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Chapter 1

Introduction

Black holes are arguably the most interesting gravitational objects in theoreti-
cal physics. Understanding their full dynamics forces us to fit together two widely
accepted theories of Nature: general relativity (Einstein’s classical theory of grav-
ity) and quantum mechanics, a goal that despite encouraging successes has eluded
theoretical efforts so far.

In this thesis, the first chapter includes a brief introduction to black holes, along

with a review of Anti de-Sitter ime (AdS) and A i AdS

and their properties. The second chapter is an introduction to the notion of AdS/CFT
correspondence and String theory as a prerequisite. In chapter three, at first, the
perturbation theory of black holes is reviewed and the rest of the chapter is dedicated
to the results that have been found for the perturbed metric, field equations, and
stress tensor perturbations of large mass, AdS black holes. Moreover, the velocity,
energy density and pressure of the perturbed fluid have been derived and studied

Now, let’s look at the notion of black holes since they were discovered.



1.1 Black holes

The term “black hole” was introduced by Wheeler in 1967 (see Figure 1.1) al-
though the theoretical study of these objects has quite a long history. In 1783, John
Michell stated that there might be a massive object with an escape velocity greater
than the speed of light. Around thirty years later, in 1796, Laplace conjectured the
idea of Newtonian black holes [1]. Later in 1916, the solutions of the Einstein field
equations for the limited case of a single spherical non-rotating, uncharged spherical
systems in the vacuum were found by Karl Schwarzschild. His solution is known as

the Schwarzschild solution.

As mentioned, in Newtonian gravity, a massive body can have an escape velocity
greater than the velocity of light. The corresponding phenomenon equivalent to this
massive body in general relativity is a black hole. However, this correspondence is not
exact since black holes are intrinsically relativistic objects. They are characterized by
causal horizons and spacetime singularities, which are two basic features of Einstein’s

theory.

In general relativity, the curvature of spacetime generates the gravitational force.
Spacetime is usually interpreted with space as being three-dimensional and time play-
ing the role of a fourth dimension. These are put together into a four-dimensional
geometry. In higher-dimensional gravity, the number of spatial dimensions increases.
The dynamical metric gq, of a pseudo-Riemannian manifold (M, ge) with Lorentzian
signature, obeys the Einstein field equations. By letting Ry to be the Ricci curvature

and R the scalar curvature, the Einstein equations are

1 8nG,
Rab = 5 R + Mo = =7 Ton (L1)



On the left side of the equation, the term that includes the cosmological constant
A, indicates dark energy or non-zero vacuum energy, and, on the right-hand side, T,
is the energy-momentum tensor of all the matter fields which acts as the source of
spacetime curvature. These matter fields influence the dynamics of spacetime. On
the other hand, any field is affected by gravity since it lives in a curved spacetime, and
massive particles move along timelike geodesics while massless particles move along
null geodesics [2].

One of the notable differences between Newtonian gravity and general relativity
is that the “action-at-a-distance™ is replaced by the built-in causality structure of
Einstein’s theory. If we reformulate the Einstein’s theory of general relativity, in an
initial-value formulation, which describes a universe evolving over time, it is possible to
split the ten Einstein equations into six evolution equations and four constraint equa-
tions [5]. Initial data needs to satisfy the constraint equations defined on a spacelike
Cauchy surface, and the evolution equations specify a system of hyperbolic quasilinear
equations that evolves the initial data in time. This gives rise to a causality structure,
which locally looks like the light-cone structure of special relativity. However, since
the spacetime is dynamical, the Cauchy evolution of smooth geometry and matter
data on a spacelike surface may lead to a singularity. Physically, this corresponds
events such as the gravitational collapse of a massive body or a high energy collision.

A ding to the Pe H:

g sil ity theorems, gr:
or spacetime singularity can arise in Einstein’s theory [6]. In standard practice, we say
that for curvatures of the order of the Planck scale, general relativity is not suitable
for describing the spacetime, e.g. when RuqR™ ~ ¢*/hG where h is Planck’s
constant. Since general relativity is nonrenormalisable [7] when treated as a quantum

TAction at a distance is the interaction of two objects which are separated in space with no
known mediator of the interaction. 4]




For M“ / j o =t
AAAS INVITED LWI'U!E

‘e - o

Slgma Xi-Phi Beta Kappa Lecture _,"

4

FRIDAY, DECEMBER 29
West Ballroom, New York Iliiton

8:30 pn. Chalrlady: MiNA Rees (Dean of Grauuate Studies, City
u-uumn, ./ New Yor k)

Joun A Wusnas (Prof
" raity)

r of Physics,

Our Unirerse: The Known and the Waknown.

The formation of new stars 204 the axplesion o old
stars and the srentest. vnrh ntic in
e the ﬁ!lvlm Inmnl)lr-bll

the contrary, Ei
ntum principle and the lesse
astonishing e

none seems more likely consequences
physles, trom eletuntary v-rﬂd' Physics to
the dynamics of the unive:

foope s
ap 0w o
‘ Z n

&

L4

Figure 1.1: The first public use of the term “black hole”. Lecture given by J.A.Wheeler
appeared in the Phi Beta Kapper journal “The American Scholar” (Vol.37, No.2, Spring
1968, pp.248)(3)]



field theory of gravitons, a more fundamental quantum theory of spacetime is required,

and general relativity is just an effective low energy theory.

A black hole is the region contained inside an event horizon. More precisely,
for spacetimes with an asymptotic conformal structure, a black hole is the region of
spacetime that does not lie in the causal past of future null infinity, and its boundary
in the full spacetime M is called the future event horizon H*. The past event horizon
is called H~, which is the boundary of communication of past null infinity. It is also

present in time symmetric solutions but absent for dynamically formed black holes.

The formation of black holes through the gravitational collapse of massive ob-
jects has been studied analytically and numerically (see reviews e.g. in [8] and [9)).
However, for the formation of a black hole, no matter is necessary since it can also
form from the focusing of incoming gravitational waves [8]. Also, high energy colli-
sions may result in the formation of black holes [10]. In this process, event horizons
are expected to form in agreement with cosmic censorship which protects the rest of
spacetime from singularities [12]. The results support the expectation that a black
hole will form whenever the hoop conjecture is satisfied. Roughly speaking, this con-
jecture says that when a given amount of energy or an object is compressed in a

suficiently small region of space, a black hole forms [11].

Nowadays, the images taken of X-ray binary systems are one of the basic tools
for the astronomers to study the black holes. X-ray binary systems consist of a visible
star and an invisible companion star which move in the close orbit around their centre
of mass. The invisible partner’s gravity attracts the matter from the region around.
This includes the gas from the visible star which forms a flattened disc of gas spinning
and falling towards it. Collisions between the particles in the formed disc heat them

up to the extermely high tempratures such that they produce X-rays [13]. Many



bright X-ray binary sources have been discovered in our galaxy and nearby galaxies.
These unseen companions are black holes and the X-rays results from the friction
between the particles close to the event horizon. After emitting their X-rays, they

disappear by passing the event horizon.

However, searching for the black holes by studying the evolution of the visible
partner is indirect [14]. Ideally one would like a specific observable characteristic
which confirms that a compact body is indeed a black hole. One possibility arises
from numerical studies of perturbations around black holes which shows that late

time perturbations are dominated by an fally damped sing] This

kind of perturbation, which is damped quite rapidly and exists only in a limited
time interval is referred to as a quasinormal mode or QNM [15]. The evolution of the
initial perturbation of black holes is affected only by the black hole parameters, not the
initial perturbations. So they are the direct signatures of a black hole. Observation of
gravitational waves may be able to encode the presence of these quasinormal modes.

More details about perturbation theory can be found in chapter 3.

1.2 AdS space

Anti-de Sitter space is the maximally symmetric solution of Einstein’s equations

with an attractive cosmological constant [20],
1 5
Ry = 5 R9uw = Mg, (1.2)

where A is the negative cosmological constant.

Traditionally, anti-de Sitter space was not deemed to be of physical interest.

However, it attracted attention for two reasons. First, the negative value of A, if



defined as a vacuum energy, corresponds to negative energy density. Second, anti-de
Sitter space has the general topology R"~'®S", where the S" is timelike. The existence
of closed timelike curves and a boundary at spacelike infinity are two properties of
this geometry which are in conflict with common sense [17).

To introduce (n + 1)-dimensional AdS space, we define it as a surface embedded
in a flat space R®™ with two time coordinates, u and v, and n space coordinates

a* [19]. For example, in f i i AdS ime, the five-dis i flat

space is R®% that has two timelike and three spacelike directions which make it not
a spacetime in the ordinary sense since it has more than one temporal dimension.

Back to our general case, the metric and constraints can be written as follows,

ambient metric : ds? = —(du)? — (dv)? + da'da’,  i=1,.,m

constraint —v*4a'st = —R%

The general form of the Lorentz transformations can be defined on R®™ as a
group of linear transformations that preserve the metric of the space. Because of
the homogeneity of the anti-de Sitter space, if we consider two vectors V; and V,
on the surface with the same norm of V;-Vi = VoVp = —R?, they can map into
each other under the Lorentz transformations. However, according to the constraint
mentioned above, these timelike vectors V = (u,v, #) belong to the surface if they
satisfy V-V = —R2.

