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Abstract

With the of i circuit technology, Systes Chip (SoC), which

is composed of heterogeneous cores on a single chip, has entered the billion-transistor
era. As the microprocessor industry moves from single-core to multi-core, and even-
tually to many-core architectures, providing tens to hundreds of similar cores on a
single multiprocessor chip will be necessary. Efficient communication among different
processors becomes critical. Therefore, a high-performance, flexible, scalable, and
design-friendly interconnection architecture is highly desired for modern SoC and mi-
croprocessor designs '

How to provide efficient communication within a SoC architecture poses a challenge to
both academia and industry. Before the advent of Network-on-Chip (NoC), intercon-
nection architectures were usually based on dedicated wires or shared buses. However,

they cannot be easily scaled up to meet the ever-increasing demand from the on-chip

systems. NoC has been proposed as a highly structured and scalable solution to ad-
dress the communication problems in on-chip systems. NoC has several advantages
over dedicated wiring and buses, e.g., high bandwidth, low latency, low power con-
sumption, and scalability. For NoCs, messages are transported back and forth via

the interconnection networks. Thus, the interconnections among multiple cores on a

chip have a significant impact on communication efficiency and the performance of a

D design in terms of end-to-end delay, throughput, and packets loss ratio. There-




fore, it is worthwhile studying the different ch istics of different i ion

network topologies. Another vital factor which can affect network performance is

the particular ication: i of the applications. Without targeting
any specific applications, spatial and temporal distributions are explored to study the

of various i ion network i It is clearly reflected

through our study that networks of different architectures can perform differently un-
der various traffic conditions. In this thesis, the most popular topologies and some

recent topologies are reviewed and compared, and Three target architectures are cho-

sen: torus (a representative topology of recent logies), Metacube (a

topology of recent logies) and hyy be (a ive topology of popular
topologies with relatively high cost). Their performance under different traffic models
is studied. Three temporal distributions including Poisson, MMPP and Pareto, and

three spatial distributions including bit t, random uniform and hot spot,

are discussed in this thesis. Based on the simulation results, strengths and limitations

of the torus, the M be and the hy be are ized
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Chapter 1

Introduction

1.1 Background of Network-on-Chip (NoC)

Moore’s law [1] states that the number of transistors on a chip doubles about every

two years. In other words, the number of processing elements which can be placed
on a single chip doubles about every two years. Transistor size shrinks over time,
as shown in Figure 1.1. At the present time, the transistor size is approximately

as small as 32 nm [2]. With the pment of i circuit (IC) technology,

System-on-Chip (SoC), composed of heterogeneous cores on a single chip, has entered
the billion-transistor era. The most distinguishing feature of SoC over traditional IC

is the high communication complexity. As the microprocessor industry moves from

ingl e to multi: and ly to \ i it is likely that a
chip will contain tens to hundreds of identical cores as parallel on-chip processors, and
efficient communications is critical for such architectures. Both SoC and the micro-
processor market call for a high-performance, flexible, scalable, and design-friendly

inter network [3]. How to provide efficient communication

poses a challenge to researchers from academia and industry.




Before the advent of network-on-chip (NoC), i i i were usu-

ally based on dedicated wires or shared buses. Dedicated wires provide point-to-point
connection between pairs of nodes, which is effective for small systems of a few cores.
But as the number of cores increases, the number of wires using in the point-to-point
connections grows quadratically. Hence, the architecture is not scalable. Compared
to dedicated wires, a shared bus, which is a set of wires shared by multiple cores, is
more scalable and reusable. However, due to the inherent disadvantage of buses, only
one communication is allowed at a time, while the rest of cores wait their turn. The
disadvantages of shared bus architectures include long delay, high energy consump-
tion, increasing complexity in decoding/arbitration, low bandwidth [4][5]. It would
be extremely inefficient if hundreds of nodes are connected via shared buses. Thus,
the use of shared buses is limited to the connection of only a few dozens of intellectual
property (IP) cores. To deal with the problems in shared buses, a hierarchical archi-
tecture, which segments the bus into shorter buses, has been introduced. Hierarchical
bus architectures may relax some of the constraints faced by dedicated wires and
shared buses, because different buses may account for different bandwidth needs, pro-

Nonethel ¥ remains

tocols and also improve

as a problem for hierarchical bus architectures. In order to meet the communication

1 time-t ket and cut down the communication energy con-

sumption of large scale SoCs, there is a great push to find new design alternatives to

the i point-to-point and bus based

NoC has been proposed as a highly structured and scalable solution to address the
communication problems in SoC. On-chip interconnection networks have several ad-

vantages over dedicated wiring and buses, e.g., high bandwidth, low latency, low




power ion and ility. NoC archi can

tion pipelining with a pre-specified clock rate regardless of the network size, which
is infeasible for bus-based architectures. For SoCs, cores can be Digital System Pro-
cessors (DSPs), embedded memory blocks, Central Processing Units (CPUs), video
processors, etc. Figure 1.2 shows a typical Nvidia Tegra 600-series SoC [6], which
consists of 14 components, including CPU, Graphics Processing Unit (GPU), image
processor, video processor, Universal Asynchronous Receiver/Transmitter (UART),
Double Data Rate Read Only Memory (DDR RAM): A single chip can be partitioned

into ional tiles and the i ion network. A partition of a single chip

is shown in Figure 1.3 [7]. Figure 1.4 provides a detailed pictorial view of a grid
network-on-chip architecture [8]. Since its inception, NoC has drawn great attention
from researchers all over the world. In order to fully explore the benefits of NoC,
numerous challenges and open problems remain to be addressed. Open problems can
be classified into four main categories: (1) application modeling and optimization; (2)

NoC i i analysis and optimization; (3) NoC C

Architecture Evaluation, and (4) NoC Design Validation and Synthesis. The main

problems under each category are listed below.

(1) Applicati delingfand

~Traffic modeling and benchmarking

—Application mapping

—Application scheduling

(2) NoC communication architecture analysis and optimization
~Routing scheme

~Switching technique

~QoS and congestion control



Transistor Size (nm)

1975 1o 1985 1990 1985 2000 2005 2010
Year

Figure 1.1: Transistor Size vs Time

—~Power and thermal management

~Reliability and fault tolerance

(3) NoC C ication Architecture

~Topology design
~Router design

~Network channel design

~Floor planning and layout design

~Clocking and power distribution

(4) NoC Design Validation and Synthesis
~Analysis and simulation

~Prototyping, testing and verification

To better evaluate a network, a thorough analysis of the topology and traffic pattern

is required. For selection of a network topology, there are some prior examples; e.g.,
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Figure 1.2: Nvidia Tegra 600-series SoCs (www.nvidia.com)
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high-bandwidth mesh networks connecting dozens of components, and ring and star
networks for modest bandwidth communication between nearby IP blocks. NoC pro-
vides higher bandwidth with moderate area overhead. Compared with point-to-point
and bus-based implementations, NoC has smaller energy budgets [9] and better scal-

ability. NoC also enables globally asynchronous, locally synchronous (GALS) design.

1.2 Related Work

As technology scales down to the deep-submicron domain, the potential for SOC to
have more types of errors is increasing. For example, the high transistor density makes
cross-talk noise and high field effects harder to control. To cope with this, the authors
in [10] applied stochastic communication to the routing scheme, to provide reliable
communication. One node’s confidant is defined ns its selected neighbor. Initially,
the sender passes the data randomly to its confidant. In the second round, both the
sender and its confidant pass the data to their select confidants. The process continues

until the data reaches its destination. The routing algorithm itself is not

aware. The destination node can get the data from more than one path. Reliability

is achieved by adding Thus data ission is avoided. But the

overhead involved with this gossip algorithm is non-negligible. Even for delivery of
a single packet, many nodes assist in broadcasting the data but do not necessarily
need the data in themselves. The network can handle the traffic if there are a few
nodes sending data. Otherwise, if many nodes are-sending data at the same time,
the limited bandwidth will be easily used up by redundant transmission. It would be
too pricey to implement this gossip algorithm for NoC. To verify the efficiency of the

gossip algorithm, they tested it on a fully connected network of 1000 nodes. First of




all, building a fully connected network of 1000 nodes is itself a challenge. Secondly,
for a fully connected network, broadcast is easy to implement, because every node is
only one hop away from the source node. For the gossip algorithm, it takes 20 broad-
cast rounds to reach every node in the network. Later, the authors applied the gossip
algorithm to a mesh-based network. Manhattan Distance is the distance between the
source and the destination |z — Zast| + |Ysre — Yast|. Regardless of what routing
algorithm is applied, the length of path can not smaller than Manhattan Distance.
Hence, the gossip algorithm does not deliver data faster to their destinations than
other routing algorithms. As the size of the network increases, the gossip algorithm
takes more resources because of the wide spread of data. The target application in
their work is an MP3 encoder, which only consists of six function modules. There is
no proof showing that gossip algorithm is efficient for larger gird-based networks. It

is just impractical to implement in SoCs of very large sizes.

A NoC cliche is proposed in [11]. A grid structure is the most popular topology for
NoC implementations. Authors in [12] [13] [14] used an MPEG-2 video decoder as
their target application, but the size of networks under consideration is limited to a
small number of components in MPEG-2. Therefore, the conclusions made are not
guaranteed to still hold for larger network sizes. In [15], the authors applied five
well-known load balancing strategies to different topologies, and compared their per-
formance, however, their research is also limited to small size of networks of 4 x 4
nodes. The authors in [16] compare mesh and torus, however, the size of network
limited to 8 x8. A model, which captures both temporal and spatial traffic character-
istics, was proposed in [17). This model is described by three statistical parameters,
which capture hop count, burstiness, and packet injection distribution, respectively.

Injection rate has to be decreased in their study as the network grows. In [18], the




authors calculated the average channel load, compared 2D mesh, 3D mesh and 3D
bus architectures. In their study, the average channel load is obtained under uniform
traffic, with localized traffic condition considered. The grid structure is very easy
to implement and so is its routing algorithm. But due to the lack of fast paths be-
tween two remotely located nodes, the network may suffer from long packet latency.

In addition, long paths increase the chance of blocking at the intermediate links or

nodes. In contrast, fully i ies are highly appli iented. Such
architectures can improve the overall system performance at the expense of altering
the regularity of the network, which leads to widely varying lengths of wires. Another
issue with fully customized topologies is the routing algorithm. The irregularity of
the customized network makes it difficult to implement a corresponding routing al-
gorithm and this specific routing algorithm can rarely be reused. To avoid these two
extreme situations, the authors in [19] tried to find a sweet point between a regular
grid structure and customized topologies by adding long range links to regular grid
architecture. Long-range links are inserted to connect remotely located nodes [20].
The communication delay can be greatly reduced between the nodes connected by
long-range links. But long-range links are not that necessary for localized traffic,
since the chance of node communicates with a distant node is slim. The insertion of
long links makes the routing algorithm much more complicated. Long-range links are
used under certain conditions, where they can lead to shorter paths without causing
deadlocks. To avoid dead-lock, the algorithm has to check the status of the desired
range links to decide whether or not to use the long-range links. If it may cause a
dead-lock, the long-range link is bypassed and default the XY routing is used. XY
routing first route packets along the x dimension, until packets reach the same column

as destination, then route packets along the y dimension. In every step, the algorithm

follows the same [19]. Long links are 1 into regular fixed-
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length links connected by repeaters. Repeaters can be modeled as routers with two
ports, one input port, and one output port. The number of long-range links is con-
strained to 1 for any node. Its architecture resembles torus in that way. Its routing

algorithm, however, is more complicated than that of torus.

1.3 Motivation

To better understand the network, a thorough understanding of the topologies and

the traffic pattern is necessary. On a chip, messages travel back and forth via its inter-

connections. The logical cb cs of each set of interconnections determine

its application. Given a problem and algorithm for its solution, it is important to se-
lect a suitable topology. Different topologies will require different algorithms to route
data from one node to another. A good routing algorithm on one topology may not

be efficient on another topology. The i ion archi has a

impact on the performance of networks in terms of end-to-end delay, throughput,
loss rate, etc. Consequently, it is worthwhile to study different topologies. As the
size of the network increases, the importance of scalability stands out. The perfor-
mance of a network depends heavily on the traffic pattern. Traffic patterns have two
aspects, their temporal distribution (when to send packets) and their spatial distribu-
tion (where packets are sent to), characterizing the temporal and spatial correlations
of communications among processing cores. The temporal distribution governs such

the frequency of communication and the burstiness of the traffic. The spatial dis-

tribution governs the spatial lation of the i pair and
whether they are strongly coupled or loosely related. Different traffic patterns are

applied to the same network to see the impact of traffic patterns on network per-
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formance. Here traffic patterns are examined in two ways: first, the same temporal
distribution but different spatial distributions; second, the same spatial distribution
but different temporal distributions. Each time, a traffic pattern is applied to net-

works of different architectures and their performances are compared.

1.4 Challenges

Although researchers have done vast amounts of work on traffic modeling, there is no

complete traffic model for on-chip networks. On the other hand, the performance of

a network relies heavily on the kind of traffic applied to it. Realistic traffic traces are
hard to obtain and it is difficult to project what future on-chip network traffic will
look like [17]. Instead of implementing specific applications, synthetic traffic patterns
are often used as benchmarks. In order to make the generated traffic patterns cover
a reasonable range of real traffic patterns, different traffic models are employed to

simulate different classes of applications sharing similar properties. The benefit of

synthesized traffic is twofold. First, traffic ion is easy to imy
of the network size. Second, only focusing on certain types of applications may bias

the evaluation of one network against another. In the literature, some researchers

adopted real applications, usually multimedi ications, as ks. However,
the number of components in these targeted multimedia applications is often small.
The size of networks should be close to the number of the components in the target
applications. When scalability is of interest, it refers to networks of hundreds of nodes.
For now, we do not have the knowledge of how real applications will be in the future.

1 of different archi is d on a general

Therefore,

basis.
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To cover a reasonable range of traffic patterns, a few representative traffic models
are chosen. A traffic model consists of two aspects: one is its temporal model, the
other is its spatial model. Challenges in this thesis include three aspects: architecture
exploration, temporal distribution modeling, and spatial distribution modeling. The
first challenge is architecture exploration. There are many topologies available now,
and potentially more in the future. It is impossible to compare the performance of all
of the existing architectures. Hence, some popular and representative topologies are
considered as the baseline. Besides, it is desirable to discuss some new topologies as
the trend develops. The second challenge is the temporal distribution modeling. The

the bursty nature of

Poisson distribution is simple; however, it cannot characteriz
network traffic. How to build a reliable model to simulate on-chip traffic is one of the
issues to be addressed in the thesis. The third challenge is the choice of spatial dis-

tribution. In this thesis, several representative spatial distributions are investigated.

1.5 Objective and Scope of This Thesis

NoC is emerging as a solution to multi-core communication problems. NoC is such
a broad topic that it is impossible to cover all the open issues in this thesis. Among
all the problems which need to be addressed, this research is limited to two of them,
traffic modeling and architecture exploration. On-chip cores can be homogeneous or
heterogeneous. They can have either the same or different sizes. In this thesis, IP
modules are assumed to be the same size. Instead of targeting a specific application,
the objective of this thesis is to discuss the impact of topologies and traffic patterns
on the design of Network-on-Chip systems in general. Different topologies are evalu-

ated using performance metrics. As the size of NoCs keeps growing in the foreseeable
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future, hundreds of nodes will be placed on a chip. In this thesis, the network size has
been limited to 1024 nodes. This is a practical limjt for the number of cores avail-
able for the next few years, and should also give some insight into how the different
topologies scale under different traffic patterns. Our main interest is to study how
performance scales along with the size of networks. By comparing performance of dif-
ferent architectures under different injection rates, each topology under consideration
has an applicable scope, when the size of network or average channel load, or both are
given. To make a fair comparison, different topologies are evaluated under different

traffic models.

1.6 Thesis Organization

In Chapter 1, a brief introduction to Network-on-Chip is provided. Since point-to-
point and bus-based architectures cannot satisfy the ever-increasing communication
demand, NoC emerges as a solution to on-chip communication problems. In this
chapter, we conduct a high-level review and summarize related works on topology ex-
ploration, traffic modeling, and their results. Following the motivation of this work,

we describe the challenges and the objective and the scope of this work.

Chapter 2 reviews different topologies, including classic topologies such as ring, star,
mesh, binary tree, fat tree, butterfly, torus and hypercube, and some recent topolo-
gies, mainly mutations of hypercube, including Reduced Hypercube, Cross Hypercube,

Dual Cube, and Metacube. Torus is a popular topology with small cost and decent,

ypercube offers a ise between the network cost

and performance. Metacube is a mutation of hypercube. Metacube is a powerful
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topology to connect huge number of nodes with only a small node degree. Though
node degree is a constraining factor for hypercube, it is not a problem for Metacube.
Because of their desirable topological properties, torus, hypercube and Metacube are

chosen as the targeted topologies.

Chapter 3 first provides an introduction to the stidy of traffic modeling, followed
by an overview of traffic generation. Traffic generation is discussed in two domains:
spatial and temporal. Spatial distribution governs the spatial correlations among com-
municating pairs, i.e., transmitters and receivers. Temporal distribution describes the
time correlations of packet generations, i.e., when to send. Three spatial distributions
are considered: bit complement, random uniform and hot spot. Three temporal dis-
tributions are applied: Poisson, Markov Modulated Poisson Process (MMPP) and
Bounded Pareto Distribution (BPD). Poisson is very popular traffic model because of
its simplicity. Packet arrivals follow a temporally independent and memory-less pro-
cess. MMPP is used to model a short-range dependency process where the sending
probability of the current interval only depends on the last interval. Different sending
probabilities correspond to whether a packet is sent or not during the last interval.
For the normal Pareto distribution, it is hard to control its generation range. BPD has
more controllable upper bounds than the normal Pareto distribution. Thus, it is used
to model self-similar/long-range correlated traffic. Finally, it gives the justification of

the chosen traffic patterns.

