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Chapter 1

Introduction

Black holes are arguably th e most interestin g gravita t ional objects in th eoreti­

cal physics. Understanding th eir full dyn amics forces us to fit togeth er two widely

accepted theories of Natur e: general relativit y (Einste in's classical theory of grav­

ity) and quantum mechanics, a goal th at despit e encourag ing successes has eluded

theoret ical efforts so far.

In this thesis, th e first chapter includes a brief intr oduction to black holes, along

with a review of Anti de-Sitt er spacet ime (AdS) and Asymptotically AdS spacetimes

and th eir properti es. The second chapter is an introdu ction to the noti on of AdS/ CFT

correspondence and Strin g theory as a prerequisite. In chapter thr ee, at first , the

perturbati on th eory of black holes is reviewed and the rest of the chapter is dedicated

to th e result s th at have been found for the perturbed metr ic, field equat ions, and

stress tensor perturb ation s of large mass, AdS black holes. Moreover , th e velocity,

energy density and pressure of th e perturbed fluid have been derived and studied.

Now, let 's look at the notion of black holes since they were discovered.



1.1 Black holes

The term "black hole" was introdu ced by Wheeler in 1967 (see Figure 1.1) al­

th ough the theoretical st udy of th ese objects has quite a long history. In 1783, John

Michell st ated th at there might be a massive object with an escape velocity greater

than the speed of light . Around thirt y years later, in 1796, Laplace conjectured the

idea of Newtonian black holes [1]. Lat er in 1916, the solut ions of th e Einstein field

equat ions for th e limited case of a single spherical non-rot atin g, uncharged spherical

systems in the vacuum were found by Karl Schwarzschild. His solut ion is known as

the Schwarzschild solut ion.

As mention ed, in Newtonian gravity, a massive body can have an escape velocity

greater than the velocity of light . Th e corresponding phenomenon equivalent to this

massive body in general relativity is a black hole. However , thi s correspondence is not

exact since black holes are intr insically relativi stic objects. Th ey are cha racterized by

causal horizons and spacet ime singulariti es, which are two basic featur es of Einstein's

theory.

In general relativit y, the curvature of spacet ime genera tes the gravita t ional force.

Spacetime is usually interpr eted with space as being three-dimensional and time play­

ing the role of a four th dimension. Th ese are put together into a four-dim ensional

geometry. In higher-dimensional gravity, th e numb er of spat ial dimensions increases.

The dynami cal metric gabof a pseudo-Ri emanni an manifold (M, gab) with Lorentzian

signature, obeys the Einstein field equations. By let t ing Rab to be the Ricci curvat ure

and R the scalar curvature, the Einstein equat ions are

(1.1)



On the left side of the equat ion, the term that includes th e cosmological consta nt

A, indicates dar k energy or non-zero vacuum energy, and, on the right-hand side, T ab

is the energy-moment um tensor of all the matt er fields which acts as the source of

spacet ime curvat ure. These matt er fields influence the dynamics of spacet ime. On

the other hand, any field is affected by gravity since it lives in a curved spacet ime, and

massive particl es move along timelike geodesics while massless particles move along

null geodesics [2].

One of the notable differences between Newtonian gravity and general relativi ty

is th at the "act ion-at-a-dista nce"] is replaced by the built-in causality st ruct ure of

Einstein's theory. If we reformulat e the Einst ein's theory of genera l relativity, in an

init ial-value formulat ion, which describ es a universe evolving over t ime, it is possible to

split the ten Einst ein equations into six evolut ion equat ions and four const raint equa-

t ions [5]. Init ial data needs to sat isfy th e const raint equat ions defined on a spacelike

Cauchy surface, and the evolution equations specify a syste m of hyperbolic quasilinear

equations that evolves the initial dat a in tim e. T his gives rise to a causality st ructure,

which locally looks like the light-cone st ruc ture of special relativit y. However, since

the spacetime is dynamical, the Cauchy evolut ion of smoot h geometry and matt er

dat a on a spacelike surface may lead to a singularity. Phys ically, this corresponds

events such as the gravitat ional collapse of a massive body or a high energy collision.

According to the Penrose-Hawking singularity theorems, gravita t ional singularity

or spacet ime singularity can arise in Einstein's theory [6]. In standa rd practice, we say

th at for curvatures of the order of the Planck scale, general relativity is not suita ble

for describing the spacet ime, e.g. when R abcdRabcd ~ c3InC where n is Planck's

consta nt. Since general relati vity is nonrenormalisable [7] when treat ed as a quantum

lAction at a distan ce is th e interaction of two objects which are sepa rated in space wit h no
known mediat or of th e interact ion. [4]
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F igur e 1.1: The first pub lic usc of the term "black hole". Lectur e given by J .A.Whecier
appeared in the Phi Beta Kapp er journ al "T he American Scholar " (VoI.37, No.2, Spring
1968, pp .248)[3]



field the ory of gravitons, a more fundamental quantum th eory of spacetime is required,

and general relativity is just an effective low energy t heory.

A black hole is the region conta ined inside an event horizon. More precisely,

for spacetimes with an asymptotic conformal struc ture, a black hole is the region of

spacet ime that does not lie in th e causal past of futur e null infinity, and its bound ary

in the full spacet ime M is called the futur e event horizon 1i+. Th e past event horizon

is called tc, which is th e bound ary of communicat ion of past null infinity. It is also

present in tim e symmetric solutions but absent for dynamically formed black holes.

Th e formation of black holes th rough the gravita tiona l collapse of massive ob­

jects has been studied analyt ically and numerically (see reviews e.g. in [8] and [9]).

However, for the formation of a black hole, no matt er is necessary since it can also

form from the focusing of incoming gravitat ional waves [8]. Also, high energy colli­

sions may result in the formation of black holes [10]. In this process, event horizons

are expected to form in agreement with cosmic censorship which prot ects the rest of

spacetime from singularit ies [12]. Th e results support th e expecta t ion that a black

hole will form whenever the hoop conject ure is sat isfied. Roughly speaking, thi s con­

jectur e says th at when a given amount of energy or an object is compressed in a

suficiently small region of space, a black hole forms [11].

Nowadays, the images taken of X-ray binary systems are one of the basic tools

for the ast ronomers to study the black holes. X-ray binary systems consist of a visible

sta r and an invisible companion sta r which move in the close orbit around their cent re

of mass. Th e invisible partn er 's gravity at t racts th e matt er from the region around.

Thi s includes th e gas from the visible sta r which forms a flatt ened disc of gas spinnin g

and falling towards it. Collisions between the particl es in the formed disc heat them

up to the extermely high tempr atur es such that th ey produ ce X-rays [13]. Many



bright X-ray binary sources have been discovered in our galaxy and nearby galaxies.

These unseen companions are black holes and the X-rays results from the friction

between the par ticles close to the event horizon. After emitt ing their X-rays, they

disapp ear by passing the event horizon.

However, searching for the black holes by st udying the evolut ion of the visible

partner is indirect [14]. Ideally one would like a specific observable characteristic

which confirms that a compact body is indeed a black hole. One possibility arises

from numerical st udies of perturbati ons around black holes which shows th at late

time perturbations are dominat ed by an exponentially damp ed single-frequency. Thi s

kind of perturbation, which is damp ed quite rapidly and exists only in a limited

t ime interval is referred to as a quasinormal mode or QNM [15]. T he evolut ion of the

init ial pert urb ation of black holes is affected only by the black hole parameters, not the

init ial perturb ations. So they are the direct signat ures of a black hole. Observation of

gravita t ional waves may be able to encode th e presence of these quasinormal modes.

More details about perturb ation theory can be found in chapter 3.

1.2 AdS space

Anti-de Sitt er space is the maximally symmetric solut ion of Einst ein's equat ions

with an attractive cosmological consta nt [20],

(1.2)

where A is the negative cosmological consta nt .

Traditionally, anti-de Sitt er space was not deemed to be of physical inte rest.

However, it attracted atte nt ion for two reasons. First , the negative value of A, if



defined as a vacuum energy, corresponds to negativ e energy density. Second , ant i-de

Sitt er space has th e genera l topology Hn-I ®5 I , where th e 51 is tim elike. Th e existence

of closed tim elike curves and a bound ary at spacelike infinity are two properti es of

th is geometry which are in conflict with common sense [17].

To introdu ce (n+ l l-dim ensional AdS space, we define it as a surface embedded

in a flat space jR(2 ,n) with two time coordinates, u and v, and n space coordinates

xi [19]. For example, in four-dim ensional AdS spacet ime, th e five-dimensional flat

space is jR(2 ,3) that has two timelike and thr ee spacelike directions which make it not

a spacet ime in th e ordin ary sense since it has more th an one tempor al dimension.

Back to our general case, the metr ic and const raints can be writt en as follows,

i= 1, ...,n;

Th e general form of the Lorentz tr ansformation s can be defined on jR(2 ,n) as a

group of linear transform ations that preserve the metri c of the space. Because of

the homogeneity of the ant i-de Sitt er space, if we consider two vectors VI and V2

on the sur face with the same norm of Vi ,VI = V2 ·V2 = _H 2 , they can map into

each other under the Lorentz tr ansformations. However, according to the const raint

mentioned above, these timelike vectors V = (u,v, 55)belong to the surface if they

satisfy V ·V = _ H2 •

For visualizing the AdS space, we use the const raint equation

(1.3)

to plot the space. We choose three axes of u,v, and p = ~, which has a fixed value



Figure 1.2: AdS,,+1 space described as a two-dimensional surface in which each point
represents half of the S,,-I (p} sphere. The horizontal axis has p increasing from zero to
infinity both to the left and to the right. The half spheres at points with equal values of u
and v must be glued to form a single S,,- I (p} sphere.jlD]

in our case, and each point on the two-dimensional surface is determined by u and v

values. As it is shown in Figure 1.2, the surface is extended to the left and right as

the value of p var ies in both direct ions, from 0 to 00. Each point of x th at sat isfies

(1.4)

represents a S,,-I sphere. But since we have the same range of p twice, we need to

have half of the sphere S,,- I on top of each pair of u , v with the same value, in the

right and the left , such that by gluing two halves, a complete sphere can be made.

