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ABSTRACT

Sub-arctic temperatures are expected to increase by approximately 4° C by 2050. These
changes are having impacts on vegetation patterns in arctic and sub-arctic environments,
particularly along transition areas between forested and tundra ecosystems. Using multi-
temporal satellite imagery, in combination with topographic variables, the changes in
vegetation patterns from 1983 to 2008 were explored in a small, diverse region of the
Mealy Mountains, Labrador. Bayesian probabilities were created for each land cover
class, with topographic variables used as a priori additions to the probabilities.

Vegetation changes were related to topographic variables, climate, and Bayesian

The Bayesian pi ility layers the propensity for change of
cach land cover class used in the study. Knowledge of these changes was used in a
cellular automata-Markov chain model to predict vegetation changes to 2020 and 2032.

The ictions suggest of decid shrub along valley floors and into toe-

slopes, as well as on protected, south-facing slopes. Coniferous shrub is expected to
expand in the lower elevations (where it is dominant), and advance marginally along the

valley floors.
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1. INTRODUCTION

1.1 Nature and rationale
The Intergovernmental Panel on Climate Change predicts that global temperatures are
changing at an increasingly rapid pace (IPCC, 2007). Under these conditions, significant
shifts are expected to occur in vegetation patterns, particularly in sensitive ‘edge’
ecosystems such as at the tree line, which forms the boundary between the boreal forest
and the treeless arctic tundra, also known as the forest-tundra ecotone (Gamache and
Payette, 2005). Future climate scenarios established by the Canadian Institute for Climate
Studies (CICS) suggests warming of up to 4° C in sub-arctic regions over the next several

decades (Figure 1.1).

Payette (2007) states that, in general, North American boreal forest tree lines have
moved up-slope and northward over the past 100 years, and are expected to do so under

changing climatic conditions.

Considerable research has been completed on the effects of a changing climate on
vegetation patterns and tree line shifts in arctic and sub-arctic environments (Payette and
Delwaide, 1994; Lloyd and Fastie, 2002; Korner and Paulsen, 2004; MacDonald ef al.,
2008). Carmel and Kadmon (2008), however, suggest that these studies are situated over
large geographic areas (i.e. several hundred km?) and short time frames (e.g. <10 years).
These restrictions limit the level of detail frequently desirable in vegetation studies. In
addition, studies suggest that significant climatic shifts occur over decadal time frames
(Pereg and Payette, 1998; Epstein ez al., 2004; Stow et al., 2004; IPCC, 2007) and so

statistically significant changes would be less reliable with data spanning less than 10
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Figure 1.1 Predicted annual mean temperature change to 2050s (Canadian Institute for
Climate Studies, 2003)

years. This study addresses these shortcomings by focusing on a small geographic area
(~100 km?) over a relatively large time frame (approximately 25 years) in an effort to
understand past and future vegetation changes in the Mealy Mountains of Labrador. This
approach ensures a high level of detail in land cover changes, as well as retaining

statistically significant climate shifts.

1.2 Study area

The study area is located in the Mealy Mountains of Labrador approximately 100 km
southeast of the town of Happy Valley-Goose Bay, within the boundaries of the Mealy
Mountains (4kamiuapishku) National Park. Figure 1.2 outlines the study arca. The extent
of the study area ranges from approximately 53.632° N, 58.895° W in the northwest

comer to 53.563° N, 58.780° W in the southeast comer, covering an arca approximately




10km X 10 km. The elevation ranges from about 450 m to 1000 m. This area is unique
iin that the lower elevations (450750 m) exhibit considerably different vegetation patterns
than the higher elevations (>750 m). Figure 1.3 and 1.4 highlight the topographic
conditions of Labrador and a small scale view of the study area, respectively. The
landscape in the study area is characterised by rolling valleys and hills. However, near
the summit, steeper slopes are prominent. Figure 1.5 shows a topographic profile of the

study area.

At lower elevations (~400-500 m), the forest-tundra ecotone is composed of black
spruce (Picea mariana) and eastern larch (Larix laricina), which form a largely open
canopy forest cover type, with a primarily moss understory. As with most tree lines, the
limit of tree growth in the Mealy Mountains is marked by a gradual decrease in tree
height and density. Moving upslope, trees become shorter and more spread out. This
transition occurs in the mid-range elevations (~500-700 m), where upright trees are
replaced by more dwarfed krummbholz (low-lying coniferous shrubs stunted by
environmental factors). At these elevations, a higher occurrence of ericaceous shrubs is
be found as well, such a Labrador tea (Rhodendron tomentosum), bearberry
(Arctostaphylos uva-ursi), dwarf bilberry (Vaccinium uliginosum), and sheep laurel
(Kalmia angustifolia). Farther upslope dwarf birch (Betula glandulosa) and speckled
alder (Alnus rugosa) also become abundant.

At higher elevations (>700 m), trees and krummholz are nearly non-existent.
Instead the vegetation cover is dominated by stunted forms of the species found in the

mid-range elevations, with the exception of speckled alder.  In addition, diapensia




(Diapensia laponica), black crowberry (Empetrum nigrum), and an abundance of mosses

and lichens are present.
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Figure 1.2 Outline of the general study in relation to North America



Atlantic
Ocean

Elevation (m)
w High - 1600
- owit

ezw rtew soriow ssw

Figure 1.3 Outline of the study area in relation to the topography of Eastern Labrador
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Figure 1.5 Topographic profile of Mealy Mountains study area

Tree-ring analysis in the area confirms the occurrence of several forest fires over
the past 100 years. However, they were all localised events and had little effect on

vegetation trends (Jacobs, 2007). There were no other recorded disturbances in the arca.

Climate variability in the region is strongly associated with variability in the
Icelandic Low. This produces damp conditions, leading to large amounts of snow which
usually remains into the late summer months. In the summer, low pressure over Ungava
Bay brings westerly winds to the region (Keith, 2001). Environment Canada (2009)
climate data for Goose Bay and Cartwright show an increase of approximately 1.2° from
1983-2001, with a more pronounced increase of 1.0° C from 2001-2008 (Figure 1.6). The

Canadian Institute of Climate Studies (2003) predicts a mean increase in summer



temperature of 2.5° C by the 2020s, and an increase of 3.9° C by the 2050, from current

climate normals.
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Figure 1.6 Mean summer temperature (1983-2001) with trendline

1.3 Purpose and objectives

The purpose of this study is to attain a better understanding of the effects of climate and

on ion patterns, distributions, and . It expands on the body

of research devoted to spatial-temporal modelling of ion. In a broader spectrum,

the research complements the goals of the International Polar Year (IPY) research (2005).
The objectives of this study are to:

1. Create vegetation maps of historical land cover distributions;



2. Understand how land cover has changed given past climate fluctuations by
comparing land cover distributions with known climate shifts;

3. Identify topographic conditions specific to the different land cover classes to
aid in the developi of a spatio-temporal fc ing model; and

4. Run a cellular automata-Markov chain model to forecast future land cover

conditions as well as understand historic shifts in land cover.

1.4 Theory and assumptions
The dominant theory in vegetation and treeline studies is that, under warming conditions
in northern environments, treelines and shrub biomes (deciduous and coniferous) are
expected to move upslope and northward (Gamache and Payette, 2005; Payette, 2007).
Treelines and biome boundaries, however, are not easily discernable because the
transition between the forested regions at lower elevations and the treeless, arctic tundra
at higher elevations is marked by a gradual decrease in tree density and size. Moving

upslope, trees become more sporadic, forming as krummholz.

An important assumption that must be made when examining vegetation change is

that climate and are strongly associated with vegetation shifts. Many

researchers agree that plant migration likely lags behind climate warming, resulting in

disequilibrium between climate and vegetation distributions (Huntley, 1991; Malcolm er

al., 2002). However, in order to accurately develop correlation measures between the

variables used in the model, one must make the assumption that the time frame from

which the: are being extracted was in an equilibrium state. For the purposes

model development, this assumption is being violated and it is assumed that the
environment was not in a state of flux at the time the satellite images were captured

(Huntley, 1991; Malcolm er al., 2002).



1.5 Context of research

This research was conducted as part of the International Polar Year research initiative.

The objectives of the IPY that are relevant to this study are:

w © -

>

“Utilise the vantage point of the polar regions to carry out an intensive and
internationally coordinated burst of high quality, important research activities and
observations that would not otherwise occur;

Lay the foundation for major scientific advances in knowledge and understanding
of the nature and behaviour of the polar regions and their role in the functioning of
the planet;

. Collect a broad-ranging set of samples, data and information regarding the state

and behaviour of the polar regions to provide a reference for comparison with the
future and the past; and

Intensify the recovery of relevant historical data and ensure that these also are
made openly available.” (IPY, 2005)

Funding was provided by the Natural Sciences and Engineering Research Council

(NSERC) and the International Polar Year (IPY) Present Process, Past Changes,
Spatiotemporal Dynamics (PPSA). Further logistical support was provided by the
Labrador Highland Research Group (LHRG); a joint collaboration between the
Department of Geography and Department of Biology at Memorial University of

Newfoundland.
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2. LITERATURE REVIEW

This section presents an overview of the current literature regarding the influence of
topographic variables on vegetation patterns (section 2.1). Climate interpolation and
change detection are discussed in sections 2.2 and 2.3, respectively. Section 2.4 discusses
how Bayesian probabilities have been used in a range of studies and how they are adapted
to ecological modelling. Sections 2.6, 2.7, and 2.8 present a synopsis of the modelling

techniques that will be used in this study.

.1 Topographic variables

Temperature plays an important role in the position and movement of vegetation and
ecotones. However, topography can sometimes be an inhibitor or promoter of vegetation
shifts. Rupp er al. (2001) found that the “interaction between topography, climate, and
disturbance could alter patterns to reduce or offset current predicted positive feedbacks to
warming at high latitudes.” Their results indicated that topography played a major role in
constraining the movement of the boreal forest into treeless areas, whereby the Brooks

Range in Alaska was found to be an environmental barrier to forest expansion (Rupp ef

al., 2001).

Treml and Banas (2008) studied the effects of exposure on alpine treeline
position. They found that the highest positions of the treeline were generally distributed
on slopes receiving higher heat loads. Surfaces facing in the southwest direction
generally receive more sunlight, thus more direct heating. Therefore, given sufficient

levels of precipitation, seedlings are more likely to survive. This implies a faster upward



shift of the treeline on favourable aspects as a consequence of these generally warmer

temperatures (Treml and Banas, 2008).

Holland and Steyn (1975) state that the effect of aspect varies with latitude. With
a higher sun-angle (.. those near the equator) the radiant energy incident upon a north-
or east-facing slope would be greater than those areas with a low sun-angle (i.e. those at
higher latitudes). The authors state that the effects of aspect are most prominent at 45°
latitude or greater north and south of the equator (Holland and Steyn, 1975). The Mealy
Mountains study area is centered at approximately 53.5° N, an area where the effects of

aspect would be significant.

Aspect is a circular measurement, with values ranging from 0° to 360°. However,
while there is a considerable numerical difference between 2° and 358°, on the ground

they are both north-facing. Therefore, Miller (2005) developed the concept of

is a scalar ranging from -1 to 1. Perfectly

facing slopes d the most for growth) receive values of 1.
As the aspect moves farther from southwest, the values decrease. A northeast-facing
slope is coded as -1. All values in between (e.g. northwest, southeast, east, erc.) would

fall somewhere within the two extremes.

2.2 Climate data interpolation
When climate data are not available for a particular study area, there are methods used to
interpolate these values. Hanson (1987) uses linear regression to determine the mass
balance of a glacier from known temperatures at a nearby weather station. The

researchers’ goal was to develop a long-running record of glacial mass balance; however,

12



only 17 years of mass balance data were available. A climate station located 120 km
away had continuous weather measurements covering the entire time frame of interest.
Regression was performed between the climate station’s mean summer temperatures and
the glacial mass balance. Hanson (1987) found high negative correlations between the
climate data, particularly mean summer temperatures, and the observed glacier mass

balance.

The methodology outlined in the preceding study was adapted for two climate
stations at Goose Bay and Cartwright to interpolate climate conditions at the Mealy

Mountains study area. The results of this analysis are presented in Chapter 3.

2.3 Change detection
Historic land cover conditions provide useful information regarding vegetation trends.
When developing a model to predict potential future conditions, it is important to be

aware of these changes, as they are used to calibrate the model.

