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ABSTRACT 

Bycatch, defined here as catch discarded for regulatory, economic or personal 

reasons, from pelagic long line fisheries has contributed to wide spread 

population declines of sharks and sea turtles. Opportunities to reduce impacts in 

these fisheries occur throughout the fishing process and depend upon the fishing 

practices within fleets, and upon the behaviour of target and bycatch species. 

The overall objective of this thesis was to identify bycatch mitigation opportunities 

within the Canadian Atlantic pelagic longline fishery, which targets swordfish 

(Xiphias g/adius), warm-water tunas (bigeye, Thunnus obesus; yellowfin T. 

a/bacares; and albacore, T. a/a/unga) and mahi-mahi (Coryphaena hippurus). 

Bycatch includes common sharks and rays (blue shark, Prionace g/auca; pelagic 

stingray, Pterop/atytrygon vio/acea), and endangered sea turtles (leatherback 

Dermoche/ys coriacea; loggerhead, Caretta caretta). Bycatch mitigation 

approaches such as shifting to circle hooks, increased the likelihood that shark 

bycatch would be released alive and with less severe hooking injuries. Shorter 

long line soak times also increased hooking survival among most of the common 

bycatch species. Shorter soak times would not decrease catch of the most 

common landed species (swordfiSh), but this shift in fishing practices could 

negatively impact fisher safety. Interviews with active longline captains revealed 

operational difficulties and unintended ecological impacts with proposed bycatch 

mitigation approaches. longline captains also reported innovative uses of 

bycatch mitigation tools that could increase post-release survival of common 



bycatch species in this and other pelagic longline fleets , Finally, the combined 

analysis of fisheries observer data, qualitative data from fishers ' knowledge 

interviews, and concurrent environmental data suggested that high blue shark 

catch rates were related to local oceanography - and did not reflect behavioural 

differences between blue shark and swordfish. Clearly, there are opportunities for 

bycatch mitigation within the Canadian pelagic longline fishery for swordfish and 

tunas. However, the process of interviewing pelagic longline captains revealed 

both interest in reducing bycatch , but also suspicion of research efforts. Such 

trust issues will need to be addressed in subsequent research as the combined 

use of fishery assessments, detailed oceanographic data, practical fishing 

knowledge, and on-the-water observations will be needed to decrease the 

amount of and harm to discarded bycatch. 
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CHAPTER 1: INTRODUCTION AND OVERVIEW 

1.1 Introduction 

1.1.1 Bycatch mitigation 

Fisheries bycatch, that portion of the catch that is released alive or discarded 

dead, has contributed to widespread population declines of marine species 

(D'Agrosa et al. 2000; Lewison et al. 2004), has altered ocean ecosystems 

(Garthe et al. 1996; Hall et al. 2000), and constitutes substantial waste from 

fisheries globally (Alverson et al. 1994; Hall et al. 2000). Thus, reducing bycatch 

has become a critical fisheries management and conservation issue (Hall and 

Mainprize 2005). While the amount of and impacts from bycatch differ among 

fisheries, gear types, and regions (Alverson et al. 1994), here I focus on two 

fundamental concepts for addressing bycatch issues. First, opportunities to 

reduce bycatch or harm occur throughout the fishing process. Secondly, the 

efficacy of mitigation depends upon the larger ecological and societal context. 

Fishing decisions, fish behaviour and the interactions between these two 

processes affect catch rates and condition. At a broad scale, fishing decisions of 

where and when to fish are largely based on expected distribution and 

abundance pattems of targeted species. These fishing decisions may also be 

shaped by other factors, such as individual fishing preferences, regulatory limits, 

or changing costs and markets (Bene and Tewfik 2001; Branch and Hilborn 



2008; de Mutsert et at 2008) but migration patterns and seasonal aggregations 

of target species are key factors in the choice of fishing grounds and seasons 

(Yamaguchi 1989a; Grant and Berkes 2007). Within fishing grounds or seasons, 

setting practices (e.g., time of day, depth fished, baits used, or location relative to 

oceanographic or geographic features) are chosen with the movement and 

feeding behaviours of target species in mind (Yamaguchi 1989b; Beverly et al. 

2009; Hobday and Campbell 2009). During the last stage of the capture process, 

landing and handling practices affect catch quality, and therefore price (Willis and 

Millar 2001). Similarly, fishing decisions made throughout the fishing process 

may be used to reduce the amount of bycatch and harm to discarded catch, 

particularly if bycatch distribution patterns, feeding behaviours, and interactions 

with fishing gear differ from those of target catch. 

Fishing decisions, such as choice of fishing grounds to improved handling and 

release practices, affect bycatch levels and release condition. Differences in the 

ecology and behaviour of target and bycatch species can be used to identify 

mitigation opportunities, reducing the amount of and harm to unwanted catch 

For example, marine protected areas or closures may be most effective where 

bycatch species' distribution is clustered and predictable, and where such 

distributions differ from those of targeted species (Hall 1996; Game et at 2009). 

Modified fishing practices, such as depths fished , may be used where there are 

clear habitat differences between target and bycatch species (Deitrich et at 



2008: Beverly et at. 2009). Other bycatch mitigation approaches utilize 

differences in how species prey upon baited gear (Willis and Millar 2001) or 

differences in species' behaviour after capture (Broadhurst 2000; Wade et at. 

2007). Finally, improved handling and discarding practices can increase the 

likelihood of post-release survival (Farrell et at 2001: Campana et at. 2009: 

Milliken et at. 2009). 

The efficacy of bycatch mitigation approaches depends upon the larger 

ecological and societal context. Closed areas may increase bycatch levels and 

harm for highly migratory species if fishing effort shifts to regions with higher 

bycatch abundance or to fisheries with fewer regulations or protections (Hall 

1998; Baum et at. 2003; Hall et at. 2007). Thus, the efficacy this bycatch 

mitigation approach depends upon both species distributions and upon the 

fishing and management context. Within fisheries, changing regulations, 

targeting practices, and species associations will affect the efficacy and uptake 

levels of bycatch mitigation approaches (Wade et at. 2009). Further, the social 

structure within fisheries, and the relationship between fishers and management 

affects development and acceptance of bycatch mitigation approaches - and 

consequently their efficacy (Hall et at. 2007: Campbell and Cornwell 2008). 

Before introducing the focal fishery and overall objective of this thesis , additional 

information is needed on the bycatch definition used here. Bycatch is a 



contentious term and it is central to this thesis. Bycatch may refer to non-target 

catch that is subsequently landed; species, or sizes and sexes of species that 

are discarded for economic, regulatory, or personal reasons; or the combination 

of non-target catch and discards (Alverson et al. 1994). Bycatch limits or quotas 

use the first definition, and refer to landed species that are not the primary target 

but for which there are limiting quotas (e.g., Benoit and Allard 2009). Hall (1996) 

proposed a restricted version of the second definition and used the term for catch 

that are discarded dead or injured to the point that post-release mortality is likely. 

By contrast, Davies et al. (2009) proposed a broader version of the third 

definition , that "bycatch is the catch that is either unused or unmanaged" In this 

thesis bycatch refers to catch that is released alive or discarded dead for 

economic, regulatory, or personal reasons. I chose this definition for three 

reasons. First, incidental landed catch may constitute a desired and an 

economically important portion of the catch. Differentiating target and incidental 

landed catch is problematic in multispecies fisheries as targets shift over time 

(Hall et al. 2000) . Second, post-release survival is unknown or underestimated 

for many species and fisheries (e.g. , Davis 2002; Casale et al. 2008; Campana et 

al. 2009), thus including release condition or likely post-release survival in the 

definition would either be untenable or would underestimate bycatch and 

consequently fishery impacts. Third, conservation, fishing, and management 

efforts to reduce bycatch typically refer to unwanted and discarded catch - this is 

the research and management context within which I am working. 



1.1.2 Pelagic longline fisheries 

Pelagic longlines, consisting of a main line suspended by floats with a series of 

baited hooks hanging below, are used to target swordfish (Xiphias gladius) and 

tunas (Thunnus spp.) throughout the Atlantic, Pacific, and Indian Oceans, and 

the Mediterranean Sea. Discarding practices, and therefore bycatch, differ 

among pelagic longline fisheries depending ()(l fishing regulations, local markets 

and price (e.g., Gilman et aJ. 2008; Swimmer et aJ. 2011). Because of the global 

extent and effort levels of pelagic longline fisheries, catch and bycatch from these 

fisheries has contributed to widespread population declines of teleosts, sharks, 

and turtles (e.g., Baum et aJ. 2003; Myers and Worm 2003; Lewison et aJ. 2004). 

While the magnitude of decline (e.g., Burgess et aJ. 2005; Sibert et aJ. 2006), and 

the contribution of pelagic longline fisheries within particular regions (James et aJ. 

2005; Ivarez de Quevedo et aJ. 2010) has been debated, impacts from pelagic 

long line fisheries are such that mitigation efforts (e.g., time/area closures and 

modified fishing gear) have been implemented in some fisheries (e.g, Watson et 

al. 2005; Hall et al. 2007). 

The Canadian Atlantic pelagic longline fishery targets swordfish, warm-waler 

tunas (albacore, T. alalunga; yellowfin, T. albacares; and bigeye, T. obesus) and 

mahi-mahi (Coryphaena hippurus). Bycatch from the fishery includes common 

sharks and rays (blue shark, Prionace glauca; pelagic stingray, pteroplatytrygon 



violacea) , endangered porbeagle shark (Lamna nasus; COSEWIC 2004; DFO 

2005), and endangered sea turtles (leatherback Dermochelys coriacea; 

loggerhead, Caretta caretta). During the time this research was being conducted , 

incentives and pressures to reduce bycatch and hann were increasing. The 

fishery initiated an assessment for Marine Stewardship Council certification 

(MSC 2011), bycatch impacts were a key consideration during the assessment. 

Further, bycatch species were being assessed under Canadian endangered 

species legislation (e.g., COSEWIC 2010; DFO 2010). 

The overall objective of this thesis is to identify bycatch mitigation opportunities 

within the Canadian pelagiC longline fishery for swordfish and tunas. Given that 

estimates of fishery impacts from pelagic longlines have been made for the 

Canadian fishery (e.g. , Campana et al. 2006; Brazner and McMillan 2008) and 

for migratory populations that encounter this fishery (e.g., Baum et al. 2003 ; 

Lewison et al. 2004), I chose to focus on identifying possible solutions within the 

fishery. As such, fisheries observer data were used as the primary data source . 

At-sea fisheries observers record information on landed catch and bycatch, as 

well as details of the fishing practices and fished environment. Fisheries observer 

data are available from 5-18% of the sea days each year (Javitech 2002; lester 

et al. 2009). Bycatch information is not available in logbook or landings data, 

which are collected from the entire fleet. In addition to fisheries observer data, 

within set temperature and soak time data collected during a chartered research 



trip, data from qualitative fishers' knowledge interviews with active members of 

the longline fleet, and concurrent environmental data were used. These 

additional data sources allowed me to differentiate fishing decisions from fish 

behaviour and to focus on different stages of the fishing process. 

1.2 Statement of co-authorsh ip 

The chapters of this thesis were written as separate manuscripts. My co-authors 

either contributed to research design or to the interpretation of data analysis. 

They also made intellectual contributions through their revisions to and 

comments on draft manuscripts. I designed the research with guidance from my 

co-authors, analysed the qualitative and quantitative data used in this thesis, and 

wrote initial drafts of the following manuscripts: 

Carruthers, E.H., Schneider, D.C., Neilson, J.D. 2009. Estimating the odds of 

survival and identifying mitigation opportunities for common bycatch in pelagic 

longline fisheries. Biological Conservation 142, 2620-2630. (Chapter 2) 

Carruthers, E.H., Neilson, J.D., Smith, S.C. 2011. Overlooked bycatch mitigation 

opportunities in pelagic longline fisheries: soak time and temperature effects on 

swordfish (Xiphias gladius) and blue shark (Prionace glauca) catch. Fisheries 

Research 108, 112-120. (Chapter 3) 



Carruthers, E.H., Neis , 8. 2011 . Bycatch mitigation in context: using qualitative 

interview data to improve assessment and mitigation in a data-rich fishery. 

Biological Conservation 144 , 2289-2299. (Chapter 4) 

Carruthers, E.H. , Schneider, D.C. Identifying opportunities to reduce blue shark 

(Prionace glauca) bycatch: using fisheries observer data and fishers' knowledge 

to differentiate fishing decisions and fish behaviour. Prepared for submission to 

ICES Journal of Marine Science. (Chapter 5) 

Fisheries observer data (used in Chapters 2, 3, and 5) were collected by at-sea 

observers. The fishery observer database is maintained by the Population 

Ecology Division of the Maritimes Region of Fisheries and Ocean Canada. I 

wrote custom MATLAB programs to organize and analyse fisheries observer 

data, instrumented longline data, and weather data used in these chapters. 

Instrumented longline data used in Chapter 3 were collected by S.C. Smith and 

the crew of the Oran II during a chartered research trip. I collected the qualitative 

data analysed in Chapter 4 using an interview guide developed with B. Neis 

(Appendix I). Chapter 5 is based on fisheries observer data, qualitative interview 

data, and publicly available data recorded by moored weather buoys. 
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CHAPTER 2: ESTIMATING THE ODDS OF SURVIVAL AND IDENTIFYING 
MITIGATION OPPORTUNITIES FOR COMMON BYCATCH IN PELAGIC 

LONGLINE FISHERIES 

In this chapter I identified bycatch mitigation opportunities during the later stages 

of the capture process using fisheries observer data. For those species or size 

classes which have a high probability of surviving the capture process, there may 

be opportunities to decrease impacts from this fishery by modifying handling and 

discarding practices. 

The following chapter builds upon this one by refining the metric used to estimate 

soak time effects on landed catch , and therefore possible economic impacts of 

modified setting practices. During fishers ' knowledge interviews, detailed in 

Chapter 4, longline captains described opportunities to decrease fishery impacts 

by modifying their discarding practices. 
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Abstract 

To evaluate how fishing practices affect bycatch survival and to identify 

opportunities to reduce bycatch mortality, I estimated the odds of hooking 

survival for common bycatch species in the Canadian longline fishery for 

swordfish (Xiphias g/adius) and tunas (Thunnus spp.) fishing in the North 

Atlantic. Generalized linear models, with binomial response , were based on 859 

sets observed between 2001 and 2004 and were tested using data from 2005 

and 2006. Bycatch included targeted species in poor condition or below 

regulatory size limits. Odds of survival were two to five times higher for swordfish, 

yellowfin tuna (T. albacares), pelagic stingray (Pteroplatytrygon vio/acea), 

porbeagle (Lamna nasus) and blue shark (Prionace glauca) caught on circle 

hooks compared to J-hooks during the 2001-2004 period. Further, odds of 

severe hooking injuries decreased for three shark species caught on circle 

hooks. I found no conservation benefit for loggerhead turtles (Caretta carella) 

from circle hook use. Increased circle hook use coincided with increased 

targeting and higher landings of tunas. Hooking survival rates and, therefore 

opportunities to reduce bycatch mortalities differed among the ten species 

commonly discarded or released. Where the odds of survival to the time of 

release are high (e.g., loggerhead turtles, pelagic stingray, blue shark), methods 

to reduce post-release mortality can be considered. Where the odds of hooking 

survival are low (e.g., swordfish and long nose lancetfish, Alepisaurus ferox), 

methods to reduce encounter rates would have greater conservation impact. 
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2.1 Introductio n 

Opportunities to reduce bycatch mortality occur throughout the fishing process. 

from avoidance of areas or seasons with high concentrations of unwanted catch 

to handling practices that increase post-release survival (Hall 1996). Multispecies 

commercial fisheries, such as pelagic longline fisheries for swordfish (Xiphias 

gladius) and tunas (Thunnus spp.). discard or release a range of species and 

size classes. Understanding differences in the likelihood of survival among these 

groups of animals helps identify opportunities to reduce bycatch mortality. For 

species, or sizes classes, that can survive the capture process. methods to 

reduce post-hooking mortality can be considered in fisheries and conservation 

management strategies. For bycatch with high hooking mortality levels, 

management strategies should focus on earlier stages in the capture process, 

such as minimizing encounter rates. 

Hooking survival rates may differ among species and among size classes within 

species. In catch and release recreational fisheries. fishing choices such as hook 

and bait types used, retrieval time. and handling practices affect both hooking 

survival rates and likely post-hooking survival, through hooking injury and 

severity (e.g., Muoneke and Childress 1994; Prince et al. 2007 ; Reeves and 

Bruesewitz 2007). Size effects, with smaller fish having lower survival rates. have 

been reported in commercial hook and line fisheries (e.g .. Neilson et al. 1989; 

Milliken et al. 1999; Diaz and Serafy 2005). Hooking survival rates for species 
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caught on pelagic longline gear ranges from less than 10% to nearly 100% 

survival at haulback when the gear is retrieved (Ward et al. 2004; Kerstetter and 

Graves 2oo6a). Estimates of post-release survival are similarly variable . 

Research using satellite telemetry has shown survival levels of 31 % to 100% for 

a few bycatch species released from pelagic longline fisheries (e .g .. Hays et al. 

2003; Chaloupka et al. 2004; Kerstetter and Graves 2006b; Moyes et at 2006). 

Pelagic longlines, consisting of a main line suspended by floats and with baited 

hooks hanging below, are used to fish swordfish and tuna worldwide. Although 

the general design is simple , differences in how and where the gear is fished 

(such as fishing depth, baits and hooks used, setting time and locations) affect 

catch rates of target and bycatch species (e.g., Stone and Dixon 2001; Ward et 

al. 2004; Beverly et al. 2008). Much research in swordfish and tuna longline 

fisheries has focused on the use of circle hooks to reduce bycatch catch rates, 

hooking mortality and post-hooking mortality - especially among marine turtles 

(Watson et al. 2005; Read 2007; Brazner and McMillan 2008). The Canadian 

fleet began switching to circle hooks in 1996. Now, over three-quarters of the 

hooks fished are circle hooks (DFO 2004; T. Atkinson, Hi-liner Fishing Gear 

pers. comm. 2008) . Increased circle hook use coincided with increased targeting 

and catch rates of bigeye (T. obesus) and yellowfin tunas (T. albacares) and a 

shift from a competitive to an individual quota management system. Because of 

these changes in the Canadian pelagic longline fleet in the North Atlantic, this 
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fishery offers a unique opportunity to evaluate efficacy of this bycatch reduction 

method in a rapidly changing commercial fishery. 

Reducing harm to or mortality of bycatch - defined here as captured animals 

returned to the sea, either discarded dead or released alive - is a management 

and conservation focus. Bycatch from this pelagic longline fishery includes 

species listed by international conservation organizations, such as leatherback 

(Dermochelys coriacea) and loggerhead turtles (Caretta caretta) ; commercially 

fished species for which there are landings or size-based regulations such as 

bluefin tuna (Thunnus thynnus) and swordfish; and species such as pelagic 

stingray (Pferop/atytrygon vio/acea) and blue shark (Prionace glauca), for which 

there are limited or non-existent markets. Many of these species are common 

bycatch in other pelagic longline fisheries. My objectives here are 1) to identify 

bycatch species or size classes more (or less) likely to survive the capture 

process, 2) to identify those fishing variables that increase the odds of bycatch 

survival during capture and post-release, and 3) to evaluate how changes to 

fishing practices, directed at reducing harm Of mortality levels of bycatch, affect 

numbers of landed catch . Information on species and size-specific hooking 

survival will help in evaluating mitigation strategies, and in developing fishery and 

conservation management plans for the suite of species discarded or released 

from pelagic longline gear. 
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2.2 Methods 

2.2.1 Fisheries observer data 

Data were obtained from the international observer program database. created 

and maintained by the Population Ecology Division of the Canadian Department 

of Fisheries and Oceans (DFO). As part of an ongoing monitoring program, 

fisheries observers identify species, estimate or measure animal length , and 

record whether bycatch were discarded dead or released alive. Fisheries 

observers do not record fish status (alive or dead) for fish brought onboard and 

later landed. Observers quickly assess bycatch release status, based on injuries 

and movement. when the gear is retrieved and bycatch are alongside the vessel. 

Bycalch release status is coded as unable to determine, alive (with and without 

injury). dead, shark bit and moribund. I reduced Ihe release status category to 

alive and dead. Shark bit, moribund, and dead bycatch were coded as dead. 

Bycatch of unknown status were not included in these analyses. 

Information on fishing operations such as location , starting and ending time, and 

details of gear configuration (i.e., longline length , hook type, bait used) are also 

recorded. The Canadian pelagic longline fleet fishes in the Northwest Atlantic 

along the Scolian Shelf and Grand Banks, and in international waters where 

other fleets also larget pelagic fish (Figure 2.1). The fleet is active from May 

through to November. There is no Canadian pelagic longline fleet fishing for 
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swordfish or tunas in the Pacific. Since 2001, observer deployments are 

intended to reflect the spatial and temporal distribution of the fleet. Annual 

observer coverage, expressed as a percentage of sea days, has ranged from 5% 

to 18%. Gear is generally set shallow, to fish in the upper 20 m (Brazner and 

Macmillan 2008). 

Prior to the 2001 fishing season, observers'tasks were primarily related to 

landed species; length estimates or release condition of bycatch were not 

consistently recorded (M . Showell, DFO, pers. comm. 2006) . We, therefore, 

chose data collected during the period 2001·2004 to model the effects of hook 

type, soak time, and animal length on the odds of bycatch survival. Circle hooks 

(size 16/0) are the most common hook type used in this fishery (Brazner and 

McMillan 2008) followed by J·hooks and offset J·hooks, either 8/0 or 910 (Figure 

2.2). Offset J·hooks had a 20°·30° offset, similar to control hooks used by 

Watson et al. (2005). Soak time (T) was calculated as median set duration. 

Times were recorded at four points during each set: start and end of setting and 

start and end of hauling. To determine the mid·point or median soak time, I 

averaged the shortest time hooks were in the water (end of setting until start of 

hauling) with the longest soak time (start of setting to end of hauling). Lengths 

(L), measured or estimated, included sea turtle carapace length, swordfish lower 

jaw fork length and fork length for other fish species. Other possible explanatory 

variables recorded in the observer data, such as water temperature or bait type, 
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were excluded from these analyses because of incomplete information or 

because categories were not clearly differentiated. For example, water 

temperatures were recorded for approximately half of the sets observed between 

2001 and 2004, and bait was commonly recorded as a mix of herring , mackerel 

and squid. 

I identified common bycatch species based on abundance (accounting for 

greater than 1 % of individuals discarded or released) and frequency of 

occurrence (present in more than 10% of observed sets) in any year between 

2001 and 2004. Data collected in 2005 and 2006 were then used to test whether 

the relationships held , whether survival estimates changed when data not used in 

the model-building process were added. 

2.2.2 Odds of survival models 

Because survival is a binomial variable (I.e. alive or dead), I used a Generalized 

Linear Model (GLM) with logit response (McCullagh and Neider 1989), also 

known as logistic regression, to estimate the odds of common bycatch species 

surviving the capture process. The response variable was odds of survival , 

Odds = pl(1-p) (2.1) 

where p is the proportion of bycatch of a given species released alive. A 

categorical variable with 3 levels was included for hook type (H), which may 

affect hooking survival (e.g ., Watson et aI. , 2005; Kerstetter and Graves, 2006a), 
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was included in the models. Continuous variables for individual lengths and soak 

time were used . Model selection was based on likelihood ratio tests (lRT) , which 

compared the change in deviance between models with two-way interactions and 

simpler models (Agresti 2007). Simpler models were chosen if the change in 

deviance was not significant or if more complex models failed to converge to a 

maximum likelihood estimate. Models used to estimate the odds of survival for 

each species, including all two-way interactions, were 

Odds = e~ + error (2 .2a) 

and. 

where r.. corresponds to the intercept and parameters to be estimated for each 

explanatory variable. Mean response (~) is the probability of survival calculated 

for a given hook type, and for the rate of change in survival with respect to soak 

time (T) and animal length (l) 

The fishery management system changed during the 2001-2004 period , which 

likely affected targeting. handling and discarding practices. Swordfish and tuna 

long liners fished within a competitive quota fishery until 2002, then an Individual 

Transferable Ouota (ITO) management system was introduced and targeting of 

tunas increased (DFO 2004). Under ITO management fishers are no longer 

racing to catch quota before other fishers. they may make different decisions 
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about which species to target and retain . Because these analyses were limited to 

data on animals discarded or released, changes in discarding practices of target 

species affect survival estimates. To evaluate whether the switch to an ITO 

system of fisheries management affected the relationship between main effects 

(hook type, animal length and soak time) and odds of survival , I added a 

categorical variable for management system (M) to the model; 

[J = Go + r..HH + r..LL + r..T T + r..MM + r..HMH·M + r..LML-M + r..TM T-M, (2.3) 

If interaction tenns were significant, indicating that the relationship between main 

effects and odds of survival differed between the two management periods, I 

excluded data collected in 2001 under a competitive management system. 

To determine if relationships between main effects and hooking survival held 

(model stability), observer data from subsequent years were added to the data 

set. An additional categorical explanatory variable (D) indicated whether data 

were collected between 2001-2004 or were from the test data set (2005-2006). If 

interaction terms between data set and main effects were significant then the 

relationship between the main effects and the odds of survival was not stable 

across the two data sets: 
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2.2.3 Effects on landed catch and post-hooking survival 

Because bycatch mitigation measures will likely be more readily accepted in 

commercial fisheries if modifications do not decrease the value of landed catch 

(e.g., Gilman et al. 2006a; Read 2007), I estimated the effects of fishing variables 

on landed catch. Landed catch was used as a simple measure of possible 

impacts for the fleet. Residual plots for initial GlMs (with log links and Poisson 

error distributions) were unacceptable. Dispersion of residuals increased with 

fitted values. Using a negative bionomial error distribution, which includes a 

dispersion parameter (k"1) in the equation (Agresti 2007), resulted in acceptable 

residual plots. Total landed catch was calculated as the number of all fish 

retained per set and included swordfish, tunas, and other landed species such as 

mahi-mahi (Coryphaena hippurus) and shortfin mako (/surus oKyrinchus). Again, 

two-way interactions were evaluated using likelihood ratio tests, comparing 

change in deviance between models (Agresti 2007). Number of hooks fished per 

set was included in landed catch models to account for effort (E) differences 

among hook types (H) and soak times (T): 

and, 

(2.5a) 

(2.5b) 
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Further, because post-hooking survival likely depends on injury type and hooking 

location (Epperly and Boggs 2004; Horodysky and Graves 2005; Campana et al. 

2006), I used logistic regression to determine if hooking location differed between 

hook types for bycatch species commonly released alive. When animals 

swallowed the hook (e.g ., hooks were embedded in the esophagus) they were 

categorized as 'gut-hooked '. I limited analysis of hooking injury to species with 

high likelihood of hooking survival , where more than 60% of the bycatch was 

released alive. Observer data collected between 2001 and 2006 was used in the 

landed catch and hooking location models. 

Likelihood ratio tests were used in model selection and to evaluate overall model 

significance (Agresti 2007). The Significance level of p=O.05 was used in all 

analyses. When models failed to converge or when wide confidence intervals 

indicated poorly resolved model terms, I considered whether sparse data in 

categorical variables affected estimates. Few individuals within categorical 

variables or few instances of a binomial response (e.g., 3 gut-hooked versus 250 

mouth-hooked individuals) will produce inefficient parameter estimates, with wide 

confidence intervals (Menard 1995; Agresti 2007). Because sparse data within 

categorical variables limited parameter estimates, I removed categories 

containing less than 10 observations. I used the open-source statistical package 

R, with 'MASS' and 'car' packages for GLM confidence intervals and diagnostics, 
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to implement and evaluate the models (Venables and Ripley 2002: Fox 2007; R 

Development Core Team 2007). 

2.3 Resu lts 

Ten species were identified as common bycatch, species that were discarded 

from more than 10% of observed sets or accounting for more than 1 % of bycatch 

for any year between 2001 and 2004. During this time period, 859 sets were 

observed and approximately 950,000 hooks fished on observed sets (Table 2.1) 

Median set duration for sets fishing J-hooks, offset J-hooks and circle hooks 

were 13.5, 13.8 and 12.9 h, respectively. Common bycatch included species 

such as swordfish and bigeye tuna, which are generally landed, and loggerhead 

turtles and pelagic stingray, which are always released or discarded (Figure 2.3). 

Hooking survival was calculated only for bycatch - animals returned to the sea­

and differed among species. Over 90% of loggerhead turtles, pelagic stingray 

and blue shark bycatch were released alive from the gear but only one-third of 

swordfish and longnose lancetfish (Alepisaurus ferox) bycatch were released 

alive (Figure 2.3). 

2.3.1 Odds of survival estimates 

Yellowfin and bigeye tunas, shortfin mako and longnose lancetfish hooking 

survival estimates were not affected by the change from competitive fishery to an 
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ITO management system; interaction terms between management system and 

main effects were not significant. Interaction terms between management system 

and main effects were Significant for swordfish, porbeagle (Lamna nasus) and 

blue shark; therefore, I used data from the ITO management system, caught 

between 2002 and 2004 (Table 2.2). I was unable to model the effects of 

management system on bluefin tuna or pelagic stingray hooking survival. The 

bluefin tuna model, with a management system interaction term, did not 

converge to a maximum likelihood estimate. Few pelagic stingray were discarded 

dead under either management system, causing poorly resolved model 

coefficients. Data from 2001 to 2004 were used in the models for these species. I 

did not build logistic regression models for loggerhead turtles because almost all 

survived the hooking process - 404 out of 407 hooked loggerhead turtles were 

released alive. 

Odds of survival were significantly higher on circle hooks than on J-hooks for all 

common bycatch species, except shortfin mako and longnose lancelfish (Table 

2.3). There was no Significant difference in the odds of survival for longnose 

lancelfish, porbeagle, shortfin mako, and blue sharks caught on J-hooks and 

those caught on offset J-hooks (Tables 2.3 and 2.4). logistic regressioo models 

for porbeagle and blue shark included two-way interactions (Table 2.4); the effect 

of soak time on hooking survival differed between hook types fOf' both species. 
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Logistic regression models were not significant for three species which were both 

discarded as bycatch (for regulatory or other reasons) and were also retained for 

sale. Likelihood ratio tests for the bluefin tuna logistic regression model showed 

that the odds of survival were not related to hook type, soak time, and fish length 

(LRT=2.3, df=4 , p=0.68). Few bigeye tuna were caught on J-hooks ; one often 

caught on this hook type was discarded dead. Similarly, no bigeye tuna were 

discarded or released from offset J-hooks (Table 2.1). Therefore , the logistic 

regression model for bigeye tuna did not include a model term for hook type. 

Bigeye survival odds were not related to fish length or soak time (LRT=2.S, df=2 , 

p=0.28). None of the model coefficients for bluefin or bigeye tuna were 

significant. While the overall model for shortfin mako was not significant at 

p<O.OS level (LRT=8.8, df=4 , p=O.66), odds of survival were positively related to 

fish length for this species (Table 2.3) . 

Swordfish , yellowfin tuna , porbeagle, and blue shark were 2 to 5 times more 

likely to survive the capture process on circle hooks than on J-hooks (Figure 2.4) . 

Pelagic stingray also had higher odds of survival on circle hooks. Few pelagic 

stingray were discarded dead from either circle hooks (2%) or J-hooks (10%). 