Chapter 4 explains why NS-2 is chosen as the network simulator, then introduces the
network simulator NS2. A brief introduction describing how to model, simulate and
analyze in NS-2 is provided. How to visualize a sinulation result via the animation

panel is also shown. Then a simple example is presented to explain a typical TCL file
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and its to NS-2 system files are implemented

to meet simulation requirements for our research, where new applications (Poisson,
MMPP and BPD traffic generation) are added. Three target topologies in NS-2 are
constructed for network sizes of 32, 64, 128, 512 and 1024 nodes, where minimal de-

routing i for target ies are i Three spatial

traffic models are implemented in NS-2, including random uniform, bit complement,

and hot-spot.

Chapter 5 analyzes the performance of different topologies in terms of average end-
to-end delay, loss rate and average throughput. The simulation results of different
setups of the same architecture are compared, and so are the different architectures

of the same setups. The impact of i ies on network ce is

investigated from the perspective of node degree, average hop count and so on. The
impact of burstiness on network performance is also discussed with respect to the
adjust burstiness for MMPP and BPD traffic. How i)erformance scales with network
size is one of the main interests of this research, where the simulation covers networks

of 32, 64, 128, 512 and 1024 nodes, respectively, are considered.

Chapter 6 summarizes the thesis on architecture modeling, traffic modeling, wire mod-

eling and i fon of routing algori It concludes the simulation results of

the torus, the Metacube and the hypercube under different traffic patterns, including
temporal and spatial distribution. Suggestions on the topological choices are given
based on the analysis and simulation results. Possible future research directions are

provided and elaborated.




Chapter 2

NoC Architecture

In static networks, topology determines the arrangement of links and nodes. In the

context of NoC, topology determines the connectivity among on-chip nodes. A few
characteristics are useful to describe a certain topology: how many direct neighbors
a node has; what is the distance a packet can travel in the worst case (for minimal
routing); what is the average distance between nodes; how many links are there in
the topology; how many links need to be removed to get two approximately equal
subnetworks. Some of these characteristics greatly affect network performance. The

n macro-networks can be easily

others are related to implementation cost. Topologi
utilized in NoC. Classic topologies, for example, ring, star and binary tree, have been
very well studied and widely applied to real systems. Hypercube and torus are two of
the most popular topologies adopted by commercial applications. As well, researchers
have continuously endeavored to explore new topologies. Some topologies have been

recently developed to improve certain properties of existing topologies.



2.1 Topology Parameters

In general, networks can be classified into two categories, direct networks and indi-
rect networks. A direct network consists of a set of nodes, each one being directly
connected to a subset of other nodes via links, such as ring and mesh. Instead of
providing direct connections among nodes, an indirect network provides connections
through switches. In this thesis, links are considered as bidirectional unless otherwise
specified. In a network, the topology specifies the arrangement of nodes and links [21].
It determines the interconnection of nodes and can usually be modeled as a graph. A
topology is characterized by several parameters such as node degree, diameter, link

complexity and bisection width.

Node degree: The number of links connected to a node. A network is considered to
be regular if all nodes have the same degree; otherwise, it is irregular. Node degree
describes the 1/O complexity of a node. Node degree can be constant or vary with
the size of the network. For instance, a ring has a fixed node degree of 2; the node
degree of an N-node hypercube is logaN. Small and fixed node degree is a preferred
topological characteristic. A smaller node degree leads to a lower link cost. Fixed
node degree reduces the necessity to add new nodes to the existing network. In most
cases, there is a constraint on node degree, which is the number of direct neighbors of

anode. Limitation of node degree arises from two considerations: one is the hardware

limitation, i.e., the number of ports a node can support; the other is the communi-
cation protocol limitation, e.g., BlueTooth networks can support a node degree up to
cight. Finally, performance considerations, such as the space complexity and network
scalability, may limit the number of nodes with which each node may communicate

directly.




18

Diameter: The maximum shortest path between all pairs of nodes. If there is no direct.
connection between two nodes, the message has to travel through some intermediate
nodes which will introduce multiple hop delay. Since the message delay is proportional
to the number of hops, the length of the maximum shortest path becomes an impor-
tant metric. In minimal routing, the diameter determines the worst case distance
between nodes. One example is broadcasting. The node farthest from the sender
determines the worst case distance for broadcasting. While in non-minimum routing,
the length of path can be longer than the diameter, this depends on the status of
the network and the specific routing algorithms. Even for non-minimal routing, small
diameter can help to provide low and predictable latency, predict routing paths and

traffic flow, and make troubleshooting easier.

Average hop count: Since the diameter is the maximum distance, it overestimates
the path length in many cases. A better measure is average hop count, which is the
average number of hops between source and destination. Its quantity is obtained by
averaging the total length of paths over the number of paths. From a performance
perspective, shorter average hop count is preferred. Average hop count can be reduced

by increasing the number of links.

Link complexity: it is the total number of links in the topology. As the network scales
up, the link complexity increases. Adding more links to a network can reduce its di-
ameter and the average hop count, and provide path diversity among nodes. However,
links are expensive. Higher link complexity may incur higher hardware complexity

and area overhead. Among all topologies, the fully connected network has the highest

link complexity
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Bisection width: The number of links needed to b’ removed to divide the topology
into two networks with approximately equal size. A large bisection width is preferable,
because it provides more paths between two sub-networks, and thus improves overall
performance. Large bisection width provides greater bisection bandwidth. Equation

2.1 gives the ion of bisection i Among the ies list in Table

2.7, only ring, star and tree topologies have fixed bisection width, regardless of the

number of nodes.

Bisection_bandwidth = bisection_width x channel_bandwidth (2.1)

2.2 Review of Different Topologies

2.2.1 Quick Review of the Most Popular Topologies

In this section, the most popular topologies will be reviewed, including ring, star,
mesh, tree, fat tree, butterfly, and torus, etc. Latef their strengths and limitations
will be summarized. Note that, among these topologies to be reviewed, only the fat
tree and butterfly are indirect networks. The remaining topologies are all direct net-

works.

In & ring architecture, all nodes are connected in a ring fashion [21], as shown in
Figure 2.1 Every node has two neighbors regardless of the size of the ring. Its small
degree is preferable, but its diameter increases linearly with the number of nodes. A
ring architecture is susceptible to failure. A failure in one link in the connection can

disrupt the entire network. Its strengths and limitations are listed in Table 2.1.

In a star architecture of N nodes, N — 1 nodes are connected to a center node [21],
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Figure 2.1: Ring

Table 2.1: Ring Architecture

Main Advantage Main Disadvantage
Tnterconnection faults are easily
located, making troubleshooting

easier.

Expansion to the network can
cause network disruption.

A single break in the
interconnection can disrupt the
entire network.

Ring networks are moderately
easy to install.

as shown in Figure 2.2. Only the center node has a degree of N — 1. Other nodes
have degree of 1. The diameter of a star architecture is 2, regardless of its size. A
small diameter means a small average hop count, which is a favorable characteristic.
The node in the center plays an important role in the network. If the central node is
down, the entire network is down as well. Its strengths and limitations are listed in

Table 2.2.

Table 2.2: Star Architecture

Main Advantage Main Disadvantage
Failure of the central node fails
the entire network

Simplicity to operate

Each node is isolated free of

impact from failed nodes Central node is the bottleneck
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Figure 2.2: Star
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In a mesh [21], nodes are connected as a grid, as shown in Figure 2.3. Expansion

is easy for meshes. Little effort is needed when adding more nodes to the existing

architecture. Nodes have different degrees according to their locations within the

mesh. Corner nodes have a degree of 2. Edge nodes have a degree of 3. Inner nodes

have a degree of 4. A mesh architecture is more robust with respect to link or node

failure compared to star or ring. Its strengths and limitations are listed in Table 2.3.

Figure 2.3: Mesh

Table 2.3: Mesh Architecture

Main Advantage

Main Disadvantage

Multiple paths between a pair of
nodes, tolerant to link failure

Diameter can be very large

Easy to expand

Trregularity, less bandwidth for
nodes at corners and edges
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In a binary tree [21], the top node is the root and the bottom nodes are the leaves, as
shown in Figure 2.4. Every node except the root node has two child nodes which are
the nodes that appear immediately beneath the node. A node’s parent is the node
immediately above it. The root of a tree is the single node that has no parent. Its

strength and limitation are listed in Table 2.4.

"

g d 0
546858

Figure 2.4: Binary Tree

Table 2.4: Tree Architecture

Main Advantage Main Disadvantage
Supported by many network
vendors and even hardware Bottleneck on the oot node
vendors .

All the nodes have access to the
larger and their immediate
networks, best for branched out
networks

When the tree is big, it is
difficult to configure and can get
complicated after a certain point

In a fat binary tree [21], only leaves are IPs, as shown in Figure 2.5. Other nodes are
switches. When moving towards the root node, there are more links between a parent

node and a child node. The number of inter-node links doubles at each level.

In a butterfly architecture [21], as shown in Figure 2.6. Basic butterfly networks have

two main disadvantages. First, it lacks of path diversity. There is only one path from
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Figure 2.5: Fat Binary Tree

a source node to a destination node. Second, long wires are inevitable. Long wires

must transverse half of the diameter of the network.

Figure 2.6: Butterfly

| A torus architecture [21] is obtained by adding direct connections to two end nodes
in the same row or column in a mesh architecture, A 16-node torus is shown in
Figure 2.7. Compared with mesh, its diameter is reduced. A regular torus has long

wrapround wires. By folding a torus, long wires can be avoided.

A 16-node hypercube architecture is shown in Figure 2.8. In a hypercube, only nodes
whose addresses differ by exactly one bit are connected by links [21]. Node degree

grows linearly with the size of networks. Long wires are unavoidable when projecting
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Figure 2.7: Torus
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a hypercube to a low dimensional layout.
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Figure 2.8: Hypercube

From the perspective of performance, low diameter and high bisection width are
preferred. Clearly, a fully connected topology satisfies these two requirements. But

technically, considering the cost and effort of implementation, low degree, short wires,

small area and regular structures are of great interest. The fully-connected architec-
ture fails to scale. There is a necessity to make a trade-off between the two points
above. In Tables 2.1-2.2, the pros and cons of ring, inesh, tree and star architectures

are listed.
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The topological characteristics of each topology determine their application. Given a
problem and communication algorithm, it is important to select a suitable topology. A
good algorithm for one topology may not be efficient for another topology. A tree ar-
chitecture can be used efficiently in: (1) select and rotate operation; (2) broadcasting;
(3) Census functions; (4) Selection of an arbitrary number from among those offered by

a subset of leaves; and (5) Depth ion. The butterfly ization is efficient

for Fast Fourier Transform (FFT). The mesh structure is found good for odd-even

merge sorting, but not efficient for ions like divide-and-conquer, ascend-descend

and parallel merge. But binary trees, meshes of trees, shuffle-exchange, and de Bruijn
networks are good for those operations. The strength of the hypercube is its ability

to emulate all of the above.

Some topologies can be simulated using other topologies. Any normal algorithm that
runs in 7(n) time on a butterfly network can be made to run in O(T'(n)) time on
a shuffle-exchange network [22]. Any normal algorithm that runs in T(n) time on a
butterfly network can be made to run in 7'(n) time on a hypercube [22]. Therefore,

there is no significant time efficiency difference among these three topologies.

s small

The hypercube is & very popular interconnection network topology due to i
diameter and large bisection bandwidth. The number of nodes of a k-dimensional
hypercube is 2¢ with node degree k. A hypercube can be treated as an n-dimensional
mesh in which each dimension is 2, which is also known as 2-ary n-cube or binary
n-cube. In a hypercube, two nodes are connected if and only if their binary repre-
sentations differ in exactly one bit. This property is crucial for efficient routing and
communication. But the size of hypercube is limited by the degree constraints. If the

node degree is constricted up to 8, then the size of hypercube is limited to 2* = 256




nodes.

Among all the listed topologies in Table 2.7, mesh and torus are the most popularly

used in practice due to their simplicity and regularity. Although there are many

1 classic or new, ially only a few have been applied to real network

systems. BlueGene/L is a scalable system as 64*32*32 th
torus, in which the maximum number of computing nodes assigned to a single parallel

job is 216 = 65,536 [23].

2.2.2 Some Non-conventional Topologies

Due to the limitations of existing topologies, researchers have been working on explor-
ing the possibility of new topologies for years. In the literature, new topologies can be
categorized into two classes, based on the way how they are constructed. One class is
hierarchical topologies. The other class is a combination of several existing topologies.
Hierarchical topologies have several levels from the highest to the lowest. On differ-
ent levels, usually different interconnections are utilized. A node address consists of a
number of binary strings, each of which represents a level. Nodes within the same level
share the same address part representing the corresponding level. The cross product
of two graphs can be employed to construct new interconnection networks [24]. Two

or more existing topologies are used as the base topologies to construct new topologies.

The hypercube is considered a very useful topology. But the network size is restricted
due to its degree limitation. To overcome this major disadvantage, one possible so-
lution is to reduce the node degree. Some variations have been proposed including

the folded hypercube [25], the crossed cube [26], the dual cube [27], the reduced-
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hypercube (RH)[28], the hierarchical cubic network [20], cube-connected cycles [30]

and the metacube (31, all with the goal of minimizing the network diameter or node

degree. Table 2.5 gives several fons of hypercube and their i com-

pared to hypercube topology.

Table 2.5: Variations of Hypercube

Topology Reduce Diameter | Reduce Node Degree
Folded Hypercube
Crossed Hypercube
Dual-cube
Reduced Hypercube
Hi hical Cubic Network
Cube-connected Cycles

NN NN
SOOI

The folded hypercube [25] is a variation of hypercube obtained by connecting each
node to the unique node farthest from it. Its diameter is reduced to about half of

hypercube at the cost of more links.

The crossed cube [26] is constructed by repositioning some edges in a hypercube to
reduce the diameter by about half for the hypercube without increasing the link com-
plexity. The crossed cube can profitably emulate a hypercube. In order to facilitate
explanation, the authors defined [26]: two binary strings z and y that are pair-related
are denoted as & ~ y, if and only if (z,) € {(00,00),(10,10),(01,11),(11,01)}. Tn a
hypercube, the presence of a edge is simply defined: nodes differing in one bit and
only bit are connected. To obtain a similar characteristic for edges, a lemma is given
(26):

for all n>1,(tu-1, -+ , g, U1, -+ ,to) is an edge if and only if there exist an I which




satisfies 1) w1,
2) w-y # v,

3) Wy = vy if L is even, and

4) for 0 < i < [(I —1)/2]), upisrtizi ~ vaisr1v2i

The dual cube [27] follows a hierarchical hypercube structure, which has two classes.
Each class consists of 2™ clusters, and each cluster has 2™ nodes, where m is the
dimension of each cluster. The dual cube is self explanatory. It has two classes, class
0 and class 1. The binary address of each node in an m-dual cube is 1+ 2m bit long.
The address format of class 0 is as follows : the most significant bit (MSB) is its class
ID, the middle m bits represent the cluster ID, and the m least significant bits (LSB)
show its node ID. To provide similar properties as the hypercube, the authors revised
the address format of class 1 for which its cluster ID and node ID are swapped. There
is an edge between two nodes if and only if: (1) their binary addresses differ in only
one bit; (2) for class 0, the different bit must be in.the m MSB; (3) for class 1, the

different bits must be in the middle m bits; (4) their addresses only differ in class ID.

The reduced-hypercube (RH)[28] is obtained by reducing edges from an n-dimensional

hypercube to reduce node degree.

The hierarchical cubic network (HCN) [20] : a (n,n) HCN has n clusters and each

cluster is an n-cube.

The cube-connected cycles [30] is a virtual node hypercube. Each virtual node in the
hypercube is a ring of nodes instead of a single node. Each node has three ports:

F,B, and E, which stand for forward, backward, and external. It can emulate a Benes
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permutation network. It is remarkably suitable for algorithms such as FFT (Fast

Fourier Transform), sorting algorithms, odd-even merge, matrix multiplication, etc.

The Metacube (MC) [31] is a two-level hypercube structure, a symmetric network
with a small node degree and a short diameter. MC is a multi-class topology with
two parameters MC(k,m), where k is the dimension of the high-level hypercubes
(classes) and m is the dimension of the low-level hypercubes (clusters). It is an
extended version of the dual cube in terms of structure. A MC(k,m) has 2* classes;
each class consists of 22*~U™ clusters; a cluster has 2 nodes. The total number of
nodes is 2™+, In a node address, the MSB k bits form its class ID. If the other
bits are partitioned in a group of m bits, then the (c + 1)th m bits from the right
represents the node ID, and the remaining (2 — 1)m bits represent its cluster ID. The
position of its node ID in a node address varies with its class ID. For the Metacube,
there is a link between two nodes if and only if their addresses differ in only one bit
in class ID or in node ID. The hypercube can be considered as a special case of MC.
When k is 0, MC degrades to a hypercube. Figures 2.9 and 2.10 give the 2D layout

of Metacube of 32 nodes and 1024 nodes, respectively.

The Metacube has three advantages: 1) it is symmetric network: the network is the
same viewed from every node; 2) it has small node degree : k+m; 3) it has small

diameter: 2k(m + 1).

The ical definition of Cross-product is
The cross product of two graphs G = (U, E) and H = (V, F) is the graph G & H
whose vertex set is U x V, and edge set is defined as follows: Assume {u,u'} € U

and {v,v'} € V, then (uv, u's/) is an edge in G ® H if and only if either u = u’ and
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Figure 2.9: 32-node Metacube

Table 2.6: Total number of nodes vs node degree

Links/node 3] 4 5 6 [ 7 8
MC(0,m)(Hypercube) | 8 | 16 | 32 | 64 | 128 | 256
MC(1,m)(Dual-cube) | 32 | 128 | 512 | 2048 | 8192 | 32,768
MC(2,m)(Quad-cube) | 64 | 1024 | 16,381 | 2" | 2% | 2%
MC(3,m)(Oct-cube) | - | 2048 | 2°° | 2% | 2% | 2®
MC(4,m)(Hex-cube) | - | - | 20 | 2% | 2 7

(v,') € F, or v = v/ and (u,u’) € E. The cross product obeys the commutative

law shown in Equation 2.2 and the associative law given in Equation 2.3. Because of

these two properties for the cross product, the order to do the cross product does not
matter.