The use of multi-temporal satellite imagery permits the long-term monitoring of
vegetation changes. These changes are usually evident over decadal time scales (Epstein
et al., 2004). Jano et al. (1998) used Landsat imagery from 1973, 1984, and 1993 to
examine changes in vegetation patterns due to herbivore foraging. The authors noted that

in order to avoid confusing seasonal changes in vegetation with long-term ions, it

is preferable to obtain imagery recorded at times when the development of vegetation is at

identical or very similar stages. Thus, late-summer provides the ideal time frame for

image acquisition. During this period, different vegetation types are expected to be in




e

similar growth stages, and have yet to i the colder fall which

decrease photosynthetic activity.

Change detection techniques work with two types of data: qualitative and

quantitative. For example, a land cover map showing several discrete classes of

is i qualitative. A i Difference Vegetation Index (NDVI)

would represent quantitative data (Myneni ef al., 1995; Stow ef al., 2004; Jensen, 2005).

Eastman (2009) lists several change detection techniques for both types of data.
For qualitative data, a crosstabulation is often performed, where the number of pixels that
change from one class to another are tallied. Values along the diagonal of the matrix
(whose rows and columns represent the classes of the images, which must be identical)
represent no change in land cover types. The off-diagonal values represent transitions

from one class to another. A Kappa Index of Agreement (KIA) generally accompanies a

This value, d for the whole image and also for each class in the
image, represents the level of agreement between the two images. If considerable change
has occurred, the Kappa value will be low, representing a low level of agreement between
the images. The per class Kappa values tend to be more useful as they show the level of
agreement within each land cover class; so if an overall Kappa is low, one or more of the

per class Kappa values may still be high, indicating some level of persistence.

When data are in a quantitative form, such as an NDVI image, there are several
different methods that can be utilized. The most common, and usually most informative,

is image differencing (Byme ef al., 1980; Hayes ef al., 2001). This technique involves




subtracting images from two different dates. Often, the raw difference values are
extremely high or low. Therefore, it is recommended to normalize these values as a
percent change (later-earlier/earlier), a standardized image (z-score), or a classified

standardized image (z-scores divided into classes).

2.4 Bayesian probabilities
When combining datasets, the Bayesian approach uses a probability framework to
represent the data portrayed from multiple sources. The Bayesian method works with the
notion of prior and posterior probabilities (Bonham-Carter, 1994). Given a continuous
area of vegetation over a known geographic space, a prior probability would be the
likelihood of finding a particular land cover at a given time, based solely on the
proportions of different land covers currently in the defined space. The prior probability

of finding a particular land cover, in this case, is the ratio of the area of that land cover to

the total area of the study site. Posterior ilities are by adding pi

variables to the prior probability.

Borsuk ef al., (2006) used a Bayesian probability framework to analyse the
decline of brown trout in Swiss rivers. They introduced variables such as gravel bed
conditions, water quality and temperature, disease rates, and habitat conditions to develop
posterior probabilities. Caley er al., (2008) adapted a similar technique for estimating the
success of introduced plants. They combined prior estimates of the probability of
naturalisation and the time from introduction to naturalisation. The authors conclude that

estimating the success rate of introduced plants and ignoring the prior estimates results in

high success rates, however, their estimates were very uncertain. Introducing the prior




estimates into the p ility fr d d the success rate and the

uncertainty associated therein.

2.5 Markov chains

Markov chains provide the propensity for a particular state to transition to another state in

the system (Collins, 1975). This dology can be applied to vegetation studics, where
a particular state could be, for example, a land cover, and a system is made up of several

land cover classes.

A Markov chain is a stochastic process with deterministic elements. Generally
speaking, a stochastic process is defined as one which provides the probability associated
with a set of possible future outcomes. In a deterministic process, state X is always
followed by state Y. However, in a stochastic process, state X is followed by state Y,

with a probability p, and by state Z with a probability ¢ = / — p (Collins, 1975).

A process is deemed Markovian when it fulfills the Markov property. According
to Logofet and Lesnaya (2000), “if the chain is in a state i at a given time moment s, then
the probability pj(s,#) that it will be in a state / at a subsequent time instant />s does not
depend on the chain behaviour before the moment s.” Thus, the state of a system at a
given time depends on the state of the system at the time period prior to it, but no further

into the past. In this situation, the process is considered a first-order Markov chain.

The order of a Markov chain dictates the influence of past events on the current
event. Attime 7(0+1), the state of the system is dependent on the state at time #(0), plus

some other random function. This is referred to as a first-order Markov chain. Ina




second-order Markov chain, the state of the system at time #(0+/) is dependent on the

state at time #(0) and time #(0-1) (Collins, 1975).

A transition matrix, denoted P, with k possible states, is defined as:

Pu Pz v Py
P P22 way
Pu P v Py

Equation 2.1 Markov transition matrix

Where:
P, = the probability of transitioning from state i to state / in the next time step.

The transition probabili

s, py are given for every pair of states in the system.

The probabilities must be non-negative, and all rows sum to 1. Over time, the Markov
chain will reach equilibrium, where the number of entities in a system leaving a particular
state is equal to the number going into that state, resulting in no change to the system with

successive time steps (Collins, 1975).

There has been considerable work relating the application of Markov chains to
vegetation succession and dynamics (Usher, 1981; Lippe e7 al., 1985; Balzter, 2000;
Logofet and Lesnaya, 2000; Benabdellah er al., 2003). As with many ecological

studies, certain ions must be made before an analysis can begin.

Markov chains are no exception, and, as Balzter (2000) suggests, the prediction of future

species (state) proportions makes the following assumptions:

o time-homogeneity,



e

spatial dependence (influence on a species by neighbouring species),

absence of colonisation by new species’, and

first-order Markov dependence
The issue of time-homogeneity refers to the period into the future that a Markov
chain can forecast. This concept is more thoroughly explained by Logofet and Lesnaya

(2000). The idea stems from the invariant envi In terms,

the invariance hypothesis means that:

“no important changes [can] occur in the key factors of the environment
affecting the course of succession during the period of prediction as
compared with the factors during the period of observations in which
estimation of the transition probabilities can be relied upon (Logofet
and Lesnaya, 2000).”

This assumption of time-homogeneity in a Markov chain implies that transition
probabilities can only be calculated into the future for 7 years, where 7 is the maximum
number of years between the earliest and latest available observed data. This hypothesis
also assumes that no major changes took place in the environment, such as disease, fire,

or flooding. In the case of the Mealy Mountains study, the earliest imagery is 1983 while

the latest is 2008. If following the time-homogeneity assumption and the invariance

hypothesis, Markov chains can only be forecasted 25 years (2008-1983 = 25 years) into
the future. After 25 years, the Markov transition probabilities become unreliable due to a

lack of data.

The second point, spatial dependence, refers to the propensity for an object in
space to be more like the objects near it. This is a fundamental concept in geography and

spatial analysis. Markov chains deal with transitions between states over time, but do not



incorporate space. In other words, the spatial arrangement of the states in a system (if the
system is in fact spatial) has no impact on the transition probabilities produced by the

Markov chain. This is an issue which is acce for by i other

techniques into the analysis, such as cellular automata (Section 2.6).

The third point outlined by Balzter (2000), the absence of colonisation by a new
species, means that no new species’ can be introduced into the model that were not
present at time #(0). The final point, first-order dependence, was discussed earlier in this
section. In the context of this study, once a vegetation type occupies a space at time (n),
and the next time step, #(n+1), is analyzed, the vegetation types present at time #(n-1) are
no longer relevant. It is because of this that first-order Markov chains are suitable for

vegetation studies (Balzter, 2000).

Given that the model used in this study is influenced heavily by Markov

processes, these ions (ti ity, spatial absence of

colonisation, and first-order dependence) are important, and were considered carefully

when ping the model, especially that of ti . The issue of spatial

depend was adds d by introducing a cellular automata model.

2.6 Cellular automata
Cellular automata are gaining popularity in ecology due to their ability to incorporate

spatial ints on d P Wolfram (1983) states that cellular

automata “are used as simple ical models to i igate self-organization in
statistical mechanics.” They consists of a “sequence of sites with values 0 or 1[...] with

each site evolving deterministically in discrete time steps according to definite rules



involving the values of its nearest neighbours.” In other words, units in a system (e.g.

pixels in a raster dataset) evolve based on the state of the units surrounding them.

ell is dictated

The unique characteristic of cellular automata is that the state of a
by the states of the cells in its neighbourhood and known transition rules. The most
common neighbourhoods are the Moore-neighbourhood (consisting of the centre cell and
its neighbouring eight cells) and the von Neumann-neighbourhood (consisting of the

centre cell and its neighbouring four cells) (Figure 2.1) (Balzter er al., 1998).

entre Cell,

von N

Figure 2.1 Most common cellular automata neighbourhoods (adopted from De Smith ez
al., 2007)

While Figure 2.1 represents the most common cellular automata neighbourhoods,
there are several other options available. The Idrisi Taiga (Eastman, 2009) software has a
set neighbourhood; however, it can be modified by the user. Figure 2.2 shows the Idrisi

Taiga cellular automata default search neighbourhood.



00 0
Figure 2.2 Idrisi Taiga cellular automata search neighbourhood
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The purpose of a neighbourhood such as the one presented in Figure 2.2 is to
provide a greater weight on neighbouring pixels than on more distant pixels. Observation
of the neighbourhood reveals that the inner 3 x 3 block is the same as the Moore-

Neighbourhood outlined above.

A simple cellular automaton, denoted A, is defined as:

A=<L0Q6f>

Equation 2.2 A simple cellular automaton

& = neighbourhood template
/= transition function

(Balzter et al., 1998)

The transition rules can be either deterministic or stochastic (Czaran and Sandor,
1992), though stochastic rules have proven to perform better in ecological theory than

deterministic rules (Phipps, 1992). The transition rules take the form:
@iy = f(@F a0

Equation 2.3 Example of transition rule for cellular automata



Where:
ai = state of the cell s at time ¢

ange of the neighbourhood of cell s

local transition function representing the transition rules.

In ecological studies, particularly those dealing with vegetation, an unoccupied
(e.g. dead) cell can become occupied (e.g. alive) if a certain number of its neighbours are
already occupied. Conversely, the rules could be altered such that overcrowding (a target
cell and a specified number of its neighbours are occupied) causes death. There is also

the case of scarcity, in which an occupied target cell dies of ‘loneliness’ (e.g. lack of

protection) when too few neighbours are present. For example, a particular vegetation
class is likely to continuing advancing to new areas if all its neighbouring pixels are

unoccupied or occupied by land covers susceptible to colonisation.

Cellular automata are discrete in time, space, and state, and can model processes
at large scales (e.g. landscape dynamics) and small scales (e.g. single populations)
(Balzter er al., 1998). They forecast specific scenarios (states), at an exact point in time,

over a spatially discrete area.

2.7 Cellular automata - Markov chain hybrid modelling
Markov chains have no spatial component. The influence of neighbouring features, thus,
has no implicit impact on the transition of one state to another in Markov chain
predictions. Cellular automata address this shortcoming. Markov chains and cellular

automata algorithms can be integrated in most spatial analysi:

oftware. Such a coupling

offers the ad of an integrated environment which incorp hastic processes

(from the Markov chain) with pre-determined rules (from the cellular automata)




concerning both the dynamics of a landscape and the spatial patterns present in the
vegetation.

In the remote sensing and spatial modelling software program /DRISI Taiga
(2009), the cellular automata-Markov chain model, or CA_Markov module, works in this
manner. The module combines the following components to produce a prediction of land

cover change:

Basis land cover image: a map of the initial land cover state used;

Markov transition areas file: transition areas derived from classified images used
in the Markov module;

e Transition suitability image collection: set of images that show the suitability of
transition for each individual land cover class;

Number of cellular automata iterations: number of times the cellular automata
repeats. This is the same value as the Number of time periods to project forward
from the second image field in the Markov module (Eastman, 2009; Marshall and
Randihir, 2008).

Generally, a test prediction would be made forward to a time with an observed
land cover state. The predicted and observed land covers can then be compared in order

to estimate the predictive power of the model (Eastman, 2009).

2.8 Summary of literature review
The literature presented in this section provide valuable insight into the techniques

available for past and future i tions. T ic variables,
such as aspect, elevation, and topographic shape, have a direct influence on the location

and movement of vegetation, acting as both inhibitors and promoters of change. This

knowledge allows one to more fully explore the relationships between land covers and

~




corresponding topographic characteristics. The topographic variables are used directly in

the cellular automata-Markov chain model.

Climate is highly associated with the of ion over time. While it
is not included in the model as a distinct variable, it is represented implicitly within the
Markov chain projections as well as adiabatic rate layers within the Bayesian

probabilities.

