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ABSTRACT 

An occupation31 accident is defined as an unexpected and unplanned occurrence arising out of or 

in con nection with work, resulting in pcrsonul injul)'. disease or death. The human cost of 

occupational accidents is vast and the econom ic burden of poor occupational health and safety 

practices is staggering, resulting in the loss of billions of dollars annually. 

Overlhe 13S140 years, occupational sa felY has been regulated under various nat ionallcgislalivc 

schemes to ensure a balanced approach to workp lace health and safclY issues (lnd to minimize 

hazards and reduce risk in the workplace. Mode l development in the research of accidents is 

considered to be the most effective way of studying the occupational accident issue, providing a 

proactive approach to address occupational concerns. 

The majority of research directed towards occupational accidents is qualitat ive and re lics on Ihe 

opinions of experts in the ranking of risk. A key component in many occupational accident 

models lies in the derivation of qualitative data obtained through a survey of safety experts to 

propose graded or ranked causes of accidents. The subjective naturc of expert opinion or 

judgements introduces a degree of uncertai nty within the analytical process. This work focuses 

on the development of a fuzzy methodology which is aimed to enhance the effectiveness of 

accident models by providing a mathcmatical tool to account for vagueness and uncertainty 

associated with expert judgements and opinions and to capture th is uncertainty within the 

ana lysis. The novelty of the proposed methodology lies in an approach that embraces uncertainty 

as an inseparable clement of the system. The proposed methodology recognizes that uncertainty 



plays a role in decision making and uses fuzzy set theory to account for and minimize 

uncertainty associated with the subjective nmure of e.>;pen opinions. The fuzzy mcthodology will 

be incorporated into a predictive model developed to predict the frequency of occupational 

accidents and associated costs within thc oil and gas industry. 
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Chapter I 

INTRODUCTION 

1.1 OCCUPATIONAL. ACCIDENT ANAL.YSIS 

An occupational accident is defined as an unexpected and unplanned occurrence arising out of or 

in connection with work, resulting in personal injul)', diseasc or dcath. According to the 

Intemational Labour Office (ILO), ovcr 337 million accidcnts occur on the job site annually, 

resulting in 6300 fatalities per day aud more than 23 million fatalities per year. 

Safcty and health conditions vary considerably between countries, economic sectors and social 

groups. Thc human cost of occupational accidents is vast and takes a particularly heavy toll in 

developing countries. The ILO estimates that the economic burden of poor occupational health 

and 501fety practices is at 4% of the global Gross Domestic PrOOuet (GOP) each year. In a study 

conductcd by the UK's Health and Safcty Executive (I'ISE), it was established that up to £3 1.8 

billion ($50.4 billion CA D) was lost in 200 1/02 due to accidents at work and work-related 

il lnesses (hlln:llwww. h~e'l!ov .uk/statist ie!;/OOflcosts.OOD. 

Many accident models have been developed in an attempt to address the occupationa l accident 

issue. The cffcctiveness of models in thc research of accidents is considered to be the most 

suitable way of studying the occupational accident issue (Al1wood ell/I .. 2006b). Early accidcnt 

models were largely qualitative in nature relying on opinions and case studies to propose graded 

or ranked causes of accidents. Some accident models adopted a stat istical approach to study 

relationships betwcen factors afTccting occupational accidents while others provided a vehicle to 

81Pa ge 



produce improvements in areas or the working environment (Attwood el (I/.. 2006b). In an 

attempt to provide a holistic view or the occupational accident issue, Daryl Attwood et. a/ 

dcvclol'Cd a quantitative modcl to predict the rrequency or occupational accidents and their 

associated costs, Attwood's model allows oI'Crators to optimize management decisions, provides 

stakeholders with a tool to predict accidcnt rrequency under thcir specific regimc and offcrs the 

capability to compare predicted sarety improvemcnts resulting rrom changes in various safety 

elements. 

1.2 OVERVI EW OF ATTWOOD'S PREDlCfIVE MODEL 

Auwood's model takes a quantitative, holistic approach to predict the frequcncy or occupational 

accidents and includes the identification of constituent factors affecting accidents and the 

dctcnnination of their interrelationships. The model consists of three fundamental la)'ers; (1) 

Direct Layer; (2) Corporate Layer; and (3) External Layer. The direct layer consists of five main 

components considered to directly affect the frequency of occupational accidents which include 

an individual's behaviour and capabilities, wcathcr. safety design and I'Crsonal protective 

equipment. Individual behaviour is divided into attitude and motivation. Individual capability is 

divided into mental and physiea1. Mental capability is rurther dividcd into knowledge and 

intelligence while physical capability is sub-divided into coordination. fitness and lack of fatigue. 

The corporate layer includes corporate safety culture. safety training programs and safety 

procedures. The extcmal elcments include the value placed on human life, commodity price. 

shareholder's pressure and royalty regime. Thc basic premise of Attwood's model statcs that 

worker's behaviours are influenced by corporate culture, their environment and procedures arc 

controlled corporately and corporate decisions and actions are influenced by external clements. 
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Attwood's model uses a modified reliability network to model the accident process. The overall 

safety system can be subdivided into sub-systems or sub-sets which can be configured in a 

'series' or 'parallel' set-up. The direct layer' s five main elements are connected in a series 

fomlalion while the direct clement subsets, for e.\{ample attitude and motivation, are connected in 

a parallel arrangement. The reliability of the overall system is calculated from the direct 

elements. The model accounts for the fact that not all elements affect overall safelY performance 

equally. The strength or relat ive importance of the five main elements directly affecting 

accidents are quantified using infomlation gained from a panel of experts within the industry. 

These relative importance values are then used within the mathematical model. Matrices of 

infiuenee coeflicients were generated from the panel of safety experts to rank each external and 

corporate clement's level of infiuence on the corporate and direct level factors , respectively. This 

is consistent with the model's philosophy that extemal elements affect corporate decisions and 

actions and these, in tum, infiucncc factors directly affecting the accident process. 

Within the model, overall system reliability is a function of the direct layer component's 

reliabilities. The corporate clement reliabilities can be determined from external clement values 

therefore predictions can be made on a basis of a complete sct of direct. corporate or external 

elementreliabilities. Once the system reliability has been calculated,the expected acci dent rate 

is calculated, usually to obtain the number of accidents per year. The model also provides a 

method to evaluate cost savings associated with accident frequency reduction. The cost clement 

is detcrmined by multiplying the cost of an accident by the expected number of accidents. 

10IPa g e 



1.3 MODELING UNCERTAINTY 

Attwood's predictive model uses qlwntitative data derived from a survey of safety experts to 

rank each component's effect on safety within the direct, corporate and external layers. The 

subjective nature of expert judgements and opinions introduces a degree of uncertainty within 

the model. This level of uncertainty attached to the integration of subjective evaluations is a 

concern when analyzing systems through model development. In analyzing the frequency of 

occupational accidents it is important to detennine how uncertainty should be included in Ihe 

assessment model. 

Fuzzy set theory (FST) provides a useftl! tool to address the uncertainty associated wilh Ihe 

subjectivity of expert opinions and to propagate uncertainty through the model. Its purpose is to 

allow one to better model phenomena that exhibit a certain kind of uncertainty, degree-vagueness 

(Smithson & Verkuilen, 2006). "The utility of FST in model development has been seen in its 

abi lity tu more appropriately represent the human-inferencing process and to provide a more 

user-friendly interface through the usc of natural language" (Zadeh, 1996). Attwood's predictive 

model was used \0 illustrate the use of FST to address uncertainty because it offers a 

comprchcnsive, logical framework and provides deductive analysis to the occupational accident 

issue. 

Lotli A. Zadeh introduced the term "computing with words" to explain thc notion of rcasoning 

linguislically rather than with numerical quantities. " ]-lumans use natural language as a mcansof 

computing and reasoning, arriving at conclusions expressed as words from premises expressed in 

natural language" (Zadeh, 1996). The use of natural language or linguistic variables within thc 
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framework of models may be a necessity when available infonnation is too imprecise to justify 

the use of numbers. The use of linguistic variables within Attwood's predictive model allows 

experts to rank the importance of factors in a natural way, providing a more user-friendly 

approach to the analysis process. The linguistic variables offer an intuitive meaning which is 

particularly useful when relying on a pancl of experts, while fUlZY numbers are used for the 

··internal implemcntation of rcasoning mechanisms" (Uaroni 1.'1 at., 1998). The incorporation of 

fuzzy set theory within the model provides a useful tool to account for the uncertainty associated 

with expert judgements and opinions and reduces the ambiguity and imprecision arising out of 

the subjectivity of this data. 

1.4 FUZZY SET TH EORY 

Fuuy set theory is a mathematical framework to account for fU1..ziness or uncertainty, Thc tenn 

fuuiness is used to describe an uncertain state in which the transition betwcen the state of 

concern and its complement is gradual henee it is difficult to make a sharp distinction (Kikuchi, 

1998). Fuzzy set theory is an extension of classical sCltheory and was first introdllced by Lotfi 

A. Zadeh, a mathematician and computer scientist of Iranian Azeri origin. Zadeh introduccd the 

concept of a fuzzy set which is a set whose boundary is not sharply defined. This concept 

contrasts with the classical concept of a set, a crisp sct, whose boundary is required to be precise. 

That is, a crisp set is a collection of things lor which it is known whether any given thing is 

inside or outside the set. The boundaries of classical sets are precise thcrefore a sct mcmbership 

is detennined with complete certainty. nA fuzz)' set is hased on a classical sct, but it adds one 

more element: a numerical degree of membership of an object in the sct, ranging from 0 to I" 

(Smithson & Verkuilen, 2006). Contrary to classical crisp sets, fuzzy selS do nOI have sharp 

boundaries therefore a member ofa fuzzy set may belong to the set to a greater or Icsser degree. 
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"One of the principal motivations for introducing fuzzy sets is to represent imprecisc concepts" 

(Klir, 1997). Virtually all human activities involve reasoning based on vaguc conccpts and 

incomplete infonnation therefore FST plays a key role in bridging the gap between imprecise 

concepts which are used to describe reality ::lI1d precise classical mathematics. An individual's 

mcmbership in a fuzzy set is a matter of degrce thcrefore the degrec of mcmbership of an 

indi"idual in a fuzzy set cxpresscs thc dcgrec of compatibility of the individual with the concept 

represented by the fuzzy set (Klir. 1997). It is therefore important in each application ofFST to 

construct appropriatc fuzzy scts and thcir associated membership functions that (ldequatcly 

capture the intended meaning of the conccpt being analyzcd. 

A major contribution of FST is its capability of representing vague data and modc1ing 

uncert(linty. FST h(ls been used to model systems that arc hard to define precisely, incorporating 

imprecision and subjcctivilY into the model fonnulation and solution process. "FST represents 

(In allractive 1001 to aid research in areas where the dynamics of the decision environment limit 

Ihe specification of model objectives, constraints and the precise management of model 

parameters" (Kahraman. 2006). Since 1965, FST has proven to be a powerful tool for 

representing quantitatively and manipUlating the imprecision o f decision-making problems in 

engineering, business, medicine, manufacturing among many other industrial sectors. 

1.4.1 In:F INIT IONS AND CONCEPTS OF FST 

Fuzz)' Number: A fuzzy number is described in tenllS of a number word and a 

linguistic modificr, such as approximately, net/rly or arollnd. A fuzzy number is used 

when quantifiable phenomena cannot be chaf(lClcrizcd in tCnTIS of absolutely precise 

numbers. 
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Fuzzy Logic: Fuzzy logic is viewed as a system of concepts, principles and mcthods 

for dealing with modes of reasoning that arc approximate rathcr than exact. 

Linguistic Variables: A linguistic variable is a vcrbal quantifier denotcd by a full 

name, such as "sel'eraf' or "extremely III/likely" which carries an intuitive meaning to 

describe a vague concept. Linguistic variables can be made precise using FST by 

creating a fuzzy number defined on the interval [0, I] , 

Membenhip Functions: A mcmbership function is an indcx of "scthood" that 

measures the degree to which an object x with property A is a member ofa particular 

dcfined set. It assigns to caeh elcmcnt x of X a number, A(x), in thc closcd unit 

intcrval [0, I] that characterizes the degree of membership of x in A , Membership 

functions arc functions orthc fonn: 

A:X -+ [0,1] 

Fuzzy Union: Fuzzy union is dcfined as thc maximum degrec of membcrship in thc 

sets. Mcmbership in thc union of Xu Y may be written as nlXUY = max (mx, my). 

Fuzzy Intenection: Fuzzy intersection is dcfined as thc minimum degree of 

membership in the sets. Membership in the intersection of X n Y mny be written as 

IIIxny=min(nlX,lIIy). 

0: - Cuts of Fuzzy Sets: The u - cut of a fuzzy set A is the crisp sel a A that contains 

all the elemcnts of the univcrsal set X whosc membership dcgrees in A are greater 

Iha/1 or eqllallO thc specificd valuc of u. It is a mcans of restricting membership 

degrees that arc greater than or equal 10 some chosen value u in [0, I] 
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Extension Principle: The extension principle is a principle for fuzzify ing crisp 

fun ctions. It is a method of extending point-to-point operations to fU7..zy sets and is 

the basic tool for the development of fuzzy arithmetic. 

Aggregation of Fuzzy Numbers: When using multiple experts to ranI; the 

importance or influence of particular clements with linguistic variables, it is necessary 

to aggregate their opinions in order to achieve a more reliable assessment. There are 

many methods available to aggregate expert's opinions such as the arithmetic 

averaging operation. fuzzy preference re lations and max-min Delphi method. 

Arithmetic A\'Craging O peration: The most commonly used method to aggregate 

expert's opinions. The arithmetic averaging operation sat isfies two characteristics of 

rational combination: ( I) a small variation in any possibility distribution docs not 

produce a noticeable change in the combined possibility distribution; and (2) when 

experts arc equally weighted it can also include weights that contain the relative 

importance of one expert to another (Huang. 1998). 

Fuzzy Probability: Fuzzy probability is a fuzzy number, which is expressed by a 

fuzzy set and characterized by its membership function J.I. It can be rcprescntcd by a 

triangular or trapezoidal shape or bell shaped membership function (Cheng, 2000). 

Fuzzy Error Possibility: Fuzzy error possibility is essent ially a fU7..zy probability 

eharacterized by a membership function to account for the uneerta inticsoffuzzydata. 

FU7.1.Y Error Factor: Fuzzy error factor accounts for uncertainties and vagueness 

associated with fuzzy outcomes and can be calculated from the fuzzy error 

possibility. 
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Fuzzy Uncerta inty Index (FUI): Fuzzy uncertainty index can measure the amount 

of uncertainty an event contributes to the final outcome. It is an index used to help the 

analyzer decide on which fuzzy data to collect so that uncertainties can be lowered. 

Total Recordable Injury (TRI): Total Recordable Injury is a group of injuries 

which include fatalities and lost time injuries, medical aid injuries and restricted work 

injuries. 

Total Recordable Injury Rate (TRIR): Total Rccordablc Injury Rate is a calculated 

statistic to track the frequency rate of lost time injuries (L TI). medical aids (MA) and 

restricted work cases (R WC). 

TRIR = [(LTI + RWC + MA) x 200,OOOl/Exposure Hours 

])l'fu7.zification: Dcfuzzification is the process of combining all fuzzy outputs into a 

spec ific composite result. Its purpose is 10 convert the fuzzy sct into a real (crisp) 

number, that best represents the fu zzy sel. Sevcral methods ex ist for thc 

defuzzification process incll.lding centre of arca method, centre of ma.>;ima method, 

mean of maxima method and weighted average defuzzify method. 

1.5 PRODLEM STATEMENT 

Daryl Attwood cl. (II (2006c) developed a holistic, ql.lantitative model to predict the 

frequency of occupational accidents and their associated costs in the ofTshore oil and gas 

industry. The basic premise of Attwood·s model states that worker"s behaviours arc 

influcnced by corporate cu lture, their workplace environment and procedures arc controlled 

corporately and corporate decisions and act ions arc influenced by external clements 

(Attwood el af., 2006c). Thc frcqucncy of occupational accidents is related to factors having 
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a direct impact on the process such as individual capabilities and behaviours and the quality 

of personal protective equipment. Many of these direct factors are influenced by decisions 

made at a corporate level while corporate culture is influenced by extemal elements such as 

commodity price and royalty rcgimc. Thc prcdictivc model consists of threc fundamcntal 

layers and uses quantitative data derived from a survey of safety experts to rate each factor's 

cffcct on safcty for the specific environment as compared to the global average. The 

subjcctivc nature of expert opinions used to derive this quantitative data introduces a degree 

of unccrtainty within the model. The use ofa numerical scale to rate each components effect 

on safcty has significant drawbacks, one of which concems the precision to be ascribed to a 

numeric value. It is also unnatural for an expert to express a judgement in numericaltenns 

and is generally much easier and more reliable to usc linguistic variables, such as very /011', 

/011' , high. than to choose a number in thc rcal intervall-IO(llaroni & Guida. 1998). 

The use of fuzzy linguistic variables within Attwood's predictive model allows experts to 

rank each factor in a natuml way, providing a morc user-friendly. intuitive approach to the 

analysis proccss. The linguistic variables arc converted into fu zzy numbers which carry morc 

infonnation than a crisp, numerical rating factor and allow the judgemental unccrtainties 

associated with experts ' subjective opinions to be properly expressed. These fuzzy numbers 

arc eharacterizcd by membership functions which incorporate the uncertainty of the 

component. 

The incorporation of FST into Attwood's predictive model is aimed to cnhance the 

effectivcness of thc modcl by providing a mathematical tool to account for vagueness and 
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unccrtainty associated with expert judgements and opinions and to effectively propagate this 

uncertainty through the model. The proposed methodology recognizes that uncertainty plays 

a role in decision making and incorporates a fuzzy approach to account for and minimize 

uncertainty while maintaining the simplicity of Attwood's model. 