If we imagine a curve that goes around the waist of the hyperboloid, that would

be a closed t imelike curve. However, nothin g parti cularly singles out th e waist , be­

cause AdS" is a homogeneous and isotropi c space, which has~ Killing vectors

that generate the symmetry group of SO(n- l , 2) [16]. In homogeneous space, all the

points are the same and there is an isometry between any two points in the space. In

general, the topology of AdS" is R,,-1 0 S1and the topology of dS" is R 0 S,,-I . In two

dimensions, de Sitt er space and anti-de Sitt er space are simply relat ed by switching

the meaning of t imelike and spacelike. Th en AdS2 becomes de-Sitt er space dS2 , and



closed timelike curves become closed spacelike curves.

It is math emati cally important to know that the conformal bound ary of asymptot-

ically ant i-de Sitt er space differs from that of asymptotica lly flat spacet imes. Th e

bound ary of conformally compactified AdS4 has the topology S20 R, where the sphere

can be regard ed as the conformal bound ary of hyperbolic three-space. This t imelike

bounda ry, which is usually labeled as .J or scrI (script I), is defined as the set of end­

points of all futur e directed (or past directed) lightlike geodesics. Also, the bound ary

is t he set of endpoints of spat ial geodesics, which we can refer to it as spat ial infinity,

bu t lightlike geodesics are more important for the causal st ruct ure. Th e whole struc­

ture is quit e different from th at of conformally compactified Minkowski space. In this

case, spat ial futur e, and past infinities are disjoint , and both are lightlike.

1.2.1 Asymptotically AdS spacetimes

For spacet ime with a negative cosmological consta nt , we can rewrit e the Einst ein

equation as [22]

(1.5)

where the AdS radi us l is defined by [20][21]

[2 = _ d(d -1 )
2A . (1.6)

AdSd+1 spacet ime is one of the simple solut ions of this equa tion. It has a curvature
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tensor/

In the global coordinates" (r , t,Dd- 1) , the AdSd+1 metri c is given by

2 2[ 2 2 dr
2 2 ]ds = l -(l + r )dt +~+r dDd _ 1 .

Th e metric can also be writt en in th e new coordinate ta n ()= r as

(1.7)

(1.8)

(1.9)

Th e conformal bound ary of AdS with topology R x Sd- l is locat ed at th e metr ic

second order zero at r ---+ 00, or as in new coordinate , where ()= 1r/ 2. Thi s divergence

implies that the metr ic indu ces a conformal st ructure on the bound ary (a metri c up

to conformal trasformations) instead of a uniqu e metric. To obta in a metr ic, we can

consider types of positive functions D called "defining functions" in AdS space, which

have a first-order zero and a non-vanishing gradient on th e bound ary. By multipl ying

the AdS metric by D2 and evaluat ing it at the bound ary, we have

(1.10)

Th e choice of defining function is not uniqu e. Any non-vanishing function e"

on a manifold can be used to obta in a new defining function D' = DeW where w is

a function with no zeros or poles at the boundar y. So the bulk metri c in the AdS
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spacet ime yields a metr ic up to conformal t ran sform ati ons on th e bound ary.

To introduce th e notion of an asympto tically AdS space time, we first need to

const ruct th e unph ysical spacet ime which helps us to see the real and imp ort an t prop­

erty of asymptot ically AdS space time [22]. Workin g with unph ysical spacet ime (M, g)

saves us from some difficulties of working with physical space t ime. For inst ance, 8M

as a conformal bound ary of M is at spat ial infini ty and it is not part of M , but 8M

is defined as a finite value of space like coordina te, when 0 = O. Using 8M, we avoid

infinit e limit s th at appea r if we at tac h 8M to M (such as a diverging of physical

metri c). In the unph ysical space time, 0 cancels th e divergencies insurin g that g l'v is

finit e and well-defined anywhere on M and 8M.

For a physical space t ime (M, g) to be asymptotically AdS, th ere should be an

unph ysical spacet ime (M,g) where M is a manifold and 8M is a bound ary, such th at

M has M as an int erior manifold with a diffeomorphi sm from M to M - 8M. Th e

second requir ement is to introduce a "defining funct ion" O(x), with the properti es

menti oned before, such tha t gl'v = 0 2gl' v ' Th e third requir ement is having a Weyl

tensor 6~I'(1v on M, const ructe d from gl' v with two properties: First, r3-d6~I'(1v is

smoot h on M and secondly, 6~I'(1v vanishes on 8M. Th e fourth and th e last requir e­

ment to const ruct the unph ysical space time is th at th e topology of the bound ary 8M
be R x Sd - I.

By workin g in th e unph ysical framework , the third requir ement mentioned above

implies tha t R1lV for asy mpto t ically AdS spacet ime should approach th e maximally

symmetric form of (1.8) at specia l infinit y. However , the Riemann tensor has nonzero

Weyl tensor on the interior space M with the form ,

(1.11)
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Th erefore, the first thr ee reqirements imply that (M ,g) is locally asymptotic to AdS,

where th e four th one ensures that the spacet ime is also asymptotically AdS, globally.

Th e canonical example of a non-tri vial asymptot ically ant i-de Sit ter space is the

Kottl er (or Schwarzschild-Ant i de Sitt er) solution which we will work with in this

thesis.

2 ( 2m r
2

) 2 ( 2m r
2

) - 1 2 2 2ds = - 1 - - + - dt + 1 - - + - dr + r dD .r [2 r [2
(1.12)

Here dD2 is a metri c on a unit 2-sphere and t coordina te ranges from -00 ~ to ~ 00

as r goes from r+ to 00. r+ is the largest root of r - 2m + r 3/ [2 = O.

In the next session we consider this solut ion in more detail.

1.3 Schwarzschild black hol es

In 1916, Schwarzschild found the solut ion to Einste in 's equat ions for a spherically

symmet ric gravita t ional field in vacuum which has the following form [3]

Here G is Newton's gravitat ional consta nt which has different form in each dimension

[19], and m is the total mass of the gravita tional source which produ ces the field.

Here black hole play the role of the gravitat ional source.

T his solut ion is independent of the time coordinate and determin ed by a single

parameter m. The effect of m on t he form of the spacet ime metri c would be clear if

we st udy the asymptot ic form of the metri c as r -; 00. Far from the gravitat ional
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source, spacet ime approa ches the flat Minkowski spacet ime with metr ic

(1.14)

Now, if we use the weak field approximation to show the effect of gravitat ional field

far from the cente r of gravity, the tt component of the metr ic can be writt en as

gtt = - (1 + 2rjJ / c2) , where rjJ = - Gm /r is the Newtonian gravitational potential. By

comparing our result with metric (1.14), m can be described as the mass of the source

of gravity.

1.3.1 Schwarzschild black hol e in asymptotic flat and AdS

spacet imes

By using the Penrose diagrams", we can compare the causal struct ure for a

Schwarzschild black hole in two different spacet imes, asymptotically flat and AdS

[33].

In Figure 1.3(a), the st ruct ure of a Schwarzschild black hole in an asymptotically

flat spacetime is shown. In th is diagram, futur e and past null infinity are indicat ed

by ,J±, futur e and past timelike infinity by h , and spacelike infinity is shown as

10 • These indicate where light like, t imelike, and spacelike world lines sta rt and end,

respectively. In this figure th e wordline of an observer is shown. It sta rt s at past

timelike infinity L and cont inue to pass the event horizon at r = r+ where no light

rays can be t ransmitt ed to fut ure null infinity :1+ and the infalling observer falls

towards the spacet ime singularity at r = O. After crossing the horizon, the observer

can not send any information out of the black hole. Opp osit e of black holes, there

4Penrose diagrams are two dimensional diagra ms of conformally tr ansformed space t imes. By
choosing the specific conformal factor , the infinitc spacctimcis mappcdontoa finitc rcgion in thcsc
diagrams sllch thatthe light-conestruct ureofthe or iginalspaceti me remains t he same.
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are mathematically defined objects, called whit e holes into which no information can

enter. Whi te holes are part of the extension of the spacet ime diagram into the past .

The Penrose diagram for a Schwarzschild black hole in an asymptotic AdS space­

time is shown in Figure 1.3(b). Here fut ure and past null infinities J ±, and spacelike

infinity 10 are equal and extended as a line rather than a single point. Consequentely,

as is indicated with green arrows in Figure 1.3(b), a single light ray can reach infinity,

bounce back, and return to its origin in a finite t ime to.

Apart from geometrical differences, black holes in asymptotic ally AdS space,

like the ones in asymptotically flat space, have thermodynamic prop erti es such as a

characterist ic temperat ure and an int rinsic entropy equal to A / 4 where A is the area

of the event horizon in Planck units [70][24]. One of the import ant differences between

these two spaces is that when the size of the black hole in anti-de Sitt er space is of

the order of the charac teristic radius of the AdS space , its temperat ure is minimum

and when it becomes larger its red-shifted temperature measur ed at infinity becomes

greater. This featur e shows t hat these black holes have positive specific heat and can

be in sta ble equilibrium with thermal radiation at a fixed temperat ure.

At the quantum level, when AdS black holes emit Hawking radiat ion, the gravi­

tat ional pot ent ial of the asymptot ically AdS background keeps the Hawking radiat ion

from escaping to infinity and reflect it back towards the black hole. Thus we can

consider pur e AdS black holes in equilibrium with their surroundings (in cont rast

to asymptot ically flat spacetime where a black hole must be enclosed in a box with

perfect ly reflect ive walls to be in equilibrium) .
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universe

(a) Schwarzschild black hole in asymptot ically flat spacet ime.

(b) Schwarzschild black hole in asymptot ically AdS spactime.