The Markov chain and cellular automata models provide the predictive tools used
within this study. The coupling of the two provides an analysis which considers both

time and space.
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3. DATA SOURCES

This chapter presents the collection and processing of the field data (Section 3.1). The
climate data are described in Section 3.2. Section 3.3 outlines the available aerial and
satellite imagery and the processing steps performed in order to classify the images.
Section 3.4 explains the generation of the topographic variables and how they were used

to develop the Bayesian probabilities (Section 3.5).

w

.1 Field data
In preparation for field work in 2008, sample points were generated based on random
sampling stratified by elevation (derived from a digital elevation model (DEM)) and
groundcover spectral signatures (derived from a high-resolution 2005 Quickbird satellite
image). This stratification method was chosen to ensure a diversity of groundcovers were

present in the field samples. Field work was carried out from 4 July to 20 July, 2008.

A total of 74 field points were collected (Figure 3.1). The X and Y coordinates of
the collected samples are listed in Appendix A. At each of the sample points, five 1 m®
quadrat samples were set up. Four quadrats were placed at a distance of 10 m from the
centre point in the four primary cardinal directions. A fifth point, chosen randomly, was
placed in either the northwest, northeast, southeast, or southwest direction (Chen er al.,
2007) (Figure 3.2). At each quadrat, the percent cover of all species’ present was
recorded. Average heights of cach species and average soil depth were also recorded. A
top-down photograph of each quadrat was taken using a digital camera. This protocol

was applied in non-forested arcas where vegetation is low-lying.
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Figure 3.1 Sampling locations for field points, upper and lower climate station location
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M 10m

Figure 3.2 Quadrat Method applied to low-lying vegetation

Given that the data are arranged in groups of five points, interpreting dominant

land covers would result in statistics highly influenced by clustering. Therefore, the mean

of each quadrat was calculated to produce a value for each groundcover type present that

was representative of the site. The result is a single quadrat with the average percentage

cover of each recorded species; representing the conditions over a 20 m x 20 m area. The

18 groundcover classes were also grouped into land cover classes as developed by

Meades (1990). The groups are as follows: tundra, krummholz, deciduous shrub,

coniferous shrub, open canopy, closed canopy, understory, bedrock, water, and fen/bog.
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Where tall trees were dominant, the Point-Center Quarter (PCQ) sampling scheme
was used (Mitchell, 2007). This technique involves recording the distance to the closest
tree of each species in four quadrants (NE, NW, SE, and SW) (Figure 3.3). At each tree,
the basal diameter and the diameter at breast height (DBH) were recorded. Black spruce

and eastern larch were the most abundant species’ d, with sporadic

of balsam fir (4bies balsamia) and white spruce (Picea glauca).

|
BSO |
Ky BF
LY I OBF ©
. [
Woolod
oy
1 Qi\‘."
b AT
A TTows
r" }
oL |
Lo |
BS Black Spruce
I L Larch
| WS White Spruce
I

BE Balsam Fir

Figure 3.3 Point-Center Quarter (PCQ) method. Applied in forested areas. Note that
only the nearest tree of each species was chosen per quadrant. (BS: Black Spruce; WS:
White Spruce; BF: Balsam Fir; L: Larch)
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Table 3.1 lists the different land cover types with general characteristics as well as
a sample photograph. The classes used in the table correspond with those outlined by
Meades (1990). However, the deciduous shrub and coniferous shrub classes have been
excluded, as they are represented adequately by the open canopy and closed canopy

classes.

Table 3.1 Land cover classes, composition, and sample images

Land Cover V: quibant Characteristics
Tundra | Labrador tea, Low-lying vegetation,

crowberry, frequently
bearberry, kalmia, | interspersed with
mosses, lichens bedrock.

Krummholz | White spruce, Environmentally-
black spruce stunted coniferous

shrubs.




Table 3.1 cont'd

Domnant =
Land Cover | yeoetation Characteristics
Open | Black spruce, | Old growth forests
Canopy | white spruce, | with sparse canopy
balsam fir, larch | cover.
Closed | Black spruce, | OId growth forest
Canopy | whitespruce, | with considerable
balsam fir, larch | canopy cover.
Understory | Moss Primarily Tocated

within old growth
forests.
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Table 3.1 cont'd

d 2 Characteristics
Fen/Bog | Grasses, sedges | Usually wet arcas
dominated by sedges
and rushes

Bedrock | Exposed bedrock, | Interspersed with
boulders, shattered | tundra vegetation.
boulders Primarily at higher
elevations.

Water Waterbodies,
seasonal and
permanent,

For the purposes of image classification, the above listed classes were grouped

fication, the

one step further into more manageable units. Using a supervised cl:
images were classified into one of four classes: deciduous shrub (DSH), coniferous shrub
(CSH), heath (HTH), and bedrock/exposed (BRK). These four classes efficiently capture
the vegetation types listed in Table 3.1. Additionally, Meades (1983) suggests that, given

sufficient time, shrub classes will eventually over take the heath landcover. It should be
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noted that the bedrock/exposed land cover classes represents areas with exposed bedrock,

as well as exposed soil.

As will be discussed in Chapter 4, the heath and bedrock/exposed land covers

occupy similar topographic conditions. In most cases, they are within close proximity to

one another. This leads to pixel-mixing between the two land covers, whereby heath and
bedrock/exposed occupy the same pixel. Thus, the spectral signature is skewed, making
classification more difficult. This issue is confounded by the fact that heath and
bedrock/exposed are very different in the infrared band. Figure 3.4 illustrates the spectral

extracted by selecting areas

of heath and P . These values wer

of both land covers form a high resolution Quickbird image.
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2
2

-

Quickbird Spectral Reflectance
2
2
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Quickbird Image Band

Figure 3.4 Spectral si of heath and posed



Pixel-mixing often results in mi ificati This in turn results in potential

errors in modelling. While these errors are unavoidable, it is important to be aware of

them when analyzing results and forming conclusions.

3.2 Climate Data

3.2.1 Region: imate data

Historical climate data were obtained from Environment Canada (2009) for Goose Bay
(1942-2008) and Cartwright (1941-2007). These data were used to interpolate climatic

conditions for the Mealy Mountains based on the method outlined by Hanson (1987).

3.2.2 Local climate data

Climate data were collected for the study area from 17 July, 2001 to 8 July, 2007.
Climate stations at 570 m and 1000 m (Figure 3.1) collected minimum, maximum and
average temperature, as well as solar flux and ground temperature (Jacobs, 2007). These
data represent local conditions, and can thus be used in conjunction with the Goose Bay
and Cartwright data to develop a long-running climate record for the Mealy Mountains.
Data were interpolated at both local climate stations (570 m and 1000 m), allowing for the

calculation of adiabatic rates.

3.2.3 Climat interpolation

To interpolate a long-running series of climate data for the Mealy Mountains, an ordinary
least-squares (OLS) regression was performed using climate data from Goose Bay and
Cartwright (Hanson, 1987). The maximum daily temperature data for all years was
compiled by month into separate files. Maximum temperatures are used in this study

because they represent the upper limit of vegetation growth (Miller, 2005). Additionally,



the mean temperatures for the Cartwright and Goose Bay weather stations are an average
of the minimum and maximum values for each day and not a running average of all
values collected. OLS regressions were performed using the Cartwright and Goose Bay
data as the independent variables against the upper (1000 m) and lower (570 m) elevation
Mealy Mountain climate stations. The resulting coefficients and constants were used to
interpolate the Mealy Mountains climate data to cover the entire time frame of interest.
The interpolated results were compared to the observed climate data from the Mealy

Mountains climate stations.

The calculated regression coefficients and constants are based on daily data,
grouped into separate monthly files. Therefore, these coefficients represent average
monthly conditions. While the input data contained daily values, the interpolated results

will be monthly averages.

The seasonal fluctuations in coefficients suggest a greater influence from
Maritime weather patterns, represented by the Cartwright climate data, during the winter
months. In the summer months, the Mealy Mountains are more influenced by inland,
continental weather patterns, as represented by the Goose Bay climate data (Figure 3.5).
Table 3.2 lists the monthly coefficients and constants for the upper and lower climate

stations.

The Root Mean Square Error (RMSE) was calculated between the observed and
predicted temperatures for the upper and lower climate stations. The RMSE for the upper

climate station is 0.777° C. The RMSE for the lower climate station is 0.969° C. These
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error values prove the efficacy of the OLS regression model for predicting long term

temperature values for the Mealy Mountains.

Table 3.2 Upper and lower climate station regression coefficients for maximum
temperature
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Figure 3.5 Upper and lower climate station regression coefficients for maximum
temperature

3.2.4 Adiabatic rates
Adiabatic rates were calculated using the averaged maximum temperatures for June to

September for years corresponding to the satellite imagery (1983, 2001, 2005, and 2008).

The rate of change values are calculated by dividing the difference between the
upper and lower climate stations by the elevation difference between the two stations

(Equation 3.1).

Tu=T

ARyear =, =F;

Equation 3.1 Adiabatic rate
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Where:
AR, .., = adiabatic rate for year of interest;

T, upper climate station temperature;
T = lower climate station temperature;
E. upper climate station elevation;
E = lower climate station elevation.

The adiabatic rates were developed using map algebra calculations. The DEM for
the study area was rescaled using raster algebra such that elevations of 570 m became
zero. Elevations higher than 570 m became increasingly negative, while elevations lower
than 570 m became increasingly positive. 1fa temperature is known at 570 m, it is
expected that at lower elevations the temperature is higher and at higher elevations it is

lower. Next, the following algebra was applied to the above mentioned raster layer:
Adiabatic Layer = Tyeqr + ARyear(Rscl_Elev)

Equation 3.2 Raster algebra performed to develop adiabatic change layers

Where:

Adiabatic Layer = the output adiabatic layer for the study area;

Tyear = average J-J-A-S maximum temperature for each year;
ARyear the known adiabatic rate for each given year;

Rscl_Elev = the rescaled elevation layer (where 570 m is equal to 0).

The output of this operation is a separate layer for each year in which higher
elevations have lower temperatures and vice versa. At elevations of 570 m and 1000 m,
the temperatures on the adiabatic layers correspond to that of the lower and upper climate
stations, respectively. An example of an adiabatic rate layer for 2008 is shown in Figure

3.6.
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Figure 3.6 Adiabatic rate layer for 2008, showing 1° C temperature intervals and upper
and lower climate station
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Table 3.3 lists the averaged

2008 for both climate stations, as well as the calculated rate of change values for each

year.

Table 3.3 Rate of change in temperature (June to September maxima; imagery years

shown in bold)

for June to

1983 142 10.1 -0.0095
1984 14.0 9.8 -0.0097
1985 13.7 9.6 -0.0095
1986 13.0 8.9 -0.0095
1987 13.9 9.8 -0.0095
1988 13.9 9.7 -0.0096
1989 14.3 10.3 -0.0094
1990 13.7 9.7 -0.0094
1991 12.9 8.8 -0.0096
1992 13.5 9.5 -0.0094
1993 13.7 9.6 -0.0096
1994 14.2 10.1 -0.0095
1995 14.6 10.5 -0.0096
1996 14.1 10.0 -0.0095
1997 13.7 97 -0.0093
1998 14.5 10.4 -0.0095
1999 154 11.4 -0.0095
2000 15.2 1.1 -0.0096
2001 14.3 103 -0.0094
2002 14.4 103 -0.0094
2003 16.1 12.0 -0.0095
2004 14.8 10.6 -0.0097
2005 15.3 11.2 -0.0096
2006 15.9 11.9 -0.0094
2007 15.0 10.9 -0.0096
2008 155 11.3 -0.0097

from 1983 to



3.3 Aerial photography and satellite imagery
Aerial photography (from 1950) and satellite imagery (spanning from 1983 to 2008) were
collected for the study area. The satellite images were collected between late July and
mid-September. Satellite image resolution varied from 15 m to 79 m. All of the images,
with the exception of the aerial photographs, capture data in the visible and near-infrared

wavelengths. Table 3.4 lists the types of imagery and spatial resolutions.

Table 3.4 Details of aerial photography and satellite imagery

Sensor and Band i
Date Platfo Resolution (m) © RMS (m)
1950 Airborne ~13 N/A N/A
24July1983 | Landsat 4 MSS 79 B.G,R,NIR 359
20 September Landsat 7 30 B, G, R, NIR, Used as base
2001 ETM+ - TIR image
6 September o . Image not re-
2005 Quickbird 25 B, G, R, NIR sampled
13 September ASTER - 15 3 bands from 501
2005 TERRA 0.52-0.86 ym )
SPOT 4 -
2 2 2
30 August 2008 HRVIR 20 G, R,NIR 129

Eight aerial photographs from 1950 were used to cover the study area. To account
for photo distortions due to elevation, the images were scanned and orthorectified. They
were then mosaicked and cropped to form a single, continuous image spanning a region
larger than that of the study area. The aerial photographs were not used in the change
detection methods. However, they were used to delineate an approximate boundary
between forested and non-forested areas. The delineation was used as a binary (forest vs.

non-forest) variable within the Bayesian probability layers, as discussed later.
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All satellite imagery was d and t020m ion. This

resolution represented the only option with regards to resampling given the original
resolution of the images (Table 3.4). Radiometric and atmospheric corrections were also
performed to minimize differences between images due to fluctuations in atmospheric
conditions at the time of image acquisition. The details of the corrections performed are
given in Appendix B. Multi-temporal imagery has the potential provide insight into the
degree of change that has occurred over the past 25 years. The procedure and specifics

of the above mentioned corrections are outlined in Appendix B.

