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ABSTRACT

On-line Health Monitoring of industrial structures in particular the oil and gas
transporting system such as pipelines is of great importance to the reliability and
survivability of the plant. In this research the propagation of Ultrasonic Guided Waves as
a tool to condition monitoring of the pipes was investigated. Also, under this rescarch the
Kirchhoff flaw approximation model was modified to provide an estimation of the size
and location of flaws that may exist along the pipe. The modified model and the
dispersion curves generated by the Ultrasonic Waves using PCDISP software can provide
assessment of the location and extent of the flaw. Several simulation trials were
performed using Matlab to validate the feasibility and applicability of the modified model
and the results indicate that this model can accurately estimate the size and location of the

flaws that exist in the pipe.
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CHAPTER 1

INTRODUCTION
L1 INTRODUCTION

Pipeline networks serve as the backbone of the oil and gas supply system; hence, it should
be highly reliable and capable in meeting customers' demand for oil and gas products at
all times. Continuous flow of these products plays a major role in the prosperity and
advancement of nations and as such should remain stable and available at all times.
Thus, it is imperative that such network be given the highest consideration and attention

at all times to insure its integrity and safety.

There are many contributing factors to the failure of pipelines that could affect their
integrity. One of these contributing factors is the aging of the existing oil and gas
infrastructure. Other contributing factors include corrosion, interference from third party,
material defects, malfunction, and natural hazards. These are key causes that can lead in
most cases to undesired consequences. Such consequences may include puncture, rupture

and/or leakage of the pipe that may result in injuries, fatalities and catastrophic damage to

the i i and loss of



Hence, innovative monitoring systems and defects diagnosis techniques should be in
place to insure the sustainability of the infrastructure, i.e. pipelines and the associated

equipment to insure their integrity and continuity.

Generally, Non Destructive Testing (NDT) is used by the industry for assessing pipeline
integrity and reliability. It is an acceptable practice to detect dangerous defects before

they can cause ic failure or i ion to ion. The main issue with such

system is that it is performed on as need basis or at regular maintenance intervals and

does not provide on-line monitoring and detection of failures as they happen.

Most of the literature reviewed dealt with utilizing guided wave technology coupled with
Digital Signal Processing (DSP) systems as the main components of the NDT system.
The Guided Wave system consists mainly of one or group of transducers that are placed
on the structure to detect the existence of defect. If the inspected structure is a pipeline,
the abnormalities such as metal loss, holes or cracks, will cause a discontinuity to the
transmission of the Guided Wave along the pipe. As a result, some portion of the wave
energy is reflected back. The reflected wave can then be analyzed to determine the

location, type and the extent of the damage.

guided waves i with wireless communication systems can
transparently and easily interface with sensors for monitoring objects or any other

structures above ground, underground or underwater. The ~ structural health status of the



monitored object will be up to date and will give advance warning should any structural

health problem occur.

Before going any further, one needs to study the behavior of the guided waves as they
propagate along the structure and their interaction with a defect. The reviewed literature
included some information that can be used to analyze the behaviors of the guided waves
but, for estimating the defect mathematically, such models could not be found. Based on
the reviewed literature by the author, there is no mathematical model that can provide
interaction of the Guided Waves with defects where the defects can be estimated and
located. All the reviewed literature dealt with experimental work and some analytical
methods such as Finite Element Method (FEM) to estimate the location and the size of

the flaw.

So, the main objective of this research is to model and simulate the behaviors of the
ultrasonic Guided Waves propagation along hollow cylinders and their interaction with
defects. The model can be used to determine beforehand if a flaw has occurred and if it
has occurred, determine its location and size. Such model can serve as a prerequisite for
experimental work or real time operation. To validate this model, several tests should be

presented and investigated to conclude its feasibility.
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OBJECTIVE

The objective of this research is to:

Investigate the propagation of ultrasonic guided waves in solid structures.
Develop a mathematical model that can predict the location and size of spherical

flaws.

RESEARCH LIMITATION

The focus of the research will be on:

Ultrasonic waves propagation in hollow cylinders.

Locating and estimating spherical flaws.

RESEARCH METHODOLOGY

Investigate the propagation of ultrasonic Waves propagation into hollow
cylinders.

Develop a mathematical model that can provide an estimation of the size of the
flaw and its location along the hollow cylinder.

Use Matlab as the programming tool to perform the simulation of the developed
model.

Perform several simulation trials with different flaw sizes located at different
distances along the investigated structure.

Determine if the model can accurately estimate and locate the flaw as the flaw size

and flaw location change.




Compare the results obtained from experimental work found in the literature with

the results produced by the simulation.
* Investigate the feasibility of the developed model from the results obtained and

the comparison analyses performed in the abovementioned steps.

1.5 ORGANIZATION OF THE THESIS

The thesis consists of seven chapters; the first chapter provides an introduction to the
research topic, the research objective, research limitation and methodology. Chapter 2
provides literature review about ultrasonic guided waves. Chapter 3 presents the
theoretical background of ultrasonic guided waves propagation into hollow cylinders
while chapter 4 discuses the digital signal processing techniques for ultrasonic waves and
the formulation of the mathematical model to locate and assess the extent of flaws on
hollow cylinders. Simulation of the formulated model and analyses are presented in
chapter 5. Chapter 6 provides a comparison between some experimental results reported

in the literature and results obtained by the formulated model. Finally, summary,

remarks and ion for future work are discussed in chapter 7.



CHAPTER 2

LITERATURE REVIEW

In this review a summary of scientific articles, fe ! dings and i

research articles available in the open literature about guided waves and their applications
in assessing the integrity of structures such as pipelines is presented. Most of the literature
reviewed dealt with utilizing Guided Wave technology coupled with cither signal
processing techniques, Finite Element Method (FEM), Boundary Element Method (BEM)
or Neural Network (NN) to locate and quantify the extent of the damage. Signal
processing techniques that were used included Fast Fourier Transforms, Short Time

Fourier Transforms (STFT) and Wavelet Transforms (WT).

The guided wave system consists mainly of one or group of transducers that are placed on
the structure reporting the health status of the structure 24/7. The transducers are excited
at equal time intervals to determine the health status of the monitored structure and to
detect any abnormalities that have occurred during the monitoring period. The reported
data are sent back to the main office computer network ~for further analysis using Digital
Signal Processing (DSP) techniques. From these signals the health of the monitored
structure can be determined. If an abnormality has occurred the reflected signals will
indicate that such abnormality has occurred, where its location, and extent can be

determined.



In case that the monitored object is a pipeline, the abnormalities such as metal loss, holes
or cracks, will cause a discontinuity to the transmission of the wave along the pipe. As a
result, some portion of the wave energy gets reflected back for further analysis. Based on
the analysis using the aforementioned techniques, the location, type and the extent of the

damage can be estimated.

Under this method the pipe is interrogated for a while, and then time-histories of the
received signal amplitude versus frequency curves are generated. From these curves the
relationship between the characteristics of the reflected signal and the defect features can

be established.

Another approach which is different from the aforementioned method is called SMART
layer where a layer of sensors is mounted on the pipe. Once the signal encounters a
discontinuity, the reflected signal from the defect is compared with a signal of defect-free
pipe. After that the  Probability Density Function (PDF) curves are plotted to indicate the

most probable size of the damage.

A prior knowledge of the mechanics of the guided waves is an essential element in the
study and analysis of their propagation behaviors in solid structure such as hollow
cylinder. The outcome of the studies and analysis can be used to assess the integrity of

monitored structure.



The general solution of the guided waves propagating in an infinitely long elastic hollow
cylinder was first studied by Gazis (1959) using elasticity theory. The solution he
provided was viewed as the most fundamental concept that most researchers referred to in
their work. In his study, a three dimensional solution of the wave propagation in a hollow

cylinder was provided Gazis (1959a, 1959b).
There are many articles found in the literature investigated and analyzed Guided Waves
and their application for detecting and locating defects on hollow cylinders such as pipes.

These papers were reviewed and summarized in the subsequent sections.

Lu (2005) investigated the application of guided acoustic waves in monitoring beams and

tubular of steam and heat The time-frequency and
pattern recognition techniques were used to classify several defects and the analytical

of wave’s ion was i by using Finite Element Method

(FEM) and ABAQUS software. It was concluded that the structural flaws can be detected
by using transient and nonlinear acoustic signal analysis and the analytical agreed with

the experimental results.

It was also concluded that Lamb waves have multi-mode that could confuse the analyst of
the reflected waves where each mode exhibits nonlinearity in their behaviors. It was noted

that the speed is a nonlinear function of the product of the frequency and thickness.



Zhao (2003) i igated the i ion between of scattering and mode

conversion of guided waves as a result of defects in hollow cylinders. Two and three-
dimensional defects were studied by using the Boundary Element Method (BEM) and the

Normal Mode E ion (NME) techni These i were used to analyze and

determine the size of the defect. The research concluded that the phase and group
velocities dispersion curves and wave field distributions were dependent on the ratio of
wall thickness to the radius. It was also concluded that both Lamb and Shear Horizontal

(SH) waves can be used to quantify defects in plate like structure.

Assessing the integrity of pipelines using guided waves can be determined while the
pipeline is in-service. In his work, Ahmad (2005) assessed the integrity of pipelines using
guided waves while the pipeline is in-service. In his work, a technique based on
cylindrical guided waves was implemented to identify and locate the defects for
underground water pipelines while in-service. Both theoretical and experimental
investigations were conducted. Several pipes with different setup and conditions were
used in the lab experiments including a pipe in contact with the air; a pipe filled with
water and the outer surface was in contact with air; a pipe was placed under ground
without flow of water and finally a pipe embedded in soil and with water flow.
Piezoelectric Transducers (PZT) were used to produce cylindrical guided waves
throughout the pipe for detecting the damage but no mention was cited about the

assessment of defects.



Guo (2001) proved that ultrasonic guided waves were sensitive to pipeline defects. A
transducer holder was fabricated to allow the transducer to generate the guided wave
throughout the pipe at different angles and at different positions i.e., horizontal, vertical
and at inclined positions. Steel, aluminum and copper pipes were used for the experiment.
Pipes without defects tested first and then pipes with defects were tested to present the
difference between the data of both situations. Lamb waves were generated by an
ultrasonic exciter where these waves travelled throughout the pipe. The reflected signal
was recorded where a plot of voltage versus signal was presented. Any variation of the
recorded data for the defect-free pipeline and a pipeline with a defect indicated the
presence of pipeline anomalies. Anomalies such as dent, gouge and removed metal were
investigated under this research. The work presented only a situation of a pipe in mid air

with three types of defects to detect the defects but not the extent of the defect.

Application of guided waves for underwater applications was proved to be feasible and

promising. Na and Kundu, (2002) and i on five different all

pipes with different sizes, with defect free and  with different types of defects namely
removed metal, dent, and gouges. The experiment was conducted several times to
investigate the consistency of the results. Each test was conducted at different location on
the pipe. Different frequencies versus amplitude plots were generated to identify the
defects. From the results the defect can be detected but the estimation of the size of the

defect was not part of the study.



Takashi, Nobuhiko, Fumitoshi and Kiyotaka (2006), implemented a system of Guided
Wave pipe inspection and monitoring where the system consisted of sensors made of
magnetostrictive strip of Nickel and coils, a transducer and a software program. The
waves were generated which propagated along the pipe and were reflected back at points
where the acoustic impedance changes indicating a resistance in the wave propagation.
So, the reflected wave was generated whenever the section was changed. The designed
system showed its ability to detect gradual wall thickness losses in pipes, pipe elbows and

pipe reducers but not the extent of the defect.

Hwang (2002) used Wavelet Basis Function (WBF) neural network to predict 3-D
characterization of pipeline defects. The method was validated by simulation data and
experimental trials by using magnetic flux signatures. It was indicated from the results
that the 3-D characterization of defects by applying WBF Neural Networks can be
obtained with certain accuracy. The accuracy of characterization of defects increases by

the radial, ci ial and axial i The i dealt with

the characterization of the defect but not the size of the defect itself.

Yang (2009) used Wavelet Transform Coefficient (WTC) Method  to investigate the
relationship between the WTC and the depth of cracks in concrete plate and concrete
pipes. It was concluded that central frequencies have to be adjusted in accordance to the
thickness for the tested object. It was also concluded that there is a correlation between

the WTC and the depth of cracks where the depth can be determined with high accuracy.