Figure 1.3: Th e figures illust ra te the Penrose diagrams for black holes in spacet imes
wit h different asymptotic behaviour. Here light rays prop agat e along 45° lines , see
yellow dashed lines as emit ted from an observer falling into the black hole.[33]
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1.4 AdS-Schwarzshild black holes

As noted, the four dimensional AdS-S chwarzschiid metric has the form

where th e radial function fo(r) is

fo(r ) = 1 - ~ + ~.

(1.15)

(1.16)

From fo(r ) = 0, we can find th e event horizon of the black hole at rs . In

the definition of fo(r), I is the curvature radius of AdS space, and the cosmological

consta nt has the form A = - 3/12. If m = 0 the metric reduces to that of four-

dimensional anti-de Sitt er spacet ime, but for m > 0 the metr ic describes an eterna l

black hole with an event horizon at r = r «. T he parameter m is proporti onal to the

mass of the black hole and can be writ ten in terms of the horizon radius rs as

m=rs+~ . (1.17)

Th e Hawking tempera tur e of an AdSc Schwarzschiid black hole, which can be

obta ined from 10(7') is given by [24]

(1.18)

Th e minimum of Hawking tempera ture, which is of the order of the characte rist ic

energy scale of the AdS background , is ../3/21r1. For any temperatur e value higher

than the minimum , there are two different values of r s and for each value, there are

two bran ches of AdS-Schwarzschiid black holes: large black holes with rs > 1/ ../3, and
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small black holes with r, < l /,J3.

T here are a few important length scales. Since we work in classical geometry,

the AdS length l is assumed to be large compared with any fundamental length scale

such as th e st ring length, i.e. l >> ls. Th e other length is an intermediat e length

scale la, which is comparable with the dimension of macroscopic observers. Since the

geometry var ies on the lengt h scale of l or larger and the conditions of having th e

local thermal equilibrium are valid at the scale of la, the range of variation of l is

ls « lo « l. (1.19)

In this thesis, our focus is on large AcIS-S chwarzschilcI black holes in the very large

limit where

(1.20)

Th ere are a few universal feat ures in this limit ; for example, th e scalar invariant

R Rabed 12 ( 2 m
2

)
abed = F+ ~' (1.21)

This value is obt ained for t he AdS-S chwarzschild metric (1.16). Now by insertin g

T = T s and taking the limit of a very large black hole, we have

(1.22)

which is independent of th e black hole mass in the m >> l limit . It means that for

different but very large black hole masses, there are th e same AdS scale curvat ure

for th e near-horizon region. However, this universal curva ture is equal to an 0 (1)
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multiple of the vacuum value, not to the curvature of empty AdS space with the same

cosmological constant. [24]



Chapter 2

String theory and AdS/CFT

correspondence

2.1 String theor y in a glance

Over the last thirty years , st ring theory has been the leadin g candidate for a

unified theory of all forces in natur e [19]. In str ing theory, all the known fundamental

forces and part icles are unified in a deep and significant way, such that it can be

accepted as an impressive potential example of a complete theory of physics. St ring

theory is a quantum theory, and because it includes gravitat ion, it is a quantum

theory of gravity. One of the featur es that makes the st ring theory uniqu e is the lack

of adjusta ble dimensionless param eters. In the Stand ard Model of par ticle physics,

there are about twenty adjusta ble parameters. However, in string theory , there is

one dimensionful param eter which is the strin g length Is that is taken to be of the

order of 10- 18 cm. Thi s value is th e typical size of st rings.

Anoth er featur e of the st ring theory which makes it unique is th e fact that the

dimensionality of spacet ime is fixed, and the numb er of spacetime dimensions derives

19
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from th e calculation. In comparison, in the Stand ard Model, the numb er of dimensions

of our physical spacet ime, which is four , is part of the information used to build the

th eory. Althou gh, ten dimensions are obta ined from the calculat ion in str ing theory

instead of four, it is likely th at th e remaining six extra dimensions are compact ified on

a very small space th at can escape detection in experiments done with low energies.

However, for st ring theory to be correct , some theoretical mechanism must be found

to confirm th at the observable spacet ime has four dimensions.

Discovery of the cosmic st rings! could be a confirmat ion of string th eory [25].

Th ey might be detected throu gh gravita t ional lensing, or more indirectly via th e de-

tection of gravita t ional waves. Till now, there has been no evidence of their existence,

bu t searches for them still cont inue.

Strin g theory can be categorized into five different groups, which are called type

I, with open and closed strings; types IIA and IIB , with only closed st rings; and two

theories of heterotic 8 0(32) and heterotic Es x Es, which are consist of superstr ings

and bosonic st rings. Each of these categories arises as a special case of an eleven­

dimensional theory, called Mvth eory", and some of th em are equivalent because of the

dualities have been found between th em.

2.1.1 D-brane and p-brane

In st ring theory, a hypersurface, or higher-dimensional membr ane called a D - brane

is a real, physical object. For example, our four-dim ensional universe is part of

a higher-dimensional D-brane with th e ext ra dimensions wrapped into a compact

space. D-branes can be classified by th eir spatia l dimension, which is ind icat ed by a

1Hypothetical one-dimensional topological solito ns which might be formed in early universe dur­
ingthe symmetry breaking phase tr ansit ion.

21n the words of Edward Wit ten from the Insti tu te of Advanced Stud y in Princeton, "M stan ds
for Magic, Mystery or Membran e, according to taste ." [181
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Figure 2.1: The world-sheets traced out by an open string (left) and by a closed string
(right).[19]

numb er comes after the D so th at they are writt en as Dp-branes. Herc, the let ter D

sta nds for Dirichlet. Th e endpoints of the open st rings must remain at tached to the

D-branes and tho se ones whose ends are fixed, sat isfy Dirichlet bound ary condit ions

[19]. It is wort h mentionin g that not all the extended objects in st ring theory are

D-branes. Strin gs, for example, are l-br anes because they are extended objects with

one spatia l dimension , but they are not Dl -branes. Also, a O-brane is some kind of

particl e which tr aces out a one-dimensional world-line in spacetim e, like a st ring th at

can trace out a two-dimensional surface in spacet ime called the world-sheet . If the

st ring is closed, it will tr ace out a tub e and if it is open, th e traced out surface will

be a st rip. Th ese different surfaces are shown in spacet ime diagram of Figure 2.1.

Th e lowest vibrational modes of the open st rings that are st reched between

the D-branes could represent the particl es of th e Stand ard Model, such as gaugc

bosons and the matt er particl es. However, none of the vibrati ons of the classical

relati vistic st ring correspond to the particl e of gravity, but the quantum vibrati ons of
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Figure 2.2: Two parallel D2- branes and four types of strings that this configuration sup­
ports. Here x l and x2 are longitudinal coordinates, and x3 is a normal coordinate.[19]

the relativistic st ring are able to describe them.

Two Dp- bran es can coincide in space and be on top of each other or be sepa-

rat ed . Figure 2.2 shows two parallel, separated D2-branes. There are four different

classes of st rings that this configura t ion of parallel Dp- branes support . Th e first two

classes are made up of open str ings that begin and end on the same D- bran e, either

bra ne one or brane two. The other two classes are called stretched strings which sta rt

on one brane and end on the other as it is shown in Figure 2.2. Th e orientatio n of

the last two classes of str ings are opposite of each other, which can be an import ant

issue in different problems [191.

In 1995, Polchinski proved that D-branes and extremal p-branes are the same

objects . It means tha t the dynamical endpoints of open st rings correspond to ex-

tremal solutions of supergrav ity. To prove it , one needs to compute p-brane charges

and tensions of the endpoints of open strings, and shows that they match with the
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supergravity solut ions [31].

As was mentioned before, D - bra nes are dynamical walls on which str ings can

end. One of the fascinatin g featur es of D - branes is that the gauge theories natur ally

live on their world volume [29]. For example, the massless spect ru m of open st rings

living on a Dp-brane corresponds to a maximally supersym met ric SU(l ) gauge the­

ory in p+ 1 dimensions. In genera l, by considering N parallel D -bran es, we can have

N 2 different species of open st rings because they can begin and end on any of the

D -branes. In this case, we can find the maximally supersymmet ric SU(N ) gauge

theory where N 2 is th e dimension of the adjoint represent ation of SU(N) . In 3+ 1

dimensions, there is N = 8 supersymetr y where D - brane background breaks 1/ 2

of the supersymmetry . Th erefore, for the case of p = 3, there is N = 4 supersym­

metri c Yang-Mills with SU(N) gauge group on the 4-dimensional worldvolume of the

D3-branes.

Ext remal p-branes are solutio ns of supergravity, which is the low energy limit

of str ing theory. Th e ext remal p-branes have Q = M where Q is th e charge and M is

the tension of the p-brane [33]. Thi s equality sa tura tes the bound IQI ::; M known as

"BPS bound ". In a supersymmet ric theory sat urat ion of this bound means that half of

th e supersym metry is broken , bu t it does not affect th e sta bility of the configuration.

In gravity, this bound comes from the "no naked singularity " t heorems and the fact

that for Q > M, a naked singularity appears . Thu s, the extremal p- bran es are

solut ions of supergravity with horizons at r = 0 (singular ity= horizon) and also have

N = 4 supersymmetry in d = 4.

Anot her notion related to p-branes which we can introdu ce here is th e not ion of

black brane. In four dimensions, the only localized (do not grow at infinity) ext remal

p-bra nes are the black holes, bu t in higher dimensions, we can have black-hole like
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objects called "black p-branes" with extended horizons along p spatia l dimensions

that are localized in space [31]. Th e quantum properties of black holes, provided

by st ring theory can be mainly derived from D-branes. Stro minger and Vafa [34]

derived the Bekenstein-Hawking entro py microscopically for the first t ime by counting

the degeneracy of D- brane states corresponding to microstates of a five-dimensional

class of extre mal black holes. Th is entro py is given by 5 = A/4, which relates the

quantum degrees of freedom of the black hole to its surface, rather than its volume.