To facilitate change detection and modelling efforts, the images were classified
using a supervised classification algorithm. This procedure delineates land covers based
on training sites provided by the user. This method tends to produce higher classification

accuracies with more modifiable training and testing sites (Eastman, 2009).

The satellite images were classified using a combination of field data and user

. in conjunction with a high ion Quickbird image from 2005. The field
data are used to develop training sites where a dominant land cover s identifiable. In
areas with sparse field data coverage, a combination of user knowledge from field surveys
and high resolution Quickbird imagery was used to delineate homogenous land cover
types. This ancillary data was most useful for the coniferous shrub (CSH) and
bedrock/exposed (BRK) land cover classes, as these areas are casily distinguishable on
the Quickbird image. Training sites were delincated on the 2008 image, as this was the
same year the field data were collected. Therefore, it is logical to assume that in earlier

images the land covers were not exactly the same. If there was a change in the land cover
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from earlier dates to 2008, the classification accuracies may be lower. Table 3.5 lists the
classification accuracies for each image. Note that the ‘no data’ and water areas have

been removed from the overall accuracy calculations

Table 3.5 Satellite image classification accuracies derived from Kappa coefficient of
agreement

2008 2005 2001 1983
SPOT ASTER LETM+ ™SS |
DSH 0.5957 (60%) | 0.6608 (66%) | 0.8239 (82%) | 0.6860 (69%)
CSH 1.0000 (100%) | 0.8869 (89%) | 1.0000 (100%) | 0.8618 (86%)
HTH 0.5824 (58%) 0.5833 (58%) 0.5351 (53%) 0.3684 (37%)
BRK 0.5625 (56%) | 0.8747 (87%) | 0.6630 (66%) | 0.3568 (36%)
Overall | 0.6363 (63%) | 0.7345 (713%) | 0.7148 (71%) | 0.5163 (52%)

Figures 3.7 to 3.10 presents the final classified images. The line marking the
approximate transition between forested and non-forested areas, as delineated from the

aerial photographs, is displayed.

3.4 Topographic data
Topographic data, including elevation, slope, aspect, exposure, topographic relative
moisture index (TRMI), and topographic shape index (TSI), were extracted from a

1:50,000 scale digital elevation model (DEM). These data were used in conjunction with

the aerial and satellite imagery to di ine the effect that i have

on vegetation change.

Elevation and slope are measurements extracted from DEMs in most spatial
analysis software and are not discussed here. The remaining indices, however, required

further processing.
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Figure 3.7 Land cover classification (1983)
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Figure 3.9 Land cover classification (2005)
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Figure 3.10 Land cover classification (2008)
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Due to the circular nature of aspect, problems can arise when attempting to
determine its effect on vegetation patterns. Miller (2005) proposes a “southwestness™
(SWness) index. Miller’s index, however, is given for degrees (°), when it should be
calculated with radians, as the original formula produced output errors. The adaptation of

Miller’s (2005) equation, with degrees converted to radians, is:

SWness = cos(asp) — cos(rad(225°))

Equation 3.3 Modified southwestness (SWness) index

Where:
SWress = the modified southwestness index (ranging from -1.0 to 1.0);
asp = the original aspect layer in radians;

The topographic shape index (TSI), adopted from McNab (1989), is a measure of
the shape and position of the land as it relates to the land forms surrounding it. For
example, valley floors tend to have highly negative values, valley walls have TSI values
approaching 0, and mountain peaks and ridges have highly positive TSI values. Arcas
with highly variable elevations tend to have a broader TSI range. Regions such as the
Mealy Mountains, characterised by rolling hills and gentle slopes, tend to have a more

constrained TSI range. The TSI, calculated using map algebra, is as follows:

TSI = DEM — focalmean(dem, neighbourhood, x)

Equation 3.4 Topographic shape index (TSI)
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Where:
7SI = topographic shape index;
DEM = the digital elevation model for the area;

neighbourhood = the shape of the neighbourhood surrounding the pixel of interest (.g.
circle, square, etc.);
x = the distance of the search neighbourhood in pixels.

The topographic relative moisture index (TRMI), developed by Parker (1982), is a
measure of the soil moisture potential of an area. It should be noted that this index
measures potential only, and thus has no way of incorporating seasonal fluctuations of
water content. The TRMI, ranging from 0 to 60, is calculated by rescaling topographic
positions (from the TSI), slope configuration (curvature), slope steepness (slope in

s and summing the

degrees), and slope aspects (in degrees azimuth) into discrete clas:
result. Areas with low values tend to exhibit drier conditions while higher values tend to

be much wetter.

The angle to sheltering topography, herein referred to as exposure, was adapted
from Harrison and Kelly (1996). A number of hillshades were calculated with
incrementally decreasing sun altitudes ranging from 85° to 15° in an attempt to mimic
wind (i.e. wind does not originate at a single point source). The shaded areas were taken
from each hillshade and coded as 1, whereas arcas not shaded were coded as 0. This was
performed for each different sun altitude with the results summed. Higher values in the
resultant layer indicated more sheltered areas. This process was completed three times:
once for the dominant wind direction (22.5°), and once each for 20° north (2.5°) and

south (42.5°) of the dominant wind direction. The three resulting layers were then
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combined using a weighted average where the dominant wind direction was given the

highest weight (50%) (Harrison and Kelly, 1996).

3.5 Bayesian probabilities
A conditional Bayesian probability is calculated by adding predictive variables to a prior
probability, thus creating a posterior probability. A prior probability, for example, is the
probability of finding deciduous shrub within a study area, while only considering the

proportion of the study area occupied by deciduous shrub (Equation 3.5).

_ N{DSH}
P{DSH} = /N{Total)
Equation 3.5 Prior probability

Where:

P{DSH} = prior probability of finding, in this case, deciduous shrub

N{DSH} = total number of deciduous shrub cells (or the total area of deciduous
shrub)

N{Total} = total number of cells in the study area (or the total area).

For example, the posterior probability is calculated when one assumes that

deciduous shrub occurs on south-facing slopes. This dge is added to the prior
probability (Equation 3.6). Any number of predictive variables or conditions can be

added to the prior probability.

P{DSH n ASP;
p{psHlasPy) = Pt Y oasey
Equation 3.6 Example of posterior probability
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Where:
P{DSH|ASPs} = posterior ility of finding deci shrub given a south-faci

aspect

P{DSHNASPs} = N{DSH|ASPs} / N{Total} = probability of deciduous shrub and
south-facing slopes both occurring
P{ASPs} = N{ASPs} / N{Total} = probability of south-facing slopes

(adapted from Bonham-Carter, 1994).

Bayesian probability layers were created to demonstrate the propensity for a
particular land cover to be present within the study area given specified topographic
conditions. To develop the probability layers, each of the topographic and adiabatic

layers were rescaled into discrete classes (Table 3.6).

Table 3.6 ification of Bayesian ility input layers
Layer Interval N"’"""u of Classification Scheme
Elevation | 50m 13 Range: ~475-1100
Exposure 0.25 s 0-0.25; 0.25-0.5; 0.5-0.75; 0.75-1
0-2%; 2-5%; 5-8%; 8-15%; 15-30%;
glepe NA 7 30-60%; 60%
N:337.5-0-22.5% NE: 22.5:67.5%
157.5%
Aspect 4 B S: 157.5-202.5% SW: 202,5-247.5%
W: 247.5-292.5% NW: 292.5-337.5°




Table 3.6 cont’d

Number of

Layer Interval Cli Classification Scheme
1: 150 - 1100 (ridge); 2: -100 - 150
TSI N/A 4 (slope); 3: -200 - -100 (toe slope); 4: -
1100 - -200 (valley bottom)
TRMI 10 5 Range: 14-52
Adiabatic 1°c 8 Range: ~9-16° C

Only a portion of the classification schemes for the topographic variables are

referenced in the literature. A correlation analysis was performed to determine if there

existed any trends between the land cover classes and elevation. However, there were no

discernable trends present. Thus, elevation was divided into 12 discrete, 50 m classes.
Exposure was divided into 5 classes. Slope was divided based on the convention of the
European Commission (2010). Aspect was divided into the cardinal (N, E, S, W) and
inter-cardinal (NE, SE, SW, NW) directions. The TSI layer was classified based on

Zimmerman’s (2000) method, whereby valleys, lower and upper slopes, and ridges are

identified. The TRMI layer was divided into 5 equal interval classes. Finally, the

adiabatic layers were divided into 1° C intervals. The vegetation land cover classes (not

listed in Table 3.6) maintained the same, discrete classes as before (deciduous shrub,

shrub, heath, by

posed).



Once classified, all of the layers listed in Table 3.6 are overlayed. The result is a
single layer with polygons that represent unique conditions. Each discrete polygon in this

layer is some combination of the above i hic layers. This pi is

performed again, but this time, the land cover classifications are included as well. This
produces another layer with even more unique conditions. Next, the area of each unique-
condition polygon is calculated for both layers. This area value is divided by the total

study area size, thus giving ilitics of y, all of the polygons

with the same set of unique conditions were dissolved to form a single, multi-part
polygon. The probability field of the individual polygons was summed, based on the
additive property of probabilities (McClave and Sinich, 2000). The result was a layer
with fewer unique-condition polygons and a probability value that was higher than the
original for each polygon. Using the unique-condition layer that includes the land cover
classifications, each land cover class was selected and extracted to its own layer. The
result was four new unique-condition layers (one for each of the four land cover classes).
These four layers were divided (using map algebra) by a raster of the topographic

variables unique-condition layer (Figure 3.11).  In order to incorporate the satellite image

classification accuracies, each of the Bayesian probabilities were multiplied by the
classification accuracy for a particular land cover within a particular year (e.g. the 2005
Bayesian probability for coniferous shrub was multiplied by 0.8869. This value

the

accuracy of conif shrub in the 2005 image, as listed in

Table 3.5)



The final output contained 16 separate layers: four layers for each of the land
covers within each of the four years. Figure 3.12 shows an example of one of the
Bayesian probability layers for coniferous shrub in 2008. Note that the extent of the

probabilities is restricted to that of the coniferous shrub for 2008. Outside of the

shrub area, the p ility of finding coni shrub declines to 0.

Bayesian
Probabilitic
DSH CSH

HTH BFK

DSH CSH HTH BRK

Figure 3.11 Procedure for ping Bayesian ilities for cach image year
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Figure 3.12 Sample Bayesian probability for coniferous shrub (2008)



3.6 Summary
This chapter provided details on the processing of the data necessary for the detection of

land cover and climate changes. The processing steps were as follows:

*  Analysis of field data;

o Regional and local climate data analysis and interpolation;
e Calculation of adiabatic rates;

e Preparation of aerial photography and satellite imagery;

e Preparation of topographic variables;

o Calculation of Bayesian probabilities.

The outputs from these processing steps will be used for exploratory analysis,

which in turn will develop the input s for the cellular automata-Markov chain

model.



4. EXPLORATORY ANALYSIS

Relationships between topographic variables and land cover classes must be explored to
facilitate model development. This permits one to determine the best suited predictor
variables to use with the model, as well as discover how certain variables influence
vegetation patterns. Section 4.1 deseribes the variability of land covers amongst
topographic variables. Section 4.2 discusses the the yearly changes in land cover, the
yearly changes in land covers as they relate to topographic variables, and changes in

Bayesian probability.

4.1 Variability of land covers amongst topographic variables
This section discusses how the land cover classes are distributed with regards to certain
topographic conditions. Aspect, elevation, and topographic shape index (TSI) are
analysed. The remaining variables (exposure, slope, treeline position, and TRMI), while
not thoroughly discussed here, were still included in the CA-Markov model because of
their added predictive power to the cellular automata. Chapter 5 discusses a model

validation whereby a CA-Markov model was ped using only aspect,

elevation and TSI as inputs.

s favour

The purpose of this analysis is to determine if particular land cover cla
certain topographic conditions. It is expected that less resilient vegetation, such as
deciduous shrubs, will favour less-exposed slopes. Coniferous shrubs will likely be

situated on more exposed slopes. At high elevations, heath is expected to be dominant.