Wide confidence intervals for this species indicated that the estimate was poorly 

resolved, due to low occurrence of one of the binomial responses (Menard 1995). 

Odds of survival of porbeagle and blue shark differed between hook types and 
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with soak time - for both shark species caught on J-hooks the probability of 

hooking survival decreased significanlly with increased soak time (Figure 2.5). 

The probability of swordfish, yettowfin tuna, and long nose lancetfish survival 

decreased with increased soak time. Using model coefficients (Table 2.3), I 

calculated that 42% of longnose lancetfish (average fork length 110 cm) caught 

on J-hooks were released alive from 12 h sets. Only 28% were released alive 

from 16 h sets. Similarly, the probability of average-sized swordfish and yettowfin 

tuna bycatch (e.g., 106 and 81 cm) survival decreased 6% and 15%, respectively 

on longer soak times. Larger mako sharks had higher odds of being released 

alive (Table 3). Larger swordfish and pelagic stingray bycatch were less likely to 

be alive at haul back. Fish length did not Significantly affect the odds of survival 

for yellowfin tuna, blue shark, and longnose lancetfish (Tables 2.3 and 2.4). 

The odds of survival of swordfish and blue shark caught on circle hooks (relative 

to J-hooks) changed when data from 2005 and 2006 was added to the models. 

Likelihood ratio tests for swordfish (LRT=50.4, df=9, p<0.001), and blue shark 

(LRT=184.3, df=9, p<0.001) logistic regression models were significant. 

Interaction terms for hook type and data set represented survival odds for fish 

caught on circle hooks relative to those for fish caught on the reference hook (J­

hook) for the two time periods (hook x data set: swordfish, Deviance=6.408, df=2, 

p=0.04; blue shark, Deviance=37.515, df=2, p<0.001). The change in relative 
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survival probabilities reflected an increase in survival probabilities on J-hooks 

For example, 13% more swordfish bycatch were released alive from J-hooks 

during the 2005-2006 time period than during the 2001-2004 period. For other 

common bycalch species, I was unable 10 estimale the odds of hooking survival 

relative 10 hook type during the latter time period because either few bycatch 

were observed on J- or offset J-hooks (bluefin or yellowfin tuna, long nose 

lancetfish), or few were discarded dead (pelagic stingray, shortfin mako, bigeye 

tuna, porbeagle shark). Similarly, no loggerhead turtles were discarded dead 

from observed trips in 2005 and 2006. 

2.3.2 Landed catch and post-hooking survival 

Swordfish landed catch was higher on sets that fished J-hooks or offset J-hooks. 

Numbers of tunas and of all landed catch were higher on sets that fished circle 

hooks (Figure 2.6). Few bigeye, yellowfin or albacore (T. alalunga) tunas were 

landed from sets that fished J-or offset J-hooks, indicating these hooks were not 

used when targeting tunas. Negative binomial regression models for swordfish 

and all landed catch included an interaction term for median set duration and the 

effort measure (number of hooks hauled), whereas models of tunas landed 

included an interaction term between hook type and effort. Estimated landed 

catch was based on average number of hooks fished (1115 hooks per set), and 

12 and 16 h soak times (Figure 2.6). All landed catch estimates increased with 

increased soak times. 
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Hooking location differed between circle and J-hooks. Among the five species 

commonly released alive, sharks caught on circle hooks were more likely mouth­

hooked. Porbeagle were four times (95% CI : 2.1 - 7.2) more likely mouth-hooked 

on circle hooks. Shortfin mako and blue shark were twice as likely mouth-hooked 

on circle hooks (95% CI : 1.1 - 3.7 and 1.9 - 2.7, respectively). Hooking location 

did not significantly differ for loggerhead sea turtles hooked on the three hook 

types (LRT=4.64, df=3, p=0.20). The odds ratio for loggerhead turtles caught on 

circle hooks relative to J-hooks was 0.97, not significantly different from a 1:1 

relationship. Few pelagic stingray swallowed hooks of either type; only 10 out of 

942 pelagic stingray caught between 2001 and 2006 swallowed the hooks. I 

therefore did not model the odds of hooking location for this species. 

2.4 DIscussion 

Hooking survival rates and , therefore, opportunities to reduce bycatch mortalities, 

differed among the ten species oommonly discarded or released from the 

Canadian Atlantic longllne fishery for swordfish and tuna. My objectives were to 

determine species or size-specific hooking survival rates , to determine which 

fishing practices increased the odds of survival and what, if any, effects those 

fishing practices had on landed catch or post-release survival. In the Canadian 

long line fleet, the switch from J-hooks to circle hooks likely increased bycatch 
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hooking survival and decreased post-release mortality. The switch to circle hooks 

coincided with increased targeting of tunas and higher landings of those fish. 

Longer soak times increased landed catch, however, this fishing practice also 

increased the likelihood of hooking mortalities . 

2.4.1 Species and size-specific survival probabilities 

Common bycatch for the Canadian fishery are discarded or released from other 

pelagic longline fisheries in the North and South Atlantic (e .g. , Watson et al. 

2005; Kerstetter and Graves 2006a; Kerstetter et al. 2007) and in the Western 

Pacific (e.g., Ward et al. 2004). Survival rates were comparable among the 

different fisheries. Most loggerhead turtles, blue sharks, and pelagic stingrays 

were released alive (Kerstetter and Graves 2006a ; Kerstetter et al. 2007; Read 

2007). Kerstetter and Graves (2006a) also reported low survival rates for 

lancetfish (Alepisaurus sp .). Swordfish hooking survival levels in US Atlantic 

(Kerstetter and Graves 2006a) and Brazilian fleets (Kerstetter et at. 2007) were 

similar to those reported here with only 20% to 30% of swordfish alive at 

haul back. These hooking survival rates suggest opportunities for bycatch 

mitigation may be similar among these different fisheries. Mitigation strategies for 

loggerhead turtles, blue sharks, and pelagic stingray could include careful 

handling and release , whereas strategies to reduce swordfish and longnose 

lancetfish mortalities would have to focus earlier in the capture process. 

3S 



Our results did not support the expected positive relationship between fish length 

and survival (e.g., Neilson et al. 1989; Diaz and Serafy 2005); only shortfin mako 

showed an increase in the odds of survival with fish length. Size-related handling 

and discarding practices likely affected survival rates (Muoneke and Childress 

1994). For landed species, such as swordfish, bigeye, and yellowfin tunas, 

discarding practices reflect minimum size regulations and commercial 

marketability. Swordfish, for example, were discarded if below minimum landing 

regulations or if damaged by predation (coded as shark bit). When GlMs were 

run without 45 shark bit swordfish, the negative relationship between fish length 

and survival was no longer significant (Deviance=1.699, df=1, p=0.19). Handling 

practices likely affected hooking survival of bycatch such as blue shark, which 

are rarely landed by the Canadian fleet, and may account for differences in 

survival estimates reported here and by Diaz and Serafy (2005). for small (75 

cm) blue shark caught by US longliners off the Grand Banks, Diaz and Serafy 

(2005) estimated 47% would be released alive after 14 h soak times. Since J­

hooks were the predominant hook type for the US fleet between 1992 and 2002 

(Hoey and Moore 1999; Watson et al. 2005), I based my calculations on this 

hook type and estimated 87% of small blue shark would be released alive. Either 

observer protocols differed markedly or survival rates reflect differences in fishing 

and discarding practices. Hoey and Moore (1999) reported that hooks were 

removed from blue sharks - and accounted for high mortality levels - on several 

US long line fishing trips to the Grand Banks during the same time period. These 
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were likely included in Diaz and Serafy's (2005) models. A direct comparison of 

observer protocols is warranted because hooking mortality estimates affect stock 

assessment and management decisions (Diaz and Serafy 2005; Campana et al. 

2006). If, however, the difference in survival rates reflect fishing and discarding 

practices then the difference in survival estimates identifies an important 

opportunity to reduce blue shark bycatch mortalities. 

Despite limitations of using fisheries observers' estimates of hooking survival, 

these data provide the basis for building demographic models to estimate 

population-level impacts of existing fishing practices. Because observers did not 

record the capture status of fish that were landed, I was unable to determine the 

physiological relationship between length and survival for species such as 

swordfish, bigeye and yellowfin tuna. Discard mortality data are, however, 

needed to evaluate how discards affect overall fishing mortality levels and 

consequently, the efficacy of conservation or fisheries management plans 

(Coggins et al. 2007). Further, for bycatch species which are rarely landed and 

for which assessments are limited by data availability (e.g., loggerhead turtles 

and blue shark), species and size-specific survival data can be used in stage­

based demographic models to identify key stages for conservation (Crouse et al. 

1987; Aires da Silva and Gallucci 2007). 
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2.4.2 Fishing practices 

Much conservation research on pelagic longline fisheries has focused on 

differences in catch rates and mortality levels - both at hauJback and post­

release mortality estimated from injury type and release condition - between 

straight-shank (J-hooks or Japanese tuna hooks) and circle hooks (e.g., Watson 

et al. 2005; Yokota et al. 2006; Read 2007) . Odds of hooking survival were 

significantly higher for common bycatch species caught on circle hooks in the 

Canadian pelagic longline fishery (Figure 3). Similarly, Kerstetter and Graves 

(2006a) showed survival rates were higher on circle hooks for almost all of the 

commonly caught fish. I found, however, odds ratios for swordfish and blue shark 

hooking survival changed during the latter time period, reflecting an increase in 

the odds of survival on J-hooks. Increased odds of survivallikeJy does not reflect 

differences in observers' assessments because many of them were onooard 

vessels fishing circle hooks or were onboard vessels fishing during the earlier 

period. Increased targeting of tunas and decreased observer coverage meant 

that survival estimates for fish caught on J-hooks were based on fewer vessels. 

Decreased variability or improved practices among observed vessels may have 

affected survival estimates . For example , the swordfish and tuna longline fleet 

purchased turtle dehooking kits to be used on all vessels starting in 2005 (DFO 

2004). These line cutters and dehookers can be used to remove hooks from 

other bycatch species (Watson et al. 2005). Increased use of these kits could 

have contributed to higher bycatch survival rates in recent years. 
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Circle hooks are widely used in catch and release recreational fisheries to 

decrease the amount of deep-hooking or gut-hooking (Cooke and Suski, 2004), 

which is considered one of the worst hooking injuries for post-release survival 

(Prince et al. 2007; Reeves and Bruesewil2 2007) . Odds of mouth-hooking 

relative to gut-hooking were higher on circle hooks for three shark species . 

Similarly, Watson et al. (2005) reported a significant decrease in gut-hooking of 

blue sharks caught on circle hooks. Unlike Watson et al. (2005), Brazner and 

McMillan (2008), Gilman et al. (2007) and the studies reviewed by Gilman et al. 

(2006a) and Read (2007), I found no conservation benefit for loggerhead turtles 

- one of the bycatch species for which conservation benefits were expected. 

Conflicting results reported here and by Brazner and McMillan (2008) result from 

differing statistical approaches. Both studies used observer data from the 

Canadian long line fleet. Brazner and McMillan (2008) tested for difference in the 

proportion of turtles gut-hooked relative to all loggerheads captured, including 

entangled turtles and those for which hooking location was not recorded. In 

contrast, the logistic regression approach used here allows the direct comparison 

of one outcome relative to the other (McCullagh and Neider 1989), in this case 

mouth-hooking relative to gut-hooking. Because I show no difference in hook 

location, any conservation benefit for this species depends on differences in 

dehooking and handling practices for loggerhead turtles caught on different hook 

types . There were conservatioo benefits for other common bycatch species; odds 
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of severe hooking injuries were significantly lower for porbeagle. shortfin mako 

and blue shark caught on circle hooks than for those caught on J-hooks. 

Increased soak time generally increases hooking mortality although magnitude of 

the effect differs among species (Ward et al. 2004). Odds of survival decreased 

with longer soak times for swordfish, yellowfin tuna and longnose lancetfish. 

Landed catch, however, increased with longer soak times . Thus, there appears 

to be a trade-off between landed catch and numbers of these fish available for 

live release. When circle hooks were fished, there was no trade-off between 

landed catch and hooking mortalities among porbeagle or blue shark. Hooking 

survival for these species only decreased, with longer soak time, when caught on 

J-hooks. The unexpected slight increase in survival probabilities of porbeagle 

caught on circle hooks (Figure 2.5) was driven by few surviving porbeagle caught 

on the longest duration sets (>16 h). 

Our analysis showed that switching to circle hooks and shorter soak times 

increased hooking survival for a number of common bycatch species caught by 

the Canadian Allantic longline fishery. Similar fishing practices may increase 

bycatch survival odds in other Iongline fisheries. Comparable observer data from 

other nations' fleets could be used to evaluate this possibility. If observers 

recorded capture status (live, dead or unknown) for all catch (e.g., Kerstetter and 

Graves 2006a), researchers could better determine the relationship between fish 
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length and hooking survival for both landed and discarded catch . Recorded soak 

time per hook or longline section would better reflect time spent on hooks than 

median soak time used here (e.g., Ward et al. 2004 ; Yokota et al. 2009). Further, 

systematic records of dehooking and discarding practices could help identify 

bycatch mitigation opportunities in this and other pelagic longline fisheries. 

Existing data from other pelagic longline fisheries - in the North Atlantic (e .g., 

Diaz and Serafy 2005), throughout the Pacific (e .g., Ward et al. 2004) and 

elsewhere - could be used to identify species or size-specific vulnerabilities and 

to identify mitigation opportunities. 

Our data show conservation benefits of circle hook use for a number of common 

bycatch species, but circle hook use may not decrease catch rates of common 

bycatch species , such as blue shark and loggerhead turtles (Watson et al. 2005 ; 

Yokota et al. 2006; Mejuto et al. 2008). Catch rates of loggertJead turtles 

increased when hooks were baited with squid (e.g. , Yokota et al. 2009). Mejuto 

et al. (2008) reported increased loggertJead catch rates with squid bait 

irrespective of hook type, whereas Watson et al. (2005) noted lower catch rates 

on circle hooks. Conversely, results from experimental fishing trials, using 

alternating hook types within longline sets, showed reduced swordfish catch 

rates on circle hooks baited with squid (Watson et al. 2005). Watson et al. (2005) 

reported small increases in swordfish catch rates when circle hooks were baited 

with mackerel. Few vessels in the Canadian longline fishery used J-hooks when 
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targeting tunas; indicated by the low numbers of tunas landed when fishing J- or 

offset J-hooks (Figure 2.6). Increased swordfish catch when vessels were fishing 

J-hooks likely reflect targeting decisions such as location, setting time, and bait, 

as well as hook type. Mandating a complete shift to circle hooks would have a 

greater impact on vessels targeting swordfish than those targeting tunas. Such a 

mandated change would likely increase hooking survival and decrease the 

severity of hooking injuries, but may not decrease incidence of common bycalch. 

2.4.3 Broader implications 

Knowledge of hooking survival helps evaluate current mitigation strategies. For 

example, Canada, like other countries contributing to Intemational Commission 

for the Conservation of Atlantic Tunas (ICCAT) management in the North 

Atlantic, regulates the proportion of small swordfish that can be landed (DFO 

2004). As a conservation measure, minimum-size regulations either encourage 

fishing effort in times and places where small fish are not abundant or mandate 

release of undersized fish. If minimum size regulations increase discard rates but 

not encounter rates, then conservation benefits depend upon a high proportion of 

small fish released live and high post-release survival rates (Muoneke and 

Childress 1994; Reeves and Bruesewitz 2007). This was not the case for small 

swordfish released from pelagic longline gear. Because 60% to 75% of swordfish 

bycatch are discarded dead, minimum size regulations have limited conservation 

benefit. Efforts to reduce mortality of small swordfish should focus earlier in the 
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capture process, such as avoiding areas or time periods with high abundances of 

small swordfish. This could be achieved by fleet-wide communication systems 

and bycatch caps (Gilman et al. 2006b), or by implementing time or area 

closures where catches of small swordfish occur. Similarly, if reducing mortalities 

of longnose lancelfish bycatch is identified as a priority, then mitigation strategies 

should focus on reducing encounter rates. 

Our research identified opportunities to reduce bycatch mortality at one stage 

during the capture process, based on available data from the commercial fishery 

and applied to a suite of species. Even though I was unable to estimate the odds 

of survival for loggerhead turtles or the odds of hooking injuries in pelagic 

stingray, these data did point toward important conservation opportunities. Few 

loggerhead turtles were discarded dead and few pelagic stingray were deeply 

hooked. This suggests bycatch mitigation strategies for these species could 

include gear removal and careful release. These species, as well as porbeagle 

and blue sharks, are possible candidates for post-release survival studies. I 

recognize sub-lethal capture effects increase post-hooking mortality (e.g., 

Borucinska et al. 2002; Davis 2002; Horodysky and Graves 2005). Further, 

bycatch mitigation strategies that reduce interaction rates also reduce capture 

stressors. For example, using mackerel bait would likely be a better mitigation 

strategy for loggerhead turtles, reducing catch rates and , therefore, sub-lethal 

effects. Research on post-release mortality or behavioural effects of capture on 
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large pelagic species using satellite tags has, thus far, been limited to a few 

species (Polovina et al. 2000; Chaloupka et al. 2004; Horodysky and Graves 

2005; Moyes et al. 2006). In contrast, existing fisheries observer data, and the 

methods described here, could be used to determine current hooking mortality 

levels and identify mitigation opportunities for a suite of species throughout the 

world's oceans. In the Canadian Atlantic longline fisheries for swordfish and 

tunas, methods to reduce post-release mortality can be considered for some ­

but not all- common bycatch . 
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Table 2.1. Summary of bycatch (l imited to animals discarded dead or released alive) lengths and numbers observed in 

each hook category (J : J-hooks, size 8/0 or 9/0 J-hooks, OJ: size 8/0 or 9/0 offset J-hooks; C: size 16/0 circle hooks). 

Sample sizes (in parentheses) for hook categories indicate number of sets observed for each hook type. 

Species Number Length (cm) Hook type (859) 
observed Mean s.d. Range J {193} OJ (70} C (596) 

Swordfish Xiphias gladius 1271 106.1 20.1 45-200 358 119 794 

Bluefin tuna Thunnus thynnus 164 171.3 47.1 57-305 28 13 123 

Yeliowfin tuna Thunnus albacares 642 81 .3 10.9 50-118 113 523 

Bigeye tuna Thunnus obesus 133 109.2 25.1 40-175 10 123 

Porbeagle shark Lamna nasus 611 95.8 18.9 50-250 306 129 176 

Blue shark Prionace glauca 10549 157.2 51.0 30-450 1684 468 8397 

Shortfin mako Isurus oxyrinchus 389 89.9 35.0 45-300 111 33 245 

Pelagic stingray Pteroplatytrygon violacea 781 72.3 19.4 12-140 157 29 595 

Longnose lancetfish Alepisaurus ferox 218 114.9 31 .6 50-210 45 12 161 

loggerhead turtle Caretta caretta 407 90.9 26.1 40-150 73 11 323 

Note: These data were used in logistic regression models . Swordfish , blue shark and porbeagle counts were based on 
565 sets observed during 2002-2004: 100 sets fished J-hooks, 50 sets fished offset-J hooks and 415 sets fished circle 
hooks. 
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Table 2.2. Modeled effects of management system on odds of survival estimates 

for swordfish , porbeagle, and blue shark. Likelihood ratio tests (LRT) were 

conducted to determine overall model significance (df=9, p<0.001). 

Species Term Coefficient SE z value Pr(>lzi) 

Swordfish (LRT -145.8, df=9, p<0.001) 

J-hook 0.073 0.811 0.090 0.928 

Circle hook -1.286 0.221 -5.807 <0.001 

Offset J-hook -0.077 0.458 -0.169 0.866 

Soak time -0.155 0.047 -3.339 <0.001 

Length -0.017 0.004 4.447 <0.001 

Management system -0.303 0.879 -0.345 0.730 

Management system x circle hook 2.052 0.263 7.803 <0.001 

Management system x offset J 0.753 0.510 1.477 0.140 

Management system x soak time 0.158 0.047 3.388 <0.001 

Management system x length -0.025 0.005 -5.244 <0.001 

Porbeagle (LRT=62.3, df=9, p<0.001) 
J-hook -0.549 1.313 -0.418 0.676 

Circle hook -0.608 0.771 -0.788 0.430 

Offset J-hook 0.849 0.313 2.713 0.007 

Soak time 0.013 0.096 0.132 0.895 

Length 0.015 0.009 1.633 0.102 

Management system 3.579 1.528 2.343 0.019 

Management system x circle hook 1.505 0.815 1.846 0.065 

Management system x offset J -1.662 0.384 -4.329 <0 .001 

Management system x soak time -0.053 0.106 -0.497 0.619 

Management system x length -0 .034 0.011 -3 .203 0.001 
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Blue shark (LRT=319.2, df=9, p<O.OOl) 

J-hook 1.048 0.345 3.038 0.002 

Circle hook 0.881 0.114 7.757 <0.001 

OffsetJ-hook 0.889 0.250 3.564 <0.001 

Soak time -0.019 0.024 -0.794 0.427 

Length 0.004 0.001 4.620 <0.001 

Management system 0.778 0.373 2.082 0.037 

Management system x circle hook -0.124 0.143 -0.872 0.383 

Management system x offset J -1.397 0.285 -4.908 <0.001 

Management system x soak time -0,019 0.024 0.793 0.427 

Management system x length -0,004 0.001 -3.434 <0.001 
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Table 2.3. Modeled effects of hook type, soak time, and animal length on the 

odds of survival of common bycatch species. Likelihood ratio tests (LRT) were 

conducted to determine overall model significance . 

Species Term Coefficient SE 2 value Pr 
(>121) 

Swordfish-
(LRT=45.5, df=4 , p<0.001) J-hook 0.781 0.572 1.364 0.172 

Circle hook 0.740 0.143 5.179 <0.001 
Offset J-hook 0.670 0.225 2.985 0.003 
Soak time -0 .068 0.033 -2.090 0.037 
Length -0.008 0.003 -2.849 0.004 

Yellowfin tuna 
(LRT=31 .0, df=3, p<0.001) J-hook 2.427 1.068 2.274 0.023 

Circle hook 1.418 0.277 5.128 <0.001 
Soak time -0.220 0.063 -3.495 <0.001 
Length -0.008 0.007 -1.018 0.309 

Shortfin mako 
(LRT=8.8, df=4, p=0.066) J-hook 0.211 1.249 0.169 0.866 

Circle hook 0.293 0.305 0.961 0.337 
Offset J-hook 0.582 0.587 0.991 0.322 
Soak time -0.001 0.079 -0.021 0.984 
Length 0.013 0.005 2.254 0.024 

Pelagic stingray 
(LRT=17.2, df=3, p<0.001 ) J-hook 4.196 1.888 2.223 0.026 

Circle hook 1.594 0.467 3.412 <0 .001 
Soak time 0.034 0.111 0.306 0.759 
Length -0.028 0.013 -2.123 0.034 

Longnose lancetfish 
(LRT=16.9, df=4, p=0.002) J-hook 1.1 13 1.147 0.971 0.332 

Circle hook -0.558 0.387 -1.442 0.149 
Offset J-hook 1.567 0.747 2.099 0.036 
Soak time -0.157 0.068 -2.308 0.021 
Length 0.004 0.005 0.905 0.365 

• The swordfish logistic regression model was based on 565 sets observed 
between 2002 and 2004. Other models were based on 859 sets observed 
between 2001 and 2004. 
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Table 2.4. Logistic regression models, including interaction terms, for porbeagle and blue shark were based on 565 sets 

observed between 2002 and 2004. Likelihood ratio tests (LRT) were conducted to detennine overall model significance. 

Species Term Coefficient SE z value Pr (> Izl) 

Porbeagle shark 

(LRT::=67.4, df==9, p<O.OOl) J-hook 8.477 1.647 5.145 <0.001 

Circle hook -7.166 1.967 -3.643 <0.001 

OffsetJ-hook -3.965 3.654 -1.085 0.278 

Soak time -0.301 0.095 -3.180 0.001 

Length -0.038 0.008 -4.566 <0.001 

Circle hook x soak time 0.348 0.111 3.148 0.002 

Offset J-hook x soak time 0.061 0.181 0.335 0.738 

Circle hook x length 0.034 0.013 2.518 0.012 

Offset J-hook x length 0.025 0.022 1.118 0.263 

Blue shark 

(LRT=184.0, df==6, p<0 .001) J-hook 6.787 0.873 7.778 <0.001 

Circle hook -3.621 0.914 -3.963 <0.001 

Offset J-hook -2.231 1.384 -1.612 0.107 

Soak time -0.341 0.059 -5.762 <0.001 

Length -0.0001 0.0007 -0.253 0.800 

Circle hook x soak time 0.305 0.063 4.818 <0.001 

Offset J-hook x soak time 0.125 0.094 1.334 0.182 
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Figure 2.1 Oistribution of observed sets of the Canadian Atlantic pelagic longline 

fisheries for swordfish and tuna fished between 2001 and 2004. Boundary of the 

Canadian Exclusive Economic Zone shown. 
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JJc) 
Figure 2 .2 Straight shank J-hooks (8/0 and 910) and 16/0 circle hooks (from left to 

right) are used in the Canadian swordfish and tuna pelagic longline fishery. 

Maximum hook widths are 36, 41, and 50 mm, respectively. Offset J-hooks used 

had the same maximum hook widths as J-hooks (8/0 and 910) but barbs were 

offset 20-30°, 
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Figure 2.3 Species identified as common bycatch, based on frequency or amount of discarding, included species 

that are commonly landed. Sample sizes, indicated in parentheses , include all individuals caught during observed 

trips in the Canadian longline fishery for swordfish and tuna between 2001 and 2004. Hooking survival models 

were limited to bycatch; therefore, they only included proportions released alive and discarded dead. 
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Figure 2.4 Odds ratio of common bycatch released from circle hooks relative to 

previously used J-hooks . An odds ratio of 1 (dashed line) indicated no change in 

the odds of survival. An odds ratio of 2 indicated the bycatch were twice as likely 

to be released alive from circle hooks than from J-hooks. Confidence intervals 

(95%) indicated by horizontal lines. 

60 



--
~l'751 

Figure 2.5 Probability of porbeagle and blue shark survival (± 95% CI) compared 

between hook types and with soak times. Soak times were calcuated as the 

median time bailed hooks were in the water. Sample sizes (in parentheses) 

indicate numbers of bycatch caught on circle or J-hooks, sample distribution over 

lime shown along x-axes. Nole y-axes differ for the two shark species. 
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Figure 2.6 Modeled relationship between soak time, hook type and landed catch . 

Differences in in fishing effort were accounted for by including number of hooks 

hauled in the negative binomial GlM. Mean number of hooks per set (1115) were 

used to calculate landed catch. Soak times (x-axis) were calculated as the 

median time baited hooks were in the water. 
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CHAPTER 3: OVERLOOKED BYCATCH MITIGATION OPPORTUNITIES IN 
PELAGIC LONGLINE FISHERIES: SOAK TIME AND TEMPERATURE 

EFFECTS ON SWORDFISH AND BLUE SHARK CATCH 

Chapter 3 builds upon results reported in the previous chapter where I showed 

that hooking survival levels increased with longer soak times. In Chapter 2 I used 

the midpoint of total soak time, the average minimum and maximum soak time, to 

evaluate soak time effects on hooking survival. This metric includes a portion of 

setting and haulback time. Excluding selling and haulback time would have 

underestimated the stresses associated with capture and therefore would be an 

inappropriate metric for hooking survival models . However, in the following 

chapter I find that the association between target catch and soak time was likely 

a function of the increased haulback time associated with handling longline 

catch. Thus, this chapter highlights the importance of understanding the fishing 

practices that shape fishery-dependent data . 

Observations from the field study reported here and observations reported by 

pelagic longline captains (Chapter 4) led to the hypotheses tested in Chapter 5. 
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Abstract 

Bycatch mitigation approaches aim to either reduce the incidence of unwanted 

catch or reduce bycatch mortalities. In pelagic longline fisheries incidence of 

unwanted catch can be reduced by limiting the availability of baited hooks (e.g., 

within bycatch species' preferred depths and water temperatures), whereas 

bycatch mortalities can be decreased by gear modifications and changes to 

fishing practices (e.g. , by limiting soak time). To evaluate the effects of 

temperature , depth , and soak time on catch of target and bycatch species, 

temperature recorders were set along the length of the longline to characterize 

the environment at which hooks were fishing. Although few instrumented sets 

were fished, observations at the within set scale - specifically, that swordfish 

(Xiphias gladius) catch did not increase with longer soak times - led us to re­

examine assumptions made in fleet-wide catch models. Swordfish catch did not 

increase with soak time in generalized linear models based on fisheries observer 

data collected from swordfish-targeted sets fished by the Canadian pelagic 

longline fleet in 2008 and 2009 (n=42 and n=78 , respectively). Minimum soak 

time, from end of setting to start of hauling, was used in swordfish catch models. 

Total soak time is inappropriate for catch models because it includes haulback 

time , which increases as a function of catch. If landed catch does not increase as 

a function of soak time, then limiting longline soak time to reduce bycatch 

mortalities would not cause decreased swordfish catch nor result in economic 

losses for fishers. While minimum soak time limits would likely decrease bycatch 
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mortality rates in swordfish longline fisheries, impacts on other aspects of the 

fishing process would need to be considered, such as negative impacts on fisher 

safety. 
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3.1 Introduction 

Bycatch mitigation approaches either aim to reduce the incidence of unwanted 

catch or aim to decrease bycatch mortality rates. For pelagic longline fisheries, 

methods to reduce the incidence of unwanted catch include setting practices that 

decrease availability of baited hooks within bycatch species' habitats or foraging 

areas (e.g. , Dietrich et al. 2008; Beverly et al. 2009). Research differentiating 

species distributions, and inferred foraging areas, has largely focused on depth 

distributions (Boggs 1992; Bertrand et al. 2002; Bach et al. 2003; Ward and 

Myers 2005; Beverly et al. 2009) . However, higher catch rates of target and non­

target species, such as tunas (Thunnus spp.), swordfish (Xiphias gladius) , and 

loggerhead turtles (Caretta caretta), are also associated with particu lar water 

temperatures or with thermal fronts (e.g., Podesta et at 1993; Polovina et al. 

2000; Brazner and McMillan 2008). Methods to decrease bycatch mortality or 

injury rates include changes to hook size and type, reduced time on hooks, and 

modified handling practices (e.g .• Hoey and Moore 1999; Diaz and Serafy 2005; 

Campana et at 2009; Carruthers et al. 2009). Thus, depth and temperature 

fished, as well as soak time affect both catch rates and mortality levels of 

bycatch . 

Because fishers are more likely to adopt mitigation methods that do not decrease 

landed catch (but see Campbell and Cornwell 2008), effects on target species 
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catch rates are commonly considered in bycatch mitigation research (e.g. , Hall et 

al. 2007; Ward et al. 2008; Wade et al. 2009). For example, Beverly et al. (2009) 

demonstrated that removing shallow hooks from pelagic longline gear decreased 

catch rates of epipelagic species, and presumably endangered sea turtles, and 

maintained catch rates of targeted tunas. In contrast, reduced longline soak 

times decrease mortality levels of unwanted catch but may also decrease catch 

rates of targeted and marketable species (Ward et al. 2004 ; Carruthers et al. 