GoH=HoG (2.2)

(CoH)oL=GCGo(HoL) (2.3)

For the three base topologies above, there are twelve possible orders in which the cross
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Figure 2.10:

1024-node Metacube

product can be performed. All of them yield the same final graph. To compute the
cross product of the n different base topologies, there are 2(n!) different combinations.
Due to the commutative and associative characteristic of the cross product operator,
it is not difficult to prove that once the base topologies (e.g. G and H) are determined,
the final cross product graph is determined, regardless of the order in which the cross
product is done. This is a very useful property which enables the calculation of the
cross product in any order without affecting the final graph. In the cross product
graph, there is an edge between two nodes if and only if their representations differ in

one symbol and the two different symbols define an edge in the original graphs. The
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regularity of the product graph is determined by the regularity of its base topologies.

i.e., if the base topologies are all regular, then their cross product is also regular.

The hypercube has a very favorable characteristic, as mentioned earlier, that only
nodes whose addresses differ in only one bit are connected by links. Routing in a hy-
percube is very simple. From node A to node B, compare their addresses, and flip the
different bits one by one from the most significant bit to the least significant bit or the
other way. If minimal routing is adopted, the number of hops is equal to the number
of different bits. Both the dual cube and the Metacube are hierarchical topologies
using the n-cube as basic block. To obtain a similar characteristic, the node address
is coded differently in the Dual cube and the Metacube. Because the dual cube and
the Metacube have smaller node degree than the hypercube, the addresses of the two
nodes which are connected must differ in one bit position in a certain portion in the
node addresses. The limitation on the locations of the differing bit makes routing not

as straightforward as in the hypercube.

2.2.3 Justification of Choice of Topologies

As discussed before, due to the poor scalability, point-to-point and bus-based archi-
tectures are not appropriate for large-sized SoCs. A 2D Mesh suits well for VHDL
technology because of its simplicity and regularity. Adding new nodes to a mesh-
based network needs little effort. Routing in a mesh is also easy to implement. But
the diameter and average HC of a mesh grow linearly with its dimension. The torus is
another very popular topology. For example, BlueGene/L is constructed as a three-
dimensional torus. A torus is obtained by adding.wraparound links to a mesh to

connect nodes at two ends in a row or a column. A torus is similar to a mesh but



33

with smaller diameter (approximate half of mesh of the same size) and uniform node
degree. Between mesh and torus, torus has similar cost as mesh but better topological

properties, hence, is chosen as one of the targeted architectures.

Hypercube is a very popular topology as well. It has higher node degree but smaller
diameter. As long as the node degree is allowed in the technology, hypercube can
provide small diameter and high throughput. The routing algorithm for a hypercube
can take advantage of its uniquely useful property, that is only nodes whose binary
addresses differ in one and only one bit are connected. To route in hypercube, we first

compare the source and destination addresses, then flip bits differing one by one.

We chose the Metacube in this thesis as the representative architecture to represent
recent topologies for the following two considerations: simple routing and scalability.
Simple routing algorithms are preferred for NoC implementation. The Metacube has
similar routing algorithm to that of hypercube. What is more important is that the
Metacube is powerful in establishing a huge network with relatively small cost, i.e.,

small node degree and small diameter.

2.2.4 Summary

In this chapter, first, some classic topologies were reviewed, e.g., star, ring, binary tree,
mesh, and torus. Then, the strength and limitation of the classic topologies are sum-
marized. Ring, mesh and folded torus have uniform length of wires. But for tree, fat
tree, hypercube and butterfly, long wires are inevitable. Variations of the hypercube
all have long wires, which increase link delay. Network design is application-oriented.

It is difficult to conclude that one network design is superior to another design with-
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out prior knowledge of the applicati i Topologies like ring and star can

provide modest bandwidth between nearby nodes, but can hardly meet higher band-
width requirements. The limiting factor for ring topology is its rapidly increasing
diameter, which makes it unable to scale. Star topology fails when the center node
becomes congested. A high bandwidth mesh network can provide decent performance
to dozens of nodes, but similarly, has poor scalability due to its large diameter. Di-
ameter of a network determines the maximum shortest distance the data can travel.
In minimum path routing, the diameter defines the longest path. In a contention-free

network, this diameter determines the worst case delay. For applications with limited

a bus or segmented bus can also be a feasible solution. With

increasing wire density, the application range of concentrated lower bandwidth links

can be extended. Increased wire density also the ion of

with higher node degree.

In summary, the torus is a representative topology of low cost conventional archi-
tectures; the Metacube is a representative topology of recent topologies; and the
hypercube is a representative topology of popular topologies with relatively high cost.
Torus and hypercube are conventional topologies which have drawn considerable re-
search. They serve as a fair reference to evaluate other recent topologies such as the
Metacube. In this paper, the focus is on planar layout. Higher dimensional topologies

are projected onto a 2D layout in our studies.




Table 2.7: Characteristics of Some Popular Topologies

Topology Degree Diameter Link Complexity Bisection | Uniform Length
Ting, 2 N2 N 7 Yes
Star TN-1 ] N-1T 1 Yes
(VN - 1) (N - VN) N Yes
(VN 1) (VN —2)° + 15(YN 2P + (YN —2) + 12 | (VNP | Yes
log; N N2 No
0g,((N +1)/2) | (loga((N +1)/2))* + logs((N +1)/2) 1 No
T Tog; (V) Tog, N N2 No
Fully Connected | N — 1 N -1)/2 N1 |No
Dualcube TogaN +1)/2 1 N(log:N +1)/2 7 No
2D-torus 4 /2] 2N No
Tolded 2D-Torus | 4 72 2N Yes
3D-Torus 3 72 3N No
Folded 3D-Torus | 6 2] 3N Yes
Butterfiy(k,m) | 2% mA 1 Fm 1) = No
Meta-cube(k,m) [ m + @) m+1) | (m+K)2rmT P |No
cce nt [n/2] -2 | 3n2T pamd No




Chapter 3

NoC Traffic Generation

Traffic modeling is one of the most active and important topics for NoC. Although
extensive work has been done in this area, there is no consensus on what constitutes
an appropriate traffic model. Realistic traffic traces are hard to obtain and it is dif-

ficult to project what future on-chip network traffic will look like. In the literature,

real applications (usually tions, e.g., MPEG encoder/decoder) are

often adopted in the context of NoC, however, they are often too small to apply to
large systems. On the other hand, synthesized traffic generated by certain algorithms

is more controllable in term of problem size and easy to implement.

3.1 Introduction

Traffic patterns have both a temporal distribution and a spatial distribution. Traffic
modeling contains two aspects, temporal distribution modeling and spatial distribu-

tion modeling. The temporal distribution determines the time characteristics of the

traffic, while the spatial distribution captures the spatial characteris The tem-

poral distribution determines when the packets are sent and the spatial distribution

36
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determines the transmitters and the receivers. The two distributions together provide

a more comprehensive description of the complete traffic pattern characteristics.

3.2 Spatial Distributions

The spatial distribution describes the spatial correlations of the communicating pairs.
Generally speaking, spatial distribution patterns are synthesized from particular ap-
plications. In this subsection, some of the most common spatial distributions used to
evaluate interconnect networks are reviewed. For a network of N nodes, by conven-
tion, an N-bit binary string indexed with the value 0 to N — 1 is used to represent
a node. Bit 0 represents LSB, and bit N — 1 represents MSB (assuming that the
source node address is {sy-1,5n-2,n-3,"** ,So}). Different spatial distributions will

be d under the between the destination address and source ad-

dress.

3.2.1  Uniform Random

In this case, the probability of sending a packet from one node to another node in the
network is 1/(N — 1), which means each source has an equal probability of sending
packets to a destination. It is the most popular traffic pattern in network evaluation
and a benign traffic pattern because of its uniformly distributed traffic. Random traffic
does not favor any topologies. Thus, it provides fair comparison between topologies.

However, evaluation with only random traffic does not sufficiently indicate the effi-

ciency of certain logies or i [21]. Nevertheless, it is often studied and

can be used as a benchmark.



3.2.2  Bit Permutation

Bit permutation is a class of ions, including bit bit reverse,

bit rotation, shuffle and transpose. Following bit complement, bit reverse and shuffle

permutation are explained

3.2.2.1  Bit complement

This scenario creates load for ination pairs, its i address is

{~8N_1, SN2, "8N~-3," -+ , so}. For example, if the source is 0000, then the des-
tination is 1111. Every source node corresponds to one and only one destination
node. Unlike other patterns of bit permutation, the source address and the destina-
tion address under bit complement traffic cannot be’the same. This avoids the effort

to prevent one node from sending packets to itself.

3.2.2.2 Bit Reverse

It is quite self-explanatory. The binary representation of the destination address is
obtained by reversing the source address, i.e., {so,s1,*** ,$N-2,$x-1}. Similar to bit

c I all icating pairs are i before si i One possible

problem with bt reverse traffic pattern is the sender could also be its receiver. For
example, if the sender’s address is 0000, then the address of the receiver is still 0000
under bit reverse assumption or shuffle permutation. It generally does not make sense
to allow to a node to send packets to itself. Thus, to avoid this from happening, the

addresses of the communicating pairs should be compared. If and only if the source
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address and destination address are different, the communication is valid. Nodes with
symmetric binary representations are supposed to pair with themselves if they strictly
follow this bit reverse rule. Assuming that there are 2V nodes in the network and a
source node’s address is represented as {sy-1,5n-2,5x-3," " o} There are grbar

nodes sending packets to themselves.

3.2.2.3  Shuffle

The source address and destination address satisfy the property that d; = s¢i-1)moan
[21], where d; and s; are the destination bit index and the source bit index, respec-
tively. For example, if the address of the source node is {sy_1,5n-2,5x5-3,"*" 150},

then the address of the destination node is {so, SN—1,Sn-2,* , 81}

3.2.3 Hot Spot

In hot spot distribution, a number of nodes are randomly selected as potential hot
spots. At a given time, only one node is selected from these nodes as the hot spot
[32). As the name implies, hot spot nodes send of receive packets with a greater

probability than the rest of the nodes. This phenomenon was first observed in shared

memory i When multiple ly request ibility to

|
; a shared data structure, the node where this shared data structure is located becomes
| a hotspot. It is obvious that hot spot nodes are loaded with heavier traffic, thus they
will very likely become a bottleneck for the network.
Hotspot nodes are requested more frequently than the ordinary nodes, hence can be
overloaded. This spatial traffic model resembles the behavior of multiple requests |

towards the same destination. This traffic model was proposed by Pfister and Norton

,



and has been adopted by many rescarchers [33] :

1. Every node generates data independently of each other.
2. Each generated message has a finite probability a of being directed to the hot spot
node and the probability of (1 —a) being directed to non-hotspot nodes. a is defined
as the hotspot proportion. The hotspot is random selected. At any time, there is
only one hotspot in the network.

3. When the generated message is directed to non-hotspot nodes, the probability of

being directed to any non-hot-spot node is equal.

3.3 Temporal Traffic

Temporal distribution governs when to send the packets, which can be used to de-
scribe the burstiness of the traffic. Three temporal distributions, Poisson, MMPP
and Pareto, are discussed in this thesis. To better understand temporal traffic, the
first need is to clarify what burstiness is. Intuitively, temporal distributions can be

classified into two classes, bursty traffic and non-bursty traffic. Commonly used mea-

ficient

of i include peak-t; ratio, index of di ion, and
of variation. Peak-to-mean ratio (PMR) is the ratio of the peak rate to the mean rate.
Index of dispersion for counts (IDC) is given by the variance of the number of arrivals
during the interval of length L divided by the expected value of the number of arrivals.
Coefficient of variation (CV) is the ratio of the standard deviation of the interarrival
time to the expected number of the interarrival time.
Poisson is the simplest temporal distribution model, having no burstiness and no
arrival correlations. Usually, a Poisson assumption is too close to ideal for realistic

network exploration. For the MMPP model, by setting different burst rates in the
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Figure 3.1: Aggregation of Poisson Processes

MMPP model, the burstiness of the generated traffic is changed. Pareto is self-similar
traffic, which demonstrates long range correlation among arrivals. Two Pareto dis-
tributions will be considered in our work; one is the ON/OFF Pareto distribution,
the other is the Bounded Pareto distribution (BPD). Earlier research has shown that
compared with the ON/OFF Pareto distribution, the BPD is more practical to gen-

erate network traffic for SoC simulations.

3.3.1 Poisson Process

A Poisson process is the easiest one used in queuing theory [34]. It is a memory-
less process. The history does not influence the current state; every time slot is
independent of any other. The time interval between two adjacent arrivals follows
an exponential distribution. The superposition of several Poisson processes is still a
Poisson process. The equivalent injection rate seen from the receiving side is equal
to the sum of all injection rates, as shown in Figure 3.1. The mean inter-arrival time

is given by Equation (3.1), wherein ¢ is the inter-arrival time and \ is the injection rate.

(3.1)
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Figure 3.2: Two-state Markov chain

3.3.1.1 Markov Modulated Poisson Process

MMPP is not a normal Poisson process, thus the time between two adjacent arrivals
is not exponential. The distribution of time between the (k — 1) — th and the k — th

arrivals depends on the state at (k — 1) — th and k - th arrivals.

For discrete MMPP, there are two sending probabilities. The current sending proba-
bility depends on the sending history in the previous time slot only.  is defined as the
burst rate and 0 < r < 1. If a packet is sent during the previous time slot, the sending
probability is A/(1—r). If no packet is sent during the previous time slot, the sending
probability is \. This process is described by using a two state Markov chain model,
as shown in Figure 3.2. If the source sends a packet during the previous time slot,
the current state is state 1. Otherwise, the current state is state 0. Since \/(1—r) is
greater than A, thus state 0 corresponds to the state with low injection rate and state
1 corresponds to the state with high injection state. When the burst rate r approaches
1, the difference between the high injection rate and the low injection rate increases.
The larger r is, the longer the sojourn time in state 1 will be. Note that none of the
transition rates is greater than 1. MMPP is a short memory process, because only
the behavior during the last time slot influences the sending probability in the current
time slot. Any behavior before the last time slot does not impact the current behavior.

‘When the burst rate r is 0, the MMPP becomes a Poisson process. Therefore, the
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Poisson process is a special case of MMPP. The values labeled in Figure 3.2 denote

chain transition probabilities. The corresponding transition matrix is as shown below.

(3.2)

The probability vector P is given by Equation 3.4. Py is the probability of being in
state 0; and P, is the probability of being in state 1. Notice that A is not invert-
ible, to calculate the probability vector P, Equation 3.3 needs to be used jointly with

Equation 3.5. Py and Py are expressed in Equations 3.6 and 3.7 respectively.

P-A=P. (33)
P [p” p,].' (3.4)
P+ P=1 (35)

(3.6)

3.7)

Based on the state probabilities Py and Py, the average sending rate is given by



To model MMPP, the transition probability of the two-state Markov chain in Figure
3.2 is required, Under different burst rates, the average sending rate should be kept
the same. Correspondingly, for a given burst rate and average sending rate, A is cak-

culated as in

(3.9)

In practice, the buffer size is usually fixed. In the following analysis, buffer size is
considered as a fixed number. Simulation results under different burst rates are com-
pared. When the burst rate is 0, MMPP becomes a memoryless Poisson process.

The purpose of this comparison is to show how the burstiness of the traffic will in-

fluence the performance index of the same network. When the burst rate increases,
the traffic becomes more uneven. Sometimes it is heavily-loaded, while other times
it is lightly-loaded. In reality, if the buffer size is limited, when the traffic is heavy,
the packet arrival exceeds the capacity and the excessive packets will be dropped. If
more packets are dropped, the loss rate increases. When the loss rate increases, the
throughput decreases. When the loss rate is high, the number of packets in the queue
decreases, i.e., the average queue length decreases. Since latency is proportional to
average queue length, when the average queue length decreases, the latency decreases
When the average length deceases, the average latency decreases. When the traffic is

light, the buffer is not fully utilized. Due to the increasing packet loss, the utilization



rate of buffers in bursty traffic is smaller than smooth traffic with the same mean.
The MMPP is a short-range-dependent process, which is unlike self-similar processes
that manifest long-range correlation (LRC) properties. Applying the MMPP model

to an ication with self-similar characteristics the buffer overflow

probabilities which may cause significant performance degradation [35].

A long Markov chain is formed as transitions continue. It is useful to know the prob-
ability of each state in the Markov chain. To facilitate explanation, y(z, so) is the
probability of being in the state of (z, so) that there are z packets in the buffer and
it is at low injection state so; y(z, s1) represents the probability of being in the state
of (z,50) that there are z packets in the buffer and it is at high injection rate s
The previous state of (z, so) must be one of (z, o), (&, 81), (z+1,50) and (@ +1,5)).
The transition probabilities are labeled as shown in Figure 3.3. The probability of
y(x, s0) is given in Equation 3.10. The previous state of (z, 1) must be one of (z—1,0),
(z—1,1), (x,0) and (z, 1). The transition probabilities are labeled as shown in Figure
3.4. The probability of y(z, 1) is given in Equation 3.11. But there are four special
states: (N, sq), (N, s1), (0,50), and (0, 51). These foir states correspond to when the
buffer is full or empty. Equations 3.12 - 3.16 give the expression for y(0, s0), ¥(0, s1),
y(N, s0) and y(N, s,), respectively.

2y

y(@, 50) =(1 = N1 = (@, s0) + (1= 7751 = wy(a, 1) + (1 = Nyl + 1, s0)+

Y@+ 1,81).
(3.10)

y(z,1).
(3.11)
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(0,0 = (100, 0)+ (1~ 200, 50) (1= Ny, s0) (1, 0). (312)
2(0,1) = May(0,50) + B 2—p(0,1). 3.13)

UV0) = (1= V(L= Wy s0) + (L= 2= yNos). (3)
UN0) = (1= (L= yNse) + (L= 2= yNos). (315)

y(N,1) = r\(l—u)y(N—l,SnHﬁy(N—1v51)+'A1/(stu)+ —y(N,1). (3.16)

3.3.1.2  On/Off Pareto

Self-similarity is a characteristic that the shape of a feature is independent of its time
scale [36]. In this case, the aggregation of streams will not smoothen, but intensify

the process. Assuming a fixed-sized packet, the intervals between two arrivals will
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vary. During the ON Periods, packets are sent at its peak rate; while during the OFF
periods, no packets are sent. Both ON and OFF Periods are obtained from the Pareto
distribution.