Holland and Steyn (1975) and Miller (2005) highlight the importance of aspect in

the growth and movement of vegetation upslope. Polar graphs plot the distribution of



aspect within each land cover class (Figures 4.1 to 4.4). Examination of these graphs
indicates that coniferous shrub is dominant on north- and northwest-facing slopes. For
the 1983 and 2001 images, heath is most evident on southeast-facing slopes, but in 2005

and 2008, it appears to be more wi though still i y in the h

facing direction. Deciduous shrub appears i y towards the southeast-facing

slopes. Table 4.1 lists the dominant aspects for each of the four land cover classes.

Table 4.1 Dominant aspects for each land cover class

Land Cover Class ‘Dominant Aspect
DSH 90-180° (SE)
CSH 275-50° (NW, N)
HTH 95-190° (SE)
BRK 0-90° (NE), 180-260° (SW)

o, 05 o
340 H 355 g 1015, e
&5

0-450
310-315° ' 50-55
300-305° 60-65°
2002050 7075
DSH
280285 80-85°
—CsH
2702750 9-95°
70- 27 % WTH
260265 1004108 ——BRK
250-255° Ho- 115"
200-245° 120- 1250
230235 130- 1350
250 140- 145
210215 S1ss
20034 1ose i70- 9%

180 185°

Figure 4.1 Distribution of aspect by land cover class (1983) (in km?)
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Figure 4.2 Distribution of aspect by land cover class (2001) (in km?)
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Figure 4.3 Distribution of aspect by land cover class (2005) (in km?)
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Figure 4.4 Distribution of aspect by land cover class (2008) (in km?)

Figures 4.5 to 4.8 present the distribution of the land cover classes by elevation.

The Elevation - % Cover Index (ECI) was by multiplying the p cover
of a particular land cover at a particular elevation range by the percent of land at that

elevation range, relative to the entire study area (Equation 4.1)
ECl = Lo * Ly

Equation 4.1 Elevation - % land cover index

Where:
LC, = Percentage of land cover a at elevation range x
Lx = Percentage of land at elevation range x (in relation to total study area)

The purpose of this index is to differentiate elevation ranges with greater land area

(low to mid-elevations) from those with lesser land area (higher elevations). Due to



terrain shape, there is more land area at lower elevations, and less at higher elevations.

The majority of the land area is situated between 475 m and 700 m.

Figures 4.5 to 4.8 indicate that deciduous and coniferous shrubs tend to occupy a

greater percentage of the land at lower elevations. As deciduous and coni shrubs

decline with increasing elevation, heath and bedrock/exposed land covers begin to

dominate in total area occupied. Above approxi ly 750 m, deci and

shrubs occupy less than 20% of the landscape. This is evidence that higher elevations are

less i to and conif shrub. Thus, it is unlikely there will be

growth of shrubs in these locations.

350
300
250
DSH
200 N
3] —CsH
=150 HTH
—BRK
100

50

0
PSR ECEECALRL LRSS
E PO E S S P P S

Elevation (m)

Figure 4.5 ECI by elevation range for each land cover class (1983)
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Figure 4.6 ECI by elevation range for each land cover class (2001)
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Figure 4.7 ECI by elevation range for each land cover class (2005)
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Figure 4.8 ECI by elevation range for each land cover class (2008)

The topographic shape index (TSI) graphs demonstrate how land cover types vary
with change in topographic position. The TSI ranges from approximately -150 (valley
floors) to 185 (ridges). Figures 4.9 to 4.12 show the TSI - % cover index (TCT)
(calculated as in Equation 4.1, but with TSI substituted for elevation) in relation to the
TSI range. The purpose of this index is to differentiate between the total land area across

different terrain characteristics (¢.g. mid-slopes, valley floors, ridges, etc.)
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Figure 4.9 TCI by TSI range for each land cover class (1983)
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Figure 4.10 TCI by TSI range for each land cover class (2001)
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Figures 4.9 to 4.12 reveal that most of the land area exists between -60 and 100 on
the TSI scale. The majority of the deciduous and coniferous shrubs reside on the valley
floors and toe slopes (-150 - ~0) and continuing slightly farther upslope. Beyond a TSI
value of 50, there is an insignificant amount of either deciduous or coniferous shrub; this
value does not change over time. Heath and bedrock/exposed land covers continue to be
present towards upper slopes and ridge tops, where conditions are more exposed. This
suggests that the more exposed areas tend to be less favourable to deciduous and

coniferous shrub, thus heath and bedrock/exposed are dominant.

4.2 Change detection
This section outlines the change in topographic variables and Bayesian probabilities
within each land cover class from year to year. This analysis will determine if vegetation
experienced infilling of movement in certain areas.
4.2.1 Change in land cover from 1983 to 2008
Table 4.2 lists the total area (in square kilometres and as a percentage) of each land cover

class from 1983 to 2008. The no-data regions have been excluded from the calculations.

Table 4.2 Total area (km”) of each land cover class

1983 2001 2005 2008

DSH_| 17.3(183%) | 27.3 (32.7%) | 19.9 (24.2%) | 24.1 (26.8%)
CSH_| 31.4(33.3%) | 17.8 (21.3%) | 205 (25.0%) | 17.8 (19.8%)
HTH | 16.9 (17.9%) | 186 (22.3%) | 32.0 (39.0%) | 27.9 (31.1%)
BRK | 28.6 (30.4%) | 19.7(23.6%) | 9.7(11.8%) | 200 (22.2%)
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There is considerable fluctuation in the area of each land cover from 1983 to 2008
(Figure 4.13). Deciduous shrub alternates between gains and losses, while coniferous
shrub fell drastically from 1983 to 2001, with a slight increase to 2005, followed by
another decrease to 2008. Heath increased from 1983 to 2005, but then decreased to
2008. Bedrock/exposed regions decreased steadily from 1983 to 2005, but increased
again in 2008. The most likely explanation for these fluctuations is attributed to the
patchy nature of heath. Heath and bedrock tend to occupy the same topographic
conditions; however, there are rarely vast expanses of either of the land covers. Rather,
they occur in small, disjointed patches. Their patchy nature, whereby heath is
interspersed with bedrock/exposed, leads to mixed spectral signatures between the two

classes. This explains the variations in heath and bedrock/exposed from 2005 to 2008.
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Figure 4.13 Percent area for each land cover class (1983-2008) with standard deviation
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4.2.2 Variability of ic variables between years

The change in topographic conditions for each of the land cover classes are investigated
in this section. The purpose of this analysis is to determine if vegetation is migrating to

new topographic positions (e.g. more exposed aspects, higher elevations, etc.).

Figures 4.14 to 4.17 present polar plots of the year-to-year variation in aspect as
defined by each of the four land cover classes. The purpose of this analysis is to
determine if the land covers migrated to different aspects. Deciduous shrub does not
appear to have migrated to any different aspects (Figure 4.14). In 2001, there were
instances on north-facing slopes, but the majority of deciduous shrub is located on
southeast-facing slopes. Coniferous shrub remained stationary from 1983 to 2008 (Figure
4.15). Heath remained on southeast-facing slopes through all years of the analysis as well

(Figure 4.16).
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Figure 4.14 Aspect of deciduous shrub (1983-2008) (in km2)
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Figure 4.17 Aspect of bedrock/exposed (1983-2008) (in km?)

Bedrock/exposed became more restricted to southeast- and southwest-facing slopes
beyond 1983 (Figure 4.17). However, the observed changes in bedrock/exposed are

likely due to pixel-mixing between P and heath.

Figures 4.18 to 4.21 present year-to-year variation in elevation for each of the four
land cover classes. The most evident change observed is with the heath class (Figure
4.20). There was an increase in the percentage of land occupied by heath from 1983 to

2005, with a small decrease to 2008.

Deciduous and coniferous shrubs changed less from year to year. The percentage
of deciduous shrub (Figure 4.18) increased from 1983 to 2001, decreased in 2005, before
rising again in 2008. Coniferous shrubs decrease from 1983 to 2001, after which there

was little change. With the exception of 2008, the bedrock/exposed land cover (Figure



4.21) decreased steadily, suggesting an increase in heath, or pixel-mixing between the

two classes. These changes are consistent with those seen in Table 4.2 and Figure 4.13.

While the variability of these data are high, it does not suggest changes did not

oceur. Given that most vegetation shifts occur over decadal time scales, large changes

will generally not be evident from 2001 to 2008 (Pereg and Payette, 1998; Epstein et al.,

2004; Stow et al., 2004; IPCC, 2007).
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Figure 4.18 Elevation of deciduous shrub (1983-2008)
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Figure 4.20 Elevation of heath (1983-2008)
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Figure 4.21 Elevation of bedrock/exposed (1983-2008)
4.2.3 Percent change in Bayesian
The change in decit and i shrub was lated between 1983

and 2008 (Figures 4.22 and 4.23, respectively). The topographic shape index is shown
below the percent change layer to provide a general characterization of the topography in
high change areas. Deciduous shrub (Figure 4.22) decreased from 1983 to 2008 over a
great deal of the lower elevations. South-facing slopes (where deciduous shrub is
frequently found) witnessed small increases. Most notable, however, was the movement
of deciduous shrub along valley floors (TSI range: ~-150 - ~0) from lower to higher
clevations. Coniferous shrubs (Figure 4.23) increased in the lower elevations, with
minimal increases along the valley floors. North-facing slopes (where coniferous shrub is

prominent) witnessed increases as well.
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Figure 4.22 Percentage change in Bayesian probabilities for deciduous shrub (1983-2008)
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Figure 4.23 Percentage change in Bayesian probabilities for coniferous shrub (1983-
2008)




Figures 4.24 and 425 present the relationship between aspect and Bayesian
probability for deciduous (Figure 4.24) and coniferous (Figure 4.25) shrub. The Bayesian
probability for deciduous shrub doubled (from 0.19 to 0.38) in the west-facing directions
(270°). All other changes were considerably less than this; however, there were

changes in the southwest and northeast-facing directions as well.

‘The Bayesian probability for

shrub increased iderably in all but

the southeast-facing direction. Most notable is the 279% increase (from 0.17 to 0.65) in

the northwest-facing direction. There were also increases in the west- and north-facing

directions.
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180°

Figure 4.24 Relationship between percent change in Bayesian probability and aspect for
deciduous shrub (1983-2008)
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Figure 4.25 Relationship percent change in Bayesian probability and aspect for coniferous
shrub (1983-2008)

Figures 4.26 and 4.27 relate changes in Bayesian probability to elevation for
deciduous shrub (Figure 4.26) and coniferous shrub (Figure 4.27). The average Bayesian
probability for deciduous shrub increased from 1983 to 2008 over all elevation ranges.
Considering that deciduous shrub tends to be located at lower elevations, the
approximately 100% increase in the 450-500 m range is important. Lesser changes oceur
at higher elevations. Above 700 m, there appear o be large changes; however, because
there is little deciduous shrub at higher clevations, a small increase could result in a
doubling or tripling of total arca. All of the above noted changes exhibit high standard

deviations, thus making these changes insignificant. This does not mean, however, that
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changes did not occur. Rather, the variability of the changes across particular elevation

ranges is very high.

Coniferous shrub (Figure 4.27) exhibited smaller changes in the lower elevations,
but higher changes around the 700-900 m elevation range. However, the same issue
exists here as with deciduous shrub. The standard deviations for the change values are all
extremely high. Again, this does not indicate that change didn’t occur, just that the

variability of change within each elevation range was high.
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Figure 4.26 Relationship between percent change in Bayesian probability and elevation
for deciduous shrub (1983-2008)
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Figure 4.27 Relationship between percent change in Bayesian probability and elevation
for coniferous shrub (1983-2008)

The relationship between percent change in Bayesian probability and topographic
shape index is presented in Figure 4.28 (deciduous shrub) and 4.29 (coniferous shrub).
The highest change in deciduous shrub occurred in the toe slopes (TSI range: -100-0) and
mid-slopes (TSI range: 0-100), where Bayesian probabilities increased by about 20%
each. Change in the valley floors (TSI range: -147--100) and along ridges (TSI range:
100-180) were negligibly or non-existent. The data presented here exhibits very high

standard deviations, ing the data are insigni Again, this does not suggest

that change did not occur. It is an indication that variability within each TSI range was

high.
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Coniferous shrub (Figure 4.28) increased by approximately 40% in the valley
floors (TSI range: -147--100). Along the toe slopes (TSI range: -100-0) and mid-slopes
(TSI range: 0-100), Bayesian probabilities decreased by less than 20%. There was a
small increase in Bayesian probability along ridges (TSI range: 100-180). Again, the
high standard deviations do not indicate that changes within each TSI range were

extremely variable.