2009). Due to this presumed trade-off between economic benefits for fishers and 

decreased mortality levels among bycatch species, it has been argued that 

regulations to decrease soak time would be unacceptable to industry (Diaz and 

Serafy 2005). 

Pelagic longline bycatch research typically uses fishery-dependent observer data 

to estimate the magnitude of fishing impacts and the importance of different 

fishing factors on bycatch levels and mortality rates (Bigelow et al. 1999; Lewison 

et al. 2004; Ward et at 2004 ; Campana et al. 2006; Carruthers et al. 2009). 

Alternatively, longlines instrumented with depth recorders , temperature gauges 

or hook timers are used to determine how depths, temperatures, and soak times 

fished affect catch rates and species composition (e.g ., Boggs 1992; Bach et al. 

2003; Beverly et al. 2009). However, few bycatch mitigation studies use 

observations from fishing experiments to improve fleet-wide catch models, in 

order to evaluate how specific fishing practices affect overall fishery impacts (but 
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see Cox et al. 2007; Campana et al. 2009). In this paper, r demonstrate how 

observations from instrumented longline sets can be used to improve landed 

catch models and to evaluate mitigation methods in the Canadian pelagic 

longline fishery. 

The Canadian pelagic longline fishery targets swordfish and tunas in the 

Northwest Atlantic along the continental shelf edge and further offshore in waters 

north of the Gulf Stream (Figure 3.1 ). Although the fishery has increasingly 

targeted bigeye (T. obesus), albacore (T. alalunga), and yellowfin (T. albacares) 

tunas, swordfish catch still accounts for the majority of landings by this fleet (Paul 

and Neilson 2010). Fishing practices, catch rates, and species compositions 

differ for swordfish and tuna-targeted sets (He et al. 1997; Brazner and McMillan 

2008). For the purposes of this study, targeted species were determined from 

catch composition (Rogers and Pikitch 1992; He et al. 1997; Paul and Neilson 

2010); swordfish-targeted sets were identified as those where swordfish was the 

most common species. Here I examine the effects of temperature, depth , and 

soak time on catch rates of swordfish and the most commonly caught bycatch 

species (blue shark, Prionace glauca). Instrumented longline sets were used to 

characterize the depth and temperature environment at which the hooks were 

fishing and to determine if catch rates of swordfish and blue shark were affected 

by within set temperature or soak time differences. Observations at the within set 

level , caused us to re-examine assumed relationships between catch, soak lime, 
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and temperature used in fleet-wide catch models and used to evaluate bycatch 

mitigation techniques. 

3.2 Methods 

3.2.1 Instrumented fishing sets 

Within set temperature and depth variability were sampled opportunistically 

during a charter of a commerciallongline vessel with the primary purpose to 

release swordfish and bluefin tuna (T. thynnus) marked with pop-up satellite tags 

(Neilson et al. 2009). Instrumented longline sets were fished east of the Grand 

Banks between August 17th and 20th, 2008 (Figure 3.1). Fishing practices were 

similar to those used by the commerciallongline fishery when targeting swordfish 

(Table 3.1). Gear was set to fish in the upper 20 m, using 4.5 m drop lines and 8 

m branch lines (gangions) (Figure 3.2) . Three hooks were fished between buoys 

or within each basket. Circle hooks (size 16/0, 10% offset) were baited with 

mackerel. Fourteen sections were fished in the first two sets (900 hooks) and 17 

sections were fished in the last set (1000 hooks). Each section consisted of 

approximately 20 baskets (Figure 3.2). Sections were approximately 3 km and 

total mainline length was between 40 and 50 km. Gear was set in the evening, 

soaked overnight, and haulback began at 6 am. Instrumented longlines were 

counter-retrieved ; the first hook set was the last retrieved. 
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Temperature and depth were recorded from the depth at which the gear fished. 

Temperature recorders (TRs) replaced baited hooks at the end of gang ions 

(Figure 3.2). Eighteen TRs were attached at midpoints of long line sections. A 

temperature depth recorder (TOR) was attached at the midpoint of the longline 

set. Therefore , the TOR recorded a range of depths while setting and hauling , but 

depths were recorded from the deepest point of the longline for the majority of 

the deployment. TR and TOR resolution was :t 0.4 m and :t 0.2 ·C, with stated 

accuracy :t 2.0 m and :t 0.3 ·C (Vemco Division, AMIRIX Systems Inc., NS 

Canada). Temperature and depth were recorded every 5 minutes. Relative 

positions (I.e., longline basket or hook number) of species and TRs were 

recorded during haulback. BefOfe each set water temperature was recorded to 

25 m depth using a second TOR. In addition, surface water temperature and time 

were recorded at four points during the longline sets: start and end of setting , and 

start and end of hauling. 

3.2.2 Fisheries observer data 

Data collected from the pelagic longline fishery by at-sea fisheries observers 

were obtained from the International Observer Program database, created and 

maintained by the Population Ecology Division of the Canadian Department of 

Fisheries and Oceans (DFO). Fisheries observer data were used instead of 

logbook data because catch of bycatch species, such as blue shark, are neither 

required nor consistently recorded in logbooks. In addition to identifying species 
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caught, fisheries observers recorded information on gear characteristics (Le., 

longline length, bait, and hook type), and on the location, timing , and water 

temperature during setting and hauling. Fisheries observers reported from 11 of 

164 trips fished during the 2008 season, accounting for 5% of sea days. 

Observers reported from longline trips that were fished from late May until mid­

October and were distributed from Georges Bank in the south to the eastern 

Grand Banks in the north (Figure 3.1). Prior to analysis, individual vessel 

identifiers were replaced with unique identifiers to maintain confidentiality. 

Swordfish-targeted sets were identified as sets in which the number of swordfish 

exceeded that of tunas or of other landed species. This approach was validated 

using a K-means cluster analysis (Xu and Wunsch 2009), which differentiated 

swordfish and tuna-targeted sets in the first division, and identified the same 

swordfish-targeted sets as the simpler method. Data from 78 swordfish-targeted 

sets observed the following fishing season were used to test whether modeled 

effects of soak time and temperature held across years and data sets. 

3.2.3 Statistical analyses 

Effects of soak time and water temperature on catch were tested for sections 

within the three instrumented longline sets. Because TRs were set out along the 

longline, soak times differed. Soak times were identified by a large temperature 

change (>20 C) occurring within a 10 minute period (i.e., two recording intervals) 

within the TR or TOR records. Identified start and end times fell within the setting 
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and hauling periods recorded on deck sheets and were checked against the 

order in which recorders were set and retrieved (e.g., TR 3 was set before but 

retrieved after TR 4). Data were imported, compiled, and error checked using 

custom programs (MATLAB version R2007a). To test for effects of temperature 

(T) and soak time (duration; D) on swordfish and blue shark catch (number of 

fishfsection between TRs), I used Generalized Linear Models (GLMs) with a 

Poisson error distribution and log link, appropriate for count data (Maunder and 

Punt 2004): 

Catch = e~ + t. (3.1) 

Because diagnostic plots showed dispersion of residuals did not increase with 

fitted values, I considered the Poisson error distribution sufficient for data from 

instrumented long line sets. Within each set, catch from adjacent sections may be 

related (Ward et al. 2004), e.g., clustered catches may indicate schooling fish 

(Rey and MUi'ioz-Chapuli 1992). Therefore, a categorical variable for fishing set 

(S) was used to account for differences among sets. Number of hooks between 

temperature recorders was not included in the model as this variable was not 

significant nor did it improve explanatory power. The model for swordfish and 

blue shark catches corresponding to sections associated with each temperature 

recorder was: 

IJ = 110 + fhT+ BoD +B.S + BTxsTxS, (3.2) 

where IJ corresponds to mean catch for each section. 
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Similarly, I modeled soak time and temperature effects using fisheries observer 

data collected from swordfish-targeted sets fished during the 2008 fishing 

season . However, soak time is not recorded for sections within a longline during 

observed commercial fishing sets, Instead, time is recorded at four points in the 

long line set. Before using total soak time (start of setting until end of hauling), I 

first determined if the number of target species caught (i.e., tunas and swordfish) 

increased haulback time. In the Canadian long line fishery, and in other fresh­

chilled swordfish fisheries (P. Ward, pers. comm. July 27, 2010), hauling often 

stops to bring fish aboard and may take considerable time depending on the size 

and activity level of fish. Because haulback time increased as a function of the 

number of target species, I used minimum soak time (duration; D, end of setting 

until start of hauling) in landed catch models. Minimum soak time is not affected 

by setting and hauling practices (e.g., number of hooks fished or amount of 

landed catch). Estimated fishing depth was not included in catch models because 

it was not clear how such estimates were made. For example, water column 

depth was reported instead of fishing depth for 6 of the 42 swordfish-targeted 

sets observed in 2008. Number of hooks hauled (H), an effort measure, and 

water temperature (T) averaged from four points in the longline set, were 

included as factors in the catch model: 

(3.3) 
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where IJ corresponds to mean catch for each set. Previous catch rate models for 

blue shark caught by the Canadian pelagic longline fishery included categorical 

variables for fishing quarter and region (e.g., Scotian Shelf or Grand Banks; 

Campana et aI. , 2006). However, the majority of swordfish-targeted sets 

observed during 2008 were fished on the Scotian Shelf and in the third quarter. 

Curvilinear relationships between soak time or temperature and catch levels 

were not evident in the fisheries observer data. Therefore, I used GLMs that 

paralleled those used for instrumented sets. Standardized residuals plots were 

used to evaluate whether underlying error distribution assumptions were met 

Scale parameters and diagnostic plots of initial models revealed variance greater 

than accounted for by the Poisson error distribution , which assumes variance 

equal to the mean. Negative binomial error distributions, which include a 

dispersion parameter to be estimated (k -\ account for greater variance in error 

calculations and significance tests (var(Y) = jJ + 1J2·k·1). While these models 

produce more conservative significance estimates, negative binomial models 

cannot account for variance due to missing explanatory variables (McCullagh 

and Neider 1989). Negative binomial error distributions, appropriate for 

overdispersed count data (Maunder and Punt 2004), were used in catch models 

based on fisheries observer data collected from swordfish-targeted sets fished in 

2008 and 2009. To test whether relationships between temperature and catch 

held and if minimum soak time remained a non-significant predictor of swordfish 
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catch, GLMs were rerun using observer data collected from 78 swordfish­

targeted trips the following fishing season (2009). GLMs were run using the 

open-source statistical program R, with the packages 'MASS' and 'car' (Venables 

and Ripley 2002; Fox 2007; RTeam 2007). 

3.3 Results 

3.3.1 Instrumented fishing sets 

Blue shark, swordfish, and shortfin mako (Isurus oxyrinchus) were the most 

common catch, accounting for 94% of the number of fish caught in instrumented 

sets . The remainder of the catch consisted of unidentified sharks, a single 

thresher shark (Alopias sp.), and a single bluefin tuna. The range of surface 

water temperatures recorded on deck sheets was 14.9 - 17.2 °C. Maximum soak 

time, from start of setting to end of hauling, ranged from 13 h 30 min to 

18 h 45 min. Minimum soak time ranged from 4 h 20 min to 8 h 30 min. 

Temperatures recorded at depth were generally within the range reported on 

deck sheets, except during brief increases in depth (Figure 3.3). Data from 

instrumented longline sets indicated that swordfish-targeted sets fished at 

approximately 13.5 m j: 1.8 (mean j: SO), if sounding events were excluded. 

Sounding behaviour of hooked fish occurred during Sets 1 and 2, lasting 50 to 85 

minutes and marked by an up to 20 m difference in depth and a 4 °C change 

(Figure 3.3). Prior to the use of hook timers, time of capture was inferred from 
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short-term increases in depth or sounding events (Boggs 1992). The sounding 

event during Set 2 was a result of blue shark captures. All hooks adjacent to the 

TOR were recovered and blue shark was the only species captured on the 

snarled hooks. Little temperature difference was recorded in vertical temperature 

profiles conducted at the beginning and ending of each set. For example, vertical 

temperature profiles taken during Set 1 ranged from 14 .B to 15.9 °C in the upper 

20 m. Little variability in vertical temperature profiles suggests sets were fished 

within the upper mixed layer. The rapid change in temperature during sounding 

events suggests the thenTIocline occurred at approximately 25 m depth in Set 1 

(Figure 3.3). 

Along the length of the longline temperatures ranged from 14.4 to 16.B °C (Figure 

3.4). Temperature and soak time data from TR 6 and TR B were lost because 

these recorders were not recovered. Soak time decreased along the length of the 

long line because longlines were counter-retrieved (Figure 3.5). 

3.3.2 Fisheries observer data 

Blue shark, swordfish, porbeagle, and mako shark accounted for >95% of fish 

caught in swordfish-targeted sets. Of the 52 sets observed during the 200B 

fishing season, 42 were swordfish-targeted, which fished approximately 44,000 

hooks. Swordfish-targeted sets fished both circle (size 1610) and J-hooks (size 

BIO and 910, 36 and 41 mm maximum hook widths) and used mackerel , or a 
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combination of mackerel, herring, and squid baits (Table 3.1). Although the range 

of surface water temperatures among swordfish-targeted sets was 13.8 - 20.1· C 

(Table 3.1), the maximum temperature range recorded during a single observed 

set was 3 ·C. Swordfish-targeted sets were predominantly fished along the edge 

of the continental shelf from May 24 until October 17, 2008 (Figure 3.1). Of the 

122 sets observed the following year, 78 were swordfish-targeted , Operatiooal 

and environmental characteristics of swordfish-targeted sets were similar in 2009 

but included shorter and shallower longline sets (Table 3.1). Swordfish-targeted 

sets were generally set at night and haulback began the following morning (Table 

3.1). 

3.3.3 GLM analyses 

Neither temperature nor soak time affected swordfish catch during instrumented 

sets (Figure 3.5, Table 3.2). Blue shark catch increased with lower temperatures 

during Set 2, but the relationship did not hold for other instrumented sets (Table 

3.2). 

Swordfish catch increased with mean water temperature based on fisheries 

observer data from 2008, but the relationship was reversed when data were used 

from the 2009 fishing season. Blue shark catch increased with lower water 

temperatures in models using 2008 data (Table 3.3). However, the relationship 

between water temperature and blue shark catch was not significant across 
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instrumented longline sets or different fishing seasons. As expected, swordfish 

catch increased with the effort measure (number of hooks hauled). 

Before evaluating effects of increased soak time in the fisheries observer data , I 

determined if haulback time , and therefore total soak time, was affected by 

targeted catch. Number of targeted species caught significantly increased 

haul back time (F3•39 = 5.779, P = 0.0023), based on linear models of haulback 

time as a function of number of landed species and number of hooks hauled (p = 

0.027 and p = 0.008, respectively). Therefore, minimum soak time was used in 

landed catch models . Minimum soak time did not significantly increase swordfish 

catch using either 2008 or 2009 fisheries observer data (Table 3.3). To compare 

the effects of minimum soak time and haul back time on swordfish and blue shark 

catch, I modeled soak time effects using data from swordfish-targeted sets fished 

during the 2009 season. Average number of hooks (847) and water temperature 

(17.6 QC) were used in Eq. 3.3. Neither swordfish nor blue shark catch increased 

with minimum soak time, however, catch of both species increased with haulback 

time (Figure 3.6). 

3.4 Discussion 

Bycatch mitigation approaches aim to reduce incidence and mortality levels of 

bycatch without decreasing catch rates of target species. My analysis of soak 
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time and temperature effects indicated shorter soak times , which would decrease 

hooking mortality levels (Ward et al. 2004; Diaz and Serafy 2005; Campana et al. 

2009; Carruthers et al. 2009), would not decrease catch rates of targeted 

swordfish. Blue shark bycatch increased with cooler water temperatures, but the 

relationship was not significant across instrumented sets and fishing seasons, 

which suggests other environmental or behavioural factors are driving blue shark 

catch rates. 

Analysis of fisheries observer data was limited to swordfish-targeted sets to 

increase comparability with instrumented long lines. Swordfish-targeted sets 

fished a range of bait types, depths, and temperatures, in addition to the fleet's 

traditional fishing practices when targeting swordfish: e.g. , mackerel baited, 

shallow-set hooks fished along the continental shelf edge (Stone and Dixon 

2001). Swordfish-targeting was simply identified from catch composition, but this 

method assumes that the most common landed species was, in fact, the 

intended target (Rogers and Pikitch 1992). For example, the three sets fished 

further offshore in 2008 (Figure 3.1) caught a combination of swordfish, tunas, 

and porbeagle in roughly equal numbers, making it difficult to identify a single 

target species. Alternatively, target species could be inferred from fishing 

practices. It looks like longliners tried different targeting practices during the 2009 

fishing season (i.e., fishing depths, bait types, and longline lengths), but 

swordfish remained the most commonly caught target species. Mixed-bait, 

79 



deeper sets caught both yellowfin tuna and swordfish, which may indicate a 

mixed targeting strategy. Instrumented longline sets were similar to traditional 

swordfish-targeting practices in the commercial fishery. While total soak time and 

sea surface temperatures in instrumented sets were within the range recorded in 

fisheries observer data (Table 3.1), soak times were shorter than average to 

increase the likelihood that swordfish and bluefin tuna would be available for 

tagging and live release. 

Blue shark catch generally increased with cooler temperatures, but the 

relationship was not significant across instrumented longline sets or between the 

two fishing seasons. While there was likely insufficient contrast among 

instrumented longline sets to determine temperature effects, temperatures 

reported in Canadian fisheries observer data were similar to those analyzed by 

Watson et at. (2005), who found blue shark catch increased with cooler sea 

surface temperatures. However, Watson et al. (2005) were working with more 

detailed data; onboard fisheries observers in that fleet recorded water 

temperature and catch for each longline section. Because water temperatures 

used here were averaged from four points in the long line set, they may not reflect 

water temperatures at a scale relevant to blue shark. Other studies that reported 

fleet-wide or large scale associations between blue shark catch and cooler 

temperatures may instead reflect targeting practices. For example, Walsh and 

Kleiber (2001) reported higher blue shark catches associated with colder sea 
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surface temperatures; however, this effect may be indirect because their data set 

included both swordfish and tuna targeted sets. Blue shark bycatch is associated 

with swordfish targeting (He et al. 1997), which occurs in cooler waters than tuna 

targeting (Paul and Neilson 2010). Thus , two possible explanations from the 

difference between my results and previous research are the scale at which 

temperature is recorded, or the range of targeting practices included in the data 

set 

Alternatively. the lack of consistent relationship between fishing seasons may 

simply reflect that I checked whether the relationship between blue shark and 

water temperature held - few studies retest effects of environmental factors with 

new data. While focused on a separate aspect of fisheries research. Myers 

(1998) found correlations between environmental factors and fish recruitment 

fared poorly when subject to retesting. The notable exception was when sampled 

populations were at the northern extent of their range (Myers 1998). Associations 

among species catch rates and water temperature imply temperature preference 

or limits. Given that blue sharks encounter 10-15 °C temperature differences 

during daily dives (Carey and Scharold 1990). it is unlikely that temperatures 

reported from this fishery (Table 3.1) are near the limit of blue shark temperature 

preferences. Instead. I suggest that temperature and shark associations are 

indicative of other processes, such as targeting practices (Walsh and Kleiber 

2001). or, at a finer scale, short-tenn changes to the fished environment and to 
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fish behaviour may be driving blue shark catch rates. Comparisons among 

instrumented sets and nine adjacent observed sets (Figure 1), showed extreme 

catch rate variability occurred on short time and space scales - within 10 days 

and 100 km. For both instrumented and the adjacent observed sets, swordfish 

catch rate remained below 30 fish/1 000 hooks, whereas blue shark catch rates 

ranged from 10 to >150 shar1<S/1OOO hooks . ThUS, reported associations between 

blue shark and temperature may reflect other short-term environmental changes 

that coincide with decreased temperature, such as wind-induced mixing. 

Analysis method was not a common factor among studies which found significant 

temperature or soak time effects on swordfish or blue shark catch. For example, 

both Walsh and Kleiber (2001) and Watson et al. (2005) reported blue shark 

catch increased with cooler water temperatures, using Generalized Additive 

Models (GAMs, which allow for non-linear relationships) and GLM analyses 

Whereas, Vega and Licandeo (2009) found SST was not a significant factor in 

blue shark GAMs. While the lack of relationship between swordfish and soak 

time was surprising, I think positive associations found in previous studies had 

more to do with how soak time was measured than analysis method. Research in 

which soak time was recorded for each section was equivocal; with both 

significant (Ward et al. 2004) and insignificant (Watson et al. 2005) soak time 

effects. By contrast, studies which used median or maximum soak time, report a 
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positive soak time effect, irrespective of the analysis method used (Carruthers et 

aL 2009; Vega and licandeo 2009). 

From a bycatch mitigation perspective, the observation that swordfish catch did 

not increase with soak time could have important management implications. 

Hooking mortality rates, whether individual animals are alive or dead when 

brought alongside the vessel, generally increase with longer soak times (Ward et 

aL 2004; Diaz and Serafy 2005; Campana et aL 2009; Carruthers et aL 2009). If 

landed catch does not increase as a function of soak time, then limiting soak time 

would not result in an economic loss for long liners. Effectively, there may be no 

trade-off between lower bycatch mortalities and fishing profitability. However, 

evaluating this trade-off depends upon appropriate measures of soak time. Total 

or median soak time is used to estimate hooking mortality levels (Diaz and 

Serafy 2005; Campana et al. 2009; Carruthers el aL 2009). Both measures 

include haulback time and, therefore, are not appropriate for landed catch 

because haulback time is a function of landed catch. Minimum soak time would 

not, however, be an appropriate measure for hooking mortality models; il would 

systematically underestimate time on hooks and associated stresses, such as 

from limited movement ability (Campana et at 2009). 

Swordfish catch did not increase with longer soak times during the instrumented 

sets even though soak time of longline sections differed by up to 8 h. The 
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number of instrumented long lines fished is clearly insufficient for fleet-wide 

inferences. However, observations from these sets caused us to re-examine 

measures used to evaluate soak time effects using fisheries observer data 

Because haulback time increased as a function of landed catch, I used minimum 

soak time in catch models. Minimum soak time did not increase swordfish catch 

among observed sets fished by the Canadian Atlantic pelagic long line fleet 

(Figure 3.6). Interestingly, blue shark catch also increased with haulback time 

(Figure 3.6), which suggests that discarding sharks can also take considerable 

time. Haulback practices described here are not unique to the Canadian fishery; 

therefore, bycatch mitigation opportunities in other pelagic longline fisheries may 

be overlooked. For example, Watson et al. (2005) attributed the positive 

relationship between swordfish catch and daylight soak time to the increased 

time needed to process and catch because haulback time increased as a 

function of landed catch. 

Shorter soak times could decrease bycatch hooking mortalities levels in pelagic 

long line fisheries. However, key questions would need to be addressed prior to 

implementing minimum soak time limits. Would reductions in minimum soak time 

(i.e., the time period over which longliners have greater control), markedly 

decrease bycatch mortality levels? How do minimum soak time limits affect 

different targeting strategies and how do they compare to other mitigation 

strategies, such as modified handling practices (e.g., Campana et al. 2009)? 
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Given that swordfish longline operations are generally completed within 24 h 

(Ward and Hindmarsh 2007), would limiting minimum soak times negatively 

impact fisher safely? Minimum soak limes in the 2008 and 2009 fishing season 

were, on average, 7-8 h (Table 3.1). In the Canadian fleet, this is the time period 

when longline crews are able to sleep and eat. Fatigue is a common factor in 

fishing accidents (Windle et al. 2008), therefore, minimum soak time regulations 

could negatively impact fisher health and safety. If fisheries management and the 

fleet were able to address the safety issues, then any soak time regulations 

would need to be based on minimum soak times as it is the time period that 

fishers can control. Total soak time is affected by amount of catch, line breaks, 

and other factors beyond the fishing crews' control. Rather than advocate for 

particular mitigation methods, my point here is that simple catch models, and 

consequent evaluations of bycatch mitigation opportunities, were based on 

inappropriate soak time measures. Incorporating results from data collected at 

the within-set level improved fleet-wide catch models and identified overlooked 

bycatch mitigation opportunities. 
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Table 3.1 Operational and environmental characteristics of swordfish-targeted pelagic long line sets observed 

during the 2008 and 2009 fishing seasons (average ± standard deviation and range (shown in parentheses)). 

Characteristic 2008 Swordfish-targeted sets (n=42) 2009 Swordfish-targeted sets (n=78) 

Hook type 29.5% J-hook; 70.5% circle hook 
Bait type8 29.5% mackerel; 70 .5% mixed 
Number of hooks hauled 1041 ± 337 (576 - 1564) 
Longline length (km) 45 ± 16.2 (18 - 80) 
Number of hooks between buoys 3 (2 - 4) 
Gangion length (m) 6.3:1: 1.2 (3.6 - 7.3) 
Fishing depth/> (m) 18 ± 9.1 (9 - 33) 
Surface water temperature (OC) 17.1 :I: 1.6 (13.8 - 20.1) 
Minimum soak time' (h) 8.4 :I: 1.1 (4.9 - 10.5) 
Total soak time (h) 19.8 ± 2.3 (12.8 -25.3) 
Start of setting 9:36 pm :I: 76 min (8:00 pm - 2:35 am) 
Start of hauling 9:58 am ± 43 min (9:00 am -12:04 pm) 
• Mixed bait refers to a Combination of mackerel, squid, and herring. 

17% J-hook; 83% circle hook 
40% mackerel; 13% squid; 47% mixed 
847:1: 249 (210-1377) 
38.3±17.3(10-70) 
52% 2 hooks; 48% 3 hooks 
6.4:1: 1.5 (1 .2 - 8.2) 
11 .9±6.7(4-27) 
17.6:1: 2.5 (11 - 21.9) 
7.2:1: 1.5 (3-11 .5) 
18.5 ± 2.6 (8.3 - 25.0) 
9:40 pm :I: 70 min (7:40 pm - 2:00 am ) 
9:36 am:l: 45 min (8:22 am - 12:52 pm) 

/> Estimated by fishing captains and recorded on deck sheets (2008, n = 35; 2009, n = 39) . 
cMinimum soak time calculated as time from end of setting until start of hauling. 
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Table 3.2 Modeled coefficients of temperature and soak time effects on swordfish 

and blue shark catch in instrumented sets. Catch was recorded for each longline 

section between temperature recorders (n = 51). 

Term Coefficient SE Pr(>lzl) 

Swordfish Set 1 -4.138 6.353 -0.650 0.512 

(n=57) Set 2 1.186 0.381 3.114 0.002 

Set 3 0.202 0.699 0.288 0.773 

Soak time 0.053 0.060 0.875 0.382 

Temperature 0.203 0.401 0.505 0.613 

Blue shark Set 1 9.325 5.811 1.605 0.109 

(n=197) Set 2 32 .341 11 .868 2.725 0.006 

Set 3 -2.963 7.920 -0.374 0.708 

Soak time -0.033 0.039 -0.847 0.397 

Temperature -0 .545 0.398 -1.371 0.170 

Set 2 x temperature -2.106 0.795 -2.648 0.008 

Set 3 x temperature 0.244 0.515 0.473 0.636 
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Table 3.3 Modeled coefficients of temperature and soak time effects on swordfish 

and blue shark catch. Models are based on fisheries observer data collected 

from swordfish-targeted sets du ring the 2008 and 2009 fishing seasons, 42 and 

78 sets observed, respectively. 

Te"" Coefficient SE Pr(>lzll 

2008 Fishing season 
Swordfish Intercept -0.7762 1.6868 -0.460 0.6454 
(n=919) 

Soak time' 0.0230 0.0943 0.318 0.7507 

Temperature 0.1565 0.0628 2.494 0.0126 

Number of hooks 0.0008 0.0002 2.771 0.0056 

Blue shark Intercept 7.5737 1.6327 4.639 <0.0001 
(n=2159) 

Soak time -0.1580 0.0918 -1 .721 0.0853 

Temperature -0.2803 0.0606 -4.624 <0.0001 

Number of hooks 0.0020 0.0002 7.154 <0.0001 

2009 Fishing season 
Swordfish Intercept 3.0999 0.9470 3.273 0.001 1 
(n=1395) 

Soak time 0.0156 0.0572 0.273 0.7852 

Temperature -0.0954 0.0395 -2.414 0.0158 

Number of hooks 0.0015 0.0004 3.410 0.0007 

Blue shark Intercept 7.8535 1.0317 4 .704 <0.0001 
(n=2191) 

Soak time -0.1479 0.0620 -2.386 0.0170 

Temperature -0.0541 0.0433 -1 .250 0.2114 

Number of hooks 0.0007 0.0004 1.587 0.1124 

' Minimum soak time measured from end of setting to start of hauling . 
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Figure 3.1 Locations of instrumented Iongline sets , fished between 17·20 August 

2008, and swordfish-targeted long line sets observed during the 2008 fishing 

season . Swordfish-targeted sets were predominantly fished along the continental 

shelf edge, indicated by the 200 m isobath, and within the Canadian EEZ. 
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Figure 3.2 Gear configuration of a single longline basket. Twenty baskets were 

fished per section , and 14 - 17 sections fished in each instrumented longline set. 

Temperature recorders (TR) and the temperature depth recorder (TOR) replaced 

a baited hook at the end of a 9an9ion, recording data at the depth of the baited 

hooks. Data were recorded from 16 TRs and one TOR, which was located at the 

midpoint of each section . 
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Figure 3.3 Depth (dashed line) and temperature (solid line) recorded by the 

temperature depth recorder at the mid-point of instrumented longline sets, Data 

were recorded at five minute intervals. Note soak times differed between the 

three sets, lasting approximately 15 h during Set 3 as indicated on x-axis. 
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Figure 3.4 Mean temperature (± standard deviation) recorded along the length of 

the longline . Position of temperature recOfders (TR) along the long line shown on 

x-axis. TR 6 and 8 were not recovered. The temperature depth recorder (TDR) 

was located at the midpoint of the longline. 
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Figure 3.5 . Number of swordfish (dark grey) and blue shark (light grey) caught 

within longline sections between temperature recorders (TRs). Position of TRs 

along the longline shown on x-axis. Soak time for each section between TRs 

shown by dashed line . 
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Figure 3.6. Swordfish and blue shark catch per set modeled as a function of 

minimum soak time or haulback time, and using average number of hooks and 

temperatures fished during the 2009 fishing season. Dashed lines indicate 95% 

confidence limits and sample distribution shown along the x-axis 
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CHAPTER 4: BYCATCH MITIGATION IN CONTEXT: USING QUALITATIVE 

INTERVIEW DATA TO IMPROVE ASSESSMENT AND MITIGATION IN A 

DATA-RICH FISHERY 

The following chapter uses qualitative data collected during fishers' knowledge 

interviews. Because I wanted to identify bycatch mitigation opportunities in the 

current pelagic longline fishery, I interviewed longline captains who were active in 

the neet. long line captains' descriptions of fishing practices and how these 

changed in response to management and markets highlighted aspects of the 

societal context that shape bycatch levels. 

longline captains reported bycatch mitigation approaches that could be used to 

increase post-release survival of species that survive the capture process 

(Chapter 2). Qualitative interview data confirmed species associations described 

in Chapter 3. Longline captains' observations of species distributions and 

behaviour, and observations made during the field study (Chapter 3) led to the 

hypotheses tested in Chapter 5. 
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Abstract 

Bycatch from pelagic long line fisheries has contributed to widespread population 

declines of turtles, sharks, and other pelagic fishes. While large-scale estimates 

are needed to understand cumulative impacts on these highly migratory species, 

detailed information on targeting, setting, and discarding practices is needed to 

develop bycatch mitigation approaches. Data from qualitative fishers' knowledge 

interviews with Canadian Atlantic pelagic longline captains was used to evaluate 

current bycatch estimation methods and to identify bycatch mitigation 

opportunities. Interviewed longline captains reported blue sharks (Prionace 

glauca) were common bycatch during swordfish-targeted sets, but were 

sometimes absent from tuna-targeted sets. Discrepancies between longline 

captains' observations and bycatch assessment methods identified needed 

improvements to data collection methods. Longline captains reported innovative 

uses of turtle dehooking gear, which two-thirds of interviewed long line captains 

had used to release other bycatch species in addition to turtles. Longline 

captains reported techniques for discarding pelagic stingray (Pteroplatytrygon 

violacea), a common bycatch species in Pacific, Atlantic, and Mediterranean 

pelagic longline fisheries. Therefore , implementation of such techniques could 

decrease fisheries impacts globally. While there can be major conservation 

benefits from fishers ' knowledge research, one-quarter of the active longline 

captains I contacted declined interviews because they did not trust the larger 

research process. I urge conservation biologists to carefully design fishers' 
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knowledge research, taking into account the often politicized context. Failure to 

do so may jeopardize future research and conservation efforts 
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4.1 Introduction 

Pelagic longline fisheries target swordfish (Xiphias gladius) and tunas (Thunnus 

spp.) throughout the Atlantic, Pacific, and Indian Oceans, and the Mediterranean 

Sea. Bycatch from pelagic longline fisheries, defined here as incidental catch that 

is subsequently discarded dead or released alive, has contributed to widespread 

population declines of turtles, sharks, and other large pelagic fish (Baum et al. 

