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ABSTRACT

An occupational accident is defined as an unexpected and unplanned occurrence arising out of or
in connection with work, resulting in personal injury, disease or death. The human cost of
occupational accidents is vast and the economic burden of poor occupational health and safety

practices is staggering, resulting in the loss of billions of dollars annually.

Over the last 40 years, occupational safety has been regulated under various national legislative
schemes to ensure a balanced approach to workplace health and safety issues and to minimize
hazards and reduce risk in the workplace. Model development in the research of accidents is
considered to be the most effective way of studying the occupational accident issue, providing a

proactive approach to address occupational concerns.

The majority of research directed towards occupational accidents is qualitative and relies on the
opinions of experts in the ranking of risk. A key component in many occupational accident
models lies in the derivation of qualitative data obtained through a survey of safety experts to
propose graded or ranked causes of accidents. The subjective nature of expert opinion or

a degree of inty within the analytical process. This work focuses

on the development of a fuzzy methodology which is aimed to enhance the effectiveness of
accident models by providing a mathematical tool to account for vagueness and uncertainty
associated with expert judgements and opinions and to capture this uncertainty within the
analysis. The novelty of the proposed methodology lies in an approach that embraces uncertainty

as an inseparable element of the system. The proposed izes that




plays a role in decision making and uses fuzzy set theory to account for and minimize

d with the subjective nature of expert opinions. The fuzzy methodology will
be incorporated into a predictive model developed to predict the frequency of occupational

accidents and associated costs within the oil and gas industry.
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Chapter 1

INTRODUCTION

1.1 OCCUPATIONAL ACCIDENT ANALYSIS

An occupational accident is defined as an unexpected and unplanned oceurrence arising out of or
in connection with work, resulting in personal injury, discase or death. According to the
International Labour Office (ILO), over 337 million accidents occur on the job site annually,

resulting in 6300 fatalities per day and more than 2.3 million fatalities per year.

Safety and health conditions vary considerably between countries, economic sectors and social
groups. The human cost of occupational accidents is vast and takes a particularly heavy toll in
developing countries. The ILO estimates that the economic burden of poor occupational health
and safety practices is at 4% of the global Gross Domestic Product (GDP) each year. In a study
conducted by the UK’s Health and Safety Executive (HSE), it was established that up to £31.8
billion ($50.4 billion CAD) was lost in 2001/02 due to accidents at work and work-related

illnesses (http://www.hse.gov.uk/statistics/pdf/costs.pdf).

Many accident models have been developed in an attempt to address the occupational accident
issue. The effectiveness of models in the research of accidents is considered to be the most
suitable way of studying the occupational accident issue (Attwood ef al., 2006b). Early accident
models were largely qualitative in nature relying on opinions and case studies to propose graded
or ranked causes of accidents. Some accident models adopted a statistical approach to study

relationships between factors affecting occupational accidents while others provided a vehicle to
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produce improvements in areas of the working environment (Attwood et al., 2006b). In an
attempt to provide a holistic view of the occupational accident issue, Daryl Attwood er. al
developed a quantitative model to predict the frequency of occupational accidents and their
associated costs. Attwood's model allows operators to optimize management decisions, provides
stakeholders with a tool to predict accident frequency under their specific regime and offers the
capability to compare predicted safety improvements resulting from changes in various safety

elements.

1.2 OVERVIEW OF ATTWOOD’S PREDICTIVE MODEL
Attwood’s model takes a quantitative, holistic approach to predict the frequency of occupational

accidents and includes the identification of constituent factors affecting accidents and the

of their i ionships. The model consists of three fundamental layers; (1)

Direct Layer; (2) Corporate Layer; and (3) External Layer. The direct layer consists of five main
components considered to directly affect the frequency of occupational accidents which include

an individual’s behaviour and capabilities, weather, safety design and personal protective

equipment. Individual behaviour is divided into attitude and motivation. Individual capability is
divided into mental and physical. Mental capability is further divided into knowledge and
intelligence while physical capability is sub-divided into coordination, fitness and lack of fatigue.
The corporate layer includes corporate safety culture, safety training programs and safety
procedures. The external elements include the value placed on human life, commodity price,
shareholder’s pressure and royalty regime. The basic premise of Attwood’s model states that
worker’s behaviours are influenced by corporate culture, their environment and procedures are

controlled corporately and corporate decisions and actions are influenced by external elements.
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Attwood’s model uses a modified reliability network to model the accident process. The overall
safety system can be subdivided into sub-systems or sub-sets which can be configured in a
'series' or 'parallel' set-up. The direct layer’s five main elements are connected in a series
formation while the direct element subsets, for example attitude and motivation, are connected in

a parallel arrangement. The reliability of the overall system is calculated from the direct

elements. The model accounts for the fact that not all elements affect overall safety performance
equally. The strength or relative importance of the five main elements directly affecting
accidents are quantified using information gained from a panel of experts within the industry.
These relative importance values are then used within the mathematical model. Matrices of
influence coefficients were generated from the panel of safety experts to rank each external and
corporate element’s level of influence on the corporate and direct level factors, respectively. This
is consistent with the model’s philosophy that external elements affect corporate decisions and

actions and these, in turn, influence factors directly affecting the accident process.

Within the model, overall system reliability is a function of the direct layer component’s

reli s. The corporate element reliabilities can be determined from external element values
therefore predictions can be made on a basis of a complete set of direct, corporate or external
element reliabilities. Once the system reliability has been calculated, the expected accident rate
is calculated, usually to obtain the number of accidents per year. The model also provides a

method to evaluate cost savings associated with accident frequency reduction. The cost element

is determined by multiplying the cost of an accident by the expected number of accidents.
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1.3 MODELING UNCERTAINTY

Attwood’s predictive model uses quantitative data derived from a survey of safety experts to

rank cach component’s effect on safety within the direct, corporate and external layers. The

subjective nature of expert j and opinions i a degree of inty within

the model. This level of uncertainty attached to the integration of subjective evaluations is a
concern when analyzing systems through model development. In analyzing the frequency of
occupational accidents it is important to determine how uncertainty should be included in the

assessment model.

Fuzzy set theory (FST) provides a useful tool to address the uncertainty associated with the
subjectivity of expert opinions and to propagate uncertainty through the model. Its purpose is to
allow one to better model phenomena that exhibit a certain kind of uncertainty, degree-vagueness
(Smithson & Verkuilen, 2006). “The utility of FST in model development has been seen in its

ability to more i represent the h i ing process and to provide a more

user-friendly interface through the use of natural language™ (Zadeh, 1996). Attwood’s predictive
model was used to illustrate the use of FST to address uncertainty because it offers a

to the occupational accident

comprehensive, logical framework and provides deductive anal

Lotfi A. Zadeh introduced the term “computing with words™ to explain the notion of reasoning
linguistically rather than with numerical quantities. “Humans use natural language as a means of
computing and reasoning, arriving at conclusions expressed as words from premises expressed in

natural language™ (Zadeh, 1996). The use of natural language or linguistic variables within the
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framework of models may be a necessity when available information is too imprecise to justify
the use of numbers. The use of linguistic variables within Attwood’s predictive model allows
experts to rank the importance of factors in a natural way, providing a more user-friendly
approach to the analysis process. The linguistic variables offer an intuitive meaning which is

particularly useful when relying on a panel of experts, while fuzzy numbers are used for the

“internal i ion of reasoning isms” (Baroni ef al., 1998). The incorporation of
fuzzy set theory within the model provides a useful tool to account for the uncertainty associated
with expert judgements and opinions and reduces the ambiguity and imprecision arising out of

the subjectivity of this data.

1.4 FUZZY SET THEORY

Fuzzy set theory is a mathematical framework to account for fuzziness or uncertainty. The term
fuzziness is used to describe an uncertain state in which the transition between the state of
concern and its complement is gradual hence it is difficult to make a sharp distinction (Kikuchi,
1998). Fuzzy set theory is an extension of classical set theory and was first introduced by Lotfi
A. Zadeh, a mathematician and computer scientist of Iranian Azeri origin. Zadeh introduced the

concept of a fuzzy set which is a set whose boundary is not sharply defined. This concept

contrasts with the classical concept of a set, a crisp set, whose boundary is required to be precise.
That is, a crisp set is a collection of things for which it is known whether any given thing is
inside or outside the set. The boundaries of classical sets are precise therefore a set membership

is determined with complete certainty. “A fuzzy set is based on a classical set, but it adds one

more element: a numerical degree of membership of an object in the set, ranging from 0 to 1"

(Smithson & Verkuilen, 2006). Contrary to classical crisp sets, fuzzy sets do not have sharp

boundaries therefore a member of a fuzzy set may belong to the set to a greater or lesser degree.
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“One of the principal motivations for introducing fuzzy sets is to represent imprecise concepts™
(Klir, 1997). Virtually all human activities involve reasoning based on vague concepts and
incomplete information therefore FST plays a key role in bridging the gap between imprecise
concepts which are used to describe reality and precise classical mathematics. An individual’s
membership in a fuzzy set is a matter of degree therefore the degree of membership of an
individual in a fuzzy set expresses the degree of compatibility of the individual with the concept

represented by the fuzzy set (Klir, 1997). It is therefore important in each application of FST to

construct appropriate fuzzy sets and their i ip functions that q

capture the intended meaning of the concept being analyzed.

A major contribution of FST is its capability of representing vague data and modeling

uncertainty. FST has been used to model systems that are hard to define precisely, incorporating

and subjectivity into the model fon and solution process. “FST represents
an attractive tool to aid research in areas where the dynamics of the decision environment limit
the specification of model objectives, constraints and the precise management of model

parameters” (Kahraman, 2006). Since 1965, FST has proven to be a powerful tool for

quantitatively and manipulating the i ision of decisi King problems in
engineering, business, medicine, manufacturing among many other industrial sectors.
141 DEFINITIONS AND CONCEPTS OF FST

o Fuzzy Number: A fuzzy number is described in terms of a number word and a

linguistic modifier, such as approximately, nearly or around. A fuzzy number is used

when i cannot be ized in terms of precise

numbers.
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Fuzzy Logic: Fuzzy logic is viewed as a system of concepts, principles and methods
for dealing with modes of reasoning that are approximate rather than exact.
Linguistic Variables: A linguistic variable is a verbal quantifier denoted by a full
name, such as “several” or “extremely unlikely” which carries an intuitive meaning to
describe a vague concept. Linguistic variables can be made precise using FST by
creating a fuzzy number defined on the interval [0, 1].

HN ip function is an index of “sethood” that

measures the degree to which an object x with property A is a member of a particular

defined set. It assigns to each element x of X a number, A(x), in the closed unit

interval [0, 1] that izes the degree of of x in A

functions are functions of the form:

A:X - [0,1]
Fuzzy Union: Fuzzy union is defined as the maximum degree of membership in the
sets. Membership in the union of X U Y may be written as my,y = max (my, my).
Fuzzy Intersection: Fuzzy intersection is defined as the minimum degree of

in the sets. N ip in the i ion of X N'Y may be written as

Myny = min (my, my).

@ — Cuts of Fuzzy Sets: The « — cut of a fuzzy set 4 is the crisp set “A that contains
all the elements of the universal set X whose membership degrees in A are greater
than or equal to the specified value of a. It is a means of restricting membership

degrees that are greater than or equal to some chosen value « in [0, 1].
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Extension Principle: The extension principle is a principle for fuzzifying crisp

functions. It is a method of extending point-to-point operations to fuzzy sets and is

the basic tool for the development of fuzzy arithmetic.

Aggregation of Fuzzy Numbers: When using multiple experts to rank the
importance or influence of particular elements with linguistic variables, it is necessary
to aggregate their opinions in order to achieve a more reliable assessment. There are
many methods available to aggregate expert’s opinions such as the arithmetic

averaging operation, fuzzy preference relations and max-min Delphi method.

Arithmetic ging Operation: The most used method to aggregate
expert’s opinions. The arithmetic averaging operation satisfies two characteristics of
rational combination: (1) a small variation in any possibility distribution does not
produce a noticeable change in the combined possibility distribution; and (2) when
experts are equally weighted it can also include weights that contain the relative

importance of one expert to another (Huang, 1998).

Fuzzy Probability: Fuzzy probability is a fuzzy number, which is expressed by a
fuzzy set and characterized by its membership function . It can be represented by a

triangular or trapezoidal shape or bell shaped membership function (Cheng, 2000).

« Fuzzy Error P Fuzzy error possibility is ially a fuzzy

characterized by a membership function to account for the uncertainties of fuzzy data.

Fuzzy Error Factor: Fuzzy error factor accounts for uncertainties and vagueness
associated with fuzzy outcomes and can be calculated from the fuzzy error

possibility.
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1.5 PROBLEM STATE]

Fuzzy Uncertainty Index (FUI): Fuzzy uncertainty index can measure the amount
of uncertainty an event contributes to the final outcome. It is an index used to help the
analyzer decide on which fuzzy data to collect so that uncertainties can be lowered.
Total Recordable Injury (TRI): Total Recordable Injury is a group of injuries
which include fatalities and lost time injuries, medical aid injuries and restricted work
injuries.

Total Recordable Injury Rate (TRIR): Total Recordable Injury Rate is a calculated
statistic to track the frequency rate of lost time injuries (LTI), medical aids (MA) and
restricted work cases (RWC).

TRIR = [(LTI + RWC + MA) x 200,000]/Exposure Hours
Defuzzification: Defuzzification is the process of combining all fuzzy outputs into a
specific composite result. Its purpose is to convert the fuzzy set into a real (crisp)
number, that best represents the fuzzy set. Several methods exist for the
defuzzification process including centre of area method, centre of maxima method,

mean of maxima method and weighted average defuzzify method.

Daryl Attwood ef. al (2006¢) developed a holistic, quantitative model to predict the
frequency of occupational accidents and their associated costs in the offshore oil and gas

industry. The basic premise of Attwood’s model states that worker’s behaviours are

influenced by corporate culture, their workpl i and are controlled
corporately and corporate decisions and actions are influenced by external elements

(Attwood ef al., 2006¢). The frequency of occupational accidents is related to factors having
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a direct impact on the process such as individual capabilities and behaviours and the quality
of personal protective equipment. Many of these direct factors are influenced by decisions
made at a corporate level while corporate culture is influenced by external elements such as
commodity price and royalty regime. The predictive model consists of three fundamental
layers and uses quantitative data derived from a survey of safety experts to rate each factor’s
effect on safety for the specific environment as compared to the global average. The
subjective nature of expert opinions used to derive this quantitative data introduces a degree
of uncertainty within the model. The use of a numerical scale to rate each components effect
on safety has significant drawbacks, one of which concerns the precision to be ascribed to a
numeric value. It is also unnatural for an expert to express a judgement in numerical terms
and is generally much easier and more reliable to use linguistic variables, such as very low,

low, high, than to choose a number in the real interval 1-10 (Baroni & Guida, 1998).

The use of fuzzy linguistic variables within Attwood’s predictive model allows experts to

rank each factor in a natural way, providing a more user-friendly, intuitive approach to the
analysis process. The linguistic variables are converted into fuzzy numbers which carry more
information than a crisp, numerical rating factor and allow the judgemental uncertainties
associated with experts’ subjective opinions to be properly expressed. These fuzzy numbers

are characterized by membership functions which incorporate the uncertainty of the

component.

The incorporation of FST into Attwood’s predictive model is aimed to enhance the

effectiveness of the model by providing a mathematical tool to account for vagueness and
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d with expert j

and opinions and to effectively propagate this

uncertainty through the model. The proposed methodol izes that inty plays

a role in decision making and incorporates a fuzzy approach to account for and minimize

uncertainty while maintaining the simplicity of Attwood’s model.

1.6 OBJECTIVES OF PRESENT WORK

The preceding discussion indicates that fuzzy set theory is a useful tool to account for
uncertainty arising from the subjective nature of expert opinions. A key component of
Attwood’s predictive model lies in the derivation of quantitative data obtained through a
survey of safety experts but the model does not determine how this uncertainty should be
included in the assessment and analysis process. A methodology for the predictive model has
been developed to address this uncertainty and propagate it through the model, providing a

more user friendly, intuitive approach to the analysis process.

