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Abstract

Blissus leucopterus hirtus Montandon (Hemiptera: Blissidae) (hairy chinch bug),

is a pest of turfgrass in Quebec and Atlantic Canada that causes considerable damage to

turf and lawns. This research investigated the influence of environmental heterogeneity

on the phenology, morphology and host preference of B. leucopterus hirtus. Populations

of B. leucopterus hirtus in St. John's, NL displayed the lowest threshold for egg

development and the highest rate of egg development compared with other regions across

the insect's range, indicating environmental influence attributable to shorter and cooler

summers in the St. John's region. This adaptation was also reflected in a more compact

phenology compared to other regions. Cumulative Degree Days and Julian Days were

both effective in predicting the appearance of 2nd instars, a critical milestone for pest

managers in conducting appropriately timed pesticide application.

There was no difference in tertiary sex ratio among sites at a local scale, but there

was an greater number of males than females in Fall 2004 and 2005 compared to the

sprang, suggesting differential mortality of dispersal. Wing form ratios varied at the local

scale and over time, with an increase in brachypters over two years indicating

increasingly established populations. Differences in habitat at the local and regional scale

were sufficient to produce differences in insect size, with the smallest insect size rankings

in St. John's, NL, where egg development rates were also most rapid.

Differences in host choice among 1sl instars of B. leucopterus hirtus were

observed at the local and regional level, demonstrating flexibility in host choice among



populations. Preference was affected by age of insect, with 15t instars favouring Kentucky

bluegrass, while 5th instars were less discriminant. Tendency for aggregation in later

instars appeared to influence choice. Based on these results, pest managers should be

better able to predict host vegetation based on insect phenology and potentially apply

alternative methods of control such a vacuuming when populations are likely to be found

on specific host plants as a result of either feeding preference or other behaviour

tendencies such as aggregation.

The results of this thesis confirm the influence of environmental heterogeneity on

the phenology, morphology and host preference of B. leucopterus hirtus and the

subsequent need for regional specificity in pest management, along with consideration of

insect age and populations dynamics in host choice research.
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Chapter 1: Introduction

1.1 Context

Implicit in a strategy to protect the natural environment, there is a global

movement to reduce reliance on chemical pesticides. This approach involves reducing

both the amount and frequency of pesticide application while still maintaining acceptable

control of pest species. Known as 'Integrated Pest Management' (IPM), this approach

requires a thorough understanding of the ecological facets of insect population strategy

(Norris et al. 2002) so that pest managers can interpret natural features of insect

phenology, morphology and behaviour, and respond with specifically designed control

measures at appropriate times. One insect of interest, Blissus leucopterus hirtus

Montandon (Hemiptera: Blissidae) (hairy chinch bug) (Fig. 1.1), is a widespread turfgrass

pest in Quebec and Atlantic Canada that causes considerable damage to turf and lawns,

an industry worth approximately 5 billion dollars a year in Canada (AAFC 2005).

Effective management of this pest is aided by knowledge of its ecology, with

geographical specificity in life strategy serving as a cornerstone of integrated control

measures. This research therefore focuses on providing ecologically based information on

key life strategy indicators among local and regional populations to validate the need for

population specific management practices.



FIGURE 1.1. Adult brachypterous Blissus leucopterus hirtus. Copyright © 2008 Tom
Murray. Used with permission. http://www.bugguide.net.

This thesis began as a master's project, supported by a local landscape

association, with the goal of determining the number of annual cohorts of B. leucopterus

hirtus occurring in St. John's, Newfoundland and Labrador (NL) and the environmental

factors determining success of populations at various locations within the city. Through

this personal observation during this initial research, it appeared that populations of this

insect separated by fewer than 5 kIn displayed differences in life history, including wing

form ratio and timing of naturally occurring events in the insect's life cycle. This

immediately raised important questions regarding the validity of 'one size fits all'

management practices that were being applied in St. John's, which were based on



phenological research conducted in provinces and states outside of Newfoundland and

Labrador. For example, guides for this insect suggest pesticide application when the

majority of B. leucopterus hirtus nymphs are in the 2nd and 3'd instar (Emmons 2000,

Tashiro 1987) but the calendar date for the occurrence of these key instars in St. John's

was found to differ from those in other parts of the insect's distribution, and even

between sites within the city. In New Brunswick (NB) local variation in phenology

among locations within that province was also observed (Wellwood et al. 2002). It has

become clear that further characterization of these discrepancies is necessary to improve

ecologically based management, particularly the timing and efficacy of pesticide

application. Despite this, for practical purposes, local pest management companies and

other pesticide applicators routinely refer to general calendar dates when planning spray

periods. A locally centered, more environmentally friendly management strategy requires

an understanding of the life history variation among and within populations at the local

and regional scale.

1.2 Theoretical Foundation

Searching for an ecological model, on which to base a research program designed

to elucidate these phenological inconsistencies, led to T. R. E. Southwood's 'habitat as a

templet' model, which he proposed in his seminal address to the British Entomological

Society in 1977 (Southwood 1977). Although Christer Solbreck presented similar ideas at

a symposium entitled 'Evolution of escape in space and time' held at the XV International

Congress of Entomology in Washington, DC in August, 1976, the contents of this

symposium were not published until two years later (Solbreck 1978). Southwood was the



first to publish these ideas and, therefore, has received the majority of credit. According

to Southwood's habitat templet model, an individual 'chooses' to engage in behaviour

'here and now', 'here and later', 'elsewhere and now' or 'elsewhere and later' in response

to the environmental signals it receives from the habitat in which it finds itself. These

choices are molded through selection of strategies that give optimal reproductive success.

Thus, success in achieving optimal levels offeeding, shelter and survival of offspring

associated with each option should be affected by the favourability of conditions, the

probability of being in a suitable habitat (either 'now' or 'later' and/or 'here' or

'elsewhere') and the level of uncertainty regarding these favourable environmental

factors over time. This is especially relevant in heterogeneous environments and in areas

of seasonality where uncertainty is a dominant factor. Since Southwood first published

the habitat templet model, hundreds of papers have cited this unifying theory connecting

the evolution oflife history strategies to habitat characteristics (Statzner et al. 2001).

The ecological implications of Southwood's habitat templet model are that insects

invest resources according to the most favourable options, based on environmental cues

they receive. For example, if environmental signals alert the insect to a short or

unpredictable period of optimal conditions for growth, growth rates may be accelerated to

ensure completion of development (Danks 2006, Danks 2007). The effects of these life

strategy 'decisions' also extend beyond phenology. For instance, the wing morph of an

organism is the consequence of a series of trade-offs in reproductive potential, which

include both dispersal and fecundity, a topic that has been extensively explored and

reviewed elsewhere (Denno et al. 1989, Roff 1994, Zera and Mole 1994, Zera and Denno



1997, Langellotto et al. 2000, Langellotto and Denno 200 I, Cmokrak and Roff 2002,

Danks 2006, Danks 2007). If, during development, environmental signals indicate that

conditions 'here and now' are unsuitable for reproduction, hormonal cues in dimorphic

insects may influence gene expression and promote development of a macropterous form

for dispersal (Harrison 1980). Descriptions in the literature on B. leucopterus hirtus often

refer to a single population's dimorphic wing ratio (Leonard 1966, Vitturn et al. 1999) but

preliminary observations in St. John's revealed there was no consistent ratio among local

populations, suggesting diverse ecological influences. Because B. leucopterus hirtus has a

dimorphic wing form, the effect of environment on multiple geographic scales on the

fitness and wing form of this insect is of interest within the context of Southwood's

model, and may provide further insight into the environmental determinants driving wing

form in this species.

The general literature on ecological adaption in insects reveals the potential for

environmental influence on multiple life strategy indicators including phenology,

morphometrics, wing form and host preference, characteristics for which variation has

important implications for developing effective control strategies. Thus, the current use of

generalities in B. leucopterus hirtus life history to develop control strategies across

regions is inaccurate, and may lead to poor management strategies that could be

ineffective and/or lead to overuse of pesticides when the target instar is absent.

Furthermore, previous research on host preference in B. leucopterus hirtus shows little

evidence of development stage being taken into account in a variety of host choice

experiments, despite reference in the literature to shifts in host preference throughout



ontogeny in other species (Stockhoff 1993), and in taxa closely related to B. leucopterus

hirtus (Headlee and Walker 1913). Thus, it became clear that Southwood's habitat

templet model would serve as an appropriate framework in which to place the variable

life strategy of B. leucopterus hirtus into an ecological and applied context. This thesis

does not aim to test Southwood's model, but rather to use this well supported ecological

hypothesis as a framework in which to evaluate patterns and variation observed among

populations of B. leucopterus hirtus.

1.3 Current Need and Opportunity for Research

There is a striking lack of ecological knowledge on the variation in phenology,

morphometrics and host choice among populations of B. leucopterus hirtus. There has

been considerable research on turfgrass tolerance to, and pesticide effectiveness on this

insect (Baker et al. 1981, Mathias et al. 1990, Richmond and Shetlar 2000, Yue et al.

2000) and related subspecies (Mize et al. 1980, Ahmad et al. 1984, Negron and Riley

1985, Mize and Wilde 1986, Meehan and Wilde 1989, Wilde 1997), yet there has been

little effort to synthesize these studies into a more theoretically sound, ecologically

founded management approach.

An assessment of the variation among populations of B. leucopterus hirtus at

multiple geographic scales is a necessary first step in characterizing ecological variation

among populations of this insect so that management can be both effective and

environmentally sound. Moreover, consideration of the potential for plasticity in life

history traits is critical in summarizing the factors potentially responsible for the success



of populations so that potential mitigation may be achieved. Lastly, insights into the

ecology of B. leucopterus hirtus may allow researchers to better predict damage and

potential range expansion for this insect that may occur as a result of adaptation,

plasticity and/or newly available habitats as a consequence of climate change. Evidence

of this possibility was a recently published in a study which showed an increase in insect

multivoltism in northern European moth communities between 1993-2006, in correlation

with warmer temperatures (Poyry et al. 20 II). Should B. leucopterus hirtus be shown to

possess similar capacity to adapt quickly to both novel and changing habitats, range

expansion can be expected.

The range of climatic conditions across the Canadian distribution of B.

leucopterus hirtus provides an opportunity to explore the effect of climate variation on

the life strategy of this insect. In particular, questions arise as to whether the increase in

damage caused by this pest in St. John's in the past decade results from adaptations to

this environment, and what population characteristics might explain how it has managed

to respond positively under the environmental conditions present there. The St. John's

area of Newfoundland is characterized by milder winters and relatively cooler summers

compared to other areas in the insect's range (Banfield 1983) and provides a distinct

environmental templet in comparison to other geographical areas of the insect's range. By

focusing on a large cross section of the insect's Canadian range, and comparing life

strategy of populations of B. leucopterus hirtus at both a local (St. John's, NL) and

regional (Quebec and Atlantic Canada) scale, it should become clearer to what degree

variation in life strategy is present. Exploring the extent to which B. leucopterus hirtus



conforms to Southwood's model of habitats serving as life history templets should lead to

a better understanding of the evolutionary selection of traits that have made this insect so

successful.

The present study focused on three life history traits: phenology, morphology and

host choice, in the Quebec and Atlantic Canadian range of B. leucopterus hirtus, with a

more detailed local analysis of populations in St. John's, Newfoundland. Using

Southwood's habitat templet model as a framework for contextualizing the relationships

between this insect and its environment at a local and regional level, this research

investigated the influence of environmental heterogeneity on the phenology, morphology

and host preference of B. leucopterus hirtus for the purposes of better informing current

ecologically based management strategies. These strategies rely on phenology, as well as

indicators of fitness and behaviour, to manage this pest. By identifying variation among

key indicators oflife strategy, turf managers should now be better able to assess

population fitness, conduct appropriately timed pesticide application, predict pest

migration and plant suitable host vegetation to mitigate pest damage. In the process of

identifying this variation, this research should make a valuable contribution to the field of

ecological entomology by confirming the need for more regionally based IPM,

particularly at northern latitudes, which are potentially subject to dramatic change in

response to climate change.



1.4 Description ofBlissus leucopterus hirtus

1.4.1 Taxonomy and Distribution

A.E. Montandon first described Blissus hirtus, as it was then named, in 1893 from

a single specimen collected in Hazelton, Pennsylvania (Montandon 1893). However,

earlier records of specimens collected and identified as Blissus leucopterus from New

York (Fitch 1856, Lintner 1883, van Duzee 1886) and Massachusetts (Fitch 1856) were

most likely Blissus leucopterus hirtus (Leonard 1966). In 1918, Barber relegated Blissus

hirtus to a variety [sic] of the leucopterus complex (Barber 1918), which is now properly

known as a subspecies.

Based on his analysis of morphological characteristics and crossing experiments,

Leonard (1966) confirmed hirtus as a subspecies of the leucopterus complex. He

identified only small morphological differences between B. leucopterus leucopterus and

B. leucopterus hirtus and found evidence of interbreeding. However, he considered

discrepancy in ease of rearing and potential host differences to support separation into

subspecies and suggested that these two subspecies are most likely parapatric in their

distribution.

The following is an excerpt from Leonard (1968) and consists of a key for differentiating

between species of Blissus and subspecies of Blissus leucopterus.



8. General coloration gray; pronotum pruinose, concolorous gray, except distal
margin . 9

General coloration piceous, with some gray-pruinosity on head and anterior
lobe of pronotum; posterior lobe, scutellum, and abdomen not gray l 0

9. Length of abdomen and scutellum less than 3 times width of abdominal tergite
V ooarenarius arenarius
Length of abdomen and scutellum more than 3 times width of abdominal tergite
V arenarius marilimus

10. Abdominal sternum piceous with setae straw-yellow or yellow

............... .......................................... leucopterus hirtus

Abdominal sternum castaneous with setae silver or light straw-

yellow leucopterus leucopterus

The general taxonomy of Blissus leucopterus hirtus has changed little since 1966,

with the exception ofa higher level revision. In his re-evaluation of the infraorder

Pentatomomorpha (Hemiptera: Heteroptera), Henry (1997) determined the group to be

paraphyletic and created II new families including Blissidae, into which B. leucopterus

hirtus was placed. Blissus leucopterus hirtus is considered one of several

species/subspecies making up the leucopterus complex and one of the three or four

(depending on the author) species/subspecies of economic importance (Baker et al. 1981,

Vittum et al. 1999, Anderson et al. 2006).
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The current taxonomic classification is as follows:

Class Insecta

Order Hemiptera

Suborder Heteroptera

Superfamily Lygaeoidea

Family Blissidae

Genus Blissus

Species leucopterus

Subspecies hirtus

Considered an insect native to North America (Henry and Froeschner 1988), the

current Canadian range of B. leucopterus hirtus extends from Ontario eastward to

Newfoundland. Within the United States, the range extends as far west as eastern

Minnesota and south into North Virginia. The geographical range of Blissus leucopterus

hirtus partially overlaps the range of Blissus leucopterus leucopterus, but the latter is

considered to be primarily a pest of small grains, sorghum and com (Negron and Riley

1990, Vittum et al. 1999), while B. leucopterus hirtus is considered a turfgrass pest. For

the purpose of this study, turfgrass refers to those varieties and cultivars of grass

traditionally used on residential lawns and at outdoor sport and game venues.

1.4.2 Damage

Damage by B. leucopterus hirtus is most often associated with dense aggregations

of feeding nymphs that create patches of dead grass in lawns and other green areas.
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Further detail concerning feeding mechanisms and physiology is provided by Anderson et

al. (2006). During periods of high activity, the insect is commonly found in large

numbers around the perimeter of damaged patches. In areas of very high infestation,

entire lawns may be visibly damaged. Feeding is selective on certain grasses, and many

broadleaf species are often unharmed by the insect (Fig. 1.2). Damage is most often

apparent in the late summer during periods of high nymphal activity and when there is

little rainfall. Visible damage appears to be exacerbated by hot, dry weather. While this

may be due to combined stress caused by feeding and lack of water, specific causes of

increased visible damage have not been identified.

FIG 1.2. Area of B. leucopterus hirtus infestation and damage on a residential lawn in
Quebec City, PQ. Photograph by Robyn Auld (2008).
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1.4.3 Enemies and Natural Control

Natural enemies of B. leucopterus hirtus include members of the genus Geocoris

Say (Hemiptera: Lygaeidae) (big eyed bugs) (Fig. 1.3) and at least seven additional

arthropod predators, including at least one mite (Vitturn et al. 1999). Another commonly

observed cause of death in B. leucopterus hirtus is infection by Beauveria bassiana

(Bals.-Criv) Yuill (Hypocreales: Cordycipitaceae), an entomophagous fungus. Mortality

due to this fungus is increased under warm, wet conditions (Headlee and Walker 1913).

Parasitism by Eumicrosoma benejica Gahan (Hymenoptera: Scelionidae) can also cause

mortality in B. leucopterus hirtus (Mailloux and Streu 1981).

Important agents used in attempts to control B. leucopterus hirtus are species of

endophytic fungi (ex. Neotyphodium coenophialum (Morgan-Jones & W. Gams) Glenn,

C.W. Bacon & Hanlin (Hypocreales Clavicioitaceae)) found naturally and inoculated into

turfgrass cultivars. Certain cultivars, including fescues and ryegrasses (but not Kentucky

bluegrasses) may be "enhanced" with fungi that cause toxicity to B. leucopterus hirtus.

At least two studies show individuals of B. leucopterus hirtus are able to distinguish

between endophyte infected and non-infected grasses with most cases resulting in host

avoidance of infected tillers (Carriere et al. 1998, Bourassa et al. 2007).
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FIGURE 1.3. Geocoris bullatus feeds on a nymph ofB. leucopterus hirtus. Photograph
by Robyn Auld (2006).

1.5 Life History Parameters of Blissus leucopterus hirtus

1.5.1 Phenology

The seasonal life cycle of B. leucopterus hirtus commences with overwintered

adults emerging from sheltered location, including turf tufts and even overturned tables,

in the spring; these are called 'spring adults'. The temperature at which spring adults

become active is estimated, based on a population in New Jersey, to be 7°C (Mailloux

and Streu 1981). Spring adults mate and produce eggs. The fecundity offemales reported

under field conditions varies tremendously from a mean of 6.87 eggs per female

(Mailloux and Streu 1981) to estimates exceeding 400 eggs per female (Potter 1998).

These eggs, which measure less than 1 mm in length (Vittum et al. 1999), are typically

laid in clusters in small crevices within grass and other ground vegetation. In the days

prior to hatching, the eggs turn a deep orange red and the embryo becomes visible
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through the chorion (Luginbill 1922). Blissus leucopterus hirtus is hemi-metabolous and

has 5 nymphal instars. Nymphal life stages are distinguishable by both morphological

characteristics (body colour and wing pad development) and head capsule size (Mailloux

and Streu 1981, Fig. 1.4). Adult B. leucopterus hirtus are approximately 3-4 mm in

length and are dimorphic, exhibiting both brachypterous (stunted, short) and

macropterous (large) wing forms. Previous research at sites across the insect's geographic

range has shown populations may be univoltine or bivoltine (Potter 1998). Throughout

the insect's range, some oviposition, hatching and early instar nymphs often occur late in

the fall but these nymphs do not reach the adult stage before winter. The lack of nymphs

in spring suggests they are unlikely to survive through the winter (Leonard 1966,

Wellwood et al. 2002).

t'-E_g_g_l_st__2_nd__3-vrd__4_th 5t~hI I brachYPterous, macropterous I,
Nymphal instars Adult forms

FIGURE 1.4. Life stages ofBlissus leucopterus hirtus, including both the brachypterous
and macropterous adult forms. Adults are approximately 3-4 mm in length. Photograph
modified from H. Niemczyk. Original internet source unknown. Used with permission.
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There have been few studies that have attempted to document the complete life

cycle of B. leucop/erus hir/us (Mailloux and Streu 1981, Wellwood et at. 2002).

Supplemental information comes from partial studies of this insect's life cycle (Liu and

McEwen 1979, Sears et at. 1980). Taken together, there is strong evidence that

phenological variation exists among regional localities. Bivoltine populations of B.

leucop/erus hir/us have been reported from New Jersey (Mailloux and Streu 1981), in

Long Island, New York (Maxwell and MacLeod 1936), Connecticut (Johnson 1941), and

Ohio (Polivka 1963). In Ontario and New Brunswick, populations were described as

univoltine (Liu and McEwen 1979, Wellwood et at. 2002) although in New Brunswick a

second cohort was reported to have initiated but did not complete development. At the

commencement of this study it was not known how the phenology of B. leucop/erus

hir/us in St. John's compared to other regions, which was a main driver for the initial

research in this thesis. The provincial pest management association recognized this as a

key piece of information required to adopt management strategies specific to the city, and

eventually the province.

1.5.2 Adult Morphology

Adult size ranges between 3.0 mm and 4.0 mm in length and approximately I mm

in width (Vittum et al. 1999). In general, females tend to be larger than males. The sexes

are easily distinguishable by characteristics on the ventral abdomen: the male has a

rounded abdomen with a bulbous terminal segment containing the male genitalia, while

the female's abdomen has a medial ridge with a v-shaped protruding ovipositor. Blissus

leucop/erus hir/us exhibits dimorphic wing form, which means that adults display either
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macropterous wings (large/developed) or brachypterous wings (smaIVunderdeveloped).

Wing form can serve as an important indicator of population dynamics; the degree of

macroptery in an insect population may be directly related to the permanence of the

habitat (Southwood 1962). The expression of wing morph in insects represents a complex

interplay between both environmental and genetic influences, because change can be

induced through either environmental manipulation or artificial selection (Zera and

Tiebe11988, Fujisaki 1993, West-Eberhard 2003). Little is understood about the factors

that influence wing morphology in B. leucopterus hirtus. Leonard (1966) recorded the

percentage ofbrachypters in a single population of 538 individuals at 63.7%. Mailloux

and Streu (1981) recorded a maximum percentage occurrence of macroptery at 50% in

New Jersey. The latter authors also noted that, in many populations, more females than

males were macropterous (Mailloux and Streu 1981). However, they also noted a

declining proportion of macropters with time in single cohorts over the course of one

summer, suggesting dispersal or differential mortality between the sexes and/or wing

forms had occurred. Further investigation is required to determine the true relation

between environmental factors and wing form in B. leucopterus hirtus.

1.5.3 Host Choice

B. leucopterus hirtus is a phytophagous insect that uses piercing and sucking

mouthparts to feed on liquid nutrients from the crowns and stems of primarily cool

season turfgrasses including red fescue, perennial ryegrass, bentgrass and Kentucky

bluegrass (Vittum et al. 1999). Movement between hosts is common, and the closely

related Blissus leucopterus leucopterus has been observed shifting between small grains
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and corn hosts throughout the year (Headlee and Walker 1913, Packard 1937, Lamp and

Holtzer 1980). This behavior may be partially influenced by nutritional quality and

availability of hosts as observed in Blissus occiduus, which shifts host vegetation

throughout the year depending on these factors (Eickhoff et al. 2004). In addition to

nutritional quality, architecture of plants has been suggested as a possible determinant of

host choice in Blissus occiduus (Eickhoff et al. 2006).

The ontogeny of B. leucopterus hirtus may also influence optimal host preference

because of the insect's tendency to aggregate at later instars. The degree of aggregation in

B. leucopterus hirtus increases throughout its life history (Mailloux and Streu 1982) and

towards later instars, high densities of B. leucopterus hirtus are often observed

aggregating in grass tufts (e.g. fescues) more so than in other grass species or cultivars in

close proximity (Slater 1976, Eickhoff et al. 2004). This suggests that as either internal

(physiological) or external (environmental) conditions change, the benefits of aggregation

increase and/or certain cultivars offer nutritional or architectural benefits over previously

occupied grasses. Movement to more protective grasses in anticipation of less favourable

conditions ('elsewhere and later') is a classic example of habitat shaping life history

strategy, as proposed by Southwood (1977).

Although there has been a considerable volume of research on the host preference

and associated plant resistance in related Blissidae (Stuart et al. 1985, Meehan and Wilde

1989) there has been little research on the factors influencing host preferences of B.

leucopterus hirtus. There is a need for improvement of pest management and thus to

characterize the variability of host choice in relation to development stage and local and
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regional geographic patterns as suggested by Southwood's model so that managers can

predict on what food source they will most likely find the majority of a population at a

given point in its phenology. This is a important step for placing previous and future

studies within a geographical context, and from this, into a more ecologically sound plan

for managing this pest.

1.6 Blissus leucopterus hirtus on the Island ofNewfoundland and
across its Canadian range

1.6.1 Climate

The geographic range of B. leucopterus hirtus populations from Quebec and

Atlantic Canada provides a spectrum of environmental conditions, including differences

in temperature, rainfall and total precipitation with which to compare life history

parameters. The presence of B. leucopterus hirtus in Newfoundland, the only subspecies

of the leucopterus complex found on the island of Newfoundland, presents a valuable

opportunity to study habitat-induced population variation, using Southwood's habitat

templet model as a theoretical foundation. In St. John's, Newfoundland, the climate is

characterized by milder winters and relatively cooler summers compared to more inland

areas such as Quebec City, PQ and Fredericton, NB (Banfield 1983) (Fig. 1.5). Compared

with the other locations examined in this study, St. John's also has the highest annual

precipitation. In addition, Newfoundland is an island and therefore geographically

isolated. While there is transport to and from the island, it is highly probable that inter-

population dispersal between island and mainland populations is lower than among

populations on the Canadian mainland. It is uncertain what, if any, life strategy
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adaptations have been made by this insect to succeed in these conditions.

FIGURE 1.5 Summary of average Climate Normals 1971-2000 for four weather
stations located in Quebec and Atlantic Canada. Data from National Climate Data and
Information Archive (Retrieved June 9, 2010).
http://www.climate.weatheroffice.gc.ca/climate normals/index e.html Date Modified:
2010-03-18.
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1.6.2 Comparison among Populations

The fitness of individual populations is assumed to be under selection pressure

created by factors that vary among residential lawns. These factors include vegetation,

competition, predators and parasitoids, soil conditions, shading and physical exposure to

weather. These factors are not specifically evaluated in this study, as this research focuses

primarily on identifying differences in life strategies among local populations. Although

each of the sampling sites in this study are characterized by turf hosting populations of B.

leucopterus hirtus, each site is assumed to be unique, as each is influenced by a different

set of environmental pressures because of geographic location, soil type, exposure to sun

and rain, and differing patterns in use. It was the goal of this thesis to determine whether

those environmental influences have been sufficient to promote measurable differences in

key life history traits in B. leucopterus hirtus and to offer some preliminary suggestions

for explaining the differences observed.