1.6 OBJECT IVES or PRESENT WORK 

The preceding discussion indicates that fuzzy set theory is a useful tool to account for 

uncertainty arising from the subjective nature of expert opinions. A key component of 

Attwood's predictive model lies in the derivation of quantitative data obtained through a 

survey of safety experts bUI the model docs not detennine how this uncertainty should be 

included in the assessment and analysis process. A methodology for the predictive model has 

been developed to address this uncertainty and propagate il Ihrough Ihe model. providing a 

more uscr friendly, intuitive approach to Ihe analysis process. 

The objeclives of this rescareh arc: 

To successfully incorporatc fuzzy sct theory into the framework of Attwood's 

predictive model 10 account for and minimize uncertainty associated with the 

subjective nature of expert opinions Ihrough: 

the development of a linguistic, qualitative scale of importance 10 rale each 

components effect on safelY for Ihe specific case, providing an intuitive, user­

friendly approach 10 the analysis process; 

conversion of linguistic variables into fuzzy numbers through development of 

membership funelions; 
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the aggregation of fuzzy numbers and the calculation of fUlZy error 

probability and fuzzy error rate; 

propagation of fUlZY numbers to adjust component re liabilities to detenninc 

fuzzy outcomes; 

the usc of fuzzy operations to calculate a crisp numeric output 

(dcfuzzification) and estimate the degree of uncertainty each component 

contributes to thc final outcome. 

To analY-le the precision and crror robustness of the fuzzy approach. 

1.7 ORGAN IZATION Of THESIS 

This thcsis is dividcd into six chaptcrs. Thc first chapter gives a broad overvicw of the 

occupational accident analysis, Attwood's predictive model. fuzzy set theory and its 

significance within the modeling of uncertainty. Further, it describes FST with some basic 

definitions and concepts, followed by the objectives of this work. 

Chaptcr 2 prescnts a detailcd description of Attwood's predictivc modcl including why it was 

chosen for this study, 11 discussion of specific clements within the model and mcthod of 

analysis used to predict the frequency and associated costs of occupational accidcnts. Chapter 

3 provides a discussion on FST, including some appl ications of FST within the industrial 

sector. This chapter also provides an overview of fuzzy sct mathematics which will be used 

within the proposed methodology. Chapter 4 discusses modeling detai ls and outlines the 

steps involved to incorporate FST within Ihe predictive model \0 account for uncertainty. 

Chapter 5 presents a case study to illustrate the use of FST within Attwood's predictive 
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modeL Chapler 6 offers a summary, final concluding remarks and recommendations for 

fUlurework. 
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Ch:llltcr2 

QUANTITATIVE ANALYSIS OF OCCUI'ATIONAL ACCIDENTS 

2.1 OVERVI EW OF EARL Y ACCIDENT ANALYSIS 

Occupational accident hazards arc associated with everyday work activity and are a major 

contributor to individual risk. According to industry accidcnt statistics. a workers' potcntial for 

injury or death from occupational accidents is at least as high as that associated with major 

accidents such as fires and explosions (Attwood el al. , 2006a). In a study condueted by the UK's 

Hcalth and Safcty Executive (I-ISE), it was established that in 200 1/02 occupational :1ccidcnt 

failures cost thc British economy betwecn £13.1 - £22.2 billion (520.8 - $35.2 billion CAD) and 

cost society as a wholc betwcen £20.0 - £31.8 billion (531.7 - 550.4 billion CAD) 

(hnp:llwww.hse.gov.uk/statistics/OOf/costs.OOO. A total of 285 million working days were lost 

in 20091201 0 of which 23.4 million days were lost due to work-related ill health and 5.1 million 

days were lost due to workplace injury (hlln:llwww.hse.gov.uklstatisticsJindex.htm) 

Model development is one way of all em pIing to understand and positivcly affect a problcm. The 

cffcctivcness of modcls in thc study of accidcnts has hccn noted by several authors and model 

development is considered to be the most suitable way of studying the occupational accidcnt 

issue (Attwood e/ al., 2006c). Early accident models had made significant progress in the 

quant ification of risks associated with catastrophic cvcnts such as fires and cxplosions but the 

majority of researeh directed towards occupational accidents was largely qualitative with 

opinions and case studies used as input data to propose graded or ranked causes of accidents. 

Some accident models adopted a statist ical approach using historical data to study existing 
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relationships between factors as opposed to offering a predictive model to help guide 

management decisions. Other models provided a vehicle to produce improvcments in specific 

areas of the working environment but did not adopt a holistic view of the ocCllpationll1 accident 

problem (Attwood el al .. 2006b). 

In an attempt to address the occupational accident issue, Daryl Attwood e!.al developed a 

holistic, quantitative model based 011 reliability techniques and capabilities of predicting 

occupational accidcnt frcquency in the offshore oil and gas industry. One of the main objectives 

of Anwood's research was to apply a quantitative approach to the prediction of occupational 

accidcnt frequency which had been largely qualitative in nmure. 

Attwood's predictive model was selected for this study because of its ability to provide deductive 

analysis to the occupational accident issue. The model provides a comprehensive. structural 

frnmework that offers a logical fonnulation for predicting occupational accident frequency and 

highlighting areas that require attention in order to improve overall safety performance, thus 

allowing operators to optimize management decisions, including the choice of where to allocate 

monies to improve o\'erall safety. 

The model uses quantitative data from published sources that are easily accessible and readily 

available to the public. The model execution mcthodology involves a calibration run which uses 

known accident rates and a predictive mode following adjustments to base case reliabilities. The 

degree of adjustment is determined using quantifiable comparisons of safety conditions in 

specific and base cases which are easy to monitor and assess. 
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2.2 ATIWOOD'S PREDICTIVE MODEL.. 

The basic premise of Allwood's model states that "worker's behaviours are innuenced by 

corporate culture and their workplace environment and procedures are controlled corporately. 

Furthennore, corporate decisions and actions are innuenccd by extemal e lements" (Attwood CI 

al., 2006c). The predictive model consists of three fundamental layers - direct layer. corporate 

layer and extemal layer. The specific elements of the model are outlined in Figure 2.1. 

Elternlll LIl)'er 

Valueplaccd on human 

life 

PriceofDi l 

Financia l Shareholder 

Pressure 

Royalty 

Regime 

Corporate Support 

Layer 

Corporate Safety 

Culture 

Safety Training 

Prognun 

Safety Procedures 

Uirect Layer 

Alli tude 

Individual Uehaviour -
Motivation 

Mental 
Knowledge 

Indh'idual f-_-+~-""",U,-,-IIi"""'"'''''-I 
Capability Coordination 

PhYSieal~ 
Lack of 
fatiuc 

Weather 

Safety Design 

Pe rsonal Protecti\'e Elluipment 

F"IGIIIU : 2.1 - SPECIFIC ELEMENTS OF MODEL (An-WOOD ET AI.., 2006A) 

The model takes a holistic approach to accidents and includes the identification of eonstitucnt 

factors and the detenninat ioll o f their interrelationships. Direct factors affceting the occupational 
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accident issue include human behaviours and capabilities, weather. safety related design and 

quality of personal protective equipment. Many of these direct factors are innucnced by 

decisions taken at the corporate layer which include corporate safety culture, safety training 

programs and safety procedures. The model includes an extemallayer that includes region-based 

cultural and financial pressures, which arc considered to influence corporate actions and 

dccisions, which in tum, directly affect occupational accident frequency. The architecture of the 

model is shown in Figure 2.2. 
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Inlluence of Corporete Etements on DIrec t Fscto .. 

FIGURE 2.2 · MODEl. SrRUCH JRE (A nWOOl) t.'T AI •.• 2006A) 

Each of the three layers (direct. corporate, extemal) are divided into various components which 

were chosen based on discussions with offshore o il and gas colleagues. Attwood's personal 

experience from years of working in the field and a comprehensive literature review. The goals 
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of such a comprehcnsive review were to understand and critically assess previous approaches to 

the occupational accident problem, to identify gaps in the occupational accidcnt knowledge and 

to systematically consider the factors thought by other researchers to alTect occupational accident 

frequency (Attwood el (I/.. 2006a). The follow ing sections outline the components of each of\he 

three layers with a description of each. 

2.2. 1 DIRECT LAYER 

Thc five components considered to directly alTect accident frequency arc: 

Worker's behaviours 

Worker's capabilities 

Weather conditions 

Safety Related Design 

Personal Protective Equipment 

Behaviours are personal choices which are innueneed by one's attitude and 1110tivation. Attitude 

is a person's perspective toward a specific target. Most attitudes arc the result of either direct 

experience or observational learning. Motivation is the set of reasons that determines one to 

engage in a particular behaviour (Attwood el (/1 .. 2006a). 

Capabilities arc the abilities to perfonn actions and arc divided into mental and physical. Mental 

capabilities are of two categories, knowledge-based and intelligence-based. The knowledge-

based component comprises the safety related infonnation retained by the worker following 

training sessions. The intell igcnce-based component allows the worker to cope with safety issues 

not specifically covered by training and procC<iures. The physical capabilities assoc iated with 
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avoiding occupational accidents arc considered to be good coordination, a reasonable degree of 

fitness and lack of fatigue (Attwood el al .. 2006a) 

Wcathcr conditions can directly affcclthe likelihood of accidents by creating hazardous working 

conditions that often lead 10 accidcnts on the job-site. Inclement weather conditions and extreme 

temperatures can also affect worker concentration, increasing the likelihood of accidents. The 

optimization of safety related design can reduce accident frequency. Non-slip walkways and 

visible warning signs are examples of measures taken to improve workplace safety. Personal 

protective equipment (PPE), including safety boots, hard hat and safety glasses can provide 

protection oflhe individual when working and prevent a serious injury from occurring. 

2.2.2 CORI'ORATE LAYER 

The second fundamental layer is the safety related support provided by the company, comprised 

of: 

Corporate Safety Culture 

Safety Training Programs 

Safety Procedures 

Corporate culture is the moral, social and behavioural nonns of an organization, based on the 

beliefs. allitudes and perceptions of its employees. Most companies expend considerable efTort in 

developing a strong, positive safety culture in an attempt to create a healthy, safe environment. 

Safety training programs such as accident investigation. emergency preparedness and hazard 

management, provide the basic structure of an effeclive health and safety system while safety 

procedures, such as measurement, accountability, planning and organization, help incorporate the 

safety training programs into a successful safety system. 
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2.2.3 }:XTF.:H.NAL LA YEH. 

The third fundame ntal layer is referred to as the external layer which consists of societal 

pressurcs such as the value placed on human life and financia l drivers such as commodity price, 

shareholder pressure and royalty regime. Attwood's model supports the bclicf that fundamental 

change requires improvement, at least, at the corporate level, which is, in tum, driven by external 

factors (Attwood el al .. 2006a). 

Societal expectations dilTer throughout the world and the associated forces alTect an 

organizations safety results. Some regions place a higher value on a human lifc than others. 

Financial pressures originate from several sources, including price of commodities, corpomte 

shareholder pressure and royalty regime. When the commodity price is low, there is an increased 

pressure 10 'cut comers' everywhere and this includes the quality of safety programmes enacted 

by operators (Attwood el al .. 2006a). 

Shareholders collectivcly own the company and have potential 10 profit ifthc company performs 

wcll but also have the potential to lose if the company performs poorly. Therefore shareholders 

often cxert a degree of pressurc on company directors and managcment to improvc perfon1lance 

and maximize profits. Royalty regime isthe system of governance ovcr rcvcnucsand profits and 

it is largely region-specific. Royalty regime may be designed to recognizc inhcrent risks and 

provide arrangements for future projects. 
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2.3 M ETHOD OF ANALYSIS 

Attwood's model uses a modified reliability network to model the accident process. The concept 

of using a reliability network originated with the recognition that' similar to a physical 

engineering system, safety programme success depends on the reliability of individual 

components' (Allwood el af .. 2006a). Individual components of a safety programme perform at 

different levels of reliability and system improvements are usually enacted by making 

improvements to these components. 

The overall safety system can be subdivided into sub-systems or sub-sets which can be 

configured in a 'series' or 'parallel' set-up as ollliined in Figure 2.3_ With a series configuration. 

the reliability of the sub-set is the product of component rcliabilities with sub-set reliability 

always less than that of the least reliable component. This corresponds to the concept that for 

some sub-sets of the safety system, all elements must be operating relatively efiiciently to 

produce a satisfactory result. In a series configuration, the weakest sub-set controls the 

pcrfonnanee of the system. A failure of any component results in failure for the entire system. 

With a parallel set-up, the reliability of the sub-set is calculated by subtracting the product of 

component probabilities of failure from unity and the reliability of the sub-set is always greater 

than the most reliahle component. This corresponds to the concept that for some sub-scts of the 

safety system, poor perfonnance in some elements can be compensated for by superior 

perfonnance by otheN within the sub-set. In a parallel configuration. the strongest sub-sct 

controls the performance of the system. At least one of the units must succeed for the system to 

succeed. Units in parallel arc also referred to as redundant units. Redundancy is 3 very imponant 

aspect of system design and reliability in thai adding redundancy is one of several methods of 
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improving system reliability. In a parallcl system, all n units must fail for the system to fail. If 

unit I succeeds or unit 2 succeeds or any of the n UllilS succeeds. the system succeeds 

r-D-l 
LoJ 

Paralielarrangement 
R.y> " 1 - [1 _ R,) J( (1 • R21 ... J( (1- R,,) 

FICIJR.: 2.3 - $ I, IU ES VERSUS J>ARALI.I' L SUIlSH S (AlTWOOD HAL., 2006A) 

The direct layer clements arc connected in a reliabilit)' network. The reliability of Ihe overall 

safety system is calculated from these direct clements. The five main direct clements (behaviour, 

capabilities, weather. safety design and personal protective equipment) arc connected in a series 

configuration, renee!ing Ihe belief that all must work well in an efficient safcty programme. The 

direct clement subsets. for example motivation and attitude, arc connected in pamllel 

arrangements, rcnecting the belief that a degrce o fcompcnsation is available in Ihcprocess. 

The modcl accounts for the fact that not all elements affect ovcrall safcty pcrfonnancc cqually. 

Consistent with the overall modcl structure choices, levcls of imparlance have been made on a 
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layer by layer basis. The five main direct elements affecting accidents and their sub-sets were 

quantified based on a survey of safety experts. The model uses quantitative data derived from 

these surveys of safety experts 10 account for Ihe differing relative importance of factors. 

Experts are asked 10 llssess, using a 1-10 scale, each direct clement's ability to affect 

occupational accident frequency. Results arc then nonnalized to ensure that the relative 

importance of each clement within each group is extracted in a consistent manner. The resulting 

'relative importance' valucs, as displayed in Figure 2.4, are then used within the mathematical 

model, uti lizi ng a process of 'strengthening' or 'weakening' individual components in the 

reliability network, with a likeness to adding r~ .. dundant units to a physical systcm. Following the 

nonnalisation process, the strengths of components within the following subgroups sum to unity: 

Primary Di ll.~1 Level - behaviour, capabili ty, weather. safety design. personal 

protective equ ipment 

Behavioural Subgroup-attitude, motivation 

Capabi lity Subgroup- mcntal,physieal 

Mental Capability Subgroup. knowledge, intelligence 

Physical Capabi lity Subgroup - coordination. fitness, lack of fatigue 
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Behaviour 
(0.25) 

Attitude 
(0 .49) 

MotivlItion 
(0.51) 

Capability 
(0.21) 

MenUI(O.641 '" 

Knowl9dg. 
(O.M) 

Inteil io-ne. 
(0.46) 

PhvslclIl (0.35) '" 

COOfdln"lon 
(0.33) 

Fitness 
(0.29) 

lack of F. tigue 
(0.38) 

FIGURE 2.4 - ELEMEN1· STRENGTHS (ATTWOOD 1:.7A f. , 2006A) 

2.3.1 IN FLUENCE AT MODEL INT ERFACES 

The model philosophy proposes that external clements affect corporate decisions and actions and 

these, in tum, inOuence factors directly affecting the accident process. Matrices of 'innucnce 

coefficients' were generated for the extemal-corporate and corporate-direct interfaces. 

Infonnation gained frolll a survey of safety experts was used to quantitatively assess each 

extemal c lements leve l of innuence on corporate fac tors and each corporate clements level of 

innucnce on the direct factors affecting the accident process. 
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The external-corporate and corporate-direct innuencing coeffieients, as outlined in Tables 2.1 

and 2.2 respectively,are used to adjust lower level (corporate) clement reliability whenever Ihe 

higher level (external) values change. For example, corporate safety culture is innuenced by the 

external factors 'valut: placed on human lift:' , 'price of oil', 'shareholder prt:ssure' and 'royalty 

regime'. The reliability of corporate safely culturt: is automatically increased wilh increases to 

either one of the external factor values. The lower (corporate) level reliability is the sum of the 

products of tht: external levt:1 reliabilities considered to have an efft:ct on the corporale clement 

and the respective innuencing cOt:fficients. To illustrate the reliability calculation. assume the 

initial rcliabilitics of the external factors to be 0.60, 0.50, 0.40 and 0.60. The reliability for safdY 

training is calculated as shown in Table 2.3. Improvements to any of the dirt:ct factors affecting 

the accident process may be made in isolation of changt:s in the more senior elements (external, 

corporateelcments). 