Using wireless communication system inside a pipe was one of the areas that has been
addressed in the literature. In his work, Kokossalak (2006), studied and evaluated the
feasibility of a communication system based on an in-pipe wireless sensors network for

monitoring underground water pipelines. The proposed system used modulated acoustic

waves to carry the data pertaining to the pipeline condition and the pipeline was used as a
wave guide for the acoustic waves. The system was evaluated by means of numerical
simulation and lab experiment. The system consisted mainly of several sensors installed
inside the pipe that transmit the acoustic waves to the destination for further processing to
determine the condition of the pipe. The acoustic waves penetrated the walls of the pipe,
the water and the surrounding environment which is in this case the ground. Several
issues existed concerning the wave propagation along and within the pipeline that
included, dispersion, attenuation of the signal, losses of the signal into the surrounding
environment and the resulted echoes at pipe joints and bends, also, the power limitations
feeding the sensors. All these issues were addressed in the research. This work was
concerned mainly about the feasibility of using acoustic communications to detect and

locate pipeline abnormalities while using the water pipeline as the transmission medium.

In his work, Hay (2004), studied different guided wave methods and recommended that
the piezoplymers sensors are the most suitable for the Structural Health Monitoring
(SHM). It was demonstrated that certain types of sensors are compatible with wireless
communication systems. His work included the development of an analytical tool to
model the displacement of Guided Waves (GW) on fixed structure by using two

Fourier i In addition, the ibility of GW with




wireless ication was i g and that it is ible with
wireless communication systems. The sensors were designed to detect cracks of 1 mm
length where the frequency tuning technique was used to generate the GW. The
experiment was conducted in a lab setting and in the field using US navy helicopter as a
test bed. For the experiment in the field, eight sensors were installed on the helicopter and
data was recorded and analyzed over a 2-year period. The data was observed for any
changes in the received signals by using coefficient of correlations. Any change in the
correlation coefficient will indicate the presence of cracks. It was concluded that the
application of these sensors are feasible for structural health monitoring using wireless
communications system for transmitting signals and receiving the data from the

monitored structure.

Another approach which is different from the Guided Wave method is the SMART layer
where a layer of sensors is mounted on the pipe to provide around the clock monitoring of
the structure. Qing et al. (2009) utilized SMART layer technology to detect pipeline
defects such as corrosion, growth of corrosion and pinholes. The system is called RAPID,
Real-time Active Pipeline Integrated Detection. It consisted of a sensor network, portable
hardware devices and diagnostic software. The way it operated was that the portable
devise generates stress waves that propagate along the pipe, when the propagating wave
encounters a discontinuity in the geometry of the pipe, the wave is reflected back. After it
gets reflected back, it is compared with a previously recorded sensor response from the
undamaged pipe. The difference between the two signals will determine if any defect

would exist along the pipe.  The layers of sensors are embedded piezoelectric disks



performing the function of sensing in real time. A probability density function (PDF)
curve was plotted for each type of damage giving the lower and upper limit of the size as

well as the most probable damage size but not exact size.

Davies & Cawley (2009), used a system of cil ial array of

transducers elements to excite torsional guided wave. The reflected waves from manually
made circumferential cracks like-defects and welds were analyzed which revealed the
location and the magnitude of the defects. The amplitude of the reflected waves was used
to estimate the depth of the defect and the width was estimated by the width of the signal.
The results were compared with analytical results obtained from Finite Element Method
(FEM) and it was found out that both results agree with each other. Also, it was
concluded from ten researches that the accurate size of the defect can be obtained if the

circumferential width of the defect exceeds 1.5 times the wavelength of the shear wave.

Kwun, et al. (2008) conducted experiments on pipes and tubes by generating Guided
Waves to detect cracks and notches. The notches were made on the pipe at various depths
and the data were collected by using magnetostrictive sensors. It was observed that the

notches produced at depth of 85% or higher were detectable by the signal.

The experiment did not address the sizing of defects. From the literature reviewed, it was
not clear if the defect sizing was possible using the techniques presented. There was no

clear evidence that pointed any technique for sizing of defects.



CHAPTER 3

GUIDED WAVES IN HOLLOW CYLINDERS

3.1 WAVE PROPAGATION IN HOLLOW CYLINDERS

Wave ion in cylindri ides has been studied on the theoretical and

levels by at academic institutions and the industry. Such studies

can be found in the literature by Gazis (1959), Achenbach (1973), Rose (1999),

Kundu (2004) and many others.

There are basically two categories of guided waves that propagate in a hollow cylinder,
the circumferential and the axial guided waves. Under the axial category, there are three
types of modes generated when waves are propagating along a cylindrical structure.
These are the longitudinal, torsional and flexural wave modes. The longitudinal and
torsional waves inflict symmetrical displacement of particles in the axial direction across
the structure while the flexural waves impose a non-symmetric particle displacement

along the structure.

Figure (3.1) provides details of a typical hollow cylinder showing the inner and outer
radius and Figure (3.2) illustrates the longitudinal modes propagation where the particle
movement is parallel to the wave direction. Figure (3.3) shows the torsioanl wave modes

propagating along the circumferential direction of the pipe and the particle motion is



perpendicular to the wave direction. The flexural guided wave has a non-symmetric

mode propagating in the [r, z 0] directions, this is shown in Figure (3.4).

Figure 3.1- Hollow Cylinder with Inner Radius and Outer Radius.

The longitudinal waves which inflict symmetric particles displacement across the pipe in

the radial and axial directions can be seen in Figure (3.2).

Figure 3.2- Longitudinal Wave with ic P ion along the Pipe.

The torsional wave with ic particles di along the ci of the
pipe is shown in Figure (3.3).
——>  Wave Direction

(=T

Figure 3.3- Torsional Wave Propagation along the Pipe in the 0 Direction.




For flexural waves, all three displacement components exist, the radial, the axial and the
circumferential (,6,z). This mode is an essential element in the diagnosis of defects
(Rose, 1999).

o5

Figure 3.4 - Flexural Wave Showing Nonsymmetrical Propagation.

Waves propagating in the circumferential direction follow a curved path as shown in

Figure (3.5).

Figure 3.5 - Waves Propagating in Circumferential Direction.

These waves suffer a great deal of dispersion and mode conversion that makes it very
difficult to analyze. It is extremely important to have a prior knowledge about the
physical characteristics of the wave guide, the propagating medium and the defects that

may encounter along the ion path. Such serves as a isite  for

the diagnosis of the reflected waves which can be carried out by using special signal

These i can provide the characteristics and features of



the reflected waves. Then the outcome of theses analyses will reveal the existence,

location and extent of defects should they exist.
32  GOVERNING EQUATIONS IN CYLINDRICAL COORDINATES

Consider a hollow cylinder as shown in Figure (3.1) with inner radius @ and outer radius
b, assuming that the cylinder is elastic and isotropic. There are two types of waves, the
axial and circumferential waves. The axial waves impose longitudinal, torsional and
flexural modes of propagation while the circumferential waves follow a curved path

around the circumference of the object.

The analysis of governing Equation will start with Navier's displacement Equation.
However, this Equation is not wave Equation but as cited in the literature it can provide

wave solutions (Gazis, 1959a).

nvu 4+ (A + u)VV~u:p[az—';] (3.1
ot

v2 is the Laplace operator, u is the displacement Vector, A, p are the Lamé's Constants
and p is the density. Gazis (1959), investigated wave propagation in hollow cylinder and

decomposed Naveir's Equation by Helmholtz decomposition method. The result is shown



below where displacement vector u is expressed in terms of a dilatational scalar potential
¢ and a vector potential W as:
u=Vo+Vxy (3.2

Substituting Equation (3.2) into Equation (3.1), Navier's Equation becomes:

v[(uzu)v%»p[%]lﬂn[pvﬁy—p[:—‘f”:o (3.3)

If the scalar potential ¢ and the vector potential y satisfy the wave Equations then the

Navier's displacement Equation is satisfied:
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Where, v2 mentioned in Equation (3.4) is the Laplacian operator, ¢ is the scalar potential

and W s the vector potential; p shown in Equation (3.5) is the density, C,  is the



longitudinal wave speed, CT is the transverse or shear wave speed, A and p are the

Lamé's first and second constants. The second Equation in (3.4) has a vector laplacian
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Where, V2 is the laplacian operator.
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Going back to Equation (3.4) one can get:
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The displacement can be expressed in terms of a scalar and a vector potential as per toke-

Helmholtz decomposition found in Rose (1999) and Kundu (2004):

(3.9)

The stresses can be expressed in terms of displacement as in Achenbach (1973) and

Kundu (2004):



(3.10)

2
2

Also, the stresses can be expressed in terms of potentials by substituting Equation (3.9)

into (3.10) to yield:
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According to Achenbach (1973) and Kundu (2004) the displacement potential can be

expressed as:

j(kzz—m)
[ ¢(r]cos(m9 + Gn)e
= i M) 3.12)
v, ‘l‘r(r)sm(me + Bo)e @3.
kz—ar
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0y is a constant and m is an integer. As mentioned above that there are four (4)
displacement components one scalar and three vector potentials: ¢, i, o and ..
Substituting governing Equations (3.12) into Equation (3.8) yields the following

Equations:

(3.13)

The terms p and q can be expressed as:

The solution of these Equations is Bessel Equation of the first or the second kind and m

the order of the Bessel Equations. They can be written as:
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(3.14)
| v, (1) =CJ (gr) +C,Y, (qr)
‘ V(D =-w(r) = -DJ_,,(ar) -D, Y. tar)
Substituting Equations in (3.12) into the Equation in (3.11) yields:
Jk,
o = pxx”(r)cos(me +00)c
. jkz
0= uau(r)sm(mﬂ +eu)e (3.15)
J
]
o, = uu”(r)cos(me +eo)e
Where, G,,:9, and o, are given as per Kundu (2004):
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Substituting Equation (3.14) into Equation (3.15) yields:

o = D(mkw)A (3.17)

Where, o is the stress vector,_, sGg» D is a matrix whose elements are expressed in
'

terms of the circumferential order m, wave number k and angular frequency .

Equation (3.17) is presented as:

o
w | | Pu Pia Pis Pia Pis D6

- 3.18,

Oy | = | Par Py Py Dy Dos Dy (A G18)

%o Dy, Dy, Dy Dy, Dy Dy

T
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3.3.1  Axial Waves in Pipes

As stated above that these waves have symmetrical and non-symmetrical motions along
the pipe. The symmetrical waves include the longitudinal and torsional and the anti-

symmetric waves are basically the flexural waves.



Taking into account the traction-free condition on the inner and outer surfaces = a and r
= b yield the following cigenvalue problem which is presented in kundo (2004). By
setting the determinant to zero, the dispersion Equation can be obtained which yields the

following:
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For the terms Dy to Dsg, r = b; D41 to Dgg are similar to Dy, — D3s but r =a.
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33.1.1 Longitudinal Waves

The displacement is in the radial and axial direction (r, z) and no displacement along the
circumferential direction (0). To satisfy these constraints C,, order m and 0 are set to zero

in the general solution and leave 4, and B, Then Equation in (3.19) can be presented as:

(3.20)

S
8
o
3
K
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To solve this Equation the determinant must vanish which yields the dispersion

Equations.
3312 Torsional Waves
Motion of torsional waves are along the circumferential () direction, therefore the only
displacement component that exist in the Equations is the component related to 0. To

satisfy this constraint, A,, By, m and 6 = 90° must be set to zero and leave C,. Then

Equation (3.19) can be expressed as:

53 Dy || G 321




33.13 Flexural Waves

Flexural modes are solved by calculating the whole Equation (3.19) to get solutions for

each circumferential order n. To satisfy this Equation, m is set to 1 and 6, to 0.

332 Circumferential Guided Waves

These waves propagate along the circumference of the pipe in the @ direction along the

(r, 6) space and there will be no axial propagation which is basically the z direction.
Therefore, the displacement field can be described in terms of the radial and the
circumferential direction only as there will be no propagation along the axial direction z.
So the defect can only be detected by this type of wave only if the defect is located where

the wave is ing cil ially. The di: potential can be expressed as

Kundu (2004):

o= O(r)exp[j(keﬂ - ox)]
(322)
v, =Y ( r)exp[j(kee - nx)]

Eliminating the terms that are associated with z direction Equation (3.9) and rewriting it
in Equation (3.23) to describe the displacement fields in the radial and circumferential

directions in terms of the potentials y and ¢ as:



Substituting Equations in (3.22) into the first and last Equation in (3.8) one gets the

Equations for circumferential guided wave in terms of the potential y and ¢ as:

2 2
ar r 592 C.
(3.24)
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Equation (3.24) can be re-written as:
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These are Bessel Equations and their general solutions is given as:

o o
®(r)=4,J, [—] +4.Y [‘,]
Iks Cl, 2 ke CL

(3.26)
= o 08
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‘IA and Yk are the first and second kind of Bessel functions.
o o
Assuming o, = 69 = 0, we will have:
Dy Dy, Dy Dy 1[4
D) Dy, Dy Dy :2 - (3.27)

D, Dy, Dyy Dy,

]
D,, b, D,; D,

Au, A, By, and By in Equation (3.27) are constants that can be determined by satisfying

the boundary conditions given as: ¢ = L 0 at the inner and outer radius of the pipe:
"

this referred to as traction-free boundary.