The objectives of this research are:
® To successfully incorporate fuzzy set theory into the framework of Attwood’s
predictive model to account for and minimize uncertainty associated with the

subjective nature of expert opinions through:

the development of a linguistic, qualitative scale of importance to rate each

components effect on safety for the specific case, providing an intuitive, user-

friendly approach to the analysis process;

conversion of linguistic variables into fuzzy numbers through development of

membership functions;
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= the aggregation of fuzzy numbers and the calculation of fuzzy error

probability and fuzzy error rate;

propagation of fuzzy numbers to adjust component reliabilities to determine

fuzzy outcomes;

the use of fuzzy operations to calculate a crisp numeric output
(defuzzification) and estimate the degree of uncertainty each component
contributes to the final outcome.

* To analyze the precision and error robustness of the fuzzy approach.

1.7 ORGANIZATION OF THESIS

This thesis is divided into six chapters. The first chapter gives a broad overview of the
occupational accident analysis, Attwood’s predictive model, fuzzy set theory and its
significance within the modeling of uncertainty. Further, it describes FST with some basic

definitions and concepts, followed by the objectives of this work.

Chapter 2 presents a detailed description of Attwood’s predictive model including why it was
chosen for this study, a discussion of specific elements within the model and method of
analysis used to predict the frequency and associated costs of occupational accidents. Chapter
3 provides a discussion on FST, including some applications of FST within the industrial
sector. This chapter also provides an overview of fuzzy set mathematics which will be used
within the proposed methodology. Chapter 4 discusses modeling details and outlines the
steps involved to incorporate FST within the predictive model to account for uncertainty.

Chapter 5 presents a case study to illustrate the use of FST within Attwood’s predictive
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model. Chapter 6 offers a summary, final

future work.

remarks and

for
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Chapter 2

QUANTITATIVE ANALYSIS OF OCCUPATIONAL ACCIDENTS

2.1 OVERVIEW OF EARLY ACCIDENT ANALYSIS

Occupational accident hazards are associated with everyday work activity and are a major
contributor to individual risk. According to industry accident statistics, a workers™ potential for
injury or death from occupational accidents is at least as high as that associated with major

accidents such as fires and explosions (Attwood ef al., 2006a). In a study conducted by the UK’s

Health and Safety Executive (HSE), it was it that in 2001/02 i accident
failures cost the British economy between £13.1 - £22.2 billion ($20.8 - $35.2 billion CAD) and
cost society as a whole between £20.0 - £31.8 billion ($31.7 - $50.4 billion CAD)
(http://www.hse.gov.uk/statistics/pdf/costs.pdf). A total of 28.5 million working days were lost
in 2009/2010 of which 23.4 million days were lost due to work-related ill health and 5.1 million

days were lost due to injury (http://www.hse.gov. istics/i htm).

Model

P! is one way of ing to and positively affect a problem. The
effectiveness of models in the study of accidents has been noted by several authors and model
development is considered to be the most suitable way of studying the occupational accident

issue (Attwood er al., 2006¢). Early accident models had made significant progress in the

of risks i with phic events such as fires and explosions but the
majority of research directed towards occupational accidents was largely qualitative with
opinions and case studies used as input data to propose graded or ranked causes of accidents.

Some accident models adopted a statistical approach using historical data to study existing
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relationships between factors as opposed to offering a predictive model to help guide
management decisions. Other models provided a vehicle to produce improvements in specific
areas of the working environment but did not adopt a holistic view of the occupational accident

problem (Attwood et al., 2006b).

In an attempt to address the occupational accident issue, Daryl Attwood etal developed a
holistic, quantitative model based on reliability techniques and capabilities of predicting
oceupational accident frequency in the offshore oil and gas industry. One of the main objectives
of Attwood’s research was to apply a quantitative approach to the prediction of occupational

accident frequency which had been largely qualitative in nature.

Attwood’s predictive model was selected for this study because of its ability to provide deductive
analysis to the occupational accident issue. The model provides a comprehensive, structural

framework that offers a logical ion for predicting i accident frequency and

highlighting areas that require attention in order to improve overall safety performance, thus
allowing operators to optimize management decisions, including the choice of where to allocate

monies to improve overall safety.

The model uses quantitative data from published sources that are easily accessible and readily
available to the public. The model execution methodology involves a calibration run which uses

known accident rates and a predictive mode following adjustments to base case reliabilities. The

ifi of safety conditions in

degree of adj is ined using

specific and base cases which are casy to monitor and assess.
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2.2 ATTWOOD’S PREDICTIVE MODEL

The basic premise of Attwood's model states that "worker's behaviours are influenced by

corporate culture and their

p i and are controlled corp
Furthermore, corporate decisions and actions are influenced by external elements” (Attwood ef
al., 2006¢). The predictive model consists of three fundamental layers - direct layer, corporate

layer and external layer. The specific elements of the model are outlined in Figure 2.1.

Corporate Support
External Layer Direct Layer
Layer
Value placed on human Corporate Safety
life Culture Sk
- ' Safety Training
Price of Ol Motivation
Program
Financial Shareholder Safoir'® r
Safety Procedures Vledg
Drivers Pressure ° Mental Knowledgs
Royalty Individual Tntelligence
Regime Capability Coordination
Physical | Fitness |}
Lack of
fatigue
Weather
Safety Design
Personal Protective Equipment

FIGURE 2.1 - SPECIFIC ELEMENTS OF MODEL (ATTWOOD ET AL., 2006A)

The model takes a holistic approach to accidents and includes the identification of constituent

factors and the ination of their i i ips. Direct factors affecting the occupational
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accident issue include human behaviours and capabilities, weather, safety related design and

quality of personal protective equipment. Many of these direct factors are influenced by
decisions taken at the corporate layer which include corporate safety culture, safety training
programs and safety procedures. The model includes an external layer that includes region-based
cultural and financial pressures, which are considered to influence corporate actions and
decisions, which in turn, directly affect occupational accident frequency. The architecture of the

model is shown in Figure 2.2.
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Influence of External !mulrn Corporate Elements.

covwn-s-mycum] | Comporats Training 1 | Safety Procedures .I

Influence of Corporate Elements. J

FIGURE 2.2 - MODEL STRUCTURE (ATTWOOD ET AL., 2006A)

Each of the three layers (direct, corporate, external) are divided into various components which
were chosen based on discussions with offshore oil and gas colleagues, Attwood's personal

experience from years of working in the field and a comprehensive literature review. The goals
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of such a comprehensive review were to understand and critically assess previous approaches to
the occupational accident problem, to identify gaps in the occupational accident knowledge and
to systematically consider the factors thought by other researchers to affect occupational accident
frequency (Attwood ef al., 2006a). The following sections outline the components of each of the

three layers with a description of cach.

2.2.1 DIRECT LAYER

‘The five components considered to directly affect accident frequency are:

Worker's behaviours

Worker's capabilities

Weather conditions

Safety Related Design

Personal Protective Equipment

Behaviours are personal choices which are influenced by one's attitude and motivation. Attitude
is a person's perspective toward a specific target. Most attitudes are the result of either direct
experience or observational learning. Motivation is the set of reasons that determines one to

engage in a particular behaviour (Attwood ef al,, 2006a).

Capabilities are the abilities to perform actions and are divided into mental and physical. Mental

capabilities are of two categorics, based and intelli based. The
based component comprises the safety related information retained by the worker following

training sessions. The intelligence-based component allows the worker to cope with safety issues

not specifically covered by training and p The physical iliti iated with
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avoiding occupational accidents are considered to be good coordination, a degree of

fitness and lack of fatigue (Attwood ef al., 2006a).

Weather conditions can directly affect the likelihood of accidents by creating hazardous working
conditions that often lead to accidents on the job-site. Inclement weather conditions and extreme
temperatures can also affect worker concentration, increasing the likelihood of accidents. The
optimization of safety related design can reduce accident frequency. Non-slip walkways and
visible warning signs are examples of measures taken to improve workplace safety. Personal
protective equipment (PPE), including safety boots, hard hat and safety glasses can provide

protection of the individual when working and prevent a serious injury from occurring.
2.2.2 CORPORATE LAYER
The second fundamental layer is the safety related support provided by the company, comprised

of:

o Corporate Safety Culture
o Safety Training Programs

« Safety Procedures

Corporate culture is the moral, social and behavioural norms of an organization, based on the

beliefs, attitudes and ions of its emp Most ies expend i effort in
developing a strong, positive safety culture in an attempt to create a healthy, safe environment.
Safety training programs such as accident investigation, emergency preparedness and hazard
management, provide the basic structure of an effective health and safety system while safety

such as ility, planning and organization, help incorporate the

safety training programs into a successful safety system.

27|Page




2.2.3 EXTERNAL LAYER

The third fundamental layer is referred to as the external layer which consists of societal
pressures such as the value placed on human life and financial drivers such as commodity price,
shareholder pressure and royalty regime. Attwood's model supports the belief that fundamental
change requires improvement, at least, at the corporate level, which is, in turn, driven by external

factors (Attwood et al., 2006a).

Societal expectations differ throughout the world and the associated forces affect an
organizations safety results. Some regions place a higher value on a human life than others.
Financial pressures originate from several sources, including price of commodities, corporate
shareholder pressure and royalty regime. When the commodity price is low, there s an increased
pressure to ‘cut corners’ everywhere and this includes the quality of safety programmes enacted

by operators (Attwood ef al., 2006a).

Shareholders collectively own the company and have potential to profit if the company performs
well but also have the potential to lose if the company performs poorly. Therefore shareholders
often exert a degree of pressure on company directors and management to improve performance
and maximize profits. Royalty regime is the system of governance over revenues and profits and
it is largely region-specific. Royalty regime may be designed to recognize inherent risks and

provide arrangements for future projects.
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2.3 METHOD OF ANALYSIS

Attwood's model uses a modified reliability network to model the accident process. The concept

of using a reliability network originated with the recognition that ' similar to a physical
engineering system, safety programme success depends on the reliability of individual
components' (Attwood ef al., 2006a). Individual components of a safety programme perform at

different levels of reliability and system improvements are usually enacted by making

improvements to these components.

The overall safety system can be subdivided into sub-systems or sub-sets which can be
configured in a 'series’ or 'parallel set-up as outlined in Figure 2.3. With a series configuration,
the reliability of the sub-set is the product of component reliabilities with sub-set reliability
always less than that of the least reliable component. This corresponds to the concept that for

some sub-sets of the safety system, all elements must be operating relatively efficiently to

produce a satisfactory result. In a series configuration, the weakest sub-set controls the

performance of the system. A failure of any component results in failure for the entire system.

With a parallel set-up, the reliability of the sub-set is calculated by subtracting the product of

component probabilities of failure from unity and the reliability of the sub-set is always greater
than the most reliable component. This corresponds to the concept that for some sub-sets of the
safety system, poor performance in some elements can be compensated for by superior

performance by others within the sub-set. In a parallel configuration, the strongest sub-set

succeed for the

controls the performance of the system. At least one of the units must

ystem to

s in parallel are also referred to as redundant units. Redundancy is a very important

aspect of system design and reliability in that adding redundancy is one of several methods of
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improving system reliability. In a parallel system, all n units must fail for the system to fail. If

unit | succeeds or unit 2 succeeds or any of the n units succeeds, the system succeeds.

Series arrangement Parallel arrangement
Reys =RiXR;... xR, Ry =1=(1-R) X (1-Ry) .. x (1=R,)

FIGURE 2.3 - SERIES VERSUS PARALLI

SUBSETS (ATTWOOD ET AL, 2006A)

The direct layer elements are connected in a reliability network. The reliability of the overall

safety system is calculated from these direct elements. The five main direct elements (behaviour,

capabilities, weather, safety design and personal protective equipment) are connected in a series
configuration, reflecting the belief that all must work well in an efficient safety programme. The
direct element subsets, for example motivation and attitude, are connected in parallel

arrangements, reflecting the belicf that a degree of compensation is available in the process.

The model accounts for the fact that not all elements affect overall safety performance equally.

Consistent with the overall model structure choices, levels of importance have been made on a
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layer by layer basis. The five main direct elements affecting accidents and their sub-sets were

quantified based on a survey of safety experts. The model uses quantitative data derived from

these surveys of safety experts to account for the differing relative importance of factors.

Experts are asked to assess, using a 1-10 scale, each direct element's ability to affect
occupational accident frequency. Results are then normalized to ensure that the relative
importance of each element within each group is extracted in a consistent manner. The resulting
'relative importance' values, as displayed in Figure 2.4, are then used within the mathematical

or i individual in the

model, utilizing a process of
reliability network, with a likeness to adding redundant units to a physical system. Following the

normalisation process, the strengths of components within the following subgroups sum to unity:

.

Primary Direct Level - behaviour, capability, weather, safety design, personal

protective equipment

Behavioural Subgroup - attitude, motivation

.

Capability Subgroup - mental, physical

Mental Capability Subgroup - knowledge, intelligence

Physical Capability Subgroup - coordination, fitness, lack of fatigue
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FIGURE 2.4 - ELEMENT STRENGTHS (ATTWOOD ET A,
2.3.1 INFLUENCE AT MODEL INTERFACES

The model philosophy proposes that external elements affect corporate decisions and actions and

these, in turn, influence factors directly affecting the accident process. Matrices of ‘influence

direct interfaces.

coefficients' were generated for the ex I-corp and  corp
Information gained from a survey of safety experts was used to quantitatively assess each
external elements level of influence on corporate factors and each corporate elements level of

influence on the direct factors affecting the accident process.
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The external-corporate and corporate-direct i i i as outlined in Tables 2.1

and 2.2 respectively, are used to adjust lower level (corporate) element reliability whenever the
higher level (external) values change. For example, corporate safety culture is influenced by the
external factors 'value placed on human life', 'price of oil', 'shareholder pressure' and 'royalty
regime'. The reliability of corporate safety culture is automatically increased with increases to
either one of the external factor values. The lower (corporate) level reliability is the sum of the
products of the external level reliabilities considered to have an effect on the corporate element
and the respective influencing coefficients. To illustrate the reliability calculation, assume the
initial reliabilities of the external factors to be 0.60, 0.50, 0.40 and 0.60. The reliability for safety
training is calculated as shown in Table 2.3. Improvements to any of the direct factors affecting
the accident process may be made in isolation of changes in the more senior elements (external,

corporate elements).

‘Table 2.1 - External-corporate influencing coefficients (Attwood et al., 2006a)

. — Corporate Safety
Safety Training | Safety Procedures s
L 043 043 0.44
on human life
Price of oil 0.18 0.19 0.18
SHBrehbier 027 026 025
Em!llfe
Royalty regime 0.2 0.2 0.13

33|Page



Table 2.2 - Corporate-direct influencing ients (Attwood ef al., 2006a)

A . =P " Ny Safety .

itude | Motivation | Finess | of | Coordination | Knowledge | tnteligence | Weather | J4E5 | pp:
Faiigue

Training | 033 | 033 | 031 | 031 000 036 00 C CETI [ET

Procedures | 030 | 030 | 0% | 031 000 030 000 0w [ ox 0w

Sarcly 03 | 03 [ o3 | o3 00 034 00 0w | 03 |03

culture

‘Table 2.3 - Method of external element influence on corporate elements (Attwood ef al., 2006a)

(Component
Safety C i iability) x
Training - g s 5
coefficient
NELRRIEE 0.60 043 026
human life
Price of oil 0.50 0.18 0.09
Shareholder 0.40 027 o1l
pressure
Royalty regime 0.60 0.12 0.07
Sum of the products = reliability value 053

= (0.60 x 0.43) + (0.50 x 0.18) + (0.40 x 0.27) + (0.60 x 0.12) = 0.53

2.3.2 RELIABILITY CALCULATION

Overall system reliability is a function of the direct layer component reliabilities. Direct layer
component reliabilities can be directly input, intentionally over-written or determined from the
corporate element reliabilities using the method of influence at the corporate-direct interfaces

(sum of the product of corporate reliabilities and corporate-direct influence

Corporate element reliabilities can, in turn, be determined from external element values, which is
consistent with the model's holistic approach to the accident process and the belief that accidents

are caused directly at the workplace but are affected by corporate and external elements.
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Predictions on the frequency of occupational accidents can be made on the basis of a complete

set of direct, corporate or external element reliabilities.