2003; Lewison et al. 2004; Myers and Worm 2003). Because species caught on 

pelagic longline gear migrate across ocean basins (Campana et al. 2006; James 

et al. 2005; Mollet 2002; Neilson et al. 2009), large-scale estimates are needed 

to understand cumulative impacts from longline fisheries. However, fishing 

practices and species catch rates differ within fisheries (Baum et al. 2003; 

Brazner and McMillan 2008; Kerstetter and Graves 2006). Because different 

targeting, setting, and discarding practices affect bycatch levels and post-release 

survival (Branch and Hilbom 2008; Campana et al. 2009; Wade et al. 2009), 

information on the prevalence of different fishing practices is needed to 

accurately assess overall fishery impacts and to develop effective bycatch 

mitigation approaches. 

Assessments of population or ecosystem level impacts from pelagic longline 

fisheries are largely based on fishery-dependent data (Maunder and Punt 2004). 

In data-rich fisheries, impacts are assessed using landings records, logbook 

data, and data collected by at-sea fisheries observers (McCluskey and Lewison 
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2008). Because these data are collected during commercial fishing operations 

and are thus fishery-dependent, additional information on fishing practices is 

needed to differentiate effects of changing fishing practices from changes in 

species abundance. Increased fishing power can mask population declines 

(Bishop 2006), whereas unaccounted for changes in targeting practices has 

resulted in overestimates of fishery impacts (de Mutsert et al. 2008). Bycatch 

species are caught incidentally; therefore information on the association between 

target and bycatch species and on the prevalence of different targeting practices 

is also needed. Within multispecies fisheries, motivations to switch among target 

species or fishing regions differ depending on individual captains' skill and 

experience, fishing preferences, and changing regulations or markets (Bene and 

Tewfik 2001; Branch and Hilbom 2008; de Mutsert et al. 2008). The efficacy of 

bycatch mitigation approaches may differ among regions and with targeting 

practices (e.g ., Wade et al. 2009). Therefore, even within data-rich fisheries 

additional information may be needed to track fishery impacts and to develop 

bycatch mitigation approaches. 

Fishers' knowledge research can contribute important information for 

assessment, management, and bycatch mitigation even where detailed fisheries 

science data exist: by identifying needed improvements to the fisheries science 

data (Saenz-Arroyo et al. 2005); by soliciting feedback on the efficacy of possible 

mitigation strategies (Santora 2003); and by developing mitigation techniques 

based on fishers' technical expertise (Hall et al. 2007) and on their observations 
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of bycatch species' behaviour relative to fishing gear and target species (Jenkins 

2007), Fishers' knowledge may be particularly important for marine conservation 

research when population metrics are based on fishery-dependent data and 

when researchers' observations of species' behaviour or ecology are limited. 

However, fishers may be unwilling to share their knowledge if research will likely 

lead to increased regulations, and if fishers' have no control over the use of their 

knowledge (Hall et al. 2007; Hartley and Robertson 2009; Santora 2003; Silver 

and Campbell 2005; St. Martin and Hall-Arber 2008). Thus, a core dilemma of 

fishers' knowledge research is that while there may be an urgent need to access 

fishers' knowledge, there are potential risks for participants. This research 

context creates ethical and practical issues for researchers. 

Our research objectives were: 1) to use additional information from qualitative 

interviews to better assess fisheries impacts; 2) to request feedback from 

long line captains on proposed bycatch mitigation approaches and on existing 

mitigation tools; and, 3) to identify mitigation opportunities in swordfish and tuna 

longline fisheries. While fishers' knowledge research can improve assessment 

and mitigation of pelagic longline bycatch, the process of engaging fishers and 

their knowledge influences research quality and therefore, future research and 

mitigation opportunities. Thus, my fourth objective was to design and document a 

research approach that builds trust and collaborative research opportunities. 

Using information derived from qualitative fishers' knowledge interviews with 

members of the Atlantic Canadian longline fishery for swordfish and lunas, I 
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demonstrate that this additional information can be used to improve the accuracy 

of fishing assessments and the efficacy of bycatch mitigation approaches, even 

in data-rich fisheries such as this one. 

4.1.1 Research context 

The Canadian Atlantic pelagic longline fishery targets swordfish, and albacore (T. 

alalunga), bigeye (T. obesus), and yeUowfin (T. albacares) tunas. Quotas for 

these highly migratory species are set by the Intemational Commission for the 

Conservation of Atlantic Tunas (ICCAT). Canada's swordfish allocation has been 

10% of the North Atlantic quota since 1999, as part of the stock rebuilding 

program (ICCAT 2006). Within Canada , 90% of the swordfish quota is allocated 

to the pelagic longline sector and 10% is allocated to the harpoon sector (DFO 

2004). The pelagic longline fishery has been fished under an Individual 

Transferable Quota (ITQ) system since 2002. Previously, swordfish was fished 

competitively and the Canadian quota was not split between the two sectors. 

Canada does not have specific quotas for bigeye, yellowfin , and albacore tunas 

but instead fishes under catch guidelines for these species (DFO 2004) . Because 

most of the Canadian swordfish quota is landed annually (> 97% of annual quota; 

Lester et al. 2008; Lester et al. 2009) , and because individuallongliners are 

limited by ITQ's, swordfish quotas are the key factor limiting fishing levels. 

The Canadian 10ngJine fishery has increasingly targeted tunas since the mid-

1990s (DFO 2004). Swordfish targeting occurs primarily along the continental 
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shelf edge, whereas tuna targeting occurs further offshore and south of the 

continental shelf (Figure 1; Paul and Neilson 2010). Information on fishing 

locations and landed catch is collected through logbook and dockside monitoring 

programs. Additionally, at-sea fisheries observers collect catch composition and 

fishing effort data from a portion of the fleet; observers typically report from 5% of 

sea days annually (Lester et al. 2009). Observer data are used to estimate 

bycatch levels because bycatch is not consistently recorded in logbooks (e.g ., 

Brazner and McMillan 2008; Campana et al. 2006) . 

Pelagic longline fisheries are facing increased pressures and incentives to 

decrease both the amount of bycatch and harm to discarded catch. For example, 

the US pelagic longline fleets were banned from portions of the Northwest 

Atlantic and Hawaiian waters to protect sea turtles (Hall et al. 2007 ; Martin and 

James 2005) . Consumer marketing campaigns, which consider both bycatch 

levels and mitigation approaches when evaluating pelagic long line fisheries (e.g., 

SeaChoice and Marine Stewardship Council [MSC]), may provide incentives 

through increased market access or increased prices for sustainably caught fish . 

Recent conservation status assessments identified pelagic longline bycatch as 

the primary threat to loggerhead turtle (Caretta caretta; COSEWIC 2010) and 

blue shark (Prionace glauca; COSEWIC 2006) populations in Canadian waters . 

These assessments were based on catch rates recorded by at-sea fisheries 

observers. Catch ratios between target and bycatch species were then used to 

estimate total interactions based on effort levels reported in landings and logbook 

11 0 



data. Loggerhead turtles were assessed as endangered by the advisory board 

(COSEWIC 2010). If the species is listed under Canadian endangered species 

legislation recovery strategies could include limiting fishing levels, modifying 

fishing and discarding practices, and documentation of decreased harm (DFO 

2010). The swordfish and tuna longline fishery was being assessed for MSC 

certification while I was conducting research on longline bycatch (MSC 2011). As 

bycatch levels, impacts, and bycatch mitigation strategies are considered during 

MSC assessments (MSC 2008), certification conditions could include reductions 

in bycatch levels or harm. Further, if the longline fishery were certified, longline­

caught swordfish could access markets and price premiums similar to those for 

certified harpoon-caught swordfish (Whole Foods Market 2010). Incentives and 

pressures to decrease long line bycatch in the Canadian pelagic longline fishery 

will likely increase as the fishery undergoes assessment for MSC certification 

and as bycatch species are evaluated under Canadian endangered species 

legislation, but specific guidelines or limits were not known at the time this 

research was conducted. 

4.2. Methods 

4.2.1 Research design 

Qualitative fishers' knowledge interviews were structured around the fishing 

process. After initial fishing experience questions, I asked long line captains about 

their targeting, setting, and discarding practices (Appendix I). Additional interview 
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topics included: associations between target and non-target species , and 

environmental factors affecting catch and bycatch rates, Images of common 

bycatch species were used to match local names with species names. Interviews 

were conducted using a semi-structured guide, meaning long line captains could 

identify additional topics during the interview (Patton 1990). I also asked 

long liners to comment on previous bycatch research, which was based on 

fisheries observer data collected from their fishery, including my own . 

Because information requested during interviews was not publicly available and 

because there were risks associated with participation, this research was 

considered to be human subjects research (rCp 2005), and thus, national and 

university research guidelines required ethics review of the proposed research. 

Although the content and procedures of ethics reviews may differ among 

universities and jurisdictions (Shackeroff and Campbell 2007), researchers must 

consider participant risks and benefits, and must provide sufficient information for 

free and informed consent (TCP 2005) . Prior to beginning fishers ' knowledge 

interviews, I detailed the proposed research and how I would address these 

issues in my ethics review application (ICEHR No. 2006f07-112-SC). 

Our goal was to contact and request interviews with all active long line captains in 

the fishery. Multiple methods were used to contact long liners, Research plans 

were presented at annual general meetings of the fishing association. A plain 

language summary of proposed research, which included a request for 
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participants, was sent to aliiongline license holders along with license 

information for the 2008 season. A list of license holders was provided by the 

Department of Fisheries and Oceans (DFO). As the list of license holders did not 

include contact information, only license holders who were listed in public 

directories were contacted. Most license holders contacted (27/30) were 

identified from this list. If contacted license holders indicated that they were not 

fishing captains, I asked for contact information for the captain who fished the 

license. Additionally, the first author discussed the research with the fishing 

association representative, fish buyers, fleet managers, and crew at wharves 

throughout central and southern Nova Scotia and requested contact information 

for longline captains. 

4.2.2 Fishers ' knowledge interviews 

Fishers' knowledge interviews were conducted during four trips to Nova Scotia 

between March 2008 and June 2009, each trip lasting 10 to 15 days. Many 

pelagic longline fishers are active in other fisheries, such as groundfish, lobster, 

snow crab, or shark. Therefore, trips were timed to coincide with transitions 

between the different fishing seasons when fishers were more likely ashore . As 

required by ethical research guidelines, during initial phone conversations I 

described my research objectives, detailed possible risks and benefits for the 

participant, and clearly stated thai participation was voluntary (Appendix II). Field 

notes (FN) were recorded after each contact or interview; these records are 

denoted in the text (e.g., FN June 18 2008; following Silver and Campbell 2005). 
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Interviews were audio-recorded , transcribed, and imported into qualitative data 

analysis software (HyperResearch 2.7, ResearchWare Inc.). Case summaries for 

each interview detailed their fishing experience, species targeted , and regions 

fished. Interview guide and additional topics identified by longline captains were 

coded to allow cross-case comparisons for each topic (Richards and Morse 

2007). Common themes were summarized for each topic (e .g., 9/11 longline 

captains targeted both swordfish and warm-water tunas) and alternative 

responses were noted (Patton 1990). Interview excerpts are denoted in the text 

by an interview identifier (e.g., 801). Quotations are used to illustrate common 

themes or alternative responses. Follow-on phone conversations were used to 

clarify details from the interview transcripts and to request permission for the use 

of quotes in publications. 

4.3 Results 

4.3.1 Research process 

Of the 77 longline licenses, 53 licenses were active during the 2008 fishing 

season (lester et a1. 2009). However. not all active longline licenses were used 

to fish this gear type: 43% of the active licenses were used to exclusively fish 

pelagic longline; an additional 33% were used to fish a combination of long line, 

troll, and harpoon gear; and 24% of the longline licenses were used only to 

harpoon swordfish or lroll for tunas (T. Atkinson , Nova Scotia Swordfishermen 's 
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Association (NSSA) pers , comm. 2010). Thus, approximately 40 licenses were 

used to fish longline gear, either exclusively or in combination with other gear 

types. Longline captains who fished these 40 licenses were the target population. 

I was able to contact 60% of the active longline fishers (24/40) . Although 

research trips were timed to correspond with transitions between fisheries, 

individuallongliners had limited time ashore and had other commitments in their 

working or personal lives. Up to five phone conversations were required to either 

arrange interviews or to speak with longline captains and have them decline 

interviews. I was unable to arrange meetings with seven of the 24 long line 

captains contacted, an additional six longline captains declined interviews. I 

audio-recorded interviews with 11 active longline captains , whicch was at least 

one-quarter of the target population (11 /40). These proportions are approximate 

as the number of active licenses shifts from year to year (Lester et at 2008). 

Six active longline captains declined interviews because they did not trust the 

larger research and management process. These longliners distinguished 

between giving information to individual researchers and later public uses of the 

information. While they wished us well, "I hope you find people who will talk with 

you , but I'm not one of them" (FN Feb. 26 2009), they declined because the 

research results would become public knowledge. Before some license holders 

agreed to interviews or agreed to provide contact information for captains who 

fished their licenses, they wanted to know who funded the research, what were 

my motivations and affiliations, how the information would be shared and , more 

11 5 



generally, "How do we know this [research] is not going to come back and bite 

us" (FN Feb. 23 2009). As more bluntly put by a license holder at an association 

meeting, ' You show me yours, I'll show you mine" (FN Jan. 30 2008). Even 

among fishers who agreed to interviews, some were concerned about possible 

implications for the fishery. For example, one captain said, ' Son, when you want 

to fish and they say you can't. Blame it on this lady here. She's the one who will 

shut down the fishery" (FN June 3 2009). 

Despite these concerns, captains associated with one-quarter of the active 

licenses used to fish this gear type agreed to audio-recorded interviews. Longline 

captains were interviewed from 5 different fishing communities and had between 

5 and 45 years of experience as fishing captains. While individual captains had 

preferred fishing grounds, together they had fished from the Hague Line (US 

border) to northeast of the Grand Banks, along the continental shelf edge, and 

offshore into Gulf Stream waters (Figure 1). Most interviewed captains fished 

both tuna and swordfish, depending on species availability and on individual 

quota levels. However, two individuals identified themselves as swordfishennen 

and two indicated that they primarily targeted tunas. 

4.3.2 Targeting and setting practices 

Interviewed longliners described associations between target and bycatch 

species, and described changing targeting practices in response to recent 

management changes. All but one reported an association between swordfish 
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targeting and blue shark (blue dog) bycatch. The one longliner, who did not 

report an association between swordfish and blue shark, identified himself as a 

tuna fisherman. Longliners reported which species were commonly caught in 

swordfish sets: 

You get [blue) shark when you're chasing swordfish on the edge [of the 
continental shelf) (1101). 

Swordfishing along the edge? You know you're going to get your 20, 30 
blue sharks a day and you might get one or two scissorfish 1 for the trip 
(901). 

Other than blue dogs? You'll get the odd porbeagle2, the odd mak03, the 
odd scissorfish (401). 

If you're in the cool water, blue shark is the main problem (201). 

Longliners reported less blue shark bycatch when targeting tunas in warmer 

water. 

You'll get the odd shark in that warm water but it'll be a tiger shari<· (901). 

If you get 60 or 70 tuna some days, you can get a load of mahi5 , but you 
very seldom see a swordfish, very seldom see a shark. like I say, once in 
a while a turtle (1101). 

If you go into the cool water, you're more likely (to) get sharked up. If you 
go early and you go way offshore, YOU're not going to have that problem 
(301). 

Another captain illustrated the general pattern by describing an exception: 

Sometimes [it's) tricky, like last year I thought in September all the blue 
dogs would be in over the edge. And I went outside ... the thousand 

, Lancetfish (Alepisaurus sp.) 

2 Lamna nasus 

3 Isurus oxyrinchus 

• Galeocerdo cuvier 

5 Coryphaena hippurus 
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fathom edge, and quite warm water in September, looking for tuna and we 
got a load of blue dogs again (801). 

Because bycatch species are associated with particular target species, changing 

fishing practices following the switch to ITQ management in 2002 likely affected 

bycatch levels. Longliners stated that ITQ's, "made us concentrate on tunas 

more," (901) and that there was a "big shift from fishing along the edge of the 

shelf out into deeper waters for tuna" (101). Another longliner said that with the 

switch to ITQ management, "Now we only have so many fish. Before [when] it 

was competitive [we] just went wide open for swordfish right until it was caught. 

Then, if they had enough for a [swordfish] bycatch, they'd go for some tuna" 

(701). Note he was using the traditional definition of bycatch, which is landed 

species with limiting quotas or bycatch caps (e.g., Benoit and Allard 2009). 

Seven longliners reported increased tuna targeting under ITQ management. If 

few blue sharks are caught in tuna-targeted sets, then blue shark catch rates 

reported in the fisheries observer data would decline. In response to interviewer 

comments on declining blue shark populations (e.g ., Baum et al. 2003; Campana 

et al. 2006), one longliner replied , "The only reason it looks like that is because 

we're not fishing like we used to fish. Earlier, in on the Bank, that's when we got 

our big pile of sharks" (301). Because his observations did not match with 

declining blue shark population estimates, he asked, ~When they're talking about 

no sharks, are they talking about when we're way off the 200 mile limit?" (301). 
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In addition to seasonal and regional blue shark catch distributions; long line 

captains reported within trip differences in blue shark catch which they attributed 

to environmental factors, such as water temperature. Further, some reported 

difficulties setting longline gear in such a way that cooler water temperatures, 

and consequently blue shark, could be avoided. When asked if there were ways 

to avoid blue shark, this longliner responded, "Not necessarily. If you can get 

your gear to stay where you put it, instead of [itl going cold" (901), then you could 

avoid blue shark. Other long line captains explained difficulties when setting gear 

on the warm side of an edge (temperature front), "If you get too much gear in the 

cold water - even if sometimes you get too close to the actual edge - your gear 

will get pulled into the cold water and you've got a lot of sharks" (1001). Both 

over the fishing season and within trips, long line captains reported expected blue 

shark catch patterns, but also described limits of their ability to predict and 

control pelagic fishing gear, as summarized in this quote: 

Fishermen realize that blue shark inhabit certain waters. They try their 
damnedest to keep their gear out of that water temperature. If it gets in 
there, it will typically be Iby] accident not by design (101). 

Longline captains also reported water temperature effects in tuna-targeted sets , 

which have implications for proposed bycatch mitigation methods. Because 

loggerhead turtle catch rates were highest at water temperatures >20 °C in this 

fishery, Brazner and McMillan (2008) recommended fishing on the cool side of 

oceanic fronts. Some longliners agreed such setting practices would decrease 

loggerhead bycatch, "Yes, on the cold side of the water, you won't get so many 
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loggerhead" (801). However, fishing on the cool side would affect tuna catch, 

·You 'd get no amount offish. No fish" (501). Others said, ·You'd get no tuna. 

You've got to stay on the hot side of if (1101) and explained why, "Because the 

yellowfin, they like the warmer water. Think everybody knows thaf (301). Thus, 

longline captains reported that targeting practices, such as deciding where and 

when to fish, and setting practices relative to thermal fronts affected target catch 

and bycatch rates whether targeting tunas or swordfish. 

4.3.3 Discarding practices 

longline captains reported different discarding practices depending upon the 

type of bycatch being released, fish condition, hook location, and crew safety. 

They considered management regulations, landed values, and the long-term 

health of the fishery when discarding small, commercially valuable species. 

longline captains also volunteered feedback on current bycatch mitigation tools 

and reported innovative uses of turtle dehooking gear. 

All Canadian long line vessels carry turtle dehooking gear (NSSA 2002), which 

includes pig-tailed and J-style dehookers (ARC Dehooker Inc., Bunnell Fl, USA). 

Captains referred to the gear as ·some slick rig", saying: 

Yeah, they're good. The people [who made them) put some thought into 
them and they actually work. I was surprised ... the traditional way of 
long line and groundfishing, and that's what people leam, you just ripped 
the hooks out. It's definitely a better, safer way of not harming the animals 
(601) . 

longliners described how to use the gear, but mentioned you needed to learn 
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how to use it 

These things work pretty slick once you learn how to use it. It's all in the 
[demonstrates Hip] with your wrist (701). 

That's the little twirly rig [pig-tailed dehooker]. You just shove it down like 
that and give it a snap with your wrist and [it] pops the hook right out 
(501). 

Longliners were using the dehooking gear to release other bycatcl1 species, in 

addition to turtles. Turtle dehooking gear was used to release small tunas, blue 

shark, and pelagic stingray (Pferoplatytrygon vio/acea). While describing how he 

releases small tunas, this rongriner volunteered information on the dehooking 

gear, "If they're real live, we take the hook out. We pop the hook out with the kit. 

The rig we got, thars a slick rig , by the way (501 ). " Few long liners were using 

dehooking gear to release blue shark, but those that did said, 

These things work pretty slick, once you learn how to use it. I'm getting my 
hooks back out of those sharks that I used to lose my hooks in every time. 
So that's 60 cents to a dollar I'm saving for every one of those things that 
swims off (101). 

Although two-thirds of those interviewed reported that turtle dehooking gear was 

easier to use and likely increased post-release survival, two longliners preferred 

their own methods for releasing unwanted catch. 

Pelagic stingray (black skate) are common bycatch in the Canadian pelagic 

longline fishery (Carruthers et al. 2009). Further, because of venomous tail 

spikes, which are "razor sharp and poisonous· (601), discarding the fish can be 

hazardous. As one longliner said, "You don't want to get too close to them .. 
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their tail is going pretty fast6 (301) : One longline captain reported using 

dehooking gear on all bycatch, but most used long-handled gaffs to release 

pelagic stingray: 

Some of the experienced fishermen, the deckhands I should say, wilt do 
teamwork. One hauls on the gangion lor leader line]. The other takes the 
unhooking gaff, the long-handled gaff so he doesn't put himself in danger, 
and leans over broad side and trips them off. No harm, no fuss (601). 

We haul them up and we take the hook. Take an unhooking gaff and 
unhook (1001). 

We've got a gaff, same as [what] you use for gaffing a haddock7. You just 
take that gaff put it around the hook and anybody who knows how to do it 
just one little tum . .. just a twist of the wrist. Bang. Gone (301). 

Sometimes [with] the black skates, we'll haul the gangion up and we'll try 
to slide the gaff down the hook and unhook them. But the sharks are too 
big for that (701). 

Similarly, crew safety and ease of discarding were key considerations when 

discarding blue shark. Most longliners reported simply cutting the line , either near 

the hook or where the gangion attaches to the main tine, to release blue shark 

bycatch: 

See with the (blue) sharks, they chew up the gangion anyway. You're just 
losing the hook, more or less. So we just cut them off (701). 

If you get into a lot of blue dogs, you wouldn't know it if you weren't 
looking over the rail because we just cut them away. We'll have what we 
call a shark line. If I say shark before it comes [up] , and he's standing 
there with a shark knife and (he) nicks [the gangion) (201). 

6 Field guides contain similar warnings for handling whip-tai l stingrays, including 
pelagic stingray (e.g. , Robins et at. 1986) 

1 Me/anogramus aeglefinus 
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We just haul the gangion up and cut it off close to the hook, We've got 
long knife gaff, just cut it off close to the hook. I'm not hauling sharks 
aboard the boat to take hooks out and take the chance of one of my men 
[willI get chewed up (901). 

Small commercial species were discarded because of minimum size regulations , 

low market price, or because individuallongliners were thinking of the long-term 

health of the fishery. When describing why he releases small live tuna, this 

longline captain explained, "I'm only young; if I'm going to do well in the fishery 

I've got to think of the next 30 years" (601). Due to minimum size regulations that 

limit the proportion of swordfish landings consisting of fish less than 125 cm in 

length (DFO 2004), small swordfish are considered bycatch in this fishery. 

Longline captains considered swordfish health when discarding small live 

swordfish bycatch: 

We see where it's hooked first of all. If it's not in a vital spot, we'll haul him 
up and grab his sword [as] best we can and cut it or trip the hook out. ... If 
it's in a vital spot, we'll snip the line down as short as we can so it doesn't 
mess him up (601) . 

If you got a pretty blue fish, and he's kicking alive, well my crew would get 
mad at me if I kept him, and I wouldn't blame them (401). 

They reported using hook location, activity level, and coloration (swordfish lose 

their bright colors as they die) to evaluate swordfish condition. 

Longliners acknowledged that there are economic incentives to discard small 

swordfish under current ITQ management and minimum size regulations , and 

that some discarding happens. However, some also reported that they kept or 

123 



landed small dead swordfish, Further, they told us how to find evidence of such 

practices in the logbook data, 

The only swordfish I ever throw back is anything that's small and alive. Get 
the hook out of the swordfish and let him swim away, "We'll get you 
another day when you grow up' .. . If he's small and he's dead, we keep 
him (801). 

In my own opinion, there's not a whole lot of guys that do it [discard small 
swordfish]. OK, do some math here, You're buying Quota, and a hundred 
pound fish and up is three-fifty a pound and a little tiny fish is a dollar-fifty 
a pound. The guy that paid a dollar-fifty for Quota, he's in a bad spot isn't 
he? So number one, you gol to be where the big fish are - and you can 
do that (401). 

I mean there's limited markets [for small swordfish]. For the guys who 
make the moral judgment, if it 's dead Ihen I'll bring it in and maybe I'll lake 
it home and eat it. .. you know, 'crew fish ' in the logbooks ... And then the 
others [say] .. I can't sell it, I'm not going to get anything for it, and it's 
coming off my Quota, so it's going back (101). 

These Quotes illustrate that there are different discarding practices for small 

swordfish within the fleet. While some longline captains did not discard small 

dead swordfish for ethical reasons, they acknowledged discarding of dead small 

swordfish occurs and that there are economic incentives to do so under the 

current management system. 

4.4 Discussion 

Interviews with pelagic longline captains and the process of conducting research 

on fishers' knowledge provided information which could be used to increase the 

accuracy of bycatch assessments and the efficacy of bycatch mitigation 

approaches, Needed changes to the documentation and analysis of observer 
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data - particularly, documentation of evolving observer protocols - were 

highlighted by the discrepancy between longline captains observations' and 

current assessment methods, long line captains' described operational difficulties 

with proposed bycatch mitigation approaches and reported innovative uses of 

turtle dehooking gear that could decrease post-release mortality levels of 

common bycatch species worldwide. Future research to examine ecological 

relationships or to develop bycatch mitigation opportunities identified here would 

need to address the trust issues highlighted by longline captains who declined 

interviews. 

4.4.1 Research process 

The process of doing fishers' knowledge research revealed basic infonnation 

about the structure of the Canadian pelagic longline fishery. During 

conversations with the industry representative and with fleet managers, I leamed 

that the longline fishery was more complex than reported in fisheries 

management and assessment documents, which report the number of active 

longline licenses and total landings (lester et al. 2008; lester et al. 2009). The 

national fishery report indicated that swordfish harpooned by long line license 

holders were included in total harpoon landings, but detailed neither the 

proportion of harpoon landings nor the number of longline licenses involved 

(lester et al. 2009). The Canadian Allantic longline fishery is data-rich; the 

fishery is subject to 100% dockside monitoring , logbook reporting requirements 

have been enforced since 1998, and at-sea fisheries observers report from 
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approximately 5% of sea days each year (DFO 2004; lester et al. 2009). Despite 

this, the process of trying to recruit fishers to this study revealed new and 

management relevant information, such as the prevalence of different gear types 

using 10ngJine licenses. This information was needed to define the target 

population - the approximately 40 active longline licenses used to fish this gear 

type. 

Our goal was to contact and interview all active longline captains in the fleet. I 

was able to contact captains associated with 60% of the active licenses used to 

fish this gear type. Eleven interviews were recorded , representing 25% of the 

target population in 2008. Sample size and participation rates vary widely within 

fishers' knowledge research, from single in-depth ecological descriptions (e.g., 

Johannes 1981) to rapid surveys of global fisheries impacts where thousands of 

fishers were interviewed representing <3% of the sample population (e.g., Moore 

et al. 2010). While low, the sample represented approximately one-quarter of the 

active licenses used to fish this gear type, which is comparable to participation 

rates reported in other qualitative fishers' knowledge research (e.g., Silver and 

Campbell 2005; Hartley and Robinson 2009). 

Low sample sizes do, however, raise the concern that interviewed longline 

captains were not representative of the fleet, or that the sample was biased 

towards longline captains interested in bycatch mitigation. Characteristics of the 

sample relative to the inferred population can be used to evaluate whether a 
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sample is representative (Patton 1990). Interviewed longline captains were from 

five of the six key Nova Scotia ports listed in the management plan (DFO 2004) 

and among them had experience fishing the entire region. Longline captains 

were contacted as a result of a systematic sampling process - I contacted all 

license holders for whom I had information. Had convenience sampling been 

used (e.g., captains from the nearest port or captains who participate in fisheries 

research), the sample would more likely be biased towards particular regions or 

fishing practices (Patton 1990; Schumann 2010). Most of the active longline 

captains were not interviewed simply because contact information was not 

available in public directories nor supplied by fish buyers (17/40 active licenses 

used to fish this gear type). I do not know the characteristics of this group (e.g. , 

experience, targeting practices, or preferred fishing grounds) or their interest in 

bycatch mitigation . Similarly, I do not know the fishing practices of the seven 

longline captains with whom I was unable to meet, or of the six longline captains 

who declined interviews. In future research, such information could be collected 

during initial contacts, which would allow better evaluation of sample 

representativeness. Because the recruitment process did not favour particular 

regions or targeting practices and because approximately one-quarter of active 

longline captains were interviewed, I consider the sample representative . I 

cannot assume that interviewed Jongline captains were more interested in 

bycatch mitigation, as this was not the explanation provided by longline captains 

who declined interviews. I do, however, discuss implications of possible sample 
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bias for my research objectives and for my findings on targeting, setting, and 

discarding practices. 