For visualizing the AdS space, we use the constraint equation
w?+v?= R+ IF (1.3)

to plot the space. We choose three axes of u, v, and p = V/Z-Z, which has a fixed value
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Figure 1.2: AdSy1 space described as a two-dimensional surface in which each point
represents half of the 5™(p) sphere. The horizontal axis has p increasing from zero to
infinity both to the left and to the right. The half spheres at points with equal values of u
and v must be glued to form a single 5"1(p) sphere.[19]

in our case, and each point on the two-dimensional surface is determined by u and v
values. As it is shown in Figure 1.2, the surface is extended to the left and right as

the value of p varies in both directions, from 0 to co. Each point of & that satisfies

(1.4)

represents a S™~! sphere. But since we have the same range of p twice, we need to
have half of the sphere 5”1 on top of each pair of u,v with the same value, in the

right and the left, such that by gluing two halves, a complete sphere can be made.

If we imagine a curve that goes around the waist of the hyperboloid, that would
be a closed timelike curve. However, nothing particularly singles out the waist, be-
cause AdS, is a homogeneous and isotropic space, which has 205 Killing vectors
that generate the symmetry group of SO(n— 1,2) [16]. In homogeneous space, all the
points are the same and there is an isometry between any two points in the space. In
general, the topology of AdS,, is R*~'@S" and the topology of dS,, is R&S"". In two
dimensions, de Sitter space and anti-de Sitter space are simply related by switching

the meaning of timelike and spacelike. Then AdS, becomes de-Sitter space dSy, and




closed timelike curves become closed spacelike curves.

1t is mathematically important to know that the conformal boundary of asymptot-
ically anti-de Sitter space differs from that of asymptotically flat spacetimes. The
boundary of conformally compactified AdS has the topology S?® R, where the sphere
can be regarded as the conformal boundary of hyperbolic three-space. This timelike
boundary, which is usually labeled as .7 or scrl (script 1), is defined as the set of end-
points of all future directed (or past directed) lightlike geodesics. Also, the boundary
is the set of endpoints of spatial geodesics, which we can refer to it as spatial infinity,
but lightlike geodesics are more important for the causal structure. The whole struc-
ture is quite different from that of conformally compactified Minkowski space. In this

case, spatial future, and past infinities are disjoint, and both are lightlike.

1.2.1 Asy ically AdS i

For ime with a negative ical constant, we can rewrite the Einstein

equation as [22]
d
Ry = 9w (1.5)

where the AdS radius ! is defined by [20][21]

d(d-1)

(16)

20

AdSg;1 spacetime is one of the simple solutions of this equation. It has a curvature



1
Ry = = (02 = 900)- (.7)

In the global coordinates® (r, ¢, 24-1), the AdS4; metric is given by

ds? =1| — (1+1r%)dt® + +12dQ-1 | (1.8)

dr?
a+r)
The metric can also be written in the new coordinate tan 0 = r as

2

ds?* = ——
cos® 6

[~de? + d6? + sin? 0dSY,,

(19)

The conformal boundary of AdS with topology R x $%-! is located at the metric
second order zero at 7 — 0o, or as in new coordinate, where 6 = /2. This divergence
implies that the metric induces a conformal structure on the boundary (a metric up
to conformal trasformations) instead of a unique metric. To obtain a metric, we can
consider types of positive functions (2 called “defining functions” in AdS space, which
have a first-order zero and a non-vanishing gradient on the boundary. By multiplying

the AdS metric by O and evaluating it at the boundary, we have
90) = Lot |r/2 (1.10)

The choice of defining function is not unique. Any non-vanishing function e
on a manifold can be used to obtain a new defining function Q' = Qe where w is
a function with no zeros or poles at the boundary. So the bulk metric in the AdS

2Here, the curvature convention is R, = 9,k + Tpolfx = I3 The, Ruw = Ry R = 9" Ryw.

¥This coordinate represents a universal cover of AdS that is obtained by unwinding a periodic
time coordinate and replacing it with the non-compact time coordinate t.



spacetime yields a metric up to conformal transformations on the boundary.

To introduce the notion of an asymptotically AdS spacetime, we first need to
construct the unphysical spacetime which helps us to see the real and important prop-
erty of asymptotically AdS spacetime [22]. Working with unphysical spacetime (A, §)
saves us from some difficulties of working with physical spacetime. For instance, IM
as a conformal boundary of M is at spatial infinity and it is not part of M, but IM
is defined as a finite value of spacelike coordinate, when = 0. Using OM, we avoid
infinite limits that appear if we attach 9M to M (such as a diverging of physical
metric). In the unphysical spacetime, © cancels the divergencies insuring that 3, is

finite and well-defined anywhere on M and dM.

For a physical ime (M, g) to be ically AdS, there should be an

unphysical spacetime (A1, ) where A1 is a manifold and M is a boundary, such that
M has M as an interior manifold with a diffeomorphism from M to M — OM. The
second requirement is to introduce a “defining function” Q(z), with the properties
mentioned before, such that g, = Qg The third requirement is having a Weyl
tensor Cye, on M, constructed from g, with two properties: First, r*~Cyyq, is
smooth on M and secondly, o, vanishes on 9A1. The fourth and the last require-
ment to construct the unphysical spacetime is that the topology of the boundary A
be R x 541,

By working in the unphysical framework, the third requirement mentioned above
implies that R, for asymptotically AdS spacetime should approach the maximally
symmetric form of (1.8) at special infinity. However, the Riemann tensor has nonzero

‘Weyl tensor on the interior space M with the form,

1
Ry = Clay = 08 = 900))- (1.11)
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Therefore, the first three reqirements imply that (M, g) is locally asymptotic to AdS,
where the fourth one ensures that the spacetime is also asymptotically AdS, globally.
The canonical example of a non-trivial asymptotically anti-de Sitter space is the
Kottler (or Schwarzschild-Anti de Sitter) solution which we will work with in this
thesis.
2 2 2 2\~
ds?=—(1- 4 D) a4 (1- 224 0 dr? 202 (1.12)
* B 2 »
Here dQ? is a metric on a unit 2-sphere and t coordinate ranges from —oco < to < oo
as 7 goes from 7 to oco. 7 is the largest root of r — 2m +13/1* = 0.

In the next session we consider this solution in more detail.

1.3 Schwarzschild black holes

In 1916, Schwarzschild found the solution to Einstein’s equations for a spherically

symmetric gravitational field in vacuum which has the following form (3]

:
)(’dt* + (1 - @) & 4 r2(d6 +sin? 6dg?)  (113)

cAr

Here G is Newton’s gravitational constant which has different form in each dimension
[19], and m is the total mass of the gravitational source which produces the field.
Here black hole play the role of the gravitational source.

This solution is ind dent of the time di and i by a single

parameter m. The effect of m on the form of the spacetime metric would be clear if

we study the asymptotic form of the metric as r — oo. Far from the gravitational




source, i hes the flat Mi i ime with metric

ds® = —c*dt* + dr® + r*(d6” + sin® 0dg*) (1.14)

Now, if we use the weak field approzimation to show the effect of gravitational field
far from the center of gravity, the ¢t component of the metric can be written as
gu = —(1+2¢/c?), where ¢ = —Gm/r is the Newtonian gravitational potential. By
comparing our result with metric (1.14), m can be described as the mass of the source

of gravity.

1.3.1 Schwarzschild black hole in asymptotic flat and AdS
spacetimes

By using the Penrose diagrams?, we can compare the causal structure for a
Schwarzschild black hole in two different spacetimes, asymptotically flat and AdS
33].

In Figure 1.3(a), the structure of a Schwarzschild black hole in an asymptotically
flat spacetime is shown. In this diagram, future and past null infinity are indicated
by Jx, future and past timelike infinity by L., and spacelike infinity is shown as
Iy. These indicate where lightlike, timelike, and spacelike worldlines start and end,
respectively. In this figure the wordline of an observer is shown. It starts at past
timelike infinity I_ and continue to pass the event horizon at r = r where no light
rays can be transmitted to future null infinity 7, and the infalling observer falls
towards the spacetime singularity at r = 0. After crossing the horizon, the observer
can not send any information out of the black hole. Opposite of black holes, there
" “Penrose diagrams are two dimensional diagrams of conformally transformed spacetimes. B

y
choosing the specific conformal factor, the infinite spacetime is mapped onto a finite region in these
diagrams such that the light-cone structure of the original spacetime remains the same.
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are mathematically defined objects, called white holes into which no information can

enter. White holes are part of the extension of the spacetime diagram into the past.

The Penrose diagram for a ild black hole in an asymptotic AdS space-
time is shown in Figure 1.3(b). Here future and past null infinities 7., and spacelike
infinity o are equal and extended as a line rather than a single point. Consequentely,
as is indicated with green arrows in Figure 1.3(b), a single light ray can reach infinity,

bounce back, and return to its origin in a finite time #,.

Apart from geometrical differences, black holes in asymptotically AdS space,

like the ones in asy ically flat space, have lynamic properties such as a
characteristic temperature and an intrinsic entropy equal to A/4 where A is the area
of the event horizon in Planck units [70][24]. One of the important differences between
these two spaces is that when the size of the black hole in anti-de Sitter space is of
the order of the characteristic radius of the AdS space, its temperature is minimum
and when it becomes larger its red-shifted temperature measured at infinity becomes
greater. This feature shows that these black holes have positive specific heat and can

be in stable equilibrium with thermal radiation at a fixed temperature.