The characteristic Equations or the dispersion Equations can be expressed as shown

below:
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34 DISPERSION CURVES

Here are some of the results obtained using PCDISP program (Seco et al., 2007) for the

of the cutoff ies and the ing dispersive curves for the

longitudinal, torsioan] and flexural modes for a steel pipe with the following input

parameters:



Poisson's ratio ty=29;

Density (kg/m"3)  : p =7900
Internal radius (m) ~ : a = 16.468¢-3

External radius (m) : b= 17.68¢-3

341 Longitudinal Modes Dispersion Curves

34.1.1 Cutoff Frequencies for the Phase Speed Curves

L(0,1): cutoff = 0 kHz

1(0,2): cutoff = 49.8999 kHz
1(0,3): cutoff = 1560.36 kHz
L(0,4): cutoff = 2222.05 kHz
L(0,5): cutoff = 3395.64 kHz

L(0,6): cutoff = 3951.4 kHz



3.4.1.2  Dispersion Curves

Phase Speed (mfs)

Group Speed (mis)

Dispersion Curves (Phase Speed)

L(0.6)
L(ON
L(0,4)

0 1000 2000 3000 4000 5000
Frequency (kHz)

Figure 3.6 - Phase Speed Curves for Longitudinal Modes.
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Figure 3.7 — Group Speed Curves for Longitudinal Modes.



342 Torsional Modes Dispersion Curves

3421 Cutoff Frequencies for the Phase Speed Curves
T(0,1): cutoff = 0 kHz

T(0,2): cutoff = 1002.37 kHz

T(0,3): cutoff = 2002.39 kHz

T(0,4): cutoff = 3002.94 kHz

T(0,5): cutoff = 4003.62 kHz

3422 Dispersion Curves

Dispersion Curves (Phase Speed)

©.4)

0 1000 2000 3000 4000 5000
Frequency (kHz)

Figure 3.8 - Phase Speed Curves for Torsional Modes.



DispersionCurves (Group Speed)
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Figure 3.9 — Group Speed Curves for Torsional Modes.
343 Dispersion Curves Flexural N = 1 Modes
3431 Cutoff Frequencies for the Phase Speed Curves

F(1,1): cutoff = 0 kHz

F(1,2): cutoff = 31.3643 kHz
F(1,3): cutoff = 70.3452 kHz
F(1,4): cutoff = 1002.78 kHz
F(1,5): cutoff = 1147.07 kHz
F(1,6): cutoff = 1631.37 kHz

F(1,7): cutoff = 2002.6 kHz



F(1,8): cutoff = 2493.6 kHz

F(1,9): cutoff = 290091 kHz

F(1,10): cutoff = 3003.08 kHz
F(1,11): cutoff = 4003.72 KHz
F(1,12): cutoff = 4033.36 kHz

F(1,13): cutoff = 4179.78 kHz

3432 Dispersion Curves
Dispersion Curves (Phase Speed)
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Figure 3.10 - Phase Speed Curves for Flexural Modes, n=1



Dispersion Curves (Group Speed)
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Figure 3.11 - Group Speed Curves for Flexural Modes, n=1

3.4.4  Dispersion Curves Flexural N = 3 Modes

3441 Cutoff Frequencies

F(3,1): cutoff = 9.0393 kHz

F(3,2): cutoff = 88.1533 kHz
F(3,3): cutoff = 167.619 kHz
F(3,4): cutoff = 1006.07 kHz

F(3,5): cutoff = 1158.15 kHz



F(3,6): cutoff = 1631.39 kHz
F(3,7): cutoff = 2004.27 kHz
F(3,8): cutoff = 2499.14 kHz
F(3,9): cutoff = 2901.9 kHz
F(3,10): cutoff = 3004.19 kHz
F(3,11): cutoff = 4004.55 kHz
F(3,12): cutoff = 4034.64 kHz

F(3,13): cutoff = 4182.12 kHz

3442 Dispersion Curves
Dispersion Curves (Phase Speed)
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Figure 3.12 - Phase Speed Curves for Flexural Modes, n=3



Dispersion Curves (Group Speed)
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Figure 3.13 - Group Speed Curves for Flexural Modes, n=3

3.5 DEFECTS APPROXIMATION METHODS

The transmitted waves that interact with the flaw produce scattered waves which can be
used to characterize the flaw in terms of extent and shape. There are several
approximation methods cited in the literature that can provide an approximation of the
amplitude of the scattered waves from the flaws. Each method has its shortcoming and
advantages. Such methods include Finite Element Method (FEM), Born Approximation
method, T Matrix method, Boundary Element Method (BEM) and Kirchhoff

Approximations method (Schmerr & Song, 2007).



The Born approximation method was first developed for quantum mechanics and later
used for scattering problem. The BEM can provide a very good approximation of the

flaw but when dealing with 3-D scattering problem it becomes tedious and time

consuming. The T-Matrix method only i indrical and pherical

shapes while the FEM relies heavily on the creation of mesh with discreet points placed

the body being i

The Kirchhoff approximations method can provide a very good approximation of the
volumetric flaws and cracks. It does not necessarily provide an accurate approximation of
the last arriving waves from the flaw but it can very accurately model the leading edge
response of the flaw. Although, it cannot predict the exact size but it can provide a
reliable and meaningful approximation of the flaw that can be used as a qualitative

measure to assess the reliability of the monitored structure.

This research will be based on Kirchhoff imations method to i the

extent of defects like cracks and voids embedded in pipes.

The pulse-echo far filed scattering of circular cracks or spherical voids provides a very
good measure in assessing and describing the flaw. Since all the flaws in a pipe will have
almost a curved shape they occur along eh circumference of the pipe. Although the shape
may have one of its dimensions in the axial direction of the pipe but its width or length
will resemble a curved shape. Hence, this method is feasible for application in this

research.



3.5.1 The Kirchhoff Approximations of Cracks and Voids

To determine the extent of the flaw on a pipe, the Kirchhoff approximation will be
utilized where the amplitude of the scattered wave for the surface of the flaw can be
calculated for a volumetric flaw or a crack. Pulse-echo far-field scattering amplitude
component versus frequency for a spherical flaw in the Kirchhoff approximation is given

by Equation (3.28) (Schmerr & Song, 2007):

A(0) = ~Ziexp( ~jkb) (cxp( —jkb) - l“k(‘#)— ] (3.28)

Where k is the wave number, b is the radius of the flaw, fis the range of frequencies for

the scattered wave and C is the speed of the wave.

The frequency response of the flaw Equation (3.28) is converted back to the time domain
by taking the Inverse Fourier Transform (IFT) to obtain the impulse response of the flaw

Equation (3.29).

a(r)=>%[5(l+%) S (329)

Where C is the wave speed; b is the radius of the flaw; 8: delta function, its amplitude



U(ty, to, t) = 1, for < t < ty, otherwise it is equals to zero. For crack the following
Kirchhoff approximation can be used to estimate the extent of a crack. The amplitude of

the scattered wave from the crack can be estimated as shown below:

A= [bC.osGJ (2 kbSing) (3.30)
28in@ !

Here are some of the results for calculating the scattering filed of flaws with different

‘ radius sizes.
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Figure 3.14 — Scattering Wave from a Flaw with a Imm Radius.
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Figure 3.15 - Scattering Wave from a Flaw with a 4mm Radius.
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Figure 3.16 — Scattering Wave from a Flaw Having 8 mm Radius.



47

— 16mm

@

AA
W

Scattered Amp.,

0 2 4 6 8 10
Frequency, MHz

Figure 3.17 - Scattering Wave from a Flaw Having a 16mm Radius.



CHAPTER 4

SIGNAL PROCESSING AND THE FORMULATION OF FLAW

ASSESSMENT MODEL

In this chapter, some basic concepts about Digital Signal Processing (DSP) for non-
stationary signal will be provided. Fourier Transform, Discreet Fourier Transform (DFT),
Fast Fourier Transforms (FFT), shortcoming of the DFT and ways to alleviate these
shortcomings, windowing and aliasing will be discussed. Also, signal propagation in
solids and the scattering signals from flaw will be discussed. The outcome of these

and the i ion will be used to present a mathematical model

to be used for locating and sizing a spherical flaw.
4.1 CONTINUOUS TIME FOURIER TRANSFORM (CTFT)

The Fourier Transform provides the frequency representation of a signal originally
defined in the time domain. It is used to transform a continuous time signal into

frequency domain. The Fourier transform X(f) of a continuous time function x(1) can be

expressed as :

X(/f) =I X0) e ar @n



The inverse transform is:

(1) :f X(f) & ar “2)

42 DISCRETE FOURIER TRANSFORM (DFT)

It is crucial that the signal is sampled at certain time intervals or frequency intervals to
allow digital recording and gain a better understanding of signal during the analysis. As
we are dealing with digital systems, the signals that are displayed for ~analysis in these
systems should be digital, hence, it is always necessary that the signal to be presented in

samples.

For a finite length signal ~ x(n) the Discreet Fourier Transform (DFT)  X(w) is

expressed as:

N-1

X(0) = Zﬂx(n)e"“" 0<n <N-1 (43)

This is a finite length sequence having N values of frequency samples X (@) _ In the
analysis of a signal we need to get as much information as we can from the frequency
content of the signal. The DFT is a very useful method that provides the frequency

representation of a signal and makes the analysis easier to interpret .



Alternatively, the Discrete Fourier Transform (DFT) of the signal can be presented as
shown below, by providing a simpler way that can provide a relationship between the

DFT and the inverse DFT (Oppenheim & Schafer, 2010):

N-1 _2mk
Xk=  Dxme V. 0<k <N-I (.4
n=0

As noted above that the Discrete Fourier Transform (DFT) is a function that represents a
number of frequency points over a finite length sequence. This is an N-point sequence
defined in the region from 0 to N -1. X(k) is the DFT coefficient and » is an index
number. As indicated above in the Equation that it is sufficient to have a length of a N
for the sequence to provide frequency samples, the X(w) values at N distinct points of
@, where k lies between 0 and N-/. The same thing applies to finding x(n) when
performing the inverse Fourier transform as shown below. The inverse DFT which
provides x(n) from X(k) can be defined as:

1 2r

N
D xme ™ . 0<n<N-1 “5)

x(n) = % 2

These Equations are simplified in another form as:
—exp| -42%
w, =ex( -2%) “6

Taking this expression into the two Equations above:



N-1

X(B) = 2 x(m) Wy, 0<k<N-1 .7
n=0

and

N-1

xn)=L X xyw ™, 0<n <N-I “8)
N = o

4.2.1 Fast Fourier Transform

The Fast Fourier Transform (FFT) is more efficient computation algorithm that
implements the discrete Fourier Transform with a greater efficiency and greater reduction
in computation time. When using the FFT, the computation time can be reduced for an
N-point DFT sequence from the order of N* to N log N. Typical N values will be 2° ( 64),

27 (128),2°(512), 2'° (1024) 2" (2048),......etc.

‘The main intent of using the DFT is to approximate the Fourier transform of a continuous
time process and it must be noted that the DFT has some shortcomings that may lead to
wrong conclusions when analyzing the output results. Such problems are attributed to
the three known phenomena about the DFT: (a) leakage, (b) aliasing, and (c) the picket-

fence effect.



422 Leakage

This problem causes a spreading of the spectrum that can result in moving the highest
frequency beyond the Nyquist frequency which may lead to aliasing. These two problems
cannot be separated from each other. Therefore, the signal should be band limited to

avoid such phenomenon from happening.

The method that is usually used to limit the length of the signal is the windowing
technique. The selected window should be evaluated first to insure its effectiveness in
minimizing the spreading of the signal. There are several window functions used by

Digital Signal Processing (DSP) that will be addressed in the subsequent sections.

423 Aliasing

The phenomenon of aliasing causes the overlapping of signal samples which will lead to
erroneous representation  of the output signal. It causes ambiguity in the output results
when analyzing the output signals. The only solution to the aliasing problem is to ensure
that the sampling rate is high enough to avoid any spectral overlap, or to use an anfi-

aliasing filters.

The Sampling Theorem states that the input waveforms with frequencies below the half

sampling rate can be exactly while ies above the half the sampling

rate become aliased as lower frequencies.



For frequencies just above the half the samplings rate, up to the sampling rate, the aliased

frequency becomes:
Jatias = foyq-\facwat - frngls Where a Kind of mirror-image takes place.

Referring to Figure (4.1), the waveform to be sampled is in blue, it is a 6 Hz sine wave
and would therefore require greater than 12 Hz sampling rate to preserve the correct
frequency in the reconstruction. The red line is the result of sampling at 10 Hz; the alias is

therefore 5- abs (5-6) = 4 Hz.

The Signal to be Sampled is in Blue, the Overlapping is in Red

Figure 4.1 - Aliasing Effect.




