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Abst ra c:t

In th is thesis a rheorerical model descri bing t he limit ing Bowst ruc ture in the cen tre

of a fully nonlinear . flat-cent red inte rnal solitary wave in a Iluid of finite depth H has

been developed using the conjugate Bow concept , T h.. conju gate Bow solution giv.-s

the vert ica l st ruct ure of the isopycnal displ aceme nt and t he tiuid velocit y at the cent re

of a flat-centred inte rnal solitary wave as well as the propaga t ion speed. of the wave.

T he mode- l intern al solitary waves are calcula ted in a cont inuously st ra t ified fluid

given by hype rbolic tangent density profiles with one or two pyc noclines. Solut ions

obt ained with a nd withou t the Boussinesq appro ximation are compared . T he non­

Boussinesq result s are almost ident ical with th e Bouss inesq resu lt s if the surface

to bot tom de nsity difference is -l% or less unless the pycnocli nes ha ve' a. thickness

comparable to the total fluid dep th .

fo r de nsity st rat ificatio ns wit h a single pycnocline . conj ugate flow solutions ar e

obt ained when the pycnocli ne is not too close to rhe bou nda ry. T he size of t he valid

solut ion ra nge dec reases as t he thickness of pycnocline inc reases. Wh ee t he Bonsai­

nesq appro xim at ion is ap plied. the magn itu de of the ex t reme isopycn al displacement

grows as the centre of rhe pycnocline in t he undis t urbed reg ion moves away from the

mid-dep th: the wave propagat ion speed increases as the cent re of pycnocline' moves

toward the mid-dep th . [f the thickness of t he pycnocline is greater than S.4% of t he

fluid dep th. t he parallel shea r flow in the centre of a flat -centred internal solitary

wave is linearly st able. As t he pycnocline gets narrower the flow becomes potentially



unst able ever an increasing range of pycnoc llne heights .

For st ra t ifications with two pycnoc lines multi ple conj ugate 60w solut ions may

exist. Wbeu the two pycnoclines are eq uidistan t from t he mid-depth. one abo ve an d

one below. the re are two solu t ions if the pycnoclines ar e well separated and not too

close to the boundaries. [f the pycnoc lines are close toge ther there are no solut ions if

the Boussinesq approximati on is made an d one solu t ion if the approximat ion is not

made. If the two pycnoclines are not equ idistant from the mid-dept h there can be

O. 1. 2. or :J solut ions. Flat-centred wave can exist only if th ere is a conj ugate flow

solut ion. but the converse is not true. Having a conjugate flow solution does not

necessa rily mean that there is a Hat-cen tred interna l solita ry wave.
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Chapter 1

Introduction

Internal waves occur in dens ity st ratifie d fluids due to gravitational restoring for ces

ac ting 00 ve rti ca lly dis pla ced Buid . They are ub iq u ito us features of the ocean an d

atmosp here..\ 0 internal solit a ry wave ( ISWj is a speci al kind of internal wav... It is a

vertically t ra pped wa ve pro pag ating in the horizo ntal that ar ises because of a ba lance

betwee n linea r d ispersive and nonl inea r processes in th e fluid (Osbu rn.. a nd Bur ch.

I% Oj. Iurer nal solitary waves have many importan t pro pert ies. ODt' of which is tbat

they propagate with perm anent shapes and speeds . T he phase speed of the nonlinear

internal solitary wave exceeds t he associated. linear long wave phase speed co. and

larger solit ary waves t ravel faste r th an smalle r ones . In the past severa l decad es .

great ad vances have been achieved in the general t heory of nonlinear internal solita ry

waves. including the developm en t of an asy mptotic th eory.

T h.. gene rat ion of intern al solitary waves strongly depends on the geographi c a rea



and local conditions. .\Iost are generated by t ida l ffow ever top ography. Iu a den sity

st ra t ified sea t he ti dal motion over a ridge or slope con tinually dist urbs the pycnoc line .

thus creat ing an internal tide which tra vels away from the area of generation . [f the

internal tide is sufficient ly large nonlinear effect s ca use wave steepening and then

dispersive effects resu lt in the format ion of a Dumber of short er higher frequency

wa ves including interna l sol itar y waves.