At the quantum level, when AdS black holes emit Hawking radiation, the gravi-
tational potential of the asymptotically AdS background keeps the Hawking radiation
from escaping to infinity and reflect it back towards the black hole. Thus we can
consider pure AdS black holes in equilibrium with their surroundings (in contrast
to asymptotically flat spacetime where a black hole must be enclosed in a box with

perfectly reflective walls to be in equilibrium).




parallel universe

§ N i =0 i 2

(a) Schwarzschild black hole in asymptotically flat spacetime.

fuwe fight cone
pastigh cone €

spactime singolrity,

(b) Schwarzschild black hole in asymptotically AdS spactime.

Figure 1.3: The figures illustrate the Penrose diagrams for black holes in spacetimes
with different asymptotic behaviour. Here light rays propagate along 45° lines, see
yellow dashed lines as emitted from an observer falling into the black hole.[33]



1.4 AdS-Schwarzshild black holes

As noted, the four dimensional AdS-Schwarzschild metric has the form

2
ds? = — fo(r)dt* + f;’;) 4 r2d02 (1.15)
where the radial function fo(r) is
2m  r?
Sl =1-="4 5 (1.16)

From fo(r) = 0, we can find the event horizon of the black hole at r,. In
the definition of fo(r),  is the curvature radius of AdS space, and the cosmological
constant has the form A = —3/%. If m = 0 the metric reduces to that of four-
dimensional anti-de Sitter spacetime, but for m > 0 the metric describes an eternal
black hole with an event horizon at r = r,. The parameter m is proportional to the
mass of the black hole and can be written in terms of the horizon radius r, as

m=r,+ ;; (117)

The Hawking of an AdS; ild black hole, which can be

obtained from fo(r) is given by [24]

1 171  3r
tn =g hor) = 3= (- + ) (L18)

The minimum of Hawking temperature, which is of the order of the characteristic
energy scale of the AdS background, is v/3/2rl. For any temperature value higher
than the minimum, there are two different values of r and for each value, there are

two branches of AdS-Schwarzschild black holes: large black holes with r, > 1/V/3, and



small black holes with r, < 1/v/3.

There are a few important length scales. Since we work in classical geometry,
the AdS length [ is assumed to be large compared with any fundamental length scale

such as the string length, i.e. | >> [,. The other length is an intermediate length

scale lo, which is with the dimension of observers. Since the
geometry varies on the length scale of [ or larger and the conditions of having the

local thermal equilibrium are valid at the scale of Iy, the range of variation of [ is
ly<<ly<<l. (1.19)

In this thesis, our focus is on large AdS-Schwarzschild black holes in the very large

limit where
re & (mlP)VP>>1 (1.20)
There are a few universal features in this limit; for example, the scalar invariant
7

.
Rt = 12 (l% i ) (121)

This value is obtained for the AdS-Schwarzschild metric (1.16). Now by inserting

7 =r, and taking the limit of a very large black hole, we have

Bt B i = 300+ O/ m)?), (122)

which is independent of the black hole mass in the m >> [ limit. It means that for
different but very large black hole masses, there are the same AdS scale curvature

for the near-horizon region. However, this universal curvature is equal to an O(1)
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multiple of the vacuum value, not to the curvature of empty AdS space with the same

cosmological constant. [24]



Chapter 2

String theory and AdS/CFT

correspondence

2.1 String theory in a glance

Over the last thirty years, string theory has been the leading candidate for a
unified theory of all forces in nature [19]. In string theory, all the known fundamental
forces and particles are unified in a deep and significant way, such that it can be
accepted as an impressive potential example of a complete theory of physics. String
theory is a quantum theory, and because it includes gravitation, it is a quantum
theory of gravity. One of the features that makes the string theory unique is the lack
of adjustable dimensionless parameters. In the Standard Model of particle physics,
there are about twenty adjustable parameters. However, in string theory , there is
one dimensionful parameter which is the string length [, that is taken to be of the

order of 105 cm. This value is the typical size of strings.

Another feature of the string theory which makes it unique is the fact that the

dimensionality of spacetime is fixed, and the number of spacetime dimensions derives

19
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from the calculation. In comparison, in the Standard Model, the number of dimensions
of our physical spacetime, which is four, is part of the information used to build the
theory. Although, ten dimensions are obtained from the calculation in string theory

instead of four, it is likely that the ining six extra di ions are compactified on

a very small space that can escape detection in experiments done with low energies.
However, for string theory to be correct, some theoretical mechanism must be found

to confirm that the observable spacetime has four dimensions.

Discovery of the cosmic strings! could be a confirmation of string theory [25].
They might be detected through gravitational lensing, or more indirectly via the de-
tection of gravitational waves. Till now, there has been no evidence of their existence,

but searches for them still continue.

String theory can be categorized into five different groups, which are called type
1, with open and closed strings; types ITA and IIB, with only closed strings; and two
theories of heterotic SO(32) and heterotic Es x Fs, which are consist of superstrings
and bosonic strings. Fach of these categories arises as a special case of an eleven-
dimensional theory, called M-theory?, and some of them are equivalent because of the

dualities have been found between them.

2.1.1 D-brane and p—brane

In string theory, a hypersurface, or higher-dimensional called a D—brane

is a real, physical object. For example, our four-dimensional universe is part of
a higher-dimensional D—brane with the extra dimensions wrapped into a compact
space. D—branes can be classified by their spatial dimension, which is indicated by a
" THypothetical one-dimensional topological solitons which might be formed in early universe dur-
ing the symmetry breaking phase transition.

2In the words of Edward Witten from the Institute of Advanced Study in Princeton, “M stands
for Magic, Mystery or Membrane, according to taste.” [18]




Figure 2.1: The world-sheets traced out by an open string (left) and by a closed string
(right).[19]

number comes after the D so that they are written as Dp—branes. Here, the letter D
stands for Dirichlet. The endpoints of the open strings must remain attached to the
D—branes and those ones whose ends are fixed, satisfy Dirichlet boundary conditions
[19]. It is worth mentioning that not all the extended objects in string theory are
D—branes. Strings, for example, are 1-branes because they are extended objects with
one spatial dimension, but they are not D1—branes. Also, a 0-brane is some kind of

particle which traces out a i ional world-line in i like a string that

can trace out a two-dimensional surface in spacetime called the world-sheet. If the
string is closed, it will trace out a tube and if it is open, the traced out surface will

be a strip. These different surfaces are shown in spacetime diagram of Figure 2.1.

The lowest vibrational modes of the open strings that are streched between
the D—branes could represent the particles of the Standard Model, such as gauge
bosons and the matter particles. However, none of the vibrations of the classical

relativistic string correspond to the particle of gravity, but the quantum vibrations of
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brane 1 brane 2

Figure 2.2: Two parallel D2-branes and four types of strings that this configuration sup-
ports. Here ' and 22 are longitudinal coordinates, and #3 is a normal coordinate.[19]

the relativistic string are able to describe them.

Two Dp—branes can coincide in space and be on top of each other or be sepa-
rated. Figure 2.2 shows two parallel, separated D2—branes. There are four different
classes of strings that this configuration of parallel Dp—branes support. The first two
classes are made up of open strings that begin and end on the same D—brane, either
brane one or brane two. The other two classes are called stretched strings which start
on one brane and end on the other as it is shown in Figure 2.2. The orientation of
the last two classes of strings are opposite of each other, which can be an important

issue in different problems [19].

In 1995, Polchinski proved that D—branes and extremal p—branes are the same
objects. 1t means that the dynamical endpoints of open strings correspond to ex-
tremal solutions of supergravity. To prove it, one needs to compute p—brane charges

and tensions of the endpoints of open strings, and shows that they match with the



supergravity solutions [31].
As was mentioned before, D—branes are dynamical walls on which strings can
end. One of the fascinating features of D—branes is that the gauge theories naturally

live on their world volume [29]. For example, the massless spectrum of open strings

living on a Dp—brane corresponds to a maxi D ic SU(1) gauge the-
ory in p-+ 1 dimensions. In general, by considering N parallel D—branes, we can have
N? different species of open strings because they can begin and end on any of the
D-—branes. In this case, we can find the maximally supersymmetric SU(N) gauge

theory where N? is the di ion of the adjoint ion of SU(N). In 3+1

dimensions, there is N = 8 supersymetry where D—brane background breaks 1/2
of the supersymmetry. Therefore, for the case of p = 3, there is N = 4 supersym-
metric Yang-Mills with SU(N) gauge group on the 4-dimensional worldvolume of the

D3—branes.

Extremal p—branes are solutions of supergravity, which is the low energy limit
of string theory. The extremal p—branes have Q = M where Q is the charge and M is
the tension of the p—brane [33]. This equality saturates the bound Q| < M known as
“BPS bound”. In a supersymmetric theory saturation of this bound means that half of
the supersymmetry is broken, but it does not affect the stability of the configuration.
In gravity, this bound comes from the “no naked singularity” theorems and the fact
that for @ > M, a naked singularity appears. Thus, the extremal p—branes are
solutions of supergravity with horizons at r = 0 (singularity=horizon) and also have
N = 4 supersymmetry in d = 4.