424 Picket - Fence Effect

Since the spectrum can be observed at discrete points only, which will be looked at what
is referred to as Picket-Fence Effect because we can observe the behaviors of the signal at

discrete points.

Certain component could lie between two of the discrete transform lines, and the peak of
this component might not be detected without some addition processing. So to reduce this
effect is to vary the number of points in a time period by adding zeros at the end of the

original record of the signal, while maintaining the original record unchanged.

This process changes the period, which in turn changes the locations of the spectral lines
without altering the continuous form of the original spectrum. Consequently, the hidden

spectral components can be shifted to points where they can be detected.

As demonstrated in Figure (4.2), that the hidden spectral components can be seen in the

second plot.



Figure 4.2 - Picket- Fence Effect.

In the latter plot the data points were padded with 7 times its original length to improve
the picture. It simply allows the signal to appear more finely and it does not change the
characteristics of the function and hence cannot change the resolution or the accuracy of

the Discreet Fourier Transform.



43 SAMPLING, ALIASING AND NYQUIST THEOREM

When evaluating a function, it is always necessary to sample it because digital systems
cannot process analogue or continuous functions. If the signal to be analyzed is analog
in nature then it must be converted into digital form, as it is sampled, by an analogue to
digital (A/D) converter. Figure (4.3) presents a continuous time signal, x(1). It can be
represented as a discrete time signal by using values of x(?) at intervals of n7 to form x/n]

as shown in Figure (4.4).

Continuous Time Signal
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Figure 4.3 - Continuous Time Signal.
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Figure 4.4 — Sampled Signal.

We are taking points from x(z) at regular intervals of time, 7} , called the sampling
intervals. The frequency f; is given by f; = I/T,, (£ is in Hertz) can be used in the
frequency domain. If the sampling rates were high enough, then the signal x() could be

reconstructed from x/n] by simply joining the points by small linear portions.

According to the Nyquist Sampling Theorem, aliasing can be avoided by having a
sampling rate that is greater than or equal to twice the highest frequency presented in the
signal. If the sampling rate is not high enough to sample the signal then a phenomenon

called aliasing occurs.



.001 s sampling rate - .02 s sampling rate

0 05 1 0 05 1
.04 s sampling rate .08 s sampling rate

05 1

Figure 4.5 - The Effect of Different Sampling Rates.

Figure (4.5) shows the effect of different sampling rates for a sine signal in the time
domain. Aliasing is basically the overlapping of the signals which leads to the distortion
of the signal. This occurs when a continuous time signal has frequencies larger than half
of the sampling rate. The process of aliasing describes the phenomenon in which
components of the signal at high frequencies are confused for components at lower

frequencies.



44  MATHEMATICAL MODEL FOR LOCATING AND SIZING THE FLAW
4.4.1 Flaw Size Estimation

Under this research, a simulation model has been developed to simulate propagating
signals through a structure without and with a flaw. Equation (4.10) is the Equation that
estimates the amplitude of the scattered waves reflected back from spherical flaws

(Schmerr & Song, 2007).

A(w) = 'ZLCXP( ~jkb) (eXp( —jkb) - i“k(?L ] (4.10)

Figure (4.6) illustrates the scattering waves from spherical flaws with different radius

sizes, 0 mm, 4 mm, 12 mm and 16 mm.
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Figure 4.6 — Scattering Wave Response for a Flaw with 0 mm
Radius.
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Figure 4.7 — Scattering Wave Response for a Flaw with 4 mm
Radius.
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Figure 4.8 — Scattering Wave Response for a Flaw with 8 mm
Radius.
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Figure 4.9 — Scattering Wave Response for a Flaw with 12 mm
Radius.
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Figure 4.10 — Scattering Wave Response for a Flaw with 16 mm
Radius.
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Figure .11 — Response of the Scattering Waves for Flaws with
Radii 0, 4, 8, 12 and 16 mm.

Figure (4.11) shows that the amplitude is approximated as units of length. As the radius
of the flaw increases, the amplitude of the frequency response increases. Also, as the
radius of the flaw decreases the shape of the signal becomes wider in the frequency
domain. In this research Equation (4.10) will be altered to calculate the amplitude as a
ratio or as a coefficient by omitting the radius (b) term from the Equation. Then, it is
multiplied by the original signal or the input signal to estimate the amount of attenuation

and dispersion of the signal when it encounters a spherical flaw of radius b.



Equation (4.10) as it is presented calculates the scattering amplitudes and as the radius
increases, the amplitude increases indicating a signal gain instead of attenuation. As the
radius of the flaw decreases the response amplitude decreases. Equation (4.11) is the

modified Equation is shown below:

Ay (@) = - exp( ’/‘kb)[exp( ~jkb) - Ai—l‘"'"kb"" ) @11
A+ s the spreading coefficient, it measures the amount of spread of the signal in

frequency domain as a result of a spherical flaw, & is the wave number and 4 is the radius
of the flaw. To get a better understanding of the change in the signal, this coefficient
should be inverse Fourier transformed into the time domain. It should be noted that this
equation calculates the pulse-echo far-field scattering amplitude of a flaws, that has an

isotropic spherical shape with a given radius b, which is twice the real length of the flaw.

Referring to Figures below from Figure (4.12) up to Figure (4.23) explain the change in

the frequency and time domains.
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Figure 4.12a — Response of the Scattering Waves for a Flaw with
Omm  Radius — (using the modified Equation).
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Figure 4.12b — Response of the Scattering Waves for a Flaw with
4 mm Radius — (using the modified Equation).
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| Figure 4.13a — Response of the Scattering Waves for a Flaw with
8 mm Radius — (using the modified Equation).
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Figure 4.13b — Response of the Scattering Waves for a Flaw with

12 mm Radius — (using the modified Equation).
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Figure 4.14a— Responsc of the Scattering Waves for a Flaw with
16 mm Radius — (using the modified Equation).
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Figure 4.14b - Response of the Scattering Waves for a Flaw with
20 mm Radius — (using the modified Equation).

As noted from Figures (4.12), (4.13) and (4.14) that the amplitude is the same for all the

responses for the different radii. The only difference is the spread of the signal. As the




radius increases the spread of the signal decreases and as the radius decreases, the spread

of the signal increases; the Figure below, Figure (4.15) illustrates this fact.
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Figure 4.15 — Frequency Responses for Flaws with Radii 0, 4, 8,
12, 16 and 20 mm — (using the modified Equation).
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Figure 4.16 — Frequency Responses for Flaws with Radii 0, 4, 8, 12

16 and 20 mm — Showing the Peak Values for each Response.

As noted, that the increase in the radius causes the response to be narrower and the

decrease in the radius results in a wider response. The amplitude is kept almost the same,

constant over the range of all the frequencies presented in the plot.

In the time domain, the response will be the opposite, the larger the radius of the flaw the

wider the response in the time domain and the lower the radius the narrower the response

in the time domain. These facts are substantiated by Figures (4.17) to (4.23).
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Comparison of the Time Domain Responses of the

Scattering Waves for Flaws with Radius Sizes 0, 4,
8,12, 16 and 20 mm.

The Figure is re-plotted in a larger scale shown below in Figures (4.18) to (4.23) for each

size of the flaw that clearly show that as the radius of the flaw increases, the time shift of

the signal increases in the time domain.
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Figure 4.19—  Scattering Waves Time Domain Responses for Flaw
Radius Size 4 mm.
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Figure 4.21-  Scattering Waves Time Domain Responses for Flaw
Radius Size 12 mm.
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45 SIGNAL PROPAGATION

The input signal can be presented as a sine wave which propagates in the structure. The

signal is infinite, so a windowing technique is required to truncate the signal.

As mentioned earlier, there are several wi ing i such as

Bartlett, Hanning, Hamming, Blackman and Kaiser. For this research Hanning
windowing technique has been used. Other non-rectangular techniques can be used to
produce smoother curves than the curves produced by the rectangular techniques.
Smoother curves will definitely increase the accuracy when evaluating the spread of the
signals and their amplitudes. The Hanning window function shown below truncates the
signal where the sequences can be summed up (Oppenheim & Schafer, 2010):

W(n) =a.5(1 -cox[sz]J‘ 0<n<N (.12)

Also, it can be expressed as (Lathi, 2005):
T

wu)=0.5[1 +ca.v(2m)l @.13)

‘The input signal will be presented as a sine wave signal:

X(1) = 0.5 x Cos (2 nfe (- td) ) (4.14)



Where,

Je : Center frequency

t @ Timevector; 0 <t <T;

T

tis taken in steps of = T
N-1

ty. Time Delay

N Number of samples

T : Time Duration for the signal in seconds
n : Index number

Then the truncated signal will be expressed as:

X, (0) = X(0)W(2) (*.15)

It is extremely crucial to know the frequency content of the signal to further analyze the
signal. Performing the Fourier transform, the frequency domain representation of the
signal is obtained.

FFT

X = x(
IFFT

(4.16)

The signal propagating without defect in the frequency domain can be expressed as:

Y(0) =X, (0)exp( -jkd) .17



Where, d is the propagation distance and & is the wave number relating the frequency to

the wave speed along the propagation path.

2xf 4.18
g (4.18)

Multiplying it with the spreading coefficient of the defect, the signal propagation with

defect in the frequency domain is obtained which can be expressed as:
Y(0) =X (@)exp( ~jkd) A, (@.19)

This is the mathematical model that that will be used in this research to locate and
estimate the defect. Then the output signal is presented in time domain by taking the
Inverse Fourier Transform (IFFT).  Obtaining the response in time domain will provide
a better representation and understanding of the response, hence the flaw can be located.
Knowing the group speed at the central frequency of the input signal and multiplying it
with the propagation time, the location of the flaw or the length of the pipe can be

estimated.
The steps required for carrying out the simulation process are:

1. Determine the input signal Equation (4.14), number of cycles and the central

frequency (fy).



Determine the length of the time window (T) for the input signal in

(microseconds) and determine the number of Discrete Fourier Transform (DFT)
points (N) for this time window.

Select a sampling frequency f, greater than twice the signal bandwidth /, > 2BW
to avoid overlapping repletion of the signal and to preserve the information of the
input signal x(2). The sampling frequency f; is equal to //t,, sampling time or
sampling intervals, £, = T/(N-1), then the time window will be divided into N
sampling intervals.

Obtain the dispersion curves (frequencies versus group speed) for the input signal
at the specified mode, whether longitudinal, torsional or flexural.

Apply the windowing technique (Hanning) to shorten the signal.

Perform FFT to the input signal to get the frequency content of the signal.

Obtain the prorogation flaw-free signal (Equation 4.17, this is reference signal)
and the propagation signal with flaw (4.19).

IFFT both signals in item 7.

Determine the width difference or the time shift between the two signals in step 8
and divide the result by two -~ fe = 1/2( tginy ~trer), Where f; : flaw extent, 7
and f,, are the time at the highest amplitude of the flaw signal and the time at
the highest amplitude of reference signal respectively.

Multiply the time shift in step number 9 by the group speed obtained in step 4 at
the specified central frequency to estimate the extent of the flaw in millimeters.
Add the time at the highest amplitude obtained for both signals in step 9 and

multiply by the group speed and subtract that from the estimated flaw obtained in



10 to estimate the location of the flaw in meters, -~ fi = 1/2( taw + lrer) % Sg—

Jfer where f; is the flaw extent and S is the group speed.

Figures (4.24) and Figure (4.25) illustrate this fact in more details.

Dispersion curves (phase speed)
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Figure 4.24-  Dispersion Curves Showing the Phase Speed versus
Frequency for Longitudinal Wave L(0,1).
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Figure 425 — Dispersion Curves Showing the Group Speed versus
Frequency for Longitudinal Wave L(0,1).

Figure (4.25) depicts the dispersion curves for longitudinal wave ing in steel

pipe, mode(0,1), the group speed at the test frequency (300 kHz) is 3032.5 m/s for a 2-
mtere steel pipe with an external radius of 16.468 mm and internal radius of 17.68 mm.

Figure (4.25) is obtained by calculating the dispersion Equations (3.20) and (3.21) for

and torsional respectively. The ing signal the pipe is

shown in Figure (4.26) in time domain.
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Figure 4.26 — The Reference Signal.
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Figure 4.27 - The Flaw Signal.
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As indicated in Figure (4.27) that the signal has travelled for 453.7 micro seconds while
the reference signal shows the time at the highest amplitude is 434.4 micro seconds;
obtaining the speed at the central frequency from Figure (4.25), that the speed is 3032.5

m/s.

The radius of the flaw can be approximated within an accepTable degree of accuracy by:

fo = 12 —trg) % g

Where, f. : flaw extent, #ga, and f,, are the time at the highest amplitude of the flaw
signal and the time at the highest amplitude of reference signal respectively.
fo=1/2 x (453.7 s — 434.4 ps)x 3032.5 m/s = 29.26 mm.

Percentage of Error = -2.45%.