Once component reliabilities have been assigned, system reliability is calculated according to the

method based on standard reliability theory as shown below.

Reys = (Ro)sp X (Re)se X (Rudsw X (Readssa X (Rppe) .,

where:

Ry = reliability of behaviour

R. = reliability of capability

R, = reliability of weather

Ry = reliability of safety design

Rype = reliability of personal protective equipment
trength of behaviour

trength of capability

strength of weather

ssd = strength of safety design

sppe = strength of personal protective equipment
Equations to calculate the above reliabilities are outlined in Appendix A.

Once system reliability has been calculated, the expected accident rate (accidents per year) is

caleulated according to the reliability model as shown below.
R(t) = exp[-[jAdt] = e, t >0
where:

A = accident rate
R(1) = system reliability
1= time
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Taking the natural logarithms of both sides and setting t = 1 we get:

A = —In(R(t)

This approach is based on the assumption of constant failure rate. With applying the philosophy
of constant failure rate to offshore occupational accident frequency, Attwood believed the
parallel could be drawn that until accident causation became relatively well understood, the
accident rate was relatively high. However, evidence exists to confirm that the industry has
reached a state of relatively constant accident rate which validates the required constant failure

rate assumption (Attwood ef al., 2006a).

The model also provides a method to evaluate cost savings associated with accident frequency
reductions. The cost element is determined by multiplying the cost of an accident by the

expected number of accidents.

2.4 MODEL EXECUTION METHODOLOGY

As noted, the safety system is treated as a modified reliability network. Component reliability
values determine overall system reliability, which is used to predict accident frequency. Model
development was based on a review of related literature, expert opinion and reliability analysis
concepts. Quantitative inputs are required to adjust component reliability for direct, corporate
and external factors. The model also uses quantitative data derived from expert opinion surveys
to account for the differing relative importance of factors and the influences of external elements

on corporate actions and of corporate actions on the direct accident process.
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The accident frequency predictive process requires the model to be run in two distinct modes: 1)

Calibration Mode where known accident rates are used to determine base case component

reliabilities; and 2) Predictive Mode where accident frequency is predicted for a specific case.
The model can be used for a variety of purposes such as to compare the number of predicted and
actual annual accidents or to compare the predicted and actual lost time incident rate (LTI). It

can also be used to compare safety results in an ‘ideal’ environment to those obtained in a ‘worst

case’ scenario. A discussion of the model execution process is described below.

2.4.1 CALIBRATION MODE

Calibration of the model is required to determine base case component reliabilities because the
subsequent predictive model run requires a comparison of specific and base cases. A base case is
chosen to be any situation where both safety results and operating conditions are known. The
type of accident statistic used for calibration depends on which output statistic is desired. For
example, if a particular accident rate in a region or industry is required, then the corresponding
global average value of that particular rate is used for calibration. If the expected annual number
of a specific kind of accident on an installation having a given POB (person on board) is
required, then the global average rate of that type of accident is combined with the POB to
determine accident numbers expected had the facility been operating under average safety

conditions (Attwood ef al., 2006a).

Using the global average accident statistics, an accident rate or output is calculated to calibrate
the model for average safety conditions. An iterative process, using the goal seeking function in
Microsoft Excel, is used to determine individual component inputs for the model to have
predicted this number or rate of annual accidents (Attwood er al., 2006a). Although many
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of fabilities could produce the accident rate or output required for

calibration purposes, the absolute values of individual base case component reliabilities are not
important. Model execution is based on a quantified comparison of specific and base cases and

not a comparison of absolute component reliability values. Therefore, the individual component

reliabilities assigned by the calibration process are identical to one another. Once the output (ie.

accident rate) is determined using global average accident statistics, a starting reliability is

calculated using the reliability equation based on a constant failure rate. This starting reliability
is then assigned to each base case component within the external, corporate and direct layers to

set the base case for comparison purposes.

242 COMPONENT RELIABILITY ADJUSTMENTS

The degree of component reliability adjustment is based on the opinion of experts familiar with
both base (average global) and specific case safety conditions. The experts assign scores from 1
to 10 for each factor within the external, corporate and direct layers, representing the
component’s specific case conditions compared with the global average, which is represented by
a score of 5. Higher scores (6-10) represent situations superior to the global average safety

results while lower scores (1-4) represent situations less favourable to the global average. For the

specific case run, adj are made to the by using the square of the
ratio of the specific case to average case score (5). For example, if the expert panel assigned a
score of 6 to personal protective equipment, representing the direct factor’s specific case
condition, this would produce a reliability increase of (6/5)* = 1.44 to personal protective
equipment. The base case reliability for personal protective equipment is multiplied by the
square of the ratio of the specific case to average case score which would result in a reliability
increase for higher scores (6-10) and a reliability decrease for lower scores (1-4).
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2.4.3 PREDICTIVE MODE

To predict accident frequency for a specific case, the model is run following adjustment of the
base case component reliabilities. Accident frequency predictions can be made by directly
entering the specific case expert scores for the direct, corporate or external layer components. If
direct layer component reliabilities are used, they can be input into the model to calculate overall
system reliability and accident frequency rate directly. If corporate layer component reliabilities
are used, they can be input into the model and allowed to influence the direct layer values
through use of influence coefficients at the corporate-direct interface. Once the direct layer
reliabilities are determined, overall system reliability and accident frequency rates can be
calculated. If external layer reliabilities are input, they can determine the corporate values which
in turn, determine the direct values and overall system reliability and accident frequency rate can

be achieved.

2.44 COMPARISION OF PREDICTIVE VS. ACTUAL ACCIDENT RATES

As stated previously, data for the calibration portion of the model are publicly available statistics.
The type of accident statistic used for calibration depends on which output statistic is desired.
The actual accident rate calculated to calibrate the model is then compared to the predicted
result. The model offers the capability to compare predicted safety improvements resulting from
changes in various safety clements. It also provides a method to evaluate cost savings associated
with accident frequency reduction, allowing operators to optimize management decisions,

including the choice of where to allocate monies on improving overall safety.
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2.5 UNCERTAINTY WITHIN THE ANALYSIS PROCESS

A key component of Attwood’s predictive model lies in the derivation of quantitative data
obtained through a survey of safety experts to adjust component reliabilities. The subjective

Judgements and opinions used to rate each components effect on safety for the specific

a degree of inty within the model. The predictive model does not
determine how this uncertainty should be included in the assessment and analysis process. A
methodology for the predictive model has been developed to minimize this uncertainty and
propagate it through the model, providing an approach that embraces uncertainty as an

inseparable clement of the system. The application of such a model can help predict the

frequency of occupational accidents while izi inty and i ing it within
the analysis process by use of a mathematical framework called fuzzy set theory (FST). A major

contribution of FST is its capability of representing uncertainty and modeling systems that are

hard to define precisely, i ing il ision and subjectivity into the model

and solution process. The following chapter provides a discussion on FST and the fuzzy

mathematics used to address the uncertainty within the predictive model.
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Chapter 3

FUZZY SET THEORY

3.1 EMERGENCE OF FUZZY SET THEORY

Fuzziness is the uncertain state in which the transition between the state of concern and its
complement is gradual and hence it is difficult to make a sharp distinction (Kikuchi and Pursula,
1998). Fuzziness can be found in many areas of daily life but it is particularly frequent in all

areas in which human judgement, evaluation and decisions are important (Zimmerman, 2001).

Fuzzy set theory is a mathematical framework to account for fuzziness or uncertainty. The theory
was first introduced by Lotfi A. Zadeh, a mathematician and computer scientist of Iranian Azeri
origin. Zadeh was interested in the problems of complex systems and the use of simple models to

represent such issues. He published a paper in 1965, introducing the concept of a fuzzy set,

describing it as a class of objects with a continuum of grades of membership. He charac
the fuzzy sct by a membership function which assigns to cach object in the set, a grade of

membership ranging between 0 and 1.

Most of the early interest in FST pertained to representing uncertainty in human cognitive
processes (Zadeh, 1965). Since 1965, fuzzy set theory has been studied extensively and is now
recognized as an important problem modeling and solution technique due to its ability to
quantitatively and qualitatively model problems which involve vagueness and imprecision.

Fuzzy set theory has proven to be a powerful way of representing quantitatively and
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the imprecision of decision-making problems in engincering, business, medicine,

manufacturing among many other industrial sectors.

3.2 APPLICATIONS OF FUZZY SET THEORY IN INDUSTRY

A major contribution of fuzzy set theory is its capability of representing vague data and

modeling uncertainty. FST has been used to model systems that are hard to define precisely,

and subjectivity into the model formulation and solution process.
Kahraman (2006) identified fuzzy set theory as an attractive tool to aid research in Industrial
Engineering (IE) when the dynamics of the decision environment limit the specification of model

objectives, constraints and the precise of model i (1983)

concluded that fuzzy set theory can be used as a language to model problems which contain
fuzzy phenomena or relationships, as a tool to analyze such models in order to gain better insight

iinto the problem and as an algorithmic tool to make solution procedures more stable or faster.

In the analysis of transportation problems, fuzzy set theory has been used to analyze traffic flow

and control, planning, demand analysis, routing and ing and pavement

Kikuchi and Pursula (1998) examined the nature of uncertainty present in transportation planning
and explored appropriate mathematical frameworks to account for such uncertainties. Kituchi
and Pursula identified two types of uncertainty found in many transportation engineering and
planning problems: fuzziness and ambiguity. Fuzziness refers to the uncertainty caused by a lack
of definition of words while ambiguity refers to the uncertainty caused by the lack of information
about the subject matter. Fuzziness is prevalent in transportation planning due to the descriptive

nature of the treatment of problems (Kikuchi and Pursula, 1998).
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Fuzzy set theory has been used in ing imperfect or i i ion in health risk

assessment studies. Health risk is related to an individual’s location, activity and behaviour or
preferences, as well as the pollutant emission rates and physical, chemical and biological
processes involved in the fate and transport of the pollutants. Intrinsic variability and extensive
uncertainty exists within health risk assessment studies. A study conducted by Kentel and Aral

(2006) provided a review of several available approaches used in decision-making, some of

which involved ificati i the possibility and necessity measures. The study
proposed a risk tolerance measure which could be used in decision making and provided an
effective metric for evaluating the acceptability of a fuzzy risk with respect to a crisp compliance

criterion.

McCauley-Bell and Badiru (1996) conducted a two-phase research project to develop a fu

rule based system for quantifying and icting the risk of i injury, i ly,
cumulative trauma disorders (CTD’s) of the forearm and hand. The first phase of research
focused on development and representation of linguistic variables to qualify risk levels. The
variables were then quantified using fuzzy-set theory, allowing the model to evaluate qualitative
and quantitative data. The second phase of research focused on the analytic hierarchy processing
(AHP) to assign relative weights to the identified risk factors. A fuzzy rule base was constructed
with all of the potential combinations for the given factors. The system provided linguistic risk

levels as well as quantified risks in assessing the overall risk of injury.

Mure, Demichela, and Piccinini (2005) developed a method to assess risks of occupational

accidents using fuzzy logic. The purpose of the work was to create a methodological instrument
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that could semi qualitatively assess the risk of ional accidents for different industrial and

site activities and to identify the most efficient intervention measures to reduce risks. The
analysis model allowed for an assessment to be made of the level of risk of a work phase and/or
a work sector and verification and quantification to be made of the reduction of risks after having
adopted preventive and/or protective measures. A priority of interventions could also be

established on the basis of the assessed risk levels.

Fuzzy set theory has been applied to the occupational safety risk analysis within the construction
industry as a means of accounting for uncertainty. A study by Gurcanli and Mungen (2009)
proposed a method for assessment of the risks that workers are exposed to at construction sites
by using a fuzzy rule-based safety analysis to deal with uncertainty and insufficient data. By
using this approach, historical accident data, subjective judgements of experts and the current
safety level of a construction site can be combined. The relevance of the study was linked to the
possibility of providing safety scores for the construction sites that could result in work

and

p . The ication of the proposed method revealed which safety
items and factors were most important in improving workers safety. It also enabled one to decide
where to concentrate resources in order to improve the safety of the work environment. The

study began with different kinds of knowledge acquisition ways to establish a body of

information that could be beneficiary in ping fuzzy linguistic and their

associated membership functions to qualify occupational risks on construction sites. The input

parameters of the fuzzy system were derived from the raw data and judgement of experts.
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In the scope of the study, Gureanli and Mungen identified, investigated and classified 5239

occupational accidents in the ion industry. By bining the data and subj

judgement of safety experts, Gurcanli and Mungen were able to derive three parameters namely
accident likelihood (AL), current safety level (CSL) and accident severity (AS) and utilize the

input parameters for the fuzzy rule-based system.

Gurcanli and Mungen argued that the proposed fuzzy rule-based method of analysis is a new
approach for construction which can easily incorporate the present characteristics of the site and
construction conditions by taking into account the degree of uncertainties of judgements made by
safety experts. The study focused on daily, routine safety measures rather than safety
management principles and provided a preliminary but innovative approach for safety evaluation

on construction sites.

Chang, Tsujimura, Gen and Tozawa (1995) combined composite and comparison methods of
analyzing fuzzy numbers into an efficient procedure for solving project scheduling problems.
The comparison method eliminates activities that are not on highly critical paths while the
composite method determines the most critical path. The fuzzy Delphi method is used to
determine the activity time estimates with activity times represented by triangular fuzzy

numbers.
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3.3 INTRODUCTION TO FUZZY SET THEORY

Forming sets and analyzing relationships is usually the first step toward organizing thoughts and
understanding the structure of a complex problem (Klir, 1997). A central assumption of classical
set theory states that the boundaries of classical sets are required to be drawn precisely and
therefore, set membership is determined with complete certainty (Klir, 1997). The classical
notion of a set is crisp meaning that the set is something clear and concise. In classical set theory,
the membership of elements in a set is assessed in binary terms according to a bivalent condition
meaning that an element either belongs to a set or does not belong to a set. In binary language,
the element is assigned a value of 1 if belonging to a set and a value of 0 otherwise. An analysis
based on a crisp set takes place in a rigid frame of a system where a clear demarcation exists
between the correct and the incorrect. In classical set theory, it says that an individual must be a

member of a set or its compliment but not both (Klir, 1997).

Two important laws of classical set theory are the law of contradiction and the law of the
excluded middle. The law of contradiction states that any proposition affirming a fact and
denying it at the same time is false. It says that the same individual cannot simultaneously be a
member of a set and its compliment. The law of excluded middle is closely related and states that
any proposition must be either true or false, but not both. If sets have imprecise boundaries, then
the two classically important principles, the laws of contradiction and excluded middle, will no

longer be true.

In our daily lives, virtually all human activities involve reasoning based on vague concepts and

The sti ion that a statement is either true or false usually cannot be

a6|Page



applied. Most sets and propositions are not neatly characterized and exact boundaries cannot be
precisely determined. For example, the statement “Jon K is healthy” cannot be evaluated simply
by a definite yes or no because we do not have any strict criteria for the clean demarcation
between healthy and not healthy (Klir, 1997). A set of healthy people is allowed in classical set
theory only if significant simplifying assumptions are made and the partition between healthy
and unhealthy people is imposed. Without the imposition of arbitrary partitions or boundaries, a

set cannot be defined in terms of classical set theory, a circumstance that has prevented classical

from ioning fully in disciplines dealing with vagueness and other kinds of
uncertainty (Klir, 1997). One of the principle motivations for introducing fuzzy set theory was to
deal with such uncertainty, bridging the gap between imprecise concepts which are used to

describe reality and precise classical mathematics.