Another notion related to p—branes which we can introduce here is the notion of
black brane. In four dimensions, the only localized (do not grow at infinity) extremal

p—branes are the black holes, but in higher dimensions, we can have black-hole like
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objects called “black p—branes” with extended horizons along p spatial dimensions
that are localized in space [31]. The quantum properties of black holes, provided
by string theory can be mainly derived from D—branes. Strominger and Vafa [34]

derived the Bekenstein-Hawking entropy microscopically for the first time by counting

the degeneracy of D—brane states cor ding to mi of a five-di ional

class of extremal black holes. This entropy is given by S = A/4, which relates the
quantum degrees of freedom of the black hole to its surface, rather than its volume.
This relation is the basis of the holographic principle, proposed by ’t Hooft [35] and
Susskind [36]. This principle which is analogous to the common basis of holography,
says that quantum gravity in a given volume should be described by a theory on the

boundary of that volume.

2.2 AdS/CFT correspondence

The AdS/CFT dence proposed by in late 1997 is one of the

most important developments following from studies of D—branes [38][47]. Generally,

the AdS/CFT d is a realisation of the hol hic principle, since it

suggests a equivalency between a conformal field theory® (CFT), which is the theory
without gravity, in d—dimensions and a gravity theory in d + 1-dimensional anti de-
Sitter space (AdS). The first hint that show this should be possible is that both such
theories have the same symmetry group, SO(2, d). The original conjecture states that
type IIB string theory on AdS; x S° which is a 10-dimensional theory of gravity
is dual to N = 4 SU(N) Super-Yang-Mills, a 4-dimensional gauge theory, defined
on R x §% see for example [39]. This conjecture is expected to be strong enough to
"9 field theory on d—dimensional Minkwoski space that is invariant under the conformal group.

“4One might think the difference in dimension is a problem, but it is not since the extra dimensions
on the gravity side correspondes to the particle degrees of freedom on the gauge side.



24

SIS TSy W bulk,
7, /////,//,/////// % bulk, r < 0o
Ui ayiiht ~—— boundary.r = %

t
0 ry 100 T
ISR SR L. S
boundary
event horizon
curvature singularity

Figure 2.3: An illustration of where A’ = 4 SYM lives on AdSs space. The four dimensions
of the gauge theory (t,) live on the boundary of the AdSs space at r = oc.[33]

also describe the other cases of string theory with AdS (or “almost AdS”) boundary
conditions. In Figure 2.3, it is shown that the gauge theory lives on the 4-dimensional
boundary of the 5-dimensional AdSj space, located at r = oc, and dual gravity theory
lives in the bulk of the AdS; space where r < oco.

The second hint that shows the duality is possible is that the coupling constants
on each side can be matched inversely to each other, up to a scale order [33). This

means that non-perturbative results in the strong coupling limit of one theory can

be obtained from perturbative calculations in the weak coupling limit of the other.
However, it is often casier to first do the calculations in the gravity side and use the

. That is because we

results to learn about the conformal field theory than vice-ver

still do not have a complete dictionary of maps between two theories which means we

1. The

mostly have the maps from gravity side to the field theory side, not vice-ver

summary of the duality relations can be found in Table 2.1.
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Table 2.1: Summary of the corresponding elements that appear in the fluid-gravity
duality [33].

Bulk Boundary
AdS/CFT Type IIB string theory on | N = 4 SYM on 5° x R
asymptotically AdSs x S° | or with a Poincaré patch
R*x R
Effective description Einstein equation with Relativistic fluid dynamics
ical constant
Known static solutions | Black hole or black brane | Static configuration of a
in AdS perfect fluid
Perturbation Non-uniformly evolving | Dissipative fluid flow
black branes

One of the most understood examples of this duality is the correspondence be-

tween the gravitational limit of Type 1IB string theory on AdSs x S® space, and the

limit of the itational ' = 4 Super-Yang-Mills gauge theory
defined on the 4-dimensional conformal boundary of AdSs [33][40][19].

String theory has two dimensionless parameters, the one is the ratio between the
curvature scale for the string background® L , and the string length [,%. This ratio
needs to be large to reduce the stringy effects such that the gravitational description of
string theory remains valid. The other dimensionless parameter is the string coupling
constant g,, which measures the string interaction strength relevant to string splitting
and joining. This constant is assumed to be small at the same time to reduce quantum

effects.

L L s gy <l (1)

L Vo

SCurvature radius of AdSs and Ss.
Sl sets the size of fluctuations of the string worldsheet.
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In the field theory side there are two parameters: the number of colours N which
specifies the rank of gauge group SU(N), and the Yang-Mills coupling g. In planar
limit (large N), the 't Hooft coupling A = g2N is controlling the perturbation theory.
The equivalence relation between the fundamental parameters of both sides in their

limits is given by the following correspondence,

L

{ o) = {A=¢" (22)

where o' controls the corrections associated to the finite size of the string as compared
to the size of the spacetime it propagates in. Therefore, to suppress the stringy effets

in the bulk and quantum effects on the boundary, we need to have the following limits.
/\>>lﬂndi<<l (23)
Vi g .3

where A — 00 and N — oo.

Moreover, to describe the conformal field theory on the boundary hydrodynam-
ically, we consider the local energy density such that we can associate a local tem-
prature T' and mean free path Iy, ~ 1/T to each point. The scale of the field
fluctuations, R, needs to be large in comparison with the mean free path s, << R,
such that the first order terms in the derivative expansion of the stress-energy tensor

is small compared to the zeroth order term,

L —
Vlorder  no™ 1wy L __ @4

0order ~ pww ~pR~ R RT

where it is assumed that u ~ O(1), and o™ ~ 1/R.

Using the parameter matching which will be described in the following section,




it is possible to write these relations in terms of AdS parameters,
R>>lppp =1y >> L, (2.5)

which shows the correspondence between the regime of validity of fluid dynamics and

the theory of large AdS black holes.

More generally, AdS/CFT duality can have several possible versions which mainly
are distinguished by three different limits[31]: The validity of the weakest version is
only at large g,N limit, when there is supergravity as a low energy approximation
of string theory in the background. There might be a number of disagreements if
we go to the full string theory, far from the limit of g,N. A stronger version of the
AdS/CFT duality is valid at any finite g,N, such that N — oo and g, — 0. It means
that a’ corrections, which satisfies the relation a’/R? = 1/y/g,N, agree, but under
these conditions, g, corrections might not. In its strongest version, the duality is
valid at any g, and N, even if calculations could only be done in certain limits. Since
many examples of a’ and g, corrections were found that agree between AdS and CFT

theories, the strongest version is expected to be true.

2.3 Stress-energy tensor and Fluid dynamics

In the AdS/CFT correspondence, on the gauge theory side, at high temperatures,
fluid dynamics equations should be able to describe the long-wavelength fluctuations
about the equilibrium states [41]. Further, T},, should be constrained to represent con-
formal fluid equations. Then the stress-energy tensor of the theory can be expanded

in terms of the derivatives of local temperature ' and local fluid velocity .

T = p(T)y™ + (e(T) + p(T))u*u” + O(9u, OT). (2.6)
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Here Ty represents the energy density, Tj; the pressures in each direction, Tj;
the shear stresses, and Ty the momentum density. In this regime, there are number
of field theories which are differentiated by the coefficients appearing in the derivative
expansion of their stress tensors. The zeroth order coefficients are energy density and

pressure, while the first order ones are shear viscosity and bulk viscosity.

The stress-energy tensor describes a fluid of proper density €(z,,), scalar pressure
P(z*), and fluid 4-velocity u"(z*), which is normalised to u”u, = —1 and also satisfies
u,du’ /Qx* = 0. Here, v, is three-dimensional metric on the boundary of AdS space.

If we define a projection operator [51][41],

B = Y + 0, (27)

so that u# P, =0, we can write the stress-energy tensor of the perfect fluid as

Ty = euyty, + PP, (2.8)

This tensor doesn’t take into account any of dissipative proce

s like viscosity and

thermal conduction [39]. For stress-energy tensor to describe non-perfect fluid, it

needs a few extra terms to describe the viscosity of the fluid. Then, the expression of

the tensor is
Ty = €ttty + PPy + Ty, (2.9)

where Il is a symmetric and transverse tensor, which can be expanded in terms of

the derivatives of u",

M, =10 + 03 + ... (2.10)

o + i
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This tensor satisfies u, 1" = 0 and for conformal fluids it is also traceless g,, T = 0
[39][51).
In addition, p and P are related by an equation of state which under specific

conditions governs the perfect fluid, and it has the form

P=P(p,T) (2.11)

Fluid dynamics equations that describe the long-wavelength perturbations around the
large AdS black holes, can be written as the local conservation equations of the stress

tensor as follows,

9,1 =0 (212)

By using a non-flat metric, this equation is replaced by its covariant form

VAT, =0. (2.13)

In order to have the conformal invariance of the ivistic Navier-Stokes equa-
tion, it is necessary for the fluid stress tensor to be traceless and conformally invariant
under a Weyl transformation, which means the trace of 7}, must vanish, thus the

equation of state for a perfect fluid in d-dimensions reduces to [30]

(2.14)




Chapter 3

Perturbation theory of black holes

The perturbation theory of black holes and related topics have been a focus of
many researchers, during the last several decades [43]. This theory has attracted the
most attention in astrophyiscal studies where it has been used to study how black
holes interact with their environment and absorb or emit gravitational waves. A
particular application comes in the study of quasinormal modes (QNMs). These are
highly damped single-frequency oscilations which provide a unique gravitational wave
signature for black holes and may be observed in the future.