Although 'regional population groups' are often difficult to define (Srivastava

1999), and often arbitrarily assigned (Caley and Schluter 1997), they are generally

assumed to be influenced through variation in climate and other large scale influences in

space and time (Hillebrand and Blanckner 2002). In designing this research project, it

was assumed that climate at the local scale, within a few kilometer radius, would be less

variable among sites than at a regional scale, defined in this study as sites separated by

100 km or more. Four regional populations were selected: 1. St. John's, Newfoundland

and Labrador, 2. The Annapolis Valley, Nova Scotia, 3. Fredericton and Saint John, New

Brunswick, and 4. Quebec City, Quebec. (Appendix A). For convenience thereafter in
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this thesis, the four regions were referred to by province within which each of these study

locations occur. This is not meant to imply that environmental conditions conform to

provincial boundaries, but rather, this is a simple convention to identify the clusters of

samples taken which happen to fall within different provinces.
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1.7 Thesis Outline

This thesis explored variation in three measures oflife history (phenology,

morphometries and host choice) to compare variation in life history strategy of B.

leucopterus hirtus populations at a local and regional level in Quebec and Atlantic

Canada, with emphasis on populations in St. John's, Newfoundland and Labrador. The

purpose of this thesis is to gain an understanding of the geographic variation in B.

leucopterus hirtus biology for the purpose of adding needed geographic and/or population

specificity to ecologically based management approaches of this pest. By using

Southwood's habitat templet model for understanding environmentally induced change,

the author hopes to place findings in a sound theoretical framework. This study should

further determine at what scale the impact of environmental variation is manifested

through changes in life history, morphology and host choice. As with all pest species,

truly effective management is accomplished through knowledge of the pest's capacity to

adapt to new environments and expand into novel habitats, and adapt strategies for

thriving under potential climate change. This study aims at elucidating multiple indicators

of variation among populations at two scales and, in the case of host choice, at multiple

points in the insect's phenology.

1.7.1 Phenology

Many environmental pressures influence populations through natural selection and

phenotypic plasticity (Gotthard and Nylin 1995, Nylin and Gotthard 1998, West-Eberhard

2003, Nylin et al. 2004, Whitman and Ananthakrishnan 2009). Environmental influences
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on population dynamics are numerous but often linked, resulting in complex responses

involving a series of fitness tradeoffs. In insects, these complex responses include

changes in voltinism, growth rate, dispersal, diapause and many other measures of life

strategy (Danks 1994, 2006, 2007, Tauber et al. 1986) that lead to adaptations and unique

life histories across geographic and climatically diverse ranges.

Changes in the timing of key life events for the purpose of synchronizing with

host plant phenology, photoperiod and optimal temperatures, are commonly observed in

many insects, particularly in seasonal environments (Danks 2006, Danks 2007).

Phenological variation related to environmental conditions has been observed in a large

number of insect Orders, including: Lepidoptera (Leimar 1996, Gotthard 1998, Friberg

and Wiklund 2010), Coleoptera (Ishihara 1998, Sota 1994), Orthoptera (Lopez et al.

2007), Trichoptera (Shama and Robinson 2009), Diptera (Demont and Blanckenhom

2008, Ragland and Kingsolver 2008), Odonata (de Block and Stoks 2004) Hymenoptera

(Traore et al. 2006) and Hemiptera (Leslie 1990, Baldwin and Dingle 1986). In an

example with a closely related species, the large milkweed bug, Oncopeltus fasciatus

Dallas (Hemiptera: Lygaeidae), samples were collected from six locations ranging from

tropical islands to mid latitude forests. Among the six locations, the insects were found to

vary among populations in age at first reproduction, clutch size and rate of egg production

(Leslie 1990). This Hemipteran research has clearly shown the capacity of insects to

adapt their life history under a given environmental regime in order to optimize fitness,

and suggests that variation in the phenology of B. leucopterus hirtus under a variety of

stressors is also possible.
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To quantify local variation in phenology of B. leucopterus hirtus, life history data

were collected from St. John's, NL over two years. Variation among populations in St.

John's was evaluated using phenological comparison among ten local sites,

measurements of egg development threshold and rate of development. This data was then

compared with previously published phenological records from populations in different

locations within the United States and Canada. The results of this work are presented in

Chapter 2: Local and Regional Level Variation in Phenology ofBlissus leucopterus

hirtus Montandon (Hemiptera: Blissidae) and evaluated with regard to the need for

regional and/or population specific management strategies.

1.7.2 Morphology

1.7.2.1 Size

Morphometries was one of the first methods used to detect diversity among

populations within species (Daly 1985). The morphometric characteristics of an

individual, population or species can be interpreted within a biological, ecological and

evolutionary context to better understand the life strategy and adaptive potential of the

organism. Morphometries have been particularly well researched in insects, which are

easily collected and measured due to their rigid exoskeletons (Daly 1985, Statzner et al.

2001). Since Johan Christian Fabricius first related structures of insects to the insect's

function in the environment (referenced in Tuxen 1967, Statzner et al. 2001),

morphometries has proven to be a powerful tool in detecting variation among individuals

and populations. This subsequently provides a better understanding of the life strategy
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and adaptive potential of the organism in the field of ecological and evolutionary

entomology (Daly 1985, Statzner et al. 2001). As an example, size is frequently linked to

growth rate (Nylin and Gotthard 1998) and female fecundity (Honek 1993). There is

considerable potential for comparative morphometric variation to provide insight into

environmental influences and subsequent adaptation by insects.

As alluded to above, the relationship between size, growth rate and environmental

conditions is complex and generally involves a series of trade-offs (Danks 2006, Danks

2007). Small size is typically considered a tradeoff for shorter development time and/or

faster growth rate (Nylin and Gotthard 1998) and may be further influenced by factors

including temperature (Sibley and Atkinson 1994) and food supply (Colbo and Porter

1979) and their interactive effects (Colbo and Porter 1981). Therefore, differences in

mean size of insects among populations likely indicate differences in the environmental

influences to which each population has responded, and should lead to insight on the

relative fitness of individuals within these populations under a given habitat. Detection of

morphometric variation among populations of B. leucopterus hirtus would confirm

variation in selective forces on individual groups, and provide a foundation for

elucidating specific environmental influences that impact individual size and fitness.

J. 7.2.2 Wing Form

The dimorphic wing form found in many insect species is easily distinguishable

and can offer additional insight into adaptive strategies in novel environments (Roff

1986). The most commonly accepted 'rule of thumb' for wing form is that short wing
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individuals are selected when conditions are optimal in the present location, while long

wing individuals are generally produced under conditions where it is in the best interest of

the insect to move elsewhere for either resources or mating opportunities (Harrison 1980).

Previous papers on B. leucopterus hirtus (Mailloux and Streu 1981) speculated that a high

incidence of macropterous wing form reflected environmental pressures promoting

dispersal, but a comprehensive comparison of wing forms among populations of B.

leucopterus hirtus is lacking. Detection of variation in wing morphism ratios among

populations of this insect would indicate a high likelihood that populations are

experiencing different pressures to establish or disperse. Because this thesis examined

populations from a number of local and regionally separated areas, it was expected that

differences in establishment would be reflected through wing form ratios. Being able to

relate wing ratio to density, age of population, host plant quality and site-specific biotic

and abiotic features is the ultimate goal and would further the understanding of this pest's

ecology.

Using morphometrics as a tool to compare variation among local and regional

populations, Chapter 3: Local and Regional Level Variation in Sex Ratio, Wing Morph

and Mensural Characters in Blissus leucopterus hirtus Montandon (Hemiptera:

Blissidae) summarizes results comparing sex and wing ratios among local and regional

populations. Additional measurements were collected to compare morphometric

characters and to determine the level of intra and inter-population differences to identify

the scale at which variation occurs.
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1.7.3 Host Choice Behaviour

The spatial patterns that govern herbivore-plant host relationships are of great

interest to ecologists and pest managers because of the potential for specialization and

eventual speciation by insects (Gotthard et al. 2004, Nosil et al. 2005). Variation in host

choice as a result of plasticity may eventually lead to the formation of new colonies

(Futuyma and Peterson 1985) and colonization of new hosts may directly influence the

phenology and morphology of herbivore populations as the insect's life cycle becomes

increasingly synchronized with that of the plant (Vanbergen et al. 2003). Because host

choice (preference in feeding, oviposition sites or basking sites) can influence size,

developmental time and growth rate (Grossmueller and Lederhouse 1985, Nylin and

Gotthard 1998), it is an important indicator in comparison of life strategies among insect

populations. Difference in behaviour among insect populations is a third marker of

variation, along with phenology and morphometrics that may be influences as a result of

specific environmental pressures (Scriber 1994).

Because insects are poikilothermic, their degree of activity is especially dependent

on the external environment. Weather and climate therefore have important implications

for insect behaviour and can also affect the feeding rates and food choice of insects

(Schoonhoven et al. 2005). Host plant selection can also be affected by the insect's

tendency to optimize body temperature by changing diurnal conditions throughout the

day. For example, the black desert grasshopper, Taeniopoda eques Burmeister

(Orthoptera: Acrididae), roosts on elevated plant parts on sunny days, causing the

grasshopper to consume certain parts of the plant it would not normally encounter on
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cloudy days (Whitman 1987). Another example is the tiger swallowtail butterfly, Papilio

glaucus L. (Lepidoptera: Papilionidae), that oviposits preferentially on the tips of sun

exposed branches to optimize daily temperature potential (Grossmueller and Lederhouse

1985). These examples demonstrate that the prevailing weather patterns in a specific area

may have an important influence on the behaviour of insects with respect to host

selection. Geographical patterns in climate and vegetation may result in variable host

choice at a regional scale as a result of available plant hosts, plant structure and weather

and therefore play an important role in host selection and utilization.

At a smaller scale, previous work on B. leucoplerus hirlus shows that this insect is

capable of discriminating among hosts, including cultivars of the same species, even at a

micro-g~ographic scale (i.e. among tillers (stems of grass)) (Mathias et al. 1990, Carriere

et al. 1998). The ability of these insects to discriminate among infected and non-infected

grasses suggests that variation in host selection can occur not only in a regional context,

but also on a localized scale as a result of intra-lawn and inter-plant variation. Awareness

of the potential for variation at this scale is essential to the design, interpretation and

application of future host choice studies because of the need to incorporate the potential

for variation among lawns, sports fields and golf courses, where, depending on the care

and maintenance of the turf, the landscape may be quite varied.

While variability in the selection of host as a result of extrinsic determinants (host

availability, quality and weather) is an main component of this research, it is also

important to explore the compounding influence of phenology and group dynamics

(density) on host choice. Life history stage of an insect can affect host choice because of
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changing dietary needs throughout ontogeny. For example, as caterpillars of the gypsy

moth, Lymantria dispar L. (Lepidoptera: Lymanlriidae) developed from 3rd to 6th instar,

they exhibited increased preference for diet cubes with high lipid concentration in

conjunction with decreased preference for cubes with high protein concentration

(Stockhoff 1993). Morphological characteristics related to phenology may also influence

host choice with age. The IS\ 2nd and 3rd instar nymphs of Oncopeltus fascialus are unable

to access the seeds of common milkweed, Asclepias syriaca L. (Apocynaceae:

Asclepiadoideae), because their short proboscis is incapable of penetrating the

surrounding pod (Ralph 1976). However, in the same experiment it was found that

feeding in larger groups produced lower mortality on feeding locations other than on

seeds. A potential explanation is increased ingestion efficiency through the mixing of

saliva, making group size an important host choice factor.

Group size is a relevant factor in the host choice of B. leucoplerus hirlus because of

variation in population size that may occur as a result of environmental pressures on the

population. For example, under conditions of population stress or recolonization as a

result of varying habitat conditions, there may be fewer insects participating in group

feeding behaviour. Previous studies in Hemiptera have shown that group size may

influence feeding efficacy and individual mortality (Bongers and Eggermann 1971, Ralph

1976). It is important to identify any variation in host choice that may occur as a result of

lower density under these conditions, so that potential hosts may be identified under a

variety of conditions.
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Chapter 4: Host Choice Behaviour ofBlissus leucopterus hirtus Montandon

(Hemiptera: Blissidae) in Relation to Geographic Distribution, Insect Age and Insect

Group Size reports on the level of variation in host choice behaviour among locally and

regionally separated populations of B. leucopterus hirtus. Studies were conducted using a

series of multi-choice experiments conducted in small arenas. Using similar techniques,

additional experiments explored whether host choice changed with insect age or group

size. The results of this chapter suggested that rilUltiple factors were responsible for host

choice in B. leucopterus hirtus, including phenology, confirming the need for additional

context in host choice studies with this insect.

1.8 Summary

Blissus leucopterus hirtus is a well-known and economically important pest

species. However, there is little information on its ecology, particularly as it relates to

differences among populations. This research aims to identify potential variation in the

phenology, morphology and host preference of B. leucopterus hirtus, at both the local and

regional scale. In the case of host choice, consideration was also be given to life stage and

group size. The results of this research should provide improved information for

ecologically based control strategies that rely on phenology, morphology and host choice

to manage this pest. If this thesis is successful in identifying variation among these key

indicators oflife strategy, turf managers should be better able to 1. conduct appropriately

timed pesticide application based on more accurate predictions of 2nd instar appearance,

particularly in St. John's NL, where a two year study should elucidate locally specific

phenological patterns 2. use indicators such as sex ratio, wing morph and size to estimate
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the relative level of establishment, potential for dispersal, and level of fecundity among

populations, and 3. plant suitable host vegetation to mitigate pest damage, as well use

knowledge of plant preferences and aggregation to locate and target B. leucopterus hirtus

as part of an integrated management strategy that may use alternate method of control,

including vacuuming. With so little know about the basic biology and ecology of this

serious turfgrass pest, this thesis takes the necessary steps to establish a framework for

environmental influence on this species within the context of Southwood's habitat

templet model.
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Chapter 2: Local and Regional Level Variation in
Phenology of Blissus leucopterus hirtus
Montandon (Hemiptera: Blissidae)

2.1 Introduction

2.1.1 Phenology and the Environment

Phenology is a life history trait defined as the timing of naturally occurring events

in an organism's life cycle. Intricate knowledge of insect pest life cycles assists pest

managers in monitoring and predicting key life stages for more precise timing of control

measures. The practice of incorporating this knowledge into environmentally responsible

control measures is called Integrated Pest Management (IPM). It is a multi-dimensional

based approach requiring a thorough understanding of insect population strategy and life

history (Norris et al. 2002). Phenology of insects is largely influenced by the natural

environment (Denno and Dingle 1981, Masaki and Wipking 1994, Danks 1994, Nylin

and Gotthard 1998), which exerts selective pressure on insect populations, causing an

adaptive response in which the life cycle is optimized for the prevailing conditions. The

habitat templet model (Southwood 1977) predicts that insects adapt a life history strategy

that accounts for the current and future potential conditions at both the current location

and elsewhere. This may lead to a spectrum of phenological expressions within a single

species.
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The association between phenological variation and environmental conditions has

been recognized within a range of Orders including: Lepidoptera (Leimar 1996, Gotthard

1998, Friberg and Wiklund 2010), Coleoptera (Ishihara 1998, Sota 1994), Orthoptera

(Lopez et al. 2007), Trichoptera (Shama and Robinson 2009), Diptera (Demont and

Blanckenhorn 2008, Ragland and Kingsolver 2008), Odonata (de Block and Stoks 2004),

Hymenoptera (Traore et al. 2006) and Hemiptera (Leslie 1990). Dominant habitat

characteristics including seasonality, temperature, precipitation and photoperiod are often

linked, resulting in a complex response by an insect that involves a series oftradeoffs in

voltinism, growth rate, dispersal and many other measures of life strategy (Danks 1994,

2006, 2007, Tauber et al. 1986). Because these environmental factors can vary across

geographic ranges, knowledge and incorporation of these differences is an important

component of developing a regionally based integrated pest management approach.

2.1.2 Biology and Ecology of Blissus leucopterus hirtus

In part because pest insect species tend to have broad habitat and geographic

distributions (Showers 1981), phenological variation across habitats and ranges is

common. Blissus leucopterus hirlus Montandon (Hemiptera: Blissidae) (hairy chinch

bug), is a serious turfgrass and crop pest in Quebec and Atlantic Canada, and the

northeastern United States (Leonard 1966, Vittum et al. 1999, Potter 1998). It is widely

distributed in Ontario, Quebec, New Brunswick, Nova Scotia, Prince Edward Island and

also on the island of Newfoundland where, in the past decade, it has become a serious

turfgrass pest. The species was first recorded in Newfoundland by Brown (1949).

Whether its presence on the island is the result of an introduction from the mainland, or

natural dispersal by wind and only recorded due to better faunal surveys conducted by the
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Government of Canada is unknown. However a recent survey, conducted as part of this

study, has shown B. leucopterus hirlus is widely distributed across Newfoundland

(Appendix B).

Despite the economic interest in this insect as a pest of turfgrass, there have been

only a few locally based studies that have documented the complete life history of B.

leucopterus hirtus (Mailloux and Streu 1981, Wellwood et al. 2002). Supplemental

information comes from partial studies of this insect's life cycle (Liu and McEwen 1979,

Sears et al. 1980). Based on these individual reports, there is strong evidence that

phenological variation exists among populations from various parts of the insect's range.

Variability in the timing of appearance of instars has been recorded at the regional

(provinciaVstate) level (Potter 1998) and between communities fewer than 100 kIn apart

(Wellwood et al. 2002). Bivoltine populations of B. leucoplerus hirtus have been

observed in the American states of New Jersey, (Mailloux and Streu 1981), New York

(Maxwell and MacLeod 1936), Connecticut (Johnson 1941) and Ohio (Polivka 1963).

Further north in Ontario, Canada, a univoltine population has also been recorded (Liu and

McEwen 1979). Researchers in New Brunswick reported one complete cohort per year

with a second cohort initiating, but not completing development (Wellwood et al. 2002).

Because of the local nature of each of these studies, there was no attempt to

evaluate the relationship between phenology and geographic or climate patterns. From

these studies it is not clear what selection pressures have resulted in reported differences

in life cycle, although the pattern of decreasing voltinism at northern latitudes suggests

temperature and/or photoperiodism, which are generally correlated to these variables,

may be influencing phenology (Tauber and Tauber 1976, Nakai and Takeda 1995, Danks
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2006). There is no evidence of requirement for diapause between B. leucopterus hirtus

cohorts. The number of cohorts produced by the related Southern chinch bug, Blissus

insularis Barber (Hemiptera: Blissidae) varies each year, with a higher number of

generations occurring in more southern areas (Potter 1998, Vittum et al. 1999).

The general life cycle ofB. leucopterus hirtus is as follows: adults of both sexes

overwinter in leaflitter, at the base of bunch grasses and other protective locations such

as ground mosses or under house siding. In the spring they become active, mate and lay

eggs. There are 5 nymphal stages before they become adults (Mailloux and Streu 1981,

Potter 1998, Vittum et al. 1999). Both sexes of adult B. leucopterus hirtus are dimorphic,

exhibiting macropterous (long winged) and brachypterous (short winged) forms. Previous

research at sites across their geographic range has shown populations may be univoltine

or bivoltine depending on geographic location (potter 1998). In addition, throughout its

range, some oviposition, hatching and early nymphs often appear late in the fall but do

not reach the adult stage before winter. However, the lack of nymphs in spring suggests

these late season nymphs are unlikely to survive over winter (Leonard 1966).

The geographic expanse of Quebec and Atlantic Canada provides a range of

climate conditions, including variation in summer and winter temperature and

precipitation, allowing comparison of various life history parameters between locally and

regionally separated populations of B. leucopterus hirtus under different climate

influences. The presence of B. leucopterus hirtus across this range, the only subspecies of

the leucopterus complex found in Newfoundland, presents a unique opportunity to study

habitat-induced population variation by using the Southwood habitat templet model as a

theoretical foundation, as outlined in Chapter 1: Introduction. Historical records show
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that the general climatic conditions around St. John's differ considerably from other parts

of the insect's range (Figure 1.5). In addition, Newfoundland is an island, and while there

is transport to and from the island, there is a presumably lower probability of regional

population mixing by natural insect dispersal than between the land-linked provinces of

the Canadian mainland. St. John's, NL therefore provides a suitable focal point for this

study to explore the variation in phenology of B. leucopterus hirtus at a local level and in

comparison with other regions.

2.1.3 Rate of Development and Threshold Temperature for Development in Blissus
leucopterus hirtus

It is well established in the entomological literature that temperature affects insect

development rate (Lamb et al. 1984, Nylin and Gotthard 1998) and that differences in

development rate may be used as an indicator of inter-population variation in phenology

(Traore et al. 2006). Cool climates generally produce lower development thresholds than

warmer climates (Hutchinson and Hogg 1984, Baldwin and Dingle 1986). Because of the

cooler summer climate in St. John's, Newfoundland compared to other areas in the

Canadian range of B. leucopterus hirtus, it is expected that, disregarding any

compensatory mechanisms by the insects, development rates and threshold for

development would be lower for these populations based on the well-established positive

relationship between temperature and metabolism in insects (Nylin and Gotthard 1998).

The threshold for initiation of post-overwintering development for B. leucopterus

hirtus, as defined by the commencement of oogenesis in females, is 7°C (Liu and

McEwen, 1979). Mailloux and Streu (1981) found that the threshold temperature for

activity, based on mobility, in B. leucopterus hirtus was also 7°C but that the threshold
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temperature for egg development was l4.6°C. Based on these results, Wellwood et al.

(2002) used a threshold temperature of 7°C to build their model of local phenology in

New Brunswick. However, because the applicability of any given threshold temperature

across the insect's entire range may vary (Hutchinson and Hogg 1984, Baldwin and

Dingle 1986), it is not clear whether either 7°C or 14.6 °C may be an appropriate

threshold temperatures on which to compare phenology of populations across a large

geographic range with obvious climatic differences.

2.1.4 Phenological Variation in Blissus leucopterus hirtus

The geographic range of B. leucopterus hirtus creates the potential for variation in

phenology among populations at the regional scale based on differences in climate and

weather across this range. Evidence from New Brunswick suggests differences occur

among populations separated by fewer than 100 km. Variation in phenology among

populations separated by only a few kilometers has not formally been assessed, but

preliminary observations by the current author suggested it occurred, and lead to testing

of this hypthesis in this study. Reference texts on B. leucopterus hirtus management

suggest pesticide application is most effective when the majority of nymphs are in the 2nd

and 3'd instar, when most of the 1st cohort is present and feeding, and most individuals

have limited mobility (Johnson 1941, Liu and McEwen 1979, Tashiro 1987, Wellwood et

al. 2002). Despite these recommendations, local pest management companies often spray

without regard for phenology, or at best, routinely refer to calendar dates when deciding

upon spray periods. Given that the time frame in which 2nd and 3'd instars occur depends

on the phenology of B. leucopterus hirtus at a specific location, understanding this
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insect's development in relation to temperature is vital to developing more targeted

pesticide location-specific application practices.

Southwood's habitat templet theory predicts that populations optimize life

strategy under prevailing environmental conditions. Therefore, differences among

phenology at the regional and potentially local scale are expected. Based on the shorter

and cooler summer season in St. John's. NL, along with limited population mixing from

the mainland, it is expected that the populations in St. John's are univoltine and have a

shorter phenology compared to other regions. To achieve a more compact phenology, it is

likely that development rate is higher among populations from St. John's, NL than in

other regions. Finally, with relation to predictive techniques that can be employed by pest

managers, the poikilothermic nature of insects suggests that phenology measured as a

function of heat accumulation (cumulative degree days) should be more effective at

predicting the appearance of2od instars than reference to Julian days.

2.1.5 Research Hypotheses

This study characterized the phenology of B. leucopterus hirtus to identify

differences in life history among populations at the local and regional scale, for the

purpose of better informing pest management plans. Based on current knowledge of B.

leucopterus hirtus and the habitat template theory, hypotheses are as follows:

based on a shorter and cooler summer season compared to other region of the

insect's range, populations within St. John's, NL exhibit lower threshold temperatures for

egg development and faster rates of egg development;
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2. based on environmental differences among sampling location at the local level in

S1. John's, populations display unique phenologies;

3. based on the shorter and cooler summer season observed in S1. John's, NL

compared to other regions of the insect's range Newfoundland populations of B.

leucopterus hirtus are univoltine with a shorter phenology compared to other regions;

4. based on the fact insect that insect development is closely linked with external

temperature, Cumulative Degree Days is a more effective means of predicting the

appearance of 2nd instars compared to Julian Days.

2.2 Materials and Methods

2.2.1 Egg Development Rate, Determination of a Threshold Development Temperature
and Relation to Spatial and Climatic Conditions

2.2.1.1. Collection

In May 2008, overwintered B. leucopterus hirtus adults were collected from

twelve sites in Quebec and Atlantic Canada. Groups of local populations were sampled

within a few kilometers of each other, with the exception of sites in New Brunswick. In

New Brunswick, collection was based on local recommendation of sampling sites with

two populations sampled in Fredericton, and another in Saint John (separated by 82 km).

'Regional' areas were defined by provincial boundaries, with province names serving as

identifiers for groups of local sites. In total, the sampling sites included three in Quebec

City (PQ), two in Fredericton (NB), one in Saint John (NB), three in the Annapolis Valley

(NS) and three in S1. John's, (NL) (Fig. 2.1). Samples were not taken from Prince Edward

Island.
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FIGURE 2.1. Location of twelve study sites in Quebec and Atlantic Canada, at each of
which Blissus leucoplerus hirlus were collected over a two week period in May 2008,
using a combination of hand sampling and vacuum sampling. Sampling locations were
identified by local entomologists as inhabited by B. leucopterus hirlus populations.

Individuals were collected over 14 days using a combination of hand sampling and

vacuum sampling in areas identified by local entomologists as inhabited by B.

leucopterus hirtus populations. Sampling methods were chosen for based on speed,

efficacy and minimal damage to turf (Appendix C). Captured individuals were placed in

plastic containers with grass and plant debris from the local collection area and kept in a

container with ice packs that were refrozen daily. Upon arrival in St. John's, the adult

bugs were transferred into site-specific large sized plastic Ziploc® Snap 'n' Seal

Containers, with each container considered an individual colony.

The site specific containers into which the insects were placed had been

previously modified by replacing the middle section of the lid with a 0.2 mm mesh that

promoted airflow but prevented the bugs from escaping. The size of mesh chosen was

based on the minimum 151 instar head capsule width of 0.21 mm recorded by Mailloux
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and Streu (1981). Any plant material and debris in the containers was removed and all

colonies were fed stem sections from greenhouse grown 3 leaf and 4 leaf stage Zea mays

var. polka (Veseys Seed Company, Charlottetown, PEl). The colonies were placed into a

growth chamber maintained at 20°C±1 DC, with a 16:8 hour photoperiod at 100% relative

humidity. Although identified as B. leucopterus hirtus by the researcher, several

individuals were collected from each colony and sent to Agriculture and Agri-Food

Canada (AAFC)'s Eastern Cereal and Oilseed Crop Research Centre in Ottawa for

official identification by a taxonomic specialist. All samples submitted were confirmed as

B. leucopterus hirtus. Colonies were then monitored for mating pairs of B. leucopterus

hirtus adults at 10:00 am each day.