Thi s relation is the basis of the holograph ic principle, proposed by 't Hooft [35] and

Susskind [36]. Thi s princip le which is analogous to the common basis of holography,

says that quant um gravity in a given volume should be described by a theory on the

bound ary of that volume.

2.2 AdS/eFT correspondence

Th e AdS/ CFT correspondence proposed by Maldacena in late 1997 is one of the

most important developments following from st udies of D- branes [38][47]. Genera lly,

the AdS/ CFT correspondence is a realisat ion of the holographic principle, since it

suggests a equivalency bet ween a conformal field theory" (CFT), which is the theory

without gravity, in d-dimensions and a gravity theory in d + l -dirnensional anti de­

Sitte r space (AdS). T he first hint that show this should be possible is that bot h such

theories have the sallie symmet ry group, 50(2, d). Th e origina l conject ure states that

type IIB st ring theory on Ad55 x 55, which is a Hl-dimcnsional? theory of gravity

is dual to N = 4 5U(N) Super-Yang-Mills, a 4-dimensional gauge theory, defined

on R x 53, see for example [39]. Th is conjecture is expecte d to be st rong enough to

3 A field t heory 011 d-dimensional Minkwoski space th at is invaria nt und er the conformal group.
· Onc might think thc difference in dimension is a problem, bu t it is not since tho ext ra dimensions

on the grav ity side correspondes to the parti cle degrees of freedom on the gauge side.
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; eventhorizon

. curvarure singulanry

Figur e 2.3: An illustration of where N = 4 SYl\I lives on AdSs space. The four dimensions
of the gauge theory (t, x) live on the boundary of the Ad.S« space at I ' = 00.[331

also describe the ot her cases of st ring theory with AdS (or "a lmost AdS") bound ary

condit ions. In Figure 2.3, it is shown that the gauge theory lives on the 4-dimensional

bounda ry of the 5-dimensiona l AdSs space, located at r = 00, and du al gravity theory

lives in the bulk of the AdSs space where r < 00.

T he second hint that shows the duality is possible is that the coupling consta nts

on each side can be matched inversely to each other, up to a sca le order [33], T his

mean s t hat non-pertu rbat ive resul ts in the st rong coupling limit of one theory can

be obtained from pertu rbative calculat ions in the weak coupling limit of the ot her.

However , it is often easier to first do the calc ulation s in the gravity side and use the

resul ts to learn about the conformal field th eory tha n vice-versa . Th at is because we

st ill do not have a complete dictionary of maps between two th eories which mean s we

most ly have the maps from gravity side to the field theory side, not vice-versa . Th e

summary of the duality relations can be found in Table 2.1.
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Table 2.1: Summary of the corresponding elements that appear in the fluid-gravity
duality [33].

Bulk Boundar y
Ad S/ eFT Type lIB st ring theory on N = 4 SYM on 5 x R

asymptotically Ad55 x 5 5 or with a Poincare patch
R3 x R I

Effective d escription Einst ein equat ion with Relat ivistic fluid dynamics
cosmological consta nt

Kn own st a t ic solu t ions Black hole or black brane Static configura tion of a
in AdS perfect fluid

P er turbation Non-uniformly evolving Dissipat ive fluid flow
black branes

One of the most understood examples of this duality is the correspondence be­

tween the gravita tiona l limit of Type IIB st ring theory on Ad55 x 5 5 space, and the

hydr odynamic limit of the nongravitat ional N = 4 Super-Yang-Mills gauge theory

defined on the 4-dimensional conformal bound ary of Ad55 [33][40][19].

Str ing theory has two dimensionless para meters, the one is the rati o between the

curvature scale for the st ring background" L , and the st ring length 18
6

. T his ra tio

needs to be large to reduce the stringy effects such that the gravitat ional descripti on of

str ing theory remains valid. Th e other dimensionless parameter is the st ring coupling

constant g." which measures the stri ng interaction strength relevant to string split ting

and joining. This consta nt is assumed to be small at the same time to reduce quantum

effects.

~ = *» 1 and s, « 1

5Curva ture radius of Ad5 5 and 55'
6Itsetsthe size of fluctuat ions of thest ring worldsheet.

(2.1)
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In the field theory side there are two parameters: the numb er of colours N which

specifies th e rank of gauge group SU(N), and th e Yang-Mills coupling g. In planar

limit (large N) , the 't Hooft coupling X = IN is contro lling the perturbat ion theory.

Th e equivalence relatio n between the fundamental parameters of both sides in their

limit s is given by the following correspondence,

(2.2)

where c/ controls the corrections associated to the finite size of th e st ring as compared

to the size of the spacet ime it propagates in . Therefore, to suppress the st ringy effets

in the bulk and quantum effects on th e bound ary, we need to have the following limits.

where ,\ -+ 00 and N -+ 00.

,\ » 1 and ~ « 1, (2.3)

Moreover, to describe the conformal field th eory on the bound ary hydrodynam-

ically, we consider the local energy density such that we can associate a local tern-

prat ure T and mean free path lmf p ~ l /T to each point. Th e scale of th e field

fluctu ations, R, needs to be large in comparison with the mean free path lmf p « R,

such that th e first order terms in th e derivative expansion of th e st ress-energy tensor

is small compared to the zeroth order ter m,

(2.4)

where it is assumed that U V ~ 0 (1), and !7IW ~ 1/ R.

Using the parameter matching which will be described in the following sect ion,
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it is possible to write these relations in terms of AdS parameters,

R »lmfp ~ r+ »L, (2.5)

which shows the correspondence between the regime of validity of fluid dynamics and

the theory of large AdS black holes.

More genera lly, AdS/ CFT duality can have several possible versions which mainly

are distingui shed by thr ee different limits[31]: Th e validit y of th e weakest version is

only at large 9sN limit , when there is supergravity as a low energy approximation

of st ring theory in the background. Th ere might be a number of disagreements if

we go to the full strin g theory, far from the limit of 9sN . A stronger version of the

AdS/ CFT duality is valid at any finite 9sN , such th at N -> 00 and 9s -> o. It means

that a.' correc tions, which sat isfies the relation a.' / R2 = 1/ ,,;g;N, agree, but under

these condit ions, 9s correct ions might not . In its stro ngest version, the duality is

valid at any 9s and N , even if calculat ions could only be done in certai n limits. Since

many examples of a.' and 9s correct ions were found that agree between AdS and CFT

theories, the stro ngest version is expected to be true.

2.3 Stress-energy tensor and Fluid dynamics

In the AdS/ CFT correspondence, on the gauge theory side, at high temperatur es,

fluid dynamics equat ions should be able to describe the long-wavelength fluctu ations

about the equilibrium sta tes [41]. Further, T"v should be const rained to represent con­

formal fluid equat ions. Th en th e st ress-energy tensor of th e theory can be expanded

in terms of the derivatives of local temperatur e T and local fluid velocity u,""

T '" = p(T )-r + (€(T) + p(T ))u" uV + O(Du,aT) . (2.6)
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Here Too represents the energy density, T;; the pressures in each direction, T;j

the shear st resses, and TOi the momentum density. In this regime, there are number

of field theories which are differentiat ed by the coefficients appearing in th e derivat ive

expansion of their stress tensors. Th e zeroth order coefficients are energy density and

pressure, while th e first order ones are shear viscosity and bulk viscosity.

The st ress-energy tensor describes a fluid of proper density €(XIJ )' scalar pressure

P(x lJ ) , and fluid 4-velocity ll V (x lJ ) , which is normalised to ll vll
v = -1 and also sat isfies

ll vaUv laxlJ = O. Here, 'YIJV is thr ee-dimensional metri c on the bound ary of AdS space.

If we define a projection operator [51][41],

(2.7)

so that ulJPIJV= 0, we can write the st ress-energy tensor of the perfect fluid as

(2.8)

Thi s tensor doesn 't ta ke into account any of dissipative processes like viscosity and

thermal conduct ion [391. For st ress-energy tensor to describe non-perfect fluid, it

needs a few extra terms to describe the viscosity of th e fluid. Th en, the expression of

the tensor is

(2.9)

where IIab is a symmetric and tran sverse tensor , which can be expanded in terms of

the derivativ es of u",

II/tv = II~~ + II~~ + ... (2.10)
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Thi s tensor sat isfies u vITIlV = 0 and for conformal fluids it is also tr aceless gllv ITIlV = 0

[39][51].

In addit ion, p and P are related by an equation of state which und er specific

conditions governs the perfect fluid , and it has the form

P = P (p,T) (2.11)

Flu id dynamics equa t ions tha t describ e th e long-wavelength perturb ations aro und the

large AdS black holes, can be writt en as the local conserva tion equat ions of the st ress

tensor as follows,

(2.12)

By using a non-flat metr ic, thi s equa tion is replaced by its covariant form

(2.13)

In order to have the conformal invari ance of the relativisti c Navier-Sto kes equa­

tion, it is necessary for the fluid stress tensor to be tr aceless and conformally invari an t

under a Weyl tra nsformat ion, which means th e trace of Til l-' must vanish , thus the

equat ion of sta te for a perfect fluid in d-di rnensions redu ces to [30]

P = d ~ 1· (2.14)



Chapter 3

Perturbation theory of black holes

The perturbati on theory of black holes and related to pics have been a focus of

many researchers, durin g the last severa l decades [43]. Thi s theory has attracted the

most at tent ion in astrophyiscal st udies where it has been used to study how black

holes interact with their environment and absorb or emit gravitat ional waves. A

par ticular applicat ion comes in the st udy of quasinormal modes (QNMs) . Th ese are

highly damp ed single-frequency oscilat ions which provide a uniqu e gravitat ional wave

signat ure for black holes and may be observed in the futur e.