Tabt ~ 2. t EXlcmat-corporalc influencing coefficients (A11wood e/ a/ .. 2006a) 

Safety T raining Safety I'rocedures 
Co q lor:lteSa fcty 

Cu lture 
Va lue placed 

0.43 0.43 0.44 
un human life 
Price of oil 0.18 0.19 0.18 
Shareholder 

0.27 0.26 0.25 

RO~'a l rc ·irn e 0.12 0.12 0.13 
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Ta ble 2.2 - Corpora1e-dircct influencing c~mcients (Al1"''OOd el al.. 2006a) 

Tnlinin 
Procrdurn 
s. rety 
cul1urf 

.. 
Fot'., 

T.blt 2.3. Method of ex1ernal eifmfnt influencf on corporate elemcnu (Al1wood el al . 2006a) 

Safety 
Training Reliability 

Vlllueplnccd on 
humllnlife 
Price of o il 
Shareholder 

I pressure 

Component 
Reliability 

0.60 

0.50 

OAO 

Royalty regime 0.60 

In fluencin g 
coefficient 

OA3 

0.18 

0.27 

0.12 
Sum of the products - relinbility value 
= (0.60,0.43) + (0.50,0. 18) + (0.40,0.27) + (0.60,0.12) = 0.53 

2.3.2 RELlAIJILlTV CALCULATIO N 

(Col1l l)()l1enl 
reliability) 1 

(Innuencing 
coefficient 

0.26 

0.09 

0.11 

0.07 

0.53 

Overall system reliabil ity is a functi on of the direct layer component reliabilities. Direct layer 

component rcliabilities can be directly input, intentionally over·written or detennined from the 

corporate clement re liabil ities using the method of influence at the corporate-dircct interfaces 

(sum of the product of corpor.tte reliabil ities and corporate-direct influence cocmcients). 

Corporate clement rel iabilities can, in tum, be detennined from external clement values, which is 

consistent with the model's holistic ltpproach to the accident process and the bel ief that accidents 

are caused directly at the workplace but arc affected by corporate and external clements. 
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Predictions on the frequency of occupational acc idcnts can be made on the basis of a complete 

sct of direct. corporate or external element reliabili ties. 

Once component reliabilities have been assigned, system reliability is calculatcd according to the 

method based on standard re liability theory as shown below. 

where; 

Rb '" reliabilit), of be}ulI,iolir 
Rc .. reliobifityoj ca/xlbilit)' 
R~, .. reliobilit), oj WelllJwr 
R>J '"' reliabilit)' oj slifel)' design 
Rppt ... reliabilit)' oj personalproleclil'e eqllipmelll 
sb .. ~'trength oj behaviollr 
sc = strel1gthojcllpllbility 
Sll' .. strellgth oj lI'ellther 
SS(/ .. . 1'lrell1;th oj safety desigll 
sppe .. slrel1gll1 ojpersolllll prolectil'(' equipmellt 
Equations to calculate the above reliabilities are outlincd in Appendix A. 

Once system reliability has becn calculated, the expected accidcnt ratc (accidcnts per year) is 

calculatcd according to the reliability model as shown below. 

R(t) = exp [- f: Adt] = e- Af • t > 0 

where: 

). = acciden/l'llle 
N(I) "' syslemre{jobilily 
t "" lime 
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Taking the natural logarithms of both sides and setting t = I we get: 

1 = -In (R(t)) 

This approach is based on the assumption of constant failure rate. With applying thc philosophy 

of constant failure rate to offshore occupat ional accident frequency, Attwood believed the 

parallel could be drawn that until accident causation became relatively well understood, the 

accident rate was relatively high. However, evidence exists to confinll that the industry has 

reached a state of relatively constant accident rate which validates the required constant failure 

rate assumption (Attwood el nt .. 2006a). 

The model also provides a method to evaluate cost savings associated wilh accident frequency 

reductions. The cost clement is detemlined by multiplying the cost of an accident by the 

expected number of accidents. 

2.4 MODEL EXECUTION METHODOLOGY 

As noted, the safety system is treated as a modified reliability network. Component reliability 

values determine overall system reliability. which is used to predict accident frequency. Model 

development was based on a review of related literature, expert opinion and reliability analysis 

concepts. Quantitative inputs are required to adjust component reliability for direct, corporate 

and extemal factors. The model also uses quantitative data derived from expert opinion surveys 

to account for the ditlcring relative importance of factors and the innuenees of external clements 

on corporate actions and of corporate actions on the direct accident process. 
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The accident frequency predictive process requires the model to be run in two distinct modes: I) 

Calibration Mode where known accidcnt rates are used to dctenlline base case component 

reliabil ities; and 2) Predictive Mode whcre accident frequency is predicted for a specific case. 

The model can be used for R variety of purposes such as to compare the number of predicted and 

actual annual accidents or to compare the prcdicted and actual lost lime incidcnt rate (L TI). It 

can also be used to compare safety results in an 'ideal' environment to those obtained in a 'worst 

case' scenario. A discussion of the model exccution process is described below. 

2.4. 1 CA LIBRATION MOI)E 

Ca libration of the model is n..'quired to detennine base case componcnt reliabilities because the 

subsequent predictive model run requires a comparison of specific and base cases. A base case is 

chosen to be any situation where both safcty results and operaling conditions are known. The 

type of accident statistic used for calibration depends on which output statistic is desired. For 

example. if a particular accident rate in a region or industry is required, then the corresponding 

g101>.11 averagc valuc of lhat particular rate is used for calibration. If the expected annual number 

of a spec ific kind of accident on an installation having a given 1'011 (person on board) is 

required, then the global average rate of thai type of accident is combined with the POB to 

detennine accident numbers expected had the facility been operating under average safety 

conditions (Attwood et al .. 2006a). 

Using the global average accident statistics, an accident rate or output is calculated to calibrate 

the model for average safety conditions. An iterative proccss, using the goal seeking function in 

Microsoft Excel, is used [0 de[ennine indi vidual component inputs for the model to have 

predicted [his number or rate of annual accidents (Attwood el al .. 2006a). Al though many 
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combinations of component reliabilitics could produce the accident rate or output required for 

calibration purposes, the absolute values of individual base case component re liabilities are not 

important. Modcl execution is based on a quantified comparison of specific and basc cases and 

not a comparison of absolute component reliability values. Therefore, the individual component 

reliabilities assigned by the calibration process are identical to one another. Once the output (ie. 

accident rate) is detennined using global average accidcnt sta tistics, a starting reliabi lity is 

ca lculated usi ng the reliability equation based on a constant failure rate. This starting reliability 

is then assigned to each base ease componcnt within thc extcrnaL corporatc and direct laycrs to 

set the basc case for comparison purposes. 

2.4.2 COM I'ON l:NT RELIABILITY A DJ USTMENTS 

The degree of component reliabi lity adj ustment is based on the opinion of experts lamil iar with 

both base (aver.lge global) and speci fic case safety conditions. The cxperts assign scores from I 

to 10 for each factor within the external , corporate and direct layers, representing the 

component's specific casc conditions compared with the globa l avcrage, which is represented by 

a score of S. Higher scores (6-10) represent s ituations superior to the global average safety 

results while lowcr scorcs ( 1-4) represent si tuations less favourable to the globa l average. For the 

specific ease run. adjustments arc made to the componcnt rel iabilitics by using thc square ofthc 

ratio of the specifi c case to average case score (S). For example, if the expert panel assigned a 

score of 6 to personal protcctive equipment, representing the direct factor's specific case 

condition, this would produce a reliabil ity increase of (6/S/ = 1.44 to personal protective 

equipment. The base case reliability for personal protcctivc cquipmcnt is multiplied by thc 

square of thc ratio of the specific case to average case score which would result in a reliability 

increase for higher scores (6-10) and a reliability decrcase for lower seores (1-4). 
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2.4.3 I'RE DICTIVE MOllE 

1'0 predietaccident frequency for a spccifiecase, the model is run following adjustment of the 

base case componcnt reliabilitics. Accidcnt frequency predictions can be madc by directly 

entcring thc specific casc cxpert scores for the direct, corporate or external layer componcnts. If 

direct layer componcnt rcliabilities are uscd, thcy can be input into thc model to calculate ovcrall 

system re liability and accident frequency rate directly. If corporate layer component reliabilities 

are used. they can be input into the model and allowed to innuence the direct layer values 

through usc of innucnce coeffic ients at the corporate-direct interface. Once the direct layer 

reliabilities are determined, overall system reliability and accident frx.'t[uency rates can be 

calculated. If external layer reliabilities are input, they can deten11ine the corporate values \\Ihich 

in tum, determine the direct values and overall system reliability and accident frequency ratc can 

be achieved. 

2A A COMPARISION OF PREDICT IVE VS. ACTUA L ACC IDENT RATES 

As stated previously, data for the calibration portion of the modcl are publicly available statistics. 

The type of accident statistic used for cal ibration depends on which outplll statistic is dcsircd. 

rhe actual acc ident rate calculated to calibrate the model is thcn compared to thc predicted 

rcsult. Thc modcl offcrs thc capability to compare predicted safcty improvements resulting from 

changes in various safetyeiements. ltalso provides a method 10 evaluate cost savings associaled 

with accident frequcncy reduction, allowing operators 10 optimize management decisions, 

including the choice of where to a llocate monies on improv ing overall safety. 
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2,5 UNCERTA lNTY WITHIN TH E ANA LYS IS PROCESS 

A key component of Auwood's predictivc modcl lies in the derivation of quantitative data 

obtained through a survey of safety experts to adjust component reliabi lit ies. The subjcctive 

judgcmcnts and opinions used to rate each components efTect on safety for the specific 

environment introduces a degree of uncertainty within the model. The predictive model docs not 

detennine how this uncertainty should be ineluded in the assessment and analysis process. A 

methodology for the predictive model has been developed to minimize this uncertainty and 

propagate it through the model. providing an approach that embraces uncertainty as an 

inseparable element of the system. The application of such a model can help predict thc 

frequency of occupational accidents while recognizing uncertainty and incorporating it within 

the analysis process by use of a mathematical framework called fuzzy sct theory (FST). A major 

contribution of FST is its capability of representing uncertainty and modeling systems that are 

hard to define precisely. incorporating imprecision and subjectivity into the model fonnulation 

and solution process. The following chapter provides a discussion on FST and the fuzzy 

mathematics used to address the uncertainty within the predictive model. 
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Chapter 3 

FUZZY SET T HEORY 

3.1 EMERGENCE OF FUZZY SET Tl I EORY 

FU7..ziness is the uncertain state in which the transi tion between the state of concern and its 

complcment is gradual and hcnce it is difficult to make a sharp distinction (Kikuchi and Pursula, 

1998). Fuzziness can be found in many areas of daily lifc but it is particularly frequent in all 

areas in which humanjudgelllent, evaluation and dccisionsare important (Zimmennan, 2001). 

Fuzzy set theory is a mathematical fro.lmework to account for fuzziness or uncertainty. The theory 

was first introduced by Lotli A. Zadeh, a mathematician and computer scientist of Iranian Azeri 

origin. Zadeh was interested in the problems of complex systems and the usc of simple models to 

represent such issues. He published a paper in 1965, introducing thc concept of a fuzzy set, 

describing it as a class of objccts with a continuum of grades of membership. I-Ie characterised 

the fU7..zy set by a membership function which assigns to each object in the sct, a grade of 

membership ranging between 0 and I. 

Most of the early interest in FST pertained to representing uncertainty in human cognitive 

processes (Zudeh, 1965). Since 1965, fuzzy sct theory has been studied extensively and is now 

recognized as an important problem modeling and solution technique due to its ability to 

quantitativciy and qualitatively model problems which involve vagueness and imprecision. 

Fuzzy sct theory has proven to be a powerful way of representing quantitatively and 
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manipulating the imprecision of decision-making problems in enginecring. busincss, medicine, 

manufacturing among many other industrial sectors. 

3.2 APPU CATION S 0 1<' FUZZY S ET T HEORY IN IND USTRY 

A major contribution of fuzzy set theory is its capability of representing vague data and 

modeling uncertainty. FST has been used to model systems that are hard to define prccisely, 

incorporating imprecision and subjectivity into the model fonnulation and solution process. 

Kahraman (2006) identified fuzzy SCI theory as an attractive tool to aid rescarch in Industrial 

Engineering (IE) when Ihe dynamics oflhe decision environment limit the specification ofmodcl 

objectives, constraints and the precise management of model parametcrs. Zimmemmn (1983) 

concluded that fuzzy set theory can be used as a language to model problems which contain 

fu"..zy phenomena or relationships. as a tool to analy£e such models in order to gain better insight 

into the problem and as an algorithmic tool to make solution procedures more stable or faster. 

In the analysis of transportation problems. fuzzy set theory has been used to analyze traffic flow 

and control, planning. demand analysis, routing and scheduling and pavement management. 

Kikuchi and ['ursula ([998) examined the nature of uncertainty present in transportat ion plunning 

and explored appropriate mathematical frameworks to account for such uncertainties. Kituchi 

3nd I'ursula identified IWO types of uncertainty found in many transportation engineering and 

planning problems: fuzziness and ambiguity. Fuzziness refers to the uncert3inty c3used by a lack 

of definition of words while ambiguity refers to the uncertainty caused by the lack of infonnation 

about the subject mailer. Fuzziness is prevalent in transportation planning due to the descriptive 

nature of the treatment of problems (K ikuchi and Pursul3, (998). 
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Fuzzy sct theory has been used in propagating imperfect or incomplete infonnation in health risk 

assessment stud ies, Heal th risk is related to an individual's location, act ivi ty and behaviour or 

preferences, as well as the pollutant em ission rates and physica l, chemical and biological 

processes involved in the fate and transport of the pollutants. Intrinsic variability and extensive 

uncertainty exists within health risk assessment studies. A study conducted by Kentel and Aral 

(2006) providcd a review of several available approaches used in decision-making, some of 

which in volved dcfuzzification techniques, the possibility and necessity measures. The study 

proposed a risk tolerance measure which could be used in decision making and provided an 

effect ive metric for evaluating the acceptability of a fU7-Zy risk with respect to a crisp compliance 

criterion. 

McCauley-Bell and Badiru ( 1996) conducted a two-phase research project to develop a fuzzy­

rule based system for quantifying and pred icting the risk of occupationa l injury, specifically, 

cumulative trauma disorders (CTD' s) of the forearm and hand. The first phase of research 

focused on development and representation of linguistic variables to qualify risk levels. The 

variables were then quantified using fuzzy-set theory, allowing the model to eval uate qualitative 

and quantitative data. The second phase ofrcsearch focused on the analyt ic hierarchy processing 

(A HP) to assign relative we ights to the identified risk factors. A fuzzy rule base was constructed 

with all of the potential combinations for the given factors. The system providcd linguistic risk 

levcls as well as quantified risks in assessing the overall risk of injury. 

Mure, Dcmichcla, and Piccinini (2005) developed a mcthod to assess risks of occupational 

accidents using fuzzy logic. The purpose of the work was to create a methodological instrument 
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that could semi qualitatively assess the risk of occupational accidents for different industrial and 

site :lctivities and to identify the most efficient intervention measures to reduce risks. The 

analysis model allowed for an assessment to be made of the level of risk ofa work phasc and/or 

a work sector and verification and qU:lntilic:ltion to be made of the reduction of risks after having 

adopted prevcntive and/or protecti ve measures. A priority of interventions could :llso be 

establishcd on the basis of the assessed risk levels. 

Fuzzy set theory has been applied to the occup3lional safelY risk analysis within the construction 

industry as a means of accounting for uncertainty. A study by Gurcanli and Mungen (2009) 

proposed a method for assessment of the risks th31 workers arc exposed to 31 construction sites 

by using a fuzzy rule-based safety analysis to deal with uncertainty and insufficicnt data. By 

using this approach, historical accident data, subjective judgements of experts and the current 

safety level of a construction site can be combined. Thc relevance of thc study was linked to the 

possibility of providing safety scorcs for the construction siles that cou ld result in work 

improvement and productivity. The application of the proposed method revealcd which safcty 

items and factors werc most important in improving workers safety. It also enabled one to decide 

where to concentrate resources in order to improve the safety of Ihe work environment. The 

silldy began with different kinds of knowledge acquisition ways to establish a body of 

infOnTI:ltion that could be beneficiary in developing fuzzy linguistic parameters and their 

associated membership functions to qualify occupational risks on construction sitcs. The input 

paramelers of the fuzzy system were derived from the raw data :lndjudgement of experts. 



In the scope of the study. Gurcanli and Mungen identified. investigated and classified 5239 

occupational accidents in the construction industry. By combining Ihc data and subject ivc 

judgement of safety experts, Gurcanli and Mungen were able to derive three parameters namcly 

accident likelihood (AL), currcnt safety Icvcl (CSL) and accident severity (AS) and utilize the 

input parameters for the fuzzy ruic-based system. 

Gurcanli and Mungen argued that the proposed fUl..ly rule-based method of analysis is a new 

approach for construction which can easily incorporate the present characteristics of the site and 

construction conditions by tak ing into account the degree of uncertainties of judgements made by 

safety experts. Thc study focused on daily, routine safety measures rather than safety 

management principles and providcd a preliminary but innovative approach for safety evaluation 

on construction sites. 

Chang. Tsujimura, Gen and Tozawa (1995) combined composite and comparison methods of 

ana lYLing fuzzy numbers into an efficient procedure for solving project scheduling problems. 

The compnrison method eliminates activit ies that are not on highly critical paths while the 

composite method determines the most critical path. The fuzzy Delphi method is used 10 

determine the activity time estimates with activity times represented by triangular fuzzy 

numbers. 
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3.3 INTRODUCTION TO FUZZY SET THEORY 

Fonning sets and analyzing relationships is usually the tirst step toward organizing thoughts and 

understanding the structure of a complex problem (Klir. 1997). A central assumption of classical 

set theory states that the boundaries of classical sets are required to be drawn precisely and 

therefore, set membership is dctennined with complete certainty (KliT. 1997). The classical 

notion ofa set is crisp meaning that the set is something clear and concise. In classical set theory, 

the membership of clements in a sct is assessed in binary tcnns according to a bivalent condition 

meaning that an e lement either belongs to a set or docs not belong to a set. In binary language. 

the clement is assigned a value of 1 if be longing to a set and a value of 0 otherwise. An analysis 

based on a crisp set takes place in a rigid frame of a system where a clear demarcation exists 

between the correct and the incorrect. In classical sci theory, il says that an individual must be a 

memberofa sci or its compliment but not both (Klir. 1997). 

