =
02,821 = 0.0, = 0.0) and 0 = (o) = 1.2, 0 = 1.75), Under the MDML Model.
Category 1 vs 3 I Category 2 vs 3
True 01, = 0.2, 013 = 0.0 ; 031 = 0.0, 03 = 0.1
B Bu Bz B B B

SM | 0.06165 | -0.01325 -0.00671 | 0.18157 | -0.05334  0.00132
SSE | 0.36304 | 0.33532  0.40198 | 0.40940 | 0.35925  0.46001
[ O 2 Gy 02 O

SM | 1.13808 | 0.27906  0.03467 | 1.69751 | 0.04942  0.20019
SSE | 0.35822 | 0.41974  0.40381 | 0.38975 | 0.45111  0.40868

True 0, =08, 01 = 0.3, 0y = 0.3, 0, = 0.8
o Bu Pra B B B
SM | 0.10860 | -0.04231  0.03201 | 0.20482 | 0.02013  0.01971
SSE | 0.30002 | 0.36411  0.41867 | 0.47381 | 0.39923  0.49440
& N by G 21 02
SM | 115418 | 0.83250  0.30659 | 1.69552 | 0.31071  0.87368
SSE | 0.38643 | 0.43022 044603 | 0.42720 | 0.49202  0.44747

True 11 = 03, 013 = 0.7 ; 01 = 08, 02 = 05
P B P B B B

SM | 0.11054 | -0.00005 -0.01191 | 0.19438 | -0.00990 -0.01958
SSE | 037421 | 0.35677 039914 | 0.44936 | 037879  0.48087
0 O O a2 2 Oy

SM | 118512 | 031506 0.71710 | 176878 | 0.82906 054510
SSE | 0.36551 | 0.41818  0.44952 | 0.38576 | 0.43466  0.44380

True O =08, 01y =-0.5; 0y =-0.5, 0 =08

e Bu Bz B B B
SM | 0.10160 | -0.02237  0.00163 | 0.20342 | -0.04749  0.00794
SSE | 0.37699 | 0.36650  0.40995 | 0.45208 | 0.39301  0.50287
91 O O G2 02y 02
SM | 1.13405 | 0.84476  -0.52439 | 1.68468 | -0.56548  0.88184
SSE | 0.46333 | 042717  0.51656 | 0.48421 | 0.54774  0.46408
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Table 4.4: Simulated Means (SMs) and Simulated Standard Ervors (SSEs)of the Like-
lihood Estimates for the Regression and Dynamic Dependence Parameters for Some
Selected Values of 8 and the True Value of B = (Bio = 0.1, By = 0.3, Bz = 0.1, fog =

0.2, = =0.2, 822 = 0.0) and 7 = (01 = 05,32 = 0.6), Under the MDML Model.
Category 1 vs 3 | Category 2 vs 3
True 011 =02, 12 = 0.0 ; Oy = 0.0, 6 = 0.1
Bro B Brz B B B

SM | 0.09229 | 0.33861 0.10992 | 0.21642 | -0.20478 -0.00575
SSE | 0.20392 | 0.20021  0.27435 | 0.20721 | 0.31258 030831
EN O, 2 G2 021 O
SM [ 047199 | 0.14044  -0.02873 | 0.56499 | -0.03908  0.02664
SSE | 0.30229 | 0.32754  0.32874 | 0.32182 | 0.33124  0.39392

True Oy = 0.8, b1 = 0.3 ; 0y = 0.3, 3 = 0.8

Bro Bt Brz B Bn B2

SM | 0.14937 | 0.35859  0.08503 | 0.26592 | -0.17081 -0.01980

SSE | 0.29977 | 0.31039  0.32069 | 0.30091 | 0.31102  0.32843
o1 O 28 &2 2 2

SM | 0.51474 | 0.67828  0.24433 | 0.55733 | 0.23457  0.68028

SSE | 0.32137 | 0.33264  0.37454 | 0.34651 | 0.36139  0.38281

True O = 0.3, 012 = 0.7 0y = 08, 0 = 0.5
P Bu Bz ) P P

SM | 0.12657 | 0.36112  0.09132 | 0.24065 | -0.15696 -0.01262
SSE | 0.30393 | 0.29079  0.30686 | 0.30113 | 0.31454  0.31905
ES Oy 2 G2 O 02

SM | 0.46683 | 0.22714  0.66891 | 0.54167 | 0.76959  0.42435
SSE | 0.30742 | 0.36235  0.37966 | 0.30943 | 0.35239  0.41359