3.3.1 FUZZY SETS
A fuzzy set is a mathematical formalism to represent a fuzzy concept. Fuzziness is defined as
something vague or uncertain and is inherently associated with our linguistic expression
(Kikuchi, 1998). Given a proposition “x is A", fuzziness is the situation that the truth of the
proposition cannot be determined because A is not clearly defined therefore the uncertainty

under fuzziness is caused by the lack of definition of words.

A fuzzy set is defined as a pair (X, u) where X is a set and i: X — [0,1]. For cach x € X, u(x)

is the grade of membership of x. If X = {x;, -+ x,} the fuzzy set (X, 1) can be denoted as:

{I‘(xl)/x‘ MO }
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An element mapping to the value 0 means that the member is not included in the fuzzy set where
as the value 1 describes a fully included member. Values strictly between 0 and 1 characterize
the fuzzy members. The set {x € X|u(x) > 0} is called the support of the fuzzy set (X, ) and

the set {x € X|u(x) = 1} is called the kernel of the fuzzy set (X, ).

Fuzzy set theory is an extension of the classical notion of a set since the indicator functions of
classical sets are special cases of the membership functions of fuzzy sets, if the fuzzy set only
takes values of 0 or 1. In fuzzy set theory, classical bivalent sets are looked upon as special fuzzy
sets and are referred to as crisp sets. Fuzzy set theory cannot be considered independent of the
classical approach but should be looked upon as complementary to the classical statistical
approach when dealing with human perception and decision processes as it provides the

mathematical framework to deal with the nature of uncertainty.

3.4 MEASUREMENTS OF FUZZINESS

As previously stated, classical sets may be viewed as special fuzzy sets, called crisp sets, whose
membership grades are restricted to 0 and 1 values. Any set that is not crisp involves some
degree of fuzziness which results from the imprecision of its boundaries. Klir (1997) states that

the less precise the boundary, the more fuzzy the set.

To measure fuzziness means to assign a nonnegative number to each fuzzy set. These numbers
must satisfy some requirements that can easily be justified on intuitive grounds as essential for
capturing the concept of fuzziness. One requirement is that the measure of fuzziness should be
zero for all crisp sets and greater than zero for all other sets. Another requirement is based on our

intuition that the sharper the boundary of a fuzzy set, the less fuzzy the set is. The sharpness of a
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boundary of a fuzzy set is determined by the closeness of its membership grades to the ideal
values 0 and 1. The closer the membership grades are to the ideal values, the sharper the

boundary.

3.4.1 MEMBERSHIP FUNCTIONS

The characteristic function of a fuzzy set, called a membership function, gA(x), can possess a
value between 0 and 1 depending on the degree that an element (x) is compatible with the fuzzy
notion. This results in grades of membership for sets rather than full or no membership
designations. An individual’s membership in a fuzzy set may admit some uncertainty therefore
its membership is a matter of degree. The degree of membership of an individual in a fuzzy set
expresses the degree of compatibility of the individual with the concept represented by the fuzzy

set (Klir, 1997).

Each fuzzy set A, is defined in terms of a relevant universal set X, by a membership function
which assigns to each element x of X a number, A(x), in the closed unit interval [0,1] that

the degree of ip of x in A. bership functions are thus functions of

the form:

A:X - [0,1]

A fuzzy set has a membership that is not absolute. Fuzzy sets generalize the characteristic
classical function in allowing all values between 0 and 1. A fuzzy subset A of X is defined by its
membership function, written A(x), whose values can be any number in the interval [0,1]. The
value of A(x) is called the grade membership of x in fuzzy set A and is often denoted by u(x). If

u(x) is only 0 or 1, then the characteristic function of a crisp, non-fuzzy set A would apply. If
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(x) takes on values in between 0 and 1, then x belongs to A if 4(x) = 1, x does not belong to

A when u4(x) = 0 and x is in A with membership 15 (x) if 0 < 14(x) < 1.

Membership functions of fuzzy sets play a central role in fuzzy set theory. In each application of
fuzzy set theory, appropriate membership functions must be constructed so that the intended
meanings of relevant linguistic terms are captured and the fuzzy set is adequately defined. These
meanings are strongly dependent on the context in which the linguistic terms are used. For
example, the word young has a different meaning when applied to children or university
professors and its meaning is even more varied when applied to different types of objects such as

geological formations or trees.
3.4.2 REPRESENTATION OF MEMBERSHIP FUNCTIONS
Each fuzzy set is uniquely defined by a membership function. The most common ways in which

membership functions are displayed are through graphical, tabular and list, geometric and

analytical ion. Graphical ion is most frequently used and illustrates

membership functions whose universal sets are either 1-dimensional or 2-dimensional Euclidean
space. For universal sets that are finite, membership functions can be represented by tables,
which list all elements in the universal set and the corresponding membership grades. Using
tabular representation, the fuzzy set is characterized by a list in which the members of the set are

conjoined with the degree of membership in the set.

Geometric representations are most often used to represent membership functions whose
universal set X is a finite set. When a universal set is infinite, which is often the case for a set of
real numbers, the membership function is often represented in analytic form. For example, the
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universal set of the fuzzy set ‘about 2" is the set of all real numbers. This kind of fuzzy set, called
a fuzzy number, can be represented by an analytic form which describes the shape of this fuzzy
number. The fuzzy set, whose graph is shown in Figure 3.1, may capture the concept of ‘about
2", It can be expressed in the following analytic form:

x—1 whenl<x<2

A(¥) = {3-x when2<x<3
0 otherwise

FIGURE 3.1 - A MEMBERSHIP FUNCTION OF ABOUT 2
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Any ic, triangular ip function ized by the three a,bandc,

as shown in Figure 3.2, is defined by the membership function:

0 x<a

(x—a)

whena<x <b

b—a

) whenc<x <d

x>c

Alx)

FIGURE 3.2 - GENERIC, SYMMETRIC, AND TRIANGULAR MEMBERSHIP FUNCTION
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Another important class of membership functions is trapezoidal shaped, which is captured by the
generic graphical representation in Figure 3.3. Each function in this class is characterized by the

four parameters a, b, ¢, and d via the generic form:

(a—x)
= whena<x <b

1 whenb<x <c
d-x
whenc<x <d

otherwise

Alx) =

Ax)

FIGURE 3.3 - TRAPEZOIDAL MEMBERSHIP FUNCTION
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3.5 OPERATIONS ON FUZZY SETS

Essential to the application of fuzzy set theory are set operations. They aggregate two concepts
that are represented by sets and form a new set representing a new concept, or they process

different types of i ion and generate new i ion (Kukuchi, 1998). In the case of crisp

sets, set operations are binary, defined on either the max or min operations of 0 or 1; hence, they
cannot represent the uncertainty perceived when two notions are aggregated. In the case of fuzzy
sets, different operators are possible in order to capture and preserve the fuzziness embedded in

the original concepts.

The three basic operations on classical sets are complement, union and intersection. While these
operations are unique in classical set theory, their extensions in fuzzy set theory are not unique.
Distinct operations in each of these classes reflect distinct meanings of the linguistic terms and,
not and or when employed in sentences of natural language in different contexts. These special
operations on fuzzy sets which are referred to as standard fuzzy operations are the most common

operations in practical applications of fuzzy st theory.
3.5.1 STANDARD FUZZY COMPLEMENT

Given a fuzzy set A defined on a universal set X, its complement A is another fuzzy set on X that
inverts, in some sense, the degrees of membership associated with A. While for cach x €
X, A(x) expresses the degree to which x belongs to A, A(x) expresses the degree to which x
does not belong to A. The standard fuzzy complement is expressed by the formula:

AX) =1-A®)

forall x € X.
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One consequence of the imprecise boundaries of fuzzy sets is that they overlap with their
complement. This is one of the fundamental differences between classical set theory and fuzzy

set theory. In classical set theory, sets never overlap with their complements.

3.5.2 STANDARD FUZZY UNION

Consider a universal set X and two fuzzy sets A and B defined on X. The standard fuzzy union
of A and B, denoted by A U B, is defined by the membership functions using the formula:

(A UB)(x) = max[A(x),B(x)]

To illustrate, let X be a set of n doctor’s patients identified by numbers 1. 2,..., n. Let A denote
the fuzzy set of those patients in X having high blood pressure and let B denote the fuzzy set of
patients having high fever. If patient 1 has A = high blood pressure = 0.6 and B =
high fever = 0.3, then the set A U B for patient 1 is expressed by:

(A UB)(1) = max[0.6,0.3] = 0.6

Using the fuzzy union equation, one can determine the set A U B of patients in X that have high

blood pressure or high fever by taking the maximum value of A or B.

3.5.3 STANDARD FUZZY INTERSECTION

The standard fuzzy intersection, denoted A N B, is defined by the membership functions using
the formula:

(A N B)(x) = min[A(x),B(x)]

forall x € X.
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Continuing with the doctor’s patients example, with patient 1 having A = high blood pressure =
0.6 and B = high fever = 0.3, then the set A N B for patient | is expressed by:

(ANB)(1) = min[0.6,03] = 03

The standard fuzzy operations do not satisify two laws of their classical counterparts: the law of

excluded middle and the law of iction. This is a of imprecise ies of

fuzzy sets.

It can easily be verified that the standard fuzzy operations satisfy all other properties of the
corresponding operations in classical set theory. By restricting ourselves to the standard fuzzy
operations, the great expressive power of fuzzy set theory is not fully utilized. In particular, the
standard fuzzy operations are not capable of expressing the full variety of meanings of the
linguistic terms and, not and or when applied to fuzzy concepts of natural language. The
standard fuzzy operations have been found adequate in most practical applications of fuzzy set

theory.

3.6 FUZZY ALPHA - CUT TECHNIQUE

Fuzzy numbers are numerical approximations described by fuzzy sets and are used when one
interprets or perceives information that has potential measurement imprecisions. Fuzzy numbers
can be used to represent interval numbers using the alpha (@) cut to represent the set of elements
in a fuzzy set that have a degree of membership, (u(x)), greater than or equal to the &
membership value. The a-cut is the set of elements in a fuzzy set having membership u(x)
which can be represented by:

A = {x|xeX,and u(x) = a} = [aL,cR] = [a,c]
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The alpha (@) cut technique uses fuzzy set theory to represent uncertainty or imprecision in the

Uncertain are i to be fuzzy numbers with some membership

functions. Figure 3.4 shows a parameter X represented as a triangular fuzzy number with support

of Ag. The wider the support of the membership function, the higher the uncertainty.

a- level cut

Ao
FIGURE 3.4 - TRIANGULAR FUZZY NUMBER WITH SUPPORT Ag AND @-CUT

The fuzzy set that contains all elements with a membership of @ ¢ [0,1] and above is called the
a-cut of the membership function. At a resolution level of a, it will have support of Ag. The
higher the value of @, the higher the confidence in the parameter (Li & Vincent, 1995). By
defining the interval of confidence at level , a triangular fuzzy number, defined by the triplet

(a, b, c) is characterized as:
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Vo= [0,1]:
Ag = [a%c% = [(b—a)a +a,c— (c — b)a]

The alpha (a) method is based on the extension principle, which implies that functional
relationships can be extended to involve fuzzy arguments and can be used to map the dependent
variable as a fuzzy set. In simple arithmetic operations, this principle can be used analytically.

However, in most practical modeling applicati fonships involve partial

equations and other complex structures that make analytical application of the principle difficult.

Therefore, interval arithmetic is used to carry out the analysis.
3.7 THE EXTENSION PRINCIPLE

The extension principle is a method of extending point-to-point operations to fuzzy sets. It is the
basic tool for the development of fuzzy arithmetic as it provides a method for fuzzifying crisp
functions. Suppose that f is a point to point mapping function from X to ¥ and A is a fuzzy set on
X defined as:

_ taln)
=

. 4 Palw)
Xn

A

X;
)
X2

The extension principle states that the image of fuzzy set A under the mapping f(*) can be
expressed as a fuzzy set B:

_ ) ) | eaG)

B=rw == ¥z Y

where yi = f(xi).

More generally, we have:
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B =
HB(y) eyt )

Let Tand U be two fuzzy numbers defined in terms of universal sets X and Y respectively. Let
the symbol * denote a general arithmetic operation, i.e. * = {+,—,X,+}. An arithmetic operation
or mapping between these two fuzzy numbers denoted T * U will be defined in terms of the

universal set Z and can be accomplished using the extension principle, by:

w:0@ =\ () A o))

xey=z

which results in another fuzzy set, the fuzzy number resulting from the arithmetic operation on

fuzzy numbers T and U.

3.7.1 INTERVAL ANALYSIS IN ARITHMETIC

A fuzzy set can be thought of as a crisp set with ambi ies. A convex

function defining a fuzzy set can be described by the interval associated with different levels of
a-cuts. A fuzzy set, A, is said to be convex if and only if all of its a-cuts are convex in the
classical sense. That is, for each a-cut, Ay, for any r,s € Ajand any A € [0,1] then Ar +
(1—2)s € Ag. Let I and I, be two interval numbers defined by ordered pairs of real numbers
with lower and upper bounds:

I, =[a,b] wherea<bh

I, =[cd] wherec<d
When a = b and ¢ = d, these interval numbers degenerate to a scalar real number. Again, using
the symbol * to denote a general arithmetic property, the following equation represents another

interval.
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I+ 1, = [a,b] * [c,d]

The interval calculation depends on the magnitudes and signs of the elements a, b, ¢ and d. Table

3.1 displays the various inations of set-theoretic i ion (N) and heoretic union

(V) for the six combinations of these elements given that (a < b) and (¢ < d) still hold true.

Table 3.1 - Set Operations on Intervals

Cases. Intersection (N) Union (U)
a>d ¢ [c,d] U [a, b]
c>b ¢ [a,b] U [c,d]
a>chb<d [a,b] [c,d]
c>ad<b [c.d] [a,b]
a<c<b<d [c,b] [a,d]
c<a<d<b [a,d] [c,b]

Based on the information in Table 3.1, the four arithmetic operations associated with the above
equation are:

[a,b] +[c,d] = [a+c,b+d]
{a.b)~[e.d] = [a—d,b—c]
[6,5] - [c,d] = [min(ac, ad, bc, bd), max(ac, ad, be, bd)]
(a1 + ) = a,b]- [ .| provided that 0 ¢ [e.a)

(aa,ab) fora>0

afa,b] = {(ab,nm) fora<o0
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Where ac, ad, be and bd are arithmetic products and 1/d and 1/c are quotients.
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Chapter 4

MODELING OF UNCERTAINTY

4.1 VAGUENESS AND UNCERTAINTY

The development of predictive models for occupational accidents is often fraught by variability
and uncertainty associated with the subjective nature of expert opinions and judgements. This
level of uncertainty attached to the integration of subjective evaluations is a concern when
analyzing systems through model development. Fuzzy set theory (FST) provides a useful tool to
address this variability and to propagate uncertainty through the model. The utility of FST in
model development has been seen in its ability to more appropriately represent the human-
inferencing process and to provide a more user-friendly interface through the use of natural

language (Zadeh, 1996).

The term *computing with words’ was introduced by Lotfi A. Zadeh to explain the notion of

reasoning linguistically rather than with numerical quanti

“Humans use natural language as a
means of computing and reasoning, arriving at conclusions expressed as words from premises
expressed in a natural language™ (Zadeh, 1996). Words have fuzzy denotations therefore a key
aspect of computing with words is that it involves a fusion of natural language and computation

with fuzzy variables (Zadeh, 1996).

The use of natural language or linguistic variables within the framework of models may be a
necessity when available information is too imprecise to justify the use of numbers or “when

dealing with situations which are too complex or ill-defined to be reasonably described by
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conventional quantitative expression” (Lin, 1997). A linguistic variable is a non-numeric
variable whose values are words or sentences in natural or artificial language which are used to
facilitate the expression of rules and facts. The use of linguistic variables allows the analyst to
assess model parameters in a natural way, providing a more user-friendly approach for analyzing
the specific case. Fuzzy set theory provides a useful tool for directly working with linguistic

expressions in the modeling and analysis of occupational accidents.