Another focal point of interest for the perturb ation theory of black holes is

found in st ring theory. One of the recent theories arise from st ring theory is the

relati on between physics in th e (A)dS space and t he conformal field theory on its

boundary. For example, as reviewed in last chapter, black hole physics in AdS can

be describ ed by stro ngly coupled gauge theories at finite temperatur e (the Hawking

temperat ure of th e black hole) on the bound ary of space and vice versa. Strin g theory,

predicted the existence of ext ra higher dimensions where gravity could propagate in,

and quasinormal modes could be a way to detect these dimensions, thu s the fut ure

observat ion of gravitat ional waves can prove the existence of ext ra dimensions and

31
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provide support for stri ng theory [43].

T his chapter contains an overview of th e gravitational perturbat ions of black

holes in four space-t ime dimensions with emphasis on the AdS4 Schwarzschild back­

ground. Before applying the perturbation th eory of black holes to AdS Schwarzschild

metric , it is beneficial to start with th e case of Schwarzschild metr ic which has been

done by Regge and Wheeler [44] and separat ely by Edelst ein and Vishveshwara in

1957 [45] and extended by Zerilli [46],[64]. A summ ary of their method , followed in

the next section, is taken main ly from their articles.

3.1 Perturbation of the Schwarzschild black hol es

A small perturbation h,.tV is added to the background Schwarzschild metri c gl'~ '

Th e perturbed metric has the form

(3.1)

Th e contrac ted Ricci tensor, calculated from the perturbed form of the metri c can be

expressed in the form

(3.2)

To derive an expression for JRI'~ ' we use the Palatini equation [44]

(3.3)

where th e semicolons represent covariant different iation with respect to th e back-
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ground metr ic g/lV, and we use the symbol

(3.4)

Putt ing (3.4) in (3.3), we get the final exression for 8R/lv

which we will also use to find the field equa tions of AdS-Schwarzschiid black holes in

th e next sect ion.

Th e unp erturb ed AdS-S chwarzschiid spacet ime (its metr ic is given by (1.16)) is

a vacuum solution of Einst ein equatio ns of the form R/lv = Ag/lv ' So the equat ion

8R/lv = A8g/lv is the perturbation equat ion. If 8R/lv = 0 as in the Schwarzschild

spacet ime perturbation , it means that the perturb ed space is empty of mat ter or

distr ibuted energy. To solve the per turb ed field equat ions, the meth od of separat ion

of variables was first used by Regge and Wheeler. The angular dependence of the field

equat ions comes from the spherical harm onics which are part of tensor harmonics.

By separat ing the t ime dependence part , these equations form a syste m of ordinary

differential equa tions with r as the only variable. By choosing a par ticular gauge

(working in a specific coordinate systems) which here is Regge-Wh eeler gauge, the

solutions can take simpler forms which are tr ansverse and trace less. By changing the

gauge, we make a small change in coordinates as follows,

X~ew = x~ld + ~v , (3.6)



34

which causes the metric pert urbati on to change as

(3.7)

3.1.1 Perturbed metric, axial and polar compone nts

Since Schwarzschild background metri c is spherically symmetric, h"v can be

canonically split into two classes of axial and poler perturbations. Thi s decompo­

sit ion , before applying the gauge transformation gives th e odd parit y as

- ho(t ,r)(8js in08cp)l[M

- hl (t , r )(8j sin 08cp)l[M

h2(t, r )(82j sin0808cp- cos08 jsi n28cp)l[M

! h2(t,r) (82js in 08cp8cp + cos08 j8 0

-sin08 2j8 (8 O)l[M

and the even parity as

ho(t , r )(8 j sin0 80)l[M

hl (t , r )(8 j sin080)l[M

- h2(t , r )(sin 082j808:p

- cos08j 8cp)l[M

(3.8)

(1-2rnjr) Ho(t ,r) l[M HI(t , r )l[M ho(t, r )(8 j80)l[M ho(t , r )(8 j8cp)l[M

Ih (t , r) l[M (1 - 2rnjr) - 1H2(t , r) l[M hl (t , r)(8 j8 0)l[M hI(t , r)(8 j8 cp)l[M

rlI«r,t)

h~~l = +G( t, r)(82 jD02)Il[M

r2G(t ,r)(82j808cp r2[I«t ,r ) sin20

-cos08js in ODcp)l[M +G(t , r ))(D2j8cp2

+sin Ocos08 j80)Il[M

where sym represent symmetric components . As we mentioned before, the angular

functions are the tensor harm onics. During the calculations, there is no need to work

with a specific M since any choice of L and M (M = - L, - L + 1, ...L ) result in the

same rad ial equat ion [61]. On this account , for simplicity we work with M = awhich
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has the advantage th at ip will completely disapp ear from the calculations.

By using the gauge transformation, we can find the canonical form of odd and

even waves. The gauge vector ~Q th at simplifies th e odd waves has th e form

~r 0,

~o A(t , r ) co", a/arprtM 9 001,

~'" A(t , r ) c'Po a/ a0rtM 9",,,,.

(3.10)

(3.11)

and the gauge transformation for simplifying the even waves can be writt en in the

form

~t Mo(t,r )rtM s«.

~r MI(t,r )rtM 9rT> (3. 12)

~o M (t ,r ) a/a 0rtM 9 00 ,

e; M (t ,r ) 1/ sin2 0a/ arprt M
9",,,,2.

In th e gauge transform ation for the odd waves, the radi al function A can be

adjusted to cancel the rad ial factor h2 , and in the case of even waves the functions

Mo, l'vh, and M will be adjusted to annul the factors G, ho, and hi. Th e final canonical

form of odd and even perturb ation s are given, respectively as follows,

l{o ise qua l tozerosince bychoosing M= O, }[Mw ill be independentof<p.
2{" is equal to zero for the same reason th at {o was zero in the case of odd waves.



o 0 :°
0

:: ] exp(-iwt)[sin O(8/8 I1)]P1(cOSO);

sym 0

[

( 1-1~)Ho (1 _;l)- l H2 : : ]

h/IV = 0 r 2J( 0 exp(-iwt) P[(cosO).

o r 2 J( sin2 11

Here Pt(cos(}) is the Legendre polynomial with angular momentum I.
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(3.13)

(3.14)

Regge and Wheeler showed that the odd parity pert urbed metric components

could be reconstru cted from a master scalar function, called the Regge-Wh eeler func-

t ion. Further, Zerilli derived a master scalar and the equa tion that it obeyed for

even parity components ; his function is called the Zerilli function . Since these scalars

contain all the physical information of the system, they are called the master scalars

[48]. Later, Moncrief showed th at these two scalar funct ions are gauge invariant [49].

In 2001, master equations for the Schwarzschild-de Sit ter and Schwarzschild-anti-de

Sitt er background s were published in two papers by Cardoso and Lemos [73][74]. Re­

cently, it was also extended to the higher dimensional maximally symmetric black

holes by Kodama and Ishibashi [75].
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3.1.2 Ricci ten sor perturbations, Odd and Ev en component s

Now, we can find th e first-order perturb ati ons of the Ricci tensor. The odd-par ity

equat ions are

[
1 2m " 1 2m , iw 2msu; "2(1 - --:;:- )ho + "2 iw(1 - --:;:- )hl + -;:-(1 - --:;:- )hl

+ '!!!::. ho - L(L + 1) hO] sin O8/8 0PL e- iwt (3.15)
r3 2r 2

[
1 2m I ' iw 2m I 1 22m) I

oRr<p - "2 iw(l - --:;:-)- ho - -;:-(1 - --:;:-) - ho - "2 w (1 - --:;:-- hi

1 2m 2m L(L + 1) ] . - iwt
- ;:2( l - --:;:-) h l -(--;:J)hl+~hl slIl08/8 0h e (3.16)

[
1 2m 112m ,
- iw(l - -t ho+ - (1- - )hl2 r 2 r

+ ~hl] (COS 08/ 80 - sin O82/8 02)PL e- iwt

and the Even-parity equat ions are

[
,iw iw 2m 2m I

- iwI< + - I< - - (- )(1 - - )- I<
r 2 r2 r

_ ~ H2 + L(L+ 1) HI]P L(COSO) e- iwt
r 2r2

(3.17)

(3.18)

- [~ (I( + H2) + ~ (1 - '!!!::. )H; + ~HI] 8oPd cosO) e- iwt (3.19)
2 2 r r



[
iW 2m 1 1 , 1 , 3m -1'

- -(1--)- H1+ -Ho - -f( ----Ho2 r 2 2 4m1' -21'2

m- 1' ]+ -4 2 2H2 ooh(cos O)e- iwt

tnr >- r
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(3.20)

[
1 2 2 . 3m 2 . 2m ,

8R tt - 2"wH2+ W K + zW(-;::2 - ~) Hl -zw(1---:;:-)H1

_ ~( 1 - ~)2H~ _ (m - 2i;;m - 1') H~ _ ~(1- ~)H;

+ !.!!:.2(1- ~)I( + ~2( 1- ~)L(L + l )Ho]Pd COSO) e- iwt (3.21)
r r 21' r

[
2m l ' m 2m 2

- iw(l- - t H + iw(- (l- -)- HIr 1 1'2 r

- ~w2( 1 - ~)-2H2+ L(~1'; 1)(1 - ~)- I H2+ ~H~ - «"

+ ~(1 - ~)-lH~ + (~(1 _ ~)-l + ~) H;

(
m 2m) 1 2) ,] iw t- -(1 - - - +- f( h(cosO)e-
1'2 r r

(3.22)



6Roo [
1 2( 2m 1 2 1 2 2m "- --w I--t r J( + iwrH 1 --r (l - - )J(
2 r 2 r

+ ~r(l - '9- )H~ + ~r(l - '9-) H; + (3m - 2r)J('

+ H2 -J( +~L(L +l)J(]Pdcos(}) e-iwt

+ [~Ho-~H2]aJPL (COS(}) e- iwt
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(3.23)

3.2 Perturbation of the Anti de-Sitter black hole s

By following the process of finding the components of Ricci tensor perturbation

for Schwarzschild black holes, we can also obta in the equations govern ing the pertur -

bation s for AdS-Schwarzschild black holes, which is th e main goal of thi s sect ion.