True 01, = 08, 0z = 05
o B Pz B B B

SM | 0.13066 | 0.34871  0.09528 | 0.22675 | -0.18622  0.00589
SSE | 0.20630 | 0.30348  0.28275 | 031359 | 0.33487  0.31936
61 01 12 G O Oz

SM | 0.49433 | 0.68665 -0.54706 | 0.58885 | -0.56853  0.71103
SSE | 0.35108 | 032719 0.37658 | 0.37930 | 0.41948  0.36276
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Table 4.5: Simulated Means (SMs) and Simulated Standard Ervors (SSEs)of the Like-
lihood Estimates for the Regression and Dynamic Dependence Paramel

Selected Values of 8 and the True Value of B = (1o = 0.1, By = 0.3, iz = 0.1, Bz =
0.2, = ~0.2,8 = 0.0) and 0 = (0, = 1.0,02 = 0.9), Under the MDML Model.

Category 1vs 3 | Category 2 vs 3
True 011 = 02, 013 = 00 ; 031 = 0.0, 023 = 0.1
B Pu Pz P B B

SM | 0.10062 | 0.29985 0.11140 | 0.19856 | -0.19983  0.02073
SSE | 0.34318 | 0.32436  0.36053 | 0.32646 | 0.31309  0.33169
a1 O 12 G O O

SM | 0.97994 | 0.19667 -0.01847 | 0.84238 | -0.01227  0.09836
SSE | 0.30155 | 0.34811 0.40638 | 0.34139 | 0.37498  0.42302

True 011 =08, 012 = 0.3 ; 0 = 0.3, 6 = 0.8

P Pu bz B P P
SM | 0.09792 | 0.34835 0.08586 | 0.22661 | -0.18866  0.00389
SSE | 0.34820 | 0.32386  0.35823 | 0.33118 | 0.321667  0.33831
o O 2 G2 O O
SM | 0.98934 | 0.74352 0.29722 | 0.84268 | 0.27998  0.78617
SSE | 0.35277 | 0.39236  0.40611 | 0.40193 | 0.41933  0.42743

True 011 =03, 612 = 0.7 ; 02y = 0.8, 6 = 0.5

Po P Pz P P B

SM | 0.14397 | 0.32397 0.06986 | 0.22881 | -0.15399 -0.00569

SSE | 0.35413 | 0.34632  0.38840 | 0.33517 | 0.323968  0.34928
& O O ] O O

SM | 0.98019 | 0.27360 0.70048 | 0.85570 | 0.76017  0.46678

SSE | 0.29829 | 0.39231 0.38296 | 0.34199 | 0.36628  0.41613

Truc 01, = 08, 013 = -05 ; 0y = -0.5, 03 = 08
P Bu Bz P P P
SM | 012761 | 0.30306 0.09424 | 0.21080 | -0.20789 -0.00700
SSE | 0.36576 | 0.33817 0.39400 | 0.33914 | 0.33983  0.38379
a1 O O G2 [ Oy
SM | 0.96499 | 0.78549 -0.54358 | 0.83783 | -0.51877 078795
SSE | 0.39205 | 0.37668 0.44313 | 0.40955 | 0.45718  0.39349
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Table 4.6: Simulated Means (SMs) and Simulated Standard Ervors (SSEs)of the Like-
lihood Estimates for the Regression and Dynamic Dependence Parameters for Some

Selected Values of 8 and the True Value of B = (Bio = 0.1, 81y = 0.3, Bz = 0.1, fog =
0.2, = —0.2, 2 = 0.0) and 0 = (0, = 1.2,05 = 1.75), Under the MDML Model.
Category 1vs 3| Category 2 vs 3
True 011 = 0.2, 013 = 0.0; 03y = 0.0, 0 = 0.1
Bro Bu Bz B B P

SM 0.09427 | 0.25060 0.11247 | 0.21489 | -0.25123  -0.04084
SSE | 0.37712 | 0.34119 0.38884 | 0.42134 | 0.359182 0.458291
a1 O (28 o2 O Oy

SM | 1.15486 | 0.22880 0.05105 | 1.64657 | 0.01455  0.24260
SSE | 0.35446 | 0.37856  0.41946 | 0.40558 | 0.44402  0.42179

Truc G = 038, 013 = 03 ; 01 = 03, 03 = 0.8
B B Pz B B P
SM | 0.11883 | 0.30271 0.07953 | 0.21211 | -0.24970  0.00226
SSE | 0.40518 | 0.39409 0.44028 | 0.44676 | 0.390132  0.49545
& [ 0 G2 1 Oz
SM | 116167 | 0.79968 0.31012 | 1.70964 | 0.29011  0.90151
SSE | 0.38159 | 0.41989 0.48702 | 0.44735 | 046396 0.47332