The major parameters for the Pareto ON/OFF distribution include:

packet_size: the size of the packets (assuming fixed packet size is considered);
burst_time: the average time for the ON period;

idle_time : the average time for the OFF period;

rate: the sending rate during the ON period;

shape: the shape parameter.

The formula used to generate the Pareto distribution is given by Equation 3.17. U
is uniformly distributed between (0,1). Its cumulative distribution function (cdf) and
probability density function (pdf) are given in Equations 3.18 and 3.19 respectively.

,, is the minimum possible value of .

(3.17)
Fy(z) = (3.18)
Ix(z) = (3.19)
Theoretically, the average sending rate is as in Equation 3.20.
rate x E[ON] 320)

= B[ON] + EOFF]

However, when U is very small, the value of 22 is very extremely large. In simulations,
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the computer cannot deal with a true Pareto distribution of sufficiently large value,
if there is no upper bound for the value generated. In NS-2, there is a traffic gen-
erator named POO_Traffic, which generates traffic according to a Pareto ON/OFF
distribution. By analyzing the results generated by NS-2, it is observed that there is
a great discrepancy between the theoretical mean values and the measured mean. To
obtain a desirable load, the scale parameter for the OFF periods needs to be decided.
The largest Pareto distribution value is given as
Trnas = (U:W (3.21)

If rate >> A, the traffic is considered as bursty traffic, i.c., mronfcpors << 1. The

shape parameter « indicates the self-similarity and is related to the Hurst parameter

H which gives the degree of I d The ionship between H and
ais H= (3—a)/2. On one hand, the minimum number of packets sent over one
ON period cannot be smaller than one. On the other hand, the maximum number
of packets the traffic generator can generate should be limited. In other words, there
is an upper bound and a lower bound for the Pareto Distribution. This is called the
Bounded Pareto Distribution (BPD), which has three parameters, the lower bound
L, the upper bound H and the shape parameter a.. Its probability density function

is given by Equation 3.22. Its cdf is given by Equation 3.23.

Fele) =252 (L ccn<< B). (322)
Fx(z) = I(IL—"LI:' (L <<z << H). (3.23)
=)

The formula to generate BPD is given by Equation 3.24, where L is the minimum
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value, H is the maximum value, U is a uniformly distributed number on (0,1) and « is
the shape parameter [37). With all these parameters, a random number which follows
BPD is generated. The mean value of the BPD distribution is given by Equation 3.25.
For the Pareto ON/OFF distribution, the length of ON periods and length of the OFF
periods are all determined by the Bounded Pareto Distribution. The mean value is a
tunable parameter which can be selected based on the application. When the shape

parameter increases, the traffic becomes less bursty and the loss rate decreases.

UH® -UL* - H*
HeL*

(( DS (3:24)

MeanValue =
1=

3.4 Justification of Choice of Traffic Patterns

Usually, simulated and synthetic traffic are used to evaluate different architectures.
Real applications are implemented using NoC and measured using real data clips for
the first time in [9]. Real data traces are used when comparisons are done, which gives
more convincing results. But real traces are not always the best choice. Sometimes,
they are not even feasible. When studying the scalability of a certain architecture, for
example, a 1000-node network, it is hard to apply a real traffic to it. In contrast, it is
easy to implement a synthetic traffic. Synthetic traffic patterns are abstracted from
certain applications and are representative classes of similar kinds. Synthetic traffic
is not always inferior to real traces in terms of extensibility. The goal is to compare
the performance of the architectures of interest in general. Thus, instead of target-
ing a certain type of traffic, some typical traffic patterns are used as the benchmark.

Applications which perform well on one architecture do not necessarily show similar




performance on another architecture. The performance of a certain architecture de-

pends heavily on the application applied to it.

To make a fair comparison, a set of traffic patterns are covered. Each traffic pattern
represent a certain typical class of similar applications. The uniform random is one of

the most used traffic. It ications which have evenly spread

traffic and can be used as an unbiased traffic pattern. The communicating pairs can

be close or far from each other with the same probability under random uniform traffic.

As stated earlier, uniform random traffic provides fairness for all topologies. Each

source has an equal probability of sending packets to a destination in the network.

It provides the it However, i the destination is de-

termined. To include this scenario in our simulation, permutation traffic is used.
Permutation traffic includes a few subsets. There is a common problem for bit ro-

tate, bit shuffle and bit transpose: the sender could also be its receiver. To avoid this

from ing, checking the pairs is necessary. This triggers another
problem which is that a portion of nodes can no longer be source nor destination if the
traffic requirement is strictly followed. The bit complement is the only permutation
traffic free of this problem. A receiver and its destination are always different. The bit
complement traffic is biased compared with random uniform. Traffic loads on different
links can be significantly uneven. Under bit complement traffic, the addresses of the
two communicating nodes differ in every bit, which means the source and destination
will be either far from or close to each other depending on the arrangement of nodes.
Communicating pairs are far from each other for the hypercube and the Metacube,

but not necessary for the torus.



S . . i ¥

Another popular spatial traffic pattern is the hot spot traffic, which represents ap-
plications having a small portion of nodes which are more frequently requested than
the rest of the nodes in the network. Hot spot traffic imposes intensive load to those
hot spot nodes. In the performance study, we will demonstrate how a spot node can

become overwhelmed with requests and overloaded.

The Poisson distribution is often assumed due to its simplicity. It can serve as a good
example of random memoryless temporal distribution. MMPP represents short-term
arrival correlation, an appropriate model for two-state Markov process. Some on-chip
applications, for example, multimedia applications, are characterized as self-similar,
which manifests long range correlation. To better control the generated numbers, in

stead of the normal Pareto, the BPD is used to model self-similar traffic.

The chosen spatial distributions include uniform random, bit complement and hot
spot traffic. Each represents a different type of spatial distribution. Study of these

three spatial traffic patterns will give a relatively well-rounded comparison of three

topologies under consideration. As to the temporal distribution, Poisson, MMPP and

BPD are chosen as representatives of traffic with similar characteristics.

3.5 Summary

Traffic modeling is the first step towards a network design. Poisson is the simplest
and most popular temporal traffic model. However, it cannot capture the inherently
bursty nature of the on-chip network traffic. Tn contrast, MMPP with adjustable burst

rate is applicable to model bursty traffic. A higher burst rate will lead to a burstier
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traffic. Poisson can be considered as a special case of MMPP. When the burst rate is
0, MMPP becomes a Poisson process, in which there is no distinction between high
injection rate/state or low injection rate/state. Similar to normal Pareto, BPD is a
ON/OFF model. During the ON-period, packets are sent continuously; during the
OFF-period, no packet is sent. In other words, during the ON-period, the sending
probability is 1; during the OFF-period, the sending probability is 0. Both the ON-
period and the OFF-period are modeled by BPD. Network performance is greatly
influenced by traffic patterns. If the real traffic is self-similar but Poisson is assumed
during design, the design made under poisson traffic assumption cannot meet the re-

quirement in real traffic.



P N e T

Chapter 4

Simulation Implementation

In this chapter, we study the simulation platform (NS-2) for performance analysis of
different architectures. First of all, a brief introduction to the simulation tool NS-2
is presented, however, some changes need to be made to NS-2 to meet our simulation
requirements. Topology formation is the first step towards simulation. Because NS-2
does not provide topology generation, all connections need to be defined by users.
After the topology has been defined, different traffic models are used to generate
network traffic. To project multidimensional architectures on to a 2D-grid, wires of

different lengths are considered.

4.1 Introduction to Network Simulator- NS-2

4.1.1 Justification

Existing network simulators include OPNET, Orion, NOCSim, MIT’s NETSIM, NIST,
NS-2, ete. To facilitate this study, NS-2 was chosen as the platform for simulation.
Because NS-2 is an open source network simulator and is very useful for NoC de-

signers and researchers who are interested in the analysis and evaluation of a large

]
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set of performance metrics, such as delay, throughput and loss rate. Unlike other
commercial software, users can modify the core components in NS-2 to meet their
specific application needs. It is developed in C++ and OTel (Tel script language
with objective-oriented extensions), where the main body of the program is written
in C++ and OTel provides the interface between command and configuration. Users
write their Tcl file in which the topology, buffer size, packet size, bandwidth, and
traffic type are defined. NS-2 generates two trace files as the simulation results. One
is named out.tr, and the other is named out.nam. The out.trfile records all the
events produced by the simulation. By analyzing the out.tr file, throughout, delay,
and loss rate performance are obtained. The out.nam is file for the network animator

nan to visually display the simulation results.

4.1.2 Modeling in NS-2

Simulation modeling includes four parts: traffic scenario generation, simulation con-
trol, topology and recorder monitor. The basic primitive to create a node is:

set ns[new Simulator]

$ns node

Every node in the network has an ID, labeled from 0 to N — 1 (assuming that N is
the size of the network). It also has a list of agents attached to it. By default, all
nodes are constructed for unicast.

Agent:

TCP is too complex for on-chip communication. For simplicity, UDP is adopted in
this thesis.

Traffic:

Poisson, MMPP, and BPD are implemented in NS-2.
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Links:

There are unidirecti links and bidirecti links available dey ing on the re-

quirements. The bandwidth of the link is specified and so is the link delay.
Queue:

A drop tail queue is adopted to simulate First-In-First-Out (FIFO) queues.
Simulation time:

The simulation is terminated by calling the pro finish {} function.

4.1.3 The Network Animator(NAM)

nam is the Tel/Tk based animation tool, which visualizes the simulation process.
To use nam, the first step is to produce a nam trace file, which contains topological
information. A nam trace file is produced during simulation. Once a nam trace file is
generated, it is ready to be animated by nam. The nam console window is shown in
Figure 4.1. By opening the corresponding out..nam file under the File menu, the nan
trace file will be loaded to nam. As shown in Figure 4.2, on the menu bar, there are
three menu options, File, Views and Analysis. Under the menu bar, there are five
control buttons, rewind, backward play, stop, forward play, and fast forward, shown
from left to right. By clicking the play button, the animation is played forward with
time increasing. On the right hand side of the control bar, the time label shows the
current animation time. The user can change the animation speed by adjusting the
time step on the right side of the time label. In the middle of the console window,
the main view panel shows the layout of the network and animation. Figure 4.2 is
the screen snap of a network of four nodes: node 0, node 1, node 2 and node 3. The

solid squares besides the links are packets carried by the links.
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Figure 4.1: NS-2 Animator

Figure 4.2: NS-2 Simulator View



4.1.4 Trace File Analysis

The Awk files are used to analyze out.tr to obtain the performance metrics of inter-
est. out.tr records all events during the simulation. The format of the out.tr file

is shown as below.

0 00 30 12 24

+ 00396 1 3 poisson .

— 0.0396 1 3 poisson 0 00 30 12 24
+ 004 0 1 poisson 0 00 30 19 33
d 004 0 1 poisson 0 00 30 19 33
— 0.0404 0 1 poisson 0 00 30 17 31
+ 0.0408 3 2 poisson 3 31 01 14 34
— 0.0408 3 2 poisson 3 31 01 14 34
r 00412 1 3 poisson 0 00 30 7 13

From left to right, there are twelve columns. The first column is the event: +, -, r,
or d, where + denotes the event that the packet is entering the queue; - denotes the
event that the packet is departing from the queue; r denotes the event that the packet
is received; d denotes the event that the packet is dropped. The second column shows
the time when the event happens. The third column and fourth column together give
the location where the event happens, from the node in the third column to the node
in the fourth column. The fifth column is the '_vp(: of the packet, i.e., FPT, CBR,
ete. In this example, the packet type is Poisson. The sixth column is the size of the
packet in bytes. The seventh column is the f1ag. The eighth column is the flow ID of
the packet. The ninth column is the source port ID, in the format of node.port. The
tenth column is the destination port ID, in the format of node.port. The eleventh
column is the sequence number of the packet. The twelfth column is the unique ID
of the packet.

Trace file out . tr gives details about all data transactions, which can be used to con-
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link

node

traffic souce

(chbo) pkt size: 1 kByte, rate: 1 mbps
cbr
ftp
Sec
01 10 T0ds >

Figure 4.3: A Simple Exdmple

duct the performance analysis. Take the first line of the previous trace file as an
example, where packet type is poisson. It means that a packet enters node 3's queue
from node 1 at time 0.0396s. Poisson is its packet type with a size of 200 bytes. It is
from flow 0. Its source port is port 0 of node 0 and its destination port is port 0 of

node 3, its sequence number is 12 and the packet ID is 24.

4.1.5 A Simple Simulation Example

To better understanding the simulation, a simple example of a general network is
shown in Figure 4.3. There are four nodes in the network, ng,ny,n2,ns. Each node
has a DropTail queue. The queue on the link between ny and n is of size for 10

packets. no and n; are sources. ng is the sink for both ng and ny. ny serves as the



59

relay node, helping with the transmission. An FTP traffic generator is attached to a
TCP agent which is attached to node no. Note that. TCP is too complex for on-chip
communication. Here this example is a generic network, which only uses TCP to show
that different agents can be used in NS-2. A CBR traffic generator is attached to a
UDP agent, which is attached to n;. Three bidirectional links are used to connect the
four nodes together. The link between ng to n, and the link between n; and ny have
the same bandwidth of 2 Mb/s and the same link delay of 10 ms. The link between
ny and ny has a bandwidth of 1.7 Mb/s with a delay of 20 ms. Two traffic flows are
shown as well. CBR traffic starts at 0.1 s, and ends at 4.5 s. FTP traffic starts at 1.0

s and stops at 4.0 5.

set ns [new Simulator]|

#define different colors for data flows (for nam)

$ns color 1 Blue
$ns color 2 Red
#open the nam trace file
set nf [open out.nam w]
$ns namtrace—all $nf
set nd [open out.tr w]
$ns trace—all $nd
#define a finish procedure
proc finish {} {
global ns nf nd
$ns flush—trace
close Snf

close $nd




exec nam out.nam &

exit 0
#create four nodes
set n0 [$ns node]
set nl [$ns node]
set n2 [$ns node]
set n3 [$ns node]
#create links between the nodes
$ns duplex—link $n0 $n2 2Mb 10ms DropTail
$ns duplex—link $nl $n2 2Mb 10ms DropTail
$ns duplex—link $n2 $n3 1.7Mb 20ms DropTail
#set queue size on link between Sn_{2}S and $n_{3}$ to be 10
$ns queue—limit $n2 $n3 10
#set node position
$ns duplex—link—op $n0 $n2 orient right—down
$ns duplex—link—op $nl $n2 orient right—up
$ns duplex—link—op $n2 $n3 orient right
#monitor the queue on the link between $n_{2}§ and $n_{3}$
$ns duplex—link—op $n2 $n3 queuePos 0.5
#setup a tcp agent
set tcp [new Agent/TCP]
$tcp set class_ 2
$ns attach—agent $n0 $tcp
#setup a TCPsink




set sink [new Agent/TCPSink]
$ns attach—agent $n3 $sink

$ns connect $tcp Ssink

$tep set fid_ 1

#setup a FTP application

set ftp [new Application/FTP]
#attach FTP traffic generator to TCP agent
$ftp attach—agent S$tcp

$ftp set type FTP

set udp [new Agent/UDP]

$ns attach—agent $nl $udp

set null [new Agent/Null]

$ns attach—agent $n3 $null

$ns connect $udp $null

Sudp set fid_ 2

set cbr [new Application/Traffic/CBR]
$cbr attach—agent Sudp

$cbr set type_ CBR

Schr set packet_size_ 1000

$cbr set rate lmb

$cbr set random_ false
#schedule event for CBR and FTP
$ns at 0.1 'Scbr start'

Sns at 1.0 "$ftp start'

$ns at 4.0 "S$ftp stop"
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Sns at 4.5 'Scbr stop'
$ns at 4.5 '$ns detach—agent $n0 Stcp.;
$ns_detach—agent $n3. Ssink"
#call the finish procedure at 5.0s
Sns at 5.0 'finish’
$ns run
4.2 Implementation of Architecture
Three archi s will be di 1: torus, be and hyp . The topology

decides the arrangements of nodes and links. In NS-2, a link is set by

$ns duplex-link-op <nl> <n2> <op> <args>

A torus is obtained by adding wraparound links to a mesh. In each row or column,
end nodes are connected by wraping around links. Other nodes are connected in a
grid manner. Every node in a torus has a node degree of 4 regardless of its size. In
a Metacube, there is a link if and only if the addresses of two nodes differ in one bit
in class ID or node ID. The number of links attached to a node is decided by the
node degree. In a hypercube, there is a link if and only if the addresses of two nodes
differ in one bit. For the Metacube and the hypercube, the addresses of two nodes

are checked and compared to decide if they are connected.
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4.3 Implementation of Traffic Generation

4.3.1 Spatial Distribution

Uniform random and bit complement traffic are applied to test different topologies.
Under bit complement traffic, nodes are paired to communicate with each other. Un-
der uniform random traffic, a node can communicate with any other nodes with the
same probability. Uniform random traffic provides a fair evaluation of the perfor-
mance of a network, compared with bit complement traffic, which may favor some

nodes but have bias against the other nodes.

4.3.2 Temporal Distribution

In the first setup, traffic burstiness is not taken into account, so a simple Poisson
process is considered. To incorporate burstiness with traffic generation, a burst rate
is defined. The traffic is modeled by MMPP. Under different burst rates, the mean
injection rate is kept constant. Low burst rate means even traffic. High burst rate
means spiky traffic. There is no correlation among data flows. Each source sends

packets i ly with the same ility, which defines the sending rate. All

setups are the same except that the burst rate is varied

4.3.2.1 Injection Rate Calculation for Different Sizes of Networks

The calculated injection rates provide some rough ideas about when the network be-

comes saturated. As the network scales up, the load grows faster than the network
capacity. Thus, the injection rate needs to decrease to maintain stability of the net-

work. The total load over all links is equal to the traffic generated by all the nodes
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[18]. Hop count is the number of hops that a message travels in a connected network

on the shortest path from the sender to its destination [18].