Oceanic observa t io ns of inte rn al solitary waves have often ba- n repo rted . The

obse rvations of solitary waves were first accom plished primarily in inland seas and

lakes or in the shallow region s of a shel f area (Os trovs ky and Stepanyants. 19::19 ). in

sha llow water regions. the st rat ificat ion oftell has a pron oun ced two-layer cha racter:

the lower layer may be eithe r thic ker or th inner than th e upp er o ne. lf the uppe r layer

is thinner (thicker ) th e inte rnal solita ry wave is a depress ion [ele vation) [ Keuleg an.

19.5:) . ln the 19i 05. Apel er at. (19i iia. 19, .')b l repo rted how a subsurface wave ca n

bit'observed from a sa tellite because sur face waves interact with the surface cu rrent of

internal waves which product'S bands of choppy o r calm water. T he in situ measure­

men ts in the coas tal region ot! Xew York showed th at th e maximum ver tical isopyc nal

displacements were about I·,) m. T hey argued t ha t the waves WNe generated by se mi­

d iurnal tidal flow at t he shelf break and ap pea red as shoreward propagat ing pac kets

of solit ary-like waves :W- 2.,) krn apart . Sandstrom an d EUiot t (1984) observed sol ita ry

waves generated by th e in te rna l semi-diurnal tid e on the shelf edge of the Atl an t ic

coas t off ~ova Scotia. Canada. In each tida l cycle on t he average two solitary waves



sha ped like Korteweg-de Vries ( Kd V) soli ton s could be d isti nguished. ln some cases

t here were- fou r solitary wa ves of th is ryp e . T he solitary waves were moving from th e

ope-n sea toward tbe coas t at a speed of about I m/s. Cummi ns and Lejll ced (198-1)

presented t he experimental obse rvations of internal so lit ary waves in the Davis Strait

on the Atl a nt ic roast of nort hern Canada. Thei r data showed abo ut 20 solitary waves

shaped. like h:dV soliton s . T he characre risric lengt h scale a t half of the maximum

amplitude value of the int ern a l so lit ary waves was 250-275 m . Based on th e sa tellite

imag e data. Fu an d Holt ( 1984) re port ed th at t here ma y be 20 int er nal solitary waves

genera ted in the Gulf of Ca lifornia in O Ol" t ida l cycl e. Xumerica! simulations ha ve

show n that inte rnal waves observed near th e Georges Bank were generated by st rong

tid a l 60w across the ba nk edge ( La mb. (994 ). ~a~ovitsyn and Peliucvsky ( 19:-1:; )

obse rved. int e rnal solitary waves in the shelf zone of the Okhotsk Sea from a vessel

moored. a t a depth of 70 musi ng th ree separa te ly dist ributed eemperarure sensors 10

m long. T heir experiments were carried. ou t for 10 da ys in the summer of 19/i6 with a

m axi mum coatiuucus cycle of measurements of .''j~ hours. T he in tern al solit a ry waves

were observed to move from t ilt" open sea toward the coas t. A total of 4.') iute rual

waves were reg istered. with a typical am plitude o f .') - 10 m. acd a spatial scale of 100

- 400 m. Hal pern (19i l e.b]. Haury et al. (19 i9). and Chereskin (t98:JI also reported.

t he obse rvat ions of ioternal soli ta ry waves in .\Iassa.chuse t t s Bay.

Internal so lita ry waves not only exist in shallow water. bu t a lso in deep wate rs up

to hun dr eds of kilomet res from the shelf IOserovsky and Ste panyants. (989). Osbor ne



and Bu rch (L9~OI obse rved large am plit ude. long inte rn a l so litary waves in the An­

daman Sea wh ich has a depth o( L09:l m . They found that th e internal solitary waves

occurred in peekers o f rank-ordered waves. t he lar gest lead ing the rest . The pack..rs

OCCUlTed every 12 hours and 26 minutes . whi ch indic a ted a tidal origin for tht." int..r ­

nal solitary wa ves . A~I er a l. ( 1 9~5) and Liu et al . ( 198-'l) repo n ed inte rnal soli t ary

waves in the Sulu Sea. After anal yzing th e obse rvarions an d the dynamics of inte rnal

solitary waves from t heir bi rth to decay at the coas tal she lf. both Apel er al. 119&'l)

and Li u et al. ( 1985) point out that t ida l waves produce an ini t ial per tu rbation which

gr adually becom es steeper . forms a n nodula r bore . an d the n deco mposes into a group

of about six so litary waves . T his res ult is ident ical to tb a t of Os borne an d Burch