A total of 188 females and their mates were isolated in individual clear plastic 60

mL Solo ®snap lid portion cups and labeled with a colony name specific to the province

and site of origin (NBl, NB2, NB3, NSl, NS2, NS3, NLl, NL2, NL3, PQl, PQ2, PQ3).

The cups were lined with filter paper and mating pairs were given fresh corn and a moist

cotton ball as required. A total of688 (average eggs per female=3.66) eggs were collected

from all mating pairs using a moistened fine artist's paintbrush and were divided as

evenly as possible between several plastic cups lined with moistened filter paper. These

containers were then distributed among Conviron® growth chambers set at 15°C, 17.5°C,

20°C, 25°C or 30°C with a 16:8 hour photoperiod at 100% relative humidity. Cups were

places randomly on trays and trays were rotated within the growth chamber daily. The

range of temperatures reflected a spectrum of temperatures experienced across the

insect's range during the months of May, June, July and August. The lowest temperature

chosen was just above the calculated threshold for oogenesis (14.6°C) derived for a New
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Jersey population by Mailloux and Streu (1981) and 30°C was chosen as the highest

temperature because it is several degrees lower than the ground temperature recorded by

the researcher at several of the collection sites. Egg containers were monitored daily for

egg hatch. Blissus leucopterus hirtus were considered hatched when more than half of the

1st instar's body had emerged from the egg case. Eggs were allowed to incubate for a

maximum of 90 days, after which time unhatched eggs were discarded. An incubation

start date for each container was noted and data were recorded as 'days until hatch' for

each egg and converted to egg development rate, defined as the reciprocal of the total

days until hatch. This gives the proportion of the total egg development time per day.

This process was repeated daily until: 1) at least 15 eggs from each site had successfully

hatched, or 2) no further eggs were oviposited by females from a given site for 14 days.

Mating individuals that did not produce eggs after 14 days were returned to their original

colony. Adults that died either during or following the experiment were preserved in 70%

ethanol in labeled glass vials for morphometric measurments.

2.2.1.2 Data Analysis

All analyses were performed using JMP® 7.0.1 and JMP® 8.0.2.2 (SAS Institute

Inc., Cary, NC, USA) statistical software. Egg development rate was compared among

sites using a one-way ANOVA for each temperature. To determine which specific sites

differed from one another at each temperature, a post-hoc Tukey test (which corrects for

experiment-wide error rate) was performed. A comparison of mean egg development time

between geographical regions was achieved by pooling site data from each provincial

grouping and performing a one way ANOVA. A Tukey test was again used to identify

significant differences between regional pairings.
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Following the mathematical procedures of an earlier paper on determining

threshold temperature for insect development (Trottier 1971), the threshold temperature

for egg development in local and regional populations of B. leucop/erus hir/us was

estimated for each site though iteration with a non-linear model of the hyperbolic

equation, t;=a(T;-byl where T; is equal to the temperature at which the eggs are reared and

t; is equal to the development time in days. In this equation, the temperature threshold for

development is taken from the value of'b', while 'a' is interpreted as the minimal

accumulated temperature in excess ofb required for egg development (Trottier 1971,

Mailloux and Streu 1981). The threshold temperature for egg development in each region

was determined by calculating the mean egg development threshold for three local sites,

weighted by the number of eggs hatching at each site.

Canadian climate averages from 1971-2000 were obtained through the

Environment Canada website (Environment Canada 2009) for all weather stations in

close proximity to sampling locations. In total, this research relied on six weather stations

(Annapolis Royal, Jean Lesage International Airport, Fredericton CDA, Saint John, S1.

John's A, S1. John's CDA). Each sampling site was assigned to the closest of the six

weather stations and climate data was compared against the weighted mean threshold

temperature for egg development of those sites in closest proximity. Using a correlation

analysis (both variables continuous), threshold temperature for development at each

location was compared with: 1) mean temperature, 2) standard deviation of mean

temperature, 3) maximum temperature, 4) minimum temperature, and 5) precipitation for

the months of May, June, July and August, periods during which 1sl cohort eggs may be

present in one or more site locations.
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2.2.2 Modeling of General Phenology for Blissus leucopterus hirtus at a Local Level

2. 2. 2.1 Collection

In 2004 and 2005, ten sampling sites in St. John's, NL were selected based on

reports of high infestation gathered though personal correspondence and an appeal for

study properties during a radio interview hosted by the Canadian Broadcasting

Corporation. Four residential properties, four sites in St. John's city parks and two sites at

AAFC's Cool Climate Crop Research Centre were selected (Fig. 2.2). The relative

proximity of some sites reflects opportunistic sampling in areas where B. leucopterus

hirtus were present and the accessibility of sites in the city.
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FIGURE 2.2. Location often local study sites within St. John's, Newfoundland and
Labrador. Sites are designated with an identifying letter. Due to the destruction of site C1
in late 2004, Cl was replaced by C2, a site with similar characteristics, in 2005. Sampling
was conducted at approximately one week intervals for 18 weeks per year from early June
until late October in 2004 and 2005. At the onset of the project in 2004, delays in locating
sites of low density B. leucoplerus hirlus prevented a full 18 week sampling regime at
some sites. In 2005, all sites were sampled 18 times.
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Sampling was conducted at approximately one week intervals for 18 weeks per

year from early June until late October in 2004 and 2005. At the onset of the project in

2004, delays in locating sites of low density B. leucoplerus hirlus prevented a full 18

week sampling regime at some sites. In 2005, all sites were sampled 18 times. Based on

personal observations, B. leucoplerus hirlus appeared to be most active and visible under

sunny conditions and warm temperatures. Therefore, whenever possible, sampling was

conducted on warm, sunny days.

A plot of approximately 2 m2 was selected for sampling at each site in the spring

of2004. The sampling process initiated each week with a visual search of the plot to

determine the location of highest density of B. leucoplerus hirlus. Floatation sampling

was used to collect the insects. The decision to use this method was based on an

experimental comparison of several sampling methods as part of the current study

(Appendix C) and in consideration of the need to compare results across studies that also

used the floatation method. At each sampling site, a PVC pipe (d=15 cm and h=20 cm)

with a beveled edge was inserted approximately 2.5 cm into the ground using a mallet.

The cylinder was then filled :y.. full with water. Blissus leucoplerus hirlus that floated to

the surface were collected using a fine mesh tea strainer until no additional specimens

were seen on the surface of the water and placed in 500 mL plastic containers labeled

with date, time and location. The sample was collected over a ten minute period with

water replenished as required. The turf within the cylinder was agitated using a knife at 2,

5 and 8 min. Samples were taken to the laboratory and frozen for later assessment. After

thawing, B. leucoplerus hirlus were removed from the debris with the aid of a magnifier

light, tweezers and a fine artist's paintbrush. Specimens were placed on filter paper in
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Petri dishes and identified to life stage using a stereomicroscope. Adult sex and wing

form were also recorded. All specimens were then preserved in sealed glass vials

containing 70 % ethanol and labeled with pertinent sample information.

2.2.2.2. Data Analysis

To compensate for potential differences in individual counts on sampling days due

to differences in sampling size among sites and between years, sample counts of each

instar were interpreted as proportions of the total sample. The day of maximum

proportion for a particular instar was defined as either the Julian date or cumulative

degree day (CDD) on which that instar represented the highest proportion of the total

sample compared to its contribution on all other sampling days. This date was determined

through visual examination of the data. Hourly air temperature data obtained from the

AAFC Atlantic Cool Climate Crop Research Centre weather station were used to convert

sampling dates to cumulative degree days (CDD) from January 151 in each year, using

both a 7.00°C threshold temperature and the calculated egg development threshold

temperature of 15.42°C derived from the methods described in section 2.2.1.2.

All analyses were performed using JMP® 7.0.1 and JMP® 8.0.2.2 (SAS Institute

Inc., Cary, NC, USA) statistical software. Graphs of phenology based on Julian days and

CDD were created in MiniTab 14®. Inter-site variation was examined using all three

phenology descriptors (Julian days and CDD based on 7.00°C and 15.42°C threshold

temperature). 'Day of maximum proportion' from each site in 2004 and 2005 were

compared for each instar using a one-way ANOVA test with Bonferroni correction. To

identify inter-year variation in 'day of maximum proportion', pooled site data were
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compared between 2004 and 2005 for each instar using a matched pair analysis with

Bonferroni correction. Adult insects were omitted from these comparisons because the

maximum occurrence of this stage often fell on the first or last sampling day, which

varied between sites in some years. This would have therefore skewed a comparison of

'day of maximum proportion' for adults based on Julian date or CDD. The phenology

models developed for S1. John's, NL for 2004 and 2005 were converted to graphical

charts and visually compared with phenologies determined through previous studies in

Fredericton, NB, Canada and Metuchen, NJ, USA.

2.3 Results

2.3.1 Comparison of Egg Development, Threshold Temperature for Egg Development
and Relation to Spatial and Climatic Conditions

2.3.1.1 Rate ofEgg Development

Of the tota1688 eggs incubated, 550 hatched (82%). There was no egg hatch in 90

days at either 15.0°C or 17.5°C. During that time period, the majority of the eggs reared

at 17.5°C commenced development and turned a pinkish colour, but then apparently

ceased development and shriveled. Eggs reared at 15.0°C and 17.5°C were, therefore,

eliminated from analyses. Egg development rate is defined as the reciprocal of the total

days until hatch and reflects the proportion of total egg development until hatch occurring

on each day. Egg development rate increased with temperature at each of the 12 sites. The

development rate differed significantly among all twelve sites at all three experimental

temperatures (20°C: F(ll, 170) =10.54, p<O.OOOl, 25°C: F(ll, 163)=4.04, p<O.OOOI,
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30°C: F(II, 181), P <0.0001) Post-hoc analysis included using a Tukey test to detennine

which pairs of means were significantly different (Table 2.1).

TABLE 2.1. Mean rate of egg development with Standard Error (SE) in B. leucopterus
hirtus at three temperatures for 12 sites in Quebec and Atlantic Canada. Sites are listed by
decreasing mean for each development rate. Means that share an alphabetical notation
listed to the immediate right of the SE are not significantly different based on post-hoc
Tukey test analysis at p=0.05.

Temperature
200(;

Mean Rate of SE
egg
development
(%perday)

PQl

1'Q3

PQ2

Mean Raleof SE
egg
development
(%perday)

300(;

PQ2

PQ3

PQI

Mean Rate
of egg
development
(%perday)

For purposes of regional contrast, mean development rate of each provincial

grouping was compared. There was a significant difference between mean provincial egg

development rates at 20°C: F(3, 178)=27.69, p<O.OOOI, 25°C: F(3, 171)=9.29, p<O.OOOI

and 30°C: F(3, 189)=23.16, p<O.OOOI (Fig. 2.3). A post-hoc Tukey test showed the
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Newfoundland grouping to have a significantly higher development rate from at least one

other regional grouping at all three experimental temperatures (Fig. 2.3).

I

Regional grouping wilhin lemperalure (OC)

FIGURE 2.3. Mean rate of development of B. leucoplerus hirlus at three temperatures for
four regional groupings in Quebec and Atlantic Canada. Confidence ranges of 0.95 are
shown. Means that share an alphabetical notation are not significantly different based on
post-hoc Tukey test analysis at p=0.05.
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2.3.1.2 Threshold Temperature for Egg Development

Iteration of the hyperbolic function t;=a (T;-bf"1 produced slightly different

estimates of threshold temperature for egg development among sites, with the threshold

varying between 15.18°C and 15.76°C. Weighted means of provincially grouped sites

again revealed similar threshold temperatures required for egg development, ranging from

15.42°C to 15.56°C (Table 2.2). A one way A OVA determined that there was no

significant difference in mean threshold temperature between regional groupings

(p=0.9363).

TABLE 2.2. Estimated threshold temperature for rate of egg development among
individual sites, with weighted mean threshold temperature for regional groupings.

Estimated
Threshold Approx. Estimated Threshold
Temperature Standard Regional Temperature (oq

Site COq Error Grouping (Weighted Mean)

PQl 36 15.18 0.1926 PQ 15.49

PQ2 45 15.62 0.1381

PQ3 51 15.60 0.1664

NBI 42 15.60 0.1251 NB 15.56

NB2 60 15.77 0.1336

NB3 51 15.27 0.1066

NS 1 44 15.61 0.1607 NS 15.50

NS2 53 15.28 0.1158

NS3 47 15.66 0.1242

NLI 35 15.68 0.1830 NL 15.42

NL2 90 15.28 0.1213

NL3 16 15.65 0.1277
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2.3.1.3 Relation ofthreshold temperature for egg development to environmental
conditions

There was no relationship between threshold temperature for egg development and

I) average monthly temperature standard deviation of average monthly temperature, 3)

average maximum montWy temperature and 4) average minimum monthly temperature or

5) precipitation from nearby weather stations for the months May through August (Table

2.3).
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TABLE 2.3. Summary statistics (r2
, p-value and Least Significant Number (# of data

points required for significance at p=0.05)) for correlation between threshold temperature
for egg development in B. leucopterus hirtus and A) average montWy temperature (QC)
B) standard deviation of average montWy temperature (QC), C) average montWy
maximum temperature CC), D) average montWy minimum temperature (QC), E) average
monthly precipitation (mrn) collected from 6 weather stations in the insect's range. The
value for threshold temperature for egg development is based on the weighted mean from
the collection sites in closest proximity to each weather station.

Max
Mean Average r2=0.0001
Temperature p=0.9877

LSN=8576I

Mean Precipitation r2=0.2118
p=0.3585
LSN=24

Climate Variable Month

Mean Standard Deviation =0.1847
of Average Temperature p=0.3950

LSN=28
Mean Maximum ?=O.OOOI
Temperature p=0.9871

LSN=77327
Mean Minimum r2=0.0053
Temperature p=O.8915

LSN=1094

2.3.2 Modeling the Phenology of Blissus leucopterus hirtus at a Local Level

2.3.2.1 Phenological Variation Among Local Sites in St. John's, NL

In the S1. John's, Newfoundland and Labrador region, 6008 specimens from 138

samples in 2004, and 3703 bugs from 180 samples in 2005 were collected. It was noted in

the field that conspicuous populations and associated damage by B. leucopterus hirtus

were less evident in 2005 than 2004. Data from the two sampling years showed only one

completed cohort of B. leucopterus hirtus in each year within S1. John's. Although some
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oviposition and egg hatch occurred in late summer, there was no evidence that

individuals from the 2nd cohort completed development beyond the second instar prior to

winter.

Cumulative degree days were calculated using both the threshold temperature of

7°C employed in previous studies (Liu and McEwen 1979, Wellwood et al. 2002) and the

egg development threshold of 15.42°C for St. John's, NL as determined in the current

study. Because the objective was to compare the egg development threshold as a baseline

temperature in phenology in St. John's, NL, the New Jersey based egg development

threshold of l4.6°C by Mailloux and Streu (1981) was not included in comparison. The

threshold determined through this study in St. John's using the same methods was

assumed to be more reflective of local populations. The temporal occurrence of all life

history stages showed a similarity in the pattern of development between 2004 and 2005

based on pooled site data from St. John's using Julian days and degree-days with a

threshold of7°C and l5.42°C (Figs. 2.4,2.5,2.6).
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FIGURE 2.5. Proportion of total sample comprised of individuals in each life stage from samples collected in 2004 and 2005.
Sampling days are represented by the equivalent number of COD on that sampling day, calculated using a threshold
temperature of 7.oo·e. The 'day maximum proportion' is indicated by the colour coded value beside each peak.
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FIGURE 2.6. Proportion of total sample comprised of individuals in each life stage from samples collected in 2004 and 2005.
Sampling days are represented by the equivalent number of cumulative degree days on that sampling day, calculated using a
threshold temperature of 15.42"C. The 'day of maximum proportion' is indicated by the colour coded value beside each
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An inter-site comparison in St. John's, Newfoundland and Labrador, using three

measures of phenology (Julian days and CDD using 7.00°C and 15.42 0c) revealed no

difference in the 'day of maximum proportion' point for most life stages among sites,

except for occurrence of first instars using both methods ofCDD (Table 2.4). Because of

the multiple paired test performed for each measurement type, there significance level has

been adjusted using the Bonferroni correction, from p =0.05 to p=(0.05/6)=0.0084. The

site data was pooled the data to facilitate further comparisons among years of study.

TABLE 2.4. p-values generated from a series of one way ANOVAs comparing 'day of
maximum proportion' for eggs and instars between ten local St. John's sites, using three
measures of chronology. Results were not significant at p=0.0084.
X variable Instar

1st 2nd 3rd 4th 5th
Egg instar lnstar Instar Instar Instar

Julian day

CDD using
threshold
temperature of
7.00°C

CDD using
threshold
temperature of
15.42°C

0.7110 0.1696 0.9218 0.2033 0.7002 0.4243

0.7179 0.0478 0.8826 0.1812 0.5930 0.3076

0.7327 0.0484 0.8626 0.3124 0.6831 0.7024

The 'day of maximum proportion' comparison between 2004 and 2005 (Table

2.5) supports the visual representation of the phenology (Fig. 2.4, 2.5, 2.6) showing

similar patterns in phenology between years in most instars. Because of the multiple

paired tests performed here, there significance level has been adjusted from p =0.05 to
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p=(0.05/6)=0.0084). Therefore, the 'day of maximum proportion' for both 1st and 2nd

instar nymphs, which would normally be significant different at p=0.05 between years

when the phenological descriptor of Julian days was used, cannot be considered

significant here. The same applies for 4th and 5th instar nymphs between years when the

phenological descriptor ofCCD with a threshold temperature of 15.42°C was used.

TABLE 2.5. p-values for comparison of 'day of maximum proportion' between 2004 and
2005 for each instar of B. leucopterus hirtus using three units of measurement for 'day of
maximum proportion' at the 81. John's, Newfoundland and Labrador sites. Results were
not significant at p=0.0084.
X variable Instar

Ist 2nd 3rd 4th 5th
Egg instar Instar Instar Instar Instar

Julian day

CDD using
threshold
temperature of
7.00oC

CDD using
threshold
temperature of
15.42°C

0.972 0.0259 0.0485 0.3059 0.1566 0.1868

0.7219 0.3899 0.1540 0.5096 0.2235 0.3469

0.6575 0.7393 0.1012 0.2434 0.0478 0.0123

2.3.2.2. Phenological Variation Between Regions in Atlantic Canada and the
Northeastern United States.

Using the available phenology data from previous studies, the occurrence of

adults and nymphs within various populations throughout the range was compared (Fig.

2.8). The 1976 data from New Jersey showed a bivoltine population with no initiation of

a third cohort within the year. The study from Fredericton, NB revealed a univoltine

population with initiation of a second cohort that did not develop completely before the
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winter season. Populations in St. John's also demonstrated a univoltine population, with

later initiation of a second cohort, and detection of only 151 instar before winter in 2004

and 2nd instars in 2005.
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2.4 Discussion

2.4.1 Egg Development Rate in Blissus leucopterus hirtus

The results in this study concur with other studies suggesting that temperature is

an important abiotic influence in life history. Within this study, the variation in egg

development rate was greater among geographical regions than between individual sites

within the same province. At each of the three incubation temperatures, the NL regional

grouping had the highest development rate and was significantly different from at least

one other provincial grouping. At both 20°C and 25°C, at least two other regional

groupings of sites also exhibited significant differences amongst one another, suggesting

that at lower development temperatures, the variation in development rate among regional

groups was either greater than at higher temperatures or more easily detected at lower

temperatures due to greater relative precision in development times resulting from longer

incubation times.

The faster rate of egg development time in St. John's in B. leucopterus hirtus was

particularly evident at 30°C, a temperature at which the other regions had a non

detectable difference in development rate among them. These faster development times

aligns with other examples cited by Denno and Dingle (1981). For example, the

migration, diapause and life history characteristics of Oncopeltus fasciatus Dallas

(Hemiptera: Lygaeidae), were shown to have adapted to regionally distinct climate

conditions in Iowa, Puerto Rico and Florida (Dingle 1981). The faster development time

in B. leucopterus hirtus also supports another regionally based study in which ecotypes of
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Anaphes victus Huber (Hymenoptera: Mymaridae) in cooler climates of Michigan and

Quebec were found to have faster base development rates than populations in relatively

warmer Texas, where mean temperatures are higher (Traore et al. 2006). The higher base

development rate may result in optimized growth by B. leucopterus hirtus in St. John's

during intermittent periods of warmer weather. Based on the regional constraints of

temperature, evidence suggests B. leucopterus hirtus has responded to regionally variable

conditions across its Eastern range. As predicted, populations within St. John's, NL have

exhibited faster rates of egg development compared to other regions of the insect's range.

These results confirm the need for regional specificity in life history characterization of

this species, and add regional context to life history studies conducted in other parts of the

insect's range. For example, predictions of infestation based on threshold temperatures

and development rates of nymphal instars in Ohio (Niemczyk et al. 1992), should be

considered in a regional context. For pest managers, they should be aware that B.

leucopterus hirtus may respond to favourable conditions in St. John's, NL through

development faster than they would in other regions.

A comparison of threshold temperatures of egg development rate outside of the

current study area of Quebec and Atlantic Canada provided additional insight into the

regional life history adaptations of this species. In this study, an incubation temperature of

30DC resulted in egg development rates ranging from 10.24%-12.50% per day, which are

equal to, or lower, than those found in the biovoltine population ofNew Jersey, where the

egg development rate at 30DC was an average of 12.50 % per day (Mailloux and Streu

1981). This result appears at first to contrast a simplistic model in which development
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rate decreases within transition to warmer and longer growing seasons. However, the

ecological opportunity to complete two generations per year may be a selection pressure

for faster development rates in the climate ofNew Jersey compared to northern regions.

While populations of B. leucopterus hirtus in St. John's have apparently been selected for

lower threshold temperature for egg development and faster development rate compared

to populations in slightly warmer Canadian regions, populations in New Jersey have

seemingly adapted increased developmental rates to accommodate two cohorts per year

within the slightly longer favourable season.

This type of pattern, known as saw tooth variation, has previously been described

as an explanation for oscillating development times (Roff 1980, Bradford and Roff 1995)

and has been documented in crickets (Masaki 1978) and butterflies (Nylin and Svard

1991). This pattern develops as a result of insects attempting to fit a discrete number of

cohorts into a single growing season. If the number of cohorts per year (n) is possible at a

given location, then at each geographical interface at which a greater number of cohorts

may be possible, an insect may adapt a shorter life cycle in order to accommodate (n+ I)

cohorts per year. As the severity and duration of winter decreases, most often with

latitude (Danks 2006), an increasingly longer growing season would permit greater

development time for each cohort until conditions make it possible to accommodate an

additional cohort and the pattern is repeated. The implication that B. leucopterus hirtus

may exhibit a saw tooth cline pattern is important for predictive climate-insect models, as

recent work has confirmed the potential for climate induced increases in multivoltism in

northern regions (Poyry et al. 20 I I). If temperature regimes do shift over time, it is
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possible that the range of B. leucopterus hirtus may shift north and that the number of

cohorts per year may increase.

2.4.2 Threshold Temperature for Egg Development in Blissus leucopterus hirtus

Based on Trottier's iterative formula that used egg development rate to predict

threshold temperature for egg development, St. John's, NL had the lowest threshold

temperature compared to other locations in this study. The fact that the threshold

temperature across regions differed by less than one degree centigrade fits well with the

finding by Morris (1971) that only small differences exist in development threshold

across provinces. These results present patterns that agree with previous research

suggesting that the cooler climates associated with higher latitudes tend to result in lower

thresholds for development than do warmer climates (Campbell et al. 1974, Trimble and

Lund 1983, Hutchinson and Hogg 1984, Baldwin and Dingle 1986). For example,

populations of both Acyrthosiphon pisum Harris (Hemiptera: Aphididae) and Brevicoryne

brassicae L. (Hemiptera: Aphididae) in Vancouver, Canada had lower threshold

temperatures than those populations in Berkley, California, USA, (a region with

comparatively higher mean temperatures than Vancouver), but appeared to compensate

for this fact by having a higher intrinsic rate of development (Campbell et al. 1974).

Campbell et el. (1974) also suspected that development of threshold temperatures was

most strongly influenced by variability in temperature at the beginning of the season.

Unfortunately, within this study, there were no significant correlations between threshold

temperature for egg development and historic mean average temperature, mean standard
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deviation, mean maximum temperature, mean minimum temperature nor precipitation

from closely located weather stations.

The threshold temperature for egg development calculated in New Jersey, using

Trottier's hyperbolic equation (Trottier 1971), was l4.6°C (Mailloux and Streu 1981),

while threshold temperatures derived in St. John's, NL were a full degree higher. The

results from this study do not fit the generality that threshold temperature for

development increases with increased regional temperatures (Campbell et al. 1974).

However, this lower threshold for development may be a reflection of suspected saw

tooth cline in life cycle characteristics as discussed previously.

Although the threshold temperatures for egg development were calculated as

l4.6°C in NJ and between 15.18°C -15.77°C among populations in this study, eggs

reared at 15°C and l7.5°C failed to fully develop and hatch. Perhaps temperatures in this

range may allow for initiation of egg development but periodic or sustained higher

temperatures may be required for complete development to hatching. Furthermore,

although the threshold temperature for egg development in St. John's, NL was calculated

at 15.42°C, there were very few days on which the average air temperature recorded from

meteorological stations exceeded this temperature. Possible explanations for development

despite these lower recorded temperatures may include capitalization on short periods of

high temperature or warmer oviposition sites selected by females. These sites could

include tiller bases and mosses near the soil, which are able to provide a warmer

microclimate than the ambient air temperature. Examples of this have been recorded in

other insect species, including tiger swallowtail butterflies Papila glaucus L. (Hemiptera:
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Papilionidae). The laying of eggs by this insect in wanner microclimates (in direct sun

exposure) has altered phenology by up to 11 days (Grossmueller and Lederhouse 1985). It

is likely that the temperature experienced by B. leucopterus hirtus eggs during

development is higher than the mean air temperature during at least some time periods.

Although low-interval site specific soil surface temperature measurements were not

rigorously collected during this study, occasional soil surface measurements using an

infrared thermometer revealed ground temperatures well above 300 e at many study sites.

Future work may find soil temperatures provide increased accuracy in predicting

phenology, and specificity in hatching time.

2.4.3 Modeling the Phenology of B. leucopterus hirtus

Overall, this study does not support phenological adaption in B. leucopterus hirtus

at the local scale within St. John's, NL. It is possible that weekly sampling was simply

not adequate to detect phenological differences among local sites that may be defined by

only several days. The phenological patterns for 2004 and 2005 were similar when

calculated as a function of JD and eDD based on both 7.00oe and l5.42°e baseline

temperatures. The graphical curves representing 2004 and 2005 were much more closely

aligned for models using JD and eDD 7.00oe, which is most likely due to greater

precision in JD and accumulated temperatures using a lower base temperature compared

to the higher base temperature of 15.42°e. It is likely that B. leucopterus hirtus is still

developing physiologically during the period when ambient air temperatures are less than

15.42°e (but microclimates are wanner) and so that growth is better captured using a

lower base air temperature. The similar phenology among insects at local sites in St.
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John's suggests that either differences in land use, maintenance level and initial density of

B. leucopterus hirtus at the site have little impact on the timing of development at this

local scale or that sites sampled likely possess a similar suite of environmental

characteristics that produce similar population dynamics.