Then the location of the flaw will be:
Ji=1/2(tpay + treg) % Sy~ fes where £; is the flaw extent and S is the group speed.

Si=1/2 x (453.7ps +434.4 pus) x 3032.5m/s —(29.26 /1000) mm = 1.32 meters.

To validate and demonstrate the feasibility of the mathematical models presented above,
several trials with different propagation distances and flaw sizes are discussed in the next

chapter, "Simulation and Results".
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CHAPTER 5

SIMULATION AND RESULTS

One of the objectives of this research is to develop a mathematical model that can predict,
locate and quantify the extent of spherical flaw. In this chapter several simulation trials
for different flaw sizes at different locations on steel pipes will be presented using the
mathematical model discussed in chapter 4. Such model can be used as a baseline for
operators to know in advance what the output signals look like for defect-free-and
defective pipelines. Moreover, such model can serve as a prerequisite for experimental
work to provide signal response information before conducting the experiments. It
basically enhances our understanding and confidence of such models before performing
any real time operation or experimental work.

The main focus then will be ively on the developed mathematical model and the

associated Equations under this research, Equations (4.11) and (4.19) of the previous
chapter as well as Equation (4.17). To validate these models and prove their feasibility in
the application area, several trials will be presented and investigated in section 5.1 to
conclude their viability. Simulation of different flaw sizes located at fixed distance will
be presented in section 5.2 while simulation of different flaw sizes located at various
distances will be discussed in section 5.3. The objective of this analysis is to determine

the accuracy of estimates obtained using the method suggested in this thesis.




5.1 CASE STUDIES SIMULATION

Steel pipes with the following input parameters having different lengths, different flaw

sizes and different flaw locations will be considered in this study. Three different

scenarios will be i in the si ion to the validity and

applicability of the models.

5.1.1 Input Parameters

Pipe Parameters

Pipe Type: Steel Pipe
Internal Diameter: 18mm
External Diameter: 24mm
Density: 7800 kg/m’
Poisson's Ratio: 0.3

First Pipe

Length 1.2M
Flaw Location: 0.3M
Flaw Radius: 20mm
Second Pipe

Length: 2.0M
Flaw Location: 1.2M
Flaw Radius: 30mm
Third Pipe

Length: 28M
First Flaw location: 0.8M
First Flaw Radius: 60mm
Second Flaw location: 1.4M

Second Flaw Radius: S0mm



Input Signal Parameters

Test Frequency (Central Frequency - f): 420 KHz
Number of Samples: 4096

Signal Duration: 2000e-6 Seconds

Number of signal cycles: 8 cycles

Wave Type for the Test: Longitudinal Wave mode (0,1)

The first step in the simulation process is to obtain the dispersion curves for the pipe
being tested using Equation (3.20). From the dispersion curves, the phase or group speed
can be determined at the specified input frequency used in the simulation. The value of
the speed at the central frequency will be used to determine the propagation distance and

the flaw size from the time domain response.

Figures (5.1) and (5.2) show the dispersion curves for the specified pipes mentioned
above. The plot shows that the group speed at the central frequency (420 KHz) is 3080

m/s.
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Figure — 5.1 - Dispersion Curves Showing Frequency versus Phase
Speed for Longitudinal Mode.
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Figure — 5.2 - Dispersion Curves Showing Frequency versus Group
Speed for Longitudinal Mode.

5.1.2  Simulation Results and Analysis

5.1.2.1 1.2 Meter Steel Pipe, Flaw Size 20mm Located At 0.9M
Figures (5.4) to (5.9) show the time domain response for 1.2 meter steel pipe with an
internal diameter of 18mm and external diameter of 24 mm with a defect having a radius

of 20mm located at a distance of 0.3M.
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Figure 5.3 — Pipe Details for the First Simulation.
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Figure 5.4 — The Original Signal and the Propagating
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Figure (5.4) shows the two signals in the same plot; the input signal and the propagating
signal. The second signal travelled up to the end of a defect-free pipe, i.c., representing a

pipe without a flaw.
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Figure 5.5 — The Original and the Propagating Signals Plot
with Data Shown.

Figure (5.5) shows the time at the highest amplitude for both signals shown in the
previous Figure, Figure (5.4). Figure (5.6) shows the original signal with a better

representation.
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Figure 5.7 — The Propagating Signal up to the End of the Pipe.



Taking the time at the highest amplitude and multiplying it with the group speed at the

specified input frequency, the travelled distance by the signal can be obtained. Figure
(5.7) depicts the signal travelling in a defect-free pipe and it shows that the signal has
travelled for 400 ps x 3080 m/s (group speed) = 1.23 meters; the actual distance is 1.2

meters; a small percentage error about 2.67% .
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Figure 5.8 — The Flaw-Free Reference Signal.

Figure (5.8) illustrates the reference flaw-free signal that has travelled for 108.40
microseconds. The travelled distance by the  propagating signal can be estimated by the

following Equation:




Travelled Distance = ¢, xS 5.1)
ha s

Where, 1, i the time at the highest amplitude of the propagating signal and 5 _is the
-

group speed.
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Figure 5.9 — The Flaw Signal.

Figure (5.9) shows the flaw signal has travelled for 121.60 microseconds. The extent of
the flaw can be estimated by taking half of the difference of the times at the highest
amplitudes of both the reference and the flaw signals and multiplying that by the group

speed (Kundu, 2004). Estimated Flaw Extent:



(5.2)

1
f= Y(IW = ln/]xS‘

Where, f, is the flaw extent, Yaw is the time at the highest amplitude of the flaw signal,
7S the time at the highest amplitude of the reference signal and , is the group speed

of the signal.

The difference between the spread of the flaw signal and the reference signal is
(121.6-108.4) /2 = 6.6 pis; 6.6 ps x 3080 m/s = 20.33 mm; the actual flaw radius is 20

mm; = 1.64% error.

The location of the flaw can be estimated by the following Equation:

Estimated Flaw Location=/l = %(lﬂw + 1Nf) x sﬂ ‘ﬂ (5.3)

The location of the flaw = 0.5 x  (121.6 + 108.4) x3080 — 20.33 /1000 = 0.33 meter;

percentage of error =10%.
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5.1.2.2 2.0 Meter Steel Pipe, Flaw Size 30mm Located at 1.2M

Figures (5.11) to (5.15) show the time domain responses for 2 meter steel pipe with an
internal diameter of 18mm and external diameter of 24 mm with a defect having a radius

of 30mm located at a distance of 1.2 m.

Flaw Radius 30mm

Figure 5.10 - Details of the Pipe — Second Simulation.
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Figure 5.11 - The Original Signal and Propagating Signal.

Figure (5.11) shows two signals in the same plot; the input signal and the signal that has

travelled to the end of the pipe. Figure (5.12) shows the input signal in better resolution.
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Figure 5.12 — The Original Signal.
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Figure 5.13 - The Propagating Signal.
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Figure (5.13) portrays the signal that travelled to the end of the pipe stopping at 660.3 ps,

which the time is taken at the highest amplitude. Measuring travelling distance: 660.3 ps

* 3080 m/s = 2.03 meters; 98.3% accuracy.

Signal propagation - The Reference Signal
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Figure 5.14- The Reference (Free-Defect) Signal

Figure (5.14) shows the reference flaw-free signal; time at the highest amplitude is 400

us.



Flaw Signal - Flaw Size =30 mm, Flaw Location = 1.2 Meters,
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Figure 5.15 - The Flaw Signal.

Figure (5.15) illustrates the flaw signal, travelling for 418.60 ps; using Equation 5.2, to
obtain the extent of the flaw = 1/2 x (418.60 — 400) s * 3080 m/s = 29 mm; 3.33 %

error.

Using Equation 5.3 to estimated the location of the flaw :
1/2 % (418.6 + 400) us x 3080 m/s - 29 mm/1000 = 1.23 meters;

2.50% error, accounting for 98% accuracy in the result which is extremely good estimate.



5.1.2.3 2.8 — Meter Steel Pipe, Flaw Sizes 60mm at 0.8M and 80mm at 1.4M

Figures (5.17) to (5.24) show the time domain responses for a 2.8-meter steel pipe with an
internal diameter of 18mm and external diameter of 24 mm with two defects, the first one
has a radius of 60mm, located at a distance of 0.8M, and the second defect has a radius of

80mm and located at 1.4M.

oM L Flaw Radius B0mm

Figure 5.16 — Details of the Pipe — Third Simulation.
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Figure 5.17 - The Input Signal.

Figure (5.17) depicts the input signal as a stationary signal not moving while Figure

(5.18) shows the signal after it has travelled to the end of the pipe.
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Figure 5.18 — The Response of the Propagating Signal.
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Flaw Signals
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Figure 5.19 — The Response of the 1" and 2™ Flaw Signals.

Figure (5.19) illustrates the signals for the first and second flaws in two different colors.
The Figure bleow, Figure (5.20) shows the propagating signal, travelleing for 918.2 ps;
using eqaution (5.1) the estimated tarvelled distance becomes 2.828 meters, the actual

distance is 2.8 meters, the reuslt has almost 99% accuracy.
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Figure 5.20 — The propagating Signal with Data Shown on the Plot.
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Signal propagation - The First Reference Signal
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Figure 5.21 - The reference Signal for the 1* Flaw with Data Shown on the Plot.

Figure (5.21) shows the reference signal for the first flaw stopping at 269.1 ps.



Flaw Signal - Flaw Size =60 mm, Flaw Location = 0.8 Meters,
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Figure 5.22 - The 1* Flaw Signal with Data Shown on the Plot.

Figure (5.22) shows the time at the highest amplitude for the first flaw signal at 309.2 ps,
the estimated flaw size = 61.8 mm; the actual is 60 mm; 2.9% error. Using Equation
(5.3) to get the estimated location of the flaw, the estimated location is 0.83 meters. The
actual location is 0.8 meter, this difference in result accounts to 3.82% error in the result

which is a negligible error.



Signal propagation - The Second Reference Signal
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Figure 5.23 — The Reference Signal for the 2™ Flaw with Data
Shown on the Plot.

The reference signal for the second flaw is shown in Figure 5.23 where the time at the

highest amplitude is 465.9 ps.
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2nd Flaw Signal - Flaw Size =80 mm, Flaw Location = 1.4 Meters,

—— Second Flaw Signal
1
Y:09187
05
a
E
< 0
-05/
-1
460 480 500 520 540 560 580

Time (us)

Figure 5.24 — The 2" Flaw Signal with Data Shown on the Plot.

Figure (5.24) shows the plot for the second flaw; time at the highest amplitude 518.2 ps.
The estimated flaw size 80.65 mm. the actual flaw size is 80 mm; the difference between
the actual and the estimated accounts for 0.81% error which is extremely good. The

estimated flaw location, using Equation (5.3) becomes 1.44 meters; accounting for 2.86 %

error.



52  SIMULATION OF DIFFERENT FLAW SIZES LOCATED AT FIXED

LOCATION

The model was tested for various flaw sizes located at 1.2 meter and 2.0 meter at low

frequency, 300 KHz and high frequency SMHz. The flaw sizes ranging from 10 mm up

to 300 mm: 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 180, 200,

260 and 300 mm.

521 Simulation of Different Flaw Sizes at Low Frequency

5.2.1.1 _Si ion of Different Flaw Sizes at Low Frequency Located at 1.2 m

The specified frequency is 300 KHz and the group speed at this frequency as shown in
Figure (5.25) is 3116 m/s; Table (5.1) presents the relevant information for each
estimated flaw size and the estimated flaw location followed by a plot portraying the

actual versus estimated flaw sizes.
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Figure — 5.25 — The Dispersion Curves — Group Speed —
for Longitudinal Mode.
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Actual | Actual | Estimated | Estimat Actual | Estimated
Flaw Time Time | edFlaw | %of | Flaw Flaw % of
Size | Difference | Difference | Size | Error | Location | Location | Error
(mm) (ns) () (mm) (m) (m)
10 321 318 9.89 | 1.05% 120 123 2.50%
20 6.42 6.84 2131 | 6.56% | 120 1.23 2.50%
30 9.63 9.04 2816 | 6.13% 120 123 2.50%
40 12.34 12.95 4034 | -085% | 120 123 2.50%
50 16.05 16.61 5176 | -3.51% [ 120 123 2.50%
60 19.26 18.81 5861 | 2.32% 120 1.23 2.50%
70 2246 247 7002 | -0.03% | 120 123 2.50%
80 25.67 2638 8220 | -275% | 120 123 2.50%
90 28.88 28.58 89.05 | 1.05% 120 123 2.50%
100 32.09 3224 100.47 | -047% | 120 123 2.50%
110 3530 36.15 112,64 | -240% | 120 123 2.50%
120 38.51 41.86 13045 | -871% | 120 123 2.50%
130 4972 42,01 13091 | -0.70% | 120 1.23 2.50%
140 44.93 4421 137.76 | 1.60% | 120 123 2.50%
150 48.14 48.12 149.94 | 0.04% | 120 1.23 2.50%
160 51.35 51.78 16136 | -0.85% | 120 123 2.50%
180 57.77 57.65 179.62 | 0.21% 120 123 2.50%
200 64.18 63.75 198.65 | 0.67% 120 123 2.50%
260 83.44 83.29 259.54 | 0.18% 120 123 2.50%
300 96.28 96.73 30140 | -047% | 120 123 2.50%

Table 5.1 Output Results for Various Flaw Sizes at Low Frequency
Located at 1.20 m.