Another focal point of interest for the perturbation theory of black holes is
found in string theory. One of the recent theories arise from string theory is the

relation between physics in the (A)dS space and the conformal field theory on its

boundary. For example, as reviewed in last chapter, black hole physics in AdS can
be described by strongly coupled gauge theories at finite temperature (the Hawking
temperature of the black hole) on the boundary of space and vice versa. String theory,
predicted the existence of extra higher dimensions where gravity could propagate in,

and quasinormal modes could be a way to detect these dimensions, thus the future

observation of gravitational waves can prove the existence of extra dimensions and

31



provide support for string theory [43].

This chapter contains an overview of the gravitational perturbations of black
holes in four space-time dimensions with emphasis on the AdS; Schwarzschild back-
ground. Before applying the perturbation theory of black holes to AdS Schwarzschild
metric, it is beneficial to start with the case of Schwarzschild metric which has been
done by Regge and Wheeler [44] and separately by Edelstein and Vishveshwara in
1957 [45] and extended by Zerilli [46],[64]. A summary of their method, followed in

the next section, is taken mainly from their articles.

3.1 Perturbation of the Schwarzschild black holes

A small perturbation hy,, is added to the background Schwarzschild metric g, .

The perturbed metric has the form
G = G + Iy (3.1)

The contracted Ricci tensor, calculated from the perturbed form of the metric can be

expressed in the form
Ry = Ry +0Ry (32)
To derive an expression for 0R,,,, we use the Palatini equation [44]
o

ORu = —0Th,5+ 0105, (33)

where the semicolons represent covariant differentiation with respect to the back-



ground metric g,,, and we use the symbol
a _ 1w
0Ty = 59" (havy + howsg = hpra). (3.4)
Putting (3.4) in (3.3), we get the final extession for 4R,
1| 00
SRy = 519° (=husyia + huoia + hagyiw = i) (35)

which we will also use to find the field equations of AdS-Schwarzschild black holes in

the next section.

The unperturbed AdS-Schwarzschild spacetime (its metric is given by (1.16)) is
a vacuum solution of Einstein equations of the form Ry, = Agy,. So the equation
Ry = Adg, is the perturbation equation. If 6R,, = 0 as in the Schwarzschild
spacetime perturbation, it means that the perturbed space is empty of matter or
distributed energy. To solve the perturbed field equations, the method of separation
of variables was first used by Regge and Wheeler. The angular dependence of the field
equations comes from the spherical harmonics which are part of tensor harmonics.
By separating the time dependence part, these equations form a system of ordinary
differential equations with r as the only variable. By choosing a particular gauge
(working in a specific coordinate systems) which here is Regge-Wheeler gauge, the
solutions can take simpler forms which are transverse and traceless. By changing the

gauge, we make a small change in coordinates as follows,

Tl = Tha + €% (3.6)



which causes the metric perturbation to change as
Big® = B+ G + G (37

3.1.1 Perturbed metric, axial and polar components

Since back d metric is ically symmetric, hy, can be

canonically split into two classes of axial and poler perturbations. This decompo-

sition, before applying the gauge transformation gives the odd parity as

0 0 —ho(t, r)(9/ sin 6g) Y, M ho(t,r) (8] sin 00)Y;M
0 0 —hi(t,r)(@/sinbdR)YM ha(t,7)(9/ sin 000)YM
W= | sym sym  ha(t,r)(0%/ sin 0069 — cos 60/ sin? dp)YM  sym (3.8)
sym  sym  ha(t,r)(0?/sin09pd¢p + cos 09/ —ha(t,r)(sin 00 /D09
—sin09°/3000)Y,M —cos00/dg)YM

and the even parity as

(1= 2m/r)Ho(t, )Y H(t,r)¥M hao(t,r)(@/OOYM ho(t,)(0/00)YM
Hy(tr)YM (1=2m/r)  Ha(t VM (6 r)(@/00)YM  h(t,r)(0/0p)¥M
sym sym r[K(r,t) sym

hji! = +G(t,7)(6* /a0 YM
sym sym r2G(t,1)(9°/060p r3[K(t,r)sin?0

— cos 00/ sin0B)YM  +G(t,1)(02/0¢?

where sym represent symmetric components. As we mentioned before, the angular
functions are the tensor harmonics. During the calculations, there is no need to work
with a specific M since any choice of L and M (M = —L,~L + 1,...L) result in the

same radial equation [61]. On this account, for simplicity we work with M = 0 which

+sin 0 cos 00/90)| ;M

(39)



has the advantage that ¢ will completely disappear from the calculations.

By using the gauge transformation, we can find the canonical form of odd and

even waves. The gauge vector £ that simplifies the odd waves has the form

& =0

& =0, (3.10)
& = At,r) € 9/00YM g,

& = At,r) ¢ 0/00Y g, (3.11)

and the gauge transformation for simplifying the even waves can be written in the

form

& = Mo(t,r) VM gu,

& = M(t,r) M g, (3.12)
&
& = M(t,r) 1/sin?00/9pYM gap2.

M(t,r) 300 gao,

In the gauge transformation for the odd waves, the radial function A can be
adjusted to cancel the radial factor hy, and in the case of even waves the functions
My, My, and M will be adjusted to annul the factors G, ho, and hy. The final canonical

form of odd and even perturbations are given, respectively as follows,

1€y is equal to zero since by choosing M = 0, Y, will be independent of ¢.

2¢, is equal to zero for the same reason that £ was zero in the case of odd waves,
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0 0 0 h
0 0 0 h

by = expl(—iwt)[sin 0(2/06)| P (cos 0); (3.13)
0 0 00

sym sym 0 0

(1-22)H, Hy 0 0
H, 1-22)-1H, 0 0
= ! Q-2 exp(—iwt) Pi(cos 0). (3.14)
0 0 2K 0
0 0 0 r’Ksin?0

Here Py(cos ) is the Legendre polynomial with angular momentum 1.

Regge and Wheeler showed that the odd parity perturbed metric components
could be reconstructed from a master scalar function, called the Regge-Wheeler func-
tion. Further, Zerilli derived a master scalar and the equation that it obeyed for
even parity components; his function is called the Zerilli function. Since these scalars
contain all the physical information of the system, they are called the master scalars

48], Later, Moncrief showed that these two scalar functions are gauge invariant [49].

In 2001, master equations for the ild-de Sitter and
Sitter backgrounds were published in two papers by Cardoso and Lemos [73][74]. Re-
cently, it was also extended to the higher dimensional maximally symmetric black

holes by Kodama and Ishibashi [75).
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3.1.2 Ricci tensor perturbations, Odd and Even components

Now, we can find the first-order perturbations of the Ricci tensor. The odd-parity

equations are

Ry, = [ 1- @)hn + fzw(l ~ 7)h, ( — 3:ﬂ)h,

4 my JHEHD L 00 9/00p, et (3.15)
S 27
, 1 2
Ry = ,{Lw(l 727’”) T g(l—i—r_n)"hn4§u2(l Byt

hy

Lo 2 L(zrfl) sind 9/00P, e (3.16)

- 0= - (F+

2m

SRy = [; (1724”) ho + (1——)n,
+ gm} (cos 00/ — sin 92/96%) Py " (3.17)

and the Even-parity equations are

iRy = 7[1141\" L+l By - ?)”I(
iy w H,] Pu(cost) ¢ (3.18)
5

1 2m

Ry = —[%U(K+H1)+§(l SVH 4 T Hy | 0Py (cos) e (3.19)




0By

0By

3m—r
dmr —2r27°

mo o 1, 1o
-2 hy 4 S - K~

ot
Pt AL LACR (3.20)

1 3 2 2 .
= [EM}H; WK + w(Lf - D) —iw(1 - 7’”);1,

1. 2my . (m=2r)2m=r) m 2m,

3= T)ZHD = TH —5a(l- =),

m. 2m .1 2m =

31— 9K 4 55 (1= SR UL+ 1) Ho | Po(cos) € w(3.21)

,[M(p—)"y,ﬂw(’”u @)*H.
) _— "

2”) 2p, +L(L“)( 2yt 4 Ly - K
¥ m om. 1\

;(1* )ty + (W(I_T) +;)Hz

(Tu Imya %) K’] Py(cosh) et (3.22)

r2 r




2m 1 2m, o
+ 3 La- =M Hy+ (1= =2)Hy + (3m — 2r) K
+ Hy—K+ EL(L +1)K | Py(cosf) e™*
1; 1 2 —iwt 3
|3 Ho~ 5Ha |0 Puleos) e @)

3.2 Perturbation of the Anti de—Sitter black holes

By following the process of finding the components of Ricci tensor perturbation
for Schwarzschild black holes, we can also obtain the equations governing the pertur-

bations for AdS-Schwarzschild black holes, which is the main goal of this section.