Two important laws of classical set theory are the law of cOnlradiction and thc law of the 

excl uded middle. The law of contradiction states that any proposition affirming a fact and 

denying it at the same time is false. It says that the same individual cannot simultaneously be a 

member of a set and its compliment. The law of cxcludcd middle is closcly related and stalCS that 

any proposition must be either true OT false , but not both. If sets have imprecise boundaries, then 

the IWO classically important principles. the laws of contradiction and excluded middle, will no 

longer be true. 

In our daily lives, virtually all human activities involve reasoning based on vague concepts and 

incomplete information. The stipulation that a statement is either true or false usually cannot be 
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applied. Most sets and propositions arc not neatly characterized and exact boundaries cannot be 

precisely detcnnined. For example. the statement "lon K is healthy" cannot be evaluated simply 

by a definite yes or no because we do not have any strict criter ia for the clean demarcat ion 

between healthy and not healthy (KliT. 1997). A set of healthy people is allowed in classical set 

theory only if significant simplifying assumptions are made and the partition between healthy 

and unhealthy people is imposed. Without the imposition of arbitrary partitions or boundaries. a 

set cannot be defined in tenns of classical set theory. a circumstance that has prevented c lassica l 

mathematics from functioning full y in disciplines dealing with vagueness and other kinds of 

uncertainty (Klir, 1997). One of the principle motivations for introducing fuzzy set theory was to 

deal with such uncertainty, bridging the gap between imprecise concepts which arc used to 

describe reality and precise classical mathematics 

3.3. 1 FUZZY St:TS 

A fuzzy set is a mathematical fonnalism to represent a fuzzy concept. Fuzziness is defined as 

something vague or uncertain and is inherently associated wilh our linguistic expression 

(Kikuchi, 1998). Given a proposit ion "x is A", fuzziness is the situation that the truth of the 

proposition cannol be detennined because A is not clearly defined therefore the uncertainty 

under fuzziness is eaused by the lack of definition of words. 

A fuzzy set is defined as a pair (X,p) where X is a set andp: X ..... [0,1] . For each x E x, /lex) 

is thc grade ofmembcrshipofx. [fX = (XI'''' x,,} the fuzzy set (X,/l) can bcdcnoted as: 
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An ciementmapping to the yalue 0 means that the member is not included in the fuzzy set where 

astheyalue I describesafuJly includcdmcmber. Values strictly between o and I characterize 

the fuzzy members. The set {x E XIJ./(x) > OJ is callcd the support of thc fuzzy sct (X .J./) and 

the sct {x E XI/l(x) "" 1) is called the kcrncl ofthc fuzzysct (X./l). 

FU7.2y set theory is an extension of the classical not ion of a set since thc indicator functions of 

classical sets 3re special cascs of the membership functions of fuzzy sets, if thc fuzzy set only 

takes values of 0 or I. In fu zzy set theory. classical bivalcnt scts arc looked upon as special fuzzy 

sets and arc rcfcrrcd to as crisp scts. Fuzzy set thcory cannot be considcrcd independent of the 

classical approach but should be looked upon as eomplcmcntary to the classical statistical 

approach when deal ing with human perception and d~ision processes as it provides the 

mathcmatieal framcwork to de31 with thc nature ofunccrt3inty. 

3.4 MEASUREMENTS OF FUZZINESS 

As previously stated. classica l sets m3y be viewed as speci31 fuzzy sets, callcd crisp scts, whosc 

mcmbership grades are restrictcd to 0 3nd I values. Any set that is not crisp involycs somc 

degree of fuzziness which rcsults from thc imprecision of its boundaries. Klir (1997) statcs that 

the Icss precise the boundary, the more fuzzy thc set. 

To measure fuzziness means to assign a nonnegative number to each fuzzy set. These numbers 

must satisfy some requirements that can easily bejustilied on intuitivc grounds as cssential for 

capturing the conccpt of fuzziness. One requiremcnt is that the measure of fuzziness should be 

zero for all crisp sets and greater than zero for all other sets. Another n.:quircment is based on our 

intuition that thc sharper the boundary ofa fu zzy set, the Icss fuzzy the set is. The sharpness of a 
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Doundury of a fuzzy set is determined by the closeness of its membership grades to the ideal 

\lalues 0 and I. The closer the membership grades are to the ideal values, the sharper the 

Doundllry. 

3.'1.1 1\1 £M n~;RSH II' FUNCTIONS 

The characteristic function of u fuzzy set, called a membership function, jtA(x). can possess a 

value between 0 and I depending on the degree that an element (x) is eom[)iltible with the fU 7..zy 

notion. Thi s results in grades of membership for sets rather than full or no membership 

designations. An individual' s membership in a fuzzy sel muy udmit SOllle uncertuinty therefore 

its membership is a matter of degrec. Thc degree of mcmbership o f an individual in a fu zzy set 

expresses the degree o f compatibility o f the individuul with the concept represented by the fu zzy 

sct (Klir.1997) . 

.. ::.nch fU7..zy set A, is defi ned in terms of a relcvant univcrsal set X. by a membership function 

which assigns to each clement x of X u number. A(x), in the closed unit interval [0.1] that 

characterizes the degree of membership of x in A. Membership functions arc thus functions o f 

the form: 

A:X~[O.l] 

A fu zzy set has a membership that is not absolute. FU7..zy sets generalize the characteristic 

classical function in ullowing all values between 0 und I. A fuzzy subset A of X is defined by its 

membership function. written A(X). whosc valucs can be any number in the intcrval [0.1]. The 

value of A(x) is called the grade membership of x in fuzzy set A and is often denOled by jt(x). If 

jt(x) is only 0 or I. then the chu!"acteristic function of a crisp, nOn-fU7..lY set A would apply. If 
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/.l(x) takes on values in between 0 and I. then x belongs to A if 11 ... (x) = 1, x docs not belong to 

A when j./Ax) = a and x is in A with membership /1,.,(x) iro < i1A(X) < 1. 

Membership functions of fuzzy sets playa central role in fuzzy sct theory. [n each application of 

fuzzy sct theory, appropriate membership functions must be constructed so Ihal the intended 

meanings of re levant linguistic terms arc captured and the fuzzy SCI is adequately defined. These 

meanings arc strongly dependent on the context in which the linguistic terms arc used. For 

example, the word young has a different meaning when applied to children or university 

professors and its meaning is even more varied when applied \0 difTcrcllllYPCS of objects such as 

geological formations or trees. 

J.4.2 REI'RESEN'I'ATION OF MEMB ERSIIII' FUNCTIONS 

Each fuzzy set is uniquely defined by a membership function. The most common ways in which 

membership functions arc disp layed arc through graphical, tabular and list, geometric and 

analytical representation. Graphical representation is most frequently used lllld illustrates 

membership functions whose universal sets arc either I-dimensional or 2-dimensional Euclidean 

space. For universal se ts that arc finite, membership functions can be represented by tables. 

which list all clements in the universal set and the wrresponding membership grades. Using 

tabular representation, the fuzzy set is eharacterizcd by a list in which the members of the set are 

conjoined with the degree of membership in the scI. 

Geometric representations arc most often used to represent membership functions whose 

uni \'ersal sct X is a finite set. When a universal set is infinite. which is often the cuse for a set of 

real numbers, the membership function is often represented in analytic fonn. For example. the 
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universal sct of the fuzzy sct 'abolll 2' is the sct of all rea l numbers. This kind of fuzzy sct, called 

a fuzzy number, can be represented by an anal)1ic fonn which describes the shape of this fuzzy 

number. The fuzzy se t, whose graph is shown in Figure 3 .1 . may capture Ihe concept of 'obolll 

2 '. It can be expressed in Ihe following analytic form : 

!X-l whenlSxS2 
A{x) = 3 - x when 2 ~ x S 3 

o otherWise 

FICURE 3. 1 - A MEMBERSIIIP FUNCTION OF "noUt) 
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Any symmetric, triangular membership function characterized by the three paramelers a, band c, 

as shown in Figure 3.2, is defined by the membership function· 

A(,) 

1 
0 

C:=:l) 
AC,l = (C: ~ :l ) 

'<a 

whena :S: x :S:b 

when c :s: x :S:d 

0-"-_+-__ -+ __ --'\-__ --> 

FICUR.: 3.2 - GENIOIUC, SYMMETRIC, AND TRIANGULAR M EMtlERStltP FUNCTION 
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Another impor1ant class ofmcrnbcrship functions is trapezoidal shaped, which is captured by the 

generic graphical representation in Figure 3.3. Each function in this class is characterized by the 

four parameters a, b. c, and d via the generic form: 

A(x) 

(C:=2) 
A(x) ~ C~~2) 

whena$x Sb 

whellbSx Sc 

whellcSx Sd 

otherwise 

"' ICURE J.J . TRAPEZOIDAL M EMBERSHIP FUNCTION 

S31 Page 



3.5 OPERATIONS ON FUZZY SETS 

Essenti3lto the appl ication of fU72y set theory are set operations. They aggregatc two conccpts 

that are represcntcd by scts and form a ncw set represent ing a new concept, or they process 

different types of infomlation and generate new information (Kukuchi, 1998). In the case of crisp 

sets, set operations are binary, defined on ei ther the max or min operations of a or I; hence, they 

cannot represent the uncerta inty peree ived when two notions are aggregated. In the case of fuzzy 

sets, different operators are possible in order to capture and preserve the fuzziness embedded in 

the original concepts. 

The three b3sic operat ions on class ical sets are complement, union and intersection. While these 

operations arc unique in c lassica l set theory, their extensions in fUllY set theory are not unique. 

Distinct operations in each of these classes reflect disti nct me3nings of the linguistic tenns and, 

no! and or when employed in scntcncesofnatural language in different contexts. These spec ial 

operations on fuzzy sets which are referred to as standard fuzzy operations are the most common 

operations in practical applications of fuzzy set theory. 

3.5. 1 STANDARD FUZZY COM I'LEMF.:NT 

Given a fuzzy set A defined on a universal sct X, its complement A is another fuzzy set on X that 

inverts, in some sense, the degrees of membersh ip aswciatcd with A. While for each x E 

X,A(x) expresses the degree to which x belongs to A, A(x) expresses the degree to which x 

docs not belong to A. The standard fuzzy complement is expressed by the formula: 

A(X) = 1 - A(x) 

for all x E X. 

541P ag e 



One consequence of the imprecise boundaries of fuzzy sets is that they overlap w ith their 

eomplcmern. This is one of the fundamental differences between classical set theory and fuzzy 

set theory. In classical set theory, sets never overlap with their complements. 

3.5.2 STANI)ARD FUZZY UNION 

Consider a universal set X and two fuzzy sets II and 13 defined on X. The standard fu zzy union 

of A and 13, denoted by II U 13. is defined by the membership functions using the formula: 

(II U B)(x) = max[A(x), l3(x) ] 

To illustrate, let X be a set of n doctor's patients identified by numbers l. 2, .. n. Let II denote 

the fuzzy set of those patients in X having high blood pressure and let B denote the fw.:zy sel of 

patients having high fever. If pat ient I has A = high blood pressure = 0.6 and 13 == 

high fever = 0.3. then the set A U B for patient I is expressed by: 

(II U B)(1) == max[0.6,0.3] = 0.6 

Using the fuzzy union equation, one can determine the set A U 13 of patients in X that have high 

blood pressure or high fever by taking the maximum value of A or B. 

3.5.3 STANDARD FUZZY INTERSECT ION 

The standard fuzzy intersection. denoted An B. is defined by the membership functions using 

the formula: 

(II n B)(x) == mi11[A(X),I3(x)] 

for all x E X. 
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Continuing with the doctor's patients example, with patient I having A = high blood pressurc = 

0.6 and B = high fever = OJ, then the sel A n B for patient I is exprcssed by: 

(/\ n 0)(1) = I»ln[0.6,0.3J = 0.3 

The standard fuzzy opcrations do not satisify two laws of their classical coumcrparts: thc law of 

excluded middle and the law of contradiction. This is a consequencc o f imprecise boundaries of 

fuzzy sets. 

It can easily be ver ified that the standard fU7..zy operations sat isfy all other properties of the 

corresponding operations in classical set theory. By rcstricting oursel ves to the standard fU7..zy 

operat ions, the great expressive power of fuzz), set theory is not fully utilized. In particular, the 

standard fuzzy operations are nO! capablc of cxpressi ng thc full var icty of mcanings of the 

linguistic tenliS and, not and or when applied to fuzzy concepts of natural language. The 

standard fuzzy operations havc been fou nd adequate in most practical applications of fuzzy sct 

thcory. 

3.6 FUZZY ALPHA - CUT TECHNIQUE 

Fuzzy numbers arc numcrical approximations dcscribed by fU7..zy sets and are used whcn one 

interprets or perceives information that has potential measurement imprec isions. Fuzzy numbers 

can be used to reprcsent in te rval numbers using Ihe alpha (a) cut to represcntthe sct of clemcnts 

in a fU7..zy sel thaI havc a degree of membership, (Jl(x) ) , greater than or equal to the a 

membership value. The a-cut is the set of clements in a fuzzy set having mcmbership p(x) 

which can bereprcsented by: 

A~ = (xlx c X,andp(x) ;:>: a} = [aL, cRJ = (a.c] 
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The alpha (a) eUllcchnique uses fuzzy setlheory 10 represent uncertainty or imprecision in the 

parameters. Uncertain parameters arc considered to be fuzzy numbers with somc membership 

functi ons. Figure 3.4 shows a parameter X represented as a triangular fuzzy number with supJXlrt 

of Ao< The wider the support of the membership function, the higher the uncertai nty. 

)<' IGURE 3.4 - TRIANGUl.AR FUZZY NUMIlER WITI[ SUPPORT Ao AND a -CUT 

The fuzzy set that contains all clements with a membership of a c [0, 1] and above is called the 

a-cut of the membership function. At a resolution levcl of a. it will have support of Au. The 

higher the value of a , [he higher the confidence in the parameter (Li & Vincent. 1995). By 

defining the interval of confidcnce at level a, a triangular fuzzy number, defined by the triplcl 

(a, b, c) is characterized as: 
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Thc a lpha (a) mcthod is bascd on thc c:>.:tcnsion principlc, which impl ics that funct ional 

re lationships can be c:>.:tcndcd to involvc fuzzy argumcnts and can be uscd to map thc dependcnt 

variable as a fuzzy set. In simple arithmctic operations, this principle can be uscd analytically. 

Howcvcr, in most practical modcling applications, relationships involvc partial difTercntial 

equations and othcr complcx structures that makc analytical application of the principle difficult. 

Thercfore. intcrval arithmetic is used to carry out thc analysis. 

3.7 THE EXTENSION PRINCWLE 

Thc extcnsion principlc is a method of extending point-to-point opemtions to fuay sets. It is the 

basic tool for thc dcvelopmcnt of fuzzy arithmctic as it provides a method for fU7..z ifying crisp 

funct ions. Suppose that f is a point to point mapping function from X to Y and A is a fuzzy sct on 

Xdcfincdas: 

A = ~A (XI) + ~A (X2) + ... + ~A(X,,) 
Xl Xz X" 

Thc extension principle states that the image of fuzzy set A under thc mapping fO can be 

expressedasa fuzzy set B: 

where yi = {(xi). 

More gcner.llly, we havc: 
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Lct i and D be two fuzzy numbers dcfincd in tcnns of universal sets X and Y respectively. Let 

the symbol. denote a genenll arithmetic operation, i.e .• =: {+, -,X,+}. An arithmetic operation 

or mapping between these two fuzzy numbers denoted i • 0 will be defined in tenllS of the 

univcrsal set Z and can be aeeomplishcd using thc extension principle, by: 

"'.0(') = V (",(x)'"O(Y)) 
"'·YEZ 

which results in another fuzzy sct, the fU72y number resulting from the arithmetic operation on 

fuzzy nurnbers land O. 

3.7.1 INn; RVA LANA LYSIS IN ARITlIMETIC 

It fuzzy set can be thought of as a crisp set with ambiguous boundaries. A eonvcx membership 

function defining a fuzzy set can be described by the interval associated with difTcrentlcvcls of 

a-cuts. A fuzzy set, A. is said to be eonvcx if and only if all of its a-cuts are convex in thc 

classical sense. That is, for each a-cut, Aa, for any r,S E Aaand any A E [o,lJ then AI- + 

(1 - A)s E Aa_ Let ll and 12 be two interval numbers defined byordercd pairs of real numbers 

with lower and upper bounds: 

I, = [a,b] where a :S b 

12 = [c,d] wherec:S d 

When a = band c = d, these intcrval numbers degenerate to a scalar real number. Again, using 

the symbol . to denote a general arithmctic property, the following equation represents another 

intcrval. 
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110 12 = [a,b]-[c,d] 

Thc interval calculation depends on the magnitudes and s igns of the clements a, b, c and d. Table 

3. 1 displays the various combinations of set- theoretic intersection (n) and sct-theoretic union 

(u) forthe six combinations of these clements given that (a < b) and (c < d) still hold tnle. 

SeIOperalionsonlntervats 

Cases tntersection (n ) Union (u) 

o>d [c,d] U [a,b] 

o>b [a,b] U [c,d] 

a> c,b < d 10,b) lo,d) 

c > a.d < b lo,d) 10,b) 

a<c<b<d k,b) lo,d) 

c<a<d<b lo,d) 10, b) 

Based on the infonnation in Table 3. 1. the four arithmetic operations associated wi th the above 

equation arc: 

[a,b] + [c,d] = [a +c,b +d] 

[a,b] - [c.d] = [a -d.b -c] 

[a,bj'/c,d] = [mi11(ac,ad,bc,bd). max(ac,ad,bc,bd)] 

[a,b] -;- [c,d] = [a,b] · [~,~I provided thatO ¢ [c,d] 
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Where ae, ad, he and bd arc arithmetic products and lId and lIe are quotients. 
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r---------------------------------------------------------

Chapter4 

MODELING OF UNCERTAINTY 

4. 1 VAGUENESS AND UNCERTAINTY 

The development of predictive models for occupational accidents is often fraught by variabi lity 

and uncertainty associated with the subjective nature of expert opinions and judgements. This 

level of uncertainty attached to the integration of subjective evaluations is a conccm when 

analyzing systems through model development. Fuzzy sct theory (FST) provides a useful 100110 

address Ihis variability and \0 propagate uncertainty through Ihe model. The utility of FST in 

model dCI'clopmcnt has been seen in its ability \0 morc appropri31cly represent Ihe human· 

infcrcncing process and to provide a more user.friendly interface through the usc of natural 

language (Zadch, 1996). 