Percent Change

147} 0-fo0 100- 180

Figure 4.28 Relationship between TSI and percent change in Bayesian probability for
deciduous shrub (1983-2008)
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Figure 4.29 Relationship between TSI and percent change in Bayesian probability for
coniferous shrub (1983-2008)

4.3 Summary of exploratory analysis findings
This chapter assessed the relationships between each of the land cover classes and the
selected topographic variables. Aspect, elevation, and TSI were analysed, because they
provide the strongest relationships within each land cover class. The percent change in
Bayesian probability between 1983 and 2008 was calculated for the deciduous and
coniferous shrub classes. The shrub classes were chosen because they are more
heterogeneous over space, as they are restricted primarily to the lower elevations, valley
floors, and toe slopes. Also, the shrub classes are expected to migrate to new locations

over time and provide the most evidence of vegetation shifts.




In general, deciduous shrub is more likely to occur on southeast-facing slopes,
while coniferous shrub prefers north and northwest-facing slopes (Figure 4.1 to 4.4). At
elevations between 475 m and 600 m, deciduous and coniferous shrubs occupy the
majority of the land cover (Figures 4.5 to 4.8). At elevations above 600 m, there was a
steady decrease in the area of the two shrub classes, and increases in both the heath and

bedrock/exposed land cover classes.

TSI plots (Figure 4.9 to 4.12) indicate that deciduous and coniferous shrubs tend
to be situated along valley floors and toe slopes. Further upslope and on ridges, where
conditions become more exposed, the shrub classes are considerably less abundant and

there is a of heath and land cover.

Figures 4.14 to 4.17 display the change in land cover as related to aspect from
1983 to 2008 for each land cover. Beyond 1983, the bedrock/exposed land cover became

more abundant on the southeast- and south facing slopes, indicating a decrease in

heath (Figure 4.17). All other land covers remained relatively stationary. The heath land
cover class increased at almost all elevation ranges (Figure 4.20) from 1983 to 2005, with
a small decrease in 2008. Deciduous and coniferous shrub changes less in relation to

elevation from year to year.

The percent change in Bayesian probability from 1983 to 2008 (Figures 4.22 and
4.23) suggests that deciduous shrub decreased in the lower elevations. However, small

increases on south-facing slopes and along valley floors were evident. Coniferous shrub
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increased in the lower elevations and on north-facing slopes, with minimal increases

along valley floors.

Figures 4.24 to 4.29 illustrate how Bayesian probabilities change with relation to
aspect, elevation, and TSI. The strongest relationships exist with elevation, where it is
evident that the Bayesian probability for deciduous shrub increased at lower elevations,

while coniferous shrub decreased.

There was a high positive correlation between the average Bayesian probability
for heath and the average maximum summer temperatures for each of the climate stations.

Bayesian ilities for conif shrub and deci shrub both exhibited negative

correlations with the climate stations. Bedrock/exposed did not correlate strongly with

the climate stations.

The analysis in this chapter was used to validate the CA-Markov model. While

only aspect, elevation, and TSI were thoroughly analyzed, the

variables (exposure, slope, TRMI and adiabatic rates) were still included in the model.

This is because these variables still provide insight regarding vegetation trends, however,

they explain less variation in the model.



5. CA-MARKOV MODEL: VALIDATION AND RESULTS

An overview of the cellular automata-Markov chain model is presented in this chapter.
The model inputs and data requirements are outlined and the model validation results are
presented. The forecasted 2020 and 2032 images are presented with an emphasis on

documenting:

the potential net change in land covers;
2. the transition to and from specific land covers;

3. the changes detected along valley floors (areas identified as having a high
potential for advancement of the shrub classes).

5.1 CA-Markov model inputs and calibration
The pre-processing steps performed in this section follow the data requirements outlined
by Eastman (2009). The first step performed in preparing the land cover classifications
for the model was filtering, which consists of a mode filter of a user-defined size that is
moved across the study area in an effort to generalize the image without a considerable
loss of information (Eastman, 2009). In this case, a 3 x 3 (pixel) window was chosen.
While the window can be of any size, tests were performed with increasingly large
window sizes. However, windows larger than 3 x 3 resulted in a significant loss of

information.

Secondly, areas of no data were masked out. This includes all areas of water,
cloud, and cloud shadows. Because the Markov chain module requires two images

(earlier and later) with identical dimensions, the no-data regions must be the same for
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both images. So while the 1983 image’s no-data regions are composed of only
waterbodies, the 2008 image contains clouds and shadows, which must be masked out of

the 1983 image as well.

Eastman (2009) outlined the requirements for the use of suitability layers in the
CA-Markov model. One suitability layer is required for each of the four classified
images in this study. The Bayesian probabilities were used as suitability layers for this
analysis because they indicate the propensity of specified terrain characteristics to be

occupied by a particular land cover class.

5.2 Model validation
The purpose of the CA-Markov model validation procedure is to determine how well the
model predicts future land cover scenarios. The model validation steps used in this study

were as follows:

. Time periods were chosen for which data was available. In this case, the 1983
and 2001 images were used to project to 2008.

2. A Markov transition area file was created in the Markov chain model using the
1983 and 2001 images.

3. The Markov transition area file was entered into the CA-Markov model.

4. The earlier land cover image corresponded to that used in the Markov chain model
(1983).

5. The transition suitability layers were chosen as the set of four Bayesian
probability layers for the later of the two images.

6. Land cover conditions were forecasted ahead to 2008. The Bayesian probabilities
for 2001 were chosen over 2008 because for the purposes of forecasting Bayesian
probabilities will not be known. For model validation, it is assumed that the 2008
conditions are known.

7. The output of the CA-Markov model was a land cover classification for 2008.
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A cross tabulation between the predicted land cover for 2008, and the observed
conditions for 2008 resulted in a high level of agreement for the coniferous shrub (x =
0.68) and bedrock/exposed (x = 0.73) land covers. The deciduous shrub and heath land
cover classes perform poorly in comparison to the other two classes (x = 0.38 and k =
0.26, respectively). Table 5.1 presents the Kappa index of agreement between the two
images. Table 5.2 illustrates how the image pixels were distributed amongst the classes,
as well as producer (omission) and consumer (commission) accuracies. Producer’s
accuracy indicates the probability that a pixel will be correctly classified. Consumer’s
accuracy represents the probability that a pixel classified on the map actually represents
that category on the ground (Jensen, 2005). While the Kappa values for deciduous shrub
and heath are both low, the values for coniferous shrub and bedrock/exposed are

considerably better than chance.

Table 5.1 Kappa index of agreement measure for the observed and predicted 2008 land
cover classification

Land cover Kappa Index of
Class (x)
DSH 0.3786
CSH 0.6792
HTH 0.2566
BRK 0.7265

Overall 0.4613
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Table 5.2 Cross tabulations for predicted and observed 2008 land covs

DSH CSH HTH BRK Vters
£ Accuracy
30906 | 7402 6294 793 | 68.1%
2 | 32171 7894 1423 Z
709 22026 | sist |

BRK 1197 | 21081 | 30267
L 522% | 77.6% | 394% | 80.4%
Accuracy

The ¢

assification accuracies for deciduous shrub and heath are low (Table

).

A total of 7.0 km? (17,552 pixels) were classified as coniferous shrub, when they were

assified as deciduous. The same is true for heath, where 8.4 km*

supposed to be

(21,081 pixels) were incorrectly classified as bedrock/exposed. The heath and

bedrock/exposed land covers suffer from considerable pixel-mixing, meaning both land
covers tend to occupy an area of land less than the resolution of the original satellite

imagery. This explains why the producer’s accuracy for heath (39.4%) and the user’s

accuracy for bedrock/exposed (54.3

are low. The low producer’s accuracy of

deciduous shrub (52.2%), combined with the low user’s accuracy of coniferous shrub

(54.5%), indicates that there is pixel-mixing occurring between those ¢

asses as well.
‘This is understandable, as these classes occupy similar topographic conditions.
Nonetheless, the model did perform well in predicting the coniferous shrub and

bedrock/exposed land covers



Another model validation was performed to assess the importance of the
topographic variables analyzed in Chapter 4 only (aspect, elevation, topographic shape
index). The CA-Markov model was run in the same fashion as above, however, the
Bayesian probabilities used as the transition suitability layers were constructed using a
combination of aspect, clevation, and TSI only. This set of Bayesian probabilities is
herein referred to as the “reduced” Bayesian probabilities. The output was a 2008 land

cover classification.

Table 5.3 lists the KIA for cach of the land covers using these “reduced” Bayesian
probabilities. Also listed in Table 5.3 are the KIA values for the original - Adding the
remaining topographic variables resulted in a 20% increase in model accuracy. All
classes were affected by the reduced Bayesian probabilities, particularly the

bedrock/exposed land cover.

Table 5.3 Kappa index of agreement measure for the observed and predicted 2008 land
cover classification (“reduced” Bayesian probabilities)

Kappa Index of Kappa Index of cl R
Land cover Agreement () for ‘Agreement (x) for 5 of
Class. “reduced” i iginal Bayesian
i e
DSH 0.1132 0.3786 -0.2654
CSH 0.3466 0.6792 -0.3326
HTH 0.0742 0.2566 -0.1824
BRK 02158 0.7265 -0.5107
Overall 02116 0.4613 -0.2497

5.3 CA-Markov forecasting
Balzter (2000) and Logofet and Lesnaya (2000) suggest that time homogeneity is a

necessary prerequisite for modelling with Markov chains. Therefore, the CA-Markov
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model was forecasted to two future time periods: 2020 and 2032. This represents a

maximum of 24 years beyond the 2008 image.

The Markov chain model was run with the images from 1983 and 2008. A 12-
year projection was performed to obtain transition probabilities for 2020. The Markov
transition areas file was used in the CA-Markov model. The earlier land cover image
was set as the 1983 image. The Bayesian probabilities for 2008 were set as the suitability

image collection. Although it may have seemed more logical to use the 1983 Bayesian

p as the suitability image collection, the 2008 iliti the
most recent land cover conditions and were more accurately classified than the 1983
imagery. Also note that the Markov chain analysis was performed between 1983 and
2008. Therefore, the transition matrix would represent trends present between these two
time periods. The number of CA iterations was equal to the number of years the Markov
chain was projected forward, in this case 12 years. Also, recall that the most noticeable

changes are evident over decadal time scales (Pereg and Payette, 1998; Epstein e al.,

2004; Stow et al., 2004; IPCC, 2007).

This procedure was performed again with a change in the time scale to allow a
projection to 2032. The projection in the Markov model was for 24 years, and 24 CA

iterations in the CA-Markov model.

The Markov chain model produced two sets of outputs; one each for the 2020
projection and the 2032 projection. Of interest from these outputs are the Markov

transition probability files. These highlight the propensity for a particular land cover to
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stay the same, or transition to another land cover class. Table 5.4 and 5.5 list the

transition probabilities for the 2020 and 2032 projections, respectively.
Table 5.4 Markov transition probabilities for projection to 2020

DSH CSH HTH BRK
DSH | 07717 | 0.0932 [ 01351 | 0.0000
CSH | 02523 0.6503 | 0.0973 0.0000
HTH | 00988 | 00000 | 05780 | 03232
BRK | 00307 | 00279 | 04176 | 0.5238

Table 5.5 Markov transition probabilities for projection to 2032

CSH HTH BRK
DSH 0.1228 0.1868 0.0214 ]
CSH 0.5078 0.1460 0.0268
HTH 0.0143 0.5214 0.3291

BRK l 0.0807 0.0357 0.4314 0.4523

Table 5.4 illustrates that in 2020 there was a 77% chance of deciduous shrub
remaining as such, with less than a 10% chance of it transitioning to coniferous shrub,
and a 13% chance of it transitioning to heath. The tendency is for coniferous shrub to
remain the same as well (65%). There is a 25% chance of it changing to deciduous shrub.
This type of transition is expected given the close proximity of deciduous and coniferous

shrub. Due to the patchy nature of heath, the probabilities of change for the heath and

» chance of heath

bedrock/exposed land covers are less pronounced. There is only a 587

remaining heath, with a 32% chance of it changing to bedrock. Bedrock has a 52

chance of remaining the same, with a 41% chance of it being overtaken by heath.
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Increasingly long Markov chain projections result in transition probabilities
approaching equilibrium. While the probabilities listed in Table 5.5 have not reached
equilibrium, they are trending toward it. The probabilities of classes remaining the same
were lower. There was a 67% chance of deciduous shrub remaining the same, and a 51%
chance of coniferous shrub remaining the same. There remains significant mixing
between the heath and bedrock/exposed land cover classes. When the transition
probabilities reach equilibrium, it does not mean the landscape will stop changing; rather,
it is an indication that the Markov chain is no longer able to make accurate predictions

given the amount of data available.