4.2 INCORPORATING FST INTO ATTWOOD’S PREDICTIVE MODEL

Model h includes the identification of i factors and a ination of their

Attwood a ive literature review of carly accident
models and a thorough evaluation of the related available statistic accident data to gain an
understanding of the major factors contributing to the occupational accident issues. A thorough

review of internet sources, company annual reports and open literature offering analysis of

dents was undertaken to understand major factors affecting thi

offshore occupational

(Attwood et al., 2006a).

The model execution process s comprised of five stages: Calculation of accidents using global

average it ibration run, reliability adj predictive run and
comparison of predictions with estimates of actual numbers of accidents. The first step involves
obtaining data to calibrate the model for average conditions. Data for the calibration portion of

used for

the model application are publicly available statistics. The type of accident statisti
calibration depends on which output statistic is desired. If a particular accident rate is required,
then the corresponding global average value of that particular rate is used for calibration
(Attwood er al., 2006¢).The second stage of execution involves calibrating the model in order to
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set base case component reliabilities. The base case result obtained from step one is used to
calibrate the model to a global average accident expectation, allowing all base case component

reliabilities to be set.

The third stage of model execution involves component reliability adjustment, where an expert
panel assigns scores of 1-10 to each factor within the direct, corporate and external layers. This
rating system represents the component’s effect on safety within the specific regime being
analyzed, compared to the global average, which is represented by a score of 5. Each score
represents the component’s specific case condition with higher scores representing situations
more favourable to safety results while lower scores represent situations less favourable to safety

(Attwood er al., 2006¢). At this stage of model execution, the author proposes the use of fuzzy

set theory (FST) to account for i i with the subjective j of the

expert panel. Incorporating to account for judgemental uncertainties associated with experts
opinion involves the assignment of linguistic variables to represent each factor’s effect on safety
or specific case condition, conversion of linguistic variables into a fuzzy numerical range

through the p of ip functions, ion of fuzzy numbers into one fuzzy

variable to represent each factors effect on safety, propagation of these fuzzy numbers

throughout Attwood’s model to determine the fuzzy outcome or frequency of occupational

idents and the use of a defuzzification technique or fuzzy operations to calculate a crisp

numeric output.
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4.2.1 FUZZY NUMBERS

The concept of a fuzzy number arises from the fact that many quantifiable phenomena cannot be
characterised in terms of absolutely precise numbers (Klir, 1997). A fuzzy number is one which
is described in terms of a number word and a linguistic modifier, such as approximately, nearly,
or around. There are several geometric mapping functions of fuzzy numbers to represent the
linguistic variables, but the most common are triangular and trapezoidal shapes as they are easy
to construct and manipulate. Most current applications that employ fuzzy numbers are not
significantly affected by the shapes of functions hence it is quite natural to choose simple linear

functions, represented by straight lines, as in the case of triangular or trapezoidal (Klir, 1997).

A triangular fuzzy number is a fuzzy number A in X, if its membership function fy: X = [0,1] is:

(():7__‘:_)) asx<h
= EZZZ; bsxsc
0 otherwise

whena b <c.

The triangular fuzzy number can be denoted by A = (a,b,c). The parameter 'b’ gives the
maximal grade of f;(x) (ie. fy(b) = 1) and is the most probable value of the evaluation data.
The parameters ‘a’ and ‘¢’ are the lower and upper bounds of the available area for the evaluation

data.
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A trapezoidal fuzzy number is a fuzzy number 4 in X, if its membership function fy: X = [0,1]

is:
(x—a)
- x<bh
1 bsx=<c
fat) =
Ej:j; c<x<d
0 otherwise

whena<b<cs<d.

‘The trapezoidal fuzzy number can be denoted by A = (a, b,¢, d). The interval [b,c] are the most
likely values of £,(x). The parameters ‘a’ and 'd" are the lower and upper bounds of the available

area for evaluation.

Triangular fuzzy numbers were selected to represent linguistic variables for Attwood’s model.

Triangular geometric mapping functions can be casily justified on intuitive grounds as they

capture the concept of fuzziness, making it easy for evaluation.

4.2.2 DEVELOPMENT OF LINGUISTIC VARIABLES

The goal of fuzzy linguistic variables is to represent the condition of an attribute at a given
interval. In FST, several intervals or ranges may be specified with respective linguistic variables
offering the continuum of a given variable (McCauley-Bell, 1996). In the continuum of
component importance as it relates to safety results in Attwood’s model, the fuzzy linguistic
variables are used to assign the relative importance of factors with regards to their overall effect
on safety. The ability of FST to offer a natural-language interface and a graded degree of safety
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rating are the main reasons for utilizing this methodology within this phase of model execution.

By i ing a linguistic, qualitative scale of i to rate iabilities, it

provides a more natural, user-friendly approach for analyzing the specific case since people are
better at qualitative judgement tasks than they are at quantitative estimates, preferring to express.

with verbal phrases as opposed to numerical estimates.

The objective of this stage of linguistic variable development is to identify ranges where the
safety experts could assign a particular linguistic value to an interval. To accomplish this, the
entire level of factor existence needs to be partitioned into as many levels as necessary to
accurately represent the continuum of the factor. Five linguistic variables are used to rank each

factor’s importance or effect on overall safety. Descriptions of the five levels of linguistic

variables are presented in Table 4.1. Each safety expert can assign linguistic terms, such as

“Low’ or *Very High" for determining a factors effect on safety.
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‘Table 4.1 - Description of Linguistic Variables

Linguistic Variable Fuzzy Range Description

Represents situations having.
very little to no effect on safety

Very Low (VL) 0-2 in a specific region. Represents.
least favourable results on
safety.

Low (L) 24 Represents situations having a

slight or low effect on safety.
Represents situations having an
average effect on safety.
Represents situations having a
High (H) 6-8 high or considerable effect on
safety.
Repr;s_el':ts I§tjmati(ms ‘I!aving a
very high effect on safety.
Yery HIgh (V) 19 Rergmssnts most favoumyble
results on safety.

Medium (M) 4-6

w The five linguistic variables are then translated into triangular fuzzy numbers. Triangular fuzzy
numbers are utilized to capture the vagueness of the fuzzy linguistic terms and represent the

subjective and conflicting assessment of the panel of safety experts (Yang, 2003).
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L L ™M H VH

1—

fa(x)

FIGURE 4.1 - TRIANGULAR FUZZY NUMBERS REPRESENTING LINGUISTIC VARIABLES

Experts apply the linguistic terms to rate each component’s effect on safety results. Each of the
linguistic variables are represented by an individual and overlapping triangular shaped
membership function that travels throughout the entire interval [0,1] as shown in Figure 4.1. The
membership functions translate the linguistic terms into triangular fuzzy numbers. For example,
3 represents a factor having a ‘low” effect on safety results and 9 represents a ‘very high effect
on safety. Overlapping functions were used to represent ill-defined boundaries between each

linguistic variable.

The base of the triangle or support of the membership function represents the range of
uncertainty. The wider the support of the membership function, the higher the uncertainty.

Taking the linguistic variable ‘Low”, the base of the triangle can be seen to extend from 2 to &
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50 ‘Low’ is defined as every component whose effect on safety is bounded between the fuzzy
interval of 2" and 4. The upper vertex of the triangle is located just over a vertical line from 3. In
FST, maximal grade of the membership degree to the fuzzy set of ‘Low” is 1. The membership
degree begins to decline along each side of the vertex until a membership degree of 0 is reached
at the base of the triangle at both the lower and upper bounds of 2 and 4 respectively. This
represents the core of FST in the sense that everything is a question of grade. The remainder of

fuzzy sets *Very Low’, ‘Medium’, *High® and *Very High" are described in a similar way.
4.2.3 MEMBERSHIP FUNCTIONS

One of the principal motivations for introducing fuzzy sets is to represent imprecise concepts. A
factor’s membership in a fuzzy set may admit some uncertainty, therefore its membership is a
matter of degree. In Attwood’s predictive model, a factor within the direct layer may be a
member of the fuzzy set ‘High’ to the degree to which the factor meets the concept of ‘High’.

The concept of ‘High® represents situations having a considerable or high effect on safety results.

Y. the degree of ip of a factor in a fuzzy set expresses the degree of

compatibility of the factor with the concept represented by the fuzzy set.

To qualify as a fuzzy number, the membership function must capture an intuitive conception of a
set of numbers that are around a given real number, or possibly, around an interval of real

numbers. The fuzzy set ‘High® extends from the fuzzy interval & to 8 with the value 7

corresponding to the maximal grade of the membership function having a value of 1. This

represents the most probable value of the evaluation data. The values 6 and 8 represent the lower

and upper bounds of the data and are by a ip grade of 0. If a
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direct factor is rated as having a ‘High® effect on safety results, the factor’s degree of

depends on its ibility with the concept by ‘High’. If the factor is

highly compatible to the concept of *High', its membership value will be closer to | whereas if
compatibility is low, its membership value will be closer to 0. Each membership value is then
represented by a fuzzy number using a numerical approximation system to convert the linguistic

term “High" in terms of ts corresponding fuzzy number.

Within this phase of model execution, experts are asked to apply linguistic terms to rate each
components effect on safety results. A numerical approximation system was proposed to
systematically convert the five linguistic terms to their corresponding fuzzy numbers. Figure 4.1
represents the conversion scale chosen to represent assessments of the experts. The
corresponding membership functions of these five linguistic values in triangular fuzzy numbers
are illustrated as follows:

0<x<1

1<x <2

otherwise

2<x<3

fil)={(4-x

3<x<4

0 otherwise

4<xs5

) =16-2 g

0 otherwise
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. 6<x<7
xX)=1(8-x

fu®) (1—) 7<x<8

| 0 otherwise
ot —8]

¢ - ) gex<o

fu® =y 9<x<10

0 otherwise

4.2.4 UTILIZING EXPERT DATA

The criteria used to form the expert panel were based on knowledge of specific regions,
experience in safety design, project management, offshore surveying and safety consultancy
(Attwood er al., 2006¢). For the purposes of this work, a weighting factor was not introduced to
represent the relative quality of different experts. Thus the opinion of each expert is assigned

equal weight in terms of significance or importance.

Each expert is asked to apply one of five natural linguistic expressions (very low, low, medium,
high or very high) in rating cach factor’s effect on safety results. Each linguistic variable is
translated into a triangular fuzzy number by use of Figure 4.1. Each linguistic term, 4, can be
represented as a fuzzy number in the form 4 = (a,b,c) where a < b < c. The triangular fuzzy

numbers and representative fuzzy values for each linguistic variable are displayed in Table 4.2.
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‘Table 4.2 — Triangular Fuzzy Numbers and Fuzzy Values for Li

Variables

Linguistic
Variable

Description

Fuzzy
Number, A

Fuzzy Value,
A=(abc)

Membership Function

Very Low
(VL)

Represents situations
having very little to no
effect on safety in a
specific region.
Represents least
favourable results on

safety.

-

0,1,2)

Low (L)

Represents situations
having a slight or low

effect on safe

w

2.3,4

Medium
(M)

Represents situations
having an average eflect

on safety

wu

4,5,6)

High (H)

Represents situations
having a high or
considerable effect on

safety.

<

(6,7.8)

Very High
(VH)

Represents situations

having a very high effec
on safety. Represents
most favourable results

on safety

o

(8,9, 10)

0 otherwise

The membership function can be cut horizontally at a finite number of a- confidence levels

between 0 and | to obtain lower and upper bounds for each confidence interval as displayed in

Figure 4.2. For each a-cut of the parameter, the model is run to determine the minimum and

maximum possible values of the output. This information is then directly used to construct the

corresponding fuzzin

uncertainty.

s (membership functions) of the output which is used as a measure of
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FIGURE 4.2 - TRIANGULAR FUZZY NUMBERS WITH A- CONFIDENCE LEVEL OF 0.5

Due to different opinions of the expert panel, it is necessary to combine or aggregate the opinion
of each expert into a single fuzzy number. There are many methods to aggregate fuzzy numbers
including mean, median, maximum, minimum and mixed operators. The arithmetic averaging
(mean) operation does not produce a noticeable change in the combined possibility distribution
when there are small variations in any possibility distribution and it is the most commonly used

aggregate method (Huang, 2001). For the present work, the mean operator has been selected to

pool expert opinion. Using the mean aggregation method, let:

Ay = (a by, cy) or (ay by ey, dig),

represent the linguistic expression of the element or event i given by expertj. The average

equation for aggregating the n experts’ opinions to a single fuzzy number is defined as:
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2 &
M= (;) X (Ags + Ay + Ags + o+ Ayy),

i=1,23,..,m

where M; represents the average fuzzy number of the m elements or events. To illustrate the
average or mean aggregation method, take ‘Medium® (M) and ‘High’ (H) to be the fuzzy

numbers selected by a panel of 2 experts, which are defined as follows:

—4

C=B  ycxss
=1

fulx) (T 5<x<6
0 otherwise

— 6

X)=41(8-
il % 7<x<8
0 otherwise

Using the @ — cut addition and the average aggregate equation:
Suan(@) = max (fuCIAL())
x4y
3
W =% (M +H)

where W represents the average fuzzy number. The @ — cut of M and FH are:

Mo = [my,m;), He = [hy,hs)

Which means that at some level, x can be cither m; or m, and y can be either hy or hy. By
setting @ = (x —4)/1 for fy(x), the @ — cut obtained for m, is:

a= (m—#)/lorm =a+4
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Similarly, the other @ — cut values obtained are:

my=6-a;h=a+6h,=8-a
The addition of M and H are computed as:
Surn(@ = max (fu GO ()
= [(my) + (h), (my) + (h2)]
=@+ +(a+6),(6—a)+(8—a)]
= [(2a + 10), (14 - 2a)]
The average fuzzy number W is computed as follows:

w= % x [2a +10), (14 = 2a)] = [(a +5),(7 — )]

Let W, = [21,2,] = [(@ +5),(7—a)] thena =z, — 5 anda = 7 — z,.

Thus, the membership function of the aggregated (average) fuzzy number W is:

=5,
(Zl) 5<x<6

) =4 (7~
fe@=10-2 ¢ gy
0 otherwise

A fuzzy error factor is calculated to account for the imprecision of data. The error factor is
associated with the most possible value of the linguistic variables. The term “error possibility” is
essentially a fuzzy probability and is used to obtain a fuzzy error rate for each linguistic
expression. The linguistic variables are translated into fuzzy error probabilities by triangular
membership functions displayed in Figure 4.3.
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VL L M H VH
1=
fa(x)
11T 1 111171
01 02 03 04 06 07 08 09
0 0.5 1.0
%
FIGURE 4.3 - TRIANGULAR FUZZY NUMBERS REPRESENT FUZZY ERROR PROBABILITIES

Aggregate experts’ opinions can be transformed into one “fuzzy error probability” and the
“fuzzy error rate”, E, , can be obtained from the fuzzy error probability using the following

equations proposed by Huang ef al. (2001):

{1/10,4, Ep#0
0, Ep=0

M= —1173 x2301
=15, - 1177 x2301,

E, = errorrate,
Ep = error possibility,
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To illustrate, suppose 3 members assigned the linguistic variables very high (VH), medium (M)

and low (L) to assess a factor’s effect on safety. The linguistic variables ar translated into fuzzy

error ilities by triangular functions displayed in Figure 4.3. The fuzzy

probability values associated with very high, medium and low are {(0.8, 0.9, 1.0), (0.4, 0.5, 0.6),

(0.2,0.3, 0.4)} respectively. The fuzzy error p ility is calculated as follows:

Xavg

_{(0:8,0.9,1.0) + (04,05,06) + (0.2,0.3,0.4)}
= 3

= (0.47,0.57,0.67)

The aggregated fuzzy error probability (0.47, 0.57, 0.67) is converted into the fuzzy error rate by

the following equations:

M =147 1173 x2.301 = 2395

=0.0152

01817

Table 4.3 displays the corresponding error rate (Ey) of the error probability ().
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‘Table 4.3 - Fuzzy Error Rate (E,) and Fuzzy Error Probability (E,)

[ o [ [w]w [w]w]e]we]w]
| E, IO,(KX)OIG‘ | 0.000223'0.00063] | 0.00232 | 0.00500 | 0.(!7977' 0.0184 | 0.0355 | 0.0782 [ 1.0 I

4.2.5 DEFUZZIFICATION TO OBTAIN CRISP NUMERIC OUTPUT

Once each linguistic expression assigned by the expert panel is aggregated into one fuzzy
number to rank each components effect on safety, they are directly entered into the model to
adjust component reliabilities. The aggregated fuzzy numbers represent location-specific scoring
assigned to each factor by the expert panel as they compare the specific situation to the global
average. The aggregated fuzzy numbers are used to adjust component reliability to predict the
overall system reliability and accident frequency of the specific case by one of the following

three scenarios:

. Adjusting direct layer component reliabilties, inputing the adjusted values into the model

to calculate system reliability and accident frequency directly.