( 1980 ). Pingree and .\-Iar de ll (1985) foun d internal soli t a ry waves in th ... Celt ic S..a,

T heir obse rva tio ns showed t bat internal sol ita ry waves ap pear both on t he season a l

an d on t he main permanent pycnocline . Their prcpegaeioc velocities vary from l mls

to 2..'l m /s : t hey a ft" esse nt ially depress ions of a pycnocl ine wit h amplitudes of 20- 100

m and more-, Th ...ir ("h" rart...r; ~ t i ... If> ngt h,,,var y hf>tw_ n :.)(1() an ri :JOOO m .

.\-laD.y theor ies ha ve been developed in the study of ve rti ca lly t rap pe-d hori zont ally

propagating intern al waves . Th e mos t wide ly used theo ry is weakly nonlinear theory

which assumes t hat the amplitude of t he intern a l wave is small compared to the

wate r de pth and that the wave is long compared to a vert ica l length sca le. Three

differ ent theo ries have been developed according to the re lat ive sizes of the fluid

depth H. a len gt h sca le h meas uring the thickness of pyc nocli ne. and wavelength L



[ Koo p ~'-: Butler. 1913 1). Eacb theory yields a differen t evolut ion equat ion to descr ibe

rbe temp oral an d horizoota l st ruct ure of the wave. Shall ow-water theory [ Ben jam in.

1966: Benney. 1966) has H j L « 1 an d hl H = 0(1) and results in th e Kcr teweg­

de Vries (Kd V) equa tio n. Deep warer tbeo ry has HIL » I and hl L « I and

results in the Benjam in-Guo eq uation (Benjamio . 196i : Dna . 19i5). T he finite dept h

tbeory bas hi L « I an d hi H « 1 which results in th e Josep h eq uatio n [J oseph ,

19ii : Ku bota et al., 19;8 ). T hese equat ions a re the results of first-order theory and

t hey a ll ha ve exact solit ary .....ave solutions . T hese solut ions are appro ximate solutio ns

which repr esent t nt-dnmi nant terms in an asyrnp ecric expansion for t he corresponding

exact solut ion of the gove rn ing equation s..Alter nati vely, large amp litud e long waves

in a wea k st ra ti ficati on can be t rea ted by simi lar asy mptot ic methods ( Benney. 19i8.

1981 ). In wea kly nonlinea r theo ries the principal small paramet er t used in th e

asy mpt ot ic an alysis is a measu re of t he wave am plitu de and is relat ed to rbe rat io

of the vertical to horizontal lengt h scales of the waves . T he ba lance of the no nlinear

an d dis pe rsive term s givf'S t he inte rnal solitary wa.."t' solutio ns.

T he t heory of intern al solita ry waves was init iated by Keulegan (19.'):l) an d Long

( 19::,6). Th ey consid ered a t wo-layer fluid wit h a. sm all discont inuity in deesiry an d

point ed out t hat the interfaci al d isplacemen t is posit ive / n.-gat iVt' if the IIppt"r layer

is thicker/ t hinne r t han t he (ower layer . Benj ami n ( 1966) an d Benney ( IY66 ) derived

th e Kd V eq uation by keep ing th e first order te rms in the asymptot ic ex pa nsio n an d

obta ined a solit ary wave so lut ion. It pred icts tbat solitary waves tra vel faster t han



linear long waves . and that as the wave amp litude increases the waves become na r­

rower. The lat t er pred ict ion is genera lly t rue only if the waves are not too large

(Lamb. (99 7). T he valid ity of th e t heory decre ases as either the wave amplitude

increases or the wavelength decreases.