5.4 CA-Markov model results

Figure 5.1 and 5.2 illustrate the forecasted land cover conditions to 2020 and 2032,
respectively.
5.4.1 Net change in land cover

It is important to assess the outputs of the model and determine what has changed
from the baseline conditions (2008) to the predicted conditions (2020 and 2032). Over
the first time step (2008 to 2020), coniferous shrub and bedrock both increased (by 7.3
and 5.7 km?, respectively). Deciduous shrub and heath both decreased over this time
period (by 6.5 and 6.4 km’, respectively). Figure 5.3 shows the net change for each land
cover class between 2008 and 2020. Figure 5.4 presents the net change from 2008 to

2032 Coniferous shrub and posed are no longer ing, in fact, they

experienced a decrease beyond 2020 (bedrock/exposed was likely replaced by heath in
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this time period). Deciduous shrub and heath, while still considerably less abundant than

in 2008, increased beyond 2020.

The increases in coniferous shrub, combined with the high transition probability
of coniferous shrub to remain the same in 2020 (0.6503) (Table 5.4) provides strong
evidence that coniferous shrub is the more resilient of the land cover classes. Deciduous
shrub had a high transition probability (0.7717) to 2020, as well. However, the large

decrease illustrated in Figures 5.1 and 5.2 suggest it is less resilient than coniferous shrub.

91



Land Cover Class

| Deciduous Shrub / / NoData

|

W conerous s Waterbadies
[ Hean —mmm. Approximate Tresine

(1950 aerial imagery)

M BecockEsposed

1000 2000 |
Meters

Figure 5.1 CA-Markov land cover projection (2020)




Land Cover Class

[ oecidvous shub 7,7/ NoData
M Conierous Shub Waterbodies
—mmm Approximate Treeine
(1550 sarial imageny) 1000 2000
B seorock Exposed

Figure 5.2 CA-Markov land cover projection (2032)



800

600

400

200

0.00

Area (km2)

200

400

600

800

-6.60

DSH
CSH
HTH
=BRK

-6.37

Figure 5.3 Gains and losses by land cover class (2008-2020)

600

400

200

0.00

Area (km?)

400

600

800

516

#DSH
uCSH

HTH
#BRK

Figure 5.4 Gains and losses by land cover class (2008-2032)

94



5.4.2 Net change within land cover classes

The contributions from each class to the gains or losses in a target class provide a good
indication as to what classes tend to exchange area. In this study, deciduous and
coniferous shrubs tend to exchange pixels in the forecasted images. This is to be
expected, given the ecological similarities and close spatial proximity of the two classes.
Heath and bedrock/exposed also exchanged area between the baseline image and the
forecasted images. The exchanges between heath and bedrock/exposed relate to the

patchy nature of these land covers.

Figure 5.5 outlines the contributors to net change for each of the land cover
classes from 2008 to 2020. Each graph contains three values, one for each of the land
covers that are contributing to the change in the fourth land cover, which is excluded from
the graph. When examining these graphs, it is important to note how the land cover
changed in the time period of interest. Deciduous shrub decreased from 2008 to 2020 by
6.6 km”; 4.82 km” of this area was replaced by coniferous shrub (Figure 5.5, Graph 1).
Heath also decreased by 6.37 km? in this time period with 4.04 km? being lost to

bedrock/exposed (Figure 5.5, Graph 3).

Figure 5.6 presents the contributors to net change from 2020 to 2032. Again,
deciduous and coniferous shrubs tend to exchange area (Figure 5.6, Graphs 1 and 2), as
does heath and bedrock/exposed (Figure 5.6, Graphs 3 and 4). The severity of the
changes seen in these graphs is mimicked in the transition probabilities to 2032, which

are less pronounced than the transition probabilities to 2020.
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The trends present in Figures 5.5 and 5.6 support the transition probabilities
presented in Table 5.4 and 5.5. The Markov transition probabilities suggest that if
deciduous shrub were to transition to another land cover, it would most likely be
coniferous shrub, and vice versa. The same is true for the heath and bedrock/exposed
land covers. Given the Markov transition probabilities, which indicate how land covers

are expected to change over time, the trends present in Figures 5.5 and 5.6 are expected.

5.4.3 Land cover change along valley floors

The relative degree of predicted change seen along the valley floors from 2008 to 2020,
and from 2020 to 2032, is less than was evident from 1983 to 2008. Observing the
changes from 2008 to 2020, it is evident there was a small amount of infilling and
upslope movement along valley floors. The majority of the growth in coniferous shrub
occurred in the lower elevations of the study area. As mentioned, deciduous shrub
decreased in this time period, however, a majority of the area was replaced by coniferous
shrub. At lower elevations and along valley floors, deciduous and coniferous shrub
experienced small amounts of infilling and upslope movement (~4.5 km?), primarily at
fringe or boundary areas. These changes are consistent with those detected from 1983 to

2008. While there was considerable fluctuation in land covers in the historic images, a

general progression of deciduous and coni shrub along valley floors was witnessed.

From 2020 to 2032, infilling at low elevations and along valley floors is less
distinet (~2.0 km?). There is, however, some infilling of deciduous shrub along the valley
floors. There were minimal changes in coniferous shrub. At lower elevations, coniferous

shrub was replaced by deciduous shrubs at fringe areas between the two classes. Heath
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increased from 2020 to 2032. These changes were seen on the fringe areas of deciduous
shrub, where the valley floors begin transitioning into toe slopes and elevations become

too extreme for shrub growth.

5.5 Overview of results
The validation model performed well in predicting the occurrence of coniferous shrub and
bedrock/exposed (Table 5.1). The validation process was a necessary step to justify the
use of the CA-Markov model. The forecasted images show an increase in coniferous
shrub and bedrock/exposed (indicating a decrease in heath) from 2008 to 2020. While
deciduous shrub decreased in this time period, it did experience minimal upslope
movement along valley floors and toe slopes. Coniferous shrubs increased considerably
in the lower elevations, with minimal gains along valley floors. Deciduous shrubs
increased along valley floors to 2032. Heath also increased to 2032, primarily at the
fringe areas of deciduous shrub in the valley floors and toe slopes. Coniferous shrub lost

a small amount of its area in the lower elevation to deciduous shrub from 2020 to 2032.
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6. DISCUSSION {

This chapter presents a summary of the climate interpolation as well as the changes
observed from 1983 to 2008. An overview of the trends detected by the exploratory data

analysis is given, with an explanation of the implications these results have on model

development. A review of the methods, model results, and model implications will
follow. Finally, an outline of the project findings in relation to the project objectives is

given.

6.1 Climate change
Regional climate data for Goose Bay (1942-2008) and Cartwright (1941-2007) were used
in conjunction with localized data from the Mealy Mountains dating from 2001 to 2007.
This combination of data was used to interpolate a long running set of local climate data |

spanning the dates of the imagery (1983-2008).

From 1983 to 2008, temperatures at the upper and lower climate stations increased

in the same manner as the regional data derived from Goose Bay and Cartwright. There

was an increase of approximately 1.2° C from 1983-2001, with a period of increased

warming from 2001-2008, where temperatures increased 1.0° C. Recognizing these

important ions is necessary to the cause of past and future

land cover changes. These temperature shifts have important consequences on vegetation

growth, particularly regarding the upslope of deciduous and coniferous shrub.
While it is difficult to determine exactly what caused the observed and predicted changes

in land cover, a literature review has indicated that climate and topography are strongly
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associated with vegetation migration (Kérner and Paulsen, 2004; Lloyd and Fastie, 2002;

MacDonald er al., 2008; Payette and Delwaide, 1994).

6.2 Exploratory data analysis
Exploratory analysis was performed to determine the relationships between the land cover
classes and topographic variables, climate patterns, and Bayesian probabilities. The
purpose of this analysis was to test the suitability of these variables for predicting future

scenarios within the CA-Markov model.

The exploratory data analysis revealed a preference for deciduous shrubs to

occupy southeast-faci

g slopes, while conift shrubs preferred north- and northwest-
facing slopes. The two shrub classes dominate the lower elevations, while heath and

bedrock/exposed occupy the majority of the upper elevations.
It is, however, the mid-elevations where considerable mixing of all four classes
oceurred. Valley floors in particular have been the site of advancement of the shrub

classes from 1983 to 2008. At higher ions, heath and d continued to

be the dominant land covers.

Between 1983 and 2008, there was no considerable change in the land covers with

relation to iic c s (e.g. decil shrub did not move to more exposed

slopes, coniferous shrub did not move to higher elevations, erc.). However, observation

of the land cover images reveals a of conifc and deci shrub along the

valley floors, suggesting there was some movement of land cover classes. These changes
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were not detected in the exploratory analysis because the changes were relatively small in

comparison to the entire range of aspect, elevation, and TSI values.

Another important conclusion obtained from the exploratory analysis relates to the
Bayesian probabilities. The probability of the shrub classes, particularly deciduous shrub,
increased along the valley floors, suggesting that infilling has occurred. Coniferous shrub

increased primarily in the lower elevations (<550 m).

6.3 Review of methods and results
A cellular automata-Markov chain (CA-Markov) hybrid model was used to forecast land
cover conditions to 2020 and 2032. The forecast model does not go beyond 2032 (a 24~

year time range) due to the restriction of time homogeneity in these particular models.

Model validation was performed to determine how well the CA-Markov model
predicts future conditions. The validation results indicated that the coniferous shrub class
predicted moderately well. Heath is predicted relatively poorly; however bedrock is
predicted much more accurately. This discrepancy is due to the patchy nature of heath
and bedrock/exposed, whereby both land covers occupy the same pixel, producing a

mixed spectral signature.

From 2008 to 2032, the transition probabilities decrease. The gains in coniferous
shrub and bedrock/exposed began to decrease, while the losses in deciduous shrub and
heath decreased as well. The most noticeable changes occurred in the fringe areas

between deciduous shrub and heath. Coniferous shrub continued to increase at lower
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elevations, but decreased along the valley floors. Heath re-emerged where topographic

conditions became more exposed (at the mid-slopes and ridge tops).

The changes to and from the land cover classes discussed in Chapter 5 provide
important information regarding the dynamics of land covers in the area. The general
trend suggests that deciduous and coniferous shrub tend to experience gains and losses to
and from one another. The same is true for heath and bedrock. This is expected for two
reasons. The first relates to pixel-mixing, especially between the heath and
bedrock/exposed land covers, but also partially to the deciduous and coniferous shrub
classes. Pixel-mixing is most common where land covers exhibit a patchy nature. This is
most evident with the heath land cover. The second reason relates to the spatial
arrangement of the classes. For the most part, deciduous shrub and coniferous shrub, and
heath and bedrock/exposed, occur in close proximity to one another. As a result, these

classes are expected to exchange area with one another. In the early stages of model

development, a model was constructed with decid and conifc shrub combined

into a single class. The results, however, were similar to the current model. Merging the

classes provided a less detailed projection, while providing no further accuracy.

The concept of vegetati ion should also be ioned here. Meades

(1983) points out that the progression from heath to forested land covers in climates such
as those typical to Newfoundland and Labrador tends to be very slow. The author

concludes that it would take forested areas i 1000 years to completely

overtake an area of heath approximately 2-3 ha in size. However, the author does state

that small shrub growth is present within the heath land cover. The conclusions reached
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by Meades (1983) suggests that the progression of land covers within this study are
logical, in that heath will subside to the forested land covers of deciduous and coniferous

shrub.

6.4 Model implications
A visual assessment of past and future classified images indicates that deciduous shrubs
are advancing and infilling along valley floors and toe slopes, but decreasing in the lower
elevations. These changes are particularly evident at mid-elevations. The valley floors
and toe slopes offer more protected conditions, and are thus favourable to the
advancement of certain land cover types. Coniferous shrub also emerges along the valley
floors, however it is less prominent. The lower elevations are more likely to experience
an increase in coniferous shrub where old growth forests constitute the majority of the
landscape. These conditions are expected to become more pronounced into the future as
well. The infilling of deciduous and coniferous shrub suggests that these land covers will
become more abundant and eventually begin to move upslope as conditions at higher
elevations and exposed slopes become more hospitable to growth (Gamache and Payette,

2005).

The study area falls within the boundaries of the Mealy Mountains
(Akamiuapishku) National Park. The conclusions reached in the above analysis have
important consequences for land planning and park management, especially with regards
to indigenous populations that use the area. This study provides a generalisation of past
and potential future changes in vegetation patterns; changes which should be considered,

and more ghly investigated, if further land and zoning is to oceur in
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the area. Additionally, the predicted changes could have important impacts on wildlife in
the area. Changes in land cover patterns could potentially alter migration patterns of

caribou which frequent the area.