True 1 = 03, 013 = 0.7 ; 01 = 08, 02 = 05
B P Bra Bn B oz

SM | 0.09685 | 0.32649 0.08281 | 0.19342 | -0.19262  0.00948
SSE | 0.36810 | 0.34389 0.38153 | 0.44411 | 0.371932  0.50916
a1 O O &2 021 2%

SM 1.16615 | 0.29825 0.67625 | 1.69524 | 0.79591  0.53493
SSE | 0.34628 | 0.41503 0.44498 | 0.40684 | 0.44194  0.46107

True 01, = 08, 1y = 05 ; Oy = 05, 0 = 08

Bio N Pra B B 2

SM | 0.09600 | 0.26230 0.13661 | 0.21660 | -0.25836 -0.01163

SSE | 0.41804 | 0.38373  0.42763 | 0.43866 | 0.38499 0489767
a1 O (28 ] O 23

SM | 116613 | 0.82204 -0.51500 | 1.68195 | -0.53980 092939

SSE | 0.41954 | 0.44239 051662 | 0.49074 | 056894  0.48181
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Note that the simulation results for non-zero but small regression effects are shown

in Tables 4.4 to 4.6. The likelihood estimates for all the parameters including re-

gression effects, dynamic and variance appear to
exhibit similar pattern as that of Tables 4.1 to 4.3. Thus, no additional interpretation

is given for the results from Tables 4.4 to 4.6.




Chapter 5

Concluding Remarks

Even though in many practical situations categorical responses are collected over
time [e.g., Fienberg ct al. (1985), Conaway (1989)], the analysis of this type of data

has been hampered because of lack of proper modeling and methodological develop-

ments. Some of the existing studies (Section 1.1.2.1) have modeled the multinomial

longitudinal data by treating time as a fixed categorical covariate and hence ignoring

the longitudinal correlations among the responscs. In the thesis, we have developed
longitudinal correlations based multinomial models where time has been treated as a
stochastic factor. In this new modeling, the conditional multinomial probability func-

tion plays an important role. The thesis has used two types of conditional probability

models. One such model is constructed by using linear probability function condi-

tioning on past multinomial responses. The second model is constructed by using a
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logistic (non-linear) probability function dynamic in multinomial responses over time.

Note that these models were first developed under the assumption that the responses

are influenced by fixed covariates only and they were referred to as the multinomial

linear dynamic fixed probability and multinomial dynamic fixed logit (MDFL) models.

Both history (complete history of the data being known) and contingency table based

likelihood analysis were discussed in details. Furthermore, because the asymptotic

properties of the likelihood esti are well-k , the thesis has on

the finite sample performances only.

We have also considered multinomial dynamic mixed (MDML) models under the
assumption that certain extra random effects with different variances under categories
may be needed in some cases to fit the data well. More specifically, these random

effects are capable of accommodating latent or unobserved effects of the individuals

which however remain the same over time. However, in the thesis, we have not

included any contingency tables based analysis for the MDML model. This is because

of the difficulty that in the mixed model random effects vary from individual to

individual which does not allow any grouping of the individuals for the construction of
the contingency table. It is, therefore, clear that any contingency table formation will
require suitable assumption about the random effects, mainly to reduce the number

of random effects and do the appropriate inferences. This is, however, beyond the

scope of the present thesis.
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With regard to inferences, it was demonstrated that the likelihood approach both
in fixed and mixed models estimate the true parameters of the model very well. The
likelihood estimation method was applied to reanalyze the Three Mile Island Stress-
level data [earlier analyzed by Conaway (1989)] by emphasizing the correlations of
the responses through dynamic dependence parameters. The regression effects are
also much clearly interpreted as compared to the model parameters used by Conaway

(1989).

Note that in the thesis we have dealt with univariate multinomial response
longitudinal setup. However, there may be situations where several multinomial re-
sponses are collected from the same individual over a short period of time. Even
though there exists some studies involving multivariate multinomial data in cross-
sectional level (Neerchal and Morel, 2005), there does not appear any studies with

¢ i ial data in itudinal set up. One may pursue this in future

research.

ituations when

Further note that there are t

responses may be subject to outliers, missing values and measurement errors. One
may exploit the longitudinal multinomial models given in the thesis to study these

non-standard situations. We wish to explore them in the future.