The average hop count for a 2n x n torus is given by Equation 4.1

3 o
HC kv, = 8¢ g
torwsanxn = ™ o7 1
The average hop count for an n x n torus is given by Equation 4.2.

HCurusnsn = 5

The average hop count for an N-node hypercube is given by Equation 4.3

(41)

(“2)

(4.3)

The upper bound of the average hop count for an MO(k,m) is given by Equation 4.4.

HCyckm) = 2m/2 + 2"

The average hop count for an MC(1,m) is given by Equation 4.5.

n 1
HCuoam =5+ 1= 35705

The average hop count for an MC(2,m) is given by Equation 4.6.

n
HCymo@m =5 +3

The formula to calculate injection rate is given by Equation 4.7 [18].

(4.6)
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_ Ly X Yohm =
A=HExN ' @1

where ) is the injection rate per node;
HC is the average hop in the network;
N is the number of nodes in network;
Ly is the link complexity of the network;

Yehnt is the load per channel.

If constant load per channel is desired, when the size of the network grows, the in-
jection rate must be lowered. HC is a characteristic of the topology itself. The
calculation above is made under the uniform traffic assumption. However, in most
cases, traffic is not uniform, nor even close. That means if the average traveling dis-
tance is greater than the average hop count used in the calculation, the actual average
channel load is greater than what is calculated. Further, even if the uniform traffic
assumption holds, loads may vary on different links. To the best of our knowledge,
1o routing algorithm can guarantee spreading traffic evenly over links. Therefore, the
injection rate obtained by Equation 4.7 may not be precise and simulation based on
it may give poorer performance than it assumes. The simulation results verified this
conclusion. The estimate of injection rates should be application-specific. In (18], the
average traveling distance in the localized traffic model is smaller than the average
hop count of the topology. Thus, the injection rate based on the average hop distance

is greater than the calculation result.

When the injection rate is 10%, the average channel load is calculated in each of the
topologies under the considerations shown in Table 4.1. The performance of networks

can be explained from the perspective of average channel load. The Metacube and
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the hypercube have very close average channel load for 512-node networks. Their

performance should be similar too.

Table 4.1: Average Channel Load for Injection Rate=0.1

Network Size | Torus | Metacube | Hypercube
7.5% 10.8% 6.25%
64 10% 20% 7.5%
128 15% 10.94% 8.75%
512 30% 10.88% 11.25%
1024 40% 20% 12.5%

4.3.2.2 Injection Rates for Bursty Traffic

To model burstiness in traffic generation, a burst rate is used. The traffic is modeled
by MMPP. Under different burst rates, the mean injection rate is kept the same.
A low burst rate means smooth traffic, whereas high burst rate implies spiky traffic.

With this model, there is no correlation among different data flows. Each source sends

packets i ly with the same ility, which is defined as the sending rate.
Assuming that the equivalent mean injection rate are 10%, 20% and 30%, respectively,
we list the accordingly injection rates under different burst rates in Table 4.2. The
numbers in the first row are mean injection rates: 0.1, 0.2, and 0.3, respectively. The

numbers in the first column are burst rates: 0, 0.2, 0.4, and 0.8, respectively.




Table 4.2: Injection Rates under Different Burst Rate

Burst Rate 0.1 0.2 0.3
0 0.1 0.2 0.3
0.2 0.09756 | 0.19048 | 0.27907
0.4 0.09375 17647 | 0.25
0.6 0.08696 15385 | 0.20690
0.8 0.07143 | 0.11111 | 0.13636

4.4 Routing

Routing involves selecting a path from a source node to a destination node in a par-
ticular topology. A few popular routing algorithms include XY, west-first, north-last
and negative-first routing algorithms. A routing algorithm can be either deterministic
or adaptive. XY routing is a deterministic routing algorithm, in which routing paths
are fixed for communicating pairs. West-first, north-last and negative-first routing
algorithms are partially adaptive. Due to the limited resource on chip, the cost of
implementing fully adaptive routing algorithms seems prohibitively high for NoC. In
contrast, a deterministic routing algorithm is simple and needs less resource to im-
plement [5]. Therefore, deterministic routing algori(‘lvxms are preferred in this context.
XY routing is adopted as a representative deterministic routing algorithm, and is sim-
ple to implement. XY routing is a minimal routing algorithm, which is guaranteed to
be live-lock free. Under XY routing algorithm, data is first routed in the X direction,
until reaching the Y coordinate and then in the Y direction. XY routing only allows
four turns which are west-south, west-south, east-north and east-south.

Figure 4.4 shows an example of routing paths under XY routing algorithm. If
node(0,1) sends a packet to node (2,2), it takes the path (0,1), (0,2), (1,2), (2,2).
If node (3,3) sends a packet to node (0,0), it takes the path (3,3), (3,2), (3,1), (3,0),
(2,0, (1,0), (0,0).
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Figure 4.4: XY Routing

XY routing is popular due to the above preferred properties. The XY routing out-

performs odd-even and DyAD-OE routing [38] under uniform traffic load because the

XY algorithm always maintains evenness [5]. Adaptive routing algorithms make de-
cisions based on short-term information which means the overall balance may not be
maintained in the long run. However, for non-uniform traffic, adaptive routing may

perform better than XY routing.

4.5 Parameter Setup

4.5.1 Random Seed Generation

Required by statistical analysis, the simulation must be repeated for a large number
of times, without changing the setup of parameters. If each run yields the same re-

sults because of the inappropriate choice of the parameters such as the random seed,

it would be meaningless for statistical analysis. In NS-2, the random number gen-
erator basically generates pseudo random numbers. The key to improve randomness
in a simulation is to use a different seed for each simulation trial. To get a different

seed, the default RNG is set to 0, so that the seed is based on the current time of day
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and a counter. It is extremely unlikely that two random seed will overlap by doing this.

4.5.2 Sample Phase

Simulations starting with empty buffers could lead to a more favorable result. To
avoid this, we want that the simulation starts with the condition that the length of
queues stabilized at their mean lengths, hence, a warm-up period that lasts sufficiently
long is considered. By observation, after a certain number of time slots, queues begin
to converge to their mean length. This period is called the warm-up stage. During
the warm-up stage, data is not collected for analysis. At the end of simulation, source
nodes no longer generate packets, but there are stillvpa,ckets transmitting in the net-
work heading to their destinations. During this period of time, the queue length is
shorter than normal, and throughput and loss rate are both lower than normal. To

eliminate its impact, data is not collected during this period either.

4.6 Modifications to NS-2

Modifications were made to NS-2 to facilitate simulation. The changes include adding

new traffic types, wire modeling, and routing algorithm implementation.

4.6.1 Adding New Traffic Types

It takes 7 steps to add a new traffic generator to NS-2 as follows:
1. Add c++ file, which describes the behavior of thé traffic generator;

2. Add the default values to /tcl/lib/ns-default.tcl;
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. Modify /trace/cmu-trace.cc;

=

Modify /trace/trace.cc;

=

Modify common/ packet.h;

S

Makefile.in;

7. Configure;

Three traffic types were added to NS-2: Poisson, MMPP and BPD. (1) Poisson traffic
Packet generation is a stochastic process. In a certain time slot, whether a packet is

sent or not is decided by ing the sending probability ined by the distri-

bution and a randomly generated number on (0, 1). If this random number is smaller
than the sending probability, a packet will be sent. Otherwise, no packet will be sent.
A traffic generator called poisson is instantiated by

set poisson [new Application/Traffic/Poisson].

(2) MMPP traffic

Instead of using an ON/OFF model, a 2-state Markov chain is used. Each transition
takes place with a transition probability determined from the state machine. The
Poisson distribution can be treated as a special case of MMPP. A traffic generator
called mmpp is instantiated by

set mmpp [new Application/Traffic/ MMPP).

(3) Bounded Pareto Distribution

BPD essentially follows an ON/OFF model. During the ON-period, packets are sent
continuously; during the OFF-period, no packet is sent. Both ON and OFF periods

nstantiated

follow the Bounded Pareto Distribution. A traffic generator called bpd i
by
set bpd [new Application/Traffic/BPD].
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4.6.2 Model Wires

For the initial setting in our simulation, wire length was not taken into consideration,
i.e., all wires are assumed to be of the same length. Because of its smaller diameter

and more connections, there is no surprise that hypercube outperforms the rest of the

logies in every ance metric. Hyp has the shortest delay, highest
throughput, and lowest loss rate. When projecting high dimensional topologies on a
2D plane (such as the case for the Metacube and the hypercube), long wires cannot
be avoided. To better model wires, different wire lengths need to be considered. We
assume that the network nodes are arranged in grid fashion. Link delay on long wires
is considered to be proportional to the wire length. In a torus, long wires can be
avoided by folding the architecture at the cost of doubling its wire length (7). As
networks becomes bigger, longer wires are needed. For Metacube and hypercube in a
grid embedding, the number of wires of different lengths are given in Tables 4.3 and
4.4, respectively. In Table 4.3, the numbers in the first row represent wire length in
unit length. Unit length is the length of the wire connecting two adjacent nodes in
a smallest grid. Take a 64-node Metacube network for example, it has 32 wires of

length 2 and 64 wires of length 4.

Table 4.3: Metacube Different Wire Lengths

Sie] 1 [ 2 [4]8] 16
32 [ 32 [0 [16]0] 0
61 | 32 [0 |64[ 0] 0
128 [ 128 [ 64 | 0 [64] 0
512 | 512 | 512 0 | 0°| 256

(10241024 0 [0 | 0 1024

To incorporate the impact of wire length on network performance, different link delays



Table 4.4: Hypercube Different Wire Lengths

Size 1 2 4 8 16
32 [ 32 [ 32 ] 16 0 0
64 64 64 64 0 0
128 | 128 | 128 | 128 [ 64 0
512 | 512 | 512 [ 512 | 512 [ 256
1024 | 1024 | 1024 | 1024 | 1024 | 512

are assigned according to their link length. Assume the length of the link connecting
node n(1) and node n(2) is twice of the length of the link connecting node n(0) and
node n(1). If the link connecting 1(0) and node n(1) has a link delay of 0.2 ms, then
the link delay of the link connecting node n(1) and node n(2) will be 0.4 ms, as shown
below.

/tt $ns duplex-link $n(0)) $n(1) Sbandwidth 0.2ms DropTail

/tt $ns duplex-link $n(1)) $n(2) Sbandwidth 0.4ms DropTail

4.6.3 Routing Algorithms Implementation

Minimal routing algorithms are adopted in this thesis. Minimal routing always chooses
the shortest paths for all packets [21]. Minimal routing algorithms are live-lock free
and have a better control of communication cost. Furthermore, static routing algo-
rithms are considered in our research that is paths are fixed between the same source

and destination. To balance data flows, the routing algorithms developed for torus,

and hyp adopt di ion order routing that is the packet is routed
one dimension at a time [21]. The default static routing in NS-2 uses the same path
from node 1 to node 2 as from node 2 to node 1. The problem with this routing

scheme is that there is only one fixed path allowed between any pair, which creates
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extremely uneven loads among channels. In this thesis, all implemented routing algo-
rithms guarantee a different path from node 1 to node 2 and from node 2 to node 1.
A deterministic routing path is determined by explicitly declaring the next-hop node
from a source to its destination. For example, "addExplicitRoute $n(0) $n(2)
$n(1)" determines the next-hop node from node n(0) to n(2) is n(1). By doing this,

the next-hop node is updated as a message is transferred towards its destination.

4.6.3.1 Routing in Torus

Routing in a torus is similar to XY routing in a mesh. The difference is whether there
exists a shorter path due to the wrap-around links. If routing via wrap-around links
does not lead to a shorter path, routing in a torus will be the same as in a mesh:
packets are routed along the x dimension first, then along the y dimension. Other-
wise, wrap-around links are utilized to create shorter paths, still first route data along
the x dimension, then along the y dimension, when the column of the destination is
reached. For example, to route from node(0) to node(15), it takes 6 hops in a 4 x 4
mesh and only 2 hops in a 4 x 4 torus as shown in Figures 4.5 and 4.6. Assume
that Cyy. and Cyy are the column ID of the source node and the column ID of the
destination node and R,,. and Ry are the row ID of the source node and the row id
of the destination node, respectively. C' is the number of columns; R is the number of
rows. When implementing the routing algorithm for the torus, whether wrap around

links will be used or not is determined by the following conditions:

1) If | Cure = Cau |< €/2, horizontal wrap around links are not used for routing;
2) If | Cyre = Cagt |> C/2, horizontal wrap around links are used for routing;

3) If | Ryre — Rawt |< R/2, vertical wrap around links are not used for routing;




Figure 4.5: Routing in a torus

4) If | Ryre — Raye |> R/2, vertical wrap around links are used for routing.
For routing in a torus, there are only four possible movements: left, right, up and
down. Assume that Cy,, and R, represent the column and row ID of the current
node, the current node ID is updated with every movement. Movement decision is
based on the comparison between current node and destination node in terms of row
id and column ID, which is given by

1) If 0 < Cour — Cast < C/2 or Cyt = Ceur > C/2 , riext movement is left;

)

2) If Cour — Cast > C/2, 01 0 < Cygt — Ceur < C/2 next movement is right;

3) If 0 < Reur — Ragt < R/2, or Ryyt — Rewr > R/2 next movement is up;
)

4) If Reyr — Rast > R/2, 0r 0 < Ryyt — Reur < R/2 next movement is down.

4.6.3.2 Routing in Hypercube

To facilitate the explanation, edges connecting different cubes are referred as external

edges and edges connecting nodes within the cube are referred as internal edges. From

the source node, a packet is first routed to the destination cube via external edges,
and then it is routed within the destination cube until they reach the destination

node. In the worst case, a packet travels through at most loga N — 3 external edges



Figure 4.6: Routing in a mesh

and 3 internal edges on to its destination. Totally, from one node to any node in the
hypercube, it takes at most log,N, the diameter of an n-node hypercube. In binary
coding, the lowest three bits of a node’s address represent its node address within a
cube, and the rest bits represent its cube address. Routing in a hypercube is to flip a
different bit each time.

For example, from s (00,000,000,000,000) to d (00,001,110,101,011), it takes 7 hops.
The path is 5(00,000,000,000,000)

— (00,000,000,000,001)

— (00,000,000,000,011)

— (00,000,000,001,011)

— (00,000,000,101,011)

— (00,000,010,101,011)

— (00,000,110,101,011)

— d(00,001,110,101,011)



4.6.3.3 Routing in Metacube

Routing in the Metacube is not like routing in the hypercube. In the Metacube, a
node only connects to nodes which differ in one bit in class id or node id. Fewer
connections make the routing in the Metacube no longer as simple as that of the
hypercube. The diameter of a Metacube is bigger than the diameter of a hypercube
of the same size but smaller than that of a torus of the same size. The location of
the node id in the node address varies according to the value of its class id. The
hop count between two nodes in a hypercube can be determined by the number of
different bits in their addresses. But in a Metacube, the hop count is not decided by
the number of different bits. Always, the routing path in a Metacube network is equal
or longer than in a hypercube as shown in Figures 4.7 and 4.8. From node (0,0,0,0,0)
to node (1,0,0,0,0), it takes only one hop in a 32-node hypercube but 3 hops in a
Metacube of the same size. Another example, from node s (00,000,000,000,000) to
node d (00,001,110,101,011), it takes 7 hops for minimal routing in a hypercube to
reach the destination, flipping a bit at one time. But in a MC, it takes 10 hops.
(00,000,000,000,000) — (00,000,000,000,001)— (00,000,000,000,011)

— (01,000,000,000,011)— (01,000,000,001,011) — (91,000,000,101,()11)

— (11,000,000,101,011)— (11,001,000,101,011)

— (10,001,010,101,011) — (10,001,110,101,011)

— (00,001,110,101,011)



Figure 4.7: Routing in a 32-node Metacube

a 32-node Hypercube

Figure 4.8: Routing in



4.7 Summary

NS-2 is an open source network simulator which allows designers to evaluate network
performance and to modify source code to meet specific research requirements. A
few modifications to NS-2 have been made to accommodate our simulation. When
projecting the three architectures to 2D layout, different lengths of wires need to be
taken into account. For regularity, a grid arrangement of nodes is assumed. Mini-
mal deterministic routing has small overhead and is both dead-lock and live-lock free.
Therefore, minimal deterministic routing is adopted for all three topologies under

consideration.




Chapter 5

Performance Analysis

In this chapter, we study the performance of the three target architectures under
different traffic conditions. Aside from different traffic patterns, the channel load has
a great impact on network performance. High channel load can incur excessive delay
and packet loss. We change the channel load by varying the injection rate. Three
injection rates are considered: 10%, 20% and 30%, which represents a light load, a
moderate load and a heavy load, respectively. The corresponding channel load for
10% injection rate can be found in Table 4.1. Because of the linear relationship, the
corresponding channel load for 30% injection rate can be obtained by tripling the val-
ues in Table 4.1. Network size is another factor needed to be taken into account. How

network performance scales up as the network size increases reflects the scalability of

the network. In our study, we consider network sizes of 32, 64, 128, 512 and 1024

nodes, respectively. A fixed packet size is used throughout our research.



5.1 Performance Metrics

Performance metrics quantify the comparisons among different network topologies.
High performance is the most important goal of a network design [39][40]. Latency

is an important metric to evaluate a network. If the latency requirement is not met,

a network may cause signi delay to the ication between

Excessive latency can degrade system performance, and sometimes may even render
some real-time applications unusable. Throughput defines the amount of data deliv-
ered per time unit, which is closely related to the loss rate performance. Given the
same generation rate, a network with higher throughput has lower loss rate, and vice
versa. Loss rate is a key performance metric to achieve the desired level of Quality of
Service(QoS). Like in other literature [5][8][21][41][42], we focus on the three critical
performance metrics: latency, loss rate and throughput in our performance evalua-
tion. In general, under the same traffic, networks with short delay, low loss rate and

high throughput are highly desired.