The tcmt 'computing with words' was introduced by Lotfi A. Zadeh to explain thc notion of 

reasoning linguistically rathcr than with numcrical quantities. "Humans use llaturallanguage as a 

means of computing and reasoning. arriving at conclusions expressed as words from premises 

expressed in a natural language" (Zadeh, 1996). Words have fU7..zy denotations therefore a key 

aspeet of computing with words is that it involves a fusion o f natural language and computation 

with fuzzy variables (Zadeh, 1996). 

The use of natural language or linguistic variables within the framework of models may be a 

necessity when available information is too imprecise to justify the use of numbers or "when 

dealing with situations which are too complex or ill-defined to be reasonably described by 
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convcntional quarnitative cxpression" (Lin, 1997). A linguistic variablc is a non·numeric 

variablc whosc values arc words or sentences in natura l or artificial language which are used to 

facilitatc the cxprcssion of rules and facts. TIlC usc of linguistic variables allows the analyst to 

asscss model paramctcrs in a natural way, providing a more user-friendly approach for analyzing 

thc specific case. Fuzzy set theory provides a usefu l tool for direct ly working with linguistic 

expressions in the modeling and analysis of occupational accidents. 

4.2 lNCORPORATING FST INTO ATTWOOD'S PRI<:DlCTlVI<: MODEL 

Model development includcs the identification of constituent factors and a detcrmination of their 

interrelationships. Attwood conducted a comprehensive literature review of early accident 

models and a thorough evaluation of the rclated availablc statistic accident data to gain an 

understanding of the major factors contributing to the occupational accident issues. A thorough 

review of intcrnct sources. company annual rcports and open litcraturc offcring analysis of 

ofT~hore occupational acc idcnts was undertaken to undcrstand major factors afTccting this issue 

(Attwood f'f al., 2006a). 

The model execution process is compriscd of fivc stages: Calculation of accidents using global 

average conditions, calibration run, component reliability adjustment, predictive run and 

comparison of predictions with estimates of actual numbers of accidents. Thc first step involves 

obtain ing data to calibrate the model for average condi tions. Data for the calibration portion of 

the mode l application arc publicly available statistics. The type of accident statistic uscd for 

calibration depends on which output statistic is desired. If a particular accident ratc is required. 

then the corresponding global average value of that particular rate is used for calibration 

(Attwood 1'1 al., 2006c).The second stage of execution involves calibrat ing the model in ordcr to 
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set base case component reliabilities. The base case result obtained from step one is used to 

calibrate the model to a global average accident expectation, allowing all base case component 

rcliabilities 10 be set. 

The third stage of model execution involves component reliability adjustment, where an expert 

panel assigns scores of 1-10 to each factor within the direct, corporate and external layers. This 

rating system represents the component"s effect on safcty within the specific regimc being 

analyzed, compared to the global average, which is represented by a score of 5. Eaeh score 

represents the eomponent"s specific case condition with higher scores representing situations 

more favourable to safety resulls whilc lower scores represent situations Icss favourable to safety 

(Attwood el o/.. 2006c). At this stage of model execution, the author proposes thc usc of fUllY 

set theory (FST) to account for uncertainty associated with the subjectivc judgemcnts of the 

expert pancl. Incorporating FST to account for judgemental uncertainties associated with experts 

opinion involves the assignment of linguistic variables to represent each factor"s effect on safet}' 

or specific case condition, conversion of linguistic variables into a fuzzy numerical range 

through the development of membership functions, aggregation of fuzzy numbers into one fuzzy 

variable to represent each factors effect on safety, propagation of these fuzzy numbers 

throughout Anwood's model to detennine the fuzzy outcome or frequcncy of occupational 

accidents and the usc of a defuaification technique or fuzzy operations to calculate a crisp 

numcricoutpul. 
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4.2. 1 FUZZY NUM H[ RS 

The concept ofa fuzzy number arises from the fact that many quantifiable phenomena cannot be 

characterised in terms of absolutely precise numbers (Klir, 1997). A fuzzy number is one which 

is described in tenns ofa number word and a linguistic modifier, such as approximale/y. newly, 

or arolilld. There are several geometric mapping functions of fUlZY numbers to represent the 

linguistic variables, but the most common are triangular and trapezoidal shapes as they arc easy 

to construct and manipulate. Most current applications that employ fuzzy numbers arc not 

significantly affected by the shapes of functions hcncc it is quite natural to choose simple linear 

functions, represented by straight lines, as in the case of triangular or trapczoidal (Klir, 1997). 

A triangular fuzzy number is a fuzzy number A in X, ifits membership function [,.,:X -> [O,lj is: 

when a :::;b:::;c. 

{

(x -a) 

~ 
[ ,., (x) = (c - x) 

(c-b) 
o otherwise 

The triangular fuzzy number can be denoted by A = (a,b,c) . The parameter 'b' gives the 

maximal grade of [,.,(x) (ie. [,.,(h) = 1) and is the most probable value of the evaluation data. 

The parameters 'a' and 'c' arc the lower and upper bounds of the available area for the evaluation 

data. 
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A trapezoidal fuzzy number is a fuzzy number A in X, if its membership function f ... : X -+ [0,1] 

is: 

when a=:; b =:; c =:; d. 

(

x - a) 

~ 

fA-ex) = 1 
(d -x) 

Cd-c) 

o otherwise 

The trapezoidal fuzzy number can be denotcd by A = Ca, b, c,d). The interval [b , c] are the most 

likely values of f ... (x). The parameters 'a'and 'd' are the lower and upper bounds of the available 

area for evaluation. 

Triangular fuzzy numbers were selected to represent linguistic variables for Au .... ·ood·s model. 

Triangular geometric mapping functions can be easily justified on intuitivc grounds as they 

capture the concept of fuzzi ness, making it easy tor eva lumion. 

4.2.2 DEVELO I'MENTOF LING UISTIC VARIABLES 

The goal of fuzzy linguistic variables is to represent the cond ition of an anribute at a givcn 

interval. In FST, several intervals or ranges may be specified with respectivc linguistic variables 

oITering the cont inuum of a given variable (McCau lcy-Bell. 1996). In the continuum of 

component importance as it relates to safety results in Attwood's model, the fuzzy linguistic 

var iables are used to ass ign the relative imJX>rtanceoffactors with regards to their overall eITect 

on safety. fhe abil ity of FST to oITer a nutuml-Ianguage interface and a graded degree of safety 
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rating are the main reasons for utilizing this methodology within this phase of model cxccution. 

l3y introducing a linguistic, qualitative sca le of importance to rate component rcliabilitics, it 

provides a more natural, user-friendly approach for analyzi ng thc spec ific case since people arc 

bcl1eratqualitativejudgcmcnttasksthanthcyareutquunti tat iveest imates, preferringtoexprcss 

with verbal phrases as opposed to numerical estimates. 

The objective of thi s stage of linguistic variable development is to identify ranges wherc thc 

safety experts could assign a particular linguistic value to an interval. To accompli sh this, the 

entire leve l of factor ex istence needs to be partit ioned into as many levels as ncccssary to 

accura tel y rcpresent Ihe continuum of the fact or. Five linguistic variables arc used to rank each 

factor's importance or eflcet on overall safety. Dcscriptions of the live levels of linguistic 

variablcs arc prcscntcd in Table 4.1. Each safcty cxpert can assign linguistic tenns, such as 

'Low' or 'Vcry High' fordc\crrninin g a factors crfceton safcty. 
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T .. bl~4. 1 ·o.,scription of L. inguiitic Variables 

Linguistic Variable 

Very Low (VL) 

Low(L) 

Medium (M) 

nigh (H) 

Very High (VH) 

Fuzz)' Range 

0-2 

2-4 

4-6 

6-8 

8-10 

[)('Serilltio tl 

Represents situations having 
very linle to nocfTccton snfcty 
in n specific region. Represents 
least fnvourablere5ultson 
safety. 
Reprcscnts situat ions havinga 
sl i ·ht or lowefTect on safet 
Represents situntions hnving an 
avcraeefTectonsafcty. 
Rcprcsent5 situations havinga 
high or considcrable efTect on 
safctv. 
Reprcsentsslluntionshavinga 
very high efTect on snfety. 
Reprcscntsmosl favourable 
results on safety. 

Thc five linguistic variables arc then translated into triangular fuzzy numbers. Triangular fuzzy 

numbers are utilizcd to capturc the vagueness of the fuzzy linguistic terms and represent the 

subjective and confiicting assessment of the pancl of safety cxperts (Yang. 2003). 
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FleUR.: 4 . 1 - TRIANGULAR FUl.J:'- Nu~mERS REI'RFS I,NTlNG LINGUISTIC VARIAIII.ES 

Experts apply thc linguist ic [cmts to rate each component's effect on safcty results. Each of the 

linguistic variables arc represented by an individual and overlapping triangular shaped 

membership function that travels throughout the enlire interval [O.t] as shown in Figure 4.1. The 

membership functi ons translate the linguistic tcnns into triangu lar fU7..zy numbers. Fo r example, 

:3 n::prcscnts a factor having 11 ' low' effect on safcty results and 9 represents a 'vcry high' effect 

on safcl Y. Overlapping functions were used to represent ill-dcfincd boundaries between each 

linguistic variable. 

The base of the triangle or support o f thc membership funct ion represents the range of 

unccrtainty. The wider the support o f the membership function, the higher the uncertainty, 

Taking the linguistic variable 'Low', the base of the triangle ean be seen to extend from 2' to 4 
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so ' Low' is defined as every component whose effcet on safety is bounded betwccn the fuzzy 

interval of2 and 4. The upper vcrtcx of the triangle is locatcd just ovcr a vcrtieallinc from 3. [n 

FST, maxima[ grade of the membership degree to the fuzzy set of '[.A)w· is 1. Thc mcmbership 

degree hegins to decline along each side of the vertex until a membership dcgrcc of 0 is rcachcd 

at the base of the triangle at both the lower and upper bounds of 2 and -4 respectivc[y, This 

represents the core of I'ST in the sense that cverything is a qucstion of grade. The remainder of 

fU7..zy scts . Very Low', 'Medium', ' High' and 'Very High ' arc described in a similar way. 

4.2.3 M£M IJERSHIP FUNCTIONS 

One of the principal motivations for introducing fuzzy sets is to represent imprecise concepts. A 

factor's membership in a fuzzy set may admit some uncertainty, therefore its membership is a 

matter of degree, [n Attwood's predictivc model, a factor within the dircet layer may be a 

member of the fuzzy set ' High' \0 the degree to which the factor mects the concept of 'High'. 

The conecpt of'High' reprcsents silllations having a considerab[c or high effect on safcty rcsults. 

Alternativciy, thc degrec of membership of a factor in a fuzzy set cxpresscs thc dcgrce of 

compatibility of thc factor with thc concept representcd by the fuzzy set. 

Toqualifyasa fU7..zy number, the membership funct ion must capture an intuitive conception ofa 

set of numbers that arc around a given real number, or possibly, around an interval of real 

numbers. The fuzzy set ' High' extends from the fuzz), interval 6 to 8 with the value '7 

eorresjXlnding to the maximal grade of the membership fun ction having a value of [. Thi s 

represents thc most probable value of the evaluation data. The values 6 and 8 represent thc [ower 

and upper bounds of the evaluation data and arc representcd by a membership grade of O. If a 
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direct factor is rated as having a 'High' effect on safety results, the factor's dcgrce of 

membership dcpcnds on its cotllpatibility with the concept represented by 'High', If the factor is 

highly compatible to the concept of , High', its membership value will be closer to I whereas if 

compatibility is low, its mcmbership valuc will be closcr to 0, Each membership value is then 

reprcsented by a fuzzy number us ing a numerical approximation system to convert the linguistic 

teml 'High' in terms of its corresponding fuzzy number. 

Within this phase of model execution, experts are asked to apply linguistic terms 10 rate each 

components effect on safety results. A numerical approximation system was proposed to 

systematically convert thc five linguistic tenns to their corresponding fuzzy numbers. Figure 4.1 

reprcsents the conversion scale chosen to represent assessments of the cxperts. The 

corresponding membership functions of these five linguistic values in triangular fuzzy numbers 

ure illustrotedus follows: 

{ 
1 

(Z-x) 
fVL(X)= -~-

{

(X- 2) 

Mx)~ (4~X) 

{

(X-4) 

fu(x) ~ (6 ~ x) 

O<xSl 

l<x:S;Z 

otherwise 

Z < xS3 

3<xS4 

otherwise 

4 <xSS 

S<xs6 

otherwise 
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{

(X- 6) 

Mx) = (8~X) 

{
(x -8) 

[VH(X)= T 

4.2.4 UT ILIZING EX I' ERT DATA 

6<x::S;7 

7<xS8 

otherwise 

8<x::S;9 

9 < x:5 10 
otherwise 

The criteria used to fonn Ihe expert panel \\Iere based on knowledge of specific regions. 

experience in safety design, project management, offshore surveying and safety consultancy 

(Attwood et at .. 2006c). For the purposes Oflhis work. a weighting factor was nOI introduced \0 

represent lhe relative quality of different experts. Thus the opinion of each expert is assigned 

equal weight in lenllS of significance or importance. 

Each expert is asked \0 apply one of live natural linguistic expressions (very low. low, medium, 

high or very high) in rating each factor's effect on safety results. Each linguistic variable is 

translated into a triangular fuzzy number by usc or Figure 4.1. Each linguistic term. A. can be 

represented as a rU7...zy number in the rorm A = (a,h,c) where a =:;; b =:;; c. The triangular ruzzy 

nutJIbcrsand rcprcscntativcruzzyvalucs forcaeh linguistic variable arc displayed in Tablc4.2. 
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Tahir 4.2 - Triangular Pu>:>:), Numbers and FU7.7.)' Values for Linguisti, Variables 

Linguistic 
Variable 

Ven'Low 
(\lL) 

Low(L) 

Medium 
(M) 

High (H) 

Very lligh 
(VII) 

J)cscrilltion 

Represent.situ.tion, 

~a,'ing ,'C')' li Uktuno 

clTedonsafct}'ina 

,pecifocreg;on 

Rcp",..,nts\cast 

Reprcs<:ntssilUations 

~",·inga.light or low 

Representssituat iun, 

""safety 

Represent"ituations 

ha'ingahighor 

safOl). 

Ikp'esen{S,ituation' 

ha,·ingu,·cry l1ighcffcct 

onsafet}',Represem, 

mo.tf.vourahleres.Ylts 

u"saf"I}' 

Fuzzy l<' u7..zyValue, 

Numbcr,A A = (a,h,c) 

(0. 1,2) 

(2,3,4) 

(4,5,6) 

(6, 7, 8) 

(8.9. 10) 

Membership Function 

The membership function can be cut horizontally at a finite number of fl- confidence levels 

between 0 and I to obtain lower and upper bounds for each confidence interval as displayed in 

Figure 4.2. For each a -cut of the parameter, the model is run to detennine the minimum and 

maximum possible values of the output. This information is then directly used to const ruct the 

corresponding fuzziness (membership fu nctions) of the outpul which is used as a measure of 

uncertainty. 
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F'IGnu: 4.2 - TRIi'lN{jULAR Fuzzy NlIMIIERS WI'i'H 11- CONFIDENCE LI: VEL OF 0.5 

Due 10 different opinions of the expert panel, il is necessary to combine or aggregate Ihe opinion 

of each expert into a single fuzzy number. There arc many methods 10 aggregate fUll), numbers 

including mean, median, maximum, minimum and mixed operators. The arithmetic averaging 

(mean) operation docs not produce a noticeable change in the combined possibility distribution 

when there arc small variations in any possibility di~tribulion and il is the most commonly used 

aggregate method (Huang. 2001). For the present work, the mean operator has been selected 10 

pool expert opinion. Using the 111ean aggregation method, let: 

Ai} = (aij,bij,c;j) or (alj,b/j,Clj,d/ j ), i = 1,2, .. , m; j = 1,2, ... ,n, 

represent the linguistic expression of the element or event i given by expcrtj. The average 

equation for aggregating the n experts' opinions to a single fuzzy number is defined as: 
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i = 1,2,3, ... ,m 

where Mj represents the average fuzzy number of the III elcmcnts or events. To illustrate the 

average or mean aggregation method, take ' Medium' (M) and ' High' (H) to be the fuzzy 

numbers selected by a panel of2 experts, which arc defined as follows: 

{

(X - 4) 

fMex) = (6 ~ x) 

{

(X -6) 

f.,(x) = (8 ~ x) 

4 <x:S:5 

5<x:S:6 

otherwise 

7<x:o;S 

otherwise 

Us ing the a - cut addition and the average aggregate equation: 

w = ~x (M + H) 

where W represents the average fuzzy Illlmber. The a - cut of M and FH are: 

Which means that at some level, x can be either 1111 or 1112 and y can be either hi or "2' By 

sell ing a = (x - 4)/1 fo)" fM(x), the a - cut obtained for 1111 is: 

a = (111 1 - 4)/1 or 1111 = a + 4. 
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Simi larly, the other a - cut values obtained are: 

m2 = 6 - a ; h:t = a + 6; h2 = 8 - a 

The addition of !vi and H arc computed a~: 

= [(a + 4) + (a + 6),(6 - a) + (8 - a)] 

= [(2a + 10),(14- 2a)] 

The average fU7..zy number W is computed as follows: 

1 
W = z-X [(2a+ 10),(14- 2a)] = [Ca + 5),(7 - a)] 

Let Wa = [zl ,z2l = [(a + 5) , (7 - a) ] then a = ZI - 5 and a = 7 - Z2' 

Thus. the membership function of the aggregated (average) fuzzy number W is: 

5<x;<:;6 

6<x;<:;7 

otherwise 

A fuzzy error factor is calculated to account for the imprecision of data. The error factor is 

associated with the most possible val ue of the linguistic var iahles. The te0l1 "error possibil ity" is 

essentially a fuzzy probabi lity and is used to obtain a fuzzy error rate for each linguistic 

expression. The linguistic variables arc translated into fuzz), error probabil ities by triangular 

membersh ip functions displayed in Figure 4.3. 
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VL VH 

0.1 0.2 0.30.4 0.6 0.70.8 0.9 
0.5 1.0 

F IGli H 4.3 - TRIANGU LAR FUlLY Nu"mEl~S RHRIOSENT FUZZ Y ERROII. I'ROIlABILITI ES 

AggrcglllC experts ' opinions can be transfonncd in to one "fuzzy error probability" and the 

"fuzzy error rate", Ee . can be obtained from the fu zzy error probability using Ihe following 

equations proposed by "Iuang el al. (200 1): 

Ep '* 0 
£p = 0 

Er == error rate, 

£p == error possibility, 
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To illustrate, suppose 3 members assigned the lingu istic variables very high (VI-J), medium (M) 

and low (L) to assess a factor's eITect on safety. The lingu istic variables are translated into fuzzy 

error probabilities by triangu lar membership functions displayed in Figure 4,J, Thc fuzzy 

probabi lity va lues associated with very high, medium and low are (0.8,0.9, 1.0), (OA, 0.5 , 0.6). 