The actual time difference is calculated by taking the actual flaw size and dividing it by

the estimated group speed obtained from the dispersion curves. The estimated time



difference is calculated by subtracting the time at the highest amplitude for the flaw signal

from that of the reference signal and dividing the result by 2.

Flaw Sizes Companson @ 300 KHz
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Figure 5.26 — Comparison between Actual and Estimated Flaw Sizes Located
at 1.2 Meter - Central Frequency = 300 KHz.
Figure (5.26) compares the estimated flaw sizes versus the actual flaw size; the estimated
values almost agree with actual values with a percentage of error ranging from -8.71% to

6.13% providing accuracy ranging from -91.3% to 94%.
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Simulation of Different Flaw Sizes at Low Frequency Located at 2.0 m

The specified frequency is 300 KHz and the group speed at this frequency as shown in
Figure (5.26) is 3116 m/s; Table (5.2) presents the relevant information for each
estimated flaw size and the estimated flaw location followed by a plot portraying the

actual versus estimated flaw sizes.

T | e | et | | e |
Size | Difference | Difference (mm) @ Location | Location @)
(mm) ®s) ©s) (m) (m)

10 321 3.05 9.51 -4.88% 2.0 2.03 1.66%
20 6.42 6.84 2131 6.53% 2.0 2.03 1.66%
30 9.63 891 27.77 7.42% 20 2,03 1.66%
40 12.84 12.82 39.95 -0.13% 20 203 1.66%
50 16.05 14.90 46.42 -1.17% 20 2.03 1.66%
60 19.26 18.68 58.21 2.98% 2.0 2.03 1.66%
70 2246 22.47 70.01 0.01% 2.0 2.03 1.66%
80 25.67 24.66 76.85 -3.93% 20 2.03 1.66%
92 28.88 28.45 88.65 -1.50% 2.0 2.03 1.66%
100 32.09 3223 100.44 0.44% 2.0 2.03 1.66%
110 3530 3443 107.29 -2.46% 20 2.03 1.66%
120 3851 38.22 119.09 -0.76% 20 2.03 1.66%
130 41.72 42.00 130.88 0.68% 20 2.03 1.66%
140 44.93 44.20 137.73 -1.62% 20 203 1.66%
150 48.14 47.99 149.52 -0.32% 20 2.03 1.66%
160 51.35 51.77 161.32 0.82% 20 2.03 1.66%
180 57.77 57.63 179.58 -0.23% 2.0 2.03 1.66%
200 64.18 63.61 198.22 -0.89% 20 2.03 1.66%
260 83.44 83.15 259.10 -0.35% 2.0 2.03 1.66%
300 96.28 96.70 301.33 0.44% 20 2.03 1.66%

Table 5.2 - Output Results for Various Flaw Sizes at Low Frequency
Located at 2.0 m.



Flaw Sizes Comparison - @ 300 KHz.
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Figure 5.27 — Comparison between Actual and Estimated Flaw Sizes
Located at 2.0 Meter - Central Frequency = 300 KHz.
Figure (5.27) compares the estimated flaw sizes versus the actual flaw size; the estimated
values almost agree with actual values with a percentage of error ranging from -7.42% to

6.53% providing accuracy ranging from -92.6% to 93.5%.
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Flaw Sizes Comparison - @ 300 KHz
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Figure 5.28 — Comparison between Actual and Estimated Flaw Sizes Located
at 1.2 Meters and 2.0 Meters - Central Frequency = 300 KHz.

Figure (5.28) illustrates actual flaw sizes versus flaw sizes estimated at the low
frequency, 300 KHz located at two different distances 1.2 meters and 2.0 meters. The

estimated values fit exactly on the actual values line for both distances.




522 Simulation of Different Flaw Sizes at High Frequency Located at 1.2m
and 2.0m

The model was tested for 30 mm flaw located at 1.2 meter and 2.0 meter at high
frequency. The specified frequency was SMHz. The group speed at SMHz as shown in

Figure (5.29) is 2905 m/s.

Dispersion Curves (Group Speed)
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Figure 5.29 — Dispersion Curves — Group Speed — for Longitudinal Mode
L(O,1).



522.1 imulation of Different Flaw Sizes at High Frequency Located at 1.2M

Figures (5.30) and (5.31) show the plot for the first estimated flaw sizes, 30 mm is shown
below. The time shift between both the reference and the flaw signal was calculated to be
9.6 s, so the estimated flaw size is: 2905ms x 9.6 us =28 mm, the percentage of error =
6.7%. Table (5.3) presents the relevant information for all the estimated flaw sizes
considered and the estimated flaw location followed by a plot portraying the actual versus

estimated flaw sizes.

Signal propagation - The Reference Signal for the Flaw
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Figure 5.30 - Reference Signal for 30 mm Defect Located at 1.2 m
(High Frequency -SMHz).



Signal propagation - The Signal for The Flaw
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Figure 5.31 — Flaw signal for 30 mm defect located at 1.2 m —f; (High
Frequency - SMHz).



Flaw E'!ri;'.'::“ Estimated | % Flaw Estinated %
Size | e ce | Difference | FaWSize | Error | Location | | N | Error

(mm) (us) (us) (mm) @) (m) (m) @)
10 344 3.05 886 | -1140% 120 113 5.42%
20 6388 6.65 1932 | 341% 120 113 542%
25 861 830 2411 -3.55% 120 113 5.42%
30 1033 9.60 27.89 -7.04% 120 113 -5.42%
40 13.77 13.10 38.06 -4.86% 120 113 -5.42%
50 1721 16.15 4692 | 6.17% 120 [KE] 5.42%
60 20.65 1930 5607 | -6.56% 120 L3 5.42%
70 2410 22385 6638 | -5.17% 120 113 5.42%
80 27.54 2580 7495 | -631% 1.20 L3 5.42%
90 3098 29.40 8541 -5.10% 120 [E) 5.42%
100 | 3442 3245 9427 | 573% 120 L3 5.42%
1o | 3787 35.50 103.13 | -625% 120 113 5.42%
120 [ 4131 39.00 11330 | 5.59% 120 113 542%
130 | 4475 42.05 12216 | -6.03% 120 113 -5.42%
140 48.19 45.70 132.76 -5.17% 1.20 [BE] -5.42%
150 51.64 48.55 141.04 -5.97% 1.20 113 -5.42%
160 | 5508 51.80 15048 | 5.95% 120 113 5.42%
180 | 61.96 5835 16951 | -5.83% 120 113 5.42%
200 | 6885 64.80 18824 | -5.88% 120 [NE) 5.42%
260 | 8950 84.15 24446 | -5.98% 120 [NE] 5.42%
300 | 10327 9730 28266 | -5.78% 1.20 [E) -104.52%

Table5.3-  Output Results for Various Flaw Sizes at High Frequency

Located at 1.20 m.




0 Flaw Sizes Comparison - @ 5 MHz
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Figure 5.32 — Actual versus Estimated Flaws with Varying Sizes
Located at 1.2M — f; (High Frequency -SMHz).
Figure (5.32) compares the estimated flaw sizes versus the actual flaw size; the estimated
values almost agree with actual values with a percentage of error ranging from -7.04 % to
-3.41 % providing accuracy ranging from -93% up to -96.6% for all the flaws greater

than 10 millimeter, while the 10-millimeter flaw accuracy is -88.6%.

5.2.2.2  Simulation of Different Flaw Sizes at High Frequency Located at 2M

Figure (5.33) compares the estimated flaw sizes versus the actual flaw size; Table (5.4)

indicates that the estimated values almost agree with actual values with a percentage of
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error ranging from -8.78% to -3.41 % providing accuracy ranging from -91.22% to -

96.6% for all the flaws greater than 10mm. While the 10-milimter flaw accuracy is -

87.2%.

Actual | Actual | Estimated [ P % Actual | Estimated
Flaw Time Time | e of Flaw

Size | Difference | Difference | 100" Error | Location

(mm) (ns) (ns) @) (m)
10 344 3.00 872 -12.85% 20 189
20 6.88 6.65 1932 -341% 20 1.89
25 8.61 7.85 2280 -8.78% 20 1.89
30 1033 970 28.18 6.07% 20 1.89
40 1377 1330 38.64 341% 2.0 189
50 1721 1625 4721 -5.59% 20 189
60 2065 1930 56.07 6.56% 2.0 1.89
70 24.10 22.80 66.23 -5.38% 20 1.89
80 27.54 25.95 75.38 5.71% 20 1.89
90 3098 29.40 85.41 -5.10% 20 1.89
100 3442 3245 94.27 5.73% 20 189
110 37.87 35.50 103,03 | -625% 20 189
120 4131 39.10 113.59 -5.35% 2.0 1.89
130 4475 42.05 12216 | -6.03% 2.0 1.89
140 48.19 45.10 13102 | 642% 2.0 1.89
150 51.64 48.75 14162 | -5.59% 2.0 1.89
160 55.08 51.80 15048 | -5.95% 20 1.89
180 61.96 5835 169.51 -5.83% 20 1.89
200 68.85 64.90 18853 | -5.73% 20 1.89
260 89.50 84.13 24440 | -6.00% 20 189
300 103.27 97.37 28285 | -5.712% 2.0 1.89

Table 5.4 - Output Results for Various Flaw Sizes at High
Frequency Located at 2.0 m.
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Figure 5.33 - Actual versus Estimated Flaws with Varying Sizes
Located at 2.0 M/ (High Frequency -SMHz).
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Figure 5.34 — Actual versus Estimated Flaws with Varying Sizes Located
at 1.2M & 2.0 M-/, (High Frequency -5MHz).

Figure (5.34) illustrates actual flaw sizes versus flaw sizes estimated at the high
frequency, SMHz KHz located at two different distances 1.20 meters and 2.0 meters.
The estimated values almost agree with the actual values line for both distances with

slight variation.
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Different Flaw Sizes Comparison
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Figure 5.35-  Comparison of Actual and Estimated Flaws with Varying

Sizes Located at 1.2 meters and 2.0 meters at Central
Frequencies = 300 kHz and SMHz.

Figure (5.35) illustrates actual flaw sizes versus flaw sizes estimated at the high
frequency, SMHz and low frequency, 300 kHz located at two different distances 1.20
meters and 2.0 meters. The estimated values almost agree with the actual values line for

both distances and for both frequencies with slight variation.



5.3 SIMULATION OF DIFFERENT FLAW SIZES LOCATED AT VARIOUS

DISTANCES

Another simulation was made using the parameters of the ~pipe in reference (Wang et al.,
2010) and at the same specified frequency of 420 KHz, but the length of pipe is 10
meters. Flaws with different sizes: 16, 20, 24, 30, 44, 66 and 100 mm were introduced on
the pipe located at different locations along the 10-meter length. For each flaw size, the

flaw is kept constant and its location is varied along the pipe 0.5 — meter interval.

Flaw Located at Various Locations - 16, mm,
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Figure 5.36 — 16 mm Estimated Flaw Size versus Distance Plot.




Figure (5.36) shows the predicted flaw size of 16 mm located at different points along the
10-meter pipe, the flaw size was kept constant and its location was varied in 0.5-meter
interval along the 10-meter pipe. The Figure shows that as the location of the flaw

changes the estimated flaw size varies insignificantly when compared with the actual flaw

size.
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Figure 5.37 — 20 mm Estimated Flaw Size versus Distance Plot.

Figure (5.37) shows the predicted flaw size of 20 mm located at different points along the
10-meter pipe, the flaw size was kept constant as the location was varied along the pipe.
The figure portrays that the predicted flaw size almost agrees with the actual flaw size as

the location of the flaw changes along the pipe.
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Figure 5.38- 24 mm Estimated Flaw Size versus Distance Plot.

Figure (5.38) shows the predicted flaw size of 24 mm located at different points along the
10-meter pipe, again the flaw size was kept the same at 24 mm radius and its location was
varied along the pipe. The estimated flaw size at cach location varied insignificantly when

compared with actual flaw size as it can be seen from the Figure.
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Figure 5.39 — 30 mm Estimated Flaw Size versus Distance Plot.

Figure (5.39) shows that the predicted flaw size of 30 mm located at different points
along the 10-meter pipe was steady all over the range of distances, the only noticeable

change can be seen at 4 mete which is insignificant.