3.2.1 Perturbed metric, axial and pol ar comp one nts

By having the spherically symmetric AdS-Schwarzschiid background metri c, the

metri c perturbation can be divided in to two groups of axial and polar perturbati ons.

Before the gauge tr ansformation , the axial perturbation metri c has the same form as

odd perturbations of the Schwarzschild metr ic, but the polar perturb ati on have two

different metr ic elements as compared with the Schwarzschild case:

(1 - ~ +~) Ho}[M Hj}[M ho(8/ 88)}[ M

lh}[M (1 - ~ + ~rj H2 }[ M ltj (8 / 88)}[M

r[K

+G(8 2/882))}[M

r2G(82/888<p

1to(8/8<p )}[ M

1tl (8 / 8<p)}[M

3.24)

- cos 88/ sin 88<p)}[M +G(8 2/8<p2

+sin 0cos88/80)] }[M



40

The gauge transformation to find the canonical form of the axial perturb ations

is also the same as Schwarzschild one, but it is different in t and r components for the

polar perturbati ons as follows:

NIo(t ,r) }[M gu

~r MI (t ,1,) }[M grT>

~o NI( t, r ) a/aO}[Mgoo,

~<p NI( t, r) 1/ sirr' Oa/a'{J}[Mg <p<p.

(3.25)

where gu = - (1 - ~ +~) and grr = (1 - ~ +~rl , according to the AdS black

hole metr ic (see eq.(1.16)) . The functions £10 , NIl , and £1will be modified to cancel

the factors 6, ho, and hi' The final canonical form of axial perturb at ions is th e same

as Schwarzschild 's and the polar perturb ations has the form

[
( l _ ~_+ ~ ) HO HI, - 1 _

h~v = HI ( 1 - ~ + 7.-) H 2

o 0 r 2 j(

o 0

_ : ] exp( -iwt)ll(coslI) .(3 .26)

r 2[(sin211

3.2 .2 Ricci tensor perturbations, Odd and Even compone nts

The first-order perturbati ons of the Ricci tensor can be represented as follows.:'

Odd-parit y:

3Asa prototy pccxamp!c, findthc dcta ilcdcalculat ionofliRr ¢ inthe appendix A.
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8Rt¢ [ (~ + ~) ho+ ( (r ~22m) + ~) iwhl + ~ (1 -~+ ~) h~

+~ (1 -~ +~) iwh~ - ~L(L + l )ho] sin e 80Pdcose) e- iw t(3.27)

[
1 ( 2m r2)-I. , 1 ( 2m 1,2)-1 .

- - 1 - - + - zwho+ - 1 - - + - zwho2 r [2 r r [2

1 ( 2m r2)-12 1+ - 1 - - + - w h l --L(L+ 1)h l2 r [2 2r2

+ (~ +~) ] sin e 80Pdcos e) e- iw t (3.28 )

[
1 ( 2m r

2)-1 1 ( 2m r
2

) ,
8Ro<p 2' 1 - --;:-+r iwho+ 2' 1 - --;:-+r hI

+ (~ + ~) hI] (cose 80 - sin e 8~) Pd cos e) e- iwt (3.29)

Even-par ity:

[

, [2 3m[2
- iwI< - (1,3 + [2(r _ 2m)) iwI<+ r(r 3+ [2(1' _ 2m ))iwI<

1 L(L +1 ) 3 ] ( ) iwt+ -:;:iwH2-~HI +rHI h cose e- (3.30)
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(3.31)

oRro [- ~ (1 -~ + ~rl iwH1 - ~H~+ ~ [{'

_ [2(3m - r) H
o
+ W(m-r) - 21'3) H2]

21'(1'3+ f2(- 2m + 1')) 21'(1'3+ [2( - 2m + 1'))

X ooPdcos ()) e- iwt (3.32)
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[
12r3 2J( H r(r3+ 12(-2m +r)) J("

2(r3+12(- 2m+r)) w - zrw 1+ 212

_ (r
3+ 1

2(;;m + r)) (H~ + H;) + 6r
3+ 1 2 (;~m + 4r) J(' _ 1

2
~23r3 H2+ J(

- ~L(L +1)J(] Pd cos O) e- iwt + [~ (H2 - Ho)] O~PL(COSO) e- iwt (3.35)

3.2.3 Large m limit of th e perturbations , m » I

In the limit where the mass of the black hole is much larger compared with the

radius of the AdS spacet ime, the perturb ation equat ions take the following form in

both odd and even groups, respecti vely

Odd-parity:

15 Rt¢ [~ho + ~iwh l + ~ (~) (h~ + iwh'l) - ~L(L + l )ho]

x sin OooPd cosO)e- iwt (3.36)
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JRr~ [ - ~ (~rl iwh~ + (~rl iwho+ ~ (~rl w2hl

- ~L(L+ l )hl + ~hl] sinO ooh(eos O)e- iwt (3.37)

JRo~ [~(~rl iwho+ ~ (~) h; + ~hl ]
x (cos O 00 - sinO 05) PL(eosO)e- iwt (3.38)

Eve n-par ity:

[

, [2 3m [2
- iwK - (r3+ L2 (r _ 2m)) iwK + r(r3+ L2(r_ 2m)) iwK

1 L(L +l ) 3 ] ( ) iwt+ ;iwH2-~HI+[iHI PL eosO e- (3 .39)

JUrO [ - ~ (~) - I iwH1 _ ~ H~ + 1/ 2[('

+ !...-3 Ho - ~H2] ooPt{eos O)e- iwt (3.41)
2r r
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[ (
r 2) - 1 . '2. [2L(L +1 )sn; - p zwH1- t zwH1+ - 2-r4- H2

1 (r2)-2 2 H~ J(" 3 r

+ "2 p w H2+ 2 + 2 - "2 rH2

- ~r2H~ + ~ J(I] h (cos()) e- iw t (3.42)

[
[2 2 ' r4

" r 3
r r 3r3

,
bRoo - '2W J( - iruili , + 2fi.J( - 2fi.(Ho+ H2) + 12J(

- ~H2+(J(- ~ L(L + 1) J()] PdCOS ()) e- iwt

+ [~ (H2 - Ho)] ()~ PL(COS()) e- iwt (3.43)

[
1 2 2 2r 1r2

, r4
"sn; - "2 W H2-W J( + riwH1+ "2p H1+ W Ho

+ ¥:-H~ +4H; - ~J(' _ L(~;; 1) Ho

+ ~HO +~H2] Pd cosO) e- iwt (3.44)

3.3 Stress-energy tensor

The energy-momentum tensor of the field th eory on the bound ary of th e AdS

space is expressed in terms of the intrinsic and extrinsic geometry of this bound ary
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at infinity [51], as

(3.45)

Here, G ab is the Einstein tensor of the induced three-dimensional metr ic "lab,

(3.46)

and J( is the t race of the extrinsic curvature

(3.47)

We st art the computat ion, by first using ADM-formalism [50] to decompose the metric

9 on M in the form

(3.48)

using appropriately chosen (N, N a) funct ions, where N is called a lapse function and

N" is called a shif t. aMr is a three-dimensional surface at fixed value of r which is

the boundary of four-dimensional region Mr. "lab is a finite value indu ced metric on

a1'v!r. A relation among the bulk and boundary metri cs is

Fdcl9 = N Fd&r. (3.49)

In reference [51] the components of energy-momentum tensor on the bound ary of

AdS4 space are derived as I ment ion its summary here.

For AdS4 black holes, in the standard coordinate syst em, the funct ions N and
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and the indu ced metri c on th e boundary aMT is

[

- f(1') 0 0 ]

lab = 0 r 2 0

o 0 r2sin2e

Th e second fundamenta l form and its trace are

[

-j'(r) 0 0 ]

«; = If(;) 00 0

-rsin2e

and

J( = - 2r~(r!'(r) +4 f(r)) .

(3.50)

(3.51)

(3.52)

(3.53)

Now, by following the meth od that has been used in reference [51], we have the

following expressions for energy- momentum tensor on aNIT •

f (1' ) ( t: 2 r: rrr::\)--:;:2 y-i\. +2r y - '3 - 2rVf (r ) ,

r ( r, ) 2F§-- f (r ) + - f (r) -2r --,[fW 2 3

sin2 eToo.

and the rest of th e components are zero.

(3.54)
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3.3 .1 Axial perturbations

The induced thr ee-dimensional metri c on EJMr is a perturbation of the st ati c

metri c

'Yub = 'Y~~) + r ~ ~ ho~r ) 1sin O EJoPdcos O) e- iwt
. (3.55)

ho(r ) 0 0

Th e complete energy-momentum tensor of th e bound ary theory on EJMr assumes

th e following form in terms of th e metr ic coefficients ho(r) and h1( r )4. Th e holograghic

renormalizat ion is the meth od has been used to derive these forms of perturbation

tensor components

(3.56)

where

[ (~1M + JJ!l - 2 G+ G(L- l) (L+2) ) ho(r )
r 21M V-"3 V-A 2r2

- ~1M(h~ (r ) + iWh1(r) )] e- iwt sin OEJoh(cosO),

. : ( M h1(r ) + iw G ho(r ) ) e- iwt
2 VJ\,) V-A f (r )

x sin O[L(L + l )Pd cosO) + 2coW 8oPdcos O)]. (3.57)

4Find their forrns in Appendi x A.3.
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3.3.2 Polar perturbations

For polar perturbati ons, the induced metri c on the bound ary 8M r has the form

[
( l _ ~)HO 0

(0)
l'ab =l'ab + 0 1'2J(

o 0

: j exp(- iwt )Pt(cos B).