6.5 Review of project objectives
This section reviews the project objectives and addresses each individually in the relation

to the conclusions reached in this study.

6.5.1 Mapping historical land cover distributions

The past land cover classifications provide important information regarding the trends
which have occurred over the past 25 years (1983-2008). This information is crucial in

developing future vegetation scenarios.

While the classification accuracies appear relatively low, especially for the older
images, there are explanations for this. First and foremost, the quantifiable field data
used to create training and testing sites was used in conjunction with qualitative user
knowledge, for which there is no numerical equivalent. So while the accuracies are low,
the combination of field data and user knowledge was adequate in classifying the images.
In addition, training sites were developed for 2008 and used on all images. Thus, in 1983,
for example, land cover conditions are expected to be somewhat different because the

ground truth points are those developed for 2008.

6.5.2 Relating land cover change to climatic fluctuations

While it is difficult to see a direct correlation between the quantity of a particular land

cover and the climatic conditions at the time, a thorough literature review suggests that
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increases in temperature do in fact have an effect on vegetation patterns. The movement
of deciduous and coniferous shrub along valley floors and into toe slopes occurs in
conjunction with an increase in temperature of approximately 2 °C over the 25-year time
frame of this study. Changes in Bayesian probabilities from 1983 to 2008 are minimal,
suggesting infilling is occurring at a slow rate, and most changes are occurring along
fringe areas where shrubs are beginning to move upslope. These climate changes are
expected to continue into the future, thus it is reasonable to assume that land cover shifts

will occur as well. Additionally, average Bayesian probabilities exhibited strong

with average maximum summer icularly coniferous shrub
and heath.
While the Bayesian probabilities (used in the CA-Markov model) include an

adiabatic rate layer, the final model does not directly incorporate a climate change vector.

Nonetheless, the model does effectively incorporate the changes that occurred in land

cover between 1983 and 2008, which, as discussed, are strongly associated with changes

in climate.

6.5.3 Identifying i i specific to land cover classes

The exploratory analysis section was important in justifying the use of a spatial model.
Early modelling attempts explored the notion of logistic regression, however, it was
determined that a spatial component had to be included to capture the true variability of

‘ the landscape. Given the use of the CA-Markov model, which incorporates a spatial

\ ccomponent, it was necessary to know the dynamics of the land cover classes in relation to

the topographic variables.
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A CA-Markov model was run using “reduced” Bayesian probabilities compiled
from only aspect, elevation, and topographic shape index. Because these three variables
showed the greatest variability amongst the land cover classes, they provided the greatest

predictive power to the model, and were thus chosen for exploratory analysis. Given the

of deciduous and coni shrub along valley floors and toe slopes, aspect,
elevation, and TSI were also the most logical choice for further analysis because they
offered unique values for these areas. The CA-Markov model performed with the
“reduced” Bayesian probabilities proved that using only aspect, clevation, and TSI as
predictive variables decreased the model’s accuracy considerably. Including all

topographic variables increased model accuracy by approximately 20%.

6.5.4 ing future land cover

A CA-Markov model was used to forecast potential future land cover conditions. The
appeal of this model comes from its ability to incorporate the past states of systems (via
the Markov chain), as well as the spatial organization of the system (via the cellular
automata). These characteristics give the CA-Markov model a spatial and temporal

framework.

Various other model types were tested, with results proving less favourable. A
Geographically Weighted Logistic Regression (GWLR) was tested in the earlier stages of
analysis; however, this model was unable to capture the trends occurring in the data,
likely because of an overgeneralization of neighbourhoods and the failure of the data to

meet the condition of spatial non-stationarity. A spatial auto-regressive model was tested
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briefly, as well. While the inclusion of a spatial term was beneficial, the regression

functions did not properly capture the trends in the data.

The changes detected from 1983 to 2008 suggest an upslope movement of shrubs,
particularly deciduous, along valley floors and into toe slopes. These shifts continue into
the forecasted land cover conditions, though to a lesser degree. In the observed and
forecasted land cover maps, deciduous shrub appears to be at the fringe areas of upslope
movement (particularly along the valley floors). This may suggest a tendency for

deciduous shrub to move upslope ahead of coniferous shrub.

6.6 Conclusion

This study provides an assessment of the continuously changing vegetation patterns of
forest-tundra ecotones. The multi-temporal satellite imagery provides the basis of the
study. Bayesian probabilities, which have not been used extensively in ecological
studies, provide suitability measurements for each of the land cover classes in relation to

topographic variables.

To fully understand the changes which have taken place in the Mealy Mountains,

along the fc tundra ecotone, | work should be undertaken.

Future studies should focus on obtaining a more complete record of imagery for the area.
The imagery used in this study covered a long time frame (25 years), but there were
considerable gaps, especially between the 1983 and 2001 image (carly in this study, a
1992 image was used, but it was later dropped due to only 50% of the image being cloud
free). While consistent, high-resolution imagery isn’t always available, it should be

chosen when feasible. This will prevent the loss of information when down-scaling high
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resolution images to match lower ion imagery. Al ively, high

multi-spectral airborne imagery could be obtained at various time frames. RADAR
imagery could be used as supplemental data to the analysis in the form of texture analysis.
Finally, a more complete, localised record of climate would be ideal. However,

considering the study should be carried out over multiple decades in order to capture

significant shifts in vegetation, these data may not always be available.
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APPENDIX A

The table below (Table A1) lists the type (Quad: Quadrat; PCQ: Point-Centre Quarter)

and X and Y values for each of the field points collected during the summer of 2008.

Table A1 Quadrat and PCQ field points

[

L

i

Quad 375888 5940452 Quad 376780 5941432
Quad 380732 5943776 Quad 377019 5941371
Quad 380135 5940188 Quad 378730 5941586
Quad 377183 5938873 Quad 379019 5943324
Quad 376072 5939985 Quad 376493 5942078
Quad 375877 5939765 Quad 376606 5941595
Quad 379144 5942444 Quad 377825 5938681
Quad 379937 5940354 Quad 376424 5941513
Quad 376464 5939972 Quad 378475 5943254
Quad 381901 5942199 Quad 378378 5942665
Quad 375819 5939626 Quad 379873 5940415
Quad 375835 5940031 Quad 376365 5939632
Quad 378745 5938873 Quad 375726 5941408
Quad 379231 5942093 Quad 380017 5943171
Quad 378359 5938663 Quad 378786 5941402
Quad 380309 5944195 Quad 378712 5943322
Quad 379656 5941824 Quad 375789 5943711
Quad 379678 5942576 Quad 376358 5943381
Quad 379336 5942539 Quad 378184 5940658
Quad 379317 5940421 Quad 377927 5940236
Quad 377558 5940686 Quad 378314 5941220
Quad 375993 5942604 Quad 377828 5941774
Quad 376151 5941183 PCQ 381449 5942550
Quad 376203 5942698 PCQ 380220 5941873
Quad 376271 5941716 PCQ 381817 5940926
Quad 375982 5942959 PCQ 381652 5942459
Quad 378196 5943403 PCQ 380846 5941221
Quad 378164 5942888 PCQ 380865 5942122
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Table Al cont'd

M

Survey | ¥ (Easting) | Y (Northing) ST";;:" X (Easting) | Y (Northing)
Quad 377805 5942335 PCQ 377447 5938735
Quad 376201 5942477 PCQ 380947 5939863
Quad 379129 5940955 PCQ 381828 5941293
Quad 378791 5941316 PCQ 381078 5939765
Quad 380101 5943796 PCQ 381286 5941033
Quad 379656 5943374 PCQ 381132 5939642
Quad 380209 5944056 PCQ 380773 5942102
Quad 379937 5940788 PCQ 380561 5941674
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APPENDIX B

The following details the specifics of the geometric, atmospheric, and radiometric

correction procedures applies to the four multi-date satellite images used in this analysis.

Re-sampling and georeferencing

For the purposes of this analysis, the 2001 image was re-sampled to a 20 m resolution and
used as a basis for all other correction performed. The 2001 image was chosen as the
reference image because it was previsouly georeferenced by the image provider. The

remaining images (1983, 2005, and 2008) were re-sampled to 20 m resolutions as well.

The 1983, 2005, and 2008 images were georeferenced using the 2001 image and a

topographic mapsheet water polygon layer to ¢

e ground control points (GCP). The
table below shows the root-mean square (RMS), mapping function, and re-sampling type

used for each image.

Table BI RMS, mapping function, and re-sampling type for imagery

1983 2005 2008
Mapping function Cubic Quadratic Quadratic
RMS 0.455 3341 0.647
Number of GCPs 16 12 15
Resampling type Bilinear Nearest Neighbour | Nearest Neighbour

Atmospheric correction

Atmospheric correction was applied to all bands from cach image year using the dark

object subtraction method. This method involves reducing the darkest pixel in an image
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to a brightness value of 0 (Jensen, 2005). To complete this procedure, the ATMOSC
module in Idrisi Taiga was used. The date and time of each satellite image was retrieved
from the images header file, the band centre wavelengths were found in Jensen (2005).
The DH Haze was estimated using the lowest value in the histogram of each band of each
image. The L-min and L-max for the 2008 image were found in the images header file.
For the 1983 and 2001 image the values were found via the USGS website (2011).
Values for the 2005 image were unavailable, so the image was not calibrated. The solar
spectral irradiance was calculated within /drisi Taiga using the image capture time and
wavelength of the band centre. The sun elevation was calculated using the sun position
calculator produced by the National Oceanic and Atmospheric Administration (NOAA)
(2008). Table B2 to B4 list the atmospheric correction parameters for the 1983, 2001,

and 2008 images, respectively.

Table B2 Atmospheric correction parameters for 1983 image

Band | Band 2 Band 3
Date (mm/dd/yy) 7/24/1983 7124/1983 7/24/1983
Time (GMT) 14:22:41 14:22:41 14:22:41
AU CRte 0.55 0.65 0.75
DN haze 12 3 s
Lmin
(mW/cm?/st/um) Uk - =
max N
B 238 164 142
g 167.1 144.05 19.64
irradiance
Satellite viewing 0 0 0
angle
Sun elevation (°) 5211 211 5211
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Table B3 Atmospheric correction parameters for 2001 image

Band | Band 2 Band 3
Date (mm/dd/yy) 97202001 9202001 9202001
Time (GMT) 14.35.04 14.35.04 14.35.04
A of band centre
0.565 0.66 0.825
(pm)
DN haze 24 17 1
Lmin
(oW -0.64 -0 051
Lmax .
(W femalsium) 19.65 15.29 1574
Spectalgolar 168.67 103.93
Satellite viewing 0 0 0
angle
Sun elevation () 34.98 34.98 34.98
Table B4 Atmospheric correction parameters for 2008 image
Band | Band 2 Band 3
Date (mm/dd/yy) 8/302008 83012008 8/302008
Time (GMT) 15:03:47 15:03:47 15:03:47
A 0.565 0.66 0.84
(pm)
DN haze 65 40 6
Lmin
(W femdtium) 0.03938 0.05332 0.06011
Lmax 5 7 o
mW /cm?/st/um)
Spectlsolar 1669 144.12 993
Satellite viewing 138 13.8 138
angle
Sun elevation (*) 442 442 442
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Radiometric calibration

A radiometric correction was applied to cach image to allow for multi-date analysis.

Again, the 2001 image was used as a reference to which the 1983, 2005, and 2008 images

were calibrates. To begin the analysis, 25 points were digitized in homogenous arcas

throughout each of the images. The vector layer was then converted to a raster. Next, a

linear regression was applied to each image band, whereby the independent variable

P the band being

librated, and the d

variable

the

corresponding band from the 2001 image. The raster of the 25 points was used as a mask.

The regression equations provide the necessary information to calibrate the

images. The y-intercept corresponds to the off-set between bands, while the slope

corresponds to the gain. This information applied to each band by adding the offset to the

original brightness values, then multiplying by the offset. Tables BS to B7 list the

regression results for the 1983, 2005, and 2008 image.

Table B3 Radiometric calibration parameters for 1983 image

Offset Gain T
Band | 0.031907 1.69796 0.854798
Band 2 0.033563 1.843864 0.835594
Band 3 .033217 213184 0.870281




Table B4 Radiometric calibration parameters for 2005 image

Band 1 -0.062615 0.001906 0.77574

Band 2 -0.041615 0.002595 0.805309

Band 3 -0.045349 0.004263 0.90671
Table BS Radiometric calibration parameters for 2008 image

Band | 0.012796 0.855975 0.943391

Band 2 0.004134 0.494366 0.96842

Band 3 0.007173 0.878860 0.965917
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