3.2.1 Perturbed metric, axial and polar components

By having the spherically symmetric AdS-Schwarzschild background metric, the
‘metric perturbation can be divided in to two groups of axial and polar perturbations.
Before the gauge transformation, the axial perturbation metric has the same form as
odd perturbations of the Schwarzschild metric, but the polar perturbation have two

different metric elements as compared with the Schwarzschild case:

(124 5) BV YN ho(@/00)y To(0/0)YM
iy (1= §) "y @0 Tn(0/00)Y
sym sym & sym
by = +G(@ /0N YM 3.20)
sym sym r2G(9%/09p r2[K sin? 0

— cos 09/ sin0dp)YM  +G(9? /0
+sin0cos00/90)| Y
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The gauge transformation to find the canonical form of the axial perturbations
is also the same as Schwarzschild one, but it is different in t and r components for the

polar perturbations as follows:

& = Mo(t,r) Y gu

My(t,r) YM Grr,y (3.25)

P
I

& = M(t,r) 8/00Y; Goo,

& = M(t,r) 1/sin?00/0pYM Gop.

where g = — (1 - 22 4 ) and g, = (1- 22 +2) ", according to the AdS black
hole metric (see eq.(1.16)). The functions Mo, M;, and M will be modified to cancel
the factors G, ho, and hy. The final canonical form of axial perturbations is the same

as Schwarzschild’s and the polar perturbations has the form

(1-2+5) i i 0 0
et
= , 1-my5n) B 0
Fow = ! ( . “’) A exp(—iwt) Pi(cos 0). (3.26)
0 0 K
0 0 0 r?Ksin®0

3.2.2 Ricci tensor perturbations, Odd and Even components

The first-order perturbations of the Ricci tensor can be represented as follows.®
Odd-parity:

3As a prototype example, find the detailed calculation of 84 in the appendix A.
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r—2m)  r 1(, 2m 7).
Ry = [ hn+(7+rz wh.+i 1__+ll hq
1 4
+ 3 (1 AL P) wh, - 2-:3L(L+ 1)4 sinf 3y Py(cos ) e=1(3.27)
1 2m ! am 7
Ry = | -3 1-—+12 awhy+~(1- 22+

2m r? 1
( 7) Wy = 5z L+ D
|
7

*3)

sind 9Py (cos ) e~ (3.28)

1 2m 2\ 1 2m ,
Re, = {§<177+[—2) whn+§(1—7+ )h\

(cos0 &y —sin0 53) Py(cost) e (3.29)

Even-parity:

. {a 3ml?
[ X K
ORy = { Wk = Ewree =) Kt TR —2m)
+ %erzfl(L+l)H‘+ 3 1, | Py(cos ) et (3.30)
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1, 11 n
Ry = [— 5K + Ha) = 5= + P = 2m) H,

_ (Pm+r?) 0

T 9Py (cosB) et (3.31)

et
SRyl = {-1(1-2—"%’—,) in;--;—H;)+%K'

2 RE
2(3m —r) (Em-r 2" .
2w+ B(—2m+n) O 2P+ B(=2m+r)
X 9Py (cosf) e (3.32)
3 4 op(_ 2 ;
SR = |- Lty — w4 ARCIAO), (2 Y
2 2 r e
(P +P(=2m4n)? 0 (B@m—r) = r)(Bm—1) =2
+ 20 it Uiy o
P B(=2m+r)) 0S4 Um(r — 2m) + Pri(r —2m) .
i o 2 203 K
2m  r? 6r° + 61*(—2m + 1)
- (1— T+l_?) L(L+1)H[)+THD
62(—gmrd 4+ 674
4 SPCIME 6 bl b cos0) et (3.33)
20




om 2\ P(1Pm + %) PL(L+1)
R = [-[1-22 Hy - — H,
= { ( Tt ) wh = e wamt M S T R am )

om 2\, Hy K 3+ P(2r—3m)
o S K o,
(2@m —1) =) BEm+1%) o | 6+ 2(dr—6m) it
+ 2B 2 o+ 3 gy | PL0s0) € (330)
_ (i ) X r(r* + P(=2m+7)) 0
6Rw = [- TRy K i K

6r~’+t’(—6m+4r) e +3r
212

Py(cosf) et 4+ [%(H; = Hg)] GBPy(cosb) e (3.35)

(r* 4+ (=2m +1))
7

(Hy+ Hy) + ——H+K

1
SLE+DK

3.2.3 Large m limit of the perturbations, m >> [

In the limit where the mass of the black hole is much larger compared with the
radius of the AdS spacetime, the perturbation equations take the following form in
both odd and even groups, respectively
Odd-parity:

SRy ~

r? " , 1
hg + ﬁm, = (Tz) (g +why) = Fal(L+Dho

% sinf 9yPL(cosf) e (3.36)



1\ T 1 s
Ry ~ _§(l_7) who+(l—2) LM,LQ+2(12) w'hy

= 272L(L+1)h,+ hl] sin6 8Py (cosf) ™"

1\ L\, 7
0Ry, =~ [5(7’) W"“*i(fz)hl*ﬁh‘]

x (cos0 8y —sin0 85) Py(cosd) e

Even-parity:

- r - 3mi?
Ry [”“K T @ )t rE T e —om)
o Lo, - MR D B pyfeos) e

SRy ~ Lok H)—ET:H'—lH 9Py (cos0) e
o & | = gu(K + Hy) = gy - g P 4

LA Py
St ~ | =3 (F) wHi—5H 1
2 -
i 2TJH,JWH, 9Py (cos 0) e

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)
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) 2
—2 z‘wH, — PiwH, + %H;

ORy ~

2

1%\ K"
E(TZ) Sy + o +777TH2
35

2

dK ] Py(cosb) e (3.42)

" 3
 (Hy+ Hy + K

R x| = CuRK v + oK —
(N T2 217

3r? 1 o
T Ha (K = SL(L+ 1)K)| Py(cost) €

+ [%(H, - Hu)] 93Py (cosf) et (3.43)

Hy + Wﬂn

1 .
ORy = {4 §w2H2 -w’K + %ium +

g s
2w, %H;—LK' L(L+1)

it T Tar
2
+ L;—:Hg+ %Hz] Py(cos0) et (3.44)

Hy

3.3 Stress—energy tensor

The energy-momentum tensor of the field theory on the boundary of the AdS

space is expressed in terms of the intrinsic and extrinsic geometry of this boundary



at infinity [51], as
PR A 3
Wi = Ky = Ky = 2 = 5% + | = G (3.45)
Here, Gy is the Einstein tensor of the induced three-dimensional metric vu,
1
Ga = Rar] = 5 RIvvar- (3.46)
and K is the trace of the extrinsic curvature
K =" Kap, (347)

We start the computation, by first using ADM-formalism [50] to decompose the metric

g on M in the form
ds* = N2dr® + ya(dz® + N°dr)(da® + Ndr) (3.48)

using appropriately chosen (N, N) functions, where N is called a lapse function and
N is called a shift. OM, is a three-dimensional surface at fixed value of r which is

the boundary of four-dimensional region M;. vy is a finite value induced metric on

OM,. A relation among the bulk and boundary metrics i

[~detg = N\[=det. (3.49)

In reference [51] the components of energy-momentum tensor on the boundary of

AdS; space are derived as I mention its summary here.

For AdS; black holes, in the standard coordinate system, the functions N and
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N* are

(3.50)
—fr) 00
Ya=| 0 1 0 (3.51)
0 0 risin?0
The second fundamental form and its trace are
1) 0 0
Ka=yf)] 0 - 0 (3.52)
0 0 —rsin®
and
(3.53)

Now, by following the method that has been used in reference [51], we have the

following expressions for energy- momentum tensor on 9M,..

KT, = ff_: (\/—+27 H 27%)
o X
KTy = ‘/m( )+ 5/ 0)) 243,
KTy = sin®0 Thp. (3.54)

and the rest of the components are zero.