5.1.1 Average End-to-End Delay

End-to-end delay is the time elapsed for a packet to traverse the network to reach
its destination. The delay is the sum of three components: processing time at the
transmitter, transport delay and processing time at the receiver. It is obtained by
averaging the end-to-end delay of all successfully delivered packets. Note that lost
packets are not included in the calculation as their delay will be infinitely large. The
average end-to-end delay performance reflects how fast the network can deliver packets
to their destinations. A smaller value indicates a better network efficiency. TCP/IP

is a reliable stream delivery service, where failure to meet the delay requirement will
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cause the retransmission of the delayed message.

5.1.2 Loss Rate

Loss rate is defined as the ratio of the number of lost packets to the total number of
packets generated. In the network context, it is calculated by dividing the number of
dropped packets by the total number of packets generated by the source nodes. Low
loss rate is preferred to ensure QoS. For different applications, there are corresponding
maximum acceptable loss rates. Often, different loss rates are required for different
applications. For example, higher than 5% loss rate will affect the service quality in
Voice over IP (VoIP) applications and higher than 0.1% loss rate is unacceptable for

TCP/IP [43).

5.1.3 Throughput

Throughput is the data rate in bits-per-second (b/s) for packets successfully deliv-
ered to their destinations. Compared to a bandwidth requirement, throughput is a
more appropriate metric to evaluate network performance. Throughput provides the

maximum accepted traffic and it is related to the peak sustainable data rate for the

system (42]

5.2 Confidence Analysis Basics

Statistical analysis quantifies the reliability of the obtained results. Due to the

stochastic property of network simulation, each run may yield a different result. It
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is possible that the result from a single trial is not accurate. Confidence analysis is
based on samples, which are a subset of elements taken from a population. To achieve
a given confidence level, corresponding sampling strategies must be determined. From
the perspective of data analysis, the true mean is of greater importance than that of
the sampled data. Although the confidence interval(CI) does not determine the true
mean, it does give the probability of the true mean lying within the CI. CI quantifies
the confidence level. For example, 95% confidence interval means that the probability
of the true mean lies with the interval is 95%. Unless otherwise specified, 95% confi-

dence is adopted in our study.

When a new RNG object is created, it is automatically seeded to the beginning of
the next independent stream of random numbers. Sometimes, multiple independent
replications of a simulation are needed. For each replication, a different sub-stream

should be used to ensure that the random number sub-streams are independent [44].

Suppose a sample set is { X1, X, Xa, -+, X, }. The mean of this sample set is given by

where n is the size of the sample set, a.k.a., the degree of freedom in CL.

The variance o2 is defined as

where p is the true mean of the population. However, the true mean y is unknown,

only the sample mean X is available. By replacing y with X, the sample variance



S,% is obtained as

(5.3)

The sample mean X has a normal distribution with the Probability Density Function

(pdf) given by

1 X-p
7o g )

(5.4)

Again, neither 4 nor o is known. By replacing p with X, o® with %, Equation (5.4)

becomes

(5.5)

The T ibution is a i ity distribution that arises when estimat-

ing the mean of a normally distributed population in situations where the sample size
is small and the population standard deviation is unknown. The tail probability T
is obtained from the t-table based on the degree of freedom and confidence interval.
The true mean is computed with a certain level of confidence. The estimate of the

true mean g is given by

As the sample size increases, the sample variance approaches the true variance. As
a result, the distribution becomes close to the normal distribution. In Table 5.1, df
stands for the degree of freedom and p is the confidence interval. For example, under

95% confidence interval, when df is 5, the ¢ value is 2.015048.
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Table 5.1: T-table with Right-tail Probability

df\p 04 0.25 0.10 0.05 0.025 0.01 0.005
0.324920 | 1.000000 | 3.077684 | 6.313752 | 12.70620 | 31.82052 | 63.65674
0.288675 | 0.816497 | 1.885618 | 2.919986 | 4.30265 | 6.96456 | 9.92484
0.276671 | 0.764892 | 1.637744 | 2.353363 | 3.18245 | 4.54070 | 5.84091
0.270722 | 0.740697 | 1.533206 | 2.131847 | 2.77645 | 3.74695 | 4.60409
0.267181 | 0.726687 | 1.475884 | 2.015048 | 2.57058 | 3.36493 | 4.03214

ol vof =

|

636.6192

The shape of the t-distribution changes with the degree of freedom. Additionally, the
| confidence interval can also be used to compare two sets of results to quantify how

different they are, as shown in Equations (5.7) and (5.8).

P(-c<T<c)=1

The ¢ statistic can also be used to compare two sets of results, as shown in Equation
(5.9). With a certain confidence, we can determine whether two sets of results are

considered to be significantly different or not.

oo Ki=X) — (=) 9
VRS

The confidence interval for the difference in means oy — iz is given by

FErY]
\ (X7 - X%t Sn—‘ +Sn—’ y (5.10)
J L m
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where ¢* is the upper (1 — a)/2 critical value for the ¢-distribution with n degrees
of freedom, and n is the smaller value of ny — 1 and np — 1. If the confidence in-
terval includes 0, with a given level of confidence, it is safe to say that there is no
significant difference between the means of the two populations. If two statistics have
non-overlapping confidence intervals, they are necessarily significantly different but
if they have overlapping confidence intervals, it is not necessarily true that they are
not significantly different. The reason is that CI overlap space overlaps with both
not significant space and significant space, making it hard to tell if the difference is
significant or not within the CI overlap space. But, it is very clear that there is no

confusion within No CI overlap space, as Table 5.2 shows.

Table 5.2: The Relation of Not-significant space, Significant Space, CI Overlap Space
and No CI Overlap Space

Not Significant | _ Significant
CT Overlap [ No CI Overlap

5.3 Confidence Analysis

The purpose of conducting confidence analysis is to examine if results from differ-
ent trials are consistent. When repeating the same simulation, if there is an obvious

is nec-

discrepancy among different single trials, the corresponding confidence analysi
essary. Otherwise, a single trial is sufficient for the performance evaluation.

Networks of different sizes, from 32 nodes to 1024 nodes, are studied for the confidence
analysis. In the confidence analysis, all of the traffic distributions that will be adopted
in the performance analysis are discussed including three spatial distributions: bit-

complement, uniform random and hot spot; and three temporal distributions: Poisson
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distribution, MMPP and BPD. Al the results reported here are based on 100 trials.
CI'min and CI max represent the lower bound and the upper bound of the CI interval,
respectively, with 95% confidence. Because the results are similar, we only present
the confidence analysis for Metacube networks in this chapter. The other analysis

results can be found in Appendix A.

5.3.1 Confidence Analysis of Network Performance Based on
Bit-complement and Poisson Distribution

n dis-

In this subsection, a series of simulations based on bit-complement and Poi
tributions are conducted. A statistical analysis of the performance of a 128-node

M b i network is conducted and the results are shown in Table 5.3.

It is observed that the individuals in the sample set fluctuate slightly around their
mean, which is exactly what is expected. With 95% confidence, the true mean for the
loss rate falls within (0.004998539, 0.005604786). To test if there is consistency for a
small network, a statistical analysis of a 32-node Metacube network is conducted and
the results are shown in Table 5.4

Based on Table 4.1, networks are lightly loaded and heavily-loaded under 10% and
30% injection rate, respectively (the average channel load under 30% injection rate
can be calculated by tripling the value under 10% injection rate). To see if there exists
good consistency as channel load increases, a 30% injection rate is also considered.
Table 5.5 and 5.6 shows the confidence analysis of 32-node and 128-node Metacube
networks under 30% injection rate, respectively. It can be seen from the results that
after increasing the injection rate to 30%, there is a slight increase for point-to-point
delay, almost linear increase for the throughput, and significant increase for the loss

rate.
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Table 5.3: Confidence Analysis of 128-node Metacube, 10% Injection Rate (Bit-
complement, Poisson)

Average Delay | T

Mean 000462008 | 101826290
Standard Deviation TE-07 0276475 | 0.000144145
Cl min 0.00462062_| 100.962779 | 0.00499854
CI max 000462133 | 102.6898001 | 000560479

Table 5.4: Confidence Analysis of 32-node Metacube, 10% Injection Rate (Bit-
complement, Poisson)

Average Delay | Throughput | Loss Rate

Mean 0.00262302 25.457202 | 0.00526019
Standard Deviation 2E-07 0.0916171 | 0.000181257
CI min 0.00262240 25.172950 | 0.00469782
CI max 0.00262364 25.741455 | 0.00582256

In general, all the confidence analysis results reported in this subsection show a high
consistency among a single trial and a 100-trial sample set. Therefore, it gives us the

confidence that the result from a single trial can be used for the performance analysis.

For average delay, and loss rate perfc , the standard deviation is

only a small percentage of the mean.

Table 5.5: Confidence Analysis of 32-node Metacube, 30% Injection Rate (Bit-
complement, Poisson) ’

Average Delay | Throughput | Loss Rate
Mean 000271252 | 72.647805_| 0.0523918

Standard Deviation | 6.43224E-07 | 0.123269776 | 0.00040937
CI min 0.00271052 | 72.265347 | 0.0511217
Cl max 0.00271452 | 73.030264_| 0.0536619
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Table 5.6: Confidence Analysis of 128-node Metacube, 30% Injection Rate (Bit-
complement, Poisson)

Average Delay | TI Loss Rate

Mean 0.0047102 291.138341 0.0527042
Standard Deviation | 4.49467E-07 0.366484 | 0.000293204
CI min 0.00470881 290.001280 | 0.0517945

CI max 0.00471160 292.275401 0.0536139

5.3.2 Confidence Analysis of Network Performance Based on

Bit-complement and MMPP Distribution

In the previous subsection, the simplest temporal distribution, i.e., the poisson dis-
tribution, was applied to Metacube networks. In this subsection, burstiness is incor-
porated in the traffic generation. The spatial distribution follows the bit-complement
distribution; and the temporal distribution follows MMPP distribution. Three net-
work sizes, 128, 512, and 1024, are considered under 10% injection rate and 0.8 burst
rate. The confidence analysis results are shown in Tables 5.7 - 5.9. Because of the
relatively high node degree, the 512-node Metacube network has a similar loss rate as
the 128-node Metacube. For the 1024-node Metacube network, the loss rate is much

higher than that of 512-node Metacube as shown in Table 5.9. Regardless of the size

lifference, for all the I in this suk a good i is observed

when compared to that from single trial using the same setup.
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Table 5.7: Confidence Analysis of 128-node Metacube, 10% Injection Rate, 0.8 burst
rate (Bit-complement, MMPP)

Average Delay | Throughput | Loss Rate
Mean 0.00463296 | 100.609023 | 0.0182861
Standard Deviation | 4.60687E-07 | 0.359456 | 0.000313386
CI min 0.00463150 99.493769 0.0173138
CI max 0.00463442 101.724278 0.0192585

Table 5.8: Confidence Analysis of 512-node Metacube, 10% Injection Rate, 0.8 burst
rate (Bit-complement, MMPP)

Average Delay | Throughput | Loss Rate
Mean 0.00740513 401.937271 | 0.0181410
Standard Deviation | 1.06983E-06 | 1.43499233 | 0.00030523
Clmin 0.00740181 | 307.485040 | 0.0171940
CI max 0.00740845 406.389502 | 0.0190880

Table 5.9: Confidence Analysis of 1024-node Metacube, 10% Injection Rate, 0.8 burst
rate (Bit-complement, MMPP)

Average Delay | Tl Loss Rate

Mean 0.0167180 726.847666 | 0.113355
Standard Deviation | 5.33048E-06 2953631 [ 0.000837548

CI min 0.0167015 | 717.6836807 [ 0.110756

CI max 0.0167346 736.011652 | 0.115953




90

5.3.3 Confidence Analysis of Network Performance Based on
Uniform Random and Poisson Distribution

In this subsection, the spatial distribution follows the uniform random distribution
and the temporal distribution follows the Poisson distribution. Two sizes of networks
are studied in this subsection: 32-node and 128-node Metacube networks. 10% and
30% injection rates are applied. Results are shown in Table 5.10 - 5.13. At first, we
study a 32-node Metacube network under two injection rates: 10% and 30%. Table
5.10 shows the confidence analysis of the 32-node Metacube with a 10% injection rate.
We increase the injection rate to 30% as shown in Table 5.11. When increasing the
injection rate to 30%, there is a slight increase in point-to-point delay and dramatic
increase in the loss rate. Because of the increased loss rate, the throughput does not

increase linearly with the injection rate.

Then, the 128-node Metacube network is studied with two injection rates. Table 5.12
and Table 5.13 give the confidence analysis of the 128-node Metacube with a 10%
injection rate and a 30% injection rate, respectively. Comparing the 32-node and
the 128-node Metacube network under 10% injection rate, there is a nearly linear
relationship between their throughput. This is because ideally, if there is no packet
loss, throughput should be nearly proportional to network size. A good consistency

is observed when compared to that from single trial using the same setup.



Random, Poisson)

Average Delay | Throughput | Loss Rate
Mean 0.00214272 25.580248 0.00047304
Standard Deviation | 1.75252E-05_| _0.102001 | 6.67887E-05
CI min 0.00208835 25.272777 0.00026582
Cl max 0.00219709 | 25905718 | 0.00068026

Random, Poisson)

Throughput

72.64780544

Average Delay
Mean 0.00271252
Standard Deviation | _6.43224E-07
Clmin 0.00271052
CI max 000271452

0.123270

72.265347
73.030264

0.00040937
0.0511217

0.0536619

Random, Poisson)

Average Delay | Throughput | Loss Rate
Mean 0.00393163 100.522779 0.0179471
Standard Deviation | 1.80037E-05 0.243803 0.000379015
Cl min 0.00387577_|_99.766352_|_0.0167711
CI max 0.00398749 101.279205 0.0191230
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Table 5.10: Confidence Analysis of 32-node Metacube, 10% Injection Rate (Uniform

Table 5.11: Confidence Analysis of 32-node Metacube, 30% Injection Rate (Uniform

Table 5.12: Confidence Analysis of 128-node Metacube, 10% Injection Rate (Uniform

Table 5.13: Confidence Analysis of 128-node Metacube, 30% Injection Rate (Uniform

Random, Poisson)

Average Delay | T Toss Rate
Mean 000434034 | 272.584013 | 0.112087
Standard Deviation | 3.08552E-05 | 0.654403 | 0.00133938
Cl min 0.00424461 | 270.553651 | 0.108832
Cl max 0.00443607 | 274.614375 | 0.117143
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Table 5.14: Confidence Analysis of 128-node Metacibe, 30% Injection Rate with one
buffer (Uniform Random, Poisson)

Average Delay | Throughput | Loss Rate

Mean 0.00449381 292.447320 | 0.0481428
Standard Deviation | 3.18122E-05 0.574319 | 0.00118329
CI min 0.00439511 200.665428 | 0.0444715

CI max 0.00459251 294.229213 | 0.0518141

Table 5.15: Confidence Analysis of 64-node Metacube, 10% Injection Rate (Hotspot,
Pareto)

Average Delay | Throughput | Loss Rate

Mean 0.00376033 50.583158 | 0.0849934
Standard Deviation | 2.89985E-05 0.294799 | 0.00229589
CI min 0.00367036 49.668510 | 0.0778701

CI max 0.00385030 51.497806 | 0.0921166

5.3.4 Confidence Analysis of Network Performance Based on
Hotspot and Pareto Distribution

In this subsection, the performance of a 64-node Metacube network under 10% injec-
tion rate is analyzed. The spatial distribution follows a hotspot distribution; and the
temporal distribution follows a BPD. From Table 5.15, a good consistency is observed
for average delay, throughput and loss rate. Although 10% injection rate is moderate,
the 64-node Metacube network has relatively high loss rate. The reason is two-fold.
One is that the low node degree of a 64-node Metacube makes it perform poorly. The
other is that the traffic pattern is bursty and unbalanced. BPD is a bursty traffic
which makes traffic uneven in terms of time. Hotspot traffic causes uneven traffic

spatially, which overloads the hotspot nodes.



5.3.5 Summary on Confidence Analysis

The confidence analysis covers a wide range of simulations for Metacube networks.
To cover both moderately loaded networks and heavily loaded networks, both 10%
and 30% injection rates were considered. In addition, different traffic distributions
were applied to Metacube networks of different sizes. For all the simulations for the
confidence analysis, after comparing a single trial and a sample containing 100 trials, a
good consistency is observed. The individuals in a sample set fluctuate slightly around
their mean. Although each run of the same simulation yields a different result, results
from a single trial are reliable, regardless of the network size, traffic distributions or
traffic loads. Hence, we have demonstrated that we do not need to conduct further
confidence analysis for the following simulations in this chapter. Results from a single
trial can confidently be utilized to evaluate network performance, and will be used for

the rest of the thesis.

5.4 Impact of Topology on Network Performance

In this section, the performance of networks will be compared and analyzed from the

perspective of their architecture properties. When projecting the hypercube and the
Metacube to a 2D layout, wires of different lengths are needed to connect all nodes
in the networks. Link delay is assumed to be proportional to wire length. After long
wires are taken into consideration, all three networks experience longer average de-
lay induced by the longer link delay. The torus has doubled its link delay. For the
Metacube and the hypercube, the added link delay depends on how many long wires

of each length the packets travel through during simulation. The more long wires a

packet travels through, the longer the transmission delay becomes.
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(1) Node Degree
Table 5.16 shows the node degree of the torus, the Metacube, and the hypercube
network as the size of the networks grows, ranging from 32 nodes to 1024 nodes.
The hypercube has the largest node degree among the three network topologies under
study. The torus has a fixed node degree of 4, regardless of the size of the network.
The Metacube has the lowest node degree and the largest diameter for 32 and 64-node
networks; therefore, the Metacube has the poorest performance for those cases as the

simulation results have shown.