Observations of inte rnal solit ary waves s bow that modera te or lar ge amplit udes

a re quite common. For these cases t he modified Kd V equation and generalized KdV

eq uat ion have been deri ved by including the seco nd-order term s of the asympto t ic

expa nsion (Lee and Beard sley. 1974: :\lil es. 1979. 198 1: Gear and G rimshaw. 198:1:

Helfrich et al. I ~JS4 ; Helfrich and Melvi lle. L986: Lamb and Yau. 1996 ) . The inclusion

of second-o rder term s significant ly im proves t he agreement between t he theory and

expe rime nts.

T he weakly non linear theories are based on the assum pt ion that the am plitude

of a wave is small compared to the fluid dep th . T hese theor ies a re approximations

to the fully nonlinear theo ry. In eppl ica rions. the weakly nonl inear th eo ries a rt"often

..xt ra polAt....-l into Amr lir ,.d.. r-gim .....wh..~ rh.. assumptions unde r which the y are de­

ri....ed are violat ed . Alt boug h it is remarkable th at t he predicti ons of wea kly non linea r

th eories for some Dow quanti ties agree qu ite favora bly with experim ent al data even

for mode rat ely la rge wave am plitu des. som e notable discrepancies . bo t h quanti t ativ e

and qualitat ive . exist for other im portant tlow qu anti t ies (Tung et al.. 198:1). for

example. weakly nonlinear theories pred ict that the propagat ion speed of a solita ry

wave is linearly rela ted to the wave amp litude. Th e experime nta l data of Davis and



Acrivos ( 196.) showed a defin it e and su bstantial slo wer rate of inc re ase with a m pli­

t ude as it passed t he weak ly nonl inear regime. Also . weakl y nonl inear th eor ies p red ict

t hat th e wa velen gt h of th e solitary wave decreases as wave am plitude incre ases. while

st udi es o f fully nonli ne ar solit ary waves sho w that for some strarificarions both tbe

amplitude an d t he waveleugtb increase as wa ve energy increases (T ung e t al.. 19:t! :

Tu rk ingt o n er a1.• 1991) .

Tung et al. ( 19l:l2) analyzed la rge amplit ude int ernal solit ary waves wit h t he Bous si­

nesq a pproximation usin g co nt inuat ion methods and monotone iteration sche mes .

T hey pro ved analytically. and co nfirmed through numerica l com pu tations. t ha t with

t he Bouesiaesq approxim ati o n la rge amplitude loca lly-con fined mode- l inte rna l so li­

tary waves ar e possib le in a st rati fied fluid of fini te dep th . By us ing a var ia ti ona.l

for mulatio n of t he gove rning eq ua t ions. Turki ngton et aI.( 199 1) prop osed a nume rica l

t ec hn ique for comput ing flllly non linear solitary wave solutions in a strat ified Ifuioi.

and present ed several examples of mod e-l solitaf)' waves. By studying the inte rnal

'<Oli ta ry W;\Vf'"; in >t. ti..n~iEY ..rr>t.rifi...{ f'loli ti ()f ..hallow depth..Akylas an d G rimsh aw

( 199:1) prov.ed tb a t so litary- like wa ves o f mode higher t han 1 ac tually develop usrilla­

t o ry tai ls of infinite extent oo nsiscing of lowe r m ode sho rt waves . Thus Tu rkington 's

method (T ur kingt on et al. . 199 1) ca n only co m p ute mod e-l internal soli tary wa ves .

For accurate evaluation of large amplitude int ern al waves . met ho ds tbat do not

assume a pri ori the isopycnal d isp lacement. '1. to he sm all comp are d t o layer depth

must be used. Th e question of "how la rge ca n inte rn a l solitary waves be?" is of



considerable inte res t lc th e- oil indu stry beca use large inte rnal solitary wave> I-an

affect oil rig prod uct ion in marginal seas.