(0.2 , 0.3 , OA)} respectively. The aggregated fuzzy error probability is calculated as follows: 

(0.8,0.9,1.0) + (0.4,0.5,0.6) + (0.2,0.3,0.4)} 
xavu = 3 

= (0.47,0.57,0.67) 

The aggregated fuzzy error probability (OA7. 0.57, 0.67) is converted into the fuzzy error ratc by 

the following equations: 

1 
Er = 102.395 = 0.00403 

1 
Er = 10~.09S = 0.00809 

M = [1/0.67 _1]113 X 2.301 = 1.817 

1 
Er =i()1.8i7= 0.0152 

Table 4.3 displays the corresponding error rate (£r) of the error probabil ity (Ep). 
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· ... blr4.l.Fu7.zyError Rate(E,)andFuzzy ErrorProbability(Ep) 

4.2.5 DEFUZZ1F1CATION TO OBTA IN CRISP NUM t: RIC OUTPUT 

Once each linguistic expression assigned by Ihe expert panel is aggregated into one fuzzy 

number to rank each components effect on safety, Ihey arc directly entcred into the mood 10 

adj ust component reliabilities. The aggregated fuzzy numbers represent location·specific scoring 

assigned 10 each factor by the expert punel as they compare Ihe specific situalion to the global 

averagc. Thc aggregated fuzzy numbers are used to adjust eomponcnt rcli(lb il ity to predict the 

overall system reliability and accident frequency of the spec ific case by one of the following 

three scenarios: 

I. Adjusti ng dim;t layer component reliabihies, inputing the adjusted values into the mood 

toealculalesystem rc1iabililY and accident freque ncy directly. 

2. Adj usting corporate component rcliabi lit ies, inputing the adjusted values inlo the model 

wh ich influence the direct layer values. Once direci layer val ues arc detennined, syslem 

reliability and accident frequency are calculated 

3. Adjusting external component rcliabilities, inputing the adjusled values into the model 

which influence corporate values and, in IIITII, Ihc dircct values, facilitating systcm 

rci iabilityandaccidcnt frcqucncycaiculations. 
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The model uses the adjusted component rcliabilities to predict overall system reliability and 

frequency of accidents for the spct;ific case. The final outcome predicted by the model is a fuzzy 

va lue for it contains the uncertaint ies propagated from the nmking of each factor by use of fuzzy 

numbers. This fuzzy predicted outcome (frequency of occupational accidents) must now be 

translated into a crisp numeric output through a process ofdefuzzificati on. 

Defuzzification is the process of combining all fuzzy outputs into a specific composite result. It 

is the process used to calculate the crisp value of a fu zzy seL ··When us ing multiple inputs. the 

intent of defuzzification is to translate the obtained linguistic value and membership function 

into a singular crisp value" (McCauley-Bell, 1996). There are many methods of defuzzification 

but the three most commonly used methods are Maximum Defuzzification, Weighted Average 

Defuzzification and the Centroid Defuzzification Technique. 

Maximum defuzzificat ion takes the strongest fuzzy output as the result for the system output. It 

gives the output with the highest membership function. This defuzzification technique is very 

fast but is only accurate for peaked output. Maximum defu7..zification is considered to be a poor 

method due to the lack of input from other fac tors (McCauley.Bell, 1996). With the Weighted 

Average defuzzification technique, the output is obtained by the weighted average of each output 

of the set of rules stored in the knowledge base of the systeill. This method is computationally 

faster and easier and gives fairly accurate results. 

The Centroid defuzzification technique, also known as center of gravity (COG) or center of area 

technique, was developed by Sugeno in 1985 and is the most accepted and commonly used 
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method of defuzzifieation. The C::{l)C technique is considered to be a more effective method than 

the maximum defuzzification and weighted average techniques because it is vcry accurate and 

considers the contribution of all fuzzy outputs and the degree to which each is true. Because of 

ils effectiveness and accuracy in the defuzzification process. the COG technique will be utilized 

in the prcsent work. 

The COG method detennines the center of the area of the combined membership functions. 

Using the membership function fw(z) for the average fuzzy number. W. the COG of the area 

under the membership function is calculated as follows: 

where [a, c] is an interval containing the support of fw . 

811 Page 



Chapter 5 

CASE STUDY 

In order to verify the methodology of FST, a case study is presented in this chapter to illustrate 

the usc of FST within Attwood's predictive model. The methodology used to incorporate FST 

within the model is outlined in detail in Section 4.2 of Chapter 4. This case study was previously 

executed by Attwood el {If. (2006c) to showcase the effectiveness and versatility of the predictive 

model by comparing the number of predicted and actual annual accidents on a Newfoundland 

(NL), Canada, based installation. The main purpose of this case study is to construct an easy 

method to evaluate and minimize uncertainty and integrate it into the framework of Allwood's 

predictive model by use of FST. Through this proposed methodology, the judgemental 

uncertainties associated with experts' subjective opinions can be expressed properly by using 

fuzzy sets and the accident rate can be assessed with bettereollfidenee. The subsequent section 

of this chapter will give a detailed account of the incorporation of FST within the model to 

address the uncertainty and imprecision ar ising out of the subjectivity of expert opinion. 

5.1 CASE STUDY 

II case study has been executed to compare the number of predicted and actual annual accidents 

on a Newfoundland (NL), Canada, based installmion. The main objective of this study is to 

enhance the etTcctivcncs~ of thc predictive model by using FST as a means of modeling 

uncertainty. As a methodology, FST incorporales imprec ision and subjectivity in the fonn of 

expert opinions into the model fonnulation and solUlion process, providing a framework to 

achieve "all the universally recognized advantages of fuv:y representation such as cognitive 
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plausibility and robustness" (Baroni & Guida. 1998). The proposed methodology recognizes that 

uncertainty plays a role in decision making and uses FST to minimize uncertainty and assess the 

occupational accident rate with greater confidence through a) the assignment of linguistic 

variablcs to rcprcscnt each ractor"s errect on sarety or specific case condition; b) conversion or 

linguistic variables into a ruzzy numcrical range through the development or membership 

runctions; e) aggregation or rUlZY numbers into one ruzzy variable to represent each ractors 

eITect on sarety; d) calculation or the ruzzy error probability and ruzzyerror ratc to estimate the 

degree or uncertainty each component contributes to the final outcome; e) propagation or fuzzy 

numbers to adjust component reliabilities to detennine the fuzzy outcomc or frequcncy of 

occupational accidents; f) the usc of fuzzy operations to ca lculate a crisp numcric model output; 

and g) intcrpretation of thc uncertainties associated with the fuzzy outcomes. TIle stepwise 

analysis of the described methodology or FST is presented be low. 

5.2 ACTUAL VS PREDICTED ACCIDENT RATE ON A NL OIL & GAS 

rLAn'ORM 

A Newfound land bascd 100 r OB (persons on board) production installation was ehosen as a case 

study for thc model in a paper published by Atlwood et a l. (2006) entitled "Validation of an 

Offshore Occupational Accident Frequency Prediction Model- A Practical Demonstration Using 

Case Studies" Atlwood assumed production to be a 24 hour operation whieh is normal 

operational procedure on most oITshore o il and gas installations. with a split shift scenario for 

eaeh \.\.'orker. This means that 50% of workers arc "on shift" whi le 50% of workers are resting. 

This scenario ean also be ,·iewed as if 50% of the 1'00 arc working continuously. 
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Data for the calibration portion o f the model application arc publicly available (Attwood el al., 

2006a). For thc purposes of this case study. the expected number of aceidcnts on a 100 rOB 

installation was calculatcd by combining thc 2004 annual avcragc global accidcnt rates. TR IR 

(tota l recordable incident rate) available from the OGr database with the total number ofpeoplc 

on board. Table 5. 1 displays accident ratcs (cvcnts per million hours) for the Ncwfoundland case 

study. 

T~blf 5. 1 - Accidcnl nues per m;t!;on llours(Atiwood el u/ .. 2006c) 

2000 2001 2002 2003 2004 Avcragc 

~:bata\"tr~ge 
RI. 

8.84 6.85 5.77 4.87 6.36 6.54 

Nt"' f(}undt~nd 10.16 9.49 8.04 11.45 4.36 8.70 
(n~11t 

Numbt'rof 
ftccl denls(burdon 

3.87 3.00 2.53 2.13 2.79 2.86 
~toba t ""erage 
Tltllt 

Num bt' r of 
Rcddcnts(basrdoll 

4.45 4.16 3.52 5.02 1.91 3. 81 Nrwfoundtand 
T lt l lt 
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Stcp 1 - C(IIClllatc Aclual number of accidents IInder global average conditions 

Using the global average (TRIR) ror 2004 or6.36 accidents per million manhours, and assuming 

50% or POO are working continuously, the expected number of accidents is calculated as 

rollows: 

Expected accidents 

= 6,36 accidents/l,OOO,OOO man/lOurs x 100 persons x 0,50 worki1lB x 24 hours/day x 365.25 days/year 

= 2.79 

Step 2- Calibration run 10 de/crmillC basc ('ase compOllcnl rdiabililies 

The model is then run in calibration mode in order to sct base case component reliabi lities. The 

expected number of accidents is used to back calculate overall system reliability. Once the OUlpUl 

(ic. accident rate = 2.79) is determined using global average accident statistics, a starting 

reliabilit), is calculated using the reliability equation based on a constant failure rate as outlined 

below. 

where: 

), = accidelllrate=2. 79 
R(t) = sysrem reliability 
t = fime = I 

R(t) = exp [- fAdt] = e - At , t > a 

:::= 0.061 
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This starting reliability, 0.061 , is then assigned to each base case component within the extemal, 

corporate and direct layers to set the base case for comparison between actual and predicted 

results. The expected number of accidents is 2.79 based on the global average and overall system 

reliability is 0.061 as detennined through the calibration run. Figure 5.1 displays systematic steps 

involved in assignment of base case rcliabililies for the calibration run. 
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External 
Layer 

Price of 011 
Shareholder 
pressure 

Royalty 
regime 
Value 
placed 
on human 
life 

l me> ~ Calculat!! Accident Rale 
(based on global allerage) 

X" 2.79 

1 f sm2 
Calculate Starting Reliability 

R(t) '" e'" 

=0.061 

- 1_ 
STE" J Assign Startin!': 

Retiabilities to Base Case 

Components 

../ ~---------~~----------
Base Case 
Reliability 

0.061 

0.061 

0.061 

Corporat e 
Layer 

Safety 
culture 

Safety 
training 
programs 
Safety 
procedures 

Base Case 
Reliability 

0.061 

0.061 

0.061 

Direct Layer 
Base Case 
Reliability 

Behavioural 

Attitude 0.061 
Motivation 0.061 
Capability 
Physical 0.061 
Coordination 0.061 
Fitness 0.061 
l atkof 

0.061 
fatigue 
Mental 0.061 
Knowledge 0.061 
Intelligence 0.061 
Weather 0.061 
safety 

0.061 
design 
PPE 0.061 

FlGt lRE 5.1 - ASSIGNMENTOF BASE CASE R ELIABII.ITIES FOR CALIBRATION R UN 
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Slep 3 - Fuzzy Approach 10 Adjusl Componenf ReliabililY 

At this stage of model execution, componcnt reliability adjustmcnts arc rcquired to assign scores 

to components to represent specific case condition~. FUlZY sct theory is incorporatcd into this 

phasc of modcl cxccution to account for thc subjective uncertainty associated with the expert 

panel opinions when nllingeaeh factorsefTcctonovcrallsafcty. 

Step J/-As.I'iXflmcnl ojfilzzy Unguis/ic Variablc 

A panel of seven (7) qualified safety professionals, averaging 18 years experience within the o il 

and gas industry, wcrc used in Attwood's study to rate Newfoundland's safcty environmcnt 

compared to global average conditions. Thc expert panel assign one of five fuzzy linguistic 

variables, very low (VL), low (L). medium (M). high (H) and very high (V I-I ). to each direc\, 

corporate and cxternal factor to rate each factor's effect on safety for the spec ific case (NL 

offshorc installation) compared with the global average as shown in Table 5.2. The global 

average is assigncd a fuzzy linguistic variable ofmcdium representing a fuzzy valuc of(4, 5, 6). 
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Table 5.2 - Assignmenl of tinguislic variables 10 rale NL safelY environment 

V.lue placed 
onhu,nan 

life 

Prioxofoil 

Sh~hokk' 

I"".,. 

Safel)' 
culture 
Safel), 

Fit~ss 

Knowkd c 
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Slep 3.1 - Com'ersion of Linglli.l'lic Variables inlo Fuzzy Number.\' 

The next step involves conversion of fU72y lingui stic variables to triangular fU72y numbers by 

use of membership functions. The fuzzy numbers of the five linguist ic variables {Very Low 

(V L), Low (L), Medium (M), High (H) and Very High (VH)} are represented in Figure 5.2. 

VL VH 

10 

FIC Ulu: 5.2 - TIlIANGUI..A1I. FUZl:Y NUMBERS II.EPII.ESENTING LINGUISTIC VAII.IAIlLES 

The corresponding membership funclions of these fivc linguistic values (VL, L, M, H, VB) in 

triangular fuuy numbers are illustrated as foll ows: 

90 I P age 



{ 1 
O<xS; l 

(2-x) 
fn(x)= T 1 < x S 2 

olhenvise 

r-2
) 

2<xS3 

fcCx) = (4~X) 
3<x$4 

otherwise 

r- 4
) 

4<xSS 

[.(x) = (6 ~ x) 
5<xS6 

otherwise 

r- 6
) 

6<xS7 

[,(x) = (8 ~ x) 7<x:s;S 

otherwise 

{ (x-8) 8<xS;9 
IVH(x)= T 9 < x S 10 

otilelwise 

E.1ch membership function can be cut horizontally at a finite number of (1- confidence levels 

between 0 and 1 to obtain lower and upper bounds for each confidence interval. For each (I-cut 

of the parameter, the model is run 10 dClcrrninc the minimum and maximum possible values of 

the output. This infomlalion is then directly used [0 construct the corresponding fuzziness 

(membership functions) or the output which is used as a measure of uncertainty. For the purposes 

of Ihis example. the author defines II confidence interval of a = 0.5 and each membership 

function is cuI hori,wlllally at a = 0.5 to obtain lower and upper bounds for each fuzzy value 

representing the fivc(5) linguistic variables as shown in Table 5.3. 
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To illustrate, Expert I assigned a linguistic variable of 'High' to the corporate factor 'Safety 

Culture', The linguistic variable ' I-l igh' is represented by a fuzzy value of(6, 7, 8) as defined by 

the membership function: 

{

CX - 6) 

[,(x) ~ C8~X) 
6<x:<;;7 

7<x S S 

otherwise 

Alternatively, defining the interval of confidence at a level. a = 0.5, the linguistic variable 

'I-ligh' is characterized by the triangular fuzzy number, H: 

'rIa= [0,1): 

= [(b - a)a + a.c - (c - b)al 

= [(7 - 6)0.5 + 6,S - (8 -7)0.5] 

= [6,5,7.5] 

Therefore. the linguistic var iable 'High' is converted inlo Ihe fuzzy value [6.5,7.5] which 

represents the minimum and maximum fuzzy values for II confidence interval of a = 0.5. 
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rable5.J-Linguislic Values and Fuzzy Values 

Linguistic Value Confidencelnlerval ora O.S 

Lower Bound (l\1in) Ullper Ilonnd (l\1ax) 

Very Low (VL) 0.5 1.5 

Low(L) 2.5 3.5 

l\1cdium (M) 4.5 5.5 

Uigh (H) 65 7.5 

Very Uigh (VIl) • .5 9.5 

Step 3.3 - Aggregate Experl Opinions info a single Fuzz), Number 

It is necessary to aggregate Ihe opinions of multiple experts in order to achieve a more reliable 

assessment of the speci fic environment. The mean average operator is used to aggregate the 

opin ion of each expert into one fuzzy number. To ill ustrate, under the direct layer. the factor 

'Safety Design' was rated as having a 'Medium ' effect on safety by 2 experts and assigned a 

value of' High' by 5 experts as shown in Table 5.2. The fu zzy numbers representing 'Medium' 

(M) and ' l.Jigh' (H) are defined as follows' 

{

(X- 4) 

fM(x) = (6 ~ x) 

{

(X- 6) 

Mx) = (B~X) 

The addition of M and fI arc computed as: 

4<xSS 

S<xS6 

otherwise 

6<xS7 

7<xSB 

otherwise 
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= [(2a + 8) + (Sa + 30),(12 - 2a) + (40 - Sa)] 

= [(7a + 38), (52 - 7a)] 

Defining a confidence intcrval of a = 0.5, the average fuzzy number SD is computed as fo llows: 

SD = ~ x [(7a + 38), (52 - 7a)] = [(a + 5.4), (7.4 - a)] 

= [(0.5 + 5.4), (7.4 - 0.5)] = [5.9,6.9] 

Thus. the membership function of thc aggregated (average) fuzzy number SD representing the 

direct factor 'Safety Design' is: 

{
V- 5.9) 

[,,(x)" (6.9;-:) 
5.9 < x:5 6.4 

6.4 < x :5 6.9 

otherwise 

The average fuzzy number for 'Safety Design' can also be calculated by using the following 

equatiol1' 

(2 (4.5,5,5.5)+ 5 , (6.5,7, 7.5)} 
fSD(X) 

41.5,45,50.5 --,--
= (5.9,6.4,6.9) 
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Dcfining a confidence interllal of 0.5, the direct factor 'Safety Design' is assigned a fuzzy value 

of l5.9,6.9] with a mean value of 6.4 to ratc its effect on safety of the specific case as comparcd 

to the global average. Table 5.4 displays thc aggregated fuzzy numbers defined by a confidence 

interval ofa '" 0.5 which arc used to adjust eomponcnt rcliabilities for all factors under the direct, 

eorporatc and external layers. Calculations for the aggregation of fuzzy numbers are outlined in 

Appendix B. 
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Tabl~ S.4 - Summary of Aggregate<! Fuzzy Numbers 

Confidenct intfn·l l,a- O.5 

Value place<! on human life (7.9.8.4.8.9) 7.9 '9 

Pritt of oil (7.9.8.4,8.9) 7' 
., 

Shareholder pressure (1.9.2.4.2.9) " 2' 

Royahyregimc (3.4.3.9.4.4) l4 4A 

CQrporatf 

Safety culture (6.8.7.3,7.8) 6. 