N

. Adjusting corporate component reliabilities, inputing the adjusted values into the model
which influence the direct layer values. Once direct layer values are determined, system

reliability and accident frequency are calculated

w

. Adjusting external component reliabilities, inputing the adjusted values into the model
which influence corporate values and, in turn, the direct values, facilitating system

reliability and accident frequency calculations.
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The model uses the adjusted component reliabilities to predict overall system reliability and
frequency of accidents for the specific case. The final outcome predicted by the model is a fuzzy
value for it contains the uncertainties propagated from the ranking of each factor by use of fuzzy
numbers. This fuzzy predicted outcome (frequency of occupational accidents) must now be
translated into a crisp numeric output through a process of defuzzification.

bining all fuzzy outputs into a specific composite result. It

[ ification is the process of
is the process used to calculate the crisp value of a fuzzy set. “When using multiple inputs, the
intent of defuzzification is to translate the obtained linguistic value and membership function
into a singular crisp value” (McCauley-Bell, 1996). There are many methods of defuzzification
but the three most commonly used methods are Maximum Defuzzification, Weighted Average

Defuzzification and the Centroid D ification Technique.

Maximum defuzzification takes the strongest fuzzy output as the result for the system output. It
gives the output with the highest membership function. This defuzzification technique is very

fast but is only accurate for peaked output. i ification is i to be a poor

method due to the lack of input from other factors (McCauley-Bell, 1996). With the Weighted
Average defuzzification technique, the output is obtained by the weighted average of each output
of the set of rules stored in the knowledge base of the system. This method is computationally

faster and casicr and gives fairly accurate resuls.

The Centroid defuzzification technique, also known as center of gravity (COG) or center of area

technique, was developed by Sugeno in 1985 and is the most accepted and commonly used
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method of defuzzification. The COG technique is considered to be a more effective method than

the maximum defuzzification and weighted average techniques because it is very accurate and
considers the contribution of all fuzzy outputs and the degree to which each is true. Because of
its effectiveness and accuracy in the defuzzification process, the COG technique will be utilized

in the present work.

The COG method determines the center of the area of the combined membership functions.
Using the membership function fyy(2) for the average fuzzy number, W, the COG of the area
under the membership function is calculated as follows:

_ fafu(@)zaz
T Jaheaz

where [a, c] is an interval containing the support of f,.
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Chapter 5

CASE STUDY

In order to verify the methodology of FST, a case study is presented in this chapter to illustrate
the use of FST within Attwood’s predictive model. The methodology used to incorporate FST
within the model is outlined in detail in Section 4.2 of Chapter 4. This case study was previously
executed by Attwood ef al. (2006¢) to showcase the effectiveness and versatility of the predictive
model by comparing the number of predicted and actual annual accidents on a Newfoundland
(NL), Canada, based installation. The main purpose of this case study is to construct an easy
method to evaluate and minimize uncertainty and integrate it into the framework of Attwood’s
predictive model by use of FST. Through this proposed methodology. the judgemental
uncertainties associated with experts’ subjective opinions can be expressed properly by using
fuzzy sets and the accident rate can be assessed with better confidence. The subsequent section
of this chapter will give a detailed account of the incorporation of FST within the model to

address the uncertainty and imprecision arising out of the subjectivity of expert opinion.

5.1 CASESTUDY

A case study has been exceuted to compare the number of predicted and actual annual accidents
on a Newfoundland (NL), Canada, based installation. The main objective of this study is to

enhance the effectiveness of the predictive model by using FST as a means of modeling

. As a thodol FST i i ision and subjectivity in the form of
expert opinions into the model formulation and solution process, providing a framework to

achieve “all the uni ly ized of fuzzy ion such as cognitive

82|Page



plausibility and robustness” (Baroni & Guida, 1998). The proposed methodology recognizes that
uncertainty plays a role in decision making and uses FST to minimize uncertainty and assess the
occupational accident rate with greater confidence through a) the assignment of linguistic
variables to represent each factor’s effect on safety or specific case condition; b) conversion of
linguistic variables into a fuzzy numerical range through the development of membership
functions; ¢) aggregation of fuzzy numbers into one fuzzy variable to represent each factors
effect on safety; d) calculation of the fuzzy error probability and fuzzy error rate to estimate the
degree of uncertainty each component contributes to the final outcome; e) propagation of fuzzy
numbers to adjust component reliabilities to determine the fuzzy outcome or frequency of

occupational accidents; f) the use of fuzzy operations to calculate a crisp numeric model output;

and g) i ion of the inti i with the fuzzy outcomes. The stepwise
analysis of the described methodology of FST is presented below.

52 ACTUAL VS PREDICTED ACCIDENT RATE ON A NL OIL & GAS

PLATFORM

A Newfoundland based 100 POB (persons on board) production installation was chosen as a case
study for the model in a paper published by Attwood et al. (2006) entitled “Validation of an
Offshore Occupational Accident Frequency Prediction Model — A Practical Demonstration Using
Case Studies” Attwood assumed production to be a 24 hour operation which is normal
operational procedure on most offshore oil and gas installations, with a split shift scenario for
each worker. This means that 50% of workers are “on shift” while 50% of workers are resting.

This scenario can also be viewed as if 50% of the POB are working continuously.
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Data for the calibration portion of the model application are publicly available (Attwood ef al.,

2006a). For the purposes of this case study, the expected number of accidents on a 100 POB

was

leulated by

the 2004 annual average global accident rates, TRIR

(total recordable incident rate) available from the OGP database with the total number of people

on board. Table 5.1 displays accident rates (events per million hours) for the Newfoundland case

study.

Table 5.1 - Accident rates per million hours (Attwood ef al,, 2006¢)

2000 2001 2002 2003 2004 Average
Global average 8.84 6.85 5.77 4.87 6.36 6.54
Newfoundland
sy 10.16 9.49 8.04 1145 4.36 8.70
Number of
accidents (based on 387 3.00 2.53 2.13 2.79 2.86
global average
TRIR)
Number of
accidents (based on
Newfoundland 4.45 4.16 352 5.02 1.91 3.81
TRIR)
\
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Step 1 - Calculate Actual number of accidents under global average conditions

Using the global average (TRIR) for 2004 of 6.36 accidents per million manhours, and assuming
50% of POB are working continuously, the expected number of accidents is calculated as
follows:

Expected accidents
= 636 accidents/1,000,000 manhours x 100 persons x 0.50 working x 24 hours/day x 365.25 days/year
=279

Step 2 — Calibration run to determine base case component reliabilities

The model is then run in calibration mode in order to set base case component reliabilities. The

expected number of accidents is used to back calculate overall system reliability. Once the output
(ie. accident rate = 2.79) is determined using global average accident statistics, a starting
reliability is calculated using the reliability equation based on a constant failure rate as outlined

below.

where:

2 = accident rate = 2.79
R() = system reliability
1= time = 1
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This starting reliability, 0.061, is then assigned to each base case component within the external,
corporate and direct layers to set the base case for comparison between actual and predicted
results. The expected number of accidents is 2.79 based on the global average and overall system
reliability is 0.061 as determined through the calibration run. Figure 5.1 displays systematic steps

involved in assiy of base case reliabilities for the calibration run.
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STEP 1
Calculate Accident Rate
(based on global average)

A=279

|

STEP 2
Calculate Starting Reliability

R(t) =

STEP3 ‘
| Assign Starting
Reliabilities to Base Case

| Components
|
— ~ _
External  Base Case Corporate  Base Case Direct Layer B2 Case
Layer Reliability Layer Reliability Reliability
Price of oil 0.061 Safety ey Behavioural
Shareholder culture Attitude 0.061
pressure : Safety Motivation 0.061
Royalty ba training 0.061 Capability
regime g programs Physical 0.061
Value Safety Coordination  0.061
0061
placed o procedures Fitness 0.061
on human ’ Lack of oer
life fatigue ’
Mental 0.061
Knowledge 0.061
Intelligence 0.061
Weather 0.061
ey 0.061
design
PPE 0.061

FIGURE 5.1 - ASSIGNMENT OF BASE CASE

FOR CALIBRATION RUN
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Step 3~ Fuzzy Approach to Adjust Component Reliability

At this stage of model execution, component reliability adjustments are required to assign scores
to components to represent specific case conditions. Fuzzy set theory is incorporated into this
phase of model execution to account for the subjective uncertainty associated with the expert

panel opinions when rating each factors effect on overall safety.

Step 3.1~ Assignment of Fuzzy Linguistic Variable

A panel of seven (7) qualified safety professionals, averaging 18 years experience within the oil
and gas industry, were used in Attwood’s study to rate Newfoundland’s safety environment
compared to global average conditions. The expert panel assign one of five fuzzy linguistic
variables, very low (VL), low (L), medium (M), high (H) and very high (VH), to each direct,
corporate and external factor to rate each factor’s effect on safety for the specific case (NL
offshore installation) compared with the global average as shown in Table 5.2. The global

average is assigned a fuzzy linguistic variable of medium representing a fuzzy value of (4, 5, 6).
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‘Table 5.2 - Assignment of linguistic variables to rate NL safety environment

Factor Expert | Expert2 Expert3 Expert4 Expert § Expert 6 Expert 7

Value placed
‘on human H VH VH VH H VH VH
life
Price ofoil Vil Vil ] ] Vil Vil Vil
Ll VL M VL L I VL L
pressure
Ry L L M M M L L
" " " H vH " "
Vi " " " " il "
Vi Vi " " Vi VH VH
H ] " Vil ] ] Vi
M M H H M M M
Lackof
Py M " M M " " H
Coordination L I M M L M M
itness M M L M M i M
Knowledge H M M H H M H
Tntelligence L L M M L M L
Safety design M M i i W i ]
Weather VL L Vi Vi Vi L L
PPE VH VH H H VH VH VH
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Step 3.2~ Conversion of Linguistic Variables into Fuzzy Numbers

The next step involves conversion of fuzzy linguistic variables to triangular fuzzy numbers by
use of membership functions. The fuzzy numbers of the five linguistic variables {Very Low

(VL), Low (L), Medium (M), High (H) and Very High (VH)} arc represented in Figure 5.2.

VL L M H VH
1—
a =05

fa(x)

T 1 111171

12 3 4 6 7 8 9

0 5 10
X

FIGURE 5.2 - TRIANGULAR FUZZY NUMBERS REPRESENTING LINGUISTIC VARIABLES

The corresponding membership functions of these five linguistic values (VL, L, M, H, VH) in

triangular fuzzy numbers are illustrated as follow
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1 0<x<1
/u(x)={@ 1<x<2

1
0 otherwise
=2
¥ 2<x<3
x) =4 (4—-
A % 3<x<4
0 otherwise
— 4
Q 4<xs<5
x)=4(6—
2 (1—’() 5<x<6
0 otherwise
—6
‘(xl_) 6<x=<7
x) = =
fu(x) (81x) 7<xs8
0 otherwise
-8
(Xl ) g<exso
T =y 1 9<xs10
0 otherwise

Each membership function can be cut horizontally at a finite number of «- confidence levels
between 0 and 1 to obtain lower and upper bounds for each confidence interval. For each a-cut
of the parameter, the model is run to determine the minimum and maximum possible values of
the output. This information is then directly used to construct the corresponding fuzziness
(membership functions) of the output which is used as a measure of uncertainty. For the purposes
of this example, the author defines a confidence interval of @ = 0.5 and each membership
function is cut horizontally at @ = 0.5 to obtain lower and upper bounds for each fuzzy value

representing the five (5) linguistic variables as shown in Table 5.3.
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To illustrate, Expert | assigned a linguistic variable of ‘High’ to the corporate factor ‘Safety

Culture’. The linguistic variable *High® is represented by a fuzzy value of (6, 7, 8) as defined by

the membership function:

-6,
= : ) g<xs7
e
fu@)={(8-x) 7<x<8
0 otherwise

Alternatively, defining the interval of confidence at a level, a = 0.5, the linguistic variable
“High" is characterized by the triangular fuzzy number, H:

Vo= [0,1]:
Hy = [a%c“] = [6°4,8°%)
= [(b-a)a+a,c—(c—b)a]
=[(7-6)05+ 6,8 (8 —7)0.5]
=1[65,7.5)

Therefore, the linguistic variable ‘High® is converted into the fuzzy value [6.5,7.5] which

represents the minimum and maximum fuzzy values for a confidence interval of @ = 0.5.
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Table 5.3 - Linguistic Values and Fuzzy Values

Linguistic Value Confidence Interval of @ = 0.5
Lower Bound (Min) | Upper Bound (Max)

Very Low (VL) 05 s

Low (L) 25 1

Medium (M) [ 55

High (H) 65 75

Very High (VH) 55 53

Step 3.3 — Aggregate Expert Opinions into a single Fuzzy Number

It is necessary to ageregate the opinions of multiple experts in order to achieve a more reliable

assessment of the specific environment. The mean average operator is used to aggregate the

opinion of each expert into one fuzzy number. To illustrate, under the direct layer, the factor

“Safety Design’ was rated as having a ‘Medium’ effect on safety by 2 experts and assigned a

value of *High’ by 5 experts as shown in Table 5.2. The fuzzy numbers representing ‘Medium’

(M) and ‘High® (H) are defined as follows:

(x—4)
1

fu®) =1(6-x
1
0

(x-6)
1

fuG) =1 @8-x)
1
0

The addition of M and H are computed as:

4<x<5

5<x<6

otherwise

6<x<7

7<x<8
otherwise
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fusn(2) = max (2 fu(IAS - fu ()

z=x+y
= [(2my) + (5hy), (2m3) + (Shy))
= [(2a +8) + (5a +30), (12 - 2a) + (40 — 5a)]
= [(7a +38),(52 - 7a)]
Defining a confidence interval of @ = 0.5, the average fuzzy number SD is computed as follows:
$D =3 (72 +38), (52~ 70)] = [(@ + 5:4), (.4~ )]
=[(0.5+5.4),(7.4 - 0.5)] = [5.9,6.9]

Thus, the membership function of the aggregated (average) fuzzy number SD representing the

direct factor ‘Safety Design” is:

—5.9
=59 cocrsea
x) =1 (6.
i) =10 lz) 64<x<69
0 otherwise

The average fuzzy number for ‘Safety Design’ can also be calculated by using the following

equation:
2-(4.5,5,55) + 5-(65,7,7.5,
e 2 )7 ( )}

_ 415,45,50.5
h 7

=(5.9,6.4,6.9)
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Defining a confidence interval of 0.5, the direct factor ‘Safety Design’ is assigned a fuzzy value
0f [5.9,6.9] with a mean value of 6.4 to rate its effect on safety of the specific case as compared
to the global average. Table 5.4 displays the aggregated fuzzy numbers defined by a confidence
interval of « = 0.5 which are used to adjust component reliabilities for all factors under the direct,
corporate and external layers. Calculations for the aggregation of fuzzy numbers are outlined in

Appendix B.
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Table 5.4 - Summary of Aggregated Fuzzy Numbers

Factor
Confidence interval, @ = 0.5

Fuzzyvalue | Lowerbound (Min) | Upper bound (Max)
External
Value placed on human life (7.9.84,8.9) 7.9 89
Price of oil (79,84,89) 79 89
Shareholder pressure (1.9,24,29) ] 29
Royalty regime (34.39,44) 34 a4
Corporate
Safety culture (68.73,78) 33 78
Safety training (71,76,8.1) 7.1 81
Safety procedures (79.84,89) 79 89
Direct
Atitude (7.1,76,8.1) 71 81
Motivation (5.1,56,6.1) 51 6.1
Lack of fatigue (5.6.6.1.66) 56 66
Coordination (3.6,4.1,46) 36 I3
Fitness (45,50.55) a5 55
Knowledge (5.6,6.1,6.6) 56 66
Tntelligence (34,39.44) 34 [x}
Safety design (5.9,64,69) 59 69
Weather (14,19,24) E] 24
PPE (7.9,84,8.9) 79 89

9% |Page



Step 3.4: Adjust iabilities with Fuzzy Numbers

The fuzzy numbers, displayed in Table 5.4, represent location-specific scoring assigned to each
factor by the expert panel as they compare the specific situation (NL installation) to the global
average. The model predicts a fuzzified accident frequency rate for the specific case by directly
entering the fuzzy values for the direct, corporate or external layer components. Allowing the
model to run in predictive mode using minimum and maximum fuzzy values to adjust
component reliabilities determines minimum and maximum outputs for the accident frequency
rate which represents the upper and lower bounds of the fuzzy output. A triangular membership
function is used to convert this fuzzy output into a crisp, numerical value which is used for

comparison purposes with the actual (global average) case.