Using the 7°C threshold temperature for measuring phenological development,

this study found that the St. John's populations required a lower CDD to reach key

developmental stages compared to those in warmer or more southern regions. The

cumulative degree-day period during which 2nd and 3rd instars were present corresponds

to 281 CDD-623 CDD in 2004, and 298 CDD-670 CDD in 2005. Results from New

Brunswick report 2nd and 3rd instars between 423 CDD -877 CDD (Wellwood et aI.

2002). In Ontario, which also experiences one generation of B. leucopterus hirtus per

year, third instars peaked at 750-950 CDD (Liu and McEwen 1979), and, in separate

observations, at 850 DD (Sears et al. 1980).

There are notable differences between life history strategies in St. John's and

Fredericton, NB. Both spring oviposition and the initiation of a second cohort occur later

in the season in St. John's compared to Fredericton and other locations in New

Brunswick. In general, Blissus leucopterus hirtus within St. John's, NL have adapted a

univoltine strategy with a high rate of egg development compared to other regions across

the Eastern Canadian range. The differences in regional phenology identified through

comparison among multiple studies suggest that seasonal development is affected by

larger scale regional and temporal differences in climate and weather patterns that
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typically vary among years and over large geographical areas (Figure 1.5). These finding

indicate that life history adaptation has occurred within populations of B. leucopterus

hirtus in response to unique climate templets across Quebec and Atlantic Canada. More

specifically, the results support the case for evolutionary adaptation or placticity of this

species at a regional scale, and are therefore in line with the prediction that habitat

variability produces marked differences in life history (Southwood 1977). Although the

populations in St. John's, NL and other regions can be identified as primarily univoltine

or bivoltine, there is evidence in these studies that there is initiation of an additional

cohort towards the end of the seasonally optimal growth period. Because no eggs or

young instars were found in the spring of the following year, it is assumed that these eggs

and young instars did not survive the winter. The initiation, but non-completion of a

second or third cohort is common among temperate insects, as they attempt to

accommodate additional cohorts in a short growing season (Wiklund et al. 1992). An

explanation for this increased energy cost and mortality may be explained by bet-hedging.

Using this ecological strategy, insects adapt within the context of an unpredictable

environment to spread risk over a period of time (Sota 1988, Danks 2007). In the case of

B. leucopterus hirtus, this strategy has allowed the species to develop a multivoltine life

history that maximizes the number of cohorts per year in a seasonal and unpredictable

environment. A similar example is found in Lygaeus equestris L. (Heteroptera:

Lygaeidae), a species which, although once considered "univoltine" was found to have a

at least a partial second generation during particularly warm and/or otherwise favourable

years (Solbreck and Sillen-Tullberg 1981).
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Julian days were as effective as cumulative degree days predicting occurrence of

various instars in 2004 and 2005. This suggests that there are drivers other than

temperature, such as genetics or photoperiod (Beck 1980, Danks 2007) that are

influencing development. Further research would be necessary to determine the factors

that most closely influence and/or predict physiological development of this insect. The

fact that the Julian days associated with instar appearance were very similar in 2004 and

2005 suggests that pest managers may be able to use this simple system to predict

appropriate spray intervals.

2.5 Summary

As predicted, the cooler and shorter summer season in St. John's, NL has

produced a lower threshold temperature for egg development and a faster egg

development rate. The variability of the response of B. leucoplerus hirlus to unique

environmental conditions is consistent with the habitat templet model (Campbell et al.

1974, Southwood 1977, Solbreck 1978). In St. John's, NL, there was minimal difference

between phenology at 10 sites in the city, providing little evidence of ecological

adaptation at the local level in response to habitat conditions. The prediction of a

univoltine population was correct, and when pooled data from the 10 sites in St. John's

were compared with data across larger geographical regions, differences in peak instar

occurrence were found, suggesting variation in phenology at the regional scale.

Modifications may be required for the development of effective pest mitigation for B.

leucoplerus hirlus in St. John's, NL as this study demonstrates the need to incorporate
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local specificity of insect development rate. Differences in regional phenology confirm

the need for vigilance because of the potential of B. leucopterus hirtus to thrive in distinct

habitats. If temperature regimes do shift over time, it is possible that the range of B.

leucopterus hirtus may shift north and that the number of cohorts per year may increase.

Contrary to the initial hypothesis, comparison of methods for measuring phenology (JD,

CDD 7.00°C and CDD 15.42°C) in B. leucopterus hirtus provided similar results in

predicting peak occurrence of instars. However, these results mean the pest managers

have use of severable options for predicting appearance of key instars. It is clear from the

results of Chapter 2 that environmental conditions have influenced the life history of B.

leucopterus hirtus, resulting in specific adaptations to optimize life strategy in distinct

climates.
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Chapter 3: Local and Regional Level Variation in
Sex Ratio, Wing Morph and Mensural Characters
in Blissus leucopterus hirtus Montandon
(Hemiptera: Blissidae)

3.1 Introduction

3.1.1 Morphometries as a Measure of Diversity

In the late 18th century, Johan Christian Fabricius made an important contribution

to ecology by relating morphometric structures to insect function in the environment

(Tuxen 1967). Since then, the recognition of variability and specialization among forms

has proven a powerful tool in ecological and evolutionary entomology (Gould and

Johnston 1972, Hespenheide 1973, Debat et al. 2009). Morphometries, the study of

variation and change in form, was one of the first methods used to detect diversity among

species and populations resulting from differences in ecological conditions across

geographical ranges (Daly 1985). Although advances in genetic methodologies may now

also be used to distinguish species and populations, in many cases, morphometric

measurement remains an equally effective, practical way to discriminate between groups

(Atchley and Hensleigh 1974, Sluss and Sluss 1982, Dujardin et al. 1999).

Morphometries has been well researched in insects, which, due to their rigid

exoskeletons, are easily collected and measured. (Daly 1985, Statzner et al. 2001). In

addition to the ease of recording mensural characteristics, morphological polymorphisms

are generally also simply identified and may offer insights into variation among
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populations (Denno et al. 1985, Roff 1986). The morphometric diversity of individuals

and populations is an indicator of environmental adaptation and can provide insight into

local and/or regional environmental factors influencing size and shape. The relationship

between habitat and life strategy has been well studied since even before 1977, when

T.R.E. Southwood gave an address to the British Ecological Society in which he

proposed the habitat templet model (Southwood 1977). This model became a

foundational framework for the relation of life history strategy to selective forces within

the environment, having now been cited over 1000 times. Southwood's ideas may have

been inspired by an earlier presentation by Christer Solbreck, later published in 1978

(Solbreck 1978). Identifying variation among populations in morphometric characteristics

at the local and/or regional level should increase awareness of the scale at which selective

forces may be acting. Further evaluation of these patterns may also improve management

practices through identification of correlative relationships between environmental

parameters, population stability and individual fitness.

Blissus leucoplerus hirlus Montandon (Hemiptera: Blissidae) (hairy chinch bug)

is a widespread turfgrass and crop pest in Quebec and Atlantic Canada, and the

northeastern United States (Vitturn et al. 1999). It is capable of producing considerable

damage to turf and lawns, an industry worth approximately 5 billion dollars a year in

Canada (AAFC 2005). Effective management of this pest requires knowledge of its

ecology, with emphasis on geographical specificity in life strategy acting as one pillar of

a multi-faceted approach. Because both variation in size and polymorphism provide

insight into environmental influences and adaptation by insects, an inventory of
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morphometric characteristics among locally and regionally separated populations is

necessary to justify and develop a more complete, regional and/or population based

management strategy for B. leucopterus hirtus, particularly in determining populations

establishment and other indicators of populations dynamics.

3.1.2 Size as a Measure of Diversity

Size is considered to be an important component of a complete life history model

and is strongly related to development time and growth rate (Abrams et al. 1996, Nylin

and Gotthard 1998, Danks 2006). The relationship between size, growth rate and

environmental conditions is complex and involves a series of trade-offs (Danks 2006,

Danks 2007). The importance of this relationship is underlined in seasonal environments,

like those found across the range of B. leucopterus hirtus, where generational times must

fit within variable time restrictions framed by periods of unsuitable conditions for

development (Danks 1994, Abrams et aJ. 1996, Danks 2006, Danks 2007). Small size is

typically considered a tradeoff for shorter development time and/or faster growth rate

(Nylin and Gotthard 1998), as was observed in B. leucopterus hirtus in Chapter 2, and

may be further influenced by factors including temperature (Sibley and Atkinson 1994)

and food supply (Colbo and Porter 1979, Colbo and Porter 1981).

A very general rule of thumb is that adult size and fitness are positively

correlated, with larger size indicating greater fecundity in females (Honek 1993).

However, there is also evidence that male size is important in selective mating (de Block

and Stoks 2007, Couvillon et al. 2010). The optimal relative size appears to vary between
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species and circumstance, responding to fluctuations in environmental conditions and/or

population density (Kawecki 1993, Gilburn and Day 1994, Gage 1995). For example,

although large, fast growing insects may acquire resources more easily and reach

reproductive age more quickly, they may also be more susceptible to predation and/or

symmetrical deviations than their smaller counterparts (Werner and Anholt 1993, Alcock

1995, Alcock 1996). Optimal size is therefore a balance among several traits including

fecundity and survivability.

Numerous studies have demonstrated environmental and clinal variation in

mensural characteristics for a range of organisms, including monkeys (Cardini et al.

2007), wolves (Milenkovic et al. 2010), mollusks (Schilthuizen et al. 2006), fish

(Maderbacher et al. 2008) and among many insect groups: Blattodea (Slaney and Blair

2000), Coleoptera (Alibert et al. 2001), Orthoptera (Herrmann et al. 2010, Jannot et al.

2009), Diptera (Hernandez-Ortiz et al. 2004), Hemiptera (Kaitala and Dingle 1992,

Andersen 2000, Madjdzadeh and Mehrparvar 2009), Isoptera (Wilfert et al. 2006),

Trichoptera (Shama and Robinson 2009) and Lepidoptera (Nylin 1994, Scriber 1994).

These studies all relate variation in climate and geography as a driver for morphometric

variation among populations and as an evolutionary strategy for optimizing structures and

life traits to prevailing environmental conditions. Identifying similar variation in B.

leucopterus hirtus should represent a fundamental first step in ascribing differences in

size to varying selective forces across the insect's range, and could lead to improved

interpretation of the suitability oflocal and regional habitat. For example, mean size of

females within a population can provide information on the relative fecundity of those

100



individuals compared with other populations, and assist in the prediction of major

infestations. This should hopefully assist pest managers to assess and predict population

stability and robustness of B. leucopterus hirtus.

3.1.3 Sex Ratio

Both genetics and the environment may influence sex ratio (Viler et al. 2007).

Although the proportion of males and females is approximately equal in most animal

populations (Seger and Stubblefield 2002), selection will favour a biased sex ratio when

the parental costs associated with producing each sex differ (Pen and Weissing 2002,

VIler et al. 2007). Differences may also be seen when environmental conditions promote

differential survival of the sexes (Wei 2008). Applying this knowledge, differences in sex

ratio among populations may be indicative of variation among the selective forces

operating upon those populations across a geographic range. The range of factors that

may influences sex ratio from an environmental perspective temperature, photoperiod,

and others, but the specific mechanism behind environmental sex determination are

poorly understood in many species, including B. leucopterus hirtus (Schowalter 1996,

Wei 2008). Sex ratio had been found to vary in Hemiptera (Groeters 1996, Ambrose

1999, Shahayarg and Sathiamoorthi 2002 and Cullen and Zalom 2005) and determination

of any difference in sex ratio among populations of B. leucopterus hirtus at both the local

and regional scale should provide a base from which to determine selective response of

this pest to variable influences.
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3.1.4 Wing Polymorphism

One easily visible measure of morphometric variation is polymorphic wing form,

or the occurrence of multiple discrete wing forms within a single species. Polymorphic

wing forms are common in several insect orders (Roff 1986). Southwood hypothesized

that wing form was a response to habitat permanence (Southwood 1962) and predicted a

correlation between habitat persistence and brachyptery, suggesting that macropterous

forms should dominate in situations where recolonization was advantageous. This view

has been reiterated many times since then (Southwood 1977, Solbreck 1978, Harrison

1980, Denno et al. 1985, Roff 1990, Denno 1994, Denno et al. 200 I). However, dispersal

can be advantageous even in stable environments, where it provides a stabilizing effect in

periods of population fluctuation and prevents inbreeding (Hamilton and May 1977, Roff

1986).

The expression of wing morph is the result of a complex interplay between both

environmental and genetic influences (Zera and Tiebel 1988, Fujisaki 1993, West

Eberhard 2003). As with size, the wing morph of an organism is the consequence of a

series of trade-offs in reproductive potential, including dispersal and fecundity; a topic

that has been extensively explored and reviewed (Denno et al. 1989, Roff 1994, Zera and

Mole 1994, Zera and Denno 1997, Langellotto et al. 2000, Crnokrak and Roff2002,

Danks 2006, Danks 2007). Wing form development is at least partially regulated by

hormones such as juvenile hormone (West-Eberhard 2003) and is generally related to

flight capacity, but in some cases both macropterous and brachypterous individuals of the

same species are flightless (as reviewed in Roffand Fairborn 1991). For example, recent
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research on the firebug Pyrrhocoris apterus L. (Hemiptera: Pyrrhocoridae) suggests that

flight capacity may also be influenced by muscle polymorphism (Socha and Sula 2006).

Some well-known predictors of wing form include insect density (Denno et al.

1985, Denno et al. 1991, Applebaum and Heifetz 1999), temperature (Pfenning et al.

2008, photoperiod (Harada et al. 2005), host plant nutrition (Denno et al. 1985) and

combinations of these factors (Sasaki et al. 2002). However, other environmental and

genetic factors may act alone or in combination to determine wing morphology (Denno et

al. 1985, Langellotto and Denno 2001) and sexes within a single species may be

influenced differently by various factors (Brisson et al. 2007). For example, in a study of

wing dimorphism in Prokelisia marginata van Duzee (Homoptera: Delphacidae),

macroptery in females was more highly correlated with density than in males (Denno et

al. 1985). Denno et al. (1991) also reported differing rates of macroptery, among several

species, between male and female planthoppers (Homoptera: Delphacidae) in relation to

habitat persistence. Females responded to low densities in temporary habitats by showing

increased levels of macroptery compared to those females in permanent habitats.

However, males showed increased rates of macroptery in temporary habitats regardless of

population density, suggesting that mate location in low density, temporary habitats may

be an important determinate for wing form in some plant hoppers. Consequently, there is

clear evidence of interplay between extrinsic factors such as density and intrinsic factors

such as sex in the determination of wing form.

The ratio ofbrachypterous to macropterous individuals in both the male and

female sex should provide insight into the permanence and stress on populations as a
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result of environmental pressures. Comparing wing ratios at a local and regional level in

B. leucopterus hirtus should provide insight into the scale at which wing ratio may be

affected. This research should form the foundation required in order to attribute specific

environmental influences to polymorphic characters, providing further insight into this

pest's population dynamics and variability. Based on the relationship between population

permanence and wing form, pest managers should be able to use wing form to estimate

the stability of a particular population within a geographic locale.

3.1.5 Size, Sex and Polymorphism in Blissus leucopterus hirtus

The host range of B. leucopterus hirtus in Quebec and Atlantic Canada is

climatically diverse (Chapter I) and, based on implications of Southwood's habitat

templet model (Southwood 1977), this may influence the morphometric characteristics of

the insect in diverse ways. Because IPM emphasizes the need to account for variable life

characteristics among populations of the same species, morphometries may serve as a

powerful tool to detect differences in life history among populations. Most of the limited

references on B. leucoplerus hirlus ascribe very general biological attributes to this

important pest species and do not ascribe details below the species level. For example,

texts typically list the adult as being Imm in width and between 3.0-3.6 mm in length

(Vittum et al. 1999, Potter 1998). These are general measurements, with no distinction

made between males and females, long- and short-winged individuals or different

populations. A more detailed study did report the head capsule widths, pronotum widths

and length of terminal antennal segments in all instars of field collected samples of B.

leucoplerus hirlus (Mailloux and Streu 1981). However, the measurements were taken on
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nymphs from a single population in Metuchen, New Jersey and these measurements did

not include adults. The results were also not compared among populations from other

locations (Mailloux and Streu 1981).

Although nearly all populations of B. leucopterus hirtus reported on in the

literature have a combination of macropterous and brachypterous individuals, local

dispersal of B. leucopterus hirtus has previously been assumed to be accomplished

primarily through crawling rather than flight (Mailloux et Streu 1981). However, there is

some evidence of movement due to either flight or air currents based on data from

airplane sampling (Glick 1960, Mailloux et Streu 1981) and from personal observation by

researchers (individual macropterous B. leucopterus hirtus found on clotheslines, clothing

and other spaces difficult to reach in short periods through walking alone). Therefore, this

research assumes that macropterous individuals are capable of some level of active or

passive flight Leonard (1966) reported brachyptery in B. leucopterus hirtus dominating

the subspecies, with 64% of individuals displaying short winged pattern in one sampling

collection (n=538). Wing form ratios in Blissus leucopterus hirtus have also been

reported to vary between sexes with up to 50% more female macropters compared to

male macropters (Mailloux and Streu 1981). Despite these individual records,

information on wing form in B. leucopterus hirtus is still lacking.

In general, a high proportion ofbrachypterous individuals among insect

populations is generally indicative of homogeneity and suitability of habitat, while long

winged individuals are generally seen in patchy environments and in high numbers either

preceding or following a recent migration (Southwood 1962, Southwood 1977, Solbreck
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1978, Harrison 1980, Denno et al 1985, Roff 1990, Denno 1994, Denno at aI. 200 I,

Danks 2006, Danks 2007). One would therefore expect to see the proportion of

brachypterous B. leucopterus hirtus individuals increase over several years in an

established population, until a point where resources become limited (e.g. a lawn is

reduced in resource quality by intensive feeding) and dispersal becomes advantageous.

Previous observations of B. leucopterus hirtus by Mailloux and Streu (1981)

showed that in an observed population with two cohorts per year, the proportion of

macropters gradually decreased from April to June, rising rapidly during July as the

spring cohort reached adulthood, and then declining again through August and

September. This suggests dispersal or differential mortality by macropters during each of

the two cohorts. Populations in this current study are defined by one cohort per year, but

based on the previous study, one would expect the number ofmacropters to decrease

through the entire season.

In an effort to understand the life strategy of B. leucopterus hirtus and gain insight

into its population dynamics and ecology, Chapter 3 examines the variation in this

insect's morphology at a local and regional scale. Differences in morphological

characteristics among populations should confirm the existence of adaptation and/or

plasticity in this insect, and, building on previous work in this and other insect species,

may offer insights into the environmental factors driving these differences. Sex ratio,

wing form and morphology are compared at a local and regional scale, and these findings

were further used to determine if a relationship exists between minimum development

temperatures and egg development rate (characterized in Chapter 2) and adult size. This
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should represent a fundamental basis for applying Integrated Pest Management practices

based on population-specific knowledge of B. leucopterus hirtus, including age of

population, fitness of population and likelihood of decolonization.
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3.1.6 Research Hypotheses

This study characterized the morphometric characteristics of B. leucopterus hirtus to

identify differences in these characteristics at the local and regional scale. Based on

current knowledge of B. leucopterus hirtus and the habitat template theory, hypotheses

areas follows:

I) Based on existing literature confirming the potential for sex ratio to fluctuate or

vary among populations as a result of environmental influences, sex ratio in Blissus

leucopterus hirtus differs among local populations in St. John's, NL with relation to

collection site and density.

2) Based on the knowledge that wing form may be directly attributable to habitat

favourableness, variability among sites in St. John's, NL produces differing wing form

ratios in Blissus leucopterus hirtus. Wing form ratio is related to density within each

collection season, and over the study period, the number of brachypters in local

populations should increase as a reflection of the populations becoming increasingly

established.

3) Based on variability among regional habitats (across Quebec and Atlantic

Canada), Blissus leucopterus hirtus displays variation among: a) sex ratio, b) wing form

and c) body size.

4) Based on a general relationship between growth rate and size in insects, Blissus

leucopterus hirtus also displays a relationship between size ranking of adults and: a)

mean threshold temperature for development, and b) mean egg development rate at

various temperatures. Because the favourable growing season for B. leucopterus hirtus is
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limited development rate should be rapid, and produce smaller individuals compared to

those populations where this insect is exposed to longer periods favourable conditions.

3.2 Materials and Methods

3.2.1 Data Collection

3.2.1.1 Collection of1nsects

3.2.1.1.1 Local Collection

In 2004 and 2005, ten sampling sites in St. John's, NL were used for this study.

Four residential properties, four sites in St. John's city parks and two sites at AAFC's

Cool Climate Crop Research Centre were selected (Fig. 3.1). Each site was placed into

one of three categories (Low: <10 bugs per sample, Medium: 11-29 bugs per sample,

High: ~ 30 bugs per sample) based on the initial density of B. leucopterus hirtus as

determined by a floatation sample as described below. Residential sites were identified

during the course of a Canadian Broadcasting Corporation radio interview, by requesting

St. John's residents to volunteer their infested properties for two years of study. The

relative proximity of some sites reflects opportunistic sampling in areas where B.

leucopterus hirtus were present, and the accessibility of these areas. Although all sites

were located in St. John's, NL, there was some variability in land use and maintenance

levels (Table 3.1). The visible concentration of B. leucopterus hirtus in areas of acute

damage, combined with its tendency to aggregate with increasing age, suggests that
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populations do not mix readily throughout the growing season. This assumption was be

followed in the comparison of locally separated populations.

Table 3.1. Primary land use, turf maintenance level and initial density of B. leucopterus
hirtus at 10 study sites within St. John's, NL
Site Density of B.leucopterus hirtus*
A medium
B high
CIt medium
C2t medium
D Low
E low
F Low
G Low
H low
I medium
J high

*Density classes: low: <10 bugs per sample, medium: 11-29 bugs per sample, high: ~ 30
bugs per sample
t Due to the destruction of site CI in late 2004, CI was replaced by C2, a site with
similar characteristics, in 2005

Sampling of B. leucopterus hirtus was conducted at approximately weekly

intervals for 18 weeks per year from early June until late October in 2004 and 2005. At

the onset of the project in 2004, delays in locating sites of low density B. leucopterus

hirtus prevented a full 18 week sampling regime at some sites. In 2005, all sites were

sampled 18 times. Based on personal observations, B. leucopterus hirtus appeared to be

most active and visible under sunny conditions and warm temperatures. Therefore,

whenever possible, sampling was conducted on warm, sunny days.
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In the spring of 2004, a plot of approximately 2 m2 was selected for sampling at

each site. The sampling process started each week with a visual search of the plot to

determine the location of highest B. leucopterus hirtus density. Floatation sampling was

used to collect the insects. This method was chosen following an experimental

comparison of sampling methods as part of the current study (Appendix C) and because

this method was used in similar studies elsewhere (Wellwood et al. 2002). At each

sampling site, a PVC pipe (d=15 cm and h=20 cm) with a beveled edge was inserted

approximately 2.5 cm into the ground using a mallet. The cylinder was then filled 31. full

with water.
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FIGURE 3.1. Location often local study sites in St. John's, NL. Sites are designated with
an identifying letter. Due to the destruction of site Cl in late 2004, Cl was replaced by
C2, a site with similar characteristics, in 2005. Refer to Table 3.1 for additional
description of sites.
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Blissus leucopterus hirtus that floated to the surface within a 10 minute period

were collected using a fine mesh tea strainer, with water replenished as required. The turf

within the cylinder was agitated using a knife at 2 min, 5 min and 8 min. The insects were

then placed in 500 mL plastic containers labeled with date, time and location, taken to the

laboratory and frozen for later assessment. After thawing, B. leucopterus hirtus were

removed from the debris with the aid of a magnifier light, tweezers and a fine artist's

paintbrush. Specimens were placed on filter paper in Petri dishes and identified to life

stage using a stereomicroscope. Adult sex and wing form were also recorded. All

specimens were then preserved in sealed glass vials containing 70 % ethanol and labeled

with pertinent sample information.

3.2.1.1.2 Regional Collection

In May 2008, B. leucopterus hirtus spring adults were collected from twelve sites

in Atlantic Canada. Local populations, with the exception of those in New Brunswick,

were sampled from sites within a few kilometers of each other. In ew Brunswick, based

upon a local recommendation, two populations were sampled in Fredericton, and one 82

km away, close to Saint John, NB. 'Regional' areas were defined by provincial

boundaries, with province names serving as identifiers for groups of local sites. In total,

the sampling sites included three in Quebec City (PQ), two in Fredericton (NB), one in

Saint John (NB), three in the Annapolis Valley (NS) and three in St. John's (NL) (Fig.

3.2). The three populations selected in St. John's in 2008 were different than the 10 sites

sampled from 2004-2005. Of these additional sites, all three were residential lawns. Two

of the residential lawns were well maintained (although damaged by B. leucoplerus
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hirtus) and the other sampling site had low level of care. The reason for the alternate

choice in sampling site in St. John's (different from the 2004-2005 study) was to avoid

possible influences on the populations from previous years of sampling, including the

potential for population depletion.

Individuals were collected using a combination of hand sampling and vacuum

sampling in areas identified by local entomologists as inhabited by B. leucopterus hirtus

populations. Sampling methods were chosen for based on speed, efficacy and minimal

damage to turf (Appendix C). Over the 14 day collection trip, captured individuals were

placed in plastic containers with grass and plant debris from the local collection area and

kept in a cooler above ice packs that were refrozen daily. Upon arrival in St. John's, the

adult bugs were transferred into site-specific large sized plastic Ziploc® Snap 'n Seal

containers, with each container considered an individual colony.

FIGURE 3.2. Location of twelve study sites across Atlantic Canada. Location of twelve
study sites in Quebec and Atlantic Canada, at each of which Blissus leucopterus hirtus
were collected over a two week period in May 2008, using a combination of hand
sampling and vacuum sampling. Sampling locations were identified by local
entomologists as inhabited by B. leucopterus hirtus populations. Sites are labeled in
enlarged map sections.
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The containers were modified by replacing the middle section of the lid with a 0.2

mm mesh that promoted airflow but prevented the bugs from escaping. The size of mesh

chosen was based on the minimum 15t instar head capsule width of 0.21 mm recorded by

Mailloux and Streu (1981). Any plant material and debris in the containers was removed

and all colonies were fed stem sections from green house reared Zea mays var. polka

(Veseys Seed Company, Charlottetown, PEl) between the 3rd and 4th leaf stage. The

colonies were placed into a Conviron® growth chamber maintained at 20°C±1 °C, with a

16:8 hour photoperiod at 100% relative humidity. Several individuals were collected

from each colony and sent to AAFC Ottawa for identification. All samples submitted

were positively identified as B. leucopterus hirtus. Colonies were monitored daily, and

many of the adults were isolated as part of a study on egg development. Following

completion of oviposition or natural death, all adults were placed in a glass vial filled

with 70% ethanol and labeled with population of origin and collection date.