My bycatch mitigation research objectives were: 1) to use information from 

qualitative interviews (in addition to existing quantitative fishery-dependent data) 

to better assess fisheries impacts; 2) to solicit feedback on proposed bycatch 

mitigation approaches and existing mitigation tools; and, 3) to identify bycatch 

mitigation opportunities in the Canadian pelagic long line fishery. Qualitative 

research methods are most appropriate when research goals include 

understanding processes from participants' points of view and uncovering new 

ways of looking at complex situations (Richards and Morse 2007). Thus, 

qualitative interviews were used to uncover alternate ways of interpreting existing 

quantitative data and to consider the efficacy of bycatch mitigation approaches 

and tools from the longline captains' point of view. Had my first two research 

objectives been to estimate overall fishing impacts or to determine the extent of 

particular targeting, setting or discarding practices; then quantitative survey data 

would have been more appropriate - provided that sample representation and 

bias were adequately addressed (e.g., Benoit and Allard 2009). The third 

objective - to identify bycatch mitigation opportunities - would not be negatively 

affected if interviewed longline captains were more interested in bycatch 

mitigation than the rest of the fleet. Individual captains have developed widely­

used bycatch mitigation techniques such as the Medina panel, which allows live 

release dolphins from tuna seines (Jenkins 2007), and tori poles, which deter 
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seabirds from taking long line baits (Hall et al. 2007). These innovations were 

based upon individual captains' exemplary knowledge of fishing practices and of 

target and bycatch species' interactions with fishing gear (Jenkins 2007). There 

are, however, important limits to the use of the qualitative data reported here. I 

did not ask longline captains to estimate bycatch levels nor likely impacts on 

bycatch populations. I chose not to ask these questions because such data 

already exist and, given the research context, I expected such questions would 

increase antagonism towards my research and would increase the number of 

refusals, Instead, I focused on improving current assessments, evaluating 

proposed bycatch mitigation approaches, and developing possible solutions. 

These objectives were better matched to the research method (in-depth 

qualitative interviews) and would not jeopardize my fourth objective - to design 

and document a research process with the potential to build, rather than erode, 

trust even within a politicized research context. 

Given the research context - bycatch levels were being evaluated during the 

MSC assessment (MSC 2008), were central to arguments made through 

international media to increase harpoon quota (Rigney 2008), and were the basis 

of environmental organizations' recommended changes to fishery management 

(DSF 2009) - some longllners decided the risks from participation were too high 

Moore et al. (2010) stated that research with high refusal rates can yield biased 

information and, thus, suggested minimizing refusal rates by making the research 

relevant to fishers' interest and by assuring fishers that risks from participation 
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are low. My focus on problem-solving and bycatch mitigation opportunities 

addressed the first suggestion. However, when asked if the research would 

·come back and bite us', I could not honestly assure them it would not. Voluntary 

participation and informed consent are key aspects of ethical research guidelines 

(TCP 2005) and failure to disclose research aims and possible risks can lead to 

decreased participation in subsequent research (Maurstad 2002). Finally, focus 

on minimizing refusal rates may overlook the crucial information contained in 

interview refusals. During my research, six longline captains declined interviews 

because they did not trust the larger research and management process, 

specifically mentioning publication and subsequent uses of information in their 

refusals. While information from interviewed longline captains identified bycatch 

mitigation opportunities, information contained in interview refusals identified trust 

issues that need to be addressed to develop these mitigation opportunities. 

4.4.2 Fisheries assessment 

In general, 10ngJine captains reported bycatch levels and species associations, 

which were consistent with fisheries observer data. For example, loggerhead 

turtles and yellowfin tuna were caught in warm water (Brazner and McMillan 

2008); blue, porbeagle, and mako sharks were associated with swordfish catch 

(Carruthers et al. 2011); and, reports of tiger shark catch coincided with locations 

where this species has been tagged (Kohler et aJ. 1998). longline captains 

agreed that blue sharks were the most common bycatch during swordfish­

targeted sets fished along the continental shelf edge; however, they reported few 
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blue sharks when targeting tunas further offshore. Although there are obvious 

pragmatic and political motivations to underestimate bycatch levels (Palmer and 

Wadley 2007), there are a number of reasons why I think longliners were 

accurately representing the incidence of blue shark bycatch in tuna-targeted sets. 

First, the observation was consistent among interviewed long line captains, who 

identified limits to this general pattem (e.g., when neither fish nor gear behaved 

as expected). More importantly, when longline captains provided example 

numbers of blue shark bycatch caught in swordfish-targeted sets, these matched 

average blue shark catch rates (Campana et al. 2006). Finally, research from 

other pelagic longline fisheries suggests that blue shark bycatch is both less 

common and more variable in tuna-targeted sets (He et al. 1997; Walsh et al. 

2002) . While estimates of total blue shark bycatch for this fishery are premised 

on catch and distribution patterns that largely agree with longline captains' 

observations, differing interpretations of sets that reported no blue shark catch 

have important implications for overall impact assessments. 

Fisheries observer data are used 10 eslimate tolal blue shark bycalch. Bycalch 

ratios, based on the summed weight of blue shark relative to target species 

among observed sets , are then multiplied by unobserved target species weight 

taken from the landings records (Fowler and Campana 2009). These bycatch 

estimates are considered a minimum because of anecdotal reports of observer 

underreporting (Fowler and Campana 2009). For example, when longline crew 

release shark bycatch by simply cutting the gangion. fisheries observers may not 

131 



be able to observe and record all discards (Campana et al. 2009; Fowler and 

Campana 2009). Assessments include an upper limit or maximum estimate, in 

which bycatch ratios are based only on those sets that reported at least one blue 

shark - assuming blue shark were caught (but not recorded) in all sets (Fowler 

and Campana 2009). The maximum estimate is used as an upper limit and 

annual estimates are calculated as the midpoint of these upper and lower limits . 

Separate bycatch ratios are calculated for different fishing seasons and targeting 

practices, with bycatch ratios considerably higher for swordfish-targeted sets. 

However, bycatch ratios are based on fisheries observer data collected before 

2004 (Fowler and Campana 2009). Longline captains would likely dispute the 

assumption that blue sharks were caught in all sets; particularly those fished 

early in the season, further offshore, or with high tuna catch rates. 

To evaluate how conflicting interpretations of zero blue shark sets innuence 

overall bycatch assessments, I examined fisheries observer data from 2007 

(fisheries observer data described in Carruthers et al. 2009), the last year used in 

the recent blue shark assessment. Only one swordfish-targeted set reported zero 

blue shark bycatch. Further, the onboard observer reported up 10 93 blue shark 

from other sets during that trip. However, because bycatch ratios reflect fishing 

and observer practices from earlier in the program, bycalch estimates for 2007 

were considerably higher. The bycatch estimate based on observed blue shark 

bycatch was 1339 mt, whereas the averaged estimate was 1827 mt (Fowler and 

Campana 2009) - amounting to an increase equal to one-third of the initial 
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estimate. 

Differentiating between zero catch (Le. , no blue shark were caught), uncertain 

catch (i.e. , bycatch was released before identified to species) and underreporting 

(Le. , observers did not record all bycatch) could be done within the existing 

observer program and would greatly reduce the uncertainty of blue shark bycatch 

estimates. Although information volunteered during a fishers' knowledge 

interview corroborated the difficulty of observing shark bycatch that was cut off 

before being brought alongside the vessel (201), fisheries observers would know 

when such discarding practices occurred. Gangions are slack and hooks are 

recovered when neither target n()( bycatch species are hooked (pers. obs.). 

Thus , uncertainty resulting from this discarding practice could be quantified. Like 

other fisheries observer programs (Cotter and Pilling 2007), pelagic longline 

observer protocols have evolved in response to changing management and 

science priorities (Javitech 2002: Porter et al . 2000). For example, before 1998 

at-sea observers did not consistently record length and weight estimates of 

bycatch discarded by cutting the gangion (Porter et al. 2000); however, program 

staff indicated this problem was addressed during the 1999 fishing season and 

during the subsequent period of high observer levels (G. Croft pers. comm.). 

Thus , the interpretation of sets that reported no blue shark bycatch reflects 

observer protocols early in the time series. Cotter and Pilling (2007) recommend 

creating a working document, detailing changes to observer program objectives 

and protocols, and making it available to all researchers using such data. This 
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relatively simple recommendation could be used to resolve differing 

interpretations and improve the accuracy of current bycatch estimates. 

4.4.3 Bycatch mitigation opportunities 

l ongline captains' descriptions of selling practices and of species' distributions 

highlighted likely problems with proposed bycatch mitigation approaches, such 

as setting gear on the cool side of thenTIal fronts (Brazner and McMillan 2008). 

longline captains' observations that yellowfin and bigeye tuna catch , and 

loggerhead turtle bycatch were associated with warmer water temperatures were 

consistent with fisheries observer data. Brazner and McMillan (2008) suggested 

longliners shift in targeting , from tuna to swordfish, to decrease loggerhead turtle 

bycatch levels . However, the longline neet increased targeting of warm-water 

tunas , in part to offset swordfish quota limits, and Canadian landings are well 

below current catch guidelines for warm-water tunas (DFO 2004, lester 2009) . A 

shift in targeting may not be possible under current swordfish quota limits 

Decreased tuna targeting would likely be achieved by decreased effort, or by a 

shift in fishing gear used (DFO 2010). longline captains identified likely problems 

with fishing on the cool side in addition to decreased tuna catch : increased blue 

shark bycatch and operational difficulties of keeping the gear on the warm side of 

thenTIal fronts. Thus, the proposed conservation initiative of fishing on the cool 

side of thermal fronts could have unintended impacts on other bycatch species. 

longline captains set their gear on the warm side of thermal fronts, particularly 
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when targeting warm-water tunas, and reported an increase in blue shark 

bycatch when gear was pulled onto the colder side of the front. Pelagic longline 

gear is neither anchored nor attached to the vessel while fishing. Accidental 

shifts in longline location arise when setting gear close to a thermal front, "where 

the bait is held : but not setting gear too close so that it "breaks through the hot 

edge and into the cold edge~ (601). Currents differ on either side of thermal 

fronts. For example, captains reported that the currents in the Gulf Stream were 

2-3 knots but that adjacent cold water may be flowing at less than 1 knot. These 

current speeds are consistent with those reported from drifter buoys (Reverdin et 

al. 2003). Longllne captains' comments on the American captain fined for fishing 

10 km inside Canadian waters (CSC 2009), illustrated the difficulties of fishing 

pelagic gear along fronts. Interviewed captains reported longline gear could drift 

that far; one captain referred to his logbook and showed his gear had drifted> 70 

km in one night (801). These setting difficulties affect current bycatch levels and 

could impact the efficacy of proposed bycatch mitigation approaches. Linking 

information on local current speeds or vertical ocean structure with longline 

fishing practices may help identify conditions under which gear is pulled across 

thermal fronts. In the meantime, methods to further reduce bycatch injuries and 

mortalities could be developed based on the information provided by interviewed 

long line captains. 

Longline captains used different discarding practices depending on the species 

captured, how animals were hooked, crew safety, and their familiarity with 

135 



different discarding methods. They volunteered information on turtle dehooking 

gear, which two-thirds of the interviewed captains had used to release other 

bycatch species in addition to loggerhead and leatherback turtles. I recognize 

there are limitations to voluntarily reported discarding practices. For example, 

longline captains did not report harsh discarding practices observed in swordfish 

and blue shark 10ngline fisheries (Campana et al. 2009). Longline captains did, 

however, identify key considerations in their discarding decisions (e.g., crew 

safety and ease of discarding). By addressing longliners' key considerations, 

future researchers could increase the likelihood that long liners would adopt 

modified discarding practices. Given current incentives to decrease fishery 

impacts, the fleet may choose to decrease post-release mortality levels by 

standardizing and documenting best discarding practices, such as use of turtle 

dehooking gear. Recent turtle dehooking protocols mentioo that the gear can be 

used to release other bycatch species, but best practices have not been 

developed (NMFS 2008). Further, because pelagic species caught by the 

Canadian longJine fleet are highly migratory, mitigation methods developed here 

could benefit bycatch species' populations globally if widely implemented. 

Pelagic stingray are common bycatch in long line fisheries throughout the Pacific 

(Mollet 2002; Ward et al. 2004). the Allantic (Carruthers et at 2009; Domingo et 

at 2005; Kerstetter and Graves 2006), and the Mediterranean (Piovano et al. 

2010). In their review of the global conservation stalus of sharks and rays , Dulvy 

et al. (2008) stated the likelihood of post-release survival was low based on 
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discarding practices reported for the Uruguay pelagic longline fishery (Domingo 

et al. 2005). It is not known, however, whether discarding practices reported in 

that fishery (smashing rays against the rail to remove hooks) are common Of 

represent a worst-case scenario. Fisheries observer data from the US Atlantic 

and Canadian fisheries report over 90% of pelagic stingray were alive at 

haulback (Kerstetter and Graves 2006) or when released (Carruthers et al. 

2009). Given the diversity of discarding practices described within a single fleet, I 

caution against extrapolating discarding practices from a single fleet to global 

pelagic longline fisheries (e.g. , Dulvy et al. 2008). Domingo et al. (2005) stated 

the purpose of the reported discarding methods was to recover hooks without 

injuring fishing crew. Safety was a consideration among interviewed longline 

captains, who stated using long-handled gaffs or dehookers allowed crew to 

safely discard pelagic stingray and recover hooks . Where discarding practices 

described by Domingo et al. (2005) are common , adopting discarding practices 

reported by Canadian longline captains would improve pelagic stingray survival , 

would likely increase crew safety and hook recovery. 

Discarding practices described by interviewed Canadian longline captains could 

decrease post-release mortality levels both within the fleet and worldwide. Given 

the range of within-fleet experience, best discarding practices could be 

developed through within-fleet consultations , which have led to improved 

mitigation techniques for other bycatch species (e.g., Hall et al. 2007). Bycatch 

species caught in swordfish and tuna gear fisheries travel through several 
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jurisdictions and may encounter multiple longline fisheries. As a result, 

conservation efforts need to cross international borders; otherwise, "it's like 

putting a speed limit on three cars" (401). Conservation efforts such as fisher­

exchange programs have introduced effective bycatch mitigation techniques to 

other fleets (Hall et al. 2007). Interestingly, a fisher-exchange program would 

parallel the historical development of the Canadian longline fishery for tunas. An 

American tuna fisherman was hired on as crew for the summer "to show us what 

to do" (501). 

4.4.4 Summary 

Our research demonstrates that information from fishers' knowledge interviews 

can improve both the accuracy of bycatch assessments and the efficacy of 

mitigation, but that there are practical and ethical issues to including fishers and 

their knowledge in research on contentious conservation issues. The key issue is 

one of trust. Concerns about negative consequences of research are common 

among fishers who participate in research (Hall et al. 2007; Hartley and 

Robertson 2009; SI. Martin and Hall-Arber 2008), particularly in politicized 

conservation contexts where research may lead to increased regulation (e,g" 

Silver and Campbell 2005). Nor are these concerns limited to fisheries like the 

Canadian pelagic longline fishery; Silver and Campbell (2005) reported similar 

concerns among turtle fishers who either fished for personal consumption or sold 

turtle meat in local markets. 
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While approaches to engage fishers and their knowledge differ among research 

contexts, there are common themes. The process of engaging fishers in research 

can take considerable time (Hall et al. 2007; Martin and James 2005). Face-to­

face interactions between researchers and fishers are preferable to presentations 

at industry meetings, phone interviews, or mail surveys for building trust (Martin 

and James 2005; Neis et al. 1999). My research questions were limited to those 

appropriate to the research context and approach; I did not ask longline captains 

to self-report bycatch levels, but instead focused on the capture process and on 

bycatch mitigation opportunities. By contrast, Moore et al.'s (2010) 

recommendations to evaluate reliability of fishers ' bycatch estimates - by asking 

fishers to report others' bycatch levels - would have increased antagonism 

towards my research and , likely, further jeopardized future conservation 

opportunities (Shackeroff and Campbell 2007). Ideally, the research process 

involves two-way communication, neither limited to scientists educating fishers 

(Campbell and Cornwell 2008) nor simply extracting knowledge (Martin and 

James 2005). Possible management outcomes were included in research 

summaries sent out to the fleet and discussed with captains, acknowledging 

likely uses of my results (Appendix III). This feedback process is ongoing. My 

research was designed with the overall goal of reducing bycatch in the Canadian 

pelagic longline fishery for swordfish and tunas. Therefore, I drew on existing 

fishers' knowledge research to design an approach that would not jeopardize 

future research. 
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Fishers' knowledge research provided feedback on current bycatch mitigation 

gear and identified opportunities to further reduce bycatch mortalities which 

would have been missed had I limited my research to the available fishery­

dependent data. Fishers' knowledge research is often motivated by a lack of 

fisheries data, which is not the case in the Canadian Atlantic pelagic longline 

fishery. Instead, discrepancies between long line captains' observations and 

bycatch estimation methods identified needed improvements to existing fisheries 

science data. I recognize that improvements to the observer program, such as 

quantifying deployment effects (e.g., Benoit and Allard) or resolving differences 

between observers' and scientists' assessment of injury rates and therefore post· 

release survival rates (Campana et al. 2009), would also increase the accuracy 

of bycatch assessments. However, addressing the issue identified here, namely 

documentation of current observer practices , would not only improve the 

accuracy of current bycatch estimates but would provide a stronger base for any 

subsequent improvements to the program. Specific management 

recommendations following from my work include: develop a working document 

that details evolving observer protocols, and document current handling and 

discarding practices. These recommendations could be implemented within the 

existing research and management framework. Subsequent conservation and 

research initiatives, such as developing best discarding practices or tracking 

effects of changing targeting practices, would be better addressed by including 

fishers and their knowledge in the research process. 
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Our research approach was chosen with the overall goal of reducing bycatch in 

the Canadian pelagic longline fishery for swordfish and tunas. To meet this goal , 

ongoing research on bycatch mitigation opportunities (i.e. , developing best 

discarding practices) and ecological interactions (I.e ., disentangling the 

relationships between target species and thermal fronts) is needed. Such 

research would be better addressed through systematic records of discarding 

practices and post-release survival, and ecological field experiments rather than 

in-depth qualitative interviews. However, qualitative research methods provided 

information on the catch and discard process from the point of view of active 

long line captains, which highlighted problems with existing data and with 

proposed mitigation approaches. Thus, my research has laid the groundwork for 

future bycatch mitigation research and for building collaborative relationships to 

solve these conservation issues. Given longline captains' enthusiasm for 

dehooking gear, their interest in avoiding blue sharks, and the ongoing 

conservation assessments and fisheries certification; there are clearly incentives 

to do so - provided that the research context is taken into account. 

Acknowledgements 

I thank Nova Scotia longline fishermen and fishing families who took the time to 

answer my questions or explain why they declined interviews. Similarly, 

colleagues at DFO have been generous with their knowledge of the landings and 

observer data. I thank KM Wilke, DC Schneider, NE Carruthers , and three 

anonymous reviewers for their thoughtful comments . The proposal for this 

141 



research was reviewed by the Interdisciplinary Committee of Ethics in Human 

Research and was found to be in compliance with Memorial University's ethics 

policy (ICEHR No. 2006/07-112-SC). Funding for this research was provided by 

a Natural Sciences and Engineering Research Council scholarship to EHC and a 

Trudeau Fellowship to BN. 

142 



4.5 References 

Baum. J .K., Myers, RA, Kehler, D.G. , Worm, B., Harley, S.J. , Doherty. P.A .. 

2003. Collapse and conservation of shark populations in the Northwest 

Atlantic. Science 299, 389-392. 

Bene, C ., Tewfik, A., 2001. Fishing effort allocation and fishermen's decision 

making process in a multi-species small-scale fishery: analysis of the 

conch and lobster fishery in Tufi(s and Caicos Islands. Human Ecology 29, 

157-186. 

Benoit. H.P., Allard , J , 2009. Can the data from at-sea observer surveys be used 

to make general inferences about catch composition and discards? 

Canadian Journal of Fisheries and Aquatic Sciences 66, 2025-2039. 

Bishop , J ., 2006. Standardizing fishery-dependent catch and effort data in 

complex fisheries with technology change. Reviews in Fish Biology and 

Fisheries 16. 21-38. 

Branch , T.A .. Hilborn . R. , 2008 . Matching catches to quotas in a multispecies 

trawl fishery: targeting and avoidance behaviour under individual 

transferable quotas. Canadian Journal of Fisheries and Aquatic Sciences 

65, 1435-1446. 

Brazner. J.C. , McMillan, J. 2008 . Loggerhead turtle (Caretta caretta) bycatch in 

Canadian pelagic longline fisheries: relative importance in the western 

North Atlantic and opportunities for mitigation . Fisheries Research 91 , 

310-324. 

143 



Campana, S.E., Joyce, w., Manning , M.J. , 2009. Bycatch and discard mortality 

in commercially caught blue sharks Prionace g/auca assessed using 

archival satellite pop-up tags. Marine Ecology Progress Series 387, 241-

253. 

Campana, S.E., Marks, L., Joyce, W., Kohler, N.E., 2006. Effects of recreational 

and commercial fishing on blue sharks (Prionace glauca) in Atlantic 

Canada, with inferences on the North Atlantic population. Canadian 

Journal of Fisheries and Aquatic Sciences 63, 670-682. 

Campbell, L.M., Cornwell, M.L., 2008. Human dimensions of bycatch reduction 

technology: current assumptions and directions for future research. 

Endangered Species Research 5, 325-334. 

Carruthers, E.H., Neilson, J.D., Smith, S.C. , 2011 . Overlooked bycatch mitigation 

opportunities in pelagic longline fisheries: soak time and temperature 

effects on swordfish (Xiphias gladius) and blue shark (Prionace glauca). 

Fisheries Research 108, 112-120. 

Carruthers, E.H. , Schneider, D.C. , Neilson, J.D., 2009. Estimating the odds of 

survival and identifying mitigation opportunites for common bycatch in 

pelagic 10ngline fisheries. Biological Conservation 142,2620-2630. 

CBC, 2009. Perfect storm skipper fined $35,000 for illegal fishing. 

<http://www.cbc.ca/news/canada/newfoundland­

labrador/story/2009/06/09/perfect-storm-fine-609.html> 

COSEWIC, 2006. COSEWIC assessment and status report on the blue shark 

Prionace glauca (Atlantic and Pacific populations) in Canada, In 

144 



Committee on the Status of Endangered Wildlife in Canada (COSEWIC). 

Ottawa. 

COSEWIC, 2010. Assessment and status report on the loggerhead sea turtle 

(Caretta caretta) , In Committee on the Status of Endangered Wildlife in 

Canada (COSEWIC). Ottawa. 

Cotter, A.J.R. , Pilling , G.M., 2007 . Landings , logbooks and observer surveys: 

improving protocols for sampling commercial fisheries. Fish and Fisheries 

8, 123-152. 

David Suzuki Foundation (DSF), 2009. Canada must protect Atlantic sharks, 

turtles . http://www.davidsuzuki.orglmedia/news/2009/canada-must­

protect-aUantic-sharks-turtlesl. 

de Mutsert, K., Cowan Jr., J.H. , ESSington, T.E. , Hilbom, R. , 2008. Reanalyses of 

Gulf of Mexico fisheries data: Landings can be misleading in assessments 

of fisheries and fisheries ecosystems. Proceedings of the National 

Academy of Sciences 105, 2740-2744. 

DFO, 2010. Recovery Potential Assessment for loggerhead Turtles (Caretta 

caretta) in Atlantic Canada, In DFO Canadian Science AdviSOry 

Secretariate Science Advisory Report 2010/042. 

DFO, Fisheries and Aquatic Management, 2004. Canadian Atlantic Swordfish 

and Other Tunas 2004-2006 Integrated Management Plan . 

<http ://www.dfo­

mpo.gc.ca/communicJfish_manlifmp/swordfish/index_e.htm>. 

145 



Domingo, A., Menni, R., Forselledo, R. , 2005. Bycatch of the pelagic ray 

Oasyatis violacea in Uruguayan longline fisheries and aspects of 

distribution in the southwestern Atlantic. Scientia Marina 69, 161-166. 

Dulvy, N.K., Baum, J.K., Clarke, S., Compagno, l.J.V., Cortes, E., Domingo, A. , 

Fordham, S., Fowler, S., Francis, M.P. , Gibson, C. , Martinez, J. , Musick, 

J.A. , Soldo, A., Stevens, J.D., Valenti, S. , 2008. You can swim but you 

can't hide: the global status and conservation of oceanic sharks and rays. 

Aquatic Conservation: Marine and Freshwater Ecosystems 18, 459-482. 

Fowler, G.M., Campana, S.E., 2009. Commercial by-catch rates of blue shark 

(Prionace g/auca) from longline fisheries in the Canadian Atlantic. 

Collected Volume of Scientific Papers ICCAT 64,1650-1667. 

Hall , M. , Nakano, H. , Clarke, S. , Thomas, S. , Molloy, J. , Peckham, S., Laudino­

Santillan, J., Nichols, W., Gilman, E., Cook, J., Martin, S., Croxall, J., 

Rivera, K., Moreno, C., Hall, S., 2007. Working with fishers to reduce by­

catches , In By-catch Reduction in the World's Fisheries. ed . S. Kennelly, 

pp. 235-288 . Springer, Dordrecht. 

Hartley, T.W., Robertson, R.A., 2009. Stakeholder collaboration in fisheries 

research: integrating knowledge among fishing leaders and science 

partners in northern New England. Society and Natural Resources 22, 42-

55. 

He, X. , Bigelow, K.A. , Boggs , C.H ., 1997. Cluster analysis of longline sets and 

fishing strategies within the Hawaii-based fishery. Fisheries Research 31 , 

147-158. 

146 



ICCAT, 2006. Supplemental Reccommendations by ICCAT to Amend the 

Rebuilding Program of North Atlantic Swordfish (2006-02) . Available from 

http://www.iccat.inUen/RecsRegs.asp. 

James, M.C., Ottensmeyer, CA , Myers, R.A., 2005. Identification of high-use 

habitat and threats to leatherback sea turtles in northern waters: new 

directions for conservation . Ecology Letters 8, 195-201 . 

Javitech, 2002 . Report on Sea Turtle Interactions in the 2001 Pelagic Longline 

Fishery. Dartmouth, Nova Scotia. 

Jenkins, L., 2007. Bycatch: interactional expertise, dolphins and the US tuna 

fishery. Studies in History and Philosophy of Science 38, 698-712 . 

Johannes, R.E., 1981. Words of the Lagoon: Fishing and Marine Lore in the 

Palau District of Micronesia. University of California Press, Berkeley. 

Kerstetter, D.W. , Graves, J.E., 2006. Effects of circle versus J-style hooks on 

target and non-target species in a pelagic long line fishery. Fisheries 

Research 80, 239-250. 

Kohler, N., Casey, J.G. , Turner, P.A. , 1998. NMFS cooperative shari< tagging 

program, 1962-93: an atlas of shark tag and recapture data. Marine 

Fisheries Review 60,1 -87 . 

Lester, 8. , Paul, S., Neilson, J. , Campana, S., Hunt, L. , 2008. Annual Report of 

Canada, In Report for biennial period 2006-07 , Part II (2008) - Vol. 3 

Annual Reports, ICCAT, 19-27. 

147 



Lester, B., Paul, S., Neilson, J., Campana, S., Hussey, L., 2009. Annual Report 

of Canada, In Report for biennial period 2008-09, Part II (2009) - Vol. 3 

Annual Reports, ICCAT, 25-35. 

Lewison, R.L., Freeman, SA, Crowder, L.B , 2004. Quantifying the effects of 

fisheries on threatened species: the impact of pelagic longlines on 

loggerhead and leatherback sea turtles. Ecology Letters 7, 221-231. 

Martin, K., James, M.C., 2005. Conserving sea turtles in Canada: successful 

community-based collaboration between fishers and scientists. Chelonian 

Conservation and Biology 4, 899-907, 

Maunder, M.N., Punt, A.E., 2004. Standardizing catch and effort data: a review of 

recent approaches. Fisheries Research 70, 141-159. 

Maurstad, A .. 2002. Fishing in murky waters - ethics and politics of research on 

fisher knowledge. Marine Policy 26, 159-166. 

McCluskey, S.M., Lewison, R.L., 2008. Quantifying fishing effort: a synthesis of 

current methods and their applications. Fish and Fisheries 9, 188-200. 

Mollet, H.F. , 2002. Distribution of the pelagic stingray, Dasyatis violacea 

(Bonaparte, 1832), off California, Central America, and worldwide. Marine 

Freshwater Review 53, 525-530 

Moore, J.E., Cox, T.M., Lewison, RL., Read, AJ., Bjorkland, R, McDonald, S.L., 

Crowder, L.B., Aruna, E., Ayissi, I. , Espeut, P., Joynson-Hicks, C., Pilcher, 

N. , Poonian, C.N.S" Solarin , B., Kiszka , J., 2010. An interview-based 

approach to assess marine mammal and sea turtle captures in artisanal 

fisheries. Biological Conservation 143, 795-805. 

148 



MSC, 2008. Marine Stewardship Council Fisheries Assessment and 

Methodology and Guidance to Certification Bodies: Default Assessment 

Tree, Performance Indicators and Scoring Guideposts. Available from 

<hUp:llwww.msc.org>. 

MSC, 2011 . North West Allantic Canada longline swordfish. 

<hUp:/Iwww.msc.org/track-a-fishery/in-assessment>. 

Myers, R.A., Worm, B., 2003. Rapid worldwide depletion of predatory fish 

communities. Nature 423, 280-283. 

Neilson, J.D., Smith, S., Royer, F., Paul, S.D., Porter, J.M. , Lutcavage, M. , 2009. 

Investigations of horizontal movements of Atlantic swordfish using pop-up 

satellite archival tags, In Tagging and Tracking of Marine Animals with 

Electronic Devices. eds J.L. Nielson, H. Arrizabalaga, N. Fragoso, M. 

Lutcavage, J. Sibert, pp. 145-159. SpringerLink. 

Neis, B., Schneider, D.C., Felt, L., Haedrich , R.L., Fischer, J , Hutchings, J.A., 

1999. Fisheries assessment: what can be learned from interviewing 

resource users? Canadian Journal of Fisheries and Aquatic Sciences 56, 

1949-1963. 

NMFS, National Marine Fisheries Service Southeast Fisheries Science Centre 

2008. Careful release protocols for sea turtle release with minimal injury. 

NOM Technical Memorandum NMFS-SEFSC-580. 

<htlp:!lsero.nmfs.noaa.gov/sflpdfslSea_Turtle_Release_ProtocoIs_April20 

11.pdf> 

149 



NSSA, 2002. Code of Conduct for Responsible Sea Turtle Handling and 

Mitigative Measures. Nova Scotia Swordfishermen's Association. 

Palmer, CT., Wadley, R.L., 2007. Local ecological knowledge, talk, and 

scepticism: Using 'LES' to distinguish "LEK' from LET in Newfoundland 

Human Ecology 35, 749-760. 