Table 5.16: Node Degree

Size | Torus | Metacube | Hypercube
2| 4 3 5

61 | 4 3 6

28 | 4 1 7

512 | 4 5 9
1024 4 1 10

(2) Link Complexity )
Table 5.17 shows the link complexity of torus, Metacube and hypercube for different
network sizes. Link complexity is the number of links in a topology. For regular
topologies, link complexity is proportional to node degree, i.e., higher node degree

leads to higher link ity, and vice versa. Hypercube has the highest link com-

plexity among the three topologies under consideration. For the network size of 32
and 64, the torus has higher link complexity than the Metacube. For the size of 128
and 1024 nodes, the torus has the same link complexity as Metacube. For 512 nodes,

the Metacube has higher link complexity than torus.



Table 5.17: Link Complexity

Size | Torus | Metacube | Hypercube
32 4 48 80

64 | 128 96 192
128 | 256 256 448
512 [ 1024 1280 2304
1024 | 2048 2048 5120

(3) Diameter

Table 5.18 plots the diameter of the torus, the Metacube and the hypercube as the
size of the networks grows. In general, network diameter increases along with the
network size for all topologies. For 128-node and 1024-node networks, with the same
node degree but a smaller diameter, the Metacube has much better performance than

torus.

Table 5.18: Diameter

Size | Torus | Metacube | Hypercube
32 4 6 5
64 | 8 8 6
128 | 10 8 7
512 | 22 10 9
[ 1024 32 12 10

(4) Average Hop Count

Average hop count gives a better indicator of path lengths than diameter for the
network. It shows the average travel distance, which can be used to estimate com-
munication cost. Table 5.19 shows the average hop count for the torus, the Metacube

and the hypercube for different network sizes. Due.to the low node degree, the 64-
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node Metacube network has the largest average hop count among the three network
topologies. The hypercube networks have the lowest average hop count, regardless of
size. For 128, 512 and 1024-node networks, the average hop count of the Metacube

lies in between the other two.

Table 5.19: Average Hop Count

Size | Torus | Metacube | Hypercube
32 3 3.25 2.58
64 4 6 3
128 6 4.375 3.53
512 12 54375 4.5

1024 16 8 5

5.5 Performance Comparison

The three target topological networks are evaluated using three performance metrics:
point-to-point delay, throughput and loss rate. Small delay, high throughput and

small loss rate are preferred for NoC.

5.5.1 Network Performance under Bit-complement and Pois-
son Distribution

The sender and the receiver are pre-determined at the beginning of each simulation.

The sum of decimal i of two icating node IDs is always equal

to the size of the network minus one. The requirement, for the hypercube is different,

because all the communicating peers are a full diameter away from each other. Under
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bit complement traffic, the hypercube network is unable to take full advantage of its
short diameter. Before wire length is considered, all wires are assumed to be the same
length. The situation is worse for the Metacube because it takes more hops to route

packets than in the hypercube.

When the effect of long wires is idered in the hypercube and Me b 1

most packets have to travel via long wires to arrive at their destinations. Therefore,

the torus always has shorter delay than the M and the

of the network size.

5.5.1.1 Average Point-to-Point Delay

We start with an injection rate of 10%. When uniform length of wires is assumed,
the average point-to-point delay of the torus, the Metacube and the hypercube of
different sizes is shown in Figure 5.1. The hypercube network has the lowest delay
for all sizes among the three network topologies. The result for the injection rate of
20% and 30% are shown in Figures 5.2 and 5.3, respectively. Under bit-complement
distribution, communicating pairs are a full diameter away from each other for the
hypercube. It is worse for the Metacube, which has lower node degree and larger di-
ameter than the hypercube. Due to the low node degree and the spatial characteristic

of the bit- istribution, the average point-to-point delay for the 64-node

Metacube is much higher than that of the torus and the hypercube. If wire length is

not differentiated, the average delay is proportion to the average travel distance. For

networks of size 32, 64 and 128, the average travel distance in a torus is smaller than
in a hypercube and a Metacube, thus the torus has smaller delay than the hypercube

and the Metacube. The situation changes for networks size of 512 and 1024, where
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the hypercube and the Metacube have smaller delay than the torus. The reason is
that the torus begins to have larger average travel distance than the hypercube and
the Metacube. Especially under 30% injection rate, due to its large diameter, the
1024-node torus network has a dramatically high point-to-point delay, which is much

higher than the Metacube and the hypercube.

To incorporate the effect of wire length on network performance evaluation, we need
to project multidimensional topologies onto a 2D plane. Wires of different lengths are
utilized to construct the networks as shown in Tables 4.3 and 4.4. Figure 5.4 shows the
average point-to-point delay of three types of networks under 10% injection rate with
consideration of different wire lengths. The torus has the lowest delay because of its
uniform length short wires. Due to the use of long wires, both the hypercube and the

Metacube have larger delay than the results shown in Figure 5.1. Note that only the

successfully delivered packets are considered in the ion of point-to-point delay.

5.5.1.2 Throughput

Figures 5.5 - 5.7 compare the throughput of the torus, the Metacube and the hy-
percube networks of different sizes without distinguishing different lengths of wires
for the injection rate of 10%, 20% and 30%, respectively. Under 10% injection rate,
the differences among the three curves are not significant. The curves begin to di-
verge when the network size increases. Figure 5.8 shows the throughput of the three
networks under 10% injection rate when the difference in wire lengths is taken into
account. Figures 5.5 and Figure 5.8 have similar curves. Due to longer link delay,

long wires lead to a lower throughput.



2 o 128 26 512 1024
Network Size

Figure 5.1: Delay Performance (Bit-complement, Poisson, A=0.1, uniform wire length)

Tor

cube
Hypercube

Delay (5)
8

B o 128 256 1z 1024

Figure 5.2: Delay Performance (Bit-complement, Poisson, A=0.2, uniform wire length)



0004 / 4 N

0002

B o 128 256 512 1024

Figure 5.3: Delay Performance (Bit-complement, Poisson, A=0.3, uniform wire length)

Delay (s)

@ P 128 256 sz 1024
Network Size

Delay Performance (Bit-complement, Poisson, A=0.1, different wire

Figure 5.4:
length)




Figure 5.5: Tl
length)

Figure 5.6: T

Throughput (Mbls)

IR ERE]

Throughput (Mbs)

1000

Performance (Bit-

12 1020

son, A=0.1, uniform wire

800 o
o
0
0 P
20
B o 128 256 512 1024

Network Size

length)

Performance (Bit

Poisson, A=0.2, uniform wire



gggsss

g5

Throughput (Mbs)

102

Network Size

1024

Figure 5.7: T) P (Bit Poisson, A=0.3, uniform wire

length)

Throughput (Mbis)
H

Network Size

Figure 5.8: TI P (Bit. Poisson, A=

length)

1024

.1, different wire




103

5.5.1.3 Loss Rate

Figure 5.9 shows the loss rate of the torus, the Metacube and the hypercube of dif-
ferent sizes under uniform wire length conditions. Figures 5.10 and 5.11 show the
loss rate when injection rate increases to 20% and 30% respectively. Assuming there
is no buffer for the nodes, due to contention, loss rate increases with the injection
rate. Again, for a 64-node network, due to the low node degree, the Metacube has
extraordinary loss rate. Figure 5.12 shows the loss rate of the three topologies under
consideration after taking into account wire length differences under 10% injection
rate. Comparing Figure 5.9 and Figure 5.12, both the torus and the Metacube have
noticeable increase in the loss rate when the difference in wire lengths is taken into
account. The Metacube has much lower loss rate than the torus for sizes of 128-
node, 512-node and 1024-node. Especially, for 128-node and 512-node networks, the

Metacube has a loss rate which is close to that of the hypercube.

5.5.2 Network Performance Analysis Based on Bit-complement
and MMPP Distribution

Unless otherwise specified, different wire lengths are considered in our analysis for the
remainder of the thesis. We study the network performance when the network traffic
becomes burstier. The simulation results show that the loss rate increases along with
the burst rate. The average channel load of the hypercube network is the smallest
among the three, and the hypercube network is more resilient to burstiness than the
torus and the Metacube due to high node degree. Hence, the loss rate for the hyper-

cube is not affected as much as those for the torus and the Metacube.
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MMPP has short range correlation between packet arrivals. Injection rate is set as

10%, 20% and 30%. 30% is quite high for injection rate especially when the size

of networks is large. For bit listribution, the hypercube does not lose
packets even when the injection rate is up to 30%. To show the influence of bursti-
ness, burst rates of 0, 0.4 and 0.8 are applied to the networks. When the burst rate
is 0, MMPP degrades to a Poisson process. Then the burst rate is set to 0.4, and
simulation results are obtained. Finally, simulation is conducted with a burst rate of
0.8, which is burstier than when the burst rate is 0.4. But for hypercube (injection
rate 10 %), when further increasing the burst rate to 0.8, the hypercube networks
perform almost the same as under Poisson distribution. In contrast, the torus and

the Metacube networks perform quite differently under different burst rates.

5.5.2.1 Average Point-to-point Delay

Figures 5.13 aud 5.14 show the average point-to-point delay of the three topologies
under 10% injection rate when the burst rate of the traffic is 0.4 and 0.8, respectively.
These two plots are very consistent, because for bufferless networks, average delay is

largely ined by spatial distribution. Therefore, burstiness does not produce any

significant delay difference for the networks. Not surprisingly, due to the low node
degree, the 64-node Metacube has the largest delay which makes it an odd point.
From Table 4.3, it can be seen that for 128-node and 512-node networks, unlike the
hypercube, the Metacube does not have a significant number of the longest wires,
which makes it have similar delay as the torus. However, the 1024-node network, due
to relatively low node degree and large number of the longest wires, the Metacube

has the largest delay exceeding the hypercube.
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5.5.2.2 Throughput
Under 10% injection rate, the throughput performance for traffic with burst rate of
0.4 and 0.8 is shown in Figures 5.15 and 5.16, respectively. It is observed that, due to

increased traffic burstiness, the throughput under 0.4 burst rate is higher than that of

under 0.8 burst rate. In general, the hyp has the highest followed
by the Metacube, then the torus. It can be expected that throughput degradation

caused by traffic burstiness will become more dramatic as the injection rate increases.

5.5.2.3 Loss Rate

Figures 5.17 and 5.18 show the loss rate under 10% injection rate for a burst rate of
0.4 and 0.8, respectively. The loss rate of the hypercube remains at 0, even when the
burst rate goes as high as 0.8. But for the torus and the Metacube networks, the in-

creased burst rate will cause more packet loss. For a 128-node Metacube, the loss rate
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is 0.8% under 0.4 burst rate and 1.8% under 0.8 burst rate. When the injection rate

becomes higher, higher loss rate will be encountered, especially for a higher burst rate.

5.5.3 Performance Analysis Based on Uniform Random and
Poisson Distribution

Under uniform random traffic, communication pairs are randomly selected during
simulations. Each node will have equal probability to be selected as the destination
to receive packets from any sender (except from the node itself). Unlike some other
traffic patterns, randomness does not favor any particular topology, thus fairness is
achieved. Under uniform random traffic, for the hypercube and the Metacube, the
average travel distance is greatly reduced from that of the bit-complement distribu-

tion, which means communicating pairs are not necessarily far away from each other.
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5.5.3.1 Average Delay

The average point-to-point delay of torus, Metacube and hypercube of different sizes
is plotted in Figure 5.19 - 5.21 for the injection raté of 10%, 20% and 30% , respec-
tively. When the average hop count becomes the dominating factor, the torus loses
the advantage of smaller delay. For the hypercube, the advantage of smaller travel
distance completely offsets the disadvantage of longer link delay. The hypercube has
the smallest delay among the three for all sizes. As network size increases, the dif-
ferences among three delay plots increase. Due to the low node degree, the 64-node
Metacube still has relatively large delay. Heavier traffic intensifies this intrinsic draw-
back in the Metacube of this size. Under 10% injection rate, the loss rate of the
64-node Metacube is slightly lower than that of the 128-node Metacube. When the
injection rate increases to 30%, the delay of the 64-node Metacube exceeds that of

the 128-node Metacube.
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5.5.3.2 Throughput

Figures 5.22, 5.23 and 5.24 give the throughput of the three networks of different
sizes for the injection rates of 10%, 20% and 30%, respectively. In general, through-
put increases with the injection rate. The simulation results show that under uniform
random distribution, hypercube still has the highest throughput among the three
topologies. When the network size is small, the differences among them are not
significant. With the increase of injection rate and network size, the throughput per-
formance begins to diverge. The advantage of hypercube becomes more obvious for
1024-node network. For sizes of 128-node and 512-node, the Metacube has very close

performance to the hypercube.




114

1800
" Tous
1600 * Motacube .
4 Hypercube
1400, L i
120 .
] /
£ oo
g /
2 ¥
H .
)
E
0.
@ o B ) sz 1024

Figure 5.23: Throughput Performance (Usiiform, Poisson, A=0.2)

20 - Torus
®  Metacube

4 Hypercube

Throughput (Mbls)

250 512 1024
Network Size

Figure 5.24: Throughput Performance (Uniform, Poisson, A=0.3)



Network Size
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5.5.3.3 Loss Rate

tion rate of 10%, 20%,

Loss rates are presented in Figures 5.26, 5.26 and 5.27 for inj
and 30%, respectively. In general, due to contention, the loss rate increases along with
the injection rate. Random traffic may cause multiple data flows requesting the same
resources, which leads to contention within the network. Because of such contention,
unlike under bit-complement traffic, the loss rate of the hypercube network is no
longer 0, but it is still much lower than that of the torus and the Metacube. Due
to the low node degree, the 64-node Metacube still has relatively high loss rate, but
not as dramatic as under bit-complement distribution. The loss rate of the Metacube

network lies in between that of the torus and the hypercube.
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5.5.4 Network Performance Analysis Based on Hotspot Dis-
tribution

When the spatial distribution is hotspot and the temporal distribution is Poisson, if
the channel load is mild, a small hotspot proportion does not lead to significant degra-
dation of network performance. The reason is that every node generates data with
probability P, independently. If P, is small, it is unlikely that many nodes request
the hotspot at the same time. Thus, the hotspot node does not contributes much to
the performance degradation. This is verified by the simulation results.

The probability of a node sending a message to the hotspot node in a time slot is

P, xa. The probability of M (0 < M < N—1) nodes sending messages to the hotspot

node in the same time slot can be by the binomial

P= ('x) x (P x a)™ x (1= P, x a)¥~M, (5.11)

For the BPD ON/OFF traffic model, the ON period lasts for the mean of the ON
time, which length is a few multiples of a time interval. If ON periods of different
nodes overlap and they are sending messages to the hotspot, the degradation of net-

work performance is significant.

5.5.4.1 Average Delay

The average delay for hotspot traffic with a 10% injection rate is shown in Figure
5.28, which is consistent with that of the uniform “random traffic shown in Figure
5.19. For bufferless networks, average delay is largely determined by the average
travel distance which is reflected by the spatial distribution. A hotspot distribution

with small hotspot proportion shares similar spatial characteristics with the uniform
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Table 5.20: Confidence Analysis of 128-node Metacube, 10% Injection Rate (Uniform

Random, Poisson)

Hotspot Proportion | Average Delay | Throughput | Loss Rate
10% 0.004048 102731.3832
20% 0.004338 98681.2203
30% 0.004629 94333.2076 3
40% 0.004967 86577.9815 | 0.22525

random distribution. The only difference lies in the hotspot nodes.

5.5.4.2 Throughput

The throughput for hotspot traffic with a 10% injection rate is shown in Figure 5.29.

Compared with other traffic distributions discussed in this thesis, the three target

networks i have the lowest

under this traffic.
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5.5.4.3 Loss Rate

The loss rate for hotspot and BPD traffic with a 10% injection rate s shown in
Figure 5.30. Even with an injection rate of 10%, all the three networks experience
significant packet loss. The hypercube network, which usually has a very small loss
rate under other traffic scenarios, has a 9% loss rate for a 1024-node network. This
traffic scenario can greatly degrade network performance in terms of throughput and
loss rate. The loss rates for the 128-node Metacube under different injection rates
ranging from 10% to 30% and different hotspot proportion ranging from 10% to 40%
are shown in Figure 5.31. Tt can be observed that the loss rate increases significantly

along with the injection rate as well as the hotspot proportion. The loss rates are

much higher than those under uniform random distribution with the same injection
rate. Due to the overload on hotspots, higher hotspot proportion leads to a higher

loss rate.
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5.6 Performance Improvement

In the case of resource contention, buffers can be used to avoid packet loss. In this

section, we study the ce i by adding an additional buffer to

each node. For simplicity, at first one extra buffer space is considered. We chose

bit-complement and uniform random as the spatial distributions and the Poisson pro-

cess as the temporal distribution. To see how the ce i varies
with the traffic load, three injection rates (i.e., 10%, 20% and 30%) are applied to the
target networks. Different sizes, 32-node, 64-node, 128-node, 512-node and 1024-node

are used for performance study.

The performance of a 64-node torus network under 30% injection rate is evaluated
along with different buffer sizes. Its delay, throughput and loss rate are shown in Fig-
ure 5.32 - Figure 5.34, respectively. It is clear that there is a significant improvement
in both throughput and loss rate after adding the first buffer. When the buffer size
is 3, the loss rate drops to a very low value. Further increasing buffer space to 6, the

loss rate becomes 0.

The three important performance metrics are evaluated as shown in Figure 5.35 - Fig-
ure 5.52. When the injection rate increases, the performance improvement gained by
adding a buffer becomes less obvious. Before adding a buffer to the networks, the three
throughput curves in Figure 5.8 begin to split after a node size of 128. After a buffer
space is added, the three throughput curves are very consistent for even 1024-node
networks as shown in Figure 5.38, which indicates ‘the improvement of throughput
for both the torus network and the Metacube network achieved by adding one buffer.
Taking the 128-node torus network as an example, under 10% injection rate, the loss

rate is reduced from 2.7% to 0.13% after adding a buffer space. However, for networks
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of large size, adding a buffer does not always produce significant improvement to the

lo

rate. When the injection rate is 10%, both the torus and the Metacube have

significant loss reduction and the is even significant for the
size of 1024 nodes. When the injection rate becories higher, the improvement for

large networks becomes le

obvious. For example, under 30% injection rate, there is
only 1% improvement for a 1024-node torus network and 4% for a Metacube network
after adding a buffer space.