3.2.1.2. Collection o/Traditional Morphometric Data

Adult B. leucopterus hirtus were removed from the glass vials and individually

examined under a stereomicroscope. Their wing form and sex were recorded, and

measurements were taken manually using an ocular micrometer under 40 x

magnification. Locations of measurement points are provided (Fig. 3.3) along with

descriptions of measurements taken (Table 3.2). The presence of aberrations was noted

when visible deformities were obvious. Examples of aberrations observed included

reduction in the number of antennal segments (not including recent breakage), fusing of
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the antennal segments, absence of tarsi (not including recent breakage) and obviously

deformed wing shapes (corkscrew shape, obvious disproportion to opposite wing).

FIGURE 3.3. Measurement points (indicated by circles) for morphometric measurements
of Blissus leucopterus hirtus. Copyright © 2008 Tom Murray. Used with permission. See
Table 3.2 for an explanation oflettering.
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TABLE 3.2. Morphometric measurements collected in study of Blissus leucopterus
hirtus.
Measurement Name Description

A----B left antenna Length of left antennal segment iv from tip to
articulation with segment iii.

C----D right antenna Length of right antennal segment iv from tip to
articulation with segment iii.

E----F eye to eye Width between outer margins of eyes

G----H thorax Greatest width between outer margins of thorax

]----j left corium Greatest length of left wing corium from insertion on
thorax to wing membrane

L----M right corium Greatest length of right wing corium from insertion on
thorax to wing membrane

]----K left wing Left wing length from thorax articulation to tip of
membrane

L----N right wing Right wing length from thorax articulation to tip of
membrane

O----P total length Length of insect's body along an axis from tip of vertex
to tip of abdomen.
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3.2.2 Data Analysis

All statistical analysis was conducted using JMP® 7.0.1 and JMP® 8.0.2.2 (SAS

Institute Inc., Cary, NC, USA)

3.2.2.1. Analysis oflocally collected data

Data for sex and wing form of adult B. leucopterus hirtus collected from 10 local sites

in S1. John's were divided into four collection periods based on high numbers of adults

during these times: Spring 2004, Fall 2004, Spring 2005 and Fall 2005. Because of

overwintering of this insect, Fall 2004 and Spring 2005 should represent the same cohort,

but they were examined separately to determine if differential survival of overwintering

adults occurred. To compensate for a potential skew in density calculations for each

collection period, the total number of adult insects collected was divided by the total

number of sampling days at each site, so data are in units of 'number of bugs per

sampling day'.

The proportion of males and females at each site was compared for each of the four

collection periods using Pearson's Chi-Square test, with collection period serving as the

factor determining the number of females. Site data within each collection season was

then pooled and Pearson's Chi-Square was used to determine whether the ratio of males

and females depended on the factor of collection seasons. Pearson's Chi-Square was then

use to determine of the F:M ratio in each collection season varied from F:M 1:1. Wing

ratio was then compared by the factor of local site in each collection season using a

Pearson's Chi-Square test. The proportion ofbrachypters in each cohort was compared to
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the mean density of adult B. leucopterus hirtus per sample using a bivariate fit plot and

correlation analysis to determine if wing form was related to density.

3.2.2.2 Analysis of regionally collected data

Sex ratios were calculated for locally and regional separated populations across

Quebec and Eastern Canada as well as the entire study region in order to allow inter-site,

inter-region and inter-study comparisons using Pearson's Chi-Square statistics. In these

cases sites and regions served as the primary factors in determining sex ratios. The same

approach as above was applied to examine the proportion of brachypterous and

macropterous individuals. Because of potential error inherent in manually measuring and

recording morphological characteristics (Daly 1985), an assessment of measurement error

was conducted using 42 individual specimens according to the method described by

Arnqvist and Mcmensson (1998). Using their protocol, nine morphometric characteristics

were measured on 42 individual specimens and each individual was placed in a separate

vial. The vials were shuffled and the insects were re-measured in a random order. A one

way ANOVA was used to compare variation between repeated measures (error within) to

variation among individuals (error among).

A multivariate scatterplot matrix was created to identify sets of measurements

with high multicollinearity, including symmetric characteristics, so that they could be

eliminated in further analysis. A one-way ANOVA was used to determine if significant

differences in character length existed among sites for either long winged or short winged

individuals. For each character, mean distances between measurement points at each site
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were then ranked from greatest distance to shortest distance. The rankings for multiple

characters for each site were averaged to produce an overall size rank. The rankings were

then compared with categorized density of individuals at each site to determine if there

was a relationship between density and size. In order to test for significant differences in

morphological characteristics between males and females and between brachypters and

macropters, site data were pooled and compared by one-way ANOVA.

3.3 Results

3.3.1 Variation in Sex Ratio and Wing Form Ratio

The variation among measurements in this study was primarily attributed to

differences among individuals and not measurement error (Appendix E). There was a

high rate of physical deformity in the majority of populations sampled (Appendix F). A

additional multivariate discriminant analysis was performed on the data to determine if

the method was successful at differentiating among populations at either the local or

regional level but success was limited (Appendix G).

3.3.1.1 Local variation in sex ratio andwingform ratio

A total of 1460 adult individuals were collected in S1. John's, NL over four

collection periods in 2004-2005: 169 (Spring 2004), 534 (Fall 2004), 148 (Spring 2005)

and 609 (Fall 2005). Sex ratio did not vary significantly among local sites in S1. John's in

any collection period: Spring 2004: X2=9.489, df=9, p=0.3934, Fall 2004: X2=11.032,

df=7, p=O.1372, Spring 2005: X2=7.990, df=7, p=0.3335 and Fall 2005: X2=8.914, df=8,

p=0.3496. Site data were, therefore, pooled and sex ratios compared among sampling
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seasons. There was no significant change in proportion of males and females over the

four sampling seasons (X2=0.218, df=3, p=0.9747).

However, when compared against a predicted ratio of I: I, there was a significant

deviance from this ratio is both Fall 2004 and 2005 (Spring 2004: X2=0.7160, df=91 ,

p=0.3975, Fall 2004: X2=5.4607, df=l, p=0.0194, Spring 2005: X2=0.9730, df=l,

p=0.3239 and Fall 2005: X2=6.11 00, df=l, p=O.O 134). In both Fall 2004 and Fall 2005,

more males were collected than females, indicating evidence of either differential

mortality or dispersal by females. Combining data from all sites over all sampling

seasons resulted in a ratio offemales to males of I: 1.19, which is significantly different

from 1:1 (X2=9.8620, df=l, p=0.0017).

The proportion ofbrachypterous individuals varied significantly among sites for

three collection seasons (Spring 2004: X2=17.082, df=9, p=0.0475, Fall 2004:

X2=60.364, df=7, p <0.0001, Spring 2005: X2=18.661, df=7, p=0.0093. There was no

difference among sites in Fall 2005 X2=9.820, df=8, p=0.2779, a period during which

brachypterous individuals were abundant at all sites.

The ratio of brachypters to macropters differed significantly between collection

periods for both males (X2=71.987, df=3, p <0.0001) and females (X2=85.119, df=3, p

<0.0001; Table 3.3). However, there was no significant difference in wing form between

Fall 2004 and Spring 2005 (two sampling periods assumed to represent the same cohort)

in males (X2=0.027, df=l, p=0.8692) or females (X2=0.183, df=l, p=0.6691), and

therefore no evidence of differential overwinter mortality between brachypterous and
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macropterous individuals. There were also significantly more male brachypters in Fall

2004 (X2=14.2604, df=l, p=1.0638), Spring 2005 (X2=4.2000, df=l, p=0.404) and Fall

2005 (X2=6.3380, df=l, p=0.118).

The proportion ofbrachypters at each site was compared to the mean density of

adult B. leucopterus hirtus per sample in each cohort to determine if wing form was

related to density. In this analysis, the data for overwintered spring 2005 adults were

combined with Fall 2004, as these bugs were from the same cohort and showed no

difference in wing ratio. There was no clear trend and no significant relationship between

density of bugs per sample and wing form for any of the three cohorts (Fig 3.4).

TABLE 3.3. Number ofmacropterous (M) and brachypterous (B) Blissus leucopterus
hirtus (females and males) collected in four sampling periods in St. John's, NL. The
distribution ofbrachypters and macropters is significantly different among collection
seasons (X2=85.119, df=3, p<O.OOOI).
Collection Males Females
Season

52 1:1.37

229 1:3.52

63 1:3.70

314 1:14.95

M

Spring 2004 38

Fall 2004 65

Spring 2005 17

Fall 2005 21

B Ratio (M:B) M

37

85

26

20

Ratio (M:B)

42 1:1.l4

155 1:1.82

42 1:1.62

254 1:12.7
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FIGURE 3.4. The proportion ofbrachypterous individuals in relation to the approximate
density of B. leucopterus hirtus at each collection site for three cohorts, calculated by
dividing the total number of bugs per site/number of sampling days. Cohort I is Spring
2004, Cohort 2 is Fall 2004 and Spring 2005, and Cohort 3 is Fall 2005.

3.3.1.2 Regional variation in sex ratio andwingform

In Spring 2008,1351 B. leucopterus hirtus adults were collected from twelve sites

across Atlantic Canada. There was no significant difference among the sex ratios at any

of the sites (X2=14.625, df=ll, p=0.2003, Table 3.4), nor among sites within the same

province (PQ: X2=1.043, df=2, p =0.5938, NB: X2=0.471, df=2. 0.471, p=0.2003 NS:

X2=2.028, df=2, p=0.3627, NL: X2=0.426, df=2, p=0.8083). The site specific sex ratios

did not vary from 1: 1, except in the case ofNB2 (X2=6.6931, df= 1, p=0.0097) and NS2

(X2=10.9206, df=l, p=0.0010). When data was pooled by province, there was a

significant difference in sex ratios among provinces (X2=1O.695, df=3, p=0.0135). There

was no deviation from 1:1 sex ratio in NL (X2=1.0901, df=l, p=0.2965) and PQ

(X2=2.1985, df=l, p=O.l381) but there were statistically more males than females in NB

(X2=7.5294, df=l, p=0.0061) and NS (X2=9.6604, df=l, p=0.0019). The pooled sex ratio
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for all samples collected was F:M=1:1.19, which varied significantly from an expected

ratio of 1: 1 across the entire region (X2=9.8620, df=l, p=0.0017).

TABLE 3.4. Number offemales (F) and males (M) Blissus leucopterus hirtus collected
from 12 sites across Quebec and Atlantic Canada. The distribution offemales and males
is not significantly different among sites (X2=14.625, df=ll, p=0.2003). When sites were
pooled by province, there was a significant difference among F:M ratio among regions
(X2=10.695, df=3, p=0.0135).

By Site By Province
Female Male Ratio F:M Female Male
49 48 1:0.98 143 119
34 25 1:0.74
60 46 1:0.77
34 37 1:1.09 240
176 228 1:1.30
30 39 1:1.30
43 46 1:1.07 180
111 166 1:1.50
26 32 1:1.23
11 14 1:1.27 50 61
35 40 1:1.14
4 7 1:1.75
613 728 1:1.19

The proportion ofbrachypterous and macropterous individuals varied significantly

among sites (X2=30.698, df=ll, p=0.0012, Table 3.5). The ratio ofbrachypterous to

macropterous individuals overall was 4.33:1 in females and 5.39:1 in males. However, a

Pearson Chi-Square revealed no significant effect of sex on wing morph (X2=2.260, df=l,

p=0.1328).
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TABLE 3.5. Number ofmacropterous (M) and brachypterous (B) Blissus leucopterus
hirtus collected from 12 sites across Quebec and Atlantic Canada. The distribution of
brachypters and macropters is significantly different among sites (X2=30.698, df=ll,
p=O.OOI2).

Mensural characteristics were compared among sites using a one-way ANOVA.

There was a significant difference among the twelve sites for both brachypterous and

macropterous characters (Fig 3.5, Fig 3.6). Nova Scotia and Quebec generally had larger

bugs, while New Brunswick and Newfoundland individuals were smaller by comparison.
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FIGURE 3.5. One-way ANOVA comparison of eye to eye width (F(II, 1098)=11.2144, P <0.0001), terminal left antenna length
(F(ll, 1098)=13.7673, P <0.0001), thorax width (F(II, 1098)=4.0597, P <0.0001), left corium length (F(II, 1098)=15.8661, P
<0.0001), left wing length (F(II, 1098)=14.3804, P <0.0001), and total length (F(ll, 1098)=8.3242, P <0.0001) in brachypterous
B. leucopterus hirtus collected from twelve sites across Quebec and Atlantic Canada in Spring 2008. The mean line across the
middle of each diamond represents the group mean. The top and bottom of each diamond represent the 0.95 confidence interval
for each group. Diamond overlap marks appear as lines above and below the group mean. Overlapping marks indicate that the
two group means are not significantly different at the given confidence level. Group data sharing the same letter above the data
are not significantly different based on a Tukey HSD test.
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FIGURE 3.6. One-way ANOYA comparison of eye to eye width (F(10, 220)=4.3688, p<O.OOOI), tenninalleft antenna
length (F(10, 220)=3.4851, p=0.0003), thorax width (F(10, 220)=5.3871, p<O.OOOI) left corium length (P(l0, 220)=3.0239,
p<O.OOOI), left wing length (F(lO, 220)=3.0231, p=O.0013) and total length (F(lO, 220)=4.3871, p<O.OOOI) in macropterous B.
leucoplerus hirlus collected from twelve sites across Quebec and Atlantic Canada in Spring 2008. The mean line across the
middle of each diamond represents the group mean. The top and bottom of each diamond represent the 0.95 confidence interval
for each group. Diamond overlap marks appear as lines above and below the group mean. Overlapping marks indicate that the
two group means are not significantly different at the given confidence level. Group data sharing the same letter above the data
are not significantly different based on a Tukey HSD test.



3.3.2 Relationship Between Size, Threshold Temperature for Egg Development and Egg
Development Rate

To facilitate comparison of egg development rates and threshold temperature for

development with insect size in each populations, sites were ranked from maximum mean

character length/width (rank=l) to minimum mean character length/width (rank=ll·

(Table 3.6)) for both brachypterous and macropterous forms. The length/width rankings

of each character for a particular site were then averaged to give an overall size ranking

for insects at each site (Table 3.6).

TABLE 3.6. Size rankings for brachypterous and macropterous B. leucopterus hirtus for
twelve sites in Atlantic Canada.
Brachypterous Macropterous

Mean size Overall
Overall ranking Rank
rank Site (l =largest) (l =largest) Site
I PQI 1.0 I NS2
2 NS2 2.0 2 NBI
3 SI 4.3 3 PQ2
4 PQ3 5.0 4 PQI
5 NBI 5.1 5 PQ3
6 NS3 5.3 6 NL2
7 PQ2 7.7 7 NL3
8 NL2 8.8 8 NSI
9 NL3 9.3 9 NB2
10* NB2 9.7 10 NLI
10* NLi 9.7 II NB3
II NB3 11.2 t

Mean size
ranking
1.3
2.0
4.2
5.0
5.7
5.8
6.2
7.3
8.7
9.8
10.3

* NB2 and NL1 had the same size ranking and therefore, the same overall rank.
t No intact macropterous individuals were found at NS3.
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There was no correlation between average size ranking of brachypterous

individuals and either threshold temperature for egg development (r2 (9)=0.1284,

p=0.2527) or egg growth rate for eggs reared at 20·C (r(lO)=0.0048, p=0.8308), 25°C

(r2(10)=0.1302, p=0.2493), or 30°C (r2(lO)=0.2366, p=0.1088)(Fig. 3.7). Similarly, there

was no correlation between average size ranking of macropterous individuals and either

threshold temperature for egg development (r2(9)=0.0472, p=0.5213) or egg development

rate at 20°C (r2(9)=0.0016, p=0.9067), 25°C (r2(9)=0.1355, p=0.2654) or 30°C

(r2(1 0)=0.0058, p=0.8242).
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FIGURE 3.7. The relationship in B. leucopterus hirtus between average size ranking in
brachypterous threshold temperature for egg development (r(10)=0.1284, p=0.2527) and
brachypterous egg development rate at 20°C (r\IO)=0.0048, p=0.8308), 25°C
(r2(1O)=0.1302, p=0.2493), and 30°C (r2(10)=0.2366, p=0.1088) and relationship the
relationship between average size ranking in macropterous and threshold temperature for
egg development (r2(9)=0.0472, p=0.5213) and macropterous egg development rate at
20°C (r2(9)=0.0016, p=0.9067), 25°C (r2(9)=0.1355, p=0.2654), and 30°C
(r2(1 0)=0.0058, p=0.8242) individuals from sites in Quebec and Atlantic Canada.
Threshold temperature for development is based on simulations performed in Chapter 2
using iteration within a non-linear model of the hyperbolic equation regression, and each
point of the graph is derived from the combined data at each site. Similarly, egg
development rate is based on the average rate at each site.
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3.4 Discussion

3.4.1 Sex Ratios

The proportion of males and females was similar at all sites in St. John's (2004

2005) in each of the four collection periods, and at all sites across Quebec and Atlantic

Canada in 2008. The ratio across the entire study range ofF:M 1:1.19. The ratio obtained

in this study is comparable to the ratio of: 1: 1.12 obtained by Mailloux and Streu in their

study on B. leucopterus hirtus (Mailloux and Streu 1981). Results from this study are

comparable to other Hemipteran M:F sex ratios, including: Nysius huttoni White

(Hemiptera: Lygaeidae) 1:1.05 (Wei 2008), Oncopeltusfasciatus Dallas (Hemiptera

Lygaeidae) 1: 1 (Sauer and Feir 1973), Nysius ericae Schilling (Hemiptera: Lygaeidae)

1:1.13 -1:1.18 (reviewed by Wei 2008), Cyclopelta obscura Lepeletier and Serville

(Hemiptera: Pentatomidae) I: 1 (Zhang 1985) and Eurydema gebleri Kolenati (Hemiptera:

Pentatomidae) 1: 1 (Zhang 1985). In their attempt to explain the relatively high number of

males compared to females, Mailloux and Streu suggested that a higher number of males

may act to counter virgin female isolation, the effects of which include lower egg

productivity and increased longevity. More males effectively provides more chances for

copulation and increasing oocyte production (Sweet 1963, Mailloux and Streu 1981).

Within the St. John's, NL populations, F:M ratios were significantly male biased

in Fall 2004 and Fall 2005. This indicates either differential mortality or dispersal by

females during the summer season. Previous studies of several predatory Hemipteran

species (Anthocoris tomentosus Pericart (Hemiptera: Anthrocoridae), A. antevolens White
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(Hemiptera: Anthrocoridae) and A. brevis Uhler (Hemiptera: Anthrocoridae) showed a

strong overwintering mortality in males (Horton et al. 1998, Horton and Lewis 2000).

However, there was no evidence of differential overwintering mortality of males of B.

leucopterus hirtus in the populations studied. Apart from the potential for differential

mortality or dispersal over time, the stability of the sex ratio across the entire range

indicates that either genetic influences on sex ratio are highly preserved and/or

environmental differences were insufficient to result in differential fitness of either sex in

these patchy environments. The implication of these results is that environment has not

differentially selected for sex ratio at either the local or regional scale in B. leucopterus

hirtus and, therefore, does not appear to be an effective indicator of population variation

within this species.

3.4.2 Wing Form Ratios

Previous observations of B. leucopterus hirtus by Mailloux and Streu (1981)

showed that the proportion ofmacropters gradually decreases from April to June, rises

rapidly during July as the spring cohort reached adulthood, and declines again through

August and September. This suggests dispersal or differential mortality by macropters

during each of the two cohorts. Unlike Mailloux and Streu's research (1981), the current

study found wing form ratio over multiple weeks within a single collection year to be

fairly consistent and, therefore, does not support earlier findings. However, based on the

combined weekly samples taken from three cohorts (Spring 2004, Fall 2004 - Spring

2005 and Fall 2005) there was a progressive increase in brachyptery in both males and

females over three generations studied.
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An increase in short winged individuals is generally indicative of homogeneity

and suitability of habitat, since long winged individuals are generally seen in patchy

environments and in high numbers either preceding or following a recent migration

(Danks 2006, Danks 2007). Southwood's habitat templet model postulated that wing

form was a response to habitat permanence (Southwood 1962) and predicted a correlation

between habitat persistence and brachyptery, suggesting that macropterous forms should

dominate in situations where recolonization was advantageous (Southwood 1977,

Solbreck 1978, Harrison 1980, Denno et al. 1985, Roff 1990, Denno 1994, Denno et al.

2001). Based on the shifting wing form ratios over three cohorts in this study, it is

possible that the sites sampled were sufficiently suitable that, over time, B. leucopterus

hirtus devoted fewer resources to recolonization. Although the age of the populations at

the start of this study in 2004 is unknown, many sampling locations were selected based

on reports of recent infestation. It may be that the degree of brachyptery in the

populations increased over time as the populations became increasingly established in the

study areas. However, with limited evidence of a direct relationship between wing form

variation and probability of dispersal, and ontological period when wing form is

determined, conclusions are limited at this time.

Wing form is likely influenced by a combination of environmental conditions

(Zera and Tiebel 1988, Fujisaki 1993, West-Eberhard 2003). These influences are

especially difficult to tease out on account of their dynamic and intertwined nature

(Denno 1994, Gatehouse 1994). Previous studies and reviews have identified multiple

factors influencing wing ratios, including density (Denno et al. 1985, Denno et al. 1991,
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Applebaum and Heifetz 1999), temperature (Pfenning et al. 2008), photoperiod (Harada

et al. 2005), host plant nutrition (Denno et al. 1985) and combinations of these factors

(Sasaki et al. 2002). Previous work on Dimorphopterus japonais Hidaka (Heteroptera:

Lygaeidae) suggested that crowding could produce increased rates ofmacroptery, but that

physical contact between nymphal instars appeared to be necessary to produce increased

incidence oflong-winged bugs (Sasaki et al. 2002). Denno et al. (1991) also concluded

that density was the most important factor in determining wing form in most species of

planthoppers. In addition to weather and climate, there are several other ecological

influences inherent to the environment of B. leucopterus hirtus. Although seemingly

uniform, lawns and other green spaces can vary in plant composition and health,

abundance of natural enemies (e.g. Geocoris punctipes Say (Hemiptera: Geocoridae) and

endophytic fungi (e.g. Acremonium spp», protective spaces and canopy presence as well

as level of maintenance. Although this study did not address all of these factors

specifically, it is likely that a combination of population and environmental factors were

responsible for any variation observed (although non-significant in some regions). If

flight is possible, the variable wing ratio among sites observed at both the local and

regional level, and over three cohorts, suggests that wing form may be a valuable

indicator of discrete environmental influences among populations. Extensive modeling

using a wide range of in-situ and ex-situ populations would be necessary to elucidate the

specific determinants of wing morpho For example, a true measurement of density was

difficult within the context of a field study such as this. It is possible that the methods

used in this paper were simply not robust enough to detect influences such as density on

wing form.
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3.4.3 The Interrelationship of Sex Ratio and Wing Form

A relationship between sex and wing form ratios is not uncommon among insects,

and may be linked to several factors including habitat permanence and quality (Julliard

2000). The existence of a dimorphic wing form in both sexes suggests a fitness tradeoff

between wing production and some other life function (Denno et al. 1991). The majority

of research concerning reproductive tradeoffs has been conducted with female insects in

which size, strength and/or longevity are traded off for egg quality and/or production

(Tanaka 1976, Roff 1994, Denno 1994, Zera 1984). However, research has shown a

fitness tradeoff in mating success in male Hemipterans, including Prokelisia dolus

Wilson (Hemiptera: Delphacidae) in which a greater sperm load was recorded in

brachypterous individuals (Langellotto et al. 2000) and the false chinch bug Cavelerius

saccharivorus Okajima (Heteroptera: Lygaeidae) due to faster maturation of

brachypterous insects (Fujisaki 1993). The results from this study showed that males

were more commonly collected in Fall 2004 and Fall 2005 than females and that females

were more likely to be macropterous. The relatively higher occurrence of macroptery in

females over males in 2004-2005 suggests that dispersal by flight, if it occurs, is

relatively more advantageous to females than males and that due to a lower number of

females in fall, it is likely they are either dispersing or experiencing earlier mortality.

However, since a higher incidence of female macropters versus male macropters was not

found in other regions across the range in Spring 2008, it is difficult to make inferences

regarding the interplay between sex, wing form and fitness across the entire region.
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The quality of habitat at each of the population sites in this study was not

evaluated, but future correlative studies would provide a more robust exploration of the

mechanisms determining sex in conjunction with wing ratio variation. The inclusion of

sex in polymorphic wing research is important considering the research by Brisson et al.

(2007), which suggested that sexes within a single species were influenced differently by

various environmental factors. It appears plausible, based on previous research and the

results obtained in this study, that intrinsic and extrinsic factors are influencing wing

form ratios and that these ratios may be further affected by sex ratio variation.

3.4.4 Patterns in size of insects

The differences among site in the width/length of characters suggests differential

selection pressures on these populations. Based on the positive relationship between

warmer temperatures and increased size in various insects groups (Colbo and Porter

1979, Colbo and Porter 1980, Nylin and Gotthard 1998) one would expect that the mean

summer temperatures across the four regions (Fig. 1.1) would produce the greatest

differences in average size between individuals in Fredericton, NB (warmest

temperatures) and St. John's, NL (coolest temperatures), which was not observed.

Although the conditions in St. John's did produce the smallest average individuals, the

greatest difference between average individuals is seen between Quebec, PQ and St.

John's, NL.1t is possible that the high precipitation experienced in Quebec during the

summer months creates favourable turf conditions, that subsequently produce large sized

individuals. The nutritional qualities of turf at each sampling location was not evaluated

in this study but would add additional context to future investigations of size variability
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among locations. The relatively smaller size of individuals sampled from New Brunswick

is not easily explained by any of the climatic variables examined in this study. However,

it is possible that the number of sites sampled within this study did not provide a broad

enough scale, or cover enough geographical area to allow for the detection of cross

regional gradients in climate and/or size of insects. This is supported by the fact that

while two sites in New Brunswick produced relatively small individuals, one separate site

in New Brunswick (NB I) ranked in the top half of sites with respect to size

(Brachypterous Rank=5, Macropterous Rank=2). Future work should including sampling

from a greater number of more evenly spaced locations in order to develop a more

complete "map" from which patterns could be more easily detected.