Pallon, M.Q" 1990. Qualitative Evaluation and Research Methods, 2nd edn. 

Sage Publications, Newbury Park. 

Paul, S.D., Neilson, J.D. , 2010. An exploration of targeting variables in the 

Canadian swordfish long line CPUE. Collected Volume of Scientific Papers 

ICCAT 65, 124-134. 

Piovano , S. , C16, S. , Giacoma, C , 2010. Reducing long line bycatch: the larger 

the hook, the fewer the stingrays. Biological Conservation 143, 261-264. 

Porter, J.M., Wood, B.M., Stone, H.H., 2000. Preliminary estimation of the 

tonnage of dead swordfish and bluefin tuna discards from the 1998 

Canadian swordfish longline fishery Collected Volume of Scientific Papers 

ICCAT 51,1460-1468 . 

Reverdin, G. , Niiler, P.P., Valdimarsson, H., 2003. North Atlantic Ocean surface 

currents. Journal of Geophysical Research 108, 3002. 

Richards, L., Morse, J.M. , 2007 . Readme First for a User's Guide to Qualitative 

Methods, 2nd edn. Sage Publications, Thousand Oaks. 

Rigney, M., 2008. Harpooners seek bigger cut of swordfish market, In The 

Boston Globe. 

ISO 



<http://www.boston.com/news/science/articles12008/12J08/harpooners_se 

ek_bigger_cut_oCswordfish_markeU>. 

Robins, C.R., Ray, G.C., Douglass, J. 1986. A Field Guide to Atlantic Coast 

Fishes of North America. The Peterson Field Guide Series. Houghton 

Mifflin, Boston. 

Saenz-Arroyo, A., Roberts, C.M, Torre , J ., Carino-Olvera, M ., 2005. Using 

fishers' anecdotes, naturalists' observations and grey literature to 

reassess marine species at risk: the case of the Gulf grouper in the Gulf of 

California, Mexico. Fish and Fisheries 6,121-133. 

Santora, C., 2003. Management of turtle bycatch: Can endangered species be 

protected while minimizing socioeconomic impacts? Coastal Management 

31,423-434. 

Schumann, S., 2010. Application of participatory principles to investigation of the 

natural world: an example from Chile. Marine Policy 34, 1196-1202. 

Shackeroff, J .M ., Campbell, L.M., 2007. Traditional ecological knowledge in 

conservation research: problems and prospects for their constructive 

engagement. Conservation and Society 5, 343-360. 

Silver, J.J., Campbell, L.M., 2005. Fisher participation in research: dilemmas with 

the use of fisher knowledge. Ocean & Coastal Management 48, 721-741. 

St. Martin, K. , Hall-Atber, M., 2008. Creating a place for "community" in New 

England fisheries. Human Ecology Review 15, 161-1 70. 

TCP, Canadian Institutes of Health Research, Natural Sciences and Engineering 

Research Council of Canada, Social Sciences and Humanities Research 

151 



Council of Canada 2005. Tri-Council Policy (TCP) Statement: Ethical 

Conduct for Research Involving Humans. 

Wade, 0., Revill, A.S., Grant, A., Sharp, M., 2009. Reducing the discards of 

finfish and benthic invertebrates of UK beam trawls . Fisheries Research 

90, 14()..147. 

Walsh , WA, Kleiber, P., McCracken, M., 2002. Comparison of incidental blue 

sharlo; catch rates by Hawaii-based long line vessels to fishery observer 

data by application of a generalized additive model. Fisheries Research 

58,79-94. 

Ward , P., Myers, RA , Blanchard, W. 2004, Fish lost at sea: the effect of soak 

time on pelagic longline catches. Fishery Bulletin 102 , 179-195. 

Whole Foods Marlo;el. 2010. Whole Foods Marlo;et: Only major grocer to offer 

sustainable MSC-certified, harpoon-caught swordfish . 

<http://wholefoodsmarkel.com> . 

152 



Figure 4.1 Fishing grounds of the Canadian Atlantic pelagic longline fishery for swordfish and tunas extend from the US 

border in the southwest to northeast of the Grand Sanks . The boundary of Canada's Exclusive Economic Zone is shown 

by the 200-mile limit. Swordfish targeting occurs along the continental shelf edge, indicated by the 200 m and 1800 m 

(1000 fathom) isobaths. Tuna targeting occurs further offshore in waters warmed by the Gulf Stream. 
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CHAPTER 5: IDENTIFYING OPPORTUNITIES TO REDUCE BLUE 

SHARK BYCATCH: USING FISHERIES OBSERVER DATA AND 

FISHERS' KNOWLEDGE TO DIFFERENTIATE FISHING DECISIONS 

FROM FISH BEHAVIOUR 

This chapter builds upon observalions made during the field study 

reported in Chapter 3 and upon longline captains' observations reported in 

Chapter 4. Data from the fisheries observer program, from qualitative 

fishers' knowledge interviews, and from moored weather buoys were used 

to test hypotheses on catch rates and hunting behaviour of blue shark and 

swordfish - the most common bycatch and landed species respectively in 

the Canadian pelagic longline fishery. 
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Abstract 

Catch rates reflect fish behaviour, fishing decisions, and interactions 

between these two processes. For pelagic longline and other fisheries that 

use baited gear , catch rates depend upon feeding behaviour. Therefore, 

differences in the distributions and feeding behaviours of target and 

bycatch species may be used to identify opportunities to decrease bycatch 

without decreasing target species catch. I used fisheries observer and 

concurrent environmental data to detelTfline how fishing decisions and 

environmental variables affect catch rates of the most common bycatch 

(blue shark, Prionace g/auca) and landed species (swordfish, Xiphias 

g/adius) in the Canadian pelagic long line fishery. Qualitative interview data 

were used to identify fishing decisions and to describe pelagic species 

distributions and feeding behaviour. Sets with high blue shark catch rates 

accounted for most of the bycatch - 10% of the observed sets accounted 

for close to half of the observed blue shark bycatch. Fishing decisions, 

such as fishing season, region, or bait type, had little effect on blue shark 

catch rates but did affect target species catch rates. Expected 

associations between blue shark catch rates and wind stress, and 

between swordfish catch rates and lunar cycles were not significant in the 

generalized linear model analyses. Instead, water temperature was 

identified as the key environmental variable affecting blue shark catch 

rates. Further, interviewed longline captains' observations identified 

155 



possible ecological mechanisms for this relationship and , therefore , ways 

to better focus future blue shark bycatch mitigation research. 

1S6 



5. 1 Introductio n 

Catch rates reflect fish behaviour, fishing decisions, and interactions 

between these two processes . For example, seasonal migrations affect 

regional abundances; lunar or diel cycles affect movement patterns ; and 

feeding or predator avoidance affect activity levels, and therefore 

vulnerability to fishing gear (e.g., Bertrand et al. 2002; James et al. 2005; 

Poisson et al. 2010). Expected distribution, abundance, and behaviour of 

target species are factored into fishing decisions, such as choice of fishing 

grounds, timing of fishing trips, and setting location relative to local 

physical features or processes (e.g., Brandl and Hilborn 2008; Grant and 

Berkes 2007; Hobday and Campbell 2009; Podesta et al. 1993). For 

long line or other baited gear fisheries, catch rates depend on feeding 

behaviour; fish must detect, locate, and prey upon baited hooks. Expected 

differences among species' distributions, movement patterns, and feeding 

behaviour may be exploited to decrease bycatch without decreasing 

targeted species catch. 

Pelagic longline fisheries capture highly migratory target species, such as 

swordfish (Xiphias gladius) and tunas (Thunnus spp.), as well as 

unwanted and protected species, such as sharks and turtles. In many 

pelagic longline fisheries, blue shark (Prionace glauca) is the most 

common shark species (e.g., Campana et al. 2006; Francis et al. 2001; 

Gilman et al. 2008), and may account for up to 90% of the shark catch in 
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these fisheries (Gilman et at 2008). For pelagic longline fisheries with 

shark-finning regulations , limited markets for shark, and high catch rates 

(Gilman et al. 2008), there are incentives to reduce blue shark catch levels 

(i.e., reduced risks to fisher safety, gear damage, and time spent 

discarding sharks). Further, increased conservation and consumer 

pressure to reduce impacts on vulnerable populations, such as sharks, 

may lead to market advantages for fisheries that demonstrate decreased 

bycatch levels (Chapter 4). Where incentives to reduce the incidence of 

blue shark bycatch exist, research on distribution and feeding behaviour 

differences among blue shark and target species might identify bycatch 

mitigation opportunities for these fisheries. 

Blue shark bycatch is generally more common among swordfish-targeted 

sets than among sets targeting albacore (T. a/alunga), bigeye (T. 

obsesus), and yellowfin (T. albacares) tunas or mahi-mahi (Coryphaena 

hippurus) (Campana et al. 2006; He et al. 1997; Ward et al. 2004). Within 

mixed-species fisheries, blue shark bycatch levels differ among regions or 

seasons fished (Campana et al. 2006; He et al. 1997; Kerstetter and 

Graves 2006). For example, in the Canadian Atlantic swordfish and tuna 

longline fishery few blue shark were caught early in the season and at the 

southern extent of the fishing grounds (Campana et al. 2006), which is 

associated with tuna-targeting (Chapter 4) . However, large differences in 

blue shark catch rates also occur within limited areas or fishing periods. 
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Carruthers et al. (2011) reported extreme blue shark catch rate variability 

(ranging from 10 to over 150 blue sharks per 1000 hooks) among longline 

sets fished within 100 km and within a 10 day time period. This high 

variability at small scales suggests local behavioural responses are an 

important driver of blue shark catch rates 

While general distribution patterns and diel migrations of swordfish and 

blue shark overlap, local abundance patterns may differ in response to 

oceanographic features such as thermal fronts. Both species migrate 

throughout the North Atlantic (Kohler et al. 2002; ICCAT 2006), with 

seasonal latitudinal migrations reported for blue shark and swordfish 

(Neilson et al. 2009; Queiroz et al. 2005). Acoustic tracking data indicate 

similar diel movement patterns. Off the continental shelf, swordfish and 

blue shark generally remain at or above the thermocline at night and dive 

deeper during the day (Carey and Robinson 1981 ; Carey and Scharold 

1990). However, fisheries catch data indicate differing responses to water 

temperature within some fishing regions, with blue shark catch rates 

increasing with cooler water temperatures (e.g. , Bigelow et al. 1999; 

Carruthers et al. 2011 ; Watson et al. 2005). Temperature associations 

likely do not reflect temperature preferences or limits, as both blue shark 

and swordfish encounter temperature changes of 10-15 °C during diel 

vertical migrations (Carey and Robinson 1981 ; Carey and Scharold 1990). 

Instead, temperature associations may reflect differences in blue shark 
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and swordfish local abundance relative to oceanographic features, such 

as thermal fronts or water masses (Chapter 4; Walsh and Kleiber 2001). 

Blue shark and swordfish diets overlap, but there may be differences in 

hunting tactics and how these species detect and locate prey - or baited 

long line gear. Blue shark and swordfish are opportunistic predators 

Stomach contents of both species were dominated by fish (e.g., mackerel, 

Scomber scombrus; and herring , Clupea harengus) or squid prey (e.g., 

short-finned squid, lIIex il/ecebrosus), with differences among regions and 

seasons likely reflecting local prey availability (Henderson et al . 2001; 

McCord and Campana 2003; Stevens 1973; Stillwell and Kohler 1985). 

Longline catch rates, acoustic tracking data, experimental feeding trials, 

and differences in brain morphology suggest that blue shark and swordfish 

differ in their abilities to detect and locate baited long line gear. Catch data 

from the Hawaiian pelagic longline fishery indicated swordfish catch 

increased during the full moon, whereas blue shark catch increased with 

wind speed (Bigelow et at 1999). Bigelow et aL (1999) suggested that 

blue shark were less affected by changes to long line gear configuration 

during high winds. Tracking data was used to infer how swordfish 

behaviour may have contributed to these catch rates (Bigelow et aL 1999): 

that swordfish respond to light levels and swam deeper during periods of 

high winds (Carey and Robinson 1981). More generally, experimental 

research has demonstrated that sharks require both odour and turbulence 
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cues to efficiently locate odour sources, such as baits or prey (Gardiner 

and Atema 2007). Finally, based on differences in brain morphology, 

Usney and Collin (2006) suggest vision is dominant sensory modality 

among swordfish, whereas smell is likely the dominant sense blue shark 

use to detect prey. Environmental variables that affect prey detection, 

such as lunar illumination levels or wind induced mixing, likely impact 

catch rates of baited fishing gear (Stoner 2004). Thus, I expect blue shark 

catch rales will increase when wind-induced mixing disperses bait odours 

as blue shark are better able to detect odor cues. Similarly, blue shark 

catch rates should increase with steady winds, which would produce more 

coherent wind induced turbulence flows (Gill 1982), and, consequently, 

odour plumes from baited longline gear. Swordfish catch rates should 

increase during the full moon period, as swordfish longline gear is fished 

at night (Bigelow et al. 1999) and this species is thought to rely on visual 

cues (Carey and Robinson 1981; Lisney and Collin 2006). 

Inferring fish abundance, distribution, or behaviour from commercial 

fisheries catch data can be problematic. Catch rates are influenced by 

changes in fishing power, regulations, and individual fisher's targeting 

practices (e.g .• Bene and Tewfik 2001; Bishop 2006; de Mutsert et al. 

2008). Therefore, detailed information on targeting practices and fishing 

decisions is needed to differentiate fishing effects from fish behaviour. 

Commercial fisheries data provide an overview of the fishery - necessary 

161 



for overall estimates of fishing impacts - but do not provide information on 

fishing decisions or on target and bycatch species behaviour. The latter 

two types of information are needed to develop bycatch mitigation 

strategies (e.g, . Hall et al. 2007; Jenkins 2007). 

Our overall objective was to identify fishing decisions, environmental 

factors, and possibly fish behaviour that decreased blue shark bycatch 

levels in the Canadian Atlantic pelagic longline fishery, and thereby 

identify bycatch mitigation opportunities. As mitigation efforts that do not 

decrease target catch are more readily adopted (for additional factors, see 

Campbell and Cornwell 2008), my second objective was to determine how 

these fishing and environmental factors affected catch rates of targeted 

swordfish, tunas, and mahi-mahi. Fisheries data, collected by at-sea 

observers in the commercial fleet, were used to evaluate fishing and 

environmental variables, As I was inferring ecological processes from 

commercial fishing data, information on fishing decisions was needed. 

Therefore, I interviewed active pelagic longline captains, who detailed their 

observations of environmental factors and fish behaviour, in addition to 

information on fishing practices associated with high blue shark catch 

rates. 

The Canadian Atlantic pelagic longline fishery targets swordfish, albacore, 

yellowfin and bigeye tunas, and mahi-mahi. Blue shark is the most 
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common bycatch species discarded from the Canadian pelagic longline 

fishery (Carruthers et at. 2009). The Canadian Atlantic swordfish and tuna 

long line fishery has high levels of blue shark bycatch , has limited markets 

for landed blue shark, and has had finning regulations since 1994 

(Campana et al. 2006); thus, there are incentives to reduce the costs and 

risks associated with blue shark bycatch (Gilman et al. 2008). The fishery 

is active from May through October and the fishing region extends from 

Georges Bank in the south to northeast of the Flemish Cap, but individual 

longline captains have preferred fishing grounds and target species 

(Chapter 4). Bycatch levels may differ among fishing vessels due to 

targeting practices, preferred fishing regions, and setting practices (e.g. , 

Branch and Hilborn 2008; Hall et al. 2007; Wade et al. 2009). From a 

conservation perspective, if factors associated with high blue shark catch 

rates were identified and avoidance strategies developed from that 

information , overall levels of blue shark bycatdl could be greatly reduced 

Further, such information would benefit longliners who wish to avoid 

getting · sharked up" (sets full of unwanted sharks). 

5.2 Methods 

5.2.1 Fishers' know/edge interviews 

Fishers' knowledge interviews were conducted with 11 long line captains 

from the Canadian pelagic longline fishery for swordfish and tunas, 
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accounting for approximately one-quarter of the active fishing licences 

using longline gear (Chapter 4) . Interviewed captains had among them 

experience longlining the entire fishing grounds from the US border in the 

south to northeast of the Grand Banks (Figure 5.1). Interview topics 

included targeting practices, associations among target and bycatch 

species, and environmental and operational factors that may affect catch 

rates of target and bycatch species (Appendix I). Interviews were semi­

structured , meaning long line captains could identify additional topics 

during the interview. Because this information was not publicly available 

and because there are risks to the interviewees associated with 

participating in fishers ' knowledge interviews, national and university 

guidelines require ethics review of the proposed research (ICEHR No. 

2006/07-1 12-SC). In compliance with ethical research guidelines, I clearly 

detailed the possible risks and benefits of participation and indicated that 

participation was voluntary (Appendix II , Chapter 4). 

Fishers' knowledge interviews were conducted between March 2008 and 

June 2009. Interviews were audio-recorded , transcribed , and imported into 

qualitative data analysis software (HyperResearch 2.7, ResearchWare 

Inc.). Information on targeting practices, species associations. and 

environmental and operational factors were coded to allow cross­

comparison among interviews (Richards and Morse 2007). Further, case 

summaries for each interview detailed the context of their fishing 
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knowledge (e.g., fishing experience, species targeted, and regions fished). 

Quotes from interviews are denoted in the text by an interview identifier 

(e.g., 301). Follow-on phone conversations were used to clarify details 

from the interview transcripts and to request permission for the use of 

quotes . 

5.2.2 Fisheries observer data 

Data collected by fisheries observers onboard pelagic longline vessels 

were obtained from the International Observer Program database, created 

and maintained by the Population Ecology Division of the Canadian 

Department of Fisheries and Oceans (DFO). Individual vessel identifiers 

were replaced with unique identifiers to maintain confidentiality. Fisheries 

observers identify species caught. record catch composition, and detail 

environmental and operational factors for each set. For example, sea 

surface temperature is recorded at four points during the set (start and 

end of setting and hauling). Information recorded includes gear 

characteristics (such as total number of hooks hauled , number of hooks 

between buoys, and gangion or leader line length). Surface water 

temperature, timing, and location information is recorded during selling 

and hauling. Fisheries observer data from the 2002 to 2009 fishing 

seasons were used in these analyses. Observers reported from 

approximately 5 10 18% of sea days during these years (Javilech 2002; 

Lester et al. 2009). Observer data were used to determine catch 
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composition and bycatch levels because bycatch data are not routinely 

recorded in logbooks. 

Observed sets were ordered by blue shark catch rates (number of fish per 

1000 hooks). To identify sets dominated by blue shark catch, I selected 

10% of sets from each fishing season with the highest blue shark catch 

rates, which I considered ·sharked-up sets". These sets accounted for 

48% of all blue shark observed and had catch rates >55 sharks per 1000 

hooks (Figure 5.2). Because the number of observed sets differed among 

years, the number of sharked-up sets ranged from 3 sets in 2008 to 36 

sets in 2002. These sets accounted for between 30 and 55% of all blue 

shark observed in each fishing season. For the purposes of determining if 

short-term, local scale environmental variability contributed to high blue 

shark catch, I selected all sets from trips that contained sharked-up sets. 

The initial data set contained 349 sets, however corresponding wind data 

were not of sufficient quality for 44 sets (detailed below). Water 

temperature was not recorded during 12 sets, which were also removed 

from the data set. The data set was further limited to those trips where 

catch composition, gear characteristics, and setting and hauling times 

were recorded for at least 5 sets. Fisheries observer data from 263 sets 

fished during 28 longline trips were used to evaluate the effects of 

environmental variability on catch of blue shark and target species. Three 
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additional sets, with abnormal soak times, were removed after being 

identified as outliers during data analysis. 

5.2.3 Environmental data 

Water temperature data were recorded by fisheries observers, whereas 

lunar and wind data were obtained from online databases. Percent lunar 

illumination data, ranging from 0 (dark moon) to 1 (full moon), were 

downloaded from the US Naval observatory website 

(http://www.usno.navy.milfUSNO/). These illumination percentages were 

converted to lunar day and lunar quarter. Archived wind data recorded by 

moored weather buoys were accessed from the DFO Integrated Science 

Data Management website (http://v.ww.meds-sdmm.dfo-mpo.gc.calisdm­

gdsi/waves-vaguesJindex-eng.htm). Distances between longline set 

locations and weather buoys were calculated using the proximity toolbox 

in ArcMap (version 10). Wind speed and direction data were downloaded 

from moored weather buoys nearest to longline set locations (Figure 5.1) 

and corresponding to totallongline soak time for each set. Further, wind 

data were extracted for 24 h prior to each Iongline set because longline 

captains indicated prior storm events affected catch rates. Fisheries 

observer, lunar cycle and wind data were imported, compiled and efror 

checked using custom programs (MATLAB version R2007a). 

I compared three methods of representing lunar effects: percent lunar 
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illumination, periodic regression, and lunar quarter. Increased swordfish 

catch rates with lunar illumination levels would be consistent with the 

hypothesis that. as visual predators , swordfish were responding to 

increased light levels (Bigelow et al. 1999; Carey and Robinson 1981; 

Ortega-Garda et al. 2008). Periodic regression allows for evaluation of 

other aspects of the lunar cycle, such as tidal currents (deBruyn and 

Meeuwig 2001; Poisson et al. 2010). Previous researchers have used 

Generalized Additive Models (GAMs) to account for non-linear lunar 

effects (e.g., Bigelow et al. 1999; Ortega-Garcia et al. 2008). I used 

periodic regression instead of GAMs because I wanted to evaluate a semi­

lunar cycle with expected peaks corresponding to tidal amplitudes at full 

and new moon. lunar quarter roughly corresponded to the time periods 

discussed during fishers' knowledge interviews where longline captains 

differentiated between waxing and waning periods of the lunar cycle. 

Thus, the three methods of representing lunar cycles corresponded to a 

single maxima associated with the full moon, a semi-lunar cycle. or a four­

lever categorical variable. 

Prior to using downloaded wind data, quality codes and archived plots of 

wind speed and direction were examined. Although available quality codes 

are based on significant wave height and peak period data, they may also 

indicate problems with the associated wind speed and direction data. If 

visual inspection of archived plots indicated gaps or missing dala from one 
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or both anemometers, I either selected data from the second anemometer 

or downloaded data from an adjacent weather buoy. Corresponding wind 

data were not available for some sets. For example, trips fished during 

July 2006 were removed from the data set because there were gaps in the 

records from anemometers on four separate weather buoys during that 

two week time period. 

Wind speed and direction data were available for the majority of time 

periods corresponding to longline sets or to periods 24 h prior. Hourly wind 

data were used to calculate mean wind speed , and standard deviation of 

wind speed and direction for the total soak time for each set from the start 

of setting to the end of hauling, which may be up to 25 h (Carruthers et al. 

2011). Calculations of average wind direction and variability were based 

on the circular statistics toolbox for MATLAB (Berens 2009). Wind stress , 

which is an estimate of the force or energy of the wind, was calculated 

from hourly wind speed and direction data. Wind stress ("t) for the 

easVwesl (u) and north/south (v) vectors was calculated using the 

equation: 

1: = pCOW2; 

where p is the density of air (1.3 kg m·\ W is the wind speed vector 

calculated from moored buoy measurements (m s-\ and drag coefficients 

(Co) were based on the bulk parameters suggested by Large and Pond 

(1981). Drag coefficients differed for decreasing (e .g., 4 m so' lower than 6 
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h earlier), changing direction (e.g., direction change >600 within a 2 h time 

period), or rising winds and for wind speeds greater than 11 m S·1 (Large 

and Pond 1981). 

5.2.4 Catch models 

Catch models were built to evaluate whether blue shark or swordfish catch 

were affected by changing wind, lunar cycles, or water temperature. My 

hypotheses were: 1) blue shark catch would increase in strong steady 

wind conditions, which would create coherent odour plumes; and 2) 

swordfish catch would increase with lunar illumination levels. However, I 

considered alternate methods of representing wind and lunar effects 

because there were alternate explanations of the relationship between 

catch and environmental factors. Fishing region, month, bait type and 

water temperature were included in the catch models to account for 

differences in targeting practices and local abundance. Numbers of blue 

shark or swordfish caught per set were response variables and an effort 

measure (Nhh; number of hooks fished per set) was included as an offset. 

Including an offset tenn allowed modeling of individuals (count data) as 

the response variable (Maunder and Punt, 2004). 

Six candidate models were evaluated based on three methods of 

representing lunar effects and two methods of representing wind effects. 

These short-term environmental variables were evaluated in addition to 
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key seasonal, regional and operational factors known to affect catch rates 

in this fishery (Campana et al. 2006; Paul and Neilson 2010), such as 

region (Rgn), month (Mn) and bait type (Bt). For example, mean blue 

shark catch modeled as a function of number of hooks hauled (Nhh), 

water temperature (Tmp), wind stress in the u and v directions (Wstu and 

Wstv), and lunar illumination (li) was: 

Catch=e~+{, (1) 

IJ = log(offset(Nhh)-1) + I\TmpTmp + /3WS(uWstu + ~'lvWstV + I\L1li + 
f3s(Bt + I'>RgnRgn + f3MnMn + f3R9"'-MnRgn X Mn (2) 

where IJ corresponds to the mean catch in each set. Bait type was 

included as a 3-level categorical variable (fish, squid, or mixed bait). The 

fishing ground was divided into four regions, which corresponded to 

Georges Bank, Scotian Shelf, Grand Banks and Flemish Cap (Figure 5.1). 

Month was considered a continuous variable. Lunar effects were 

alternatively modeled using a periodic regression term or using a 4-level 

categorical variable for lunar quarter (Lqt). Lunar quarter was modeled as 

a categorical variable - and not an ordinal variable - because lunar 

illumination levels during the second and fourth quarters were similar and 

because longline captains differentiated between the different quarters. 

Because I was interested in modeling a semi-lunar cycle, the periodic 

regression term was cos(26), where 0 is the angular equivalent of lunar 

day (e.g., 1129.5 of 360; deBruyn and Meeuwig 2001). Wind effects were 

also modeled as mean wind speed (Wspd, mls), the standard deviation of 
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the wind speed (Wstd, which is proportional to the energy imparted by the 

wind), and wind direction variability (standard deviation of wind direction ; 

Dstd). Wind stress includes directional information and is the measure of 

the energy imparted by the wind used to calculate wind induced flows, 

whereas the second method of representing wind effects described the 

overall magnitude and variability. Thus , alternative catch models based on 

a semi-lunar cycle , wind speed. and wind direction variabi lity were: 

IJ = log(offset(Nhh)-1) + fJrmpTmp + fJws¢Wspd + [btdDstd + 
~0II2,cos2e + fJBlBt + j3RgnRgn + fJ MnMn + j3RII"'MnRgn X Mn (3) 

Diagnostic plots indicated greater variance than accounted for by the 

Poisson error distribution because residuals increased with fitted values. A 

single outlier was identified in diagnostic plots of blue shark catch models . 

Because the outlier was associated with a longline set that had a minimum 

soak time (time between setting and hauling) of less than 1 h, it was 

removed from the data set. Minimum soak times averaged 7.9 h (t 1.4 h 

SO), therefore soak times < 1 h indicate abnormal sets. To be consistent, 

two additional sets were removed from the data set. One had a minimum 

soak time of <1 h and the other fished >18 h between setting and hauling . 

Consequently, the data set used to evaluate environmental effects on blue 

shark and swordfish catch CCHlsisted of 260 sets fished during 28 longline 

trips. 

The Poisson error distribution assumes variance equal to the mean, which 
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was not the case in the blue shark and swordfish catch models. The ratio 

of residual deviance to degrees of freedom indicated substantial 

overdispersion, which is common in ecological and fisheries count data 

(Maunder and Punt 2004; Richards 2008; Venables and Oichmont 2004). 

The best way to address overdispersion is to incorporate missing 

explanatory variables or otherwise address the ecological reason for 

Qverdispersion (McCullagh and Neider 1989). Where this is not possible, a 

practical approach is to include a dispersion parameter in the error 

distribution and thereby, produce more conservative error estimates. 

Diagnostic plots for models using negative-binomial error distributions 

indicated residuals no longer increased with fitted values and this model 

assumption was mel. Model selection was based on the likelihood of the 

model and Akaike's information criterion (Ale), which includes a penalty 

term to limit overly complex models. When models were equally likely 

given the data, I chose the simpler model to communicate with fisheries 

managers and fishing captains. GLMs were run using the open source 

program R, with the 'MASS', and 'car' packages (Venables and Ripley, 

2002; Fox, 2007; RTeam, 2007). 
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5.3 Results 

5.3.1 Longline captains' observations and interpretations 

In general, longline captains reported higher blue shark catch during 

swordfish-targeted sets (Chapter 4). They distinguished between 

swordfish and tuna targeted trips based on timing (10 responses), location 

(11 responses), and bait type (9 responses). Tuna (primarily yellowfin and 

bigeye) sets were fished early in the season, were further offshore, and 

were baited with squid. These fishing decisions were based on expected 

migration patterns, "Tuna are here first. You don't go swordfishing until the 

middle of July - at the earliest" (1101). Fishing decisions were also based 

on expected distributions, ·Swordfish tend to rome in to the hundred 

fathom edge, the edge of the continental shelf. You wouldn't get many 

tuna in that depth , you'd get [tuna) more at the 500 to 1000 fathom ." 

(1001); and were based on expected feeding preferences, "If you don 't 

have squid , you're not going to get any tuna (well, maybe the odd bigeye). 

But squid's the thing, it's their feed" (601). One long line captain reported 

that feeding behaviour of swordfish caught by the harpoon and by longline 

fisheries differed, ·When the sticking [harpoon] boats can stick them, we 

can't catch them. When we can catch [swordfish), they can't stick them" 

(1101). Even when longline and harpoon vessels were fishing in the same 

region, he reported that swordfish were not biting longline gear when 

harpoon fishermen were able to catch basking swordfish , 
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Bycatch avoidance and the current management system were also 

factored into choice of fishing regions and seasons. Longline captains 

chose fishing regions, in part, to avoid blue shark, "If you go early 

swordfishing early in on the Bank, you're going to get sharked to death" 

(301); or that, "There's swordfish in there [southern Scotian Shelf] right 

now, but you wouldn't dare fish it because [your gear would] get chewed 

up by the sharks' (901). The second quote was from an interview in early 

June. Finally, Iongline captains mentioned that the current management 

system, with individual swordfish quotas which differ among license 

holders based on swordfish landings history, affected seasonal targeting 

practices (Chapter 4). Longline captains were fishing swordfish later in the 

season because they either had to buy more quota or stop longlining once 

their individual swordfish quota had been caught. In addition to expected 

seasonal, regional, and targeting associations, longline captains described 

how local environmental variability might affect catch rates of blue shark 

and of target species. 

Longline captains indicated that environmental factors, such as lunar 

cycles and weather, affected catch rates of blue shark and target species. 

Most captains considered lunar cycles when planning longline trips 

because higher catch rates of target species were expected during the full 

moon or during the waxing period prior to the full moon, 'on the making of 

the moon" (901). However, the relationship between lunar cycles and 
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target species catch rates was not simple. For example , longline captains 

indicated that lunar effects had a greater influence on tuna catch than on 

swordfish catch (5 responses); that other factors (such as location relative 

to thermal fronts or edges, or fishing practices of adjacentlongline 

vessels) were more important (3 responses); or that although the best 

fishing was associated with a full or waxing moon, you could catch 

swordfish throughout the fishing season (2 responses). One longline 

captain indicated that, in his experience, catch rates did not increase with 

the full moon (301). longline trips may last up to 19 days in the Canadian 

pelagic longline fishery. Therefore, longline captains planned trips so that 

the few days ashore were not during the making of the moon or during the 

full moon period (1001). The captain who did not find an association 

between lunar cycles explained that when they fished without breaks 

between trips, there was little difference in catch rates . 