3.3.1 Axial perturbations

The induced three-dimensional metric on dM, is a perturbation of the static

metric

0 0 ho(r)
Y=+ 0 0 0 |sind8Py(cosd) e, (3.55)
ho(r) 0 0

The complete energy-momentum tensor of the boundary theory on dM, assumes
the following form in terms of the metric coefficients ho(r) and hy (r)*. The holograghic
renormalization is the method has been used to derive these forms of perturbation

tensor components

0 0 4T,
Tu=T9+| 0 0 on, | (3.56)
0Ty 6Ty 0

where

y N =) A 3(L—1)(L+2)
KT, = {(; /1) + o 2E+ \/'—KT) ho(r)
= %\/ T (o) + zwh\(r))} € sin 00, Py (cos 6),

K0Ty = f% (\//(r)lu(r)+iwﬁl7((:)))s"“"

sin0[L(L + 1) Py (cos 0) + 2cotd Py (cos ). (3.57)

x

Find their forms in Appendix A.3.
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3.3.2 Polar perturbations

For polar perturbations, the induced metric on the boundary @M, has the form

(1-2)H, 0 0
T =15+ 0 K 0 |exp(-iwt)Pcost).  (3.58)
0 0 7r?Ksin?0

The expression for stress tensor polar perturbations is

Ty 0Ty 0
Tu=T+| 6T 6Tss 0 |» (3.59)
0 0 6T,

where the components of the tensor, in terms of the metric functions Ho(r), Hy(r)

and K(r)?, are

ATy = [( Vi) - 2\/j**\/j)Ha(r VIOK ()

(L-1)(L+2) [ 3
D

K(r ] AN

“Find their forms in Appendix A.3.
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K6To = Kr £(r) \/i lf(r) ) K(r)

\/_ K (1) - iw—— F F )Hyr)
- g( /(r)+2’\1/’__) Hn(r)]("“"’agl’,_(cosﬁ)

1
o /-%Hu(r)e"“"cotﬁ 0Py (cost),

+

6Ty RG] 3
0 {(T ke T \/’—5 2f ’) 2Ll
r ,

SVIOK )~ io—— F / () Hy(r)

7 (‘/f(r)+ e ("? ) Hn(T)]l‘ 9, Py (cos )

2)/f(r)
— L3 Hyr)e cotd 8y Py (cost)
L) ot 8y (cost),

+

KTy = (zw /——K +\/f(r)H(r, ) ety Py (cos 0). (3.60)

3.3.3 Covariant derivative of 67,

Now that we have found the variation of the stress tensor on the boundary of

the space, it is expected for the covariant derivative of this variation to be zero since



they are actually our fluid dynamics equations as we mentioned in chapter 2.3.

Using the Gauss-Codacci relation [5], on the boundary we expect the stress-energy

tensor to satisfy the equation
(6Tu)" = 6Gun” (3.61)

where G is defined in equation (3.46).
fpu=t,

(0Tw)" = D'6Ty + D*6Tyy + D*4T,, = 0, (3.62)

since each term is identically zero.

For y1 = 0, the same thing happens, so
(0T)" =0, (3.63)
and for i = p, we have

(6Tp)” = D' 8Tp+D° 6 Tpo+D¥ 3Ty,
= 8" (B, 6Tw)
8% (90 60 — T, 6T,0)

+

+ 0% (=200, 6Ty,) . (3.64)

By using equation (3.60), and summation over v, following a few pages of calculation



we have

D" (6T,,) = 6Ggun”,

D*(0Tp) = 0Gpm” (3.65)

The results we have found here is for the odd perturbations. However, the same
process can be done to check if the even perturbations of the stress tensor would

satisfy equation (3.60), as we expect.

3.4 Velocity, energy density and pressure of a per-
turbed fluid

Rewriting eq. (2.9) the general form of the stress-energy tensor of a non-perfect

fluid is
T = eutu” + PP* + 11", (3.66)

Here, I1% is the dissipative part of the stress-energy tensor which has traceles

7 and non-vanishing trace part, II, written as (53]

I = o 4 PRI, (3.67)

For the traceless part (visco-elastic stress) [54] we have

7 = —o 4+ (2nd order) + (higher order gradients), (3.68)

where 7 is the shear viscosity of the fluid and ¢ is the fluid shear tensor [55] expressed
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as follows,

(3.69)

o = Vi = PP (gup -

In this equation § = V,u* is the expansion and () shows the symmetric transverse
traceless part of the definition.

Before continuing to find the energy density and pressure of the perturbed fluid,
we summarize the Weyl transformations of the various observables of conformal fluids
in Table 3.1 The notation is from [54]. Further, we can define an invariant quantity

under conformal ion using the and chemical potential, which

is v; = /T = . To protect the metric from diverging on the boundary, the

!

conformal factor is chosen to be ¢# = L.

Table 3.1: Conformal transformation of the various observables in fluid mechanics.

Observable Before ion [ After
ime metric I G
Four-velocity " e
Projection tensor P Piiad cad
Shear tensor " TG
E; tensor T P bl
Energy density € e B¢
Pressure P el d
Shear viscosity n PR
Fluid T 9T
Chemical potentials of the fluid i %
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3.4.1 0Odd perturbations of fluid

To find the perturbed energy density ¢ from equation (3.65), we use the Landau-

Lifshitz condition [53][55)
Uy TE™ = —berlyfpen). (3.70)

The matrix form of this equation is

ut + dut Ty 0 0Ty Fue(ut + Sut) + ypp0u?
ou® 0 Ty 0Ty, | =—(c+de) Yopdu? (371)
Sus 8Ty 0Tay Tpp YopSUP + Sypa(u + Sut)

Therefore, by neglecting the terms of O(42), we will have a set of three equations and
an extra normalization condition of YZ™ufy,, uf,e) = —1 to obtain four unknown

variables of du!, §u?, du’ and dc. The results are as follows:
Sut =0 = ufy,,) = u' (3.72)

which after conformal transformation by choosing a suitable relation from Table 3.1

and normalization is equal to —1. For f-component of the velocity we have
bu® =0, (3.73)

and

sup = V0T + €070) (374)
(€Yo + Toe)



which after conformal transformation and normalization takes the form [51]

uf = ﬁu —1)(L+2)(Piwly — 1) sin 00, Py (cos 6) e=* (3.75)

Also, the corresponding energy density e*”) remains unchanged and equal to the ¢ in

the unperturbed black hole case, since ¢ is zero. So it has the form

o= ZTT— (3.76)

Furthermore, we can find the pressure of perturbed fluid from equation (3.65) such

that

P TEm = POy () e o)) TE™ = (P + 6P (3.77)

w

where [ is the 3 x 3 identity matrix. The matrix form of the above equation is

L(uty? 0 —be gutdur || Ty 0 0T,
0 L 0 0 Ty 0Ty,
- 4 furut 0 (o) T 6Tis Tis
100
=(P+dP)| 0 10 (3.78)
001

Therefore, by solving the above set of equations, we have

P+5P=@:i2(—“f(r)+&72) (3.79)
Yoo K

i 1

After conformal transformation, following the Table 3.1 (e™% = &), by taking the



limit of m >> I, §P goes to zero and we have

Pler) _, plunper)

P+oP —» (3.80)

xR

The result is equal to P = § which is the pressure of unperturbed case. Thus, the

perturbed fluid in odd case has a non-zero velocity in ¢ direction which means that the
fluid moves sinusoidally in azimuthal direction while going forward in time. However,
ot

the ¢ component of velocity progresses in time periodically because of the real of ¢

in the definition of u¥ which is coswt.

3.4.2 Even perturbations of fluid

Generally, for even perturbations, we follow the same process as odd pertur-

bations. The matrix form of the the Landau-Lifshitz condition (eq.(3.69)) has the

form
ut + dut Tie + 6Tee T 0 Fee(u' + ') + yepbu?
u? SToe  Too+0To0 0 = —(e+8¢) Yoo’ 3.81)
u? 0 0 Tpp+ 0Ty, Yopbu? + By (ut + but)

As before, we drop the terms of O(6) to have a set of three equations. These equations
along with the normalization condition are sufficient to find four unknown variables

of 6ut, §u?, §u’ and be. For t-component of velocity we obtain
Sul =0 = uly,,) = u' (3.82)

which after conformal transformation by choosing a suitable relation from Table 3.1



and normalization is equal to —1. For ¢-component of the velocity we have

suf =0, (3.83)

and

u'dTy

PN O, . —
= ewo + D0 + Ton)

(3.84)

which after conformal transformation and normalization takes the form [51]

—iwl?

dut = 220
T Tom

(L = 1)(L+2)Jo0p Pr(cos 0) e (3.85)

Different from odd perturbations, here ¢ # 0 and the form of the corresponding

energy density e is

P .

o oM
TP o
o K20 = ZTT - Sl—T(R — iwdo)e™ Py (cos ) (3.86)

where R is the function of w [51]

6m

FE- 072" Sh

L/
R=—m= (iw +
In the large m limit, the growth of the first term is faster than the other terms which
are part of d¢. Therefore, in this limit
m

2
cde—e=Tm (3.88)
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We can also find the pressure of perturbed fluid from equation (3.76). The matrix

form of this equation is

m Ha el U Ty+6Ty T 0
i e 0 T Tw+Tw 0

0 0 m +(uey? 0 0 T, +6Ty,
100
=(P+éP)[0 1 0
001

By solving the above set of equations, we have

pisp = TwtTu
Yoo + 600
(VIO S0 2
;’( Y/ ‘)J'?’n"

T+ K(r)Py(cos)e .90

where §Tyg is taken from eq.(1.59) and K (r) is defined in eq.(A.10). Also in this case,
in the large m limit, perturbed P is equal to the one before perturbation.

So far, we saw that the perturbed fluid in even case has a non-zero velocity in
0 direction. This component of velocity change periodically in time because of its

dependence on cosf as the real part of e=** in the definition of su’.



Chapter 4

Discussion

In this thesis T started with a brief introduction to Anti de-Sitter space and
AdS-Schwarzschild black holes which are the solutions of the Einstein equation with
a negative cosmological constant. Then in the second chapter, the famous notion of
gauge/gravity duality was introduced and the features of the correspondence between
Anti-deSitter space and conformal field theory on the boundary of the space were
discussed. In this chapter, a few aspects of the string theory which were required to

understand the correspondence were also reviewed.