Inference of environment and size tradeoffs is complicated (Danks 2006) and

includes many factors such as temperature, food supply (Colbo and Porter 1979, Colbo

and Porter 1980), and a host of other environmental factors (Danks 2000). However, size

differences were evident between populations at a regional level, suggesting some

differential selective forces at this larger scale. The results presented here represent an

initial step in establishing a relationship between individual size and specific habitat

conditions or templets. However, it is likely that additional sampling would be required

to fully extract the nature of these relationships in Quebec and Eastern Canada, which

represents such a large geographic range.

There was no statistically significant relationship between growth rate in eggs and

average size ranking in brachypters. Interpretation of results is limited by the fact that this

experiment used the size rankings of the parents and the growth rate of their eggs to
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explore this relationship. There could be several compounding factors influencing this

relationship, including the possibility that adult size may influence growth rate of

offspring. Further experiments using parental size and one environmental factor at a time

will be necessary to elucidate this relationship between size, growth rate and temperature.

3.5 Summary

One of the primary objectives of this study was to determine whether evolutionary

or plasticity adaptation had resulted in local or regionally unique sex or wing ratios.

Contrary to the original prediction, sex ratio of B. leucopterus hirtus was consistent

across collection periods and locations, indicating a stable operational sex ratio of

approximately F:M=I: 1.19. This decreases the usefulness of sex ratio as an indicator of

habitat differentiation at either the local or regional scale. However, there were

significantly more males than females found in both the Fall 2004 and Fall 2005

collection periods, suggesting female dispersal or mortality through the summer season.

As hypothesized, wing form varied between locally separated populations and in the

same populations over time, suggesting a response to local and regional level

environmental conditions, but there was no relationship between wing form and density

in this study. Although more complete studies are required to elucidate the mechanisms

governing wing form, differences in wing form ratios among sites do indicate differences

among sites in the environmental influences acting upon populations. The fact that more

male brachypters were found compared to females suggests that the macropterous form

may be useful to females in dispersal. Patterns in insect width and length suggest that

conditions in St. John's, NL produce small individuals compared to most other regions
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across Quebec and Atlantic Canada, with two sites in New Brunswick rating similarly to

those in St. John's. This supports the hypothesis that this is likely a tradeofffor the rapid

growth rate required by B. leucopterus hirtus in this region. There was no statistical

evidence to support a correlation between growth rate and average size ranking to rearing

temperature. Evidence that wing form and size vary among populations can be further

explored by pest managers to predict the level of local population establishment.
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Chapter 4: Host Choice Behaviour of Blissus
leucopterus hirtus Montandon (Hemiptera:
Blissidae) in Relation to Geographic Distribution,
Insect Age and Insect Group Size

4.1 Introduction

4.1.1 Host Choice Behaviour

Insect host choice is a term that is used to describe preference in herbivorous

insects toward a given plant or group of plants for purposes that may include oviposition,

feeding, basking or predator avoidance. Insect feeding patterns within a single species

can vary across geographical areas as a result of resource availability and quality

(Diamond and Kingsolver 2010, Wennstram et al. 2010). Changes in host choice

preference may result in local or regional level adaptation in several physiological

systems, including communications, as in the case of the Enchenopa binolala complex

(Hemiptera: Membracidae), where vibrational mating signals are transmitted through

plant stems (Cocroft et al. 2010). Other aspects oflife history potentially affected include

mate choice (Abrahamson et al. 2001, Vanbergen et al. 2003, Gariir 2005, Nosil et al.

2005, Gariir et al. 2007), fecundity (Awmack and Leather 2002), morphology

(Vanbergen et al. 2003) and developmental time and growth rate (Grossmueller and

Lederhouse 1985, Nylin and Gotthard 1998). For example, local differences in host

choice may reflect subtle variation in the relative quality of potential hosts (Strauss and
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Karban 1998, Singer et al. 2002). Differences in plant quality may in tum be a reflection

of plant genetics or more extrinsic factors such as rainfall, soil conditions, sun exposure,

plant competition, or reduced plant defenses due to previous attack (Carriere and

Roitberg 1995, Karban and Baldwin 1997). In addition to direct nutritional quality of

plants, other factors, including the local presence of predators, entomopathogens (such as

Beauveria bassiana Bals.) and parasitoids may also influence local host choice (Dicke

1994). The specificity of the relationship between an insect herbivore and its host plant

may be strong enough to promote reproductive population isolation and subsequent

phenotypic and genetic differentiation (Futuyma and Peterson 1985, Berlocher and Feder

2002, Grace et al. 2010). Factors influencing host choice behaviour in B. leucopterus

hirtus at a local and regional level, where varying environmental (extrinsic) and

physiological (intrinsic) factors such as age and population size exist, may influence host

choice spatially and/or temporally.

4.1.2 Host Choice across Local and Regional Population Spatial Scales

Research on various insect species shows host choice and degree of host

specificity varies among geographically separated populations (papaj 1986, Prokopy et

al. 1988, Caillaud and Via 2000, Funk and Bernays 2001, Gotthard et al. 2003). This

specialization can lead to divergent host plant adaptation and eventual reproductive

isolation, examples of which are already described in several insect orders including

Orthoptera (Grace et al. 2010) and Coleoptera (Egan et al. 2008). Shifts in host choice

can also lead to adjustments in life history to optimize life strategy in novel environments

(Vanbergen et al. 2003). However, there are exceptions; Wehling and Thompson (1997)
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found that oviposition preference hierarchy was preserved in a widespread polyphagous

butterfly despite differences in host plant availability among populations of the insect

across its range. While variation in host preference is commonly observed and studied at

a regional level, host plant quality, a potential factor in host preference, can vary at a

small scale due to mineral and microclimatic differences that result in differences in soil

quality, nutritional quality, plant and insect phenology, enemy presence and other

environmentally dependent factors (Bernays and Graham 1988, Awmack and Leather

2002, Vanbergen et al. 2003, Diamond and Kingsolver 2010). Over a large geographic

region such as Quebec and Eastern Canada, where differences in climate are evident, one

could hypothesize that variation in host choice behaviour exists and that it may be an

important variable in discrimination of populations. Differences among populations in

host choice behaviour is a third marker of variation in life strategy, in addition to

phenology (Ch. 2) and morphology (Ch. 3) that may occur as a result of specific

environmental pressures (Scriber 1994), and adds insight into the effect of geographical

and climatic variation in insect life history. Using Southwood's habitat templet model

(Southwood 1977) as a foundation to explain population disparity, research into the

variables driving host choice at the population scale of B. leucopterus hirtus should

facilitate prediction of attributes that make an area favourable to colonization, and from

this, provide information to pest managers who are making recommendations on turf

species and their management to homeowners across this pest range. For example, better

insight may be provides on what types of species/cultivars to plant, and where the insects

are most liekly to be found at certain times of the year,
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4.1.3 Intrinsic Factors Influencing Host Choice

4.1.3.1 Age o/insect

In addition to the environmental detenninants, there are several intrinsic life history

variables that can result in host choice differences among populations of an insect

species. Mode of feeding, food choice and rate of feeding can differ among instars. For

example, the lack of mobility in some early instars limits feeding choices in some insect

species to hosts selected by the female during oviposition and, therefore, limits host

choice (Wennstrom et al. 2010). As insects mature, instars feeding on different plants

during specific periods of their ontogeny may reflect differences in nutritional

requirements (Slansky and Scriber 1985). For example, feeding trials with caterpillars of

the gypsy moth, Lyman/ria dispar L. (Lepidoptera: Lymantriidae) showed that as these

insects developed from 3'd to 6th instar, they exhibited increased preference for diet cubes

with high lipid concentration in conjunction with decreased preference for diet with high

protein concentration. This likely reflected changing nutritional needs (Stockoff 1993).

Feeding trials employing insects of only one instar may, therefore, not indicate

preferences at another stage of their ontogeny or that of potential host communities. A

strong indication that host preference may vary seasonally with B. leucopterus hirtus is

that the common chinch bug, B. leucopterus leucopterus Say (Hemiptera Blissidae) has

been observed in the field to move between crop hosts including small grains, corn and

sorghum during the spring and summer months (Headlee and Walker 1913, Packard

1937, Lamp and Holtzer 1980). This may indicate changes in nutritional value of crops or

physiological change in the insect over time, which was assist pest managers in
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determining when certain plants or grass types may be more susceptible to damage.

Although physiological changes may be responsible for, or accompany changes, in

feeding behaviour in some insects, the specific labial tip sensory sensilla do not appear to

differ and thus are not a factor in age-specific host selection of B. leucopterus hirtus

(Baker et al. 2008).

4.1.3.2 Insect density and group dynamics

The life history strategy of an insect can include a density dependent response. In

certain cases, the result is physiological or morphological change; locusts (Pener and

Yerushalmi 1998) and aphids (Braendle et al. 2006) are classic examples. One

manifestation of the density response includes host choice behaviour. Some of the effects

of high density are resource use efficiency, protection from natural enemies while feeding

and indirect benefits of mate finding and protection from environmental conditions

(Gullan and Cranston 2005). As an example, caterpillars of Chlosyne janais Drury

(Lepidoptera: Nymphalidae) and Chlosyne poecile Felder (Lepidoptera: Nymphalidae)

have all shown increased ability to penetrate thicker leaf tissues when feeding in large

groups (Denno and Berney 1997, Inouye and Johnson 2005). Similar advantages have

been recorded for certain aphids, because of the ability of large aggregations to redirect

the flow of nutrients to a wounded area in host trees (Way and Carnmell 1970). Large

groups may therefore facilitate feeding on hosts that would otherwise be inaccessible.

In contrast, high densities of insects may deter an insect from choosing a particular

host. Costs offeeding aggregations include competition, transmission of diseases and/or
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parasitoids, deteriorating environmental conditions and increased conspicuousness. An

example of egg density deterring host selection is found in Pieris brassicae L.

(Lepidoptera: Pieridae), an insect that will oviposit on a less favourable plant when egg

overloading is observed on the preferred species (Rothschild and Schoonhoven 1977).

Knowing whether host preference of B. leucopterus hirtus is affected by population

density should provide further understanding of the population dynamics of this species

and its potential impact as a pest at both low and high densities.

4.1.4 Host Choice Behaviour in Blissus leucopterus hirtus

Blissus leucopterus hirtus is a widespread turfgrass and crop pest in Quebec and

Atlantic Canada and the northeastern United States (Leonard 1966, Vitturn et al. 1999,

Potter 1998). In Canada, B. leucopterus hirtus is a destructive turf pest in Ontario,

Quebec and the Atlantic provinces. Within the United States, its range extends as far west

as East Minnesota and south into North Virginia. In the last decade B. leucopterus hirtus

has been recognized as a pest of turfgrass in Newfoundland, an island off the east coast of

Canada. The species was first recorded in Newfoundland in 1949 by Brown (Brown

1949), the year the province joined Canadian Confederation. Whether its presence on the

island is the result of an introduction from the mainland of North America, or due to

better faunal surveys conducted by the Government of Canada is not certain.

Although host species specificity exists in phytophagous insects (Jaenike 1990,

Bernays and Chapman 1994, Schoonhoven et al. 1998), B. leucopterus hirtus and other

closely related species within Blissidae feed on several monocots, and B. leucopterus
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leucopterus is often associated with damage to plants other than turfgrasses, including

com and sorghum (Ahmad et al. 1984, Ramoska and Todd 1985). General research has

been conducted on the survival and fecundity of Blissus leucopterus leucopterus on

various com and sorghum lines (Mize and Wilde 1986a, 1986b) and on host preference

among turfgrasses in the western chinch bug, Blissus occiduus Barber (Hemiptera:

Blissidae) (Eickhoff2002, Eickhoff et al. 2006). The southern chinch bug, Blissus

insularis Barber (Hemiptera: Blissidae) has also shown feeding flexibility and has even

overcome avoidance to previously resistant cultivars. Specifically, the insect was able to

overcome resistance of a new cultivar of St. Augustinegrass 'Floratum' within twelve

years of the turfgrass' release, as selective pressures increased both the longevity of

females and the weekly oviposition rate in populations on this host (Busey and Center

1987, Busey 1990). Since B. leucopterus hirtus is closely related to these species, these

observations suggest that B. leucopterus hirtus may have turf-specific polyphagous

potential (Eickhoff et al. 2004). This flexibility may even include species not yet recorded

as hosts.

In fact, at present, B. leucopterus hirtus has been recorded feeding on cool-season

turfgrasses including creeping bentgrass, Kentucky bluegrass, perennial ryegrass, fine

leaf fescues, and timothy grass, and warmer season grasses such as zoysiagrass (Vittum et

al. 1999). However, laboratory rearing is often achieved through feeding on com because

it is easily grown and grows rapidly (Baker et al. 1981). Much attention has been given in

recent years to B. leucopterus hirtus' interaction with grasses that either naturally contain,

or have been inoculated with endophytic fungi (a fungus living symbiotically within a
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grass or plant). These endophytes have potential to promote avoidance or toxicity in

phytophagous insects (Saha et al. 1987, Breen 1994, Clay 1996, Carriere et al. 1998,

Richmond and Shetlar 2000, Bourassa et al. 2007). There is evidence that nymphs of B.

leucopterus hirtus have the capacity to discriminate between endophyte and non

endophyte inoculated grass cultivars at a micro-geographic scale (Mathias et al. 1990,

Carriere et al. 1998), making endophyte presence/absence an important factor in the

characterization of potential hosts and thus host choice.

Although there has been some research on host choice in B. leucopterus hirtus, there

has been little investigation of possible variation in host choice among populations.

Confirming the existence of differences in host choice among populations is the first step

in establishing host choice as a life history characteristic subject to change as a result of

environmental conditions, for it is well established that environmental conditions have

influence over the fauna within an areas. Eventually elucidating the specific factors

responsible for these difference in host choice should allow turf scientists and managers

to better predict potential areas of infestation.

4.1.5 Research Objectives

This study characterized the host choice preference of B. leucopterus hirtus to identify

differences in these characteristics at the local and regional scale. Based on current

knowledge of B. leucopterus hirtus and the habitat template theory, hypotheses are as

follows:

161



I) Based on evidence from closely related species (B. leucopterus leucopterus) and

preliminary observations in other studies, B. leucopterus hirtus display differences

in plant host preference among a) locally separated populations in St. John's, NL

and/or b) regionally separated populations of B. leucopterus hirtus in Quebec and

Atlantic Canada.

2) Based on the changing needs on an insect through its ontogeny, related both to

shelter and food, early instars of B. leucopterus hirtus display preference for soft,

fine "feeding" grasses, which later instars show preference for coarser, sheltering

grasses.

3) Based on previous observation that individuals of B. leucopterus hirtus have the

capacity to aggregate toward later instars, host preference is influenced by

aggregation in the later instars. Therefore, individuals are more randomly

distributed among grass tufts while groups may cluster together on various plants.

Host preference in Blissus leucopterus hirtus is affected by whether an individual

insect is feeding in isolation or in a group.

4.2 Materials and Methods

The above research questions were addressed through a series of laboratory host

plant choice tests. Experimental 'arenas' in which B. leucopterus hirtus were allowed to

make a choice among either twelve or four varieties of grass were used. The null

hypothesis tested was that there would be no significant difference in choice for any

treatment scenario. These experiments were based on host choice (i.e. an insect was
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observed on or near a plant) and were not designed to verify feeding or oviposition

choice, since neither puncture wounds nor egg counts were examined. Comparisons

between locally and regionally separated populations were based on the collection of live

adults from 13 locations in Quebec and Atlantic Canada. Local populations were sampled

from sites within a few kilometers of each other, with the exception ofNew Brunswick,

where based on local recommendation, two populations were sampled in Fredericton,

NB, and one 82 km away, near Saint John, NB. 'Regional areas' were defined by

provincial boundaries, with province names serving as identifiers for these site groupings.

4.2.1 Experimental Setup

In May 2008, B. leucoplerus hirlus over wintering adults were collected from

thirteen sites in Quebec and Atlantic Canada: three in Quebec City (PQ), two in

Fredericton (NB), one in Saint John (NB), three in the Annapolis Valley (NS) and four in

St. John's, (NL) (Fig. 4.1). The four populations selected in St. John's in 2008 were

independent of the 10 sites sampled from 2004-2005. For time and efficiency, adults were

collected using a combination of hand sampling with tweezers and vacuum sampling in

areas identified by local entomologists as inhabited by B. leucoplerus hirlus populations

(Appendix C). Over the 14-day collection trip, captured individuals were stored in plastic

containers with grass and plant debris from the local collection area and kept in a cooler

above ice packs that were refrozen daily. Upon arrival in St. John's, the adult bugs were

transferred into site-specific large sized plastic Ziploc® Snap 'n Seal containers, with

each container considered an individual colony.
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FIGURE 4.1. Location of twelve study sites across Atlantic Canada. Sites are labeled in
enlarged map sections.

The containers were modified by replacing the circular centre section of the lid

(d=10 cm) with a 0.2 mm mesh that promoted airflow but prevented the bugs from

escaping. Plant material and debris in the containers were removed and all colonies were

fed stem sections from green house reared Zea mays var. polka (Veseys Seed Company,

Charlottetown, PEl, Canada) between 3 leaf and 4 leaf stage. The colonies were placed

into a Conviron® growth chamber maintained at 20°C±1°C, with a 16:8 hour photoperiod

at 100% relative humidity. Several individuals from each colony were killed, preserved in

70% ethanol and sent to Agriculture and Agri-Food Canada in Ottawa, Ontario, Canada

for identification at the Canadian National Collection. All samples submitted were

confirmed as B. leucopterus hirtus. Individuals were allowed to mate and produce eggs,

which were collected and transferred to separate containers. All eggs and nymphs were

reared under identical conditions to their parents until they were required for experiments.
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Experiment i: initial comparison and selection ofcultivars: Following the

protocols of Eickhoff et al. (2006), a preliminary evaluation of host preference with 12

grass cultivars used commercially in ewfoundland was carried out in the laboratory

(Table 4.1). All grass varieties were grown from seed provided by Pickseed Canada Inc.

(Lindsay, ON, Canada) with the exception of the timothy seed, which was purchased at a

gardening store in St. John's. All of the grasses were labeled endophyte positive or

endophyte free. However, as a second precaution, each cultivar was tested at 6 weeks of

age for the presence of endophytes using a Neotyphodium Field Tiller Phytoscreen

Immunoblot Kit (Agrinostics, Ltd. Watkinsville, GA, USA). All grasses tested positive or

negative for endophyte as labeled on the original package. With minor modifications, the

experiments followed the procedures of Eickhoff et al. (2006). Experiments began when

grass was six weeks old. Experimental arenas were created in medium sized Ziploc

Twist 'n Lock containers, in which the lids were modified by replacing the circular centre

section of each lid (d=5 cm) with a 0.2 mm mesh that promoted airflow but prevented

escape.
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TABLE 4.1. Twelve cultivars initially investigated for attractiveness to B. leucopterus
hirtus.
Grass Type
Rye

Red fescue

Tall fescue

Timothy
Sheep fescue
Creeping bent
Kentucky
bluegrass

Cultivar
Common Rye
Fiesta
Common Red
Jasper
Fawn
TearnJr.
None specified
Azay
None specified
Touchdown
Mercury
America

Latin name
Lolium perenne
Lolium perenne
Festuca rubra
Festuca rubra
Festuca arundinacae
Festuca arundinacae
Phleum pratense
Festuca ovina
Agrostis palustris
Poa pratensis
Poa pratensis
Poa pratensis

Endophyte +
No
Yes
No
Yes
No
Yes
No
No
No
No
No
No

Twenty-four hours prior to each experiment, grass heights were standardized to

four em by trimming each tiller with garden scissors. The next day, one tiller was

randomly selected from each cultivar bed and its roots gently washed with tap water. The

roots of the tiller were placed into water filled florists' hydro-pies so that the tiller was

exposed above the hydro-pic rim. Tillers were secured into place by stretching Parafilm®

over the hydro-pic opening. The cultivars were placed in an arena with each hydro-pic

containing one tiller of one grass type and placed into one of 12 evenly spaced holes

around the bottom of the container (Fig. 4.2). Nine arena replications in which the

placement of the tillers was randomized were created for this experiment, with containers

serving as blocs. Twenty five B. leucopterus hirtus individuals in 4th and 5th instar were

introduced into the centre of each arena (Fig. 4.2). The individuals were of mixed gender

from NL2, a population with a high number of available individuals. The number of
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individuals found on or within 1 cm of each tiller was recorded at 1, 2, 4, 8, 24, 48 and 72

hours. The 1 cm radius was chosen because although extreme care was taken when

removing the arenas from the growth chamber, the movements and change in light

conditions may have caused some disturbance and movement among the insects. The I

cm radius typically included the surface directly below each tiller, on the wax surface of

FIGURE 4.2. Experimental set up in which 25 individuals of B. leucopterus hirtus were
allowed to choose between 12 different cultivars of common grasses.

Based on the results of this experiment, four of the initial 12 cultivars, which

differed in both attractiveness to the NL2 population and in various physical

characteristics (Table 4.2), were used in Experiments 2-5. To reduce the number of

potential variables, a criterion for the final four selected grasses were that they were free

of endophyte. All four of the final cultivars tested negative for endophytes. For the four

grasses, timothy was chosen because of its unique texture and appeal in Experiment 1
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(see results below). The cultivar Mercury was chosen because it was the most frequently

selected of the Kentucky bluegrasses during Experiment 1 and because Kentucky

bluegrass is considered a preferred host for B. leucopterus hirtus, and unlike timothy, has

a soft, fine texture. The sheep fescue Azay was chosen because it has unique architectural

characteristics (Table 4.2) and of its initial high favourability to the insects during the 72

hour trial. Finally, the tall fescue Fawn was added to the final four grasses because of its

similar physical characteristics to timothy, but with lesser apparent appeal to the NL2

population.

TABLE 4.2. General description offour grasses used in host choice experiments

Wide

Medium

Coarse

Fine

General Leaf Blade
type* Texture** width***

Bunch

Latin name

Poa pratensis

Phleum pratense Bunch Coarse Wide
Sod
forming

Grass

Festuca
arundinacae

Sheep fescue (Azay) Festuca ovina Bunch Very Fine Narrow
* Bunch grasses form bunches or clumps and spread only by seed. Sod forming grasses
will form rhizomes that bind together the soil.

Tall fescue (Fawn)

Timothy
Kentucky bluegrass
(Mercury)

** Texture was assigned based on technical data provided by Pickseed Canada Inc.
(Lindsay, ON, Canada) in combination with subjective assessment by the researchers.

***Blade width was assigned based on technical data provided by Pickseed Canada Inc.
(Lindsay, ON, Canada) and an average width of20 randomly selected grass blades
(Narrow=<l rom, Medium=I-5 rom, Wide=>5 rom.

Following Experiment 1, four additional experiments were conducted, the

variables of which are summarized in Table 4.3. In comparisons of host choice among

local and regional populations, early instars, which are more likely to be feeding, were

used. The preferences of early instars are then compared to later instars in a comparison
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of feeding preference by age. Finally, the effect of group size is compared by using later

instars (4 and 5) because of the tendency of these older insects to aggregate when in

groups.

TABLE 4.3. Summary of variables in Experiments 2-5, indicating the variable examined,
instar, the number of collection sites included, the number of replications, and the number
of B. leucopterus hirtus used per replication.
Exp. Variable Instar Sites BlockJReplications Insects per

relication
Local Population 10
(St.Joho's,NL)Regiooal
Populatioos

AgeofHCB lao 11

Group size
(1 vs 10)

Group: 10
Individual: 1

Experiments 2-5 were conducted when grass was just over six weeks old. As with

the previous trial, twenty-four hours prior to each experiment, grass heights were

standardized to four em by trimming each tiller with garden scissors. The next day,

groups of 5 tillers were randomly selected from each cultivar bed and their roots gently

washed with tap water. The roots of grouped tillers were placed into water filled florists'

hydro-pies so that the tiller was exposed above the hydro-pic rim. Tillers were secured

into place by stretching Parafilm® over the hydro-pic opening (Fig. 4.3).

Experimental arenas were created in 'medium' sized Ziploc® Twist 'n Lock containers, in

which the lids were modified by replacing the circular centre section of each lid (d=5 em)

with a 0.2 mm mesh that promoted airflow but prevented escape. Four grass cultivars

were placed in an arena with each hydro-pic containing 5 tillers of one grass type and

placed into one offour evenly spaced holes around the bottom of the container (Fig. 4.3).
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FIGURE 4.3. Experimental set-up to determine host choice in B. leucopterus hirtus.

Experiment 2: Comparison ofhost preference in locally separated populations: For each

offour locally separated populations in St. John's, NL, ten 1st instar nymphs of B.

leucopterus hirtus were placed into the centre of an arena. There were 5 replications for a

total of200 insects in the experiment (5 replications x 10 insects x 4 local populations).

The arenas were placed into a Conviron® growth chamber maintained at 20°C±1°C, with

a 16:8 hour photoperiod at 100% relative humidity. After 72 hours, nymphs observed

within I cm of a tiller group were counted as having chosen that cultivar. Individuals

outside of that radius were not counted.

Experiment 3: Comparisons ofhost preference in regionally separatedpopulations:

Within each of the four regions sampled (Quebec, New Brunswick, Nova Scotia,

Newfoundland), the site with the highest numbers of collected individuals (PQ3 NS2,
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NB2, NL2) (to ensure sufficient numbers) was selected for regional comparisons among

populations. For each population, ten lSI instar nymphs were placed into the centre of an

arena. There were 5 replications for a total of200 insects in the experiment (5

replications x 10 insects x 4 regional populations). The arenas were placed into a

Conviron® growth chamber maintained at 20°C±1°C, with a 16:8 hour photoperiod at

100% relative humidity. After 72 hours, nymphs observed within I cm of a tiller group

were counted as having chosen that cultivar. Individuals outside of that radius were not

counted.

Experiment 4: Comparison ofhost preference between 1st and 51h instar nymphs: For each

of these two age categories, ten nymphs from a densely populated site in the Annapolis

Valley of Nova Scotia were placed into the centre of an arena. This procedure was

replicated 5 times for both 1st and 5th instar nymphs for a total of 100 insects (5

replications x 10 insects x 2 age groups). For unknown reasons, initial mortality for 5th

instar were high, so an additional 54 5th instars were placed into new arenas, distributed

according to the procedures outlined above. The arenas were placed into a Conviron®

growth chamber maintained at 20°C±1 °C, with a 16:8 hour photoperiod at 100% relative

humidity. After 72 hours, nymphs observed within 1 cm of a tiller group were counted as

having chosen that cultivar. Individuals outside of that radius were not counted. The

results of these trials involving 51h instar insects were also used in Experiment 5.

Experiment 5: Comparison ofhost preference between one individual and groups of10

individuals: Within each of the four regions sampled (Quebec, New Brunswick, Nova

Scotia, Newfoundland*), the site with the highest population numbers was selected to test
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the effect of density on host choice preference. Nymphs in the 5th instar were placed into

an arena either individually or in groups of 10. For the groups of 10 nymphs, 5

replications were used for each region, and these trials were done as part of Experiment 4.