When asked for their interpretations or possible explanations for the 

association between increased catch rates and lunar cycles, longline 

captains described how water, particularly thermal fronts, changed during 

the full moon. Further, when I described research that suggests that 

swordfish were responding to higher light levels as visual predators (e.g. , 

Carey and Robinson 1981), longline captains responded : 

Maybe, but it's got a lot to do with the tides and the water. I 
don't know why but (the warmer water) doesn 't move around 
so much (201), 
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It could be that it [lunar illumination] brings the fish up to the 
surface to look for their prey, but even the water changes. It 
edges up better (701). 

It's both, in my opinion. The water edges up better, which 
pulls the bait in, which pulls the fish in. (401) 

Only one longline captain mentioned the possible effects of lunar 

illumination on tuna catch rates, "It seems when Ihe moon's bright. [tunas] 

come to the top of the waler" (501). 

Although wind effects were not in the original interview schedule, several 

captains mentioned that blue shark catch rates increased during stormy 

nights or shortly thereafter. Longline captains described how multiple 

environmental factors affect blue shark catch rates: 

Sloppy sou'westers, [when it's] moon-black and overcast, 
make them [blue shark] right ugly. When the moon is full, 
you don't seem to get too many (801). 

There's a tonne of [blue] sharks, bul if ii's a full moon 
and if you can find a piece of water, you can keep clear 
of them. The stormy nights are the nights you load up on 
them. After a big nor'wester, you're hammered with 
sharks, then the next night you'll get the swordfish (401). 

These longline captains agreed on the combined effects of lunar cycles 

and wind but gave different example wind directions, which may be related 

to topographic effects associated with their different fishing grounds. The 

first captain fished the southern portion of the longline fishing grounds 

near the US border, whereas the second captain fished from the Eastern 

Scotian Shelf to the Flemish Cap (Figure 5.1). During follow-on phone 
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conversations, three other captains agreed blue shark catch rates 

increase with wind speed. They pointed out, however, that longlines are 

generally fished deeper during bad weather and that, "We go for 15 to 20 

days so you have no choice but to be there when it blows" (1101). 

Longline captains also indicated that tuna catch increased during calm 

days (2 responses) or that, ·You could be fishing a perfect piece of water, 

catching tuna every day. One little puff of wind [will] come along and bust 

it up' (601). 

Whether discussing tuna, swordfish or blue shark catch rates, longline 

captains described the combined effects of different environmental factors . 

For example, water temperature was discussed relative to thermal fronts 

and water colour, which captains used to distinguish between shelf, and 

slope or Gulf Stream water. When fishing along thermal fronts, longline 

captains reported that if opposing currents pulled the longline into the 

cooler side, you 'd get more sharks (Chapter 4). When discussing the 

association between blue shark and temperature, this long line captain 

mentioned how temperature effects interacted with water colour, "(Blue 

shark] seem to like the colder part of the water, but the colour of the water 

makes a difference. I've fished 57 [OF or 14 0c] but it was dark water and 

there were no sharks' (901). When asked about water temperature 

longline captains described the importance of water temperature in 

relation to fronts (9 responses), water colour (5 responses), or currents (6 
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responses). No longline captains described water temperature as an 

important factor by itself. 

5.3.2 Fisheries observer data 

Trips that included sharked-up sets were fished from Georges Bank to the 

east of the Flemish Cap (Figure 5.1), and throughout the fishing season 

during the second (16%), third (62%) and fourth (22%) fishing quarters 

(Table 5.1). Among sharked-up sets, the majority appeared to be targeting 

swordfish, meaning the number of swordfish caught exceeded the total of 

warm-water tunas (albacore, bigeye, and yellowfin tunas) and mahi-mahi 

in the set. Porbeagle and shortfin mako were not considered targeted 

species because not all of these sharks were landed (Carruthers et al. 

2009). Bluefin tuna were not included in tuna catch estimates. They are 

not considered a target species of the longline fishery eventhough 

regulations that permit landing bluefin tuna caught incidentally were 

introduced in 2004 (DFO 2004). Swordfish accounted for over 60% of the 

landed catch in 57 of the 83 sharked-up sets, whereas warm-water tunas 

and mahi-mahi accounted for >60% of the landed catch in only 13 of the 

sets. In the remaining sets, catch was either a mix of swordfish, warm­

water tunas, and mako (8 sets), a mix of porbeagle and bluefin (3 sets), or 

only caught shark (2 sets). Mean blue shark CPUE was 101 ± 69 among 

sharked-up sets, whereas mean CPUE among sets which were not 
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associated with high blue shark trips was 11 ± 12 blue sharks per 1000 

hooks (Table 5.1) 

Although there was little difference in the targeting practices of sharked-up 

sets and sets from the same trips that had lower blue shark catch rates, 

blue shark catch rates differed (Table 5.1). The difference in fishing 

quarter between these two groups can be attributed to seven trips, which 

were fished at the end of September and into October with blue shark sets 

occurring later in the long line trips. Bait and hook type did not differ 

between shark ed-up sets and other sets fished during those trips. 

Similarly, neither estimated fishing depth nor fishing characteristics 

associated with depth (gangion length and number of hooks between 

floats) differed among sharked-up sets and other sets from the same trip. 

Even though bait types differed within one-third of these trips, particular 

bait types were not associated with sharked-up sets. Among the remaining 

observed sets there was a higher proportion of sets that caught warm­

water tunas and mahi-mahi. The remaining observed sets also had a 

higher proportion of operational characteristics associated with tuna­

targeting in this fishery, such as squid bait (Table 5.1). Almost all observed 

sets (96%), including those with high blue shark catch rates, were fished 

at night. 

5.3.3 Environmental data 
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There was little difference in the distribution of fishing sets throughout the 

lunar cycle, whether sets were associated with high blue shark catch, 

were from the same trips, or were from the remainder of the database. 

One quarter of high blue shark sets (83 sets) were fished during the new 

moon period. The proportion was the same for sets fished during those 

trips (260 sets) or for the remainder of the data set (679 sets). Similarly, 

32 to 38% of longline sets were fished during the full moon period, with 

more sets fished during the full moon among high blue shark sets and 

those fished during the same trips. 

Hourly wind records indicated that wind speed varied from no wind to wind 

speeds of 20 m S·l (-40 kn) during the period that corresponded to a 

longline fishing trip (Figure 5.3). Among the 260 longline sets, mean wind 

speed was 5.8:t 2.4 m S· l (range: 0.3 - 12.2 m S·I ) based on wind speeds 

averaged over total soak time for each set. The range of directions from 

which the wind blew varied within the soaking period of each longline set 

(Figure 5.3), with change in wind direction exceeding 60° during 133 of the 

263 sets considered. Ninety-four of these sets met Large and Pond's 

(1981) criteria for variable wind (a greater than 60° shift in wind direction 

within a 2 h time period). 

Surface water temperatures, recorded by at·sea fisheries observers during 

setting and hauling , did not differ among high blue shark sets and other 
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sets fished during the same trips (Table 5.1). Low water temperatures 

«12 °C) were generally reported from late in the fishing season and 

caught swordfish, porbeagle and bluefin tuna. Although the range in water 

temperatures recorded from all observed sets fished between 2002 and 

2009 was >20 °C (Table 5.1), the temperature range within longline trips 

was less than 3 °C for two-thirds of the observed trips . 

5.3.4 Catch models 

Catch models that included short-term environmental factors, in addition to 

regional , seasonal, and operational factors , explained 18% of the 

variability in blue shark catch models and one-third of the variability in 

swordfish catch models (Table 5.2). The interaction term representing 

combined regional and seasonal effects was not significant, and was 

therefore removed from final models. There was little difference in overall 

model fit or AIC values among models which included different methods of 

representing wind or lunar effects (Table 5.2). When differences among 

AIC values are less than or equal to four, as was shown here, models are 

considered equally likely (Burnham and Anderson 1998). I chose to focus 

on the model that included wind stress factors and lunar illumination, 

which retained directional information on wind stress and which 

represented the expected ecological mechanism for increased swordfish 

catch rates (Table 5.3). 
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While bait type or month did not affect blue shark catch, catch levels were 

lower in sets fished in the Flemish Cap region (Figure 5.4). These 19 sets 

were fished during three separate trips and the fisheries observers 

onboard differed, therefore lower blue shark sets in this region were not 

the result of a single trip nor associated with a particular fisheries 

observer. Swordfish catch levels were not associated with specific regions 

(Table 5.3) but did increase over the fishing season (Figure 5.4). Further, 

bait type was a significant factor in swordfish catch models (Table 5.3), 

with higher swordfish catch during sets that used fish bait than on sets that 

used squid bait or a mixture of fish and squid baits (Figure 5.5). The 

opposite pattern was evident for tuna catch, which was higher during sets 

baited with squid (Figure 5.5). 

Blue shark catch declined with lunar illumination levels (J3u = -0.28, z value 

= -1.692, P =0.047). No relationship between swordfish catch and lunar 

illumination levels was evident in this data set. Further, there was little 

difference in the explanatory power of lunar and semi-lunar cycles in 

swordfish catch models (J3u =0.235. z value =1.571. p =0.058; 132, =0.010, 

z-value =1.380. p =0.167). Catch rate effects from lunar illumination levels, 

wind stress, and the effort offset (number of hooks hauled) were evaluated 

using one-tailed tested as there was anexpected direction to the 

relationship. 
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Contrary to expectations blue shari< catch did not increase with wind 

stress, based either on wind stress levels calculated for the time period 

fished (Table 5.3) or calculated for the time period 24 h prior to each 

longline set (Table 5.4). There was, however, a significant negative 

relationship between swordfish catch and east/west wind stress calculated 

for the duration of the fishing set (!3w. tu = -3.79, z value = ·2.409, P =0.008: 

Figure 5.6). Because longline captains reported decreased tuna catch 

during windy conditions, I ran comparable GLMs with the sum of warm­

water tunas and mahi-mahi as the response variable. These models did 

not converge to a maximum likelihood estimate as >40% of the sets in the 

data set did not catch any warm-water tunas or mahi-mahi. However, 

almost no tuna were caught during sets fished at wind stress levels 

corresponding to average wind speeds> 7 m s" (-14 kn; Figure 5.6). 

Surface water temperature was the most important environmental factor in 

blue shark models (Table 5.3). As expected, blue shari< catch decreased 

with warmer water temperatures (fhmp = -0.165, z value = -5. 105, P 

<0.001; Figure 5.7). However, the association between blue shark catch 

and water temperature was not simply a result of surface water 

temperatures warming over the fishing season. Some of the warmest sea 

surface temperatures reported were fished in October in waters warmed 

by the Gulf Stream (Figure 5.8). Interviewed longline captains reported the 

importance of water temperature only in association with other physical 
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factors, such as the presences of particular water masses or thermal 

fronts. 

To examine within trip temperature effects, I considered water 

temperature, targeting strategies, set location, and wind speed effects on 

blue shark catch within trips that contained extreme blue shark catch rates 

(>150 blue shark per 1000 hooks). The six trips with extreme blue shark 

catch rates were fished from July through October in the Scotian Shelf, 

Grand Banks, and Flemish Cap regions. One trip fished in October 

contained both tuna and mixed targeting strategies. During this trip blue 

shark catch rates were below average in tuna targeted sets, which were 

identified by the bait type (squid) and by surface water temperatures (>17 

. C). Extreme blue shark catch rates were associated with mixed baits and 

surface water temperatures <14 ·C. Four of the six sets fished in these 

water temperatures had catch rates in excess of 300 sharks. During 

another trip fished in October, none of the 6 sets fished in temperatures 

>17 ·C had blue shark catch rates greater than 24 shark} 1000 hooks, 

whereas 6f7 sets that were fished in cooler water temperatures did . Eight 

sets fished during an August tuna-targeted trip were fished in surface 

water temperatures of 16.5-19.1 ·C, but the single extreme blue shark set 

was fished in the coolest water. No sets were made during the two days 

following this set, although the vessel remained in the same area . During 

the remaining three trips that contained blue shark catch rates in excess of 
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;> 150 sharks/1 000 hooks, surface water temperature did not seem to be 

a factor. During one of these trips, blue shark catch rates halved following 

a decrease in wind speed from 8 to 4 m S·l . There were no obvious within 

trip differences in location, targeting, or environmental factors during two 

of the trips that contained extreme blue shark catch rates 

5.4 Discussion 

Analysis of qualitative interview data, fisheries observer data, and 

concurrent environmental data suggested that local distribution patterns 

had a greater effect on blue shark catch rates than fishing decisions or 

hunting behaviour. Water temperature had a greater effect on blue shark 

catch rates than bait type, region or month fished, or than wind-induced 

mixing, which I hypothesized would give blue shark a behavioural 

advantage in detecting and locating baited longline gear. Sharked-up sets 

accounted for most of the blue shark bycatch observed during each fishing 

season; each year 10% of the observed sets accounted for between 30 

and 55% of all blue shark caught on observed sets in the swordfish and 

tuna longline fishery. Thus, fishing practices that decrease sharked-up 

sets could greatly decrease overall blue shark bycatch levels. 

In the Canadian pelagic longline fishery, targeting practices had little effect 

on blue shark catch, but did affect target species catch rates. My results 
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did not support the hypothesis that short-term environmental variability 

increased species' ability to detect and locate baited hooks. Blue shark 

catch did not increase when wind stress increased the distribution of bail 

odour and the strength of turbulent odour plumes. Similarly, swordfish 

catch did not increase with lunar illumination levels as expected, given that 

vision is likely the dominant sense in this species (Lisney and Collin 2006). 

Instead, water temperature was identified as the key environmental 

variable affecting blue shark catch rates. Longline captains' observations 

identified possible ecological mechanisms for this relationship and, 

therefore, ways to better focus blue shark bycatch mitigation research. 

5.4.1 Targeting practices 

Fishing decisions, such as where and when to fish, had little effect on blue 

shark catch. With the exception of low blue shark catch levels in the 

Flemish Cap region, there was no regional or seasonal pattern to high 

blue shark sets. Because I was interested in the fishing and environmental 

factors associated with sharked-up sets, particularly at the within trip level, 

I limited the data set to those trips that contained these high blue shark 

sets. This data analysis decision may have affected my results that 

showed limited regional or seasonal effects on blue shark catch. However, 

analyses of regional and seasonal effects using the complete observer 

data set should also evaluate the influence of sharked-up sets, given the 

distribution of blue shark catch rates (Figure 5.2). To resolve differing 
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results on seasonal and regional pattems - and therefore the likely 

efficacy of closures in reducing blue shark bycatch - subsequent analyses 

would need to evaluate how the focus on trips containing sharked-up sets 

affected my results and how extreme blue shark sets affected reported 

relationships between catch rates and seasons or regions (Campana et al. 

2006). 

Fishing decisions, such as the choice of bait type, also had little effect on 

blue shark catch rates. Blue shark catch was not associated with squid, 

mackerel or mixed baits. Although WatsOf1 et al. (2005) reported higher 

blue shark catch rates on squid-baited hooks than on those baited with 

mackerel, Mejuto et al. (2008) did not. Given that mackerel and squid are 

both commonly found in blue shark stomach contents (Henderson et al. 

2001; McCord and Campana 2003; Stevens 1973), I expect changing bait 

type would have little impact on blue shark catch. From a management 

perspective, the lack of significance in the blue shark models suggests 

that regional or seasonal closures or shifts in bait type would not affect 

blue shark catch, but would impact catdllevels of targeted swordfish and 

tunas. 

Swordfish catch rates were low during the first three months of the fishing 

season (April, May, and June; Figure 5.4) and increased throughoullhe 

year. Longline captains reported this pattern was a result of both targeting 
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practices and fish behaviour. longline captains were targeting swordfish 

later in the season because individual licenses are limited by swordfish 

quota (Chapter 4). Captains also described migratory and feeding 

behaviour that likely affected swordfish catchability, stating that swordfish 

arrived later and that swordfish feeding behaviour affected catchability by 

long line and harpoon fisheries . Tagging research supports their 

observations of swordfish migration; satellite tagging data show swordfish 

return to temperate waters (40" N) in June (Neilson et al. 2009). The 

second observation, that swordfish feeding behaviour shifts over the 

fishing season, has not been investigated. However, pelagic predators' 

vertical and horizontal movements suggest feeding behaviour shifts within 

seasons and among regions in response to local environmental variability 

(e.g., Queiroz et al. 2010; Shepard et al. 2006; Takahashi et al. 2003) 

Both targeting practices and fish feeding behaviour affect the relationship 

between target catch and bait type. Above average swordfish catch was 

associated with mackerel baited sets, whereas tuna catch was associated 

with squid baits. Comparable results were found using logbook data from 

all sets fished between 1998 and 2008, Most albacore, yellowfin, and 

bigeye tunas were caught using squid bait, whereas the majority of 

swordfish were caught on mackerel baits (Paul and Neilson 2010). 

However, swordfish catch rates were comparable on mixed bait sets (Paul 

and Neilson 2010). Mixed bait sets likely represent an intermediate 
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targeting strategy. Given that squid is common in swordfish stomach 

contents (Stillwell and Kohler 1985), low swordfish catch rates using this 

bait type may reflect other tuna-targeting practices, and not swordfish bait 

preference. Exclusive use of mackerel baits would likely decrease catch 

rates of bigeye (Watson et al. 2005) and other warm-water tunas, but 

would likely not affect catch rates of swordfish or blue shark. 

5.4.2 Lunar, wind, and temperature effects 

Contrary to expectations, blue shark catch did not increase with strong 

steady winds and swordfish catch did not increase with lunar illumination 

levels. Instead model results showed a negative correlation between 

swordfish catch and wind stress and a negative correlation between blue 

shark and lunar illumination levels. My hypothesis that blue shark catch 

rates would increase with wind speed was based on an expected 

behavioural advantage for olfactory detection of prey by blue shark. Lower 

swordfish catch rates may reflect avoidance or a hunting disadvantage for 

this species. Carey and Robinson (1981) suggested that swordfish may 

increase swimming depth in response to increased light levels or to 

increased winds, based on the three tracked swordfish that swam at 

greater depths during windy and full moon periods. longline captains' 

observations and fisheries observer data agreed that few warm-water 

tunas were caught during windy conditions. However, my data set was 

limited to longline trips that contained high blue shark sets. Relationships 
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between target species and wind conditions would be better investigated 

using the wider set of fisheries obselVer or logbook data. 

Previous researchers reported blue shark catch increased with wind 

speed and swordfish catch increased with lunar illumination levels (e.g ., 

Bigelow et al. 1999; Oamalas et al. 2007). However wind speed and lunar 

illumination levels were minor explanatory variables, accounting for less 

than 2% of overall deviance explained (Bigelow et al. 1999; Oamalas et al. 

2007). Other researchers have found no association between lunar cycles 

and swordfish or report the inverse relationship. Podesta et al. (1993) 

found no association between swordfish catch and lunar phase despite 

increased longline fishing effort during the full moon period . Poisson et al. 

(2010) reported lower swordfish catch during the full moon and suggested 

swordfish catch levels corresponded with low tidal phase and currents. A 

common theme within this research - shared with my own - is that 

swordfish or blue shark behaviour was inferred from fisheries catch data. 

Instead of inferring behavioural responses from fishery dependent data, 

behavioural hypotheses would be better evaluated using swordfish or blue 

shark dive profiles from acoustic (e.g. , Carey and Robinson 1981 ; Carey 

and Scharold 1990), archival (Takahashi et al. 2003), or satellite tags 

(e .g., Campana et al. 2009; Neilson et al. 2009), with wind, lunar, and 

oceanographic data obtained for corresponding time periods and regions. 
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Among the environmental factors tested that could influence short-term 

variability in blue shark catch rates, only water temperature was 

significantly associated with higher blue shark catch. Neither tagging data 

nor long line captains' observations suggest that this relationship simply 

reflects temperature preference. Blue shark experience 10-15 QC 

temperature changes during diel vertical migrations (Campana et al. 2009; 

Carey and Scharold 1990; Queiroz et al. 2010). therefore it is unlikely that 

blue shark are limited by temperatures fished by this fleet. Longline 

captains reported blue shark catch rates increased with cooler water 

temperature but all captains linked water temperature to local 

oceanographic features. such as thermal fronts or water masses. The fleet 

fishes along the continental shelf edge and further offshore into slope 

waters, north of the Gulf Stream. The fishing ground is influenced by the 

Labrador Current, meanders and rings originating from the Gulf Stream, 

and freshwater from the Gulf of SI. Lawrence which is a component of 

shelf water flowing south over the Scotian Shelf and Georges Bank 

regions (Loder et al. 1998). Interviewed longline captains described these 

features, with "green water" associated with the Scotian Shelf and 

containing freshwater from the Gulf of St. lawrence, in relation to targeting 

decisions and blue shark catch rates. While analysis of fisheries observer 

data identified water temperature as the key environmental factor, 

interviewed longline captains described possible ecological mechanisms 

for this relationship. 
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In their analysis of blue shark catch rates in the Hawaiian longline fishery, 

Walsh and Kleiber (2001) reported temperature was a key variable at 

multiple points in their regression tree, indicating multiple ways in which 

temperature could influence blue shark behaviour and calch rales , At a 

broad scale the association between blue shark bycatch and cooler water 

temperatures may reflect targeting practices or associations with water 

masses (Carruthers et al. 2011; He et al. 1997), whereas at a finer scale 

blue shark behaviour has been correlated with thermal structure of the 

water column (Queiroz et al. 2010). I briefly considered the relationship 

between fishing and environmental factors, and blue shark catch within 

trips that contained extreme blue shark catch rates (e.g., >150 sharks! 

1000 hooks). While changes in temperature appeared to be the primary 

factor in three of the six trips, these short-term variations in catch rate 

would be better investigated using detailed gear configuration and 

oceanographic data (e,g" depth and location of the main line relative to 

thermal fronts). Further research on blue shark distribution and catchabilily 

in the Canadian pelagic longline fishery will require understanding local 

ocean dynamics atlhe scale of a longline trip and of sets within trips 

5.4.3 Summary 

Reducing the incidence of high blue shark sets would greatly decrease the 

overall bycatch levels in the Canadian pelagic longline fishery. Interviewed 

193 



longline captains were interested in avoiding sharked-up sets (Chapter 4) 

and described two ecological mechanisms possibly driving the association 

between water temperature and blue shark catch rates: 1) blue shark were 

associated with shelf water; and 2), blue shark were found on the cold 

side of thermal fronts. Subsequent blue shark bycatch mitigation research 

could investigate these hypotheses. Because longline captains expressed 

interest in avoiding high blue shark sets, there may be opportunities for 

collaborative bycatch mitigation research , particularly focused on ocean 

dynamics at the scale of a long line set. Pelagic longline captains reported 

difficulties in keeping longline gear on the warm side of thermal fronts 

(Chapter 4), therefore such fine-scale research may provide useful 

information for blue shark avoidance. However, fishing on the warm side 

of thermal fronts would likely increase of bycatch of vulnerable 

loggerhead sea turtles (Caretta caretta, Brazner and McMillan 2008; 

Chapter 4). 

I demonstrated that fishing decisions, such as where and when to fish and 

choice of bait type, did not affect blue shark catch rates in the Canadian 

pelagic long line fishery. Given that catch rates reflect fishing practices, fish 

behaviour, and the interaction between the two processes, future bycatch 

mitigation research should focus on blue shark behaviour, particularly 

relative to water temperature -the key environmental variable identified 

here. From a fisheries management or conservation biology perspective, 
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identifying opportunities to reduce the incidence of sharked-up sets would 

limit mortalities, stresses, and injuries to sharks associated with the 

capture process (Campana et al. 2009), and would limit cost and safety 

issues of longline fishers discarding these fish (Gilman et al. 2008). 
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Table 5.1 Fishing and environmental characteristics of pelagic long line sets which contained the highest blue shark catch 

rates in each year, compared with sets fished during the same trips and with all other sets observed by at-sea fisheries 

observers during the 2002 to 2009 fishing seasons (average ± standard deviation and range (shown in parentheses)). 

Characteristic Blue shark sets Same trip sets Remaining sets 
(n = 83) (n =177) (n = 679) 

Target species· 69% swordfish; 16% tunas 67% swordfish; 20% tunas 46% swordfish; 44% tunas 
Blue shark CPUE (/1000 hk) 100 ± 69 (29 - 380) 24±20 (0 -124) 10±11 (0-86) 
Swordfish CPUE ({1000 hk) 11±13(0-74) 15±13 (0-63) 11±12 (0-83) 

Environmental van'ables 
Fishing quarter 0; 23%; 40%;37% 0; 16%; 62%; 22% 0; 12%; 77%; 11% 
Water temperature ("C) 16.9±2.1 (12.4-20.0) 18.1 ±1.9(12.6-23.9) 20±3 (7 - 27) 
Fishing depth (m)b 15.7 ± 4.9 (10 - 33) 16.8±6.1 (7-36) 12.4 ± 3.8 (4 - 34) 

Operational variables 
Longline length (km) 48.4±17.1(15-78) 50.5 ± 14.0 (14 - 79) 44.9 ± 20 (2 - 92) 
Number of hooks hauled 1113 ± 348 (480 - 1700) 1213 ± 304 (40B -1 BOO) 1062 ± 311 (210 -1900) 
Hook type 22% J-hooks; 7B% circle 23% J-hooks; 77% circle 30% J-hooks; 69% circle 

hooks hooks hooks 
Baittypec 17% fish ; 37% squid; 46% 21% fish; 33% squid; 46% 1B% fish; 48% squid; 23% 

mix mix mix 
Hooks between floats 10% 2 hooks; 34% 3 hooks; 8% 2 hooks; 34% 3 hooks; 26% 2 hooks; 44% 3 hooks, 

56% 4 hooks 58% 4 hooks 29% 4 hooks 
Gangion length (m) 8.1 ± 2.3 (5.5 - 14.6) 7.6 ± 2.2 (5.5 - 29) 7.0 ± 2.0 (1 .2 - 20) 
• Reported as the percentage of sets where swordfish or warm-water tunas (albacore, bigeye, yellowfin plus mahi-mahi) 
and account for over 60% on the landed species. 
b Fishing depth estimates are based on 72, 199 and 554 sets because some observers reported water column depth. 
cFish bait is primarily mackerel. Herring is used as bait in less than 10% of the mixed bait sets . 
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Table 5.2 Model selection table for blue shark and swordfish catch. Complete 

models included an offset term to account for differences in fishing effort (Nhh ; 

number of hooks hauled). 

Model terms· 

Blue shark 
Tmp +Wstu +Wstv + Li + Bt + Mn + Rgn 
Tmp + Wstu + Wstv + oos28 + Bt + Mn + Rgn 
Tmp + Wstu + Wstv + lqt + Bt + Mn + Rgn 
Tmp + Wspd + Wstd + Dstd + Li + Bt+ Mn + Rgn 
Tmp + Wspd + Wstd + Dstd + oos28 + Bt + Mn + Rgn 
Tmp + Wspd + Wstd + Dstd + lqt + Bt + Mn + Rgn 
Swordfish 
Tmp + Wstu + Wstv + Li + Bt + Mn + Rgn 
Tmp + Wstu + Wstv + cos28 + Bt + Mn + Rgn 
Tmp + Wstu +Wstv+ lqt + Bt+ Mn + Rgn 
Tmp + Wspd + Wstd + Dstd + Li + Bt + Mn + Rgn 
Tmp + Wspd + Wstd + Dstd + cos20 + Bt + Mn + Rgn 
Tme + Wsed + Wstd + Dstd + 19t + Bt + Mn + Rgn 

Residual Residual AIC 
deviance df 

291.22 248 2582.5 
291.41 248 2585.1 
290.92 246 2580.6 
291.27 247 2584.9 
291 .58 247 2588.6 
290.93 248 2582.6 

301.05 248 1873.5 
301 .25 248 1873.9 
301 .36 246 1875.0 
301.26 247 1875.4 
301.62 247 1875.9 
301.70 245 1875.4 

Model terms for wind effects are wind stress in the easVwest (u; Wstu) and 
north/south (v; Wstv) directions, average and standard deviation of wind speed 
(Wspd, Wstd) and standard deviation of wind direction (Dstd) calculated for the 
duration of the Iongline set. 
lunar effects were represented as percent lunar illumination (Li), as a function of 
the semi·lunar cycle (cos28), or as lunar quarter (lqt). Surface water temperature 
(Tmp) was recorded during setting and hauling. Month (Mn) and region (Rgn) 
represented seasonal and regional effects . Interaction terms between the last 
two terms were not significant and were removed from final models. 
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Table 5.3 Modeled effects of environmental factors, in addition to seasonal, 

regional and bait type effects, on blue shark and swordfish catch among sets 

fished during 28 trips that included high blue shark sets. 

Factor Likelihood Of Pr(>Chisq) 
Ratio 

B/ue shark 
Effort offset' 15.593 0.001 

Wind stress (easVwest)' 0.828 0.182 

Wind stress (north/south)- 0.358 0.275 

lunar illumination' 2.825 0.047 

Surface temperature' 23.886 <0.001 

Bait type 3.154 0.207 

Month 0.408 0.523 

Region 6.731 0.081 

Swordfish 
Effort offset' 33.865 <0.001 

Wind stress (easVwest)B 5.649 0.008 

Wind stress (north/south)' 0.256 0.306 

lunar illumination' 2.273 0.058 

Surlace temperature' 6.268 0.007 

Bait type 69.51 1 <0.001 

Region 4.510 0.211 

Month 8.876 1 0.003 
' Effort. wind stress, and lunar illumination variables were tested using one-tailed 

p-values as there was an expected direction of the relationship. 
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Table 5.4 Modeled effects of previous wind conditions on blue shark catch in 

addition to environmental, seasonal, regional and bait type among sets fished 

during trips that included high blue shark sets. Wind stress levels were calculated 

from wind speed and direction recorded 24 h prior to the longline set. 