For this specific case study, component reliabilities within the corporate layer are adjusted. As an
example, the corporate component ‘Safety Training’ is adjusted by multiplying the base case
reliability of *Safety Training” with the minimum fuzzy ratio of 7.1/4.5 to obtain its minimum
adjusted reliability value. The value of 4.5 represents the lower bound for global average which
was assigned a linguistic value of ‘Medium’. The value of 7.1 was taken from Table 5.4 and
represents the minimum fuzzy value for ‘Safety Training’. External component reliabilities are
assigned a value of 0.061 which is the base case reliability as calculated in the calibration run.

The following calculation is used to obtain the minimum reliability value for *Safety Training’:
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7.1
Rastniny = (Rpo X s Ry X Lk Ry Xyt Rt X o) % (5)

=(0.061 x 0.18 + 0.061 x 0.27 + 0.061 x 0.18 + 0.061 x 0.27) x (

= 0.085

where:

Ry, = reliability of price of oil
= 0.061 (direct input from base case run)

Rs, = reliability of shareholder pressure
= 0.061 (direct input from base case run)

Ry, = reliability of royalty regime
= 0.061 (direct input from base case run)

Ry = reliability of value placed on human life
="0.061 (direct input from base case run)

Iyot = influence coefficient of price of oil
= 0.18 (direct input from model as displayed in Table 1,Ch.2)

Iyt = influence coefficient of shareholder pressure
= 0.27 (direct input from model as displayed in Table 1,Ch.2)

Ly = influence coefficient of royalty regime
= 0.12 (direct input from model as displayed in Table 1,Ch.2)

I = influence coefficient of value placed on human life
= 043 (direct input from model as displayed in Table 1,Ch.2)

The reliability of each component within the corporate layer is adjusted accordingly to obtain
minimum reliability values which are used to influence direct layer components, facilitating a
minimum value for model outputs (ie. minimum value for overall system reliability and accident
frequency rate). Reliability adjustments are then made using maximum values to obtain

maximum model outputs for overall system reliability and accident frequency rate. Reliability
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adjustment equations for all other elements within the corporate layer are displayed in Appendix

C:

Step 3.5 — Calculate Fiuzzy Error Probability and Fuzzy Error Rate

A fuzzy error factor is calculated to account for the imprecision of data. The error factor is
associated with the most possible value of the linguistic variables. The term “error possibility” is
essentially a fuzzy probability and is used to obtain a fuzzy error rate for each linguistic
expression. Fuzzy probability is a fuzzy number characterized by its membership function.
Ferdous et al. (2009) states that fuzzy probability attempts to define a basic event into a fuzzy
probability set and uses these fuzzy events in subsequent computations. The imprecise
probabilities of basic events are refined by characterizing the basic event data with a suitable

membership function thereby minimizing the error due to inty in basic event

by using fuzzy probability for quantifications. The proposed methodology uses a fuzzy
probability to obtain a fuzzy error rate for each linguistic expression. Huang ef al. (2001)

proposed that the fuzzy error rate, E; , can be calculated using the following equation:
1
E,.:{ figw: Ep#0
0, Ep=0
1 '
M=[Yg, - 173 x2301,
E, = errorrate,

Ep = error possibility,
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/ L =23017!
108 (5575=9)

The fuzzy error probabilities of the five linguistic variables {Very Low (VL), Low (L), Medium

(M), High (H) and Very High (VH)} are by a triangular ip function as

displayed in Figure 5.3.

VL L M H VH

fa(x)

FIGURE 5.3 - TRIANGULAR FUZZY NUMBERS REPRESENTING FUZZY ERROR PROBABILITIES
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A summary of linguistic values and ing fuzzy error ilities are displayed in

Table 5.5.

- Linguistic Variables and Fuzzy Error Probabilities

Confidence Interval of @ = 0.5
Fuzzy error possibility Lower Bound (Min) | Upper Bound (Max)
Very Low (VL) (0.05,0.1,0.15) 0.05 0.15
Low (L) (025,03,035) 0.25 035
Medium (M) (045,05, 0.55) 045 0.55
High (H) (0.65,0.7,0.75) 0.65 0.75
Very High (VH) (085,09,095) 0.85 0.95
The fuzzy error rate for each is calculated to measure the of

y

each component contributes to the final outcome. The error probability is evaluated by
transforming the linguistic values assigned by each expert into corresponding fuzzy error
probabilities. The method proposed by Yang ef al. (2003) is used to aggregate expert opinions

into one fuzzy error ility. The fuzzy error ilities for each can

be converted into a fuzzy error rate by using the method proposed by Huang er al. (2001). A
summary of aggregated fuzzy error probabilities and fuzzy error rates is displayed in Table 5.6.
The fuzzy error rates for each component can be used to measure the degree of uncertainty each

ccomponent contributes to the final outcome.

The error possibility is evaluated by transforming the linguistic values assigned by each expert

into corresponding fuzzy error possibilities. The method proposed by Yang ef al. (2003) is used
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to aggregate expert opinions into one fuzzy error possibility. The aggregated fuzzy error
possibility for each component can be converted into a fuzzy error rate by using the method
proposed by Huang ef al. (2001). A summary of aggregated fuzzy error possibilities and fuzzy
error rates is displayed in Table 5.6. The fuzzy error rates for cach component can be integrated
into the adjusted reliability calculations (model) to measure how much uncertainty each

component contributes to the final outcome.
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‘Table 5.6 - Summary of Aggregated Fuzzy Error Probabilities & Fuzzy Error Rates

Confidence interval, @ = 0.5

Faclor “Aggregated fuzzy error possibility Aggregated fuzzy error rate
Minimum Maximum Mimimum (%) | Maximum (%)
External
Yllllc placed on human 0.79 0.89 331 714
B 0 08 ] AT
Sharcholder pressure 019 029 00186 00623
Royalty regime 034 0 [ES ]
Corporate
Safety culture 0.68 0.78 1.62 3.10
Safety training 071 081 96 381
Safely procedures 07 089 330 74
Direct
Attitude ] ] 196 381
Motivation 0.51 0.61 0.536 1.40
Tack of faiguc 056 066 0752 4
Coordination 0.36 0.46 0.163 0374
Fiiness 045 053 0347 0705
Knowledge 0.56 0.66 0.753 0.0413
Tntelligence 031 0 [ES 0321
Safety design 0.59 0.69 0916 173
Weather o1 024 000611 00418
PPE 0.79 0.89 331 7.14
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As shown in Table 5.6, the external component ‘Value placed on human life” has a fuzzy error
range of [3.31%, 7.14%] while the direct component ‘Weather' has a fuzzy error range of
[0.00611%, 0.0418%]. Therefore, when comparing the fuzzy error rates of the two components,
the external component ‘Value placed on human life’ contributes a greater degree of uncertainty

to the final fuzzy outcome (accident frequency).

Step 4 — Prediction run to obtain Fuzzy Outcome

The next step involves running the model with adjusted component reliabilities to predict the
minimum and maximum values of overall system reliability and accident frequency. For this
specific case, prediction of system reliability and accident frequency on a NL installation is
determined by adjusting components within the corporate layer which, in turn, influence the
direct layer values, facilitating the calculation of the final outcomes. The fuzzy numbers assigned
to rate each component are propagated through the model to predict fuzzified lower (minimum)

ility and accident frequency. This

and upper (maximum) bounds for both system reli

ding fuzziness

information is then directly used to construct the
functions) of the predicted accident rate which is used as a measure of uncertainty. Figure 5.4
displays the model output using minimum fuzzy values to adjust component reliabilities and
calculate predicted fuzzy outcomes while Figure 5.5 displays the model output using maximum

fuzzy values.
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External Layer

Factors Reliability
Price of oil 0.061
Shareholder

pressure 0061
Royalty regime  0.061

Value of life  0.061

Corporate Layer

Factors Reliability
Safety culture 0,096
Safety training 0,107
Safety
procedurt

0092

Direct Layer

Factors Reliability
Behavoural 0.098
Attitude 0098

| Motivation ~ 0.098

| Capability 0.075
Physical 0081

Lack of fatigue  0.098
Fitness Level  0.098
Coordination 0.0439
Mental 0.072
Knowledge ~ 0.098
Intelligence  0.0415
Weather 0.0171
Safety Design  0.098
Motivation  0.098

Direct inputs

Adjusted Reliabilties

Fuzzy Outputs

—
Direct Layer Reliability

m—  R(t) = (RolioX (R X (Rui X (Rushs X (Ropeope

‘ R(t),ys= 0.071598

1l

Accident/year = 2.637 ‘

!

‘ Cost/year = $80,419.12 ‘

FIGURE 5.4 - PREDICTIVE RUN DISPLAYING MINIMUM FUZZY MODEL OUTPUTS
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External Layer

Factors
Price of oil
Shareholder
pressure
Royalty regime
Value of life

Reliability
0.061

0.061
0.061

0.061

Corporate Layer

Factors Reliability
Safety culture 0,090
Safety training  0.099
safety
procedures 0087
Direct Layer
Factors Reliability
Behavoural 0091
Attitude 0,091
Motivation 0091
Capability 0071
Physical 0076
Lack of fatigue ~ 0.091
Fitness Level 0091
Coordination  0.0439
Mental 0.069
Knowledge 0091
Intelligence 00415
Weather 00171
Safety Design ~ 0.091
Motivation 0092
FIGURE 5

Direct inputs

Adjusted Reliabilties

Fuzzy Outputs,
O
Direct Layer Reliability

) R(t)5 = (Ro)is X (R X (Rado X (Rushi X (Rie:gge

|
|
|
‘ R(t),,= 0.067611

!

Accident/year = 2.694

!

|
‘ Cost/year = $82,166.70

5 - PREDICTIVE RUN DISPLAYING MAXIMUM FUZZY MODEL OUTPUTS
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Step 5 — Defuzzification of Fuzzy Outcome into Crisp value

Following the prediction run, the minimum and maximum values obtained for accident rate are
2.64 and 2.69, respectively. These fuzzy values which represent the lower and upper bounds are
used to construct the triangular membership function representing the predicted fuzzy accident
rate. The predicted outcome for accident rate is a fuzzy value for it contains the uncertainties
propagated from the ranking of each factor by use of fuzzy numbers. This fuzzified value must

now be translated into a crisp numeric output through a process of defuzzification.

The Centroid defuzzification technique, also known as center of gravity (COG) or center of area
technique, considers the contribution of all fuzzy outputs and the degree to which each is true.
Because of its effectiveness and accuracy in the defuzzification process, the COG technique will
be utilized in the present work. The COG method determines the center of the area of the
combined membership functions. Using the membership function f,,.(x) to represent the fuzzy
accident rate, the COG of the area under the membership function is calculated as follows:
v J’: Sar(X)xdx
Jefardx

where [a, ¢] represents the lower and upper bounds, 2.64 and 2.69, containing the support of fo.
Using the triangular membership function, displayed in Figure 5.6, the accident rate is
represented by the membership function:

G2 637)0 21'637) 2637 < x < 2.665
Jar(x) =1 (2.694 — x)

1
0 otherwise

2,665 < x < 2.694
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Alx) coG a =05

0 |

o

a Crisp value

FIGURE 5.6 - TRIANGULAR MEMBERSHIP FUNCTION REPRESENTING PREDICTED ACCIDENT RATE

Defining a confidence interval of @ = 0.5 and using the COG technique, the crisp value for
accident rate is the centre of area of the triangular membership function, corresponding to a crisp

value of 2.67.

Step 6 — Comparison of predictions with estimates of actual accident numbers

For 2004, the actual number of accidents expected on an offshore oil and gas platform, based on
the global average is 2.79, as shown in Table 5.7. Using the proposed methodology, the predicted
number of accidents per year, based on the incorporation of FST into the framework of
Attwood’s predictive model, is 2.67 which is very close to the industry average. The components
contributing the greatest degree of uncertainty to the final outcome were ‘Value placed on human
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life, *Price of oil’, *Safety Procedures’, and ‘PPE" having a fuzzy error range between 3.31%

and 7.14%. The component contributing the least amount of uncertainty to the final outcome was

“Weather’ which had a fuzzy error range between 0.00611% and 0.0418%.

Table 5.7 - Comparison of Actual vs. Predicted Results for Accident Rate (2004)

(Fuzzy Maximum)

Reliability Accident rate/year Costlyear
BasoCage o 0.061 279 $85,310.07
e o 0.0696 2.67 $81,292.22
P ) 0.0716 2,64 $80,419.12
petaecen 0.0676 269 $82,166.70

The objective of the case study is to minimize uncertainty while maintaining the simplicity of

Attwood’s predictive model. By use of FST, it has provided an effective means to account for

and minimize uncertainty, which plays a significant role in the decision making process of

Attwood’s model. The proposed methodology also enables the user to identify the amount of

uncertainty each component contributes to the final result.
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Chapter 6

CONCLUSION

6.1 CONCLUSION

Fuzzy set theory (FST) provides a useful tool to address the judgemental uncertainties associated
with experts’ subjective opinions through the use of fuzzy sets. The incorporation of FST into

Attwood’s predictive model is aimed to enhance the effectiveness of the model by providing a

mathematical tool to account for vagueness and i i with expert j

and opinions and to propagate this uncertainty through the model. The novelty of the proposed
methodology lies in the approach that embraces uncertainty as an inseparable element of the
system and incorporates it within the framework of Attwood’s model. The application of such a

model can help predict the frequency of occupational accidents with better confidence by

and i ing it in the analysis process by use of fuzzy sets.