Adding more buffers to the networks does not always incur lower loss rate or higher
throughput. If two or more packets arrive at an inpu‘t port at the same time, only one
packet can enter the buffer queue (assuming that particular link is busy and there is
vacancy in the queue). The excess packets will be discarded regardless of the buffer

e, simply because they cannot enter the same queue at the same time. If this is

the case, adding a buffer to this input port cannot lower the loss rate or improve the

throughput.
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0020

0018 - .

Delay (s)

0010

0005

B o 128 20 12 1024

Figure 5.37: Delay Performance (Bit-complement, Poisson, A




Throughput (Mbls)

300,
0
100 .
2 o 128 28 512 1024
Network Size
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Figure 5.42: Loss Rate Performance (Bit-complement, Poisson, A=0.2, buffer size=1)
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Figure 5.45: Delay Performance (Uniform, Poisson, A=0.2, buffer size=1)
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5.7 Scalability Analysis of Different Topologies

In a scalable network, performance roughly improves in proportion to the total ca-
pacity [45]. As the size of NoC increases, it is of great interest to know how its
performance scales. The three important performance metrics include point-to-point
delay, throughput and loss rate. Networks of 32, 64, 128, 512, and 1024 nodes were
studied. Under the same injection rate, if throughput increases approximately linearly
with the size of the networks, performance scales. High node degree is a big advantage
to maintain scalability. Since it has the highest connectivity among the three topolo-
gies, the hypercube outperforms the Metacube and the torus. Through simulations,
the performance of the hypercube network scales the best among the three topologies
under consideration. The hypercube is also more resilient to load changes and traffic
burstiness. Unlike the torus and the Metacube, its loss rate increases very slowly as
the network scales. The performance of the torus network degrades the fastest among

the three. Although the 32-node and 64-node Metacube networks perform even worse




134

than the torus, the Metacube networks of 128 and 512 nodes have excellent perfor-
mance which is very close to the hypercube in terms of the throughput and the loss

rate.

5.8 Discussion and Summary

Node degree/link complexity and diameter have great impact on the performance of
networks. Networks built on topologies of higher node degree and smaller diameter
will outperform networks built on topologies of lower node degree and larger diameter.
When choosing topologies, performance is not the only concern for the design. Trade-
off needs to be made between performance and cost/implementation complexity. The
principle is to pick the topology with the lowest cost from all eligible candidates which

can meet the icati i ie. delay, t and loss rate.

By comparing the performance of the torus, the Metacube and the hypercube, it is
found that for networks of 32 nodes and 64 nodes, the Metacube networks have the
poorest performance due to its low node degree. The performance differences among
the three networks become more and more apparent as the networks scale up. The
results show that the Metacube and the hypercube are more resilient to load changes
than the torus. The network performance degrades when the injection rate increases,
for sizes of 128 nodes or more, the torus degrades the fastest among the three. Under
the same injection rate, as network size scales up, the performance degradation is
mainly caused by heavier channel load. Increased contention can lead to longer delay,
lower throughput and higher loss rate. Under MMPP, the torus and the Metacube

networks have different throughput and loss rates under different burst rates. Due to

its high connectivity, the hypercube networks is not as much as affected as the torus




networks and the Metacube networks.

Although the hypercube performs the best, the hypercube is expensive in terms of
link complexity and node degree. When the sizes of networks are small (32-64 nodes)
and channel loads are not heavy, torus is a viable choice. It is cheap and simple
to implement. For the 32-node and 64-node cases, the Metacube network performs
the worst among the three because it has the smallest node degree and the largest
diameter. For 128 nodes and 512 nodes networks, the Metacube starts to outperform
torus and exhibits similar performance to the hypercube especially after adding one
buffer space. The Metacube of 128-node and 512-node have lower link complexity
and fewer long wires, which makes it a viable choice under a moderate load. For a
bigger size of network, although the Metacube has similar node degrees to the torus,

scales up

its smaller diameter contributes to better performance. When network
to 1024 nodes, neither the torus nor the Metacube has very satisfactory performance.

The networks have distinct performance for different traffic scenarios. In particular,

the loss rate and the lly i d by the iness and

the hotspot proportion. With increased burstiness and hotspot proportion, contention

is intensified. As a result, more packets will be lost and the throughput becomes lower.



Chapter 6

Conclusions and Future Work

Interconnection network design greatly affects system performance and cost. In this
thesis, we study the performance and the scalability of the torus, the Metacube, and
the hypercube networks for NoC applications. The performance comparisons among

these three networks are investigated under various traffic scenarios.

6.1 Conclusions

The major contributions of the thesis include: A coniprehensive study was conducted

on network topologies including classic topologies and some recent topologies with

their main advantages and disadvantages. We ize their ical parame-

ters including diameter, node degree, link complexity, efc. Three topologies are chosen
for performance analysis from the reviewed topologies

Three traffic generators including Poisson (an independent and memory-less process),
MMPP (a short-range dependent process) and BPD (sclf-similar/long-range corre-
lated process) with tunable parameters, are implemented in NS-2. Due to the desir-

able characteristics, such as minimal routing distance and freedom from dead-lock,

136
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order routing i are i d for the three topologies.

The approximate wire cost of each topology is calculated based on a 2D grid layout.
The impact of wire length on network performance, especially on delay performance,
is analyzed. Performance improvement by adding a buffer space is well studied in
this thesis. The performance gain by adding more than one buffer space is also eval-
uated. When adding a buffer space to a network, there can be a great improvement
in its performance, i.e., lower loss rates and higher throughput, especially for smaller
networks. When the traffic load within the network is very heavy, adding one buffer
space does not seem to contribute much to lower the loss rate. This is because when
the traffic load is very heavy, multiple packets are trying to enter the same queue.
This conflict cannot be solved by adding buffer space.

A well ded analysis is cond

1 under various traffic scenarios for

the chosen target topologies. The benefits and drawbacks of them are discussed in

terms of their Based on si ion results, we give some

suggestions as to how to select topologies based on traffic loads and size of network.
When traffic load is light, the torus can be an option for small networks up to 64
nodes. For sizes of 128 nodes and 512 nodes, the Metacube can be a viable choice,
which has a similar performance to the hypercube only with lower node degree. For
1024-node networks, the hypercube has an absolute advantage over the Metacube in

terms of performance.

6.2 Future Work

There are a few directions worth further investigation in the future.

This research targets networks from 32 nodes up to 1024 nodes, which is likely rea-
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sonable for network sizes for the next at least two or three years in the advancement
of NoC. As the size of NoC keeps increasing, it is worth studying the performance
of even larger networks, 2048-node or more. This study can be expanded to bigger
networks in the future. Implementation of the three networks on FPGA platform will
be useful to estimate area cost and more accurately evaluate network performance
of the three target network topologies. We are also interested in implementing real
applications to the target networks.

Traffic modeling and how to make it applicable to various networks remain challenging

to NoC researchers. In this thesis, three popular spatial and three temporal distri-
butions are adopted in this work. If there are other spatial distributions or temporal
distributions that can better characterize some NoC traffic, it is definitely worthy to
include them as well '

One important issue of a NoC design is to balance its performance in term of through-
put or latency and costs such as area usage and power consumption. This thesis fo-
cused on performance evaluation, with very little effort on cost estimation except the
wire length. When evaluating different topologies, cost is another important issue.
Network designers have to make a trade-off between the performance and the cost. It
is generally more important to design a capable network with moderate expense than
to design a superior network with daunting cost.

Adaptive routing is able to explore all possible paths. The implementation of adaptive
routing requires more effort and resources than deterministic routing. Decisions are

made based on local i ion, which may be disad from the global per-

spective. For deterministic routing, the same path is taken with the same source and
destination addresses. Deterministic minimum routing simplifies the router design,
which is implemented with minimal overhead. Design and verification of dynamic

network behavior are much more complex than for deterministic networks. Adaptive
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routing algorithms can be applied to NoCs as long as their overhead is acceptable.
If a more advanced routing algorithm or scheduling scheme can be adopted, network
performance can be improved. For example, if there is a highly adaptive, dead-lock
and live-lock free routing algorithm applied to these three networks, there will be

more paths which could be used to route packets.
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Appendix A

Confidence Analysis

This Appendix includes the confidence analysis for the torus and the hypercube net-
works and some of the Metacube Networks of different sizes under different traffic

scenarios.

Table A.1: 32-node Torus, 10% Injection Rate (Bit-complement, Poisson)

Average Delay | Throughput [ Loss Rate

Mean 0.001809507 | 25.52359735 | 0.002723507
Standard Deviation | 1.71143E-06 | 0.106305272 | 0.000140574
CI min 0.001804149 | 25.19083445 | 0.002283475 |

CI max 0.001814864 | 25.85636025 003163538

Table A.2: 128-node Torus, 10% Injection Rate (Bit-complement, Poisson)

Average Delay [ Throughput [ Loss Rate

Mean 0.00363462 | 99.46274358 | 0.02736607
Standard Deviation | 2.53772E-06 | 0.287495706

CI min 0.003626746 | 98.57075457
CI max 0.003642494 | 100.3547326 | 0.028374439
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Table A.3: 32-node Torus, 30% Injection Rate (Bit-complement, Poisson)

Average Delay | Throughput [ Loss Rate

Mean 0.00184023 | 74.58712771 | 0.02851754
Standard Deviation | 9.41254E-07 | 0.126643704 | 0.000277833
CI min 0.00183731 | 74.19420083 | 0.027655531
CI max 0.00184315 | 74.98005459 | 0.029379549

Table A.4: 128-node Torus, 30% Injection Rate (Bit-complement, Poisson)

Average Delay | Tl Loss Rate

Mean 0.0085576__| 235.2524179 | 0.23140289
Standard Deviation | _2.09805E-05_| 0170539357 | 0.000683399
Cl min 0008492506 | 234.7232996 | 0.229282564

CI max 0.008622694 | 235.7815362 | 0.233523216

Table A.5: 128-node Torus, 10% Injection Rate, 0.8 Burst Rate (Bit-complement,

MMPP)
Average Delay | T Loss Rate
Mean 0.00364258 | 96.82892801 | 0.05253152
Standard Deviation | 3.5567E-06 | 0.33743567 | 0.000580361
Clmin 0003631545 | 95.78199444 0702959
CT max 0.003653615_| 97.87586150 | 0.054360081

Table A.6: 128-node Hypercube, 10% Injection Rate, 0.8 Burst Rate (Bit-complement,

MMPP)
Average Delay | T Loss Rate
Mean 0.00579779 | 102.3864317 0
Standard Deviation | 4.0936E-07 | 0.346965865 0
Clmin 000579652 | 101.3099295 0
Cl max 000579906 | 103.4629338 0
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Table A.7: 512-node Torus, 10% Injection Rate, 0.8 Burst Rate (Bit-complement,
MMPP)

Average Delay | T Loss Rate
Mean 0.00736454 348.7051838 | 0.14904076
Standard Deviation | 1.05193E-05 1.19670968 | 0.000862812
Cl min 0.007331903 | 344.9922522 | 0.146363784
CI max 0.007397177_| 3524181153 | 0.151717736

Table A.8: 512-node Metacube, 10% Injection Rate, 0.8 Burst Rate (Bit-complement,
MMPP)

Average Delay [ Tl Loss Rate

Mean 0.00740513 | 4019372711 | 0.01814103
Standard Deviation | 1.06983E-06 | 1.434992331 | 0.00030523
CI min 0.007401811 | 397:4850398 | 0.017194019
CI max 0.007408449 | 406.3895024 | 0.019088041

Table A.9: 512-node Hypercube, 10% Injection Rate, 0.8 Burst Rate(Bit-complement,
MMPP)

Average Delay | T Toss Rate
Mean 0.01096608 409.3533817 0
Standard Deviation | 1.08879E-06 | 1.312188954 0
CI min 0.010962702 | 405.2821622 0
Cl max 0.010969458 | 413.4246012 0

Table A.10: 1024-node Torus, 10% Injection Rate, 0.4 burst rate (Bit-complement,
MMPP)

Average Delay | TI Loss Rate

Mean 0.00969956 | 691.8875932 | 0.15461908
Standard Deviation | 1.05345E-05 14006 _| 0.000874199
CI min 0009666875 | 686.8165521 | 0.151906777

CT max 0.009732245_| 696.9586344 | 0157331383
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Table A.11: 1024-node Torus, 10% Injection Rate, 0.8 burst rate (Bit-complement,

MMPP)
Average Delay | Throughput
Mean 0.00082393 | 668.8343102
Standard Deviation | 1.57051E-05_| 2.268172428
CI min 0.009775203 | 661.7970493
CI max 0.009872657 | 675.8715891

0.18257007
0.001118654
0.179099314
0.186040826

Loss Rate

complement, MMPP)

Table A.12: 1024-node Metacube, 10% Injection Rate, 0.4 burst rate (Bit-

Average Delay | T! Loss Rate

Mean 0.01667322 | 754:7625265 | 0.07914762
Standard Deviation | 3.71614E-06 | 2.007667972 | 0.000640506
CI min 0.01666169 | 748.5335022 | 0.077160375
CI max 0.01668475 | 760.9915509 | 0.081134865

complement, MMPP)

Table A.13: 1024-node Hypercube,

10% Injection Rate, 0.4 burst rate (Bit-

Average Delay | T Loss Rate
Mean 0.01422525 | 817.5473272
Standard Deviation | 2.46747E-06 | 2.457354639 0
CI min 0.014217594 | 809.9230974 0
CI max 0.014232906 | 825.171557 0

Table A.14: 1024-node Hypercube, 10% Injection Rate, 0.8 burst rate (Bit-

complement, MMPP)

Average Delay | Tl Loss Rate
Mean 0.01422518 | 817.4629313 0
Standard Deviation | 3.71831E-06 | 2.885646242 0
CI min 0.014213643 | 808.5098768 0
CI max 0.014236717 | 826.4159858 0
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Table A.15: 32-node Torus, 10% Injection Rate (Uniform Random, Poisson)

Average Delay | Throughpu
Mean 0.00187293
Standard Deviation | 1.59629E-05
Cl min 0.001823403
CI max 0.001922457

25.5709499 | 0.00094446
0.107184789 | 0.00176608
25.23839657 | 0.004535011
25.90350323 | 0.006423931

t | Loss Rate

Table A.16: 32-node Hypercube, 10% Injection Rate (Uniform Random, Poisson)

Average Delay | Throughput | Loss Rate
Mean 0.00155248 25.59010607 | 0.00003933
Standard Deviation 1.2106E-05 0.103273298 | 1.73147E-05
CI min 0.00151492 25.2696886 | 1.43909E-05

CI max 0.00150004 | 25.91052354 | 9.30509E-05

Table A.17: 128-node Torus, 10% Injection Rate (Uniform Random, Poisson)

Average Delay | Throughput | Loss Rate
Mean 0.00365307 99.71775291 | 0.02450292

| Standard Deviation | 1.89855E-05 | 0.306520123 0483947
CI min 0.003594165 | 98.76673843 | 0.023001418

CI max 0.003711975 | 100.6687674 | 0.026004422

Table A.18: 128-node Torus, 30% Injection

Rate (Uniform Random, Poisson)

Average Delay | Tl Loss Rate
Mean 000501188 | 259.6866146 | 0.1530384
Standard Deviation | 0.000114396 | 1.036325417 020711
CI min 0.005556954 | 256.5023201 | 0.146612572
CT max 0.006266806 | 262.870909 | 0.159464228 |
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Table A.19: 128-node Torus, 30% Injection Rate with one buffer (Uniform Random,
Poisson)

Average Delay | Throughput [ Loss Rate
Mean 0.00603615 | 279.7653952 |  0.088546
Standard Deviation | 0.000104218 | 0.944432475 | 0.001877295
CI min 0.005712801 | 276.8351831 | 0.082721474
CI max 0.006359499 | 282.6956072 | 0.094370526

Table A.20: 128-node Hypercube, 10% Injection Rate (Uniform Random, Poisson)

Average Delay | Throughput | Loss Rate

Mean 0.00292834 101.935903 | 0.00387797
Standard Deviation | 1.53657E-05 [ 0.285659564 | 0.000158519
CI min 0.002880666 | 101.0496109 | 0.003386148
CI max 0.002976014 | 102.8221952 | 0.004369792

Table A.21: 128-node Hypercube, 30% Injection Rate (Uniform Random, Poisson)

Average Delay | Throughput | Loss Rate

Mean 0.00295915 | 298.4663255 | 0.02749271
Standard Deviation | 0.520393397 502E-05
CI min 0.002911053 | 296:8517442

CI max 0.003007247 | 300.0809068 | 0.029719195

Table A.22: 128-node Hypercube, 30% Injection Rate, Buffer Size=1 (Uniform Ran-
dom, Poisson)

Average Delay | Throughput | Loss Rate

Mean 0.00297969 | 304.9215814 | 0.00684976
Standard Deviation | 1.64849E-05 | 0.425405196 | 0.000320167
CI min 0.002928544 | 303.6017121 856404

CI max 0.003030836 | 306.2414507 | 0.007843116
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Table A.23: 64-node Torus, 10% Injection Rate (Hotspot, Pareto)

Average Delay | TI Loss Rate

Mean 0.00254412 | 52.37116269 | 0.05261154
Standard Deviation | 2.17828E-05 | 0.339728423 | 0.001777713
CI min 0.002476536 | 51.31711558 | 0.047095979
CI max 0.002611704 | 53.42520981 | 0.058127101

Table A.24: 64-node Hypercube, 10% Injection Rate (Hotspot, Pareto)

Average Delay | Throughput | _Loss Rate
Mean 000206017 | 53.73833311 | 0.02807272
Standard Deviation | 1.36071E-05_| 0.315370085 | 0.001773063
Clmin 0002026052 | 52.75083266 3471585
Cl max 0.002111388_| 54.71683355 4473855
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