Actual Versus Estimated Flaw Locations for Flaw Size 30, mm,
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Figure 5.40 — Comparison between the Estimated and Actual Location
for 30mm - Flaw.
Figure (5.40) compares the actual flaw location versus the estimated flaw location for a
30 mm flaw located at different distances along the 10-meter pipe. As indicated from the
Figure that there is very little variation between the actual and the estimated distance. As
the distance or location of the flaw goes beyond 4.8 meter; this variation starts to increase
but this increase in variation is insignificant as depicted from the Figure and does not

affect the accuracy of the result.
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Flaw Located at Various Locations - 44, mm,
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Figure 5.41 — 44 mm Estimated Flaw Size versus Distance Plot.

Figure (5.41) shows the estimated flaw size versus the distance for a 44 mm flaw located
at various points along the pipe. The Figure shows that as the flaw location changes along

the pipe, the estimated flaw size almost agrees with the actual flaw size.
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Actual Versus Estimated Flaw Locations for Flaw Size 44, mm,
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Figure 5.42 — Comparison between the Estimated and Actual Location for
44mm - Flaw.

Figure (5.42) compares the actual flaw location versus the estimated flaw location for the
44-milimter flaw. The Figure shows very little variation between the actual and the
estimated distances. As the distance or location of the flaw goes beyond 4.5 meter; this

variation starts to increase but this increase in variation is insignificant.
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Flaw Located at Various Locations - 66 mm.
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Figure 5.43 — 66 mm Estimated Flaw Size versus Distance Plot.

Figure (5.43) shows the estimated flaw size versus the distance for a 66 mm flaw located
at various points along 10-meter pipe. The Figure shows that the estimated size of the

flaw is almost the same as the actual size of the flaw along the pipe.
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Figure 5.44 — Comparison between the Estimated and Actual Location for
44mm - Flaw.

Figure (5.44) compares the actual flaw location versus the estimated flaw location for 66-
milimter flaw. There is very little variation between the actual and the estimated distance.
This variation starts to increase beyond the 5-meer region but this increase in variation is

insignificant.
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Figure 5.45 — 100 mm Estimated Flaw Size versus Distance Plot.

Figure (5.45) shows the estimated flaw size versus the distance for a 100 mm flaw located
at various points along 10-meter pipe. The Figure shows that when changing the flaw
location along the pipe the estimated size of the flaw is almost the same as the actual size

of the flaw.
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Figure 5.46 — Comparison between the Estimated and Actual Location for
100 mm - Flaw.

Figure (5.46) compares the actual flaw location versus the estimated flaw location. The
figure indicates that there is slight variation between the actual and the estimated

distances when the flaw is located at 4.8 meter and beyond.
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Flaws with Different Sizes Located at Various Locations
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Figure 5.47 - Estimated Flaw Sizes versus Distance — Comparison of
All Flaws Located at Different Distances.
Figure (5.47) shows the estimated flaw sizes for all the flaws considered in the analysis
with sizes 16, 20, 30, 44, 66 and 100 mm versus the various locations along the 10-meter
pipe. As it can be seen from the Figure that as the location of the flaw changes the
estimated flaw size varies insignificantly when compared to the actual size of the flaw

which does not affect the accuracy of the result.



CHAPTER 6

EXPERIMENTAL ANALYSIS AND RESULTS

In this chapter the results of experiments reported in two research papers (Wang, Tse,
Mechefske & Meng, 2010) and (Aiello, Dilettoso & Salerno, 2005) for sizing flaws with
varying dimensions will be compared with the simulation results obtained using the
method suggested in this thesis. The subsequent sections provide the relevant details and

the results pertaining to each experiment.

It should be noted, that one of the underlying assumptions of the modified model
suggested in this thesis is that the flaw has an isotropic spherical shape with a given
radius. To use this model for the estimation of actual flaws, one can use one of the

following two approaches:

The surface of a rectangular shape is obtained by unwrapping the spherical shape as

shown in Figure (6.1).

2;

Area = 2Tr X 2r = 4mr?

Figure 6.1 - Schematic Showing the Sphere and the Unwrapped Sphere Equivalence.



In this case, the assumed axial extent of the flaw in the experiment is ~equivalent to 2zr

mm, the radius of the sphere is r = x / 7, where x is the dimension of the flaw and this is
the value that will be used in the Equation to calculate the response of the assumed
spherical flaw. Then the response of the flaw obtained from simulation will approximate

the radius of the flaw (r), which will be substituted back into 2zr to get the full length.

The second approach is to assume that the dimension of the flaw is equal to 2r as shown

in Figure (6.2).

Figure 6.2 - Fitting the External Surface of the Sphere into a Square.

It really, does not matter here as long as we are evaluating the length of the flaw whether
in the circumferential or axial direction. The model takes r, the radius of the flaw as the

input parameter which is half of the length of the flaw.

It has been found that second approach gives better estimates than the first approach.

Therefore, in this work will take the second approach in estimating actual flaws.
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dinal waves can

Other points to note are that the responses of I
the location and the size of the axial extent of the flaw while the responses of torsional

waves can provide the information about the circumferential extent of the flaw.

6.1 2.0~ METER STEEL PIPE, FLAW WITH 10 MM AXIAL EXTENT AND
I('° IN THE CIRCUMFERENTIAL DIRECTION

Under this section the results of an experiment for sizing the flaw will be compared with

simulation results produced by this research. According to (Aiello et al., 2005), a 2-meter

steel pipe with 43 mm external radius and 37.5 mm internal radius having flaw with axial

extent of 10 mm, and 10 in the ci ial direction was i igated. The flaw is

located at a distance of 350 mm. The perimeter of the pipe is equal to 2n x r = 867 and the

circumferential extent at 10° becomes 2.39 = 7.51 mm.

Circumferential Extent

mm i

A

\
ExtornalRadius= 43 mm

Figure 6.3 — Details of the Pipe in the First Experiment (Aiello et al., 2005).



6.1.1  Results for the Circumferential Flaw

The central frequency was selected to be 420 kHz and from the dispersion curves the
group speed at this frequency is 3126 m/s for the torsional wave T(0,1) as shown in
Figure (6.4). The output results as given by the program and the flaw-free and flaw

signals are shown in Figure (6.5).

Dispersion Curves (Group Speed) for
Steel Pipe Int. R = 37.5 Ext. R=43mm
6000

5000/
4000

| T,
3000

2000

Group Speed (m/s)

1000/

i L i i |
0 200 400 600 800 1000
Frequency (kHz)

Figure 6.4 —  Dispersion Curve for Steel Pipe with Internal and
External Radii, 37.5 and 43.0 mm.
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Figure 6.5~  Time Domain Response for the 7.51 mm
Circumferential Flaw Located at 0.35 Meter.

Output Data:

Time at the Highest Amplitude - Ref. Signal: 113.431 ps

Time at the Highest Amplitude - Flaw Signal: 116.117 ps

Time Difference between Ref. and Flaw Signals: 1.3431 ps
Actual Flaw Location: 0.35 meters
Estimated Flaw Location: 0.354585 meters
Percentage of Error: 1.3101 %
Actual Flaw Size: 7.51 mm
Estimated Flaw Size: 8.39707 mm

Percentage of Error: 11.8118 %
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The actual flaw size was 7.51 mm while the estimated was 8.4 mm resulting in an error of
11.8%. This is a limitation of the model that as the size of the flaw goes below 10 mm the

percentage of error start to increase.
6.1.2 Results for the Axial Flaw

The output results and the flaw response Figures are shown below in Figure (6.7). The
central frequency was selected to be 420 kHz and from the dispersion curves the group
speed at this frequency is 3099.5 m/s for the longitudinal wave L(0,1) as shown in Figure
(6.6).

Dispersion Curves (Group Speed) or Steel Pipe
Intemal Raidus 37.5 mm Ex. R 43

L02)

Group Speed (Vs)

0 100 200 300 400 500 600 700 800 900 1000
Frequency (kHz)

Figure 6.6- Group Speed Dispersion Curves for a Steel Pipe with
37.5 mm Internal Radius and 43 mm External Radius.
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x10° Signal propagation - The Reference Signal
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Figure 6.7 — Time Domain Response for the 10.0 mm Axial Flaw

Located at 0.35 m.

Output Data:

Time at the Highest Amplitude - Ref. Signal:
Time at the Highest Amplitude - Flaw Signal:

Time Difference between Ref. and Flaw Signals:

Actual Flaw Location:
Estimated Flaw Location:
Percentage of Error:
Actual Flaw Size:
Estimated Flaw Size:
Percentage of Error:

120.521 us
123.909 us
1.69383 us

0.35 meters
0.373556 meters
6.7302%

10 mm

10.5 mm

5.00046 %



The percentage of error is about 5% for the estimation of the flaw; this is a good

with an of error. The estimated location of the flaw

is 037 meter resulting in 6.7% of error which is acceptable.

6.2 2.030-METER STEEL PIPE, FLAWS WITH DIFFERENT SIZES

Under this section the results of an experiment for sizing the flaw will be compared with
simulation results produced by this research. A steel pipe with flaws having different
sizes 3, 6, 14, 16, 21, 24, 27, 29, 37, 42 and 86 mm in the axial direction at a distance of
1.3 meter was tested as per (Wang et al., 2010). The length of the pipe is 2.030 meters

with external radius 17 mm and internal radius of 15 mm.

[ 2.030M 1

Figure 6.8 —Details of the Pipe in the Second Experiment (Wang et al., 2010).
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6.2.1 Input Data:
Central Frequency: 420000 Hz
Group Speed @ the Specified Frequency: 3076 m/s
Time at the Highest Amplitude - Reference Signal: 418.071 ps
Flaw sizes (mm): (3,6, 14, 16,21, 24, 27, 29, 37, 42, 86) mm
Dispersion Curves (Group Speed)
6000 T T T T T
5000 -
__ 4000
2
E
E 3000
@
g L(©3)
O 2000
L©,1)
1000

|

|

|
L ‘ Pl
0 100 200 300 400 500 600 700 800 900 1000
Frequency (kHz)

Figure 6.9 — Dispersion Curves Showing Group Speed for a Steel Pipe
with Internal Radius 15mm and External Radius 17mm.



622 Output Data

The output results for some selected flaw sizes are shown below, the output data and the

response plots in time domain.

Flaw size, 3mm located at 1.3 meter:

Time at the Highest Amplitude - Ref. Signal: 418.264 ps
Time at the Highest Amplitude - Flaw Signal: 419.973 ps
Time Difference between Ref. and Flaw Signal: 0.854597 ps
Actual Flaw Location: 1.3 meters
Estimated Flaw Location: 1.28658 meters
Percentage of Error: -1.03232 %
Actual Flaw Size: 3 mm
Estimated Flaw Size: 2.62874 mm
Percentage of Error: -12.3754%
x10° Signal propagation - The Reference Signal
s
8
E 0
-5
405 410 415 420 425 430 435
Time (us)
x 10 Flaw Signal - Flaw Size = 3 mm, Flaw Location = 1.3 Meters,
S Flaw Signal
g o
-5
410 415 420 425 430 435
Time (us)

Figure 6.10 - The Time Domain Response for the 3 mm
Axial Flaw Located at 1.3 meter
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Flaw size, 6mm located at 1.3 meter:

Time at the Highest Amplitude - Ref: Signal: 418.264 ps
Maximum Amplitude - Ref. Signal: 0.431125
Time at the Highest Amplitude - Flaw Signal: 422.293 ps
Maximum Amplitude - Flaw Signal: 0.424454
Amplitude Difference between Ref. and Flaw Signals: -0.00667107
Time Difference between Ref. and Flaw Signals: 201441 ps
Actual Flaw Location: 1.3 meters
Estimated Flaw Location: 1.28658 m
Percentage of Error: -1.03%
Actual Flaw Size: 6mm
Estimated Flaw Size: 6.19631 mm
Percentage of Error: 3.27188%
x10° Signal propagation - The Reference Signal
4
2
€,
22
4
6 i i
410 415 420 425 430 435
Time (us)

x 10°Flaw Signal - Flaw Size =6 mm, Flaw Location = 1.3 Meters,

5 Flaw Signal
8
g 0
5
410 415 420 425 430 435

Time (us)

Figure 6.11 — The Time Domain Response for the 6.0 mm
Flaw Located at 1.3 meter.