1'2 J( sin2 B

(3.58)

Th e expression for st ress tensor polar perturbations is

[

st; oTtO
(0)

Tab = Tab + 0710 oToo

o 0

0 1o ,

st.;

(3.59)

where the components of the tensor, in terms of the metric functions Ho(1'),Hj(1')

K
207tt ! (1')[ UJIW -2g - ~R) Ho(1' ) - JIWI<'(1')

+ (L - i1'~L + 2) R J((1')] e-iwt80Pd cos B),

5Find th eir forms in App end ix A.3.
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3 .3 .3 Covariant der ivative of i5TJ.Lv

Now that we have found the variat ion of the stress tensor on the boundary of

the space, it is expecte d for the covariant derivat ive of this variation to be zero since
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they are act ua lly our fluid dynamics equat ions as we mentioned in chapter 2.3.

Using the Gauss-Codacci relation [5], on the bound ary we expect t he st ress-energy

tensor to sat isfy the equat ion

(3.61)

where G is defined in equat ion (3.46).

IfJ-L= t ,

(3.62)

since each term is identically zero.

For J-L = B, the same thing happ ens, so

(3.63)

and for J-L = ip ; we have

(oT\wV Dt oT<pt + DO0 T<po + D <P 0 T<p<p

ot/(GtOT<pt)

+ 000 (GO oT<po - rt<p OT<po )

+ o<p<p (-2r~<p OTo<p) . (3.64)

By using equat ion (3.60), and summat ion over u, following a few pages of calculat ion
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we have

DV(ST<pv) sc.;«,

DV(ST<pv) - SG'I'vnv = O. (3.65)

Th e result s we have found here is for th e odd perturbation s. However, the same

process can be done to check if the even perturbati ons of th e st ress tensor would

satisfy equat ion (3.60), as we expect .

3.4 Velocity, energy density and pre ssure of a per-

turbed fluid

Rewrit ing eq. (2.9) the general form of the stress-energy tensor of a non-perfect

fluid is

(3.66)

Here, n- is the dissipative part of the stress-energy tensor which has traceless par t ,

nll V and non-vanishin g t race part , II , writt en as [53]

(3.67)

For the traceless part (visco-elast ic st ress) [54] we have

n'" = -r na!"' + (2nd order) + (higher order gradients) , (3.68)

where TJis the shear viscosity of th e fluid and or" is th e fluid shear tensor [55]expressed
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as follows,

In this equat ion () == \ll'ul' is the expansion and ({LV) shows the symmetric tra nsverse

t raceless part of the definition .

Before cont inuing to find the energy density and pressure of the perturbed fluid,

we summarize th e Weyl transformation s of th e various observables of conformal fluids

in Table 3.1. Th e notati on is from [54]. Furth er, we can define an invariant quanti ty

under conformal transformation using the temperatur e and chemical potential, which

is Vi = 11;iT = iii. To prot ect the metri c from diverging on the bound ary, the

conformal factor is chosen to be e'P = ~.

Table 3.1: Conformal transformation of the various observables in fluid mechanics.

Observable Before transformation After transformation
Spacetime metri c gl'V e-~¢gI'V

Four-velocity ul' e iiI'

Proj ection tensor P IW e 2¢ p 1W

Shear tensor or" e -~¢(yI'V

Energy-momentum tensor Tl'v e-\<H 2)¢T I' V

Energy density € e -d¢f:

Pressure P e -d¢ p

Shear viscosity T) e -\a- - lj<pij

Fluid temp eratur e T e T

Chemical potent ials of the fluid II i e -<prLi
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3.4 .1 Odd perturbations of fluid

To find th e perturbed energy density E from equation (3.65), we use the Landau-

Lifshitz condit ion [53][55]

(3.70)

Th e matri x form of this equat ion is

[

ut + out 1r Ttt 0 OTt'P ] r r tt(u
t
+ out) + Ort'P0U'P ]

oue 0 Too 8To'P = -(E + &) rOOouo (3.71)

ou'P oTt'P oTo'P T'P'P r'P'P0u'P+ or'Pt(ut + out)

Th erefore, by neglectin g th e terms of 0 (02 ) , we will have a set of three equat ions and

an extra normalization condit ion of r y"er)u(per )u(per) = - 1 to obta in four unknown

variables of out, ou'P, ouo and 0(. Th e result s are as follows:

(3.72)

which after conformal tra nsformation by choosing a suita ble relati on from Table 3.1

and normalization is equal to - 1. For B-component of th e velocity we have

(3.73)

and

(3.74)
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which afte r conforma l transform ation and norm alizati on takes the form [51]

6u<P = 6~ (L - l)( L + 2) (l2iwlo - h ) sin oaoPL (cos 0) e- iwt (3.75)

Also, th e corres ponding energy density E(per) remains un changed and equa l to the E in

the unp erturbed black hole case , since 6E is zero. So it has th e form

2 2m
r: E= f2 (3.76)

Furtherm ore, we can find th e pr essur e of per turbed fluid from equa tion (3.65) such

th at

where I is th e 3 x 3 identi ty matri x. Th e mat rix form of th e above equa t ion is

a -~+ ut6u<P 1r Ttt a
~ a a T99

~(U<P)2 sr; sn;

= (I' + ' P)r:
Th erefore, by solving the above set of equa t ions, we have

6'Ft<p

6To<p

T<p<p

a a
10 (3.78)

a 1

(3.79)

After conforma l t ra nsforma t ion, following th e Ta ble 3.1 (e- 3<p = ~), by takin g the
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limit of m » l, 8P goes to zero and we have

p (per ) p (unper )

P + 8P
m

;,2j2' (3.80)

Th e result is equal to P = ~ which is the pressure of unp ertur bed case. Thu s, the

perturbed fluid in odd case has a non-zero velocity in ip direction which means that the

fluid moves sinusoidally in azimuthal direction while going forward in t ime. However,

the <pcomponent of velocity progresses in tim e periodically because of the real of e- iw l

in the definition of 1/'" which is coswt .

3.4.2 Ev en perturbations of fluid

Generally, for even perturbations, we follow the same process as odd pertur ­

bations. The matrix form of the the Landau-Lif shitz condition (eq.(3.69)) has the

form

[

u' + ou' j[T" + sr; oT,o 0 1 [ 1''' (U' + ou' ) + 0I""'OU'" 1
ouO oTo, Too+ oToo 0 = -«+ Of) 1'000Uo 3.81)

ou'" 0 0 T",,,,+ oT",,,, 1'",,,,OU'"+ 01'",,(u' + ou')

As before, we drop the terms of O(82) to have a set of three equat ions. T hese equat ions

along with the normalization condition are sufficient to find four unkn own variables

of 8ul , Su" , 8uo and 8€. For t-component of velocity we obta in

(3.82)

which after conformal transformation by choosing a suitable relat ion from Tab le 3.1
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and normalization is equal to - 1. For rp-component of the velocity we have

bu'P= O,

and

b1/ utbTw
- (eyoo+ (b'Yoo+ Too)

which after conformal t ransformat ion and normalization takes the form [51]

(3.83)

(3.84)

Juo = ~~~2 (L _ 1)(L + 2)JoDoPt{ cosB) e- iwt (3.85)

Different from odd perturbations, here be of- 0 and the form of the corresponding

energy density ( per) is

( per ) c + b(

2m bTtt
12 - 'Ytt + J'Ytt

=} ,,2 (per ) ¥; _~(R - iwJo)e- iwtpt{cos B) (3.86)

where R is the funct ion of w [51]

R = -~ - (iw + 12(L _ ~~L+ 2) )Jo. (3.8 7)

In the large m limit , the growt h of the first term is faster than th e ot her terms which

are par t of be. Th erefore, in this limit

(3 .88)
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We can also find the pressure of perturbed fluid from equation (3.76). Th e matrix

form of this equat ion is

[

_ 1 + (u'j2
"Ytt + h tt

u'tSuO

o

1

"Yoo+ fJ"yoo
o

By solving the above set of equations, we have

P +bP = ~:::~~::
;!; (~+~-7)+~bTOO

l +I«r)Pd cosO)e- iwt
(3.90)

where bToo is taken from eq.(1.59) and I« r ) is defined in eq.(A.lO). Also in thi s case,

in the large III limit , perturb ed P is equal to the one before per turb ation .

So far , we saw that the perturbed fluid in even case has a non-zero velocity in

o direction. Thi s component of velocity change periodically in time because of its

dependence on cos0 as the real part of e- iwt in the definition of buo.



Chapter 4

Discussion

In this thesis I sta rted with a brief introdu ction to Anti de-Sitt er space and

AdS-Schwarzschiid black holes which are the solut ions of the Einstein equa tion with

a negative cosmological consta nt . Then in the second chapter, the famous noti on of

gauge/gravity duality was intr oduced and the featur es of the correspondence between

Anti-deSit ter space and conformal field t heory on th e bound ary of th e space were

discussed. In this chapter, a few aspects of th e st ring th eory which were required to

und erstand the correspondence were also reviewed.

Chapter three was basically the realisation of the main goals of this thesis.

Our first goal was considering th e large m limit of gravita t ional perturbati ons of

AdS Schwarzschild black holes in four space-time dimensions and studying their rela­

tion with the perturbati ons of induced thr ee dimensional st ress-energy tensor on the

bound ary of space . To this aim, following th e meth od of Regge and Wheeler [44], first

we found the perturbed form of the metri c of AdS space which can be canonically

split into two classes of axial and polar perturbati ons. Th en, by finding th e covariant

derivative of the st ress tensor variation and deriving the large mass limit of Ricci

59
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tensor variation , we checked if they sat isfy the equat ion

(4.1)

which they did . We expect this relation to be tru e since the covariant derivativ e of

th e st ress tensor variation is act ua lly our fluid dynamics equat ion.

Furth er, as our second goal, we intended to understand that how the large m

limit of stress- energy tensor

(4.2)

describes a fluid, and its variation result s in fluid dynamics equa tions on the bound ary

of AdS4 spacetim e and in parti cular why in small m limit, the str ess-energy tensor does

not describ e a fluid. In this version of th e th esis, part of these goals are accomplished

and th e remaining part s are classified as futur e works.