Safety training (7.1.7.6.8.1) 

Safctyprocedures (7.9.8.4,8.9) 

Attitude (7.1.7.6.8.1) 

Motivation (5.1.5.6,6.1) " Lackoffatiguc (5.6.6.1,6.6) '.6 66 

Coordination (3 .6.4.],4.6) 7.' 46 

Fitness (4.5,5.0,5.5) " Knowledge (5.6,6.1,6.6) 6.6 

Intelligence (3.4,3.9,4.4) 4A 

Safctydesign (5.9,6.4,6.9) 69 

(1.4,1.9,2.4) 24 

(7.9,8,4.8.9) 7.9 
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SICI' 3.4: Adjllsl componen/ reliabililie.~ willi Aggregaler/ Fuzzy Nllmbers 

The fuzzy numbers, displayed in Table 5.4, represent location-specific scoring assigned to each 

factor by the expert panel as they compare the spec ific situat ion (NL installation) to the globa l 

average. The model predicts a fuzzified accident frequency rate forthcspccificcascbydirectly 

entering lhe fuzzy values for the direct. corporate or external layer components. Allowing the 

model to run in predictive mode using minimum and maximum fU7..zy values to adjust 

component reliabilities detennincs minimum and maximum outputs for the accident frequency 

rate which represents the upper and lower bounds of the fu7..ly output. A triangu lar membership 

function is used to convert this fuzzy output into a crisp, numerical value which is used for 

comparison purposes with the actual (global averJge) case 

For this specific case study, coIIIlXlncnt rcliabilities within the corlXlrJte layer arc adjusted. As an 

example, the corporate eomlXlrlent 'SafelY Training' is adjusted by multiplying the base case 

reliability of 'Safety Training' with the minimum fuzzy ratio of 7.1 /4.5 10 obtain its minimum 

adjusted reliabi lity value. The va lue of 4.5 represents Ihe lower bound for global average which 

was assigned a linguistic value of ·Mediulll·. The value of 7.1 was taken from Table 5.4 and 

represents the minimum fuzzy value for 'Safety Training' . External eomlXlnent reliabilities are 

assigned a value of 0.06 1 which is the base case reliability as calculated in the calibration run. 

The following calculation is used to obtain the minimum reliabi lity value for 'Safety Training': 
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= (0.061 x 0.18 + 0.061 x 0.27 + 0.061 x 0.18 + 0.061 x 0.27) x (~) 

= 0.085 

where: 

Rpo = reliability of price of oil 
= 0.061 (direct input from base case run) 

RSJJ = reliability of shareholder pressure 
= 0.061 (direct input from base case rUIl) 

Rrr = reliability of royalty regime 
= 0.061 (direct input from base case run) 

RUI = reliability of value placed on human life 
= 0.061 (direct input from base case run) 

')JOI = influellce coefficiellt of price of oil 
= 0.18 (direct input from model as displayed ill Table I.Ch. 2) 

isp1 = influence coefficient of shareholder pressure 
= 0.27 (direct input from model as displayed in Table 1, Ch . 2) 

1m = influence coefficient of royalty regime 
= 0.12 (direct input from model as displayed ill Table 1, Ch. 2) 

J~II = influel!ce coefficient of value placed on human life 
= 0.43 (direct input f"om model as displayed il! Table 1, Cil. 2) 

The reliability of each component within the corporate layer is adjusted accordingly to obtain 

minimum reliability values which arc used to infiuenee direct layer components, facilitating a 

minimum value for model outputs (ie. minimum value for overall system reliability and accident 

frequency rate). Reliability adjustments arc then made using maximum values to obtain 

maximum model outputs for overall system reliability and accident frequency rate. Reliability 
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adjustmcnt cquations for all other clcmcnts within the corporatc layer are displaycd in Appendix 

c. 

Step 3.5 - Calculale Fuzzy Error Prohahilily and Fuzzy Error Rale 

A fuzzy error factor is calculated 10 aecoum for the imprecision of data. Thc crror factor is 

associated with the most possible value ofthc linguistic variables. Thc tcrnl ··crror possibility" is 

essentially a fuzzy probability and is used to obtain a fuzzy error ratc for cach linguistic 

expression. Fuzzy probability is a fuzzy number eharaeterizcd by its mcmbership function. 

Fcrdous ('/ (II. (2009) statcs that fU1..zy probability atlempts to define a basic event into a fuzzy 

probability set and uses these fuzzy events in subsequcnt computations. Thc imprecise 

probabilities of basic events arc refincd by charactcrizing thc basic event data with a suitablc 

membership function thcreby minimizing the crror duc to uncertainty in basic event probabilitics 

by using fuzzy prob"bility for quantifications. The proposed methodology u~c~ a fU1..zy 

probability to obtain 1I fuzzy crror ratc for each linguistic expression. I·luang el (II. (2001) 

proposed thatthc fuzzy crror ratc, ... ::." can be calculated using the following equation: 

Ep *" 0 
Ep = 0 

Er == erJ"orrate, 

Ep == error possibility, 
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The fuzzy error probabilities of the five lingu istic variables {Very l ow (Vl), low (l), Medium 

(M), High (H) and Vcry High (VH)} arc represented by a triangular membership function as 

displayed in Figure 5.3, 

0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 
0.5 1.0 

F1Ctau: 5.3 - TRIANGULAR Fuzzy NUMBERS REPRESI:NTING Fuzzy ERROR PROIIABIU i"Il,S 
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A summary of linguistic values and corresponding fuzzy error probabil ities are displayed in 

Table 5.5. 

"'a bl ~S.S - Linguistic Variablcsand Fuu.y Error Probabilities 

Confidcncc lnlCn'alof a 0 .5 

Fuay er ro r IlOssibility Lower Ilound (Min) UIIP~f Dound (M u) 

\'f f )" Low (VL) (0.Q5,0.I.O. 15) 0.05 0.15 

Low{L) (0.25,0.3.0.35) 0.25 0.35 

Mtdium (l\I) (0.45,0.5,0.55) 0.45 0.55 

IIigh ( lI) (0.65,0.7.0.75) 0.65 0.75 

Vt ry lligh (VII) (0.85,0.9.0.95) 0.85 0.95 

The fuzzy error rate for each component is caleulmed to measure the percentage of uncertainty 

each component contributes to the final outcome. The error probability is evaluated by 

transfonn ing the linguistic values assigned by each expert into correspond ing fU1-Zy error 

probabilit ies. The method proposed by Yang el (II. (2003) is used to aggregate expert opinions 

into one fU1-Zy error probabi lity. The aggregated fuzzy error probabi lities for each component can 

be converted into a fuzzy error rate by using the method proposed by Huang el al. (2001). A 

summary of aggregaled fU7-Zy error probabi lities and fuzzy error rates is displayed in Table 5.6. 

The fuzzy error rates for each component can be used to measure the degree of uncertainty each 

component contributes to the fi nal outcome. 

The error possibil ity is evaluated by transfonning the linguistic values assigned by each expert 

into corresponding fuay error possibilities. The method proposed by Yang el al. (2003) is uscd 
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\0 aggregate expert opinions into one fU7..zy error possibility, The aggregated fuzzy error 

possibility for each component can be converted into a fuzzy error rate by using the method 

proposed by I-luang el af. (2001). A summary of aggregated fuzzy error possibi lities and fuzzy 

etTOr rates is displayed in Table 5.6. The fuzzy error rates for each component can be integrated 

into the adjusted reliability calculations (model) to measure how much uncertainty each 

component contributes to the final outcome. 

l02t Pa ge 



- --- --- - -----------

Table 5.6 - Summary of Aggregated FuZ2:y Error I'mbabilitie:ol & Fuzzy Ermr Rat~s 

Confitlenreinlen 's l, a 0.5 

'\ggrrgal .... funy urorpossibi lily 

M aximum Minimum(%) Ma~iIHU IH (%) 

Value placed on human 0.79 0.89 331 1.14 
life 
Price of oi l 0.79 0.89 3.3] 

Shareholdcrpressurc 0.19 0.29 0.0136 

Royahyregime 0.34 1).44 0.135 0.321 

C OCl·o .... l r 

Safetycuhure 1.62 3.11} 

Safety training 

Safely procedures 

0.7 1 3.81 

Motivation 0.51 1.40 

Lackoffat igue 0.56 0.752 \ ,4) 

Coordination 0.36 1),374 

Fimess 0.45 0.55 0.347 

Knowledge 0.56 

Intelligence 0.135 

Safely design 0.69 

Weather 0. 14 0.24 

I'I'E 0.79 
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As shown in Table 5.6, the extemal componcnt ' Value placed on human life' has a fuzzy error 

range of [3.31%, 7.14%J whi le the direct component 'Weather' has a fuzzy error range of 

[0.00611%,0.0418%]. TIlerefore, when comparing the fuzzy error rates of the two components, 

the extemal component 'Value placed on human life' contributes a greater dcgrec of unccrtainty 

tothe final fuzzy outcome (accident frequency). 

Slep.f - Prediclion rlln 10 obtain Fllzzy Olllcome 

The next step involves running the model with adjusted componcnt reliabilitics to predict the 

minimum and maximum values of overall system reliability and accident frequcncy, For this 

specific casco prcdiction of system reliability and accident frequency 011 a Nt installation is 

detennined by adjusting components within the corporate layer which, in turn, influence the 

direct layer values. facilitating the calculation of the final outcomes. The fu zzy numbers assigned 

to rate each eomponcnt are propagated through the model to predict funified lower (minimum) 

and upper (maximum) bounds for both system reliability and accident frequency. This 

infonnation is then din:ctly used to conStruct the corresponding fU7..ziness (membership 

functions) of the predicted accident ralC which is used as a measure of uncertainty. Figure 5.4 

displays the model output using minimum fU7.zy values to adjust eomponcnt reliabilities and 

calculate predicted fuzzy outcomes while Figure 5.5 displays the model output using maximum 

fuzzy values. 

l04IPa ge 



External Layer 

Reliabili ty 
Price of oi l 0.061 

pre»ure 
Royalty regime 
Value of life 

I 
Corporate Layer 

Factors Reli~bili tv 

Safety [ulture 0.096 
Safety training 
Safety 

P'OC""" r 0.092 

Behavoural 0098 
Attitude 0098 

} Directinpuli 

} Adjusted Re liab iities 

Fuzzy Outputs 

Capability 0075 Direct Layer Rel iability 
Phys cal 0081 

,,«",,0"&' "':''''b'''' -l 
Motivation 0098 ~ 

lackoffatgueO.098 ~LR(t!"" =(Ro)'bX(R.)"' X(R..)"' X(R" )'''' X( Ro,.. )_ 
Fitness level 
Coordina tion R(t),,.= 0 071598 
Mental 0.072 ____ ~ 

KnowledgE! 0.098 ---r 
Inteli igence 

W .. ,"" 0.0<7< r-::= - J 
Safety Design 0.098 L Accident/vear = 2.637 

l 
l co<.t/year:$80'~ 

FIGl lltt: 5.4 - PII.Em Cl "IVE RUN DlSI'LAVING MINIM UM Fuzzy MOI)ELOUl1'IHS 
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External Layer 

Reliabi lity 
Safety culture 0.090 
Safety training 
Safety 
procedures 

Direct layer 

Re liab ility 
Behavoural 0.091 
Attitude 
Motivation 
Capability 0.071 
Physical 0.076 
Lac~ of fatigue 0.091 
Fitness Level 0091 

Knowledge 0091 
Intel ligence 0.041S 
Weather 0.0171 
SaletyDesign 0.091 
Motivation 

} 
} 

Direct inputs 

Adjusted Reliabi it ies 

FUIZyOutputs 

Direct Layer Re liability 

1"<1,·°""",,,,,,,,-,-,,,,,,,,,,,"-,­
Rit),,,= 0.067611 

1 "' ; d'",/~3 
l~ 

[ Cost/year = $82,166.70 1 

FICI IRE 5 .5 - PREDICTIVE RUN DISPLAYING MAXIMUM FUZZY MODEL OUTPUTS 
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Step 5 - Dejuzzijication 0/ Fllzzy Olltcome into Crisp mIlle 

Following the prediction run. the minimum and maximum values obtained for accident rate are 

2.64 and 2.69, respectively. These fuzzy values which represent the lower and upper bounds are 

uscd to construct thc triangular membership function rcprescnting thc prcdicted fuzzy accident 

rate. The predicted outcome for accident ratc is a fuzzy value for it contains the uncertainties 

propagated from the ranking of eaeh factor by use of fuzzy numbers. This fuzzilied value must 

now be translated into a crisp numeric output through a process of defu7..zilication. 

The Centroid dcfuzzilication technique, also known as center of gravity (COG) or center of area 

tcehnique. considers the contribution ofa!l fuzzy OUlpUlS and thc dcgrceto which each is true. 

Because of its cffectiveness and accuracy in the defuzzification process. the COG technique will 

be utilized in the present work. The COG method determines the center of the area of the 

combined mcmbership functions. Using thc membership function far(x) to represent the fuzzy 

accident ratc, the COG of the area undcr the mcmbership function is calculated as follows: 

I:tar(X)XdX 
x = f;tar dX 

where [a, c] represents the lower and upper bounds, 2.64 and 2.69. containing the support of far. 

Using the triangular membership function , displayed in Figure 5.6. the accident ratc is 

represented by thc rncrnbcrship function: 

{

(X-2.637) 

'o,(x) = (2.69~ - x) 

2.637 < x ~ 2.665 

2.665 < x ~ 2.694 

otherwise 
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A(x) 

Crispvali.le 

F IGl lIU: 5.6 · TRIANGULAR MEMllERSlliP FUNCTION REPRESENTING I'REI)ICTEDACCIDENT RATE 

Defining a confidence interval of a = 0.5 and using the COG technique. Ihe crisp value for 

accident rate is the centre of arc a of the triangular membership function. corresponding to a crisp 

valueof2.67. 

Step 6 - COIIIIX/rison o/predictions willi estim(ltes of (leillal (lcci(lentnllmbers 

For 2004, the actual number of accidents expected on an ofTshore oil and gas platfonn, bascd on 

thc global average is 2.79. as shown in Table 5.7. Using thc propo.s<.-d methodology, thc predictcd 

number of accidents per year. based on thc incorporation of FST into the framework of 

Attwood's predictive model. is 2.67 which is very close to the industry average. The componcnts 

contributing the greatest degrec of uncertainty to the final outcome were 'Valuc placed on human 
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life', 'Price of oil', 'Safety Procedures', and ' PPE' having a fuzzy error range between 3.31 % 

and 7. 14%. The component contributing the least amount of uncertainty to the final outcome was 

. Weather' which had a fuzzy error range between 0.006 11 % and 0.0418%. 

Tab l ~ S.7 - Comparison of AC1uai \' ~. Predicted Re~ul1s for Accident Rate (2004) 

Reliabi lity Acciden t rllte/yea r Cost/year 

BasrC.~r 0.061 2.79 $85,310.07 

l'rrdiclrdC.~r 0.0696 2.67 $8 1,292 .22 C ris )ulut 
l'rrditlcdC.,r 0.0716 2.64 $80,419.1 2 

l'rrd ictrd Casr 
0.0676 2.69 $82,166.70 

The objective of the case study is to minimize uncertainlY while maintaining the simplicity of 

Attwood 's predicti ve model. By use of FST, it has provided an effective means to account for 

and minimize uncertainty, which plays a sign ifica nt role in Ihe decision making process of 

Attwood 's model. The proposed methodology also enables the user to identify the amount of 

uncertainty each component contributes to the final result 
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Chapter 6 

CONCLUSION 

6. 1 CONCLUSION 

Fuzzy sct thcory erST) providcs a uscful tool to address thc judgcmcntal unccrtaintics associated 

with cxperts' subjcctivc opinions through thc usc of fuzzy sets. The incorporation of FST inlO 

Attwood's predictivc model is aimed to enhancc the effcctiveness of the model by providing a 

mathcmatical tool \0 account for vagucness and uncertainty associated with expert judgements 

and opinions and to propagatc Ihis uncertainty through the model. The novelty of the proposed 

methodology lies in the approach that embraccs uncertainty as an inseparable element of the 

system and incorporates it within the framework of Attwood's model. The application of such a 

modcl can hclp predict the frequency of occupational accidcnts with bettcr confidence by 

recognizing unccrtainty and incorporating it in the analysis proccss by usc of fuzzy scts. 