Flaw size, 14mm locat meter:
Time at the Highest Amplitude - Ref. Signal: 418.264 ps
Maximum Amplitude - Ref: Signal: 0.431125
Time at the Highest Amplitude - Flaw Signal: 427.298 us
Maximum Amplitude - Flaw Signal: 0.422625
Time Difference Between Ref. and Flaw Signals(us): 4.51715 ps
Actual Flaw Location: 1.3 meters
Estimated Flaw Location: 1.28658 m
Percentage of Error: -1.03232%
Actual Flaw Size: 14 mm
Estimated Flaw Size: 13.8948 mm
Percentage of Error: -0.751696%
x10° Signal propagation - The Reference Signal

6 =

a

2

0

A0
N

420
Time (us)

x 10°Flaw Signal - Flaw Size = 14 mm, Flaw Location = 1.3 Meters,

Flaw Signat
2
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-
4
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415 420 425 430 435 440

Time (1s)

Figure 6.12 — The Time Domain Response for the 14.0 mm Flaw
Located at 1.3 meter.
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Flaw size, 16mm located at 1.3 meter:

Time at the Highest Amplitude - Ref. Signal: 418.264 ps
Maximum Amplitude - Ref. Signal: 0431125
Time at the Highest Amplitude - Flaw Signal: 428.763 us
Time Difference between Ref. and Flaw Signals: 5.24966 ps
Actual Flaw Location: 1.3 meters
Estimated Flaw Location. 1.28658 meters
Percentage of Error: -1.03232%
Actual Flaw Size: 16 mm
Estimated Flaw Size: 16.148 mm
Percentage of Error: 0.924796 %
x10° Signal propagation - The Reference Signal
5|
8 |
g o
5|
405 4%0 415 4%0 425 4‘30
Time (us)

x 10°*Flaw Signal - Flaw Size = 16 mm, Flaw Location = 1.3 Meters,
T T r

Flaw Signal ||

6

4 |
8 2| {
E’ o

2|

4

415 420 425 430 435 440
Time (us)
Figure 6.13 —  The Time Domain Response for the 16.0 mm

Flaw Located at 1.3 meter.



148

Flaw size, 37mm located at 1.3 meter:

Time at the Highest Amplitude - Ref. Signal:
Maximum Amplitude - Ref. Signal:

Time at the Highest Amplitude - Flaw Signal:
Maximum Amplitude - Flaw Signal:

Amplitude Difference between Ref. and Flaw Signals:

Time Difference between Ref. and Flaw Signals:
Actual Flaw Location:

Estimated Flaw Location:

Percentage of Error:

Actual Flaw Size:

Estimated Flaw Size:

Percentage of Error:

x10° Signal propagation - The Reference Signal
4
20
8
T 0
£,
P
£ i i
405 410 415 420

Time (us)

x 10 Flaw Signal - Flaw Size

8 o
B
“
8|
430 435 4;0 445
Time (us)

37 mm, Flaw Location = 1.3 Meters,

418.264 s
0.431125
441,46 s
0.425802
-0.00532331
11.5981 ps

1.3 meters
1.28658 meters
-1.03232%

37 mm

35.6757 mm

-3.57908%

430 435

Flaw Signal ||

Figure 6.14— The Time Domain Response for the 37.0 mm Flaw

Located at 1.3 meter.
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Flaw size, 42mm located at 1.3 meter:

Time at the Highest Amplitude - Ref. Signal: 418.264 ps
Maximum Amplitude - Ref. Signal: 0431125
Time at the Highest Amplitude - Flaw Signal: 445.245 ps
Maximum Amplitude - Flaw Signal: 0.39708
Time Difference between Ref. and Flaw Signals: 13.4904 ps
Actual Flaw Location: 1.3 meters
Estimated Flaw Location: 1.28658 meters
Percentage of Error: -1.03232%
Actual Flaw Size: 42 mm
Estimated Flaw Size: 41.4965 mm
Percentage of Error: -1.19876%
x10° Signal propagation - The Reference Signal
- ]

2|

i i i
405 410 a15 420 425 430 a3s
Time (us)

x 10°Flaw Signal - Flaw Size = 42 mm, Flaw Location = 1.3 Meters,

Flaw Signai ||

o N a2

L i L i i
435 a40 445 450 as5 460
Time (us)

Figure 6.15 — The Time Domain Response for the 42.0 mm Flaw Located
at 1.3 meter.
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Flaw size, 86mm located at 1.3 meter:

Time at the Highest Amplitude - Ref. Signal:
Maximum Amplitude - Ref. Signal:

Time at the Highest Amplitude - Flaw Signal:
Maximum Amplitude - Flaw Signal:

Time Difference between Ref. and Flaw Signals:

Actual Flaw Location:
Estimated Flaw Location:
Percentage of Error:
Actual Flaw Size:
Estimated Flaw Size:
Percentage of Error:

*10° Signal propagation - The Reference Signal

418.264 ps
0.431125
473.324 ps
0.412935
27.5302 ps
1.3 meters
1.28658 meters
-1.03232%
86 mm
84.6829 mm
-1.53146%

i i
405 410 415 420

Time (us)

x 10°Flaw Signal - Flaw Size = 86 mm, Flaw Location = 1.3 Meters

Flaw Signal |

i | i
60 a6s 470 475
Time (us)

i
a8s

Figure 6.16 — The Time Domain Response for the 86.0 mm

Flaw Located at 1.3 meter.



% of
Ref. Flaw Error
Actual | Signal - s between
Flaw | Timeat | Timeat | Time | Group | Estimated | Ty,
7 - Difference | Speed | Flaw Size
Size Highest ) ) | ) and
(mm) Amplitude ) Simulation
(s) Results
@&
3.00 418264 | 419.973 085 | 3076.00 [ 263 -1239%
600 | 418264 | 422293 201 [ 307600 [ 620 3.28%
1400 | 418264 | 427.298 452 307600 | 1389 0.76%
1600 | 418264 | 428763 525 | 307600 | 1615 0.92%
2100 | 418264 | 431449 659 307600 [ 2028 3.44%
2400 | 418264 | 433769 775 | 307600 | 2385 0.64%
2700 | 418264 | 434868 830 [ 307600 | 2554 5.42%
2900 | 418264 | 436455 9.0 [3076.00 | 27.98 3.52%
37.00 | 418264 | 44146 1160 [ 307600 | 35.68 -3.58%
4200 | 418264 | 445245 1349 [3076.00 [ 41.50 -1.20%
86.00 | 418264 | 473324 2753 | 307600 | 8468 -1.53%

Table 6.1 — Estimated Flaw Sizes by the Simulation and % of Error.

As shown in Table (6.1) that the percentage of error varies from -5.42% up to 3.28% for
flaws greater than 3mm. The percentage of error for the 3mm flaw is about 12.4%; it is
higher than 10%. This is one of the limitations of the model that when the size of the flaw
falls to smaller sizes the accuracy of the
(6.17) illustrates the estimated flaw sizes by the simulation almost agree with the actual

values. Table (6.2) shows the estimated flaw location and the percentage of error at

1.03%.

starts to decrease si

y. Figure
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Actual Flaw Size
8ol * Estimated Flaw Size |

15
Time Difference (yis)

Figure 6.17 — Comparison of the Actual and Simulation Results.

Actual Flaw Estimated Flaw | % of Error (Actual
‘“"'('m:)" B, Location  ocaton v Slmul:tlon)

(m) (m) (& %)
3.00 1.30 1.29 -1.03%
6.00 1.30 1.29 -1.03%
14.00 1.30 1.29 -1.03%
16.00 130 129 1.03%
2100 130 129 103%
24.00 1.30 1.29 -1.03%
27.00 130 1.29 1.03%
29.00 130 1.29 103%
37.00 1.30 1.29 -1.03%
42.00 1.30 1.29 -1.03%
36,00 30 1.29 103%

Table 6.2 - The Actual Versus the Estimated Flaw Location and % of Error.
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Flaw Size (mm)

i Y

Actual Flaw Sige | atimated B ﬁ\con{-::lr i
(mm) "(":ms;" - Ref. [20] Experimental)

(mm) @)

3.00 262874 294 2.00%
6.00 6.19631 639 6.50%
14.00 13.8048 14.79 5.64%
16.00 16.148 17.33 831%
21.00 20.2788 2276 8.38%
24.00 23.8464 2434 1.42%
27.00 25.5363 27.10 037%
29.00 279773 29.82 2.83%
37.00 35.6757 3742 1.14%
42.00 41.4965 42.13 031%
86.00 84.6829 8424 2.05%

Table 6.3~ The % of Errors for the Difference between
Experimental and Actual Flaw Sizes

90,

Actual Flaw Size
so“ O Experimental Flaw Size

70‘

60!

o i i i
0 5 10 15 20 25

Time Difference (j15)

Figure 6.18 — Comparison of the Actual and Experimental
esults.
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Experimental % of Error
Actual Flaw size | "stimated aw Size (Simulation vs.
(mm) (mm) - Ref. [20] Experimental)
(mm) (S}
3.00 2.62874 294 10.59%
6.00 6.19631 639 3.03%
14.00 13.8948 14.79 6.05%
16.00 16.148 1733 6.82%
21.00 202788 22.76 10.90%
24.00 23.8464 2434 2.03%
27.00 25.5363 27.10 5.771%
29.00 27.9773 29.82 6.18%
37.00 35.6757 37.42 4.66%
42.00 41.4965 4213 1.50%
86.00 84.6829 8424 0.53%

Table 6.4 — The % of errors for the Difference between Estimated Flaw
Sizes by the Simulation and Experiments (Wang et al., 2010).

The percentage of error for the difference between estimated flaws by the simulation and
the measured flaw sizes by the experiment in reference (Wang et al., 2010), varies from -
0.53% and 10.90% as indicated in Tables (6.4). These variations indicate that there is
negligible difference between the values obtained from the simulation and the

experiment.  This discrepancy is attributed to the impact of the lab environment, test

test setup, of the tested object and noise from the
surrounding environment. Figure (6.18) shows the actual flaw sizes (real flaw sizes)
versus the measured flaw sizes by the experiments (experimental results) reported in
reference (Wang et al., 2010), both the actual and experimental values almost agree with

each other.
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Flaw Size (mm)

| Figure 6.19 — Comparison of the Actual, Si and

Figures

experimental results in (Wang et al., 2010) almost agree with actual results with slight

"% Experimental Flaw Size
s + Estimated Flaw Size
Actual Flaw Size

70

60

50

B
5 10 15 20 25
Time Difference (is)

Results.

(6.19) illustrates the results for the estimated flaw sizes by the simulation and

variations.
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CHAPTER 7
SUMMARY, CONCLUSIONS AND RECOMMENDATIONS FOR

FUTURE WORK

SUMMARY AND CONCLUSIONS

On-line Structural Health Monitoring (SHM) of industrial structures in particular the oil
and gas transporting system such as pipelines are of great importance to the reliability and
survivability of oil and gas plants. Due to this importance, an effort has been taken to
investigate this subject in more details. The first step in the research was the investigation
of the propagation of ultrasonic guided waves into pipes and their interaction with
defects. In the subsequent steps, the Kirchhoff flaw approximation model was modified to
provide an estimation of the size and location of spherical flaws that may exist along the

pipe.

Several simulation trials were performed using Matlab Environment to validate the
feasibility and applicability of the modified model. Under the simulation effort, various
defects with different sizes located at fixed location along a pipe were analyzed. It was
found out that the model can accurately estimate the extent and location of the flaw as the

flaw size changes.

Proceeding further with this effort, a comparative analysis was performed for various

flaw sizes located at different distances along a 10-meter pipe using pipe parameters
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reported in (Wang, Tse, Mechefske & Meng, 2010). The resulted plots from the analysis
indicated that the estimated values obtained using the method suggested in this research
were very close to the actual values. These findings indicate that the model can
accurately estimate the location and the size of the flaw as the location of the flaw

changes.

At the end, the results of experiments reported in two research papers (Wang, Tse,
Mechefske & Meng, 2010) and (Aiello, Dilettoso & Salerno, 2005) for sizing flaws with
varying dimensions have been compared with the simulation results obtained using the
method suggested in this thesis. The simulation results produced by this thesis and
experimental results reported in the reference articles agreed with each other with little
variation. The plots showed that the results for both the simulation and experimental work
in the reference article fall reasonably close to each other indicating that the differences
between the two are not significant. From the findings stated above, it can be concluded
that the modified model can accurately assess the extent and estimate the location of

flaws along the pipe.

Hence such a model can serve as an instrumental part in the Structural Health Monitoring
(SHM) system of industrial structure such as pipelines. Moreover, this model can assist

to il the i ion of ultrasonic waves with different flaw sizes

located at different positions along pipes before carrying out any experimental work.



7.2

RECOMMENDATIONS FOR FUTURE WORK

Perform experimental work to validate this model using different pipes made of
different metals other than steel.

Extend this model to approximate other types of flaws like cracks and cylindrical
flaws.

Expand the work achieved under this research to include an integrated wireless
monitoring system using the suggested model under this research and determine
how the signal will behave as it travels from solid media to free space and then
from free space to solid media. Likewise investigate how the signal will behave
as it travels form solid media to water media and then to free space.

Investigate the use of other Digital Signal Processing (DSP) techniques other than

Fourier transforms, such as Wavelet or Haung-Hilbert transforms.
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