Chapter three was basically the realisation of the main goals of this thesis.
Our first goal was considering the large m limit of gravitational perturbations of
AdS Schwarzschild black holes in four space-time dimensions and studying their rela-
tion with the perturbations of induced three dimensional stress-energy tensor on the
boundary of space. To this aim, following the method of Regge and Wheeler [44], first
we found the perturbed form of the metric of AdS space which can be canonically
split into two classes of axial and polar perturbations. Then, by finding the covariant

derivative of the stress tensor variation and deriving the large mass limit of Ricci
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tensor variation, we checked if they satisfy the equation

(0T,)" = 6Gum”, (4.1)

which they did. We expect this relation to be true since the covariant derivative of

the stress tensor variation is actually our fluid dynamics equation.

Further, as our second goal, we intended to understand that how the large m

limit of stress-energy tensor

T = eu'u’ + PP* —no'. (4.2)

describes a fluid, and its variation results in fluid dynamics equations on the boundary
of AdS; spacetime and in particular why in small m limit, the stress-cnergy tensor does
not describe a fluid. In this version of the thesis, part of these goals are accomplished

and the remaining parts are classified as future works.

So far, we considered the general form of the stress-energy tensor of a non-perfect
fluid and found the velocity u*, energy density ¢ and pressure P of the perturbed fluid
for both cases of odd and even perturbations. Then we used these results to predict
the behavior of perturbed fluid as it progressed in time. At this point we need to
study the behavior of viscosity 7 of the perturbed fluid in the limit of m >> [ to
have all the information needed to relate the perturbation of fluid on the boundary
of AdS, spacetime to the perturbation of black holes in the bulk of spacetime. This
is the part which is not included in this version of the thesis and can be referred to

as a future work.




Appendix A

Ricci tensor variation calculations

A.1 0R,, as a prototype example

0Rny = %[g""(fhw.v o Fhigais - Rosgsp = hm,a,u)]

1
+ 5 [y"”(fh,m,.a + hrg00 + hooip — h,w‘a)]

1] o



By using the following three equations',

hoto = hoto = Dophot = Tirhs
hotor = hotar = Tiphoto — Tithyso — Tighots (A1)

Velte = Tage = Tialme = Tialon + T0uT0
the calculations can be continued

1
59" [ — (g — Tl ~Thhes)s

+ (hrpt = Dhop = Thhrs)s
+ (Bt = Tirhor = D)y,
= (Prtyp = Tiwhot = Dlyhus)s
1o “ s
4 50" | = (e = Tiyhor = Doy hrs)s
= (bemp = Tgphor = rﬁ,,nﬂ;),}
1
+ 50" [ = (hyor = Tighon = Thohys)
+ (hrpa = Tirhay = T hrs)o
+ (oo = Tighao = Trghes):

~ (hwayp = Thoo = Toghes)o

1,4,,m,n,s are arbitrary dummy indices.



+

+

+
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3" [ = (bt = Vi3 ot = VihoiT5, = Villhgs = Toihs)
(hrptt = Vilihoy = VihooTs, — Vil e — T4, Vihys)

(httirip — Vol %hat — VphotT% — VT8 his — T3, Vohis)

(rtgoit = Vil hot = Vihgt TG, = Vilohay, — rjﬂv,h,v)]

1
59| (ot = VilZ ot = VihatT5, = Viliihgs — TV ihys)
2

(Berge = VTS hor = Vohr TG, — VT4 g — rﬁ,,v,w}

1
39" [ = (hoori0 — Vol Zhoo — Vohaol'%, — Vol Sghes — 1% Vohys)

(hep0 = Va5 hay = VohooTs, = Valj hes = T3, Vohes)
(hoorip = VL%ahos = Viohoal'tg — Vo Thghes — L4V shos)
(hrogi0 = VolGrhoo = Vohool'Gy — Vologhes — L3 Vohrs)

(A2)

Following the Einstein’s convention, repeated index implies a summation over all
possible values of the index. After summation over (¢, 7,6, ) as our index values and

cancelling terms, we have

1
59" trs = 5" Ol + G TE, Ty

1
- iynhrw,t,l +29"ho LY, TG, — g her DT,

+

1 -
e O = g TETE g = T8, Tiohor

1, 1 1
= gualuliiher + 5 5hrp00 = 55 o0
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By using the following equalities

1 9 9 1

L O sin ew 75 93| = UL DYE0.0)

Sind 90
w(sms Py(cost)) = LL+1)[sm€ 5 Pucost)]

“L(L+ 1)%(&“ 0P, (cos0)) (A3)

and insetring the AdS metric components and Christoffel symbols (see appendix A.3),

the final result will be

1 om  r? om 2\
bRy = [,5(177”7) iwhy+ = (177”—2) iwho
1 2m  r*\”
+ 5(1—7+l—2) wh|——L(L+1)
1oy it
+ (ﬁ+ﬁ) sinb dyPy(cos6) ¢ (Ad)

For taking a limit m >> [, we choose r = p rgy; p >> 1 where EH stands for Event
Horizon, and | = um; i << 1. By applying these limits, 6R,,, will take the following

form

L2\ (T 2\~
bt = [-3(F) i (3) o (5)

1 3], - "
Sl D+ l—zh,} sin0 9y Py (cos 0) e~ (A5)



A.2 Metric functions
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Following Regge and Wheeler [44], the linear gravitational perturbations d R, =

Abg,,, about the Schwarzschild background, for axial perturbations, yield a coupled

system of first order differential equations for the unknown functions ho(r) and hy(r).

This system consist of two equations of (f)— and (r¢)— components. The asymp-

totic expansion of the metric functions ho(r) and h(r) near spatial infinity are given

in all generality by [51]

L
ho(r) = (anr’ + o0+ 2+ ) o,

i) = (S ) e,

where 7, is a tortoise coordinate and its relation to r is

For AdS; black holes, r, ranges from —o0 up to the constant

Th @r+rm)+a® | or—6m, 2r +1a
= o | ralog 2 [arctan ——
(r, — 3m) A(r—m)? T+ 6m a

The coefficients of the metric function ho(r) and hy(r) are

iA (L-1)(L+2
= g py= = T NEED
_ L(L+1) i 3w?
6 = =50 ((L—l)(L+1)+—A I,
3 3
o = -3l fi=-%h

where coefficients Iy and I; depend on w [51].

(A6)

(A7)

-3) @9

(A.9)
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These coefficients are determined up to the order relevant for the computation of the
energy-momentum tensor for axial and polar perturbations of AdS; black holes.

For polar perturbations the (tr)— (rf)— and (tf)—components of the perturba-
tion form a coupled system of first order differential equations for the three unknown
functions Hy(r), Hy(r) and K(r). The other components of the perturbation either

yield second order equations or else J Ry, vanishes identically.

The ptoti ion of the metric functions Ho(r), Hi(r) and K(r) take

the following form at spatial infinity,

3m A By G )-m.
Halr) (Lfl)(L+2)(r tatate)e
3w (4 B G .
B = L (Frgrata)etn,

K@) = (R + ? + 75; + % + ) eiore, (A.10)
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The coefficients in Ho(r) are

4mA
4 = (21(w,+w) TDETD mAL 1)(L+2))Jo——1.,
12m?A
B = "(L“)( sl N (L+2)2]>
(L-1)(L+2) 1)(L +2) 12iwm
+ ( —1)(L+2)+ 4@_1)“”)1
+

a = ( L‘l)(L C=DEH2) gy +1) - 4)+T( —1)(L+2)

o
(L(L+1)—4+6%)+61TM)Jn

6m
Y Tonzvy
w

(L= DL +2)

+ (L(L+1)—4+6~%3+
x (L-DL+2)+ “%1)1. (A1)

where coefficients Jy and J; depend on w.

Likewise, the coeffici in the asymptoti ion of Hy(r) are given by
2mA
( L-1)(L+2) )J“__J‘
12m*A ) 2mA
(LL+1 -1- —1)2(L+2)2) (1w+(L_ )(L+2))'Il'
LL+1)—4 24m?A
G 3(’”(L- 1)(L+2) UL+ 42 (L-1)2(L+21])

+ %(L(L+1 —-4- [w+(Lzl—2+2)])J,. (A.12)
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Finally, the coefficients in the asymptoti ion of K(r) are
Biw
R = -4 B=-C4,
1 24m?A 2mA
A= fi(L(L+l)—(L71)2(L+2)2)J0+(zw+(L_1)(L+l)>J|,

1 1202 24m?A
= (L(L+ DIEE+) - 5 - g )

. 2iwm
+ 12iwm[l - m]) Jo

L(L+1) iw 12iwm
* (m(L By Ay Ny 2)]) & 19
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A.3 Christoffel symbols for AdS-Schwarzschild met-
ric
By using Mathematica, we can casily find the Christoffel symbols for AdS-
Schwarzschild black holes. The non-zero components are as follows:

1 om? (412
r, = ,,,(,,+,.~ m? | r(@+r?)

2 14

o= ml® 4 1®
T r(ComP By
o= mi* + 1%
T T (—2miE )

1
Yy = =

1
e, = -

s

g, = 27;177»—%
§, = cotf
- (2mi2 = r( + 1%)) sin @
I, = —_—
T, = —cosfsind (A.14)

e
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