Appendix A

Proof of Lemma 3.1: (page 73)

For simplicity, we have chosen K = 2 i.c., 3 categories and T = 4 time points in the

study. So, at the initial time point ¢ = 1, for W given individual i (i = 1,---,I) the

categorical response Y; marginally follows W distribution with density

function

T LD et e e
o i R ks

v ginzh (1= yinn = v

P(Yir = yar, Yz = yinz) =

yielding the marginal mean and marginal variance of Yiy

B = fla = (70 4) (WD)

(W.2)

Var(Ya) = (m,g[
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Now, in general, at time point ¢ = 2,3,4, we can write the conditional distribution

of the multinomial response vector Y given i1 as

P(Yir = pin, i = vial y30)

v (o) w2 _2) (=i -wira)
_ o) (o (- 0= 7.0)
Yin!- Yz (1= Yin = Yie2)!

where the conditional probability 7i5_, (1) are defined in (3.3). 1t then follows that

the conditional mean and conditional variance have the formulas

0. 48,0) (W3)

B(Yalyd) = Mg =

Var(Valy)y) = diag [y, @), i O] = mgrmgs (W4
| {

Note that in what follows we use i) instead of 7, (1) and my; instead of 79
Derivation of Mean:
For t =2, it follows that

(1) Ti21(1)
E(Ya) = By, B(Yalyi) = Bvu[lew] = By, =y
Tiaa()

By, [mnw) Z T f(vin)




= mam T + T Tz + T (1 - T = miz)

= T + (Tanq) = Tin) Tin + (Tane) — Tanw) Tz

By, [fia) = Wizae) + (Mizaqr) — Tiza) Tiny + (Wiza(a) — Tiza(w) Tanz

We can write in matrix notation

Ti21(3) () — Ti23) Ti2u2) — Ti2(3) il
E(Ya) = o+
Ti22(3) Tiza1) — izx3) Tiza2) — Fi2a(3) T2
5 T T T T
= + = 11
i22(3) Ti22(1) Ti2(2) Ti22(3) Tz

M = M) + {Wiz = T 1} Ty

Similarly, for ¢ = 3, we can write

. i3 (m)
E(Ya) = Ev,, By, EYaa 43", ] = Eviy By, Miagm)] = Ev,, By,

Ti32(m)

Ey, Evalmaiom] = Evi{mao) T + T Tz + T (1 = T — mi22w)}




"

By, (T + (M)

+ @1 = T = T2} + (Tan) —

@) + (Ti) = Tisn(s)Tiza) }

Tin) + (M) — Tan@) {Fanq) T + Tnng) Tz

1) {Tizz(Tinn

+Tiza(z) Tz + Tiza)(1 = iy — Tara) }

T + (T — Tn) (T + (T2o) — 7

®) Tint

Hmine) — )iz} + (Tise) — Ti) {Tizz)

+(mizz) — Tizage) 7

Ey, By, [m

Tiza(a) + (Mis20) —

Hmm) — mn)maz} + (Tae) = i) {Tiz

+(miza() = Tiza) Tiny + (Wiza(z) — Tiza(s) i

We can write in matrix notation

Tis(3) i) — Tisn(s)
+

E(Ys)

32(3) i32(1) — Wi

3

() Tirz}

+ (miza(a) —

) {Tn) + (M) = Tengs) T

Tizi(2) — Tisi(3)

Tig2(2) ~ Tis2(3)

Tin(s) Tiz() = Tiai(3) Mi2u2) ~ Mi2n@) T
+

Tiza(3) Tizz(1) —

iza(2) ~ Wiz2(3) itz




Tiai() Tigi(1) = Tisi@) Tisn@) — Wisi(@) .
+ B(Yi)

Tiga(1) ~ Tis(3) Misx2) T Misy3)

i) Tan() Tisi) Tisi(s) ) T
- W1

Tia(s) () Tisa() Tisa(s) Tin

Mg = Ty + {Wia = Mgy 1} Lo

And, for t = 4, we can write

E(Yu) = By, By, Byy EVal v, v, )

2y By Big [Miagn]
Tiai(n) T
v By By = =1l

Tisa(n) sy

Ey, By, By,

= By, By, {minq) Tisigm) + Tian2) Tisam) + Tiar(s)

(1 = miga(m) =
= By, By {ma + (Tinq) = M) Tisiom)
+ (Fun2) — Tin (@) Tisz(m) }
= T + (mna) — TnE) [Tse + (Tse) = Tae)

{Tang) + (Fiaay = Ting) T + (M) = W) Tz}




+(Tin) —

1) {miz2(e) + (i) — Tiza() T

+ (iza) — i) Tiz})

+ (i) — Tn) [T +

*{miz

+ (Tisa(a)