Thc proposed mcthodology uscs linguistic variablcs to ratc a componcnts cffect on safcty for the 

specific cnvironmcnt, providing a morc intuitivc, uscr-fricndly approach to the analysis process. 

Thcsc linguistic variables arc convcrted into fuzzy numbers which carry morc informat ion than a 

crisp, numerical raling factor and allow thejudgemcnta l uncertainties associatcd with cxperts' 

subjcctivc opinions to be properly cxprcssed. Thesc fuzzy numbers arc characterized by 

triangular mcmbership functions which incorporate the uncertainty of the component. By using a 

fuzzy approach, uncertainty is introduced at the component level whcn rating cach componcnts 

cffcct on safcty and thc anal)1ical mcthod is used to propagatc it further. Through the use of 

fuzzy error probability and fuzzy error ratc, onc can measurcthcdcgrcc of uncertainty each 
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component contributes to the final outcome providing the analyzer with useful infonlJation for 

stratcgics that focus on the reduction of total uncertainty. The proposed methodology recognizes 

that uncertainty plays a role in decision making and incorporates a fuzzy approach to account for 

and minimizc uncertainty while maintaining the simplicity of Attwood's model. It provides a 

more efTective means for assessing thc occupntional aeeidcnt ratc by: 

Assigning a linguistic. qualitativc scale of importance to rate each components effect 

on safety for the specific case, pro\' iding a more natural, user-fricndly approach to thc 

analysis process; 

Ii. Conversion of linguistic variables into fU7..ly numbers to incorporate the uncertainties 

of cxpert opinions when rating a components efTect on safety. Utilizing triangular 

membership functions to convert each linguistic expression into a corresponding 

fuzzy number minimizes the error due to the subjective uncertainty of experts' 

opinions by usc of fuzzy sets. Each input parameter is treated as a fU7.zy number .\tId 

thc unccrtainty is charactcrizcd by a triangular membership function. 

iii. Utilizing fuzzy operations to effcctively propagatc uncertainty through the model, 

calculate a crisp numcric output through a proeessofdefuzzification and estimate the 

degree of uncertainty each component contributcs to the final outcome. 

6.2 FUTURE: WORK 

This work proposes a fU7.zy methodology to cvaluate unccrtainty and integrate it into the 

framework of Attwood·s predictive madelto effectively assess the occupational accident rate 

with better confidence. Many other aspects remain to be investigated using this proposed 
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methodology within Attwood's predictive model. The fo llowing recommendations have been 

suggested for future improvement of the proposed study: 

In order to improve upon the effeeti\'Cness of the model, the model can be further 

modified by incorporating FST during the early stages of model dcvelopmcnt to rank 

influence cocmcicnts and strength factors used within the reliability calculations. 

ii. Attwood el al. (2006c) have demonstrated the versatility of the predictive modcl 

through the execution of casc studies to predict the occupational accidcnt frequency 

under unique safety environments, to observe improvements in resul ts achievable 

with changes in input conditions and as a means of sctting realistic safety targets. In 

order to make the proposed methodology more rel iable and effective. it is necessary 

that the proposed methodology outlined in this case study be properly compared and 

validated with the analysis of more case studies using Attwood's predictive model. 

iii. By estimating the fuzzy error mte, one can identify the degree of uncertainty each 

component contributcs to the final result. The error rate can highlight cOmponents 

that contribute the greatest degree of uncertainty, allowing one to observe 

improvements in the occupational accident rate with changcs to input paramcters 

contributing the highcst degrce of uncertainty to thc final outcome. 

iv. Attempts nced to be made to utilize different fuzzy methods for constructing 

membership functions or aggregating expert opinions and compare the results to 

detennine the most effective fuzzy approach to address unccrtainty within the 

framcwork of Attwood's predictive model. 
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APPENDIX A 

RELIABILITY CA '.CULA TlONS 

A.I DIRECT LAYER COMPONENT RELlAIl ILlTIES (Attwood el (/1.. 2006a) 

Ilchavinur: 

Rb == reliability value for beh3v iour == (I - (I • R,,)"' x (I - Rm)"") 

where: 

Attitude: 

where: 

R" == reliabi lity of safety training (defined below) 

RI" == reliabi lity of safety procedures (defined below) 

Roc = reliability of safelY culture (defined below) 

I.to = infiucncc coefficient of safety training on attitude 

lpnl = infiuence coefficient of safety procedures on attitude 

I",. == infiucnce coefficient of safety culture on attitude 

lSI'" = influence coefficient of safety training on motivation 

Iptm = influence coefficient of safety procedures on motivation 

I",,,, = influence coefficient of safety culture on motivat ion 

sa == strength of attitude 

sm == strength o f motivation 
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Safetypmeedures: 

where: 

Rf>O '" reliability of pricc of oi l (direct input) 

R", = rc1iabililY of shareho lder pressure (d irccl input) 

Rrr = reliability ofmya!ty regime (direct input) 

R, I "'rcliability of"alue placed on human life (dircct input) 

!pooI '" influencc coefficient of price of oi l on safety training 

I"", = influcnce coefficient ofshareho!dcr pressure on safety training 

I,m = influence coefficient of royalty regime on safety training 

1,'I<t = influence coefficient of "alue placed on human lifc on safety training 

[popr = influence coefficient of price of oi l on safcty procedures 

ISIlPI " influence coefficient of shareholder pressure on safety procedures 

[rIP' '" influence coefficient o f myalty regimc on safcty procedures 

I, ll'" = influence coefficient of"aluc placed on human lifc on safety procedures 

If""" = infl uence coefficient of price of oi l on safctyculture 

I",,,, = influencecoefficientofshareholderpressureonsalctyculture 

I",." = influcnce coefficient o f royalty regime on safcty culturc 

1,1", = influence coefficient of\'sluc placed on human life on safety cu lture 
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Canabili h ': 

R., = reliability value for capability = (Rp)"" X (R.mr) ..... 

where: 

Physical capability: 

where: 

Fitness: 

Lack of Fatigue: 

Coordination: 

R<= direct input 

where: 

1.1f= influence cocfficient ofsafcty trniningon fitness 

Iprr= influcnec cocffieient of safety procedures on fitness 

I.d = influcnee coefficient of safety culture on fitness 

1 .. lf= influence coefficient ofsafcty training on fitness 

l(>rlf= influence coefficient of safety procedures on lack offutigue 

1""lf= influence coefficient ofsafetycuiture on lack offutigtle 

sp = strength ofphysicul capability 

s111c = strcnglhoflllentul capability 

sf = strengthof fitness 

slf = strength of lack offatiguc 
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sc=strengtnofeoordination 

Mcntalcapabilitv: 

Rrnc: = Cl-CI-Rdk x( I - Ri)") 

whcre: 

R,= direct input 

whcre: 

Istk = inOucnce coefficicnt o f safety training on knowledge 

If"\;: = inOuence coefficient of safety procedures on knowledge 

I.d = inOuence coefficient of safety culture on knowledge 

sk = strength of knowledge 

si = strength ofinte11igcnec 

Safeh' J)csign: 

R>d= reliability value for safety design = (Rst) x lSI><! + RI" X IfK.Id + R"" X I"".\IJ 

where: 

lSI><! = inOuencecocfficient of safety training on safety design 

1fK"1 = inO uence cocfficient of safety procedures on safctydesign 

I""..; '" inOuellcc coefficient of safety culture on safety design 
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Rppt= re liabi li ty value for PPE = (Rst) x l,(ppc + RIX x [P'l'I'< + R", x [",we 

where: 

[" ppe = influence coellicient of safety training on PPE 

[IXwe = influcncc cocfficicnt of safety procedures on PI'E 

l",we = influcncc coefficient of safety culture on PPE 

Weather: 

R., = reliabi lity value for weather conditions = direct input 
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APPENDIX B 

CALCUl..ATIONS FOR THE AGGREGATION OF FUZZY NUMBERS DEFINt:i) BY A 
CONFl nENCE INTERVAL (0) OF 0.5 

B.I EXTERNAL LAY.:R 

Value placed on hUl11anlife (VL): 

[VL(X) 
{2 (6.5,7,7.5) + 5 (8.5,9,9.5)} 

{(13,14,15) + (42.5,45,47.5)} 

55.5,59,62.5 
~--7--

= (7.9,8.4,8.9) 

Price of Oil (PO): 

[PO (x) (2· (6.5, 7, 7.5) ~ 5· (8.5,9, 9.5)} 

{(13,14,15) + (42.5,45,47.5)} 

55.5,59,62 .5 

7 

= (7.9,8.4,8.9) 
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Shareholder I'ressure (SP): 

fsp(X) = {3 (O.5,1,1.5)+ 3·(2.5,3 , 3.5)+ 1·(4.5,5,5.5)} 

Royalty Regime (RR): 

{(1.5,3 ,4.5)+ (7.5,9,10.5) + (4.5,5,5.5)} 

13.5,17,20.5 

7 

= (1.9,2.4,2.9) 

fRR(X) = {3' (4.5,5,5.5) ~ 4· (2.5,3,3.5)} 

{(13.5, 15,16.5) + (10,12,14)} 

23 .5,27,30.5 
--7--

= (3.4,3.9,4.4) 
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B.2 CORPORATE LA YER 

Safety Culture (SC): 

Safety Training (ST): 

fsc(X) = {6 . (6.5,7,7.5)~ 1·(8.5,9,9.5)} 

{(39.42,45) + (8.5.9,9.5)} 

47.5,51.54.5 --,--
= (6.8,7.3,7.8) 

frr (x) = {5' (6.5, 7. 7.5) ~ 2· (8.5,9, 9.5)} 

{(32.5.35,37.5) + (17,lB,19)} 

49.5,53,56.5 --,--
= (7.1,7.6,8.1) 
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Safety Procedures (SP): 

IJ.31> I RECT L AYER 

Attitude (A): 

fsAx) = {2 . (6.5,7, 7.5) ~ 5· (8.5, 9, 9.5)} 

{(13,14.15) + (42.5,45,47.5)} 

55.5, 59, 62.5 --,--
= (7.9,8.4,8.9) 

f .. (x) = {5· (6.5,7. 7.5) ~ 2· (8.5,9, 9.5)} 

{(32.5,35,37.5) + (17,18,19)} 

49.5, 53,56.5 --,--
= (7.1,7.6,8.1) 
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Motivation(M): 

Lack of Fatigue (LF): 

flo/(x) = (5 · (4.5,5,5.5) ~ 2· (6.5, 7, 7.5)} 

{(22.5,25,27.5) +(13,14,15)} 

35.5,39,42.5 
--7--

= (5.1,5.6,6.1) 

fLl;(x) = {3· (4.5,5,5.5) ~ 4· (6.5, 7, 7.5)} 

{(13.5,15,16.5) + (26,28,30)} 

39.5,43,46.5 
--7--

= (5.6,6.1,6.6) 
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Coordination (C): 

(dx) = {3' (2.5,3,3.5)~ 4· (4.5,5,5.5)} 

{(7.5,9, I 0.5) + (18,20,22)} 

25.5,29,32.5 
~--,--

= (3.6,4.1, 4.6) 

Filncss(F): 

(p(x) (1·(2.5,3,3.5)+ 5·(4.5,5,5.5)+ '·(6.5,7,7.5)} 

{(2.5,3,3.5) + (22.5,25,27.5) +(6.5,7,7.5) 

31.5,35,38.5 --,--
~ (4.5,5,5.5) 
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Knowledge (K): 

Intelligence ( I): 

{(13.5,15,16.5) + (26,28.30)} 

39.5,43,46.5 =--,--

= (5.6,6.1.6.6) 

!J(x) = {4 · (2.5.3.3.5) ~ 3· (4.5,5.5.5)} 

{(IO,12.14) + (13.5,15,16.5)} , 
23.5. 27,30.5 --,--

= (3.4.3.9,4.4) 
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Weather (W): 

fw(x) = {4· (0.5, 1, 1.5) ~ 3 · (2.5.3.3.5» 

({2.4,6) + (7.5,9.1O.5)} 

9.5.13,16.5 
"--,-

= (1.4.1.9,2.4) 

Personal Protective Equipment (1'1'£): 

fpp~'(x) = {2 (6.5,7.7.5) + 5 (8.5,9.9.5» 

{(13,14.15) + (42.5.45.47.5» 

55.5,27,62.5 --,--
= (7.9.8.4.8.9) 
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APPENOIXC 

CORPORATE COMPONENT RELIABILITY ADJ USTM ENTS 

C. I MI NIMUM AJ)JUSTEJ) RELIABILITY VALUES 

SllfetyCulture: 

= (0.061 x 0.1 8 + 0.061 x 0.25 + 0.061 x 0.13 + 0.061 x 0.44) x (~) 

= 0.092 

where: 

Rpo = reliability of price of oil 
= 0.061 (direct input from base case run) 

Rsp = ,·eliability of shareholder pressure 
= 0.061 (direct input from base case nm) 

Rrr = reliability of royalty regime 
= 0.061 (direct input from base case run) 

Rv! = reliability of value placed on human life 
= 0.061 (direct input from base case run) 

lposc = influence coefficient of price of oil 
= 0.18 (direct input from model as displayed in Table I, Ch. 2) 

Ispsc = influence coefficient of shareholder pressure 
= 0.25 (direct input from model as displayed in Table t, Ch. 2) 

Irrsc = influence coefficient of royalty regime 
= 0.13 (direct input from model as displayed ill Table 1, Ch. 2) 

Ivlsc = influence coefficient of value placed on human life 
= 0.44 (direct input from model as displayed ill Table I, Ch.2) 
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Safety \'roccdurcs: 

= (0.061 x 0.19+0.061 x 0.26+0.061 x 0.1 2 + 0.061 x 0.43) x (~) 

= 0.107 

where: 

RJw = reliability of price of oil 
= 0.061 (direct input from base case run) 

Rsp = "eliability of shareholder pressure 
= 0.061 (direct input from base case rim) 

Rrr = reliability of royalty regime 
= 0.061 (direct input from base case run) 

Rv/ = reliability of value placed all human life 
= 0.061 (direct input from base case rull) 

lposp = influence coefficient of 1)rice of oil 
= 0.19 (direct i/!put from model as displayed ill Table I, Ch. 2) 

'spsp = influence coefficient of shareholder pressure 
= 0.26 (direct input from model as displayed ill Table 1, Ch. 2) 

lrrsp = influence coefficient of royalty regime 
= 0.12 (direct input from model as displayed in Table l,Ch. 2) 

lv/sp = influence coefficient of value placed on human life 
= 0.43 (direct input from model as displayed in Table 1,Ch. 2) 
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C.2 MAXIM UM ADJ UST ED RELI ABI LIT Y VALUES 

Safety Training: 

= (0.06 x 0.18 + 0.06 x 0.27 + 0.06 x 0.18 + 0.06 x 0.27) x (~) 

= 0.090 

where: 

R)JO = reliability of price of oil 
= 0.061 (direct input from base case run) 

Rsp = reliability of shareholder pressure 
= 0.061 (direct input from base case run) 

Rrr = reliability of royalty regime 
= 0.061 (direct input from base case run) 

Rvl = reliability of value placed on human life 
= 0.061 (d irect input from base case run) 

l)Jor = influence coefficient of price of oil 
= 0.18 (direct input from model as displayed ill Table 1, Ch. 2) 

fspr = influence coefficient of shareholder pressure 
= 0.27 (direct input from model as displayed in Table 1,Ch. 2) 

1m = influence coefficient of royalty regime 
= 0.12 (direct input from model as displayed in Tab le 1, Ch. 2) 

' vlr = i11fluence coefficient of value placed on humalllife 
= 0.43 (direct input from model as displayed in Table 1, Ch. 2) 

133lP age 



SafctyCulture: 

= (0.061 x 0.18 + 0.061 x 0.25 + 0.061 x 0.13 + 0.061 x 0.44) x (~) 

= 0.087 

where 

RI'o = reliability of price of oil 
= 0.061 (direct input from base case run) 

Rsp = reliability of shareholder pressure 
= 0.061 (direct input from base case rUIl) 

Rrr = reliability of royalty regime 
= 0.061 (direct input from base case rUIl) 

RVI = reliability of value placed 011 human life 
= 0.061 (di rect il!put from base case run) 

Iposc := influence coefficient of price of oil 
= 0.18 (direct input from model as displayed in Table I . CII.2) 

ISI!se = influence coefficient of shareholder pressure 
= 0.25 (direct input from model as displayed in Table ],Ch.2) 

lrr.c = influence coefficient of royalty regime 
= 0.13 (direct input from model as displayed in Table 1,Ch .2) 

Ivl£c = influence coefficient of value placed on human lite 
= 0.44 (direct input from model as displayed ill Table 1, eh. 2) 
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Safety J>rocedurcs: 

= (0.061 x 0.19 + 0.061 x 0.26 + 0.061 x 0.12 + 0.061 x 0.43) x (H) 

= 0.099 

where' 

Rpo = reliability of price of oil 
= 0.061 (direct input from base case run) 

R,p = reliability of shareholder pressure 
= 0.061 (direct input from base case rUlI) 

Rrr = reliability of royalty regime 
= 0.061 (direct input fmm base case run) 

R"I = reliability of value placed on human life 
= 0.061 (direct input from base case run) 

lposp = i11fluence coefficient of price of oil 
= 0.19 (direct input from model as displayed in Table 1, Ch. 2) 

Is"s)! = influence coefficient of shareholder pressure 
= 0.26 (direct input from model as displayed in Table 1, Ch. 2) 

Irrsp = influence coefficient of royalty regime 
= 0.12 (direct input from model as displayed in Table 1,Ch.2) 

1"ISP = illfluence coefficient of value placed OIl human life 
= 0.43 (direct input from model as displayed in Table 1, Ch. 2) 

135lP age 
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