Factor Likelihood Of Pr(>Chisq) 

Ratio 

B/ue shark 
Effort offset' 11.815 0.001 

Wind stress (easVwesW 0.008 0.464 

Wind stress (north/south)' 1.0817 0.149 

Lunar iliuminationB 2.528 0.056 

Surface temperature' 24.081 <0.001 

Bait type 3.281 0.194 

Month 0.394 0.530 

Region 7.003 0.082 

"Effort, wind stress, and lunar illumination variables were tested using one-tailed 

p-values as there was an expected direction of the relationship. 
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Figure 5.1 Distribution of observed pelagic longline sets from trips that contained 

high blue shark sets fished between 2002 and 2009. Locations of moored 

weather buoys indicated along the continental shelf, shelf edge, and further 

offshore . 
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Figure 5.2 Sets with high blue shark catch were defined as the upper 10% of 

catch rates (indicated by dashed line). Blue shark catch rates (CPUE) calculated 

as the number of sharks caught per 1000 hooks . These sharked-up sets 

accounted for 48% of all blue shark observer records from the swordfish and 

tuna long line fishery between 2002 and 2009. 
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Figure 5.3 Example wind direction and wind speed (m S-l) data from a moored 

weather buoy located off the central Scotian Shelf in July 2005. Duration of 

longline sets indicated by horizontal lines. 
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Figure 5.4 Regional and monthly effects on blue shark and swordfish catch rales 

(CPUE: number per 1000 hooks) based on the 260 longline sets that either had 

high blue shark catch rates or were fished during the same trips. Box and 

whisker plots represent the median catch rate, 25% and 75% quartile, and two 

standard deviations for each region (Georges Bank, Scotian Shelf,- Grand Banks , 

and Flemish Cap). Modeled blue shark and swordfish catch rates were based on 

mackerel baited sets fished during August on the Scotian Shelf. 
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Figure 5.S Bait type effects on catch rales of swordfish and warm-water tunas 

(CPUE: number per 1000 hooks). Tuna catch rates were based on the total of 

albacore , yellowfin and bigeye tunas, and mahi-mahi per set. Box and whisker 

plots represent the median catch rate , 25% and 75% quartile, and two standard 

deviations for each bait type. 
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Figure 5.6. Target spedes rales (CPUE: number per 1000 hooks) from all sets 

fished during trips that contained high blue shark sets (260 sets). Relationship 

between swordfish CPUE and wind stress was modeled for sets baited with 

mackerel and fished during August within the Scolian Shelf region. Tuna catch 

rales are based on the summed \otal of albacore, yellowfin and bigeye tunas, 

and mahi-mahi per set. The relationship between wind stress and tuna CPUE 

was not modeled due to the high number of sets thai did not catch these species. 
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Figure 5.7 Blue shark catch rates (CPUE: number of fi sh per 1000 hooks) from 

all sets fi shed during trips thaI contained high blue shark sets (260 sets) . 

Relationship between blue shark CPUE and surface water temperature was 

modeled for mixed bait sets fished during October within the Grand Banks 

region. 
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Figure 5.8 Surface water temperature eel recorded by fisheries observers from 

each region (Georges Bank, Scotian Shelf, Grand Banks, and Flemish Cap) and 

month fished during trips that contained high blue shark sets {260 sets}. Box and 

whisker plots represent the median surface temperature, 25% and 75% quartile, 

and two standard deviations. 
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CHAPTER 6: ECOLOGICAL AND SOCIETAL CONTEXT OF CATCH AND 

DISCARDS: SUMMARY AND NEXT STEPS 

6.1 Bycatch mitigation opportunities 

The overall objective of this dissertation was to identify bycatch mitigation 

opportunities within the Canadian pelagic longline fishery for swordfish and 

tunas. Fishing decisions made throughout the fishing process could be used to 

reduce bycatch and harm, from choice of gear and setting locations to improved 

handling and discarding practices . Bycatch mortality levels and injury severity 

could be reduced for common bycatch species by increased use of circle hooks 

(Chapter 2) and by increased use of turtle dehooking devices and long-handled 

gaffs when discarding (Chapter 4). Limited soak time (Chapter 3) would likely 

decrease catch rates of the most common bycatch species (blue shark, Prionace 

g/auca) without decreasing catch rates of targeted swordfish (Xiphias gladius) . 

Limited fishing in cooler water temperatures would likely decrease blue shark 

catch rates but not catch rates of targeted warm-water tunas (Thunnus obesus, 

T. albacares, T. alalunga) and mahi-mahi (Coryphaena hippurus) ()( of 

loggerhead bycatch (Caretta caretta) (Chapter 4). Catch rates of targeted tuna 

decreased during above average wind oonditions but blue shark catch rates did 

not - indicating little incentive to continue fishing tunas when average wind 

speeds exceeded 7 m S·1 or 14 kn (Chapter 5). 
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These results provided much needed detail on the efficacy of existing bycatch 

mitigation approaches. Increased circle hook use, reduced soak times, and better 

handling practices are bycatch mitigation approaches which have been 

previously recommended for pelagic longline fisheries (e.g., Watson et al. 2005: 

Campana et al. 2009: Diaz and Serafy 2005). However, this dissertation research 

detailed impacts for a suite of common bycatch species and challenged expected 

trade-offs between conservation and fishing profitability. Circle hooks have been 

proposed as a bycatch mitigation tool to decrease the severity of hooking injuries 

among sea turtles (Watson et at 2005). My results showed that benefits of circle 

hook use were negligible for loggerhead turtles in this fishery. Importantly, my 

results demonstrated conservation benefits of circle hook use for porbeagle 

(Lamna nasus), blue shark., and pelagic stingray (Pteroplatytrygon vio/acea) 

(Chapter 2). Like other researchers (Diaz and Serafy 2005; Ward et al. 2004), I 

found shorter soak times increased the proportion of bycatch that was alive when 

brought alongside the vessel (hooking survival). However, the assumed 

relationship between soak time and target catch was not supported by the data 

when handling and haulback time were taken into account (Chapter 3). Careful 

handling and discarding practices are known to improve the condition and 

likelihood of post· release survival of bycatch (e.g., Campana et al . 2009; Epperly 

and Boggs 2004; Casale et al. 2008). Longline captains described innovative 

uses of turtle dehooking gear and long-handled gaffs that likely increased post­

release survival and that had not been previously documented (Chapter 4), 
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thereby providing a specific example of improved handling and discarding 

practices that could benefit pelagic longline bycatch species worldwide. 

Multiple data sources were necessary to identify these bycatch mitigation 

opportunities. Fisheries observer data were the primary data source used in this 

dissertation. These data constitute the largest data set on bycatch in the 

Canadian pelagic longline fishery. However, had analyses been limited to these 

data, key bycatch mitigation opportunities would have been missed or would 

have been misinterpreted . Detailed within set observations of soak lime effects 

led to a re-evaluation of the assumed trade-off between fishing profitability and 

bycatch release condition (Chapter 3). Similarly, long line captains' observations 

of species associations and of local ocean conditions identified likely problems 

with proposed bycatch mitigation approaches: unintended negative impacts for 

other bycatch species and operational difficulties of keeping gear on the cool side 

of thermal fronts (Chapter 4). Fisheries observer data contains detailed 

quantitative information on bycatch in the Canadian pelagic longline fishery but, 

as fishery-<lependent data, calch and bycatch composition reflect the combined 

effects of fishing decisions and fish behaviour. By using multiple data sources, I 

was better able to determine how fishing decisions affected catch and bycatch, 

and thereby identify key research priorities on the behaviour of open-ocean 

predators (Chapter 5). 
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There are, however, important limits to the scope of research based on fisheries 

observer data. I did not estimate overall bycatch levels for the entire fishery. 

Such fishery-level estimates are based upon overall landings or effort, and on the 

assumption that observed and unobserved fishing practices are similar (Benoit 

and Allard 2009) . While aspects of this assumption can be accounted for using 

factors such as target species, water temperature, region, or season in bycatch 

models (e.g. , Campana et al. 2006; Brazner and McMillan 2008), estimating from 

a subset of observed trips to the fishery or from a fishery to the population is not 

a trivial problem (e.g., Benoit and Allard 2009; Baum et al. 2003; Burgess et al. 

2005). Thus , an important limitation of this research is that overall bycatch levels 

were not estimated, neither were reductions in bycatch levels or mortalities from 

mitigation approaches . Given the current fishing, conservation, and management 

incentives to decrease bycatch, such quantification may be needed to satisfy 

reporting requirements for fishery assessment (MSC 2011 ) and for endangered 

species recovery plans (DFO 2010a). 

6.2 Societal and ecological context 

The efficacy of bycatch mitigation efforts depends upon the societal and 

ecological context. At a broad scale, the efficacy of bycatch mitigation 

undertaken within the Canadian fishery will be influenced by both the 

intemational management context and the migratory nature of target and bycatch 
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species. Because pelagic longline bycatch species migrate across national and 

international boundaries, mitigation approaches that cross international 

boundaries would likely have greater conservation benefits. However, the 

importance of international conservation measures will depend upon fishing 

practices and effort levels among fisheries and upon bycatch species' biology. If 

reproductively important life stages are associated with a particular fishery, then 

within-fishery mitigation can have population-level conservation benefits (e.g ., 

Brazner and McMillan 2008). Within fisheries, differences in targeting practices 

and in the distribution and vulnerability of bycatch species, will also affect 

mitigation efficacy. In the Canadian fleet, loggerhead turtle bycatch appears to be 

associated with tuna-targeted trips (Chapter 4; Brazner and McMillan 2008). 

Thus, increased targeting of warm-water tunas likely affected loggerhead bycatch 

levels. Mitigation efforts appropriate for swordfish-targeted sets (e .g., Chapter 2 

and Chapter 5) may be less effective or even counter-productive for tuna­

targeted sets, given the different species associations and fished environments. 

Interestingly, the shift to ITQ management may have affected hooking survival as 

well (Chapter 2): the interactive effects of management system and hook type 

and of management system and fish length on hooking survival were significant 

for bycatch associated with swordfish targeting . I did not, however, explore the 

direction of the effect nor likely underlying mechanisms in that chapter. Effects 

from the shift to ITQ management will differ within the fleet because ITQ levels 

were based, in part, on swordfish landings history and because individual 
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longline captains have preferred fishing regions and targeting practices (Chapter 

4) , As Wade et al. (200B) demonstrated with their research on trawl gear 

modifications , voluntary uptake of bycatch mitigation gear depended upon 

preferred fishing regions, species landed, and expected bycatch levels within a 

multispecies fishery. Some captains found the modified trawl gear beneficial ­

others did not (Wade et al. 2008). 

The efficacy of future bycatch mitigation research will be affected by another 

important aspect of the societal context: the relationship between fishers and 

researchers , and between fishers and management (Hall et al. 2007; Campbell 

and Cornwell 2008). The process of interviewing pelagic longline captains 

revealed both interest and willingness to reduce bycatch , but also wariness and 

suspicion of research efforts (Chapter 4). These differing responses are not 

unique to the Canadian pelagic longline fishery (e .g" Hartley and Robinson 2009; 

Martin and James 2005: Silver and Campbell 2005) . Similarly, efforts to build 

research collaborations to document bycatch levels or to develop solutions have 

common themes, including respect for the fishing profession and clear 

statements of research goals and affiliations (e.g., Hall et al. 2007; Martin and 

James 2005), Hall et al. (2007) described how external pressure from 

environmental groups and from consumer campaigns helped generate interest in 

developing bycatch solutions, although they specified that litigious and 

antagonistic environments did not foster the development of bycatch mitigation. 
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Within this fishery, there is documented interest in reducing bycatch and harm 

(DFO 2010b) and in developing practices that could reduce fishery impacts 

(Chapter 4). Currently, there are both extemal pressures and internal incentives 

to develop bycatch solutions for the Canadian pelagic long line fishery (Chapter 

4). 

6.3 Next steps 

This dissertation research identified bycatch mitigation opportunities that could 

be developed within the current fishery, and identified improvements to research 

and management that could be implemented immediately. Hooking mortality was 

lower and hooking injuries were less severe on circle hooks than on J·hooks for 

most common bycatch species (Chapter 2). Circle hook use has increased in 

recent years coinciding with increased targeting of warm-water tunas and 

mandatory use of circle hooks will start in the 2012 fishing season (DFO 2010b). 

Improvements to current research and management include developing a 

working document detailing priorities and protocols of the fisheries observer 

program (Chapter 4). Like other observer programs, the observer program for the 

Canadian pelagic longline fishery has evolved to reflect changing research , 

management, and conservation priorities - and will continue to do so. 

Documentation of current and past observer practices would provide information 

needed to avoid a mismatch between observer practices and analysis of the 
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resulting data. This simple change would increase the accuracy of bycatch 

assessments. Further, it would lay the foundation for subsequent improvements 

to the program, such as resolving the discrepancy between researchers ' and 

observers' assessments of discarding practices and release condition (Campana 

et al. 2009). My research identified discarding and handling practices that could 

increase post-release survival, such as use of turtle dehooking gear (Chapter 4). 

The documentation of such practices could benefit species discarded from the 

Canadian fishery and from other pelagic longline fisheries worldwide (Domingo et 

al. 2005). Thus, developing, documenting, and evaluating best discarding 

practices will likely become a research priority. 

Through the combined use of fisheries observer data, qualitative data from 

fishers' knowledge interviews, and concurrent environmental data, I developed 

hypotheses to explain high blue shark catch rates (Chapter 5). As blue shark is 

the most common bycatch species in the fishery and as there are conservation, 

management, and fishing incentives to avoid sharked-up sets (Chapter 4; 

Chapter 5; Burgess et al. 2005; Gilman et al. 2008); reducing the incidence of 

blue shark bycatch will likely become a research priority. Reducing the incidence 

of high blue shark sets or sharked-up sets would greatly reduce overall fishery 

impacts. The ecological hypotheses developed here, as well as addressing the 

data limitations described in Chapter 5, could be further developed in future 

bycatch mitigation research. While such research to develop blue shark 
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avoidance strategies is ongoing , methods to reduce blue shark injuries and 

mortalities could be implemented (Campana et al. 2009: Carruthers et al 2009; 

Godin and WOfm 2010). 

In summary, the approach taken here of considering bycatch mitigation 

opportunities at multiple stages throughout the fishing process, of considering 

effects on multiple bycatch species, and of considering the societal and 

ecological context of catch and bycatch , allows for a more comprehensive and 

effective approach of bycatch management. As detailed above, I identified 

bycatch mitigation opportunities that could be implemented immediately or that 

will likely become bycatch research priorities. I do not however recommend 

focussing research and management attention on a particular stage of the fishing 

process. like other mul!ispecies fisheries, targeting practices shift within the 

Canadian pelagic longline fishery. The migratory behaviour and population status 

of many bycatch species are poorly known, as are the conservation benefits 

(e.g. , post-release survival) of particular interventions. Given these uncertainties, 

a multi-faceted approach to mitigation that consider both the societal and 

ecological context will likely have greater overall conservation and fishing 

benefits. 

Clearly, there are opportunities for bycatch mitigation in the Canadian pelagic 

longline fishery for swordfish and tunas but how such research is conducted 
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mailers. Thus, subsequent research will need to consider the management and 

fishing context, as these affect the efficacy of mitigation efforts (Campbell and 

Cornwell 2008). Currently, there are opportunities to work together to solve 

bycatch issues in the Canadian pelagic longline fishery for swordfish and tunas. 

Knowledge of current fishing practices, detailed oceanographic data, post­

release survival studies, practical fishing knowledge, and on-the-water 

observations wilt be needed to do so. 
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APPENDIX I: GUIDE FOR FISHERS' KNOWLEDGE INTERVIEWS 

General Background Information 
For how many years have you been a long line captain? 

Before you became a longline captain, did you work in the fleet? 
o As crew? In other sectors? 

Are swordfish and tuna targeted trips different? 
o What do you currently target? 

Has your targeted catch changed over your career? 
o How so? Why? 

Where do you generally fish? 

Do you fish other types of licenses? 
o Which ones? 

Fishing decisions, where and when 
When do you start longlining for swordfish and tuna? What is the start of 
the season? 

o Why do you start longlining for swordfish or tunas then? 

For a particular trip, how do you choose when and where to fish? 
o timing (e.g., markets, moon cycle, .. ,) 
o location (e.g., target fish, fuel, ... ) 
o Where others are fishing? Where you fished in the past? 
o Temperature charts? 

What clues do you look for when setting your gear? 
o E.g., water temperature, water colour, presence of birds or prey? 
o Are you looking for different clues when fishing for swordfish? Or 

for tunas? 

Can you talk about the how currents and temperature affect how you set 
your gear? 

How does how other people fish , or where other boats are affect 
wherelwhenlhow you fish? 

o Does the berth system affect how you set? 
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Has how you set your gear changed over your career - if so - how and 
why? 
Could you tell me about the shift from competitive to individual quotas? 
How did it affect your fishery? 

o Did it affect where and when you fish? 
o How did the shift to ITOs affect bycatch? 

Ecology/distributions 
When do swordfish and other tunas come up to Canadian waters? 

Have you noticed a change in when and where different fish are caught 
since you started fishing? 

o Why do you think that is? 

What fish would you expect to catch when going for Bigeye? 
o What about for yellowfin or swordfish? 

What does it mean to get all sharked up? When would you expect to get 
shar1<ed up? 

o Do you ever get no blue dogs at all , why do you think that is? 

Hauling back 
Can you see the line when it's coming out of the water? 

Where do the observers stand? 

For catch like tunas or swordfish, where some are landed and some are 
not, can you tell me how you decide which to keep and which to throw 
back? 

Handlingl Release 
Can you describe how you let unwanted catch go? 

o small tunas or swordfish? 
o black skate? 
o blue shark? 

What is your experience with circle and J-hooks? What about offset J's? 
o Which do you use, when, for what species? 
o Which hook type works best to catch tunas? What about swordfish? 

How de-hooking is done? 
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o When do you think it is better to leave the hooks in? 
o Which animals are difficult to remove hooks from? 
o Are circle-hooks or J-hooks harder to remove? 

00 you think catch rates or where an animal is hooked is more related to 
hook type or to bait type? 

Research priorities and management options 
• What are approaches you or the fleet have already done to decrease 

bycatch harm? 

For each of these, what impact do you think the change has had on your 
landed catch? 

o Has it changed the amount or type of bycatch? 

Are there any past changes you think didn't work and should be 
abandoned - why? 

A recent paper on loggerheads caught by your fishery suggested that 
fishing on the cool side of a front would decrease the number of 
loggerheads caught. 

o Could you keep the long line gear on one side of a front? 
o How would that affect target catch? 

One of the things I expect conservation groups to focus on is blue shark 
bycatch. 

o 00 you think there are ways to avoid blue shark? 
o How might this affect landings? 

End of Interview Questions 
What research is needed for the pelagic longline fishery? 

• Is there anything else you'd like to add? 

234 



APPENDIX II : CONSENT FORMS FOR PARTICIPATION, RECORDING, AND DATA 
STORAGE FOR QUALITATIVE INTERVIEWS 
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APPENDIX III. RESEARCH SUMMARIES FOR MEMBERS OF THE 
PELAGIC LONGLINE FISHERY ... 

UN IV ERS ITY 

Irw::teaWIglheo6clldbyaoldl ......... lnlhec.n.dOon ... 'Mn!ie 
IIMoieb'llhW>ery 

EtWIc.tru1twrs. o.v. Sc:nneicIwtndJomtWlon 

R«:wIIIy .... _._rch~UIlnglnfotmaliol'lc:ohded~~in 
ycul'M*Y. FiIIwiIoI~-.:I"",*,*"""" __ ~""'Ot 
diIcardIodclud. W.llllin'lM-.flheo6clld .............. IiUiihood ... ~ 
ClICh_~ ...... _ lOtdillonnthooklypM.._k1imMtnd'*'letogItw;. 
W.~ ....... '*'w&.AcIbIo.w.Ot\circlaI\ocbMdOt\ __ Mil.. W. 
aIto~~fi"'w&.AcI .......... beht __ ....... _ . 

W."~ ... odod$d .......... for 10_"**'. H.N ...... -. 
~for'*'Wldutlelllnc*l.rM....:I ...... WId~cIud. l1\ie; 
ilboIMdOt\obMtwor9UoCOlllctld~2001tnd2(I(W . UoIIpeI-oie 
~.blulIlhMlIlfldIogglortlHclU1lH __ I'tIIHMd ........ MMo..."lIIolld 
~~~_dillOlf'dlodclud.0W0r3l.oI~_ 
• ...s.dbu1moUaWIIIdhh~ .... dilelorl»dclud . 

.::=- I 

• iJ 
--~ I I 
--~ I I 

=p =- ~ 
j -- • I 

~ I 

• ;---, - I 

239 



lJd6t;oI ...mv.I_ 2 Io S __ highet lor.....:n!fith.~Iunro.~. 

blutel..nc(bUq.).npelagio;~(bIac*.u ... )C*.lghlono:Wdl 
hooQ~oIJ.hoob . ..... thedaat..dh~IIO~lnthe~ 

v·_.~I · r-.E~~.~§ , righlcllhoodMhtd ... w-..... _1WI 
-. : ~._ ~ono:Wdlhook:l.~, ""-_ 

: UMdlnlonnl&nfrom2005&2OOI3Iocn.dl 
_ .... : --- ......... potbeagIe.blueahaNn 

, twCltI1IWI_juat .. ~lobeNluMd 
-- : . lIMo from J..hoak& . 

...... ....,.., : • W.eouIdllOl ...... leloUlYWllaMIb 

u..v---... ~ ~~~y~'t 
, 'I. 1_1fIIfIy .... ~(iktq)diId .. -rr.w 

did. YHlhlnkch.lt\Qll;lobWflnLN 
~ ..... ~6ll'>eullloeetimaleloUlYWlladdll. lDnger"'*1irnN 
~.-'lIndotdc:eld\W .... ineouMdlhoolikelihoodcldMd~ 

CMdehook:l ... ~fot-"onbeeluNlhooy'*"-the ............ 
af_hooIIinglnjurift.""- ............. gut.noobd. YHCOft'IC)III'MIthetn>e 

...... [J- .. S---:~=E=~?" 
_ : • ~1urIIN_juat .. lil<llylobe 

: ~onJ.hoob .. ono:Wdlhaclta. 
: Tht .......... b~W.righlonthe __ : ___ no-chano-""Butehltbhld __ 

: =~=:"~:"..!0I1bIy1O 
__ :- . be~""-C*.IghIono:Wdlllooks. 

: W.dicllIOIoontl6tt....tlidlhook_ ..... 1O : __ did_conticIw"-utlng~ 

"- ~ hooktypN ..... ttdlO~c:hoIcet. 

, ~ I. PouibIt .............. ", cI\InoMblMdontt.-
--.::h1ndu6t~J.nook ..... anduting 

_doIIurMIOOfOIoId ...... -**'~oIutlnamlnimum.a. 
~. UtlnQIo:WdIhooQ_lOr.c.-theoddtd .......... ...ct1hoo aMld ___ hooIIinglrf,Nl. SwotIMIh~eIze~nwdo 

iltlttor-.ll1OC:khNlthll""" ... t'IItIoMocI ...... 

• ""'_...,...-. ... _"" .. _ ...... ...-Emc:...ur-. 
"'!I'llf.Q3.5143 _ ,{1IIIfTU-JOM _-..... ... 



.. 
UN IV E RS IT Y Fabnwy201 1 

~-"limeancl~""-on~anclbk.oI-"-"cMdI 

EM c-.nhets. JoM ~ancls.... SmiIII 
w. .... ~ ___ 1IIotIQ 

IoncIIirI*gMrtD_M~ 

==:.~~.:= 
""-"" -,,-*. IrIdIoM, _ 
Iound ... .,.;tt..,~nor 
bUlelwkcMchinctNMdwilh 
1onOW1Oek ...... 

W .... lhehlolpalO"~.ncIlhe 
a-af h 0rWI 11. .. "" 16 
~ ___ aIotIglhI 

leI\oIhol"'IonghNl~ 
~beitecltIcIoQ"Ihe..w:lol 
1ge.noion. WllIIopl.-lldlo\il 
__ al ... ~afIheHl. 

241 



'bJ '[l • r ,:' 

:. ;' j 

j: .. <: .- _,:-:.. , l:" _ :,"~~_ .: ,, 

{5:}C2] 
I . . . ... 0' " . , •••• If " 

~-...-.-.. ....--... 
Thoro!atlonshlp-o._ealCl'llnd_k limedGoenda onhowwtomouure 
"""ktimo. Swotdfis/1al'ldb/ue""' ... catchdidnotincro;)so ......... _kti""'wa. 
measurod .. 11>0 time from II\e enddNilufin; lallle llaltolwith minitN.m_k 
limo, which. tho tm. ~Hllir>g..-.d I\aoling (mi";mum_k limo). You 
can .oolhat~lako&longorlOl'Iauj your our Wthenl aN motIO ftahon lhefinll ­
noIturpritlngIOvt_wroIelMP6P6tlctflaheriH a ntiltawhowguelt>at 
Iongot_ktimHlncroaHcatch. lnfact.wamaoett\llcmiatakalnlhopast 
bocaUM_~lIaulbad<timo ln our_klimo ..... atu .. _Thllrugalotlglho 
boIIomahowstNnurnl>l<oIaots.fldlhed...n.d linH lJIowhow ............... ", 

A pouiblol flWna.gomotIi lrtt."pn:llalion of ~ ,""III • that minimum soak time 
limits would doctoa ... doDd o;ItIeGordlwill'o:KJldoeroaalng......ordf.lhcatdl. 
Howovor. weI)OinlOUl th8l1imlting_k timemlght allaelyoura.a!o1y. SI>oroI. 
minimum .... k timea may mean ~H tIoeI'> wNd'I can load to /'I'IOflI1ICciden1l ­
.fId"",~lIMdtoCOl\SidM!h" 

BIuo ........ catchwa.highorlncold« .... ;IOIWtr.. ....... IicMhip"' •• rIOI •• 
• trong in lho~yGlrt"ted. Tw.""'yb&beea .... oIhow ...... dolinod 
.-.,jfilohtripa, Otameybelhatbluelhat1<sworo lour>d in wannerwatorsirl 
200II \han in 2008. h . 1ways. lhelriclt '- tryinololig .... ClUlhowliah behAviour. 
yourfisl'lirlgptadica, . ndourdata-aundlingdecillon.affod.....nat wo 11M. 

1_ ..... ___ .. ~"""G .... COC»' ''' .... _._tal .. _EIIn. 
ooI(II02I '33-~1" omoj.~.u 

242 








	0001_Cover
	0002_Inside Cover
	0003_Blank Page
	0004_Title Page
	0005_Abstract
	0006_Abstract iii
	0007_Acknowledgements
	0008_Table of Contents
	0009_Table of Contents vi
	0010_Table of Contents vii
	0011_List of Tables
	0012_List of Figures
	0013_List of Abbreviations and Symbols
	0014_Chapter 1 - Page 1
	0015_Page 2
	0016_Page 3
	0017_Page 4
	0018_Page 5
	0019_Page 6
	0020_Page 7
	0021_Page 8
	0022_Page 9
	0023_Page 10
	0024_Page 11
	0025_Page 12
	0026_Page 13
	0027_Page 14
	0028_Page 15
	0029_Page 16
	0030_Chapter 2 - Page 17
	0031_Page 18
	0032_Page 19
	0033_Page 20
	0034_Page 21
	0035_Page 22
	0036_Page 23
	0037_Page 24
	0038_Page 25
	0039_Page 26
	0040_Page 27
	0041_Page 28
	0042_Page 29
	0043_Page 30
	0044_Page 31
	0045_Page 32
	0046_Page 33
	0047_Page 34
	0048_Page 35
	0049_Page 36
	0050_Page 37
	0051_Page 38
	0052_Page 39
	0053_Page 40
	0054_Page 41
	0055_Page 42
	0056_Page 43
	0057_Page 44
	0058_Page 45
	0059_Page 46
	0060_Page 47
	0061_Page 48
	0062_Page 49
	0063_Page 50
	0064_Page 51
	0065_Page 52
	0066_Page 53
	0067_Page 54
	0068_Page 55
	0069_Page 56
	0070_Page 57
	0071_Page 58
	0072_Page 59
	0073_Page 60
	0074_Page 61
	0075_Page 62
	0076_Chapter 3 - Page 63
	0077_Page 64
	0078_Page 65
	0079_Page 66
	0080_Page 67
	0081_Page 68
	0082_Page 69
	0083_Page 70
	0084_Page 71
	0085_Page 72
	0086_Page 73
	0087_Page 74
	0088_Page 75
	0089_Page 76
	0090_Page 77
	0091_Page 78
	0092_Page 79
	0093_Page 80
	0094_Page 81
	0095_Page 82
	0096_Page 83
	0097_Page 84
	0098_Page 85
	0099_Page 86
	0100_Page 87
	0101_Page 88
	0102_Page 89
	0103_Page 90
	0104_Page 91
	0105_Page 92
	0106_Page 93
	0107_Page 94
	0108_Page 95
	0109_Page 96
	0110_Page 97
	0111_Page 98
	0112_Page 99
	0113_Page 100
	0114_Page 101
	0115_Page 102
	0116_Chapter 4 - Page 103
	0117_Page 104
	0118_Page 105
	0119_Page 106
	0120_Page 107
	0121_Page 108
	0122_Page 109
	0123_Page 110
	0124_Page 111
	0125_Page 112
	0126_Page 113
	0127_Page 114
	0128_Page 115
	0129_Page 116
	0130_Page 117
	0131_Page 118
	0132_Page 119
	0133_Page 120
	0134_Page 121
	0135_Page 122
	0136_Page 123
	0137_Page 124
	0138_Page 125
	0139_Page 126
	0140_Page 127
	0141_Page 128
	0142_Page 129
	0143_Page 130
	0144_Page 131
	0145_Page 132
	0146_Page 133
	0147_Page 134
	0148_Page 135
	0149_Page 136
	0150_Page 137
	0151_Page 138
	0152_Page 139
	0153_Page 140
	0154_Page 141
	0155_Page 142
	0156_Page 143
	0157_Page 144
	0158_Page 145
	0159_Page 146
	0160_Page 147
	0161_Page 148
	0162_Page 149
	0163_Page 150
	0164_Page 151
	0165_Page 152
	0166_Page 153
	0167_Chapter 5 - Page 154
	0168_Page 155
	0169_Page 156
	0170_Page 157
	0171_Page 158
	0172_Page 159
	0173_Page 160
	0174_Page 161
	0175_Page 162
	0176_Page 163
	0177_Page 164
	0178_Page 165
	0179_Page 166
	0180_Page 167
	0181_Page 168
	0182_Page 169
	0183_Page 170
	0184_Page 171
	0185_Page 172
	0186_Page 173
	0187_Page 174
	0188_Page 175
	0189_Page 176
	0190_Page 177
	0191_Page 178
	0192_Page 179
	0193_Page 180
	0194_Page 181
	0195_Page 182
	0196_Page 183
	0197_Page 184
	0198_Page 185
	0199_Page 186
	0200_Page 187
	0201_Page 188
	0202_Page 189
	0203_Page 190
	0204_Page 191
	0205_Page 192
	0206_Page 193
	0207_Page 194
	0208_Page 195
	0209_Page 196
	0210_Page 197
	0211_Page 198
	0212_Page 199
	0213_Page 200
	0214_Page 201
	0215_Page 202
	0216_Page 203
	0217_Page 204
	0218_Page 205
	0219_Page 206
	0220_Page 207
	0221_Page 208
	0222_Page 209
	0223_Page 210
	0224_Page 211
	0225_Page 212
	0226_Page 213
	0227_Page 214
	0228_Page 215
	0229_Page 216
	0230_Page 217
	0231_Chapter 6 - Page 218
	0232_Page 219
	0233_Page 220
	0234_Page 221
	0235_Page 222
	0236_Page 223
	0237_Page 224
	0238_Page 225
	0239_Page 226
	0240_Page 227
	0241_Page 228
	0242_Page 229
	0243_Page 230
	0244_Page 231
	0245_Appendix I
	0246_Page 233
	0247_Page 234
	0248_Appendix II
	0249_Page 236
	0250_Page 237
	0251_Page 238
	0252_Appendix III
	0253_Page 240
	0254_Page 241
	0255_Page 242
	0258_Blank Page
	0259_Inside Back Cover
	0260_Back Cover