+ (iza) = i) Tz}

We can write in matrix notation

Tian(3) (1) ~ Tian@3)  Tian2) ~ Tia(s)
E(Yy) = o5

Tiaz(3) Tiaz(1) ~ Tiax(s) Tiaz(2) ~ Tiax(s)

) Tisi2) ~ Tisi)

x +
Tin(s) Tisa(z) =
Ti21(3) Taan(r) = Wian@) Mi2a(2) — Wi2a(3) min
+
Ti22(3) Tiza(1) — Miz2(3) Wi2a(2) ~ Wi22(3) T2

i) Tin() — @) Tane) — T
+

= E(Ys)
Tiax(3) Tiaa1) — Wirzd) Tiaaz) ~ Tiza)
Tian(s) Tian()  Tian(2) Tian)

= + - 1.1
Tia2(3) Tiaz(1)  TiaA2) Mia2(3)

+ (Tin(r) — M) Tin + (Tinn(z) — Tizng))Tina}

) {Tizaga) + (Tizaqr) — Tizag) Wiy

i1

iz




My = Mg + (Wi = T 1} g

Thus, for any ¢ = 1, 2, 3, 4; we can write

Tinn
E(Yy) =y = = Mgy + [Wie = Mg '] Wi

Tz

Derivation of Variance:

Next to derive the unconditional covariance matrix of Yj,, we will use the same

we have used for the

conditioning and unconditioning properties of expectations

derivation of the unconditional mean vector. To be specific, we first write

Var(Ya) = E[YaY) = ECu){E(Va)Y

Vi Y T
= B - T Tz
ynvaz Yo Tia
T 0
= = M 1T,
0 w2

diag [min, maa] — T 1T,

Var(Ya) = E[YaYil — E(Ya) {E(Ya)Y

= By, EYaYilya] = E(Ya) {E(Ya)Y'




= By, {diag[ma, mnq)} — W2 1T

T 0
= = MMMy
0

= diagrin, man) — T Tl

Thus, for any t = 1,2, 3, 4; we can write

!
\
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Var(Yi

= diagmin, ma) — 1T,

Proof of Lemma 3.2: (page 74)

For simplicity, we have chosen K = 2 i.c., 3 categories and T = 4 time points in the

study. Next to derive the unconditional covariance matrix between Y and Yiy we

will use the same conditioning and unconditioning properties of expectations as we

have used for the derivation of the unconditional mean vector. To be specific, we

write

EYaYy] = By, E[YaYilu]

= By, {Tap Yi}




Cov(Yi,Ya) =

ElYaYy =

manqy 0 0 mine)

T + Tz
minq) 0 0 min)
Tanq) Tin() mn 0
Tin() Tiza(2) 0 a2

Wiz diag [min, mra)

EYaY;] - E(Ya) {EM)Y
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[Wea = Tiags) V) {diag [miny, minz) — Mt Ty}

Wiz — i) V') Var(Ya)

By, By E[Yi Y |2 yn)

By, By, [Mig(m) Yiz | 4]

Ty 0 0 min)
Ey,, T + Tiza(r)

Ty 0 0 Tisa(2)




Cov(Yis, Yia)

Ty 0 0 T

- T + Tigz
migay 0 0 Tiga2)
Tis(1) Tisi(2) i 0
Tis2(1)  Tis2(2) 0 mxn

Wig diag [mon, i)
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= Wi = Mgy 1] Var(Yea)

Thus, we can write

Cov(Yi, Yigmr) = Wi = T 1) Var(Vieer);  for t=2,3,4
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Ey, By, B [Yis i\ | iz yir)
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Cov(Yaa, Y)

E[YaYa]

I

I

By, (M + (W — Tigga) 1) Mg} Y

Mig(ay Iy + {Wis — Tigs) 1'} Wi diag [many, mno)

EYiY)] = B(Yi) {E(Ya)Y
Miggo) Ty + {Wis = Tisgs) '} Waa diag [y, 7]
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— i) 1"} iy T3]
{Wis — Tiage) 1'} {Wiz — Tliagey 1'} [diag [miny, mana] — Thia 1T

Wi = Tigg) U} {Wiz = Tliggs 1} Var (Ya)

o B Y Vi | yia via )

By By By [Tisgny Yii | 92 yn)
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Proof of Lemma 3.5: (page 85)

We can find the expected value of the 2nd derivatives of the log-likelihood function

by using following results;

When k = 2 (i.e. 3 categories);

Elmyw) =

i) = z sy S (Yia-1)
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where ¢; = (1, 0), e = (0, 1)’ and e5 = (0, 0)'

Now, the expected values of the 2nd derivatives are;
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