So far , we considered the general form of the st ress-energy tensor of a non-perfect

fluid and found the velocity l LIl, energy density e and pressure P of th e perturbed fluid

for both cases of odd and even perturbations. Th en we used these results to predict

the behavior of perturbed fluid as it progressed in tim e. At this point we need to

study the behavior of viscosity 17 of th e perturbed fluid in the limit of m >> l to

have all th e information needed to relate the perturbation of fluid on the bound ary

of AdS4 spacetime to the perturbation of black holes in the bulk of spacetim e. Thi s

is the part which is not included in this version of the thesis and can be referred to

as a futur e work.



Appendix A

Ricci tensor variation calculations

A.I 5Rn p as a prototype example

se.; ~ [gOU (- h<pu;r;o + hr<p;u;o + hCtU ;r;<p - hro;o;u)]

~ [I t(- h<pt;r;t + hr<p;t;t + htt;r;<p - hrt;<p;t )]

+ ~ [9TT (-h<pr;r;r + hr<p;r;r + hrr;r;<p - hrr;<p;r)]

+ ~ [l O(- h<po;r;o+ hr<p;o;o+ hoo;r;<p - hro;<p;O)]

+ ~ [9<P<P (- h<p<p;r;<p + hr<p;<p;<p + h<p<p;r;<p - hr<p;<p;<p )]

61
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By using the following thr ee equat ions! ,

h<pt;O h<pt.o - r O<ph"t - r~th<po

h",t.o;r h",t.o.r - r~",h" t . o - r~th",o.o - r~oh"'t ,(3 (A.I)

the calculat ions can be cont inued

~gtt [ _ (h<pt,r - r~<ph" t - r~/t<po ) ; t

+ (hr<p,t - r frh",p - r t<phro);t

+ (htt •r - r~th"t - r~thto ) ;<p

- (hrt.<p - r~h"t - r~thrO ) ; t]

+ ~grr [ _ (hrr.r - r~rh"r - r~rhro ) ; <p

- (hrr.<p - r~h"r - r~rhro ) ;r]

+ ~lO [ - (h<pO.r - r~<ph"o - r~oh<po ) ; o

+ (hr'P.o - r orh,,'P- r~'Phro ) ; o

+ (hoo.r - r~oh"o - r~ohoo ) ; 'P

- (hro.<p - r~rh"o - r~ohro ) ; o ]

la , c5.{}, m, n , sare arbit ra ry dllmmy indices.



63

~gtt [ - (h<pt ,r;t - \ltr~<pha t - \lthatr~<p - \ltr~th<p6 - r~t\lth<p6 )

+ (hr<p,t;t - \ltr~rha<p - \ltha<pr~r - \ltr~<phrJ - r~<p\l th<pJ)

+ (htt,r;<p - \l <pr~that - \l <p ha t r~t - \l <pr~thtJ - r~t\l<p htJ)

- (hrt,<p;t - \ltr~rhat - \lthatr~r - \ltr~thr<p - r~t\lthr<p)]

+ ~gTT [(h<pt,r;t - \ltr~<phat - \lthatr~<p - \ltr~th<pJ - r~t\lth<pJ )

- (hrr,<p;r - \lrr~rhar - \lrharr~r - \lrr~rhrJ - r~\lrhrJ)]

+ ~lO [- (h<po,r;o - \lor~<phao - \lohaor~<p - \lor~oh<pJ - r~o\loh<pJ )

+ (hr<p,o;o- \lorOrha<p - \l oha<prOr - \lor~<phrJ - r~<p\loh rJ)

+ (hoo,r;<p - \l <pr~ohao - \l<phaor~o - \l <pr~o hoJ - r~\l<phoJ)

- 0~~ -\l~~~ -\l~~~ -\l~~~ - ~\l~~
(A.2)

Following the Einstein 's convention, repeat ed index implies a summation over all

possible values of the index. After summat ion over (t, r,e,<p ) as our index values and

cancelling terms, we have

+ gTTh<pr ar r~r - grT~<pr~<p hr<p - ~r~<p riioh<pr

- ~riior~rh<pr +~hr<p,o ,o - ~r~<p hr<p ,o
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By using the following equalit ies

[
1 8 . 8 1 82

] M
sinO 8(j(sm 08(j) + sin20 a:;Ji =-L(L + 1)YL (O,cp)

=*~(sinO:Oh(cos O)) = - L(L + 1)[sin 0:OPdcos 0)]

= - L(L + 1):O(sinOh(cosO)) (A.3)

and insetrin g th e AdS metr ic components and Christoffel symbols (see appendix A.3),

the final resul t will be

[
1( 2m r

2)-1 , 1( 2m r
2)-1- - 1 - - + - uob. + - 1 - - + - iwho2 r FOr r F

1 ( 2m r2)-12 1+ - 1-- + - w hl- - L(L+ 1)hl
2 r F 2r2

+ (~ + ~)] sin O8oh(cosO) e- iwt (AA)

For ta king a limit m » l , we choose r = P r EH; p » 1 where EH sta nds for Event

Horizon, and l = urn ; p « 1. By applying these limits, oRr<p will take the following

form

sn.; [_ ~ (~) - I iwh~ + (~) - I iwho+ ~ (~) - I w2 hI

- ~L(L + 1)hl + ~hl] sin O8oPdc os O)e- iwt (A.5)
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A.2 Metric functions

Following Regge and Wheeler [44], the linear gravitat ional perturb ations JRI-'I1 =

AJgl-'1Iabout the Schwarzschild background , for axial perturb ations, yield a coupled

system of first order differenti al equat ions for the unkn own functions ho(r ) and h)(r ).

Thi s syste m consist of two equat ions of ((}<p)- and (r<p)- components. Th e asymp­

tot ic expa nsion of the metr ic functions ho(r ) and h)(r ) near spat ial infinity are given

in all genera lity by [51]

ho(r ) (a:or 2 + (3or+ 'Yo + ~ + ..) e- iwr
. ,

(~ + (3) r2 + ...) e- iwr
. , (A .6)

where r, is a tortoise coordina te and its relat ion to r is

dr
dr; = f (r )

For AdS4 black holes, r, ranges from -00 up to the consta nt

(A.7)

/'" (I (2r + r,y + a
2 2r" - 6m [ 2r + r" '7r]) (A 8)

r' =4(rh- 3m) rhog~+ ar,,+6marctan-a--2 .

The coefficients of the metri c function ho(r ) and h)(r ) are

(A.D)

where coefficients 10 and I) depend on w [51].
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These coefficients are determined up to the order relevant for the computation of the

energy-momentum tensor for axial and polar perturbations of AdS4 black holes.

For polar pert urbatio ns the (t1.)- (rB)- and (tB)-components of the pertur ba-

tion form a coupled syste m of first order differential equations for the three unknown

functions Ho(r ),H )(r ) and /«(1'). The other components of the perturb ation either

yield second order equat ions or else c5 R il l-' vanishes identically.

Th e asymptot ic expansion of the metric functions Ho(r ),H )(r ) and /«(1') ta ke

the following form at spat ial infinity,

Ho(r)

/«(1') (A.lO)
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The coefficients in Ho(r ) are

(A.H)

Ao

Eo

Co

(
4mA w

2
) 2A

2i(ws + w) - (L _ l)(L + 2) + -:;;;A(L - l )(L + 2) Jo - 3 J1,

(
iw 12m

2A
)

(L - l )(L + 1) 1 + -:;;;A[1 - (L _ l )2(L + 2)2] Jo

(L -1)(L+2) ((L _1) (L 2) ~-~)J
+ 6m + + A (L- 1)(L+2) I ,

( - (L - L~~~ + 2) (L (L + l )(L(L + 1) - 4) + ¥(L - l )(L + 2))

6m 6w
2

6iW)
+ (L _1)(L+2)(L(L +1 )-4 +j\) +j\ Jo

(
6W2 iw

+ L(L+ 1) -4+ j\ + 2mA(L-1)(L +2)

6w
2

)x [(L - 1)(L+2) + j\] J1

(A.12)

where coefficients Jo and J1 depend on w.

Likewise, the coefficients in the asymptotic expansion of H1(r ) are given by

(
2mA ) A

iW-(L _ 1)(L+ 2) JO - 3"J1,

(
12m

2
A ) ( 2mA )

L(L + 1) - 1 - (L-1 )2(L +2 )2 Jo - iw+ (L - 1)(L+2) J1,

(
L(L+1)-4 iw 24m2A )

3 Tn(L - 1)(L+2) + 21\[L( L + 1) + 2 - (L -1)2(L+2) 2] Jo

1 ( 6iw 2mA )+ 2 L(L +1)-4 -j\ [iw+(L_1 )(L +2) ] J1.



(A. 13)
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Finally, the coefficients in the asymptotic expansion of I« r ) arc

R = - A, B=~A,

A = - ~ ( L(L + 1) - (L _ 21~~~1\+ 2)2) Jo+ ( iW+ (L _ ~~~ + 1)) J1,

1 ( 12w2 24m21\
C = - 41\ L(L + l )[L(L + 1) - A - (L _ 1)2(L + 2)2]

. 24iwm )
+ 12zwm [1- (L _ l )2(L + 2)2] Jo

(
L(L + 1) iw 2 12iwm )

+ m( L- 1)(L+2) + i\ [1 - 6w 1\+ (L- 1)(L+2) ] J1•
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A .3 Christoffel symbols for AdS-Schwarzschild met-

ric

By using Math emat ica, we can easily find th e Christoffel symbols for AdS-

Schwarzschild black holes. The non-zero components are as follows:

r; rn ( _~ + 1'-2) _ 2~2 + 1'([2[; 1'2)

r:r
rn[2+ 1'3

1'(-2 rnl2+ [21'+ 1'3 )

r~r
rn[2+ 1'3

1'(- 2rnl2+l21' +1'3 )

r~o ~

r~'P

roo
1'3

2rn- 1'-p:

r~'P cot B

r~'P
(2rn[2- 1'W +1'2))s in2B

[2

r~'P - cos Bsin B (A.14)
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