For bugs placed individually, the number of replications varied from 13-42, depending on

availability of nymphs from each site. After 72 hours, nymphs observed within I cm of a

tiller group were counted as having chosen that cultivar. Individuals outside of that radius

were not counted. *Because of limited availability of insects at this point, the results of

groups text on 5th instars from experiments 2 and 3 were incorporating into this data

analysis to compensate for low number in Newfoundland.

4.2.2 Data Analysis

Only outcomes in which individual insects "chose" a cultivar (were found within

I cm ofa tiller group) were included in all analyses. This is because some individuals

dies or became immobilized by petroleum jelly used in the experiments to keep insects

from escaping. For all these experiments, each insect was considered individually with

regard to choice made. In Experiment 1, twelve cultivars were evaluated for their

attractiveness to B. leucopterus hirtus by comparing the mean number of B. leucopterus

hirtus among tillers at 1,2,8,24,36 and 72 hours using a Kruscal-Wallis test. The results

at 72 hours were further analyzed with a post hoc Wilcoxin pair comparison using

Holm's correction.

For Experiments 2-5, in which only four grass tillers were used, a binary form of

analysis was chosen because of the lower number of possible choices, combined with the
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robust quality ofa binary error structure (Sarkar and Midi 2010). Replicates were pooled

and if a bug chose cultivar I, the results for that bug would be 1/1 successes for cultivar I

and 0/1 successes for all other cultivars. This binomial approach contrasts with the

similar experiment by Eickhoff et al. (2006) in which a normal error structure was

employed. In the present experiments, data were analyzed using the generalized linear

model. The specific model used was a binary logistic regression routine with factors (e.g.

grass type) assigned numbers as 'dummy variables'. The binary model produces results in

the form of odds ratios, which can then be converted into probabilities using the formula:

P=odds/(1 +odds)

To facilitate interpretation, the odds of a given bug choosing a particular cultivar

compared to a chosen 'base cultivar' was then converted to the probability of finding a

bug on a particular cultivar. The base cultivar is one of the grass types against which all

others are compared. In this case, the arbitrarily selected base cultivar was the sheep

fescue. (Subsequent substitution on alternate bases produced identical conclusions). This

model allowed comparison of the odds of an insect from one origin choosing a certain

type of grass versus the odds of an insect from a separate origin choosing the same type

of grass. Mosaic plots express these probabilities and were created using JMp® 7.0.1.

JMP® 7.0.1 (SAS Institute Inc., Cary, NC, USA).

173



4.3 Results

4.3.1 Experiment 1: Initial Comparison and Selection ofCultivars:

Data was not normal so non-parametric methods were used to assess differences among

host choice. Based on nine replications, the mean number of B. leucopterus hirtus

individual 4th and 5th instars on each tiller varied significantly among cultivars at I hour

(KWT p=O.012), 8hrs (KWT p=O.0490) 24 hours (KWT p=O.OOI5), 48 hours (KWT

p=O.0006), and 72 hours (KWT p=O.OOOl). However, there were no significant

diffemences among host choice at 2 hrs (KWT p=O.3507) and 4 hrs (KWT p=O.5161)

(Fig. 4.4). Although there were changes throughout the experiment in the most preferred

grasses, certain grasses remained favourable throughout 72 hours (e.g. timothy).
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FIGURE 4.4. Mean number of B. leucopterus hirtus 4th and 5th instars on 12 different
cultivars at t=l, 2, 4,8,24,48 and 72 hours. Additional analysis on the results at 72 hours
included a pairwise comparison between tillers. Tillers sharing the same alphabetical
notation for results at this time are not significantly different. There were significant
differences among the tillers selected at all time intervals except t=2 and 4 hours.
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4.3.2 Experiment 2: Comparison of Host Preference in Locally Separated Populations:

In summary, 95 of200 1st instars made a visible choice at 72 hours. Other

individuals were found unassociated with a tiller group or dead. The odds of a single bug

choosing a particular cultivar were calculated using a BLR odds ratio test and converted

to proportion to compare local populations in St. John's, NL. The proportion of lSI instar

nymphs that selected Kentucky bluegrass and sheep fescue varied significantly between

site origin (p=0.027 and p=0.048 respectively) (Table 4.4).

TABLE 4.4. Proportion of lSI instar B. leucopterus hirtus choosing one of four grass
cultivars at four locally separated sites in St. John's, NL. The total number of bugs
making a choice at each site were NL I: n=27ISO, NL2: n=32/50, NL3: n=21!50, NL4: n
=15/50.
St. John's Initial n Made a choice
Location

Timothy Kentucky Tall Sheep
B1u~s Fescue Fescue

NLl 50 12 2 1 12
NL2 50 11 15 1 5
NL3 50 4 6 3 8
NL4 50 1 8
Differences among p=0.078 p=0.027 p=0.444 p=0.048
sites based on BLR
odds ratios

4.3.3 Experiment 3: Comparisons of Host Preference in Regionally Separated
Populations:

In this experiment, 124 of 200 1st instars made a choice. Among the cultivars,

more than half the insects selected timothy or Kentucky bluegrass (Table 4.5). In a whole

model BLR, the proportion of 1st instar nymphs that selected timothy varied significantly

between sites (p=0.003). Pair-wise comparison revealed that 1st instar nymphs from the
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site in Nova Scotia site selected timothy significantly less frequently than individuals

from the other populations.

TABLE 4.5 Proportion of 1st instar B. leucopterus hirtus choosing one of four grass
cultivars at regoinlly separated sites in Quebec and Atlantic Canada. The total number of
bugs making a choice at each site were NLl: n=26/50, NL2: n=29/50, NL3: n=37/50,
NL4: n =32/50.
Province Initial n

PQ 50
NO 50
NS 50
NL 50
Differences among instar
based on BLR odds ratios
converted to proportions

Made a choice
Timothy Kentucky

Blu s
15 8
13 8
4 19
II 15
p=0.003 p=0.153

Tall
Fescue

p=0.159

Sheep
Fescue

p=0.498

4.3.4 Experiment 4: Comparison of Host Preference between 1st and 5th Instar Nymphs:

The results from this experiment are based on test individuals reared from a single

population of B. leucopterus hirtus in the Annapolis Valley in Nova Scotia. There was no

significant difference in host choice between the initial trials conducted with 5th instars in

Experiment 4 (in which there was high mortality) and the second series of trials in

Experiment 4, as described above, so these results were combined. The most common

choice for 1st instar nymphs was Kentucky bluegrass and a significantly higher

proportion of the 1st instar populations chose this grass compared to 5th instars

(X2=9.501, (3), p=0.0233). In contrast, there was no difference in host choice for 5th

instars (Table 4.6).
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TABLE 4.6. Proportion of 1st instar B. leucoplerus hirlus and 5th instar B. leucoplerus
hirlus choosing one of four types of grass. Nymphs were reared from adults collected at a
single site in the Annapolis Valley, NS. The total number of bugs making a choice for
each age group was 1st instar: n=37/50, 5th instar: n=50/l04.
Istar Initial n Made a choice

Timothy Kentucky Tall Sheep
Blu Fescue Fescue

50 4 19 8 6
5 50 10 10 16 14
Differences among instar based p=0.150 p=0.015 p=0.228 p=0.150
on BLR odds ratios converted to
proportions

4.3.5Experiment 5: Comparison of Host Preference between One Individual and Groups
of 10 Individuals:

In some cases (New Brunswick and Newfoundland), this resulted in low sample numbers

for comparison because of mortality during the study. As a result, only sites from Quebec

and Nova Scotia are presented here. In Quebec, only insects making a choice individually

selected timothy, and this resulted in a significant difference with those in a group, as the

group never selected timothy. In Nova Scotia significantly more grouped insects chose

tall fescue (Table 4.7)
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TABLE 4.7. Proportion of 5th instar B. leucopterus hirtus in PQ and NS choosing one of
four types of grass when allowed a choice individually or within a group of 10.

.............--........-...-.--.-..-.--..-...........-.....--,-;,-G=roup 50 ~.OO8 ~.081 ~.172 I

6 6
4 I
p=O.885 p=O.015 p=O.122

4.4 Discussion

4.4.1 Flexibility of Host Choice in B. leucopterus hirtus

Blissus leucopterus hirtus exhibited a wide range of host preference in this series

of experiments, which is consistent with general observations ofB. leucopterus hirtus

(Ahmad et al. 1984, Ramoska and Todd 1985). In general, host choice varied among both

local and regionally separated populations, suggesting host flexibility in B. leucopterus

hirtus. The origin of these differences may lie in either genetic selection or phenotypic

plasticity (itself a potential result of genetic selection). Exposure and learned behavior,

which have previously been explored as potential sources of variation in host choice

behaviour (Schoonhoven et al. 2005), are not probable causes for observed differences

since nymphs were raised in identical conditions. However, it is possible for plastic

responses to be maintained across generations (Agrawal et al. 1999), so plasticity remains

a possible explanation for observed differences. Regardless of the underlying response

mechanism, it is evident that B. leucopterus hirtus is capable of adaptation in response to
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heterogeneous and/or novel environments; a characteristic that is advantageous for

organisms that seek new habitats (Fordyce 2006).

Experiment 1 The experiment was used to identify a range of grasses and cultivars

to be used in a more limited comparison of host choice. Because of the combination of

cultivars used in this experiment (multiple cultivars from the same species, some

endophyte enhanced) it is difficult to make a direct comparison of preference among

species. In reality, less data was obtained than originally anticipated. However, the time

lapse experiment revealed that timothy was favoured throughout the study whereas other

cultivars varied in the degree to which they attracted the bugs over time. All three

cultivars of Kentucky bluegrass were widely favoured until t= 4 hours, after which time

they quickly diminished in attractiveness. At t=72 hours, the Kentucky bluegrasses tiller

appeared stressed (brownish, non-turgid). A similar pattern of stress was seen in common

rye and Azay (sheep fescue). This may have been caused by either intense feeding or

suboptimal growth conditions. The decrease in apparent health and attractiveness of the

endophyte-negative ryegrass appeared to correspond to an increase in attractiveness over

time in the endophyte positive rye grass cultivar (Fiesta). It is therefore possible that

although the endophyte-negative cultivar of rye was initially preferred, the endophyte

positive cultivar increased in relative attractiveness once the endophyte-negative cultivar

became stressed, despite the potential health risk to the insects. This type of preference

ranking, documented in several insect species (Carriere and Roitberg 1996, Prokopy et al.

1988), is a process driven by insect sensory perception of potential plant hosts, and is

elaborated upon by Papaj and Rausher (1983) and Carriere (1998). It is likely that B.
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leucopterus hirtus was able to detect differences among plant choices in this experiment,

as in previous experiments in which it was able detect endophyte presence at the

microscale (Mathias et al. 1990, Carriere et al. 1998). Additionally, a microscale feeding

study by Anderson et at (2006) using B. leucopterus hirtus examining labial probing

(reflecting feeding interest) on multiple grasses including sorghum, fine fescues and

buffalograss found more frequent sampling of potential hosts than in other species within

the Blissus complex.

The cultivars used in Experiment J were structurally distinct. However, the

relative importance of structural variation and variation in nutritional quality on host

choice is not clear because of evidence of stressed tillers at 72 hours, a time that was

selected in order to mirror previous experiments (Eickhoff et al. 2006). This may have

affected host choice in the latter hours of this experiment. To account for this, the number

of tillers was increased from one to five in subsequent experiments, which resulted in

seemingly less stress on the grass over 72 hours. However, further work is needed to

determine the instar specific feeding intensity of B. leucopterus hirtus, and the rate at

which it can cause deterioration of overall plant health. Additional experiments would

also help determine if changes in preference by B. leucopterus hirtus are related to grass

architecture, decreasing nutritional value or changing chemical signals from these

grasses. The results of this experiment, however, do highlight the importance of choosing

an appropriate time scale for host choice studies, particularly in cases where the food

availability is limited within the experiment.
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Experiment 2 revealed that locally separated populations in St. John's were

significantly different in the probability of B. leucopterus hirtus selecting both Kentucky

bluegrass and sheep fescue as host plants. The preference for tall fescue was low in all

populations, while at other sites, insects appear to select between either sheep fescue or

timothy in most cases. This is surprising considering that both cultivars are bunch

grasses. However, timothy has coarse and broad leaves while sheep fescue has fine and

narrow blades, which could result in differential selection based on tissue penetrability

and protective coverage provided. Eickhoff et al. (2006) examined the importance of

architecture in the host choice of Blissus occiduus. In their twelve-cultivar experiment

they found that there was a preference by 4th and 5th instar B. occiduus for the

stoloniferous grasses such as St. Augustinegrass and bermudagrass that provided

protective coverage. Eickhoff et al. (2006) proposed that plant structure could play

important roles in insect-plant interactions, beyond feeding.

In some cases, when not feeding, insects may optimize body temperature or

shelter by changing environments throughout the day. Such behaviour is exhibited, for

example, in the black desert grasshopper, Taeniopoda eques Burmeister (Orthoptera:

Romaleidae), which roosts on elevated plant parts during sunny periods (Whitman 1987)

and descends further down the plant during cloudy days. Lynch et al. (1987) also

suggested the variable leaf width of bermudagrass may provide an attractive host for B.

leucopterus leucopterus because of versatility of the grass as both a feeding source and as

shelter, again highlighting the potential importance of plant architecture in host selection.

Apart from nutritional considerations, which were not evaluated in this study, it is
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possible that extremely delicate lSI instars prefer the thin, pliable blade texture of

Kentucky bluegrass for feeding. However, when not engaged in feeding activity, they

may prefer the shelter provided by coarser bunch grasses. A more focused study in which

leaves were periodically sampled and examined for leaf punctures would yield greater

insight into this aspect of B. leucopterus hirtus behaviour.

Based on Experiment 2, the odds of an individual choosing Kentucky bluegrass

were similar in populations from sites NL2, NL3 and NL4, but not from site NL I. The

key implication of these results is that, although the reasons for this difference for this are

not immediately apparent, the variability in host choice observed in this experiment over

these scales emphasizes the importance of future host preference studies from populations

that are representative of the local and regional scale, so that host preference within

individual populations is not incorrectly extrapolated to larger regions.

Results from regional populations (Experiment 3) demonstrated a similar

spectrum in host choice compared to Experiment 2. There was a significant difference

among the sites in the odds of an individual selecting timothy, and although the hierarchy

of preference for Kentucky bluegrass, tall fescue and sheep fescue remained relatively

consistent, the odds of a bug choosing any of these grasses seemed to be roughly

inversely related to the odds of a bug choosing timothy. The exception is at one site in

Newfoundland (NL2), where the proportion of individuals selecting tall fescue was very

low. From Experiment 2 however, it appears that avoidance of tall fescue was a common

characteristic among populations in St. John's, NL. Because this was a laboratory based

experiment, with all grasses grown under identical conditions, it appears that avoidance
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of tall fescue is a regional phenomenon. However, an understanding of the reasons for

regional variation in host preference will require more detailed study.

In combination, Experiments 2 and 3 demonstrate that B. leucopterus hirtus feeds

on a variety of grass hosts and that its preferred host may differ slightly across geographic

region. The difference in host choice observed among identically reared populations from

different origins, exposed to identically cultured host plants, suggests heritability of host

choice, as was found by work on the southern chinch bug Blissus insularis in which host

adaptation was shown to have genetic influences (Busey 1990). In accordance with

Experiment 2, it is clear that current methodologies in turf science for determining host

choice in B. leucopterus hirtus are insufficient for extrapolation to larger scales due to

variability among local populations. Experiments of this nature should include multiple

replicates to account for regional modes and variance, and population samples should be

taken from a diversity of habitats across the insect's range. A parallel study that

incorporates aspects of geographic isolation should also be conducted in Newfoundland,

as this island is separated from the North American mainland, with prevailing climatic

differences.

Variability in host choice and in life history are key underpinnings in the 'here

and now', 'here and later' or 'elsewhere' templet model (Southwood 1977, Solbreck

1978), which predicts that insect species will adapt in a variety ways to a dynamic and

heterogeneous environment. The genetic and/or phenotypic flexibility of characteristics is

likely one of the characteristics that has made B. leucopterus hirtus so effective as a wide

ranging pest species. The capacity for plasticity in host choice is likely an evolutionary
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response to the dynamics of the environmental conditions and that of the potential hosts

across the range of B. leucopterus hirtus. Being aware of this potential flexibility and its

possible determinants should assist pest managers by providing awareness of multiple

potential hosts that may differ with geographic locality and changing climate conditions.

For example, pest researchers may better predict where (in which turf areas) to search for

aggregated populations of B. leucopterus hirtus as they emerge from sheltered location in

the spring, thrive in feeding grasses during early summer, and aggregate to more

protective grasses in the fall.

4.4.2 Changes in Host Preference with Ontogeny of B. leucopterus hirtus.

The results of Experiment 4 clearly showed that host choice changed significantly

between 151 and Slh instar nymphs. First instar nymphs had a preference for Kentucky

bluegrass whereas Sth instars were found more evenly distributed among hosts.

Phonologically based intra-population variation in host choice is also seen in other insect

groups. As outlined in the chapter introduction, research on other insect orders provides

evidence that insects may feed on different plants during different periods of their

ontogeny, reflecting differences in nutritional, protective or other biotic/abiotic

requirements. It appears, based on these results, that age affects host choice and, in the

case of B. leucopterus hirtus, young instars are partial to Kentucky bluegrass. This is

likely due to nutritional, textural and/or architectural characteristics of this grass. The

soft, fine texture of Kentucky bluegrass is likely appealing to the young, fragile nymphs

of B. leucopterus hirtus that possess very small mouth parts. The delicate nature of the
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young insects was noted by the researchers as they attempted to move and manipulate the

young insects.

As the insects age and the season approaches autumn, a move away from soft,

succulent grass such as Kentucky bluegrass may represent an optimized overwintering

strategy in response to a seasonal climate (i.e move to more protective areas). Adults of

B. leucopterus hirtus are known to overwinter under debris and within the dense structure

of bunch grasses (Vittum et al. 1999). As the insects mature they become increasingly

aggregated (Mailloux and Streu 1982). It is, therefore, possible that a shift by 5th instars

away from Kentucky bluegrass may, in fact, represent a movement towards more

protective grasses. However, this does not fully explain why aggregation occurs in

populations that experience two cohorts per year (Mailloux and Streu 1982). If it is true

that shifts away from preferred feeding hosts occur, reduction in nutritional quality or

increase in feeding effort that may result from a shift in host species may be offset by

fitness of protective space (Diamond and Kingsolver 2010). The random distribution

among the several grasses available suggests that choice may be strongly influenced by

aggregation drivers (e.g. pheromones - not yet identified in B. leucopterus hirtus) over

grass qualities. Although the biological explanation for age-related host preference shifts

is not yet clear for B. leucopterus hirtus, it is apparent that age of instar must be taken

into account in all future studies of host preference in B. leucopterus hirtus. For example,

the results of Eickhoff et al. (2006), in which 4th and 5th instars were used, must be taken

in context, especially since it appears choice in young instars is more selective.

Unfortunately, testing using 2nd
, 3'd and 4th instar nymphs and adults was not possible in
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this experiment due to a lack of specimens. Further investigation into age-specific shifts

in host choice should involve representation by all instars and consideration of plant

physiology as well.

4.4.3 Group Dynamics in Host Choice Behaviour of B. leucopterus hirtus

Data from the final experiment (Experiment 5), in which 5th instars were allowed

to choose a host either alone or in a group of 10, were challenging to interpret. Host

choice in both these scenarios was significantly different among regions and it was,

therefore, necessary to examine each region separately. This resulted in small n values for

each set of regional data, and based on this, the decision was made to include only

populations from Quebec and Nova Scotia in the analysis, since they had the highest

number of data points. Additional replication among all groups would have strengthened

the investigation. The statistical analysis revealed no significant differences in host

preference between an isolated individual and individuals within groups. Taken at face

value, tills suggests that individuals of this age, regardless of density, may seek out

similar hosts. However, choice among individual insects did appear to be more evenly

distributed among the grass types than it did for insects choosing as a group. This is

somewhat different from the results in Experiment 4, where the choice of grouped instars

appears fairly randomly distributed. Further investigation is required to elucidate

relationships between individual and group choice behaviour.

Experiment 5 did suggest that multiple hosts may be suitable for B. leucopterus

hirtus throughout its life history. The results of this experiment suggest that B.
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leucop/erus hir/us has a wide range of potential hosts and may base selection on multiple

criteria, including nutritional quality and shelter provision. This flexibility may be an

adaptive behaviour intended to counter the negative effects of high density feeding and

subsequent resource quality on individual insect fitness (Jaenike 1990). However, it is

also possible that the number of bugs used in this experiment to reflect a higher density

(10 within an arena) was simply not adequate to evoke the physiological or behavioural

effects of higher densities in B. leucop/erus hir/us.

The methods employed in Experiment 1-5 were modelled after previous work by

Eickhoff et al. (2006). There are several aspects for consideration to improve future host

choice studies of this nature. For example, handling of 151 instar nymphs required extreme

delicacy and perhaps caused an increase in early mortality which could have been

resolved by transferring eggs into experimental arenas before hatch. The high mortality of

51h instars remains unexplained, although it is possible that the insects were either too old,

too stressed or underfed at the commencement of the experiment. In this experiment, the

definition of 'having made a choice' was defined by finding an insect within I cm of a

plant in an attempt to account for insects which fell off the tillers in the process of

moving the colonies. The I cm buffer was an 'inclusive' measure of choice and results

may have been different if choice had been measured more strictly (e.g. must be found on

the plant). Although it appeared that deteriorating quality of the plants over 72 hours may

have been mitigated by increasing the number of tillers available for feeding, further

experiments may determine the optimum quantity offood for timed host choice trials. It

would be interesting to investigate the instar specific feeding intensity of B. leucopterus
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hirlus to know whether the condition of the grass at 72 hours was directly attributable to

insect feeling, or may have be caused by environmental conditions including lack of

nutrients. As a final note, it is important to clarify, as has been done previously (Eickhoff

et al. 2004), that all of the above experiments involved testing only one cultivar among

many within several species of grass. These results only demonstrate experimentally the

variability in host preference among various populations in the laboratory and require

additional research in the laboratory and field before they can be applied to pest

management. However, with the current knowledge gained through this experiments, pest

managers should have a better understanding of how choice and behaviour may differ

with age and geographical region. This could be extremely beneficial to managers

attempting techniques such as vacuum suction to collect populations of B. leucopterus

hirlus when they are most aggregated. (i.e. preferred feeding choice may not be the

preferred site for aggregation).

4.5 Summary

This series of experiments was intended as an investigation to lay the ground

work for host preference research in B. leucoplerus hirtus. It is an important component

of life history strategy, affected by extrinsic factors at the local and regional scale and/or

intrinsic factors such as age and group size. As predicted population variability in host

preference was found at both the local and regional level. However, there have been no

conclusions drawn on the factors driving these difference. Also predicted, there were

difference in the host choice among instars of different ages within the same population,

likely reflecting difference need in both nutrition and shelter. It was clear that both
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population of origin and age and instar should be taken into account when designing trials

and interpreting results related to host selection. The results of individual versus group

host choice behaviour were less clear, although the initial results obtained suggested

cultivar selected was less important than the benefits of aggregation. These findings

should influence future study designs to increase both range of sampling and replication

of experiments. Further study will also be needed to determine what specific

environmental factors are influencing host choice at the local and regional level as well as

genetic variability among populations at local and regional scales which may also

influence host preference at various spatial scales.
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Chapter 5: Summary and Concluding Remarks

Blissus leucopterus hirtus Montandon (Hemiptera: Blissidae) (hairy chinch bug)

(Fig. 1.1), is a widespread turfgrass pest in Quebec and Atlantic Canada that causes

considerable damage to turf and lawns. Many aspects of its life history were not well

understood, including difference in life history strategy across its geographic range. This

research investigated the influence of environmental heterogeneity on the phenology,

morphology and host preference of B. leucopterus hirtus at a local and regional level.

Southwood's habitat as a templet model, which he proposed in his seminal address to the

British Entomological Society in 1977 (Southwood 1977) outlined life history strategies

that would maximize the fitness in insects under various selective pressures. In this thesis,

Southwood's model was used as a conceptual framework for studying the variability of

the response of B. leucopterus hirtus to unique environmental conditions, which was

consistent with various applications of the habitat templet model (Campbell et al. 1974,

Southwood 1977, Solbreck 1978). This approach was taken for the purpose of providing

a sounder scientific database from which to plan ecologically based management

strategies. Using knowledge gathered from previous, less ecologically focused studies,

predictions were made regarding patterns in phenology, sex ratio, wing form, size

components and feeding flexibility. It is clear from the results that difference in life

history, morphometrics and host choice behaviour varied at the regional, and sometimes

local, level. This may be the result of either adaptive selection or phenotypic and

behavioural plasticity in this pest. Further experiments will need to elucidate which of
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these two dominates, but if phenotypic plasticity is strongly present, capacity to adapt to

changing environments could be extremely rapid.

In Chapter 2, Local and Regional Variation in Phenology ofBlissus leucopterus

hirtus Montandon (Hemiptera: Blissidae), it was shown that the rate of egg development

differed locally and, to a greater degree regionally, in an apparent response to climate

conditions. The lower threshold for development and faster development rate of eggds in

St. John's, NL, relative to other sampled location, demonstrates evidence that the insects

has compensated for a cooler, shorter summer. Comparison of methods for measuring

phenology in this pest provided similar results in predicting peak occurrence of instars. In

St. John's, Newfoundland, there was little difference between phenology of B.

leucopterus hirtus at 10 sites, providing little evidence of variation at the local scale.

However, when pooled data from St. John's were compared with other areas across larger

geographical regions (NB, NJ) , differences in peak instar occurrence were found,

suggesting variation in phenology did exist at the regional scale. This evidence suggests

that B. leucopterus hirtus is capable of adaptation at a climatic scale, particularly along

northern latitudes and is a potential invasive threat at more northern latitudes. However,

with greater emphasis on the influence of climate on these ontological patterns, pest

managers should be able to employ moe standardized productive techniques as those used

in this study and employ the results to apply necessary chemical spray at the appropriate

interval (e.g. When B. leucopterus hirtus are most susceptible at 2nd and 3rd instars). The

research results indicate that as predicted by the habitat templet model, and in accordance

with the several hypotheses of this research B. leucopterus hirtus showed adaptive
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changes or plasticity in its life history across its geographic range in response to differing

habitat characteristics, including a lower threshold for development and faster egg

development rate compared to B. leucopterus hirtus in other parts of the insect's range.

The findings of Chapter 3: Local and Regional Variation in Sex Ratio, Wing

Morph and Mensural Characters ofBlissus leucopterus hirtus add additional perspective

to the adaptive response of B. leucopterus hirtus under differing local and regional

conditions. The sex ratio of B. leucopterus hirtus was consistent across collection periods

and locations, indicating a stable operational sex ratio of approximately F:M=I: 1.19.