The proposed methodology uses linguistic variables to rate a components effect on safety for the
specific environment, providing a more intuitive, user-friendly approach to the analysis process.
These linguistic variables are converted into fuzzy numbers which carry more information than a
crisp, numerical rating factor and allow the judgemental uncertainties associated with experts’

subjective opinions to be properly expressed. These fuzzy numbers are characterized by

triangular membership functions which i the inty of the By using a

f

/2y approach, inty is i d at the level when rating each components
effect on safety and the analytical method is used to propagate it further. Through the use of
fuzzy error probability and fuzzy error rate, one can measure the degree of uncertainty each
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component contributes to the final outcome providing the analyzer with useful information for
strategies that focus on the reduction of total uncertainty. The proposed methodology recognizes
that uncertainty plays a role in decision making and incorporates a fuzzy approach to account for
and minimize uncertainty while maintaining the simplicity of Attwood’s model. It provides a

more effective means for assessing the occupational accident rate by:

i Assigning a linguistic, qualitative scale of importance to rate each components effect
on safety for the specific case, providing a more natural, user-friendly approach to the
analysis process;

ii. Conversion of linguistic variables into fuzzy numbers to incorporate the uncertainties
of expert opinions when rating a components effect on safety. Utilizing triangular
membership functions to convert each linguistic expression into a corresponding
fuzzy number minimizes the error due to the subjective uncertainty of experts’
opinions by use of fuzzy sets. Each input parameter is treated as a fuzzy number and
the uncertainty is characterized by a triangular membership function.

iii. Utilizing fuzzy operations to effectively propagate uncertainty through the model,
calculate a crisp numeric output through a process of defuzzification and estimate the

degree of uncertainty each component contributes to the final outcome.

6.2 FUTURE WORK

This work proposes a fuzzy methodology to evaluate uncertainty and integrate it into the
framework of Attwood’s predictive model to effectively assess the occupational accident rate

with better confidence. Many other aspects remain to be investigated using this proposed
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methodology within Attwood’s predictive model. The following recommendations have been

suggested for future improvement of the proposed study:

In order to improve upon the effectiveness of the model, the model can be further
modified by incorporating FST during the carly stages of model development to rank
influence coefficients and strength factors used within the reliability calculations.

Attwood er al. (2006c) have demonstrated the versatility of the predictive model

through the execution of case studies to predict the occupational accident frequency

under unique safety i to observe imp in results

with changes in input conditions and as a means of setting realistic safety targets. In
order to make the proposed methodology more reliable and effective, it is necessary
that the proposed methodology outlined in this case study be properly compared and
validated with the analysis of more case studies using Attwood’s predictive model.
By estimating the fuzzy error rate, one can identify the degree of uncertainty each
component contributes to the final result. The error rate can highlight components
that contribute the greatest degree of uncertainty, allowing one to observe
improvements in the occupational accident rate with changes to input parameters
contributing the highest degree of uncertainty to the final outcome.

Attempts need to be made to utilize different fuzzy methods for constructing
membership functions or aggregating expert opinions and compare the results to
determine the most effective fuzzy approach to address uncertainty within the

framework of Attwood’s predictive model.
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APPENDIX A

RELIABILITY CALCULATIONS

A.1 DIRECT LAYER COMPONENT RELIABILITIES (Attwood e al., 2006a)

Behaviour:
Ry, = reliability value for behaviour = (1 - (1 - R)™x (1 - Rn)™)

where:

Attitude:

Ra=(Re) X I + Ry X Ipa + R X Lo
Motivation:

Rin = (Ry) X Ly + Ry X Iy + Re X I
where:

Ry, = reliability of safety training (defined below)

Ry = reliability of safety procedures (defined below)

R, = reliability of safety culture (defined below)

I = influence coefficient of safety training on attitude

Ipra = influence coefficient of safety procedures on attitude

Isea = influence coefficient of safety culture on attitude

Iy = influence coefficient of safety training on motivation
Ipm = influence coefficient of safety procedures on motivation
Isem = influence coefficient of safety culture on motivation

sa = strength of attitude

sm = strength of motivation

18| Page



Safety training:
Ryt = Rpo X Ipost + Rep X gt + Ree X I+ R it
Safety procedures:

R,

RpoX Tpope + Rep X Ligpet RerX Lt R X Lige

Safety culture:

Rsc = RpoX Iposet Rep X Ispset Rer X Iirse + Ru X Iyise

where:

Ry = reliability of price of il (direct input)
Rsp = reliability of shareholder pressure (direct input)

Ry, = reliability of royalty regime (direct input)

Ry = reliability of value placed on human life (direct input)

Ipex = influence coefficient of price of oil on safety training

L = influence coefficient of shareholder pressure on safety training

influence coefficient of royalty regime on safety training

L = influence coefficient of value placed on human life on safety training
Tpope = influence coefficient of price of oil on safety procedures

Lype = influence ient of pressure on safety

I = influence coefficient of royalty regime on safety procedures
Lipe = influence coefficient of value placed on human life on safety procedures
Ipose = influence coefficient of price of oil on safety culture

Ipse = influence coefTficient of shareholder pressure on safety culture

L = influence coefficient of royalty regime on safety culture

Lyise = influence coefficient of value placed on human life on safety culture
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R. = reliability value for capability = (Rp)* X (Rpe)™

where:

Physical capability:
Ry = (1= (1= R x (1= Ri™ x (1-R)™)
where:

Fitness:

Re= (Rg)) X I+ Rpe X Iper + Rec X lier

Lack of Fatigue:

Rir= (Rs) X Lur + Roe X Tpng + Ree X Liair
Coordination:

Re= direct input

where:

I = influence coefficient of safety training on fitness

Ipr = influence coefTicient of safety procedures on fitness

Iier = influence coefficient of safety culture on fitness

Isur = influence coefficient of safety training on fitness

Iar = influence coefficient of safety procedures on lack of fatigue
lsar = influence coefficient of safety culture on lack of fatigue

sp = strength of physical capability

sme = strength of mental capability

sf = strength of fitness

slIf = strength of lack of fatigue
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sc = strength of coordination

Mental capability:

Re = (1- (1= R)* x (1 = R)")
where:

Knowledge:

Ri= (Rg)) X Ty + Rpe X Tpek + R X Iyck
Intelligence:

R;= direct input

where:

L = influence coefficient of safety training on knowledge

I = influence ient of safety on g

lsex = influence coefficient of safety culture on knowledge

sk = strength of knowledge

si = strength of intelligence

Safety Design:
Ry= reliability value for safety design = (Rq) X Lusa + Ry X Ipesa + Rec X liesa
where:

L = influence coefficient of safety training on safety design
s = influence coefficient of safety procedures on safety design

lisa = influence coefficient of safety culture on safety design
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PPE:

Rype= reliability value for PPE = (Ry) X Tgpe + Ror X Iyppe + R X Lippe
where:

lppe = influence coefficient of safety training on PPE

Tpgpe = influence coefficient of safety procedures on PPE

eppe = influence coefficient of safety culture on PPE

Weather:

R, = reliability value for weather conditions = direct input
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APPENDIX B

CALCULATIONS FOR THE AGGREGATION OF FUZZY NUMBERS DEFINED BY A
CONFIDENCE INTERVAL (a) OF 0.5

B.1 EXTERNAL LAYER

Value placed on human life (VL):

2:(6.5,7,7.5 5-(85,9,9.5
oy = 2 el )

{(13,14,15) + (42.5,45,47.5)}
7

. 55.5,59,62.5
==

=(7.9,84,8.9)
Price of Ol (PO):

Fro) = {2-(65,7, 745)47» 5-(8.5,9,9.5)}

_ {(13,14,15) + (42.54547.5)}
B 7
_55.5,59,62.5
h 7

=(7.9,84,89)
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Shareholder Pressure (SP):

{3-(0.5,1,1.5) + 3-(25,3,3.5) + 1-(4.5,5,5.5)}
7

fsp(x) =

_{(15,3,45) + (7.5,9,105) + (45,5,5.5)}
B 7

_135,17,205
- 7

=(1.9,2.4,2.9)

Royalty Regime (RR):

3:(45,5,5.5) + 4-(2.5,3,3.5
fut) < B 5559+ 4-253,35)

{(13.5,15,16.5) + (10,12,14)}
7

=(34,39,4.4)
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B.2 CORPORATE LAYER

Safety Culture (SC):

6-(6.5,7,7.5 1-(85,9,9.5
ot =8 bt )

_ {(39.42,45) + (85,9,9.5)}
- 7

_ 475,51,545

- 7

= (6.8,7.3,7.8)

Safety Training (ST):

(5-(6.5,7,7.5) + 2-(85,9,9.5)}

for() = 7

_ {(32.535,37.5) + (17,1819)}
- L U

_ 49.5,53,56.5
- 7

=(7.,7.6,8.1)
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Safety Procedures (SP):

2+ (6:5,7,7:5 5:(85,9,9.5
w2l i Bl )

_ {(13,14,15) + (42.545,47.5)}
SR e

_ 55.5,59,62.5
- 7

=(7.9,84,89)

B.3 DIRECT LAYER
Attitude (A):

Fu00) = {5:(65,7, 7.5)-; 2-(85,9,9.5)}

_ {(32.5,35,37.5) + (17,18,19)}
. 7

_ 495,53,56.5
- 7

=(7.1,7.6,8.1)
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Motivation (M):

ful@) = {5- (4.5,5,5,5){7- 2-(6.5,7,7.5)}

_ {(22525.27.5) + (13,14,15)}
= 7

_35.5,39,42.5
- 7

= (5.1,5.6,6.1)

Lack of Fatigue (LF):

e = {3-(45,5,5.5) -; 4-(65,7,7.5)}

{(13.5,15,16.5) + (26,28,30)}
7
_39.5,43,465
= 7

= (5.6,61,6.6)
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Coordination (C):

3-(25,3,3.5 - (4.5,5,5.5,
1 = B¢ )+ 4455591

{(7.59,105) + (18,20,22))
7

_255,29,325
- 7

= (3.6,4.1,4.6)

Fitness (F):

{1-(25,3,35) + 5-(45,5,55) + 1-(65,7,7.5)}
fr) = 7

_{(253,35) + (22525,27.5) + (65,7,7.5)}
- 7

_315,35,385
- 7

= (45,5,55)
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Knowledge (K):

el = {3-(45,5, 5.5)-; 4-(6.5,7,7.5)}

_ {(135,15,16.5) + (26,28,30)}
e

_39.5,43,46.5
- 7

=(5.6,6.1,6.6)

Intelligence (1):

4-(2.5,3,3.5 3-(45,5,5.5
B 4 51 )}

 {(10,12,14) + (13.5,15,16.5)}
B

 235,27,30.5
- 7

= (3.4,3.9,4.4)
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Weather (W):

_{4-(05,1,1.5) + 3-(25,3,35)}

fw) 7

_ {(2,4,6) +(7.5,9,10.5)}
R

95,13,165
- 7

= (1.4,1.9,2.4)

Personal Protective Equipment (PPE):

Forg () = {2:(65,7, 7.5)-; 5-(85,9,9.5)}

{(13,14,15) + (42.54547.5)}
7

=(7.9,8.4,89)
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APPENDIX C

CORPORATE COMPONENT RELIABILITY ADJUSTMENTS
C.1 MINIMUM ADJUSTED RELIABILITY VALUES
Safety Culture:

6.8
Ructniny = (o X Ipset Ry X st R X vt Rut X se) X (2)

6.8
=(0.061 x 0.18 + 0.061 x 0.25 + 0.061 x 0.13 + 0.061 x 0.44) X ( )

= 0.092

where:

Ry, = reliability of price of oil
= 0.061 (direct input from base case run)

Ry, = reliability of shareholder pressure
= 0.061 (direct input from base case run)

R, = reliability of royalty regime
= 0.061 (direct input from base case run)

Ry = reliability of value placed on human life
="0.061 (direct input from base case run)

Iyosc = influence coef ficient of price of oil
= 0.18 (direct input from model as displayed in Table 1,Ch.2)
Ipse = influence coefficient of shareholder pressure

= 0.25 (direct input from model as displayed in Table 1,Ch.2)

Lyse = influence coef ficient of royalty regime
= 0.13 (direct input from model as displayed in Table 1,Ch.2)

= influence coef ficient of value placed on human life
= 0.44 (direct input from model as displayed in Table 1,Ch.2)

hise
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Safety Procedures:

7.9
Reptniny = (Rpo X oyt Rey X gyt Rer X oy Ry X huy) % ()

7.9
= (0.061 x 0.19 + 0.061 x 0.26 + 0.061 x 0.12 + 0.061 x 0.43) x (ﬁ)

= 0.107

Ry, = reliability of price of oil
= 0.061 (direct input from base case run)

Ry, = reliability of shareholder pressure
= 0.061 (direct input from base case run)

R,, = reliability of royalty regime
=0.061 (direct input from base case run)

R, = reliability of value placed on human life
= 0.061 (direct input from base case run)

lposp = influence coefficient of price of oil
= 0.19 (direct input from model as displayed in Table 1,Ch.2)
Ipsp = influence coefficient of shareholder pressure

= 0.26 (direct input from model as displayed in Table 1,Ch.2)

lirsy = influence coefficient of royalty regime
= 0.12 (direct input from model as displayed in Table 1,Ch.2)

= influence coef ficient of value placed on human life
= 0.43 (direct input from model as displayed in Table 1,Ch.2)

132|Page




C.2 MAXIMUM ADJUSTED RELIABILITY VALUES

Safety Training:

8.1
Rutgnasy = (Ryo X ot Rey X iyt Rer X Ik R X )  (55)

8.
= (0.06 x 0.18 + 0.06 x 0.27 + 0.06 x 0.18 + 0.06 x 0.27) X (

= 0.090

where:

Ry, = reliability of price of oil
= 0.061 (direct input from base case run)

Ry, = reliability of shareholder pressure

= 0.061 (direct input from base case run)

sp
R,, = reliability of royalty regime
= 0.061 (direct input from base case run)

Ry, = reliability of value placed on human life
=0.061 (direct input from base case run)

Iyot = influence coefficient of price of oil
= 0.18 (direct input from model as displayed in Table 1,Ch.2)

I = influence coef ficient of shareholder pressure
= 0.27 (direct input from model as displayed in Table 1,Ch.2)

I,y = influence coefficient of royalty regime
= 0.12 (direct input from model as displayed in Table 1,Ch.2)

Iy = influence coef ficient of value placed on human life
= 043 (direct input from model as displayed in Table 1,Ch.2)
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Safety Culture:

7.8
Ructnasr = (Rpo X Ipse Rop X hpset R X et Rut X use) % (£5)

=(0.061 X 0.18 + 0.061 x 0.25 + 0.061 x 0.13 + 0.061 x 0.44) x ( .

= 0.087
where:
Ry, = reliability of price of oil
= 0,061 (direct input from base case run)
Ry, = reliability of shareholder pressure

= 0,061 (direct input from base case run)

reliability of royalty regime
= 0.061 (direct input from base case run)

Ry = reliability of value placed on human life

’Paxc

= 0.061 (direct input from base case run)

= influence coef ficient of price of oil
= 0.18 (direct input from model as displayed in Table 1,Ch.2)

Igpse = influence coef ficient of shareholder pressure

Irrse

loise

= 0.25 (direct input from model as displayed in Table 1,Ch.2)

= influence coefficient of royalty regime
= 0.13 (direct input from model as displayed in Table 1,Ch.2)

= influence coef ficient of value placed on human life
= 0.44 (direct input from model as displayed in Table 1,Ch.2)
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Safety Procedures:

8.9
Rapina = (oo X hpost Rap X spyt R X vyt Rt X i) % (2)

8.9
= (0.061 X 0.19 + 0.061 X 0.26 + 0.061 X 0.12 + 0.061 X 0.43) X ( )

= 0.099

where:
Ry, = reliability of price of oil
= 0.061 (direct input from base case run)

Ry, = reliability of sharcholder pressure
= 0.061 (direct input from base case run)

reliability of royalty regime
= 0.061 (direct input from base case run)

Ry, = reliability of value placed on human life
= 0.061 (direct input from base case run)

Iyosp = influence coef ficient of price of oil
= 0.19 (direct input from model as displayed in Table 1,Ch.2)

Ispsp = influence coef ficient of shareholder pressure
= 0.26 (direct input from model as displayed in Table 1,Ch.2)

Lvsp = influence coef ficient of royalty regime
= 0.12 (direct input from model as displayed in Table 1,Ch.2)
Iysp = influence coefficient of value placed on human life

= 0.43 (direct input from model as displayed in Table 1,Ch.2)
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