Thus, sex ratio was not an indicator of habitat differentiation at either the local or

regional scale. However, a significantly greater proportion of males in Fall 2004 and Fall

2005 suggest either differential mortality of dispersal over the summer time frame. This

combined with the fact that there are significantly more male brachypters than female

brachypters suggest that macropterous females may possess a dispersal advantage. Wing

form did vary locally separated populations and in the same populations over time,

suggesting a response to differences in local and regional level environmental conditions

among these habitats. Wing form ratios, therefore, have the potential to inform pest

managers about the conditions and permanence of populations, as brachypterous

individuals tend to be produced when the habitat has adequate resources for the

population. Unfortunately, the results from this study did not show statistical evidence to

support a relationship between either growth rate or developmental threshold to average

size ranking.
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Chapter 4: Host Choice Behaviour ofBlissus leucopterus hirtus in Relation to

Geographic Distribution, Insect Age and Insect Group Size provided insights into host

choice. A series of preliminary experiments evaluated host preference in B. leucopterus

hirtus in relation to extrinsic factors at the local and regional scale and/or intrinsic factors

such as age and group size. Population variability in host preference was found at both

the local and regional level, and between instars of different ages within the same

population. lt was clear that both population of origin and age of instar should be taken

into account when designing experiments to determine host choice. As the rank order of

preference may change over an insect's life time, it would be helpful to pest managers if

this order of preference was taken into account. For example, the results of individual vs.

group host choice behaviour were mixed, although the initial data obtained suggested

cultivar selected was influenced by the benefits of aggregation. lt is likely, based on this

research that instars are likely to be found in proximity to Kentucky bluegrass in the early

parts of the summer seasn, but found increasingly aggregated in other grasses near fall.

This also opens the possibility of employing non chemical measures such as vacuuming

to capture large number of aggregated individuals.

In conclusion, the range of climatic conditions across the Canadian distribution of

B. leucopterus hirtus provided an suitable opportunity to explore the effect of climate

variation on the life strategy of this insect. Together, the results of this research provide a

strong case to support the adaptability of B. leucopterus hirtus to a variety of habitats at

both the local scale in 8t. John's, NL, and at the regional scale across Quebec and

Atlantic Canada. There were notable adaptations by B. leucopterus populations in 8t.
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John's including a marked difference in threshold temperature for egg development and

rate of egg development compared with other areas in the in the insect's range. This

ability to thrive in a range of habitats may be the result of adaptive selection or

phenotypic and behavioural plasticity. Regardless of the underlying mechanism driving

this flexibility, these results highlight the potential for this species to adapt to new and

changing. While there has been little attention given to the complete ecology of B.

leucopterus hirtus in previous pest management work, this thesis has uncovered some

clear patterns among populations that subscribe to Southwood's habitat templet and

therefore provide a contextual framework in which to understand the patterns observed,

Based on the finding in this thesis, the following recommendation for researchers

and pest managers are made concerning B. leucopterus hirtus:

1. Phenological models for B. leucopterus hirtus based on data collected in

Fredericton, New Jersey and Ontario do no accurately reflect phenology of B.

leucopterus hirtus in St. John's, NL. Populations in this study area are

univoltine and generally more "compact" than life cycles in other regions.

2. Researchers and pest managers should expect that egg development of this

insect will occur at a lower temperature and at a more rapid rate in St. John's,

NL than in other areas of the insect's range. Therefore, periods of warm

weather in St. John's, NL can be expected to produce rapid advancements in

phenology of B. leucopterus hirtus compared to other regions, and early

chemical spray times can be expected. Based on the results in 2004 and 2005,
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both Julian day and cumulative degree day should provide similar predictions

of emergence for 2nd and 3'd instar, but in situations where especially warm

period occur, as mentioned above, cumulative degree days may be an more

accurate predictor of appearance.

3. Although sex ratios are fairly consistent across the entire study region (M: F

I: 1.19), there were more males found in the fall populations of 2004 and

2005, indicating either differential mortality or dispersal by females. The fact

that there are significantly more brachypterous males than females (and

therefore more females macropterous) suggests that wing form may relate to

dispersal, although this is not confirmed. Based on Southwood (1977)

prediction however, wing form may be an accurate predictor of population

permanence, with high levels of macropters indicating unstable or

heterogeneous populations. In this study it was also found that levels of

brachyptery increased over a two year period within the study populations.

Therefore pest managers should be aware of the potential for high levels of

brachyptery to indicate stable populations, meaning that these populations are

liekly to be present for longer periods of time (and potentially over several

seasons.)

4. Host choice is very flexible among populations of B. leucopterus hirtus, and

there is evidence that the insect may employ different varieties or cultivars of

grass to accommodate various needs throughout their ontogeny. It is

recommended that pest managers search for young instars among the blends
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including Kentucky bluegrass that are favourable to feeding. However, at the

insects mature, they tend to aggregate and, towards cooler weather in

particular, seek shelter, Insects are most more likely to be found during these

periods in coarser more dense grasses and even in non-biotic spaces, such as

under shingles and yard furniture. This provides another opportunity for non

chemical control such as vacuuming the insects. Another important result

from this research is that in preliminary observations, it appears aggregation at

the 5th instar can be a more powerful that host preference alone. Again,. This

could have important implications for pest managers if alternative methods for

attracting B. leucopterus to a single point can be achieved.

This thesis has taken a broad approach to gather ecological intelligence regarding an

insect pest species that although fairly common, is poorly understood. By exploring

aspects of the insects phenology, morphology and host choice at a local and regional

scale, differences in these measure have been identified. In some cases, these results have

been directly comparable to those existing from previous research, and larger conclusions

have been drawn regarding patterns in ontology and life history. Where previous research

was lacking, results from this study have been compared with results in the literature with

potential explanations for similar of different results proposed. In many cases,

particularly in the case of host choice, results regarding the difference in host choice by

age and/or group size emphasize the importance of these factors taken into account

during turf-resistance trials, which are the focus of large agricultural research initiatives.

With the addition of this research as a whole, a clearer picture has now emerged of how
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environment influences the life history, morphology and host choice of B. leucopterus

hirtus.
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Appendix A. Latitude and Longitude of Sampling
Locations in St. John's, NL and across Quebec
and Atlantic Canada

TABLE Ai. Geographical coordinates for local sampling sites in St. John's collected at
time of original sampling using a handheld GPS unit. Coordinates are based on WGS84
datum.

47.514707 -52.784385
47.513809 -52.780136
47.529816 -52.778184

47.59274 -52.724694

Latitude Lon itude

47.56811 -52.72874

47.568208 -52.73007

47.587168 __.__-5~2"",".70~3~68~6__....
47.593433 -52.719203

Local Site

47.553625 -52.735613
~-----4=7;""';.5=53=6--- -52.736694

47.532884 -52.771835
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Appendix B. Distribution of Blissus leucopterus
hirtus Montandon (Hemiptera: Blissidae) on the
Island of Newfoundland

Introduction

Blissus leucopterus hirtus Montandon (Hemiptera: Blissidae) (hairy chinch bug) is a

serious turfgrass and crop pest in Quebec and Atlantic Canada, and the northeastern

United States (Leonard 1966, Vittum et al. 1999, Potter 1998). In Canada, B. leucopterus

hirtus is a widely distributed destructive turf pest in Ontario, Quebec and the Maritime

Provinces, which includes New Brunswick, Nova Scotia and Prince Edward Island. In the

last decade it has also become a serious turfgrass pest in St. John's, Newfoundland, the

capital city of an island off the East coast of Canada. The species was first recorded in

Newfoundland in 1949 (Brown 1949), the year the province joined the Canadian

Confederation. Whether its presence on the island is the result of an introduction from the

mainland of Canada, or due to better faunal surveys conducted by the Government of

Canada is not certain. The range of this species on the island of Newfoundland is

unknown, and this study aims to determine the presence/absence ofB. leucopterus hirtus

in several communities across Newfoundland.

Materials and Methods

Over the course of one week, in mid-September 2005, ten sites across the island were

sampled using a BioQuip® handheld vacuum sampler. The collection cup of the vacuum
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was modified by temporarily inserting a section of nylon pantyhose tied at one end,

which improved the capture and handling of these insects. Areas within the selected

urban locations exhibiting classic B. leucopterus hirtus damage (large brown patches)

were swept with the vacuum sampler for approximately thirty seconds, with focus on the

outer edges of the patches, where the insects were most often aggregated. Debris was

emptied from the pantyhose into a plastic tray, the debris sorted, and any B. leucopterus

hirtus found placed in sealed vials with 70% ethanol labeled with the date, location and

time. In sample sites where B. leucopterus hirtus populations were low or absent, up to

four additional sites within the urban area were sampled. The samples from across

Newfoundland were recorded as present/absent data and mapped (Fig. Bl).
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FIGURE Bl. Location of sites sampled for L provincial survey. Areas with damage
typical of B. leucopterus hirtus were found at all sample locations. Specimens were
collected from all sites except L'Anse aux Meadows. Map created by Online Map
Creation (http://www.aquarius.geomar.de/omc/).

Results

Blissus leucopterus hirtus is widely distributed across Newfoundland (Fig. AI). Of the

ten locations sampled, nine had B. leucopterus hirtus present. At L'Anse aux Meadows at

the Northern tip of the island, no chinch bugs were found but several areas of damage
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resembling that resulting from chinch bug infestations were observed. However it could

not be verified that this damage was directly related to B. leucopterus hirtus.

Discussion

The results from the Newfoundland survey support anecdotal accounts that B.

leucopterus hirtus is widely distributed across the island. The one site where specimens

of B. leucopterus hirtus were not collected was L'Anse aux Meadows at the northern tip

ofNewfoundland, close to the Labrador border which is the most northerly Island

location and has the most extreme climate of the areas sampled. However, this sampling

was conducted in September 2005 when most individuals are in later instars and more

highly aggregated (Mailloux and Streu 1981). Sampling was difficult on the Northern

Peninsula due to the very cool temperatures in this area at the sampling time

(approximately 5-10°C), which may have caused these insects to initiate overwintering

behaviour earlier than at the other sites. When B. leucopterus hirtus prepare for winter

they abandon summer habitats for more sheltered and hidden areas (Leonard 1966,

Vittum et al. 1999, Potter 1998) and thus may not have been associated with the damaged

turf patches. Despite the lack of specimens from L'Anse aux Meadows, several areas of

brown turf resembling damage by B. leucopterus hirtus were observed. Given its wide

spread distribution, it is probable that B. leucopterus hirtus inhabits that area, but this will

need to be confirmed by further sampling.

216



Literature Cited

Brown, W. J. 1949. Collected Specimen. I female, St. John's, 16.VIl. Canadian National

Collection, Ottawa, Ontario, Canada.

Leonard, D. E. 1966. Biosystematics of the leucopterus complex of the genus Blissus

(Hemiptera: Lygaeidae). Bulletin - Connecticut Agricultural Experiment Station

677:1-47.

Mailloux, G., and H. T. Streu. 1981. Population biology of the hairy chinch bug (B.

leucopterus hirtus, Montandon: Hemiptera: Lygaeidae). Annals of the

Entomological Society of Quebec 26:51-90.

Potter, D. A. 1998. Destructive turfgrass insects: biology, diagnosis and control. Ann

Arbor Press, Chelsea, Michigan, USA.

Vittum, P., M. Villani, and H. Tashiro, 1999. Turfgrass insects of the United States and

Canada, 2nd ed. Cornell University Press, New York, USA.

217



Appendix C: A Comparison of Sampling Methods
for Blissus leucopterus hirtus Montandon
(Hemiptera: Blissidae)

Introduction

Blissus leucopterus hirtus is a widespread turfgrass and crop pest in north eastern

North America (Vittum et al. 1999). Its current Canadian range extends from Ontario

eastward to Newfoundland. Within the United States, the range extends as far west as

Eastern Minnesota and south into North Virginia. The insect attacks plants using piercing

and sucking mouthparts to extract moisture. Damage is characterized by yellowish brown

patches on lawns and turf (Fig. Cl).

Previous studies have a used variety of sampling methods to assess population

numbers (Wellwood et al. 2002, Majeau et al. 2000, Mailloux and Streu 1981). There was

a need in this study to determine the most appropriate sampling method for various

applications. While commercial lawn care companies require quick, on-site methods

capable of detecting threshold levels of B. leucopterus hirtus and determining if treatment

is necessary, scientific research demands replicable methods for accurate, reliable insect

counts and insight into population characteristics.
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FIGURE Cl. Typical lawn damage caused by B. leucopterus hirtus (Charbonneau &
Sears 2000).

Sampling methods evaluated included:

I. Vacuum: suction of HCBs into a collection cup using vacuum system.

2. Floatation: netting of floating HCBs from an in-situ column of water.

3. Berlese Funnel: exposure to heat of removed sod placed in funnel.

4. Quadrat: visual count in-situ within a small defined area.

The objectives of this study were to compare these four sampling methods for the HCB in

lawns, in order to assess

1. Effectiveness, as measured by the number of B. leucopterus hirtus individuals

captured from a known population.
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2. Efficiency, as evaluated according to criteria pertinent to either scientific

investigation or commercial application.

Materials and Methods

Sixteen wooden boxes, each measuring 30 cm by 30 cm by IS cm, were lined with

Kentucky bluegrass sod free of B. leucopterus hirtus. The boxes were arranged into four

blocks of four; each block represented one replicate trial for four methods (Fig. C2a).

Fifty individuals of B. leucopterus hirtus (5th instars and adults) were released into the

centre of each box and the boxes covered with nylon fabric. The insects were allowed to

acclimatize for 24 hours. All samples were of identical area, and taken in the centre of

each box. Following protocol from previous work, floatation sampling was conducted for

10 minutes and quadrat sampling was 2 minutes (Wellwood et al. 2002, Fig. C2b).

Lacking previous examples, 30 seconds was determined to be an adequate time for

vacuum sampling (Fig. C2c). Sections of sod removed for the Berlese method were

allowed to remain under heat for 24 hours. Samples were filtered where appropriate and

the number of B. leucopterus hirtus in each sample counted under a stereomicroscope.

Various efficiency criteria were rated for each sampling method.
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FIGURE C2. Experimental set up and methodology A) Block offour boxes, representing
one replicate trial. B) Sampling by floatation. C) Sampling by vacuum system.

Results

Assuming homogeneous distribution and no edge effects, the theoretical recapture rate,

based on sampling area, is lOB. leucopterus hirtus per box. A one way ANOVA shows

the sampling methods to be statistically different with respect to insect recapture rate

(p=O.002). Further comparison using a Tukey test shows that, at alpha=O.05, vacuum

sampling is significantly different from the quadrat method, and floatation method is

significantly different from Berlese funnel and quadrat methods (Fig. B3). An evaluation
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of various efficiency criteria for each sampling method showed varying advantages and

disadvantages of each method (Table B I).

(------*------)

(------*------)

(-------*------)

(------*------)

FIGURE C3. Individual 95% CIs for mean based on pooled StDev (MiniTab). Pooled
StDev =2.282. Levels: I=Vacuurn, 2=Floatation, 3=Berlese funnel, 4=Quadrat.

TABLE Cl. An evaluation of various efficiency criteria for each sampling method.

Vacuum Floatation Berlese Quadrat

Cost of Equipment High Low Med Low

User Training Med Low Med Med

Collection Time Low High Low Med

Damage to Lawn Low Med High Low

Sample Process Time Med Med-High High N/A
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Discussion

The floatation method and the vacuum sampling method are comparable in tenns of their

ability to extract B. leucoplerus hirlus from the test plots. While the floatation method has

traditionally been used for scientific collection of this insect, the vacuum may be

considered as a viable option. Although initially high in cost, it reduces both collection

and sample process time. The quadrat sampling method offers a low cost, fast method for

commercial purposes. However, it is not as effective as other methods in estimating B.

leucoplerus hirlus density. If population numbers are known to be high, it may be an

efficient means of conducting threshold counts. The Berlese funnel method was

inconsistent and required a high turnover time. It may be more appropriate for thatch

oriented sampling. In terms of lawn sampling, it was considered suitable for neither

scientific nor commercial applications.
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Appendix D. Assessment of Error in Measuring
Mensural Characteristics of B. leucopterus hirtus
Montandon (Hemiptera: Blissidae).

Based on a test of repeated measures, measurement error was greatest in

measurements of the 'eye to eye' width and the 'left antenna' length, which are two of the

shortest characters and, therefore, most susceptible to micrometer sighting error (Table

DI).

TABLE Dl. Variation in repeated measurements on the same individual (S2 within) and
on measurements on different individuals (S2 among). Values taken from paramters
within ANOVA model comparing measuresments among individuals using repeated
measures on identical individuals as replicates. The % Error within indicates the
percentage of error that can be atributed to differences in measurements on the same
individual, and % Error among indicated the percentage of error attributed to differences
among individuals.

Character s2 within s2among % Error within % Error among

Eye to Eye 0.001 0.010 11.538 88.462

L Antenna 0.001 0.003 27.582 72.418

RAntenna 0.001 0.019 5.562 94.438

Thorax 0.002 0.185 0.893 99.107

LCorium 0.004 0.562 0.754 99.246

RCorium 0.005 0.570 0.853 99.147

LWing 0.004 5.969 0.064 99.936

RWing 0.003 5.972 0.052 99.948

Total Length 0.028 0.355 7.361 92.639
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In all characters measured during this study, the variation between individuals

was far greater than the variation between repeated measurements on the same individual.

The least amount of error for repeated measurements was found in both the left and right

wing, while the greatest measurement variation within the same individual occurred in

the traits ofleft antenna and between the outer extremities of the eyes. There are multiple

explanations for these results including the reality that large, two dimensional features

such as wings are more easily positioned and landmarked than articulated antennae and

spherical eyes. Additionally, while wings are fairly large features relative to total body

size, eyes and antennae are much smaller. An identical magnification was used for all

parts of the body, reducing the relative precision of the eye to eye and antennal

measurements (i.e. a difference of one ocular unit in measurements represents a larger

proportion of the total feature length in eyes compared to wings).
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Appendix E: Correlation of Mensural
Characteristics in B. leucopterus hirtus
Montandon (Hemiptera: Blissidae).

The matrix below compares each character measure to every other character measure and

provides a correlative value (Fig. El). Following the matrix a table of correlation values

between each set of measurements is found (Table El).
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FIGURE El. Scatterplot matrix of nine measured traits in 12 populations of B.
leucopterus hirtus. Sex and wing forms are combined (n=1351). Boxes showing two
distinct groups higWight the dimorphic nature of traits such as corium length and wing
length. Correlative values are also given (Table 3.3). A strong correlation between
symmetrically equivalent characters suggests isometry. Red ellipses represent 95%
confidence interval.
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TABLE El. Correlations between nine measured characteristics in 1351 specimens of B.
leucopterus hirtus combined from 12 populations across Quebec and Atlantic Canada.

eye to left right left right left right total
eye antenna thorax corium corium wing wing length

eye to eye I 0.4543 0.4240 0.6837 0.5003 0.4980 0.3240 0.3257 0.7312

0.4543 I 0.7756 0.3647 0.3097 0.1946

right antenna 0.4240 0.7756 1 0.3536 0.2946 0.2838 0.1770 0.1761 0.3341

thorax

left corium I 0.9621 0.9143 0.9081 0.6211

right corium 0.498 0.2989 0.2838 0.8357 0.9621 I 0.9061 0.9266 0.6313

left wing 0.3240 0.1946 0.1770 0.7488 0.9143 0.9061

right wing 0.7513 0.9081 0.9266 0.9864 1 0.4616

total length 0.7312 0.3751 0.3341 0.7812 0.6211 0.6313
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Appendix F: Abnormalities in Collected
Specimens of B. leucopterus hirtus Montandon
(Hemiptera: Blissidae).

The level of abnormality in the measured specimens ranged from 5% in NB3 to

29% in NS2. These are considered conservative estimates since all deformities may not

have been noted, as they were only recorded through casual inspection. Despite these

deformities, there was a strong correlation between features on the left and right sides of

the body, indicating that growth was primarily isometric for symmetrically opposing

characteristics (Fig. DI). Several characters were specifically examined, and there was,

for example, no significant difference in the frequency of wing asymmetry among sites

for either corium (p=0.1499) or wing measurements (p=0.1203). Examples of

abnormalities are shown (Fig. FI).
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FIGURE FI. Examples of aberrations observed.
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Existing literature on the rate of morphological aberrations in Hemiptera is

limited. However, evidence of 'compensatory hyper-regeneration' has been suggested as

an explanation for some antennal abnormalities in Hemiptera (Wolsky 1957) after

experimental replication of this process was conducted in Euschistus variolarius Palisot

(Hemiptera: Pentatomidae) and Oncopeltusfasciatus Dallas (Hemiptera: Lygaeidae).

When portions of the antennae were lost during early nymphal stages, later forms

exhibited exaggerated length in the remaining segments, although the original length was

rarely obtained. Wolsky's proposed explanation for this process is the enlargement of

cells through endomitosis, a widespread phenomenon in Hemiptera (Wolsky 1957).

Considering the large number of aberrations observed in these populations of B.

leucopterus hirtus, particularly in the antennae, the importance (or lack thereof) of these

appendages in the insect's survival is of further interest. The importance of antennal

function is not completely understood in B. leucopterus hirtus, but it is clear that these

appendages are used in courtship, and vibrational movement of the antennae in females

when in contact with males may indicate willingness to mate (Leonard 1966). It is

unclear what the implication of such aberrations is to fitness. A definitive explanation for

the presence of aberrations or variability in frequency among populations ofBlissus

leucopterus hirtus is also not clear. However, this area deserves additional attention based

on the conservative estimate of 5-29% frequency spectrum in anomalies observed.

Despite some individuals displaying obvious aberrations in antennae, wings and other

appendages, most adults displayed relative symmetry in left and right characteristics.
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Differences between wing length were usually very small «0.25 mm) and the overall

correlation between left and right was very high.
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Appendix G: Multivariate Analysis to
Discriminate Sex, Wing form and Population of
Origin

The data were subjected to multivariate analysis to determine whether the

information collected is sufficient to discriminate among populations at both the local and

regional level. Canonical variate (multiple discriminate) analysis was used to test

predictive power. The data were first screened according to a multivariate data checklist

provided in Tabachnick and Fidell (2000). This involved I) inspecting data using

descriptive statistics to check for accuracy of input, 2) evaluating the amount and

distribution of the data. In this case, missing data were substituted with the mean value of

existing values for that character 3) checking pairwise plots for non-linearity and

heteroscedasticity, 4) identifying and dealing with non-normal variables, and finally 5)

identifying and dealing with multivariate outliers

A total of 1351 adult B. leucopterus hirtus were initially considered for this analysis.

Because of the close correlation between symmetrically opposing sides of the

characteristics (Appendix D), only the measurements taken from the left side were used

in further comparisons to avoid the effects of multicollinearity. There was also a high

correlation between corium length and wing length on both the left (r2=0.9143) and right

(r2=0.9266) sides, so corium length was eliminated from further analysis. Brachypterous

and macropterous forms were considered separately because of their distinct size

differences. Data fill resulted in estimation of 5.4% of the data for long winged

individuals and 5.1 % of the data for short winged individuals. Discriminant analysis was
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able to predict sex among the individuals based on eye to eye width, left antenna width,

thorax width, wing length and total length with 82.91 % correct matches in macropterous

individuals (Fig. Gl) and 89.9% correct matches in brachypterous individuals (Fig. G2).

• female

• male

FIGURE G1. Canonical plot of macropterous B. leucopterus hirtus showing
discrimination by sex based on five mensural characteristics. There was 82.91% correct
classification. The two crosses marked with M and F show the mean value, with the circle
surrounding them showing the 95% confidence interval for each sex. Each dot represents
one bug, and the dots have been made partially transparent to reduce visual crowding.
The ray plot shows the vectors associated with each characteristic used in discrimination.
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• female

• male
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FIGURE G2. Canonical plot of brachypterous B. leucopterus hirtus showing
discrimination by sex based on five mensural characteristics. There was 89.9% correct
classification. The two small crosses marked with male and female show the mean value,
with the circle surrounding them showing the 95% confidence interval for each sex; in
this case, the circle is very small. Each dot represents one bug, and the dots have been
made partially transparent to reduce visual crowding. The ray plot shows the vectors
associated with each character used in discrimination and is shown to the left of the
scatterplot to facilitate reading.

The characters of eye to eye, left antenna, thorax and total length were also used to

predict wing form. There was a high correct classification rate for both females (95.63%)

(Fig. G3) and males (96.32%) (Fig. G4). Discriminate analysis using sex, eye to eye, left

antenna, thorax, left wing and total length could not predict site with accuracy, resulting

in only 18.80% correct classification (Fig. G5). Results were improved for prediction of

province of origin, with a 44.04% classification rate (Fig G6).
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emacroplerous

FIGURE G3. Canonical plot offemaIe B. leucopterus hirtus showing discrimination by
wing form based on four mensural characteristics. There was 95.63 % correct
classification. The two small crosses marked with brachypterous and macropterous show
the mean value, with the circle surrounding them showing the 95% confidence interval
for each sex; in this case, the circle is very small. Each dot represents one bug, and the
dots have been made partially transparent to reduce visual crowding. The ray plot shows
the vectors associated with each character used in discrimination and is shown to the left
of the scatterplot to facilitate reading.
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FIGURE G4. Canonical plot of male B. leucopterus hirtus showing discrimination by
wing form based on four mensural characteristics. There was 96.32 % correct
classification. The two small crosses marked with brachypterous and macropterous show
the mean value, with the circle surrounding them showing the 95% confidence interval
for each sex; in this case, the circle is very small. Each dot represents one bug, and the
dots have been made partially transparent to reduce visual crowding. The ray plot shows
the vectors associated with each characteristic used in discrimination and is shown to the
left of the scatterplot to facilitate reading.
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FIGURE G5. Canonical plot for B. leucopterus hirtus showing discrimination by site
based on six mensural characteristics. The small crosses marked with site names show the
mean value, with the circle surrounding them showing the 95% confidence interval for
each site mean. Each dot represents one bug, and the dots have been made partially
transparent to reduce visual crowding. The ray plot shows the vectors associated with
each characteristic used in discrimination and is shown to the left of the scatterplot to
facilitate reading.
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• New Brunswick

• Newfoundland

• Nova Scotia

• Quebec

FIGURE G6. Canonical plot for B. leucopterus hirtus showing discrimination by
province based on six mensural characteristics. The small crosses marked with province
names show the mean value, with the circle surrounding them showing the 95%
confidence interval for each site mean. Each dot represents one bug, and the dots have
been made partially transparent because of crowding. The ray plot shows the vectors
associated with each characteristic used in discrimination and is shown to the left of the
scatterplot to facilitate reading.
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Based on the significant difference in length/width of characters for both sexes and wing

form for most characters, discriminate analysis was effective in separating both males and

females and macropterous and brachypterous wing forms. However, the data collected

did not classify individuals into their twelve sites of origin. Regional sorting was slightly

improved, but despite the means of most characters being significantly different for at

least one region for all characters (Appendix F), there was sufficient individual variation

within the populations to inhibit complete differentiation based on morphometries.
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