To find the max im um interna l solitary wave for a given de nsity stratifica tio n is

also of she t heoret ical interest . Recentl y many researchers (Tung et aI.. 198"2: ~Ie i ron

and Saffma n. 1 9~:1 : Funa koshi and Oikaw a. 1986: Grimshaw an d P ullin . 1 9~6 : Pu llin

and Grimsh aw. 1988: Tur ner and Yandeu-Broeck. 198& Turk ington er a l., 1991:

Evans and For d. 1996 ) have foc used on large am plitude intern al period ic and wlitary

wave> and ha ve di scovered t ha.t for som e stratificat ions (includ ing the z-Iayer case )

the wave amplit ude . measu red in terms of t he maximum isopycnal displacement or

the maxim um surface current. is bou nded by an upper limit . Meiron a nd Satfma n

( l98:1) proved the ex iste nce of overhanging large amplit ude inte rna l gra vit y waves

for a two-layer fluid. That is. the wave shows an SO-sha pe in which hea vy t1uid lies

above light lluid . .-\S solutions of stead y equations of motio n. the S-sha pt"d wave

is prob ab ly unstable and does not exist in nature. Pullin and Grimshaw ( 1 9~)

r-alr-ulared th ... la rgt" ampli tllrip waves of th .. ovprhanging form s in a two-la yer It.lid.

T hey only considered periodic waves. Th is phenomenon seems to be o nly possib le

for pe riod ic waves. as su<'b beh avio r has not be-eofound in work on internal solitary

waves (Turne r and Van den- Broeck. 1988: Evans and Ford . 1996).

Using integral equa t ion techniques Turner and Va.nde n- Broeck ( [988) st udied t he

inte rna l solita ry wa ves for a two- layer fluid confined in a channel of finite vertical an d

infin ite horizontal extent s. Th ey argued tbat as the wave energy level increases , t he



wave amp litu de first increases. but t hee t be most pronounced feat ure is a broadening

of tbe wave while on ly a slight increase in ampl itude takes place. T he solitary wave

becomes flat-topped (or flat-bo ttomed). As tbe waves become broader the am plit ude

and wave speed ap~ar to approach limit ing values. Th e-flow in the broad midsecti on

of the wave becomes unifo rm and ho rizontal. Benjamin ( 1966) termed such a flow

-ccnj ugat e" to t he uniform Bow far upstream and downst ream of th e solitary wave

( the outs kirts flow). Using the exact pote nt ial flow integr al equation approach . Evans

and Ford (1996 ) stud ied two-layer int ernal solitary waves. They showed that the

concept of a conju gat e flow could be used to successfully predict t he propeet.iesof t he

Bow in t he cent re of a flat- top ped wave in a two-laye r fluid sys tem .

T he Bow in th e middle of a Hat-centred interna l solitary wave is conj ugate to t be

far upstre am 80w. T hus. for a given stratificat ion a Bat-centred wave ca n exist o nly

if there is a conj uga te flow. Because it is much simp ler to find a conju gat e How for a

given stra t ifica t ion tha n it is to com put e an internal solit ary wave. in this thesis . t he

..xi!itl:"nrp of (Y)njllgat.. tlow .....lnt iOlro!' fOlr <'I. Vl'ripty of eonrinuous ly st ra tified deus iry

fields is investigated . We examine which kinds of density fields ha ve cc cjugar e How

solut ions and exp lore the prope rt ies of t hose solut ions. T he result s art" usefu l for

improving our understanding of when fia t-centr ed inte rnal solita ry wave can occur .

The Boussin esq approximat ion is common in oceanographic app lications a.s t he

total density va riat ion is sma ll. By t his app roximati on . the den sity is replaced by a

constant reference value Po in the mom entum equat ions except when it is multipl ied



by g. Conce rns have bee n expressed about the valid ity of th .. Bcuss iuesq approxi­

m a.t ion in the context of internal solitary waves. Long ( 19.')6) and Benjamin ( 1966)

poi nt ed ou t that the Boussi uesq approxima t ion ma y lead to serious errors for some

st rat ifica t ions. In our calcu latio ns. we examine cases with a nd without th is approxi­

mat ion and ma ke compa risons betwee n the resulti ng conj ugate 80w solutions .

\\'e a lso use the- fully nonli near computational method to com put .. the internal

soli tary waves with various amplitudes in a ccc ric uously st ratified lluid. for la rge

a mp litu de inter nal solit a ry waves . compari son is made betw een the results obtained

from th e fully nonlin ea r com putational met hod and from the conj ugate flow model.

The conjugate flo..... model is developed in Chapter 2. Cbapeee a describes rb..

com putat iona l model for fully nonlinear intern al solitary waves. Cba pt..r ~ veri fies

tbat tbe 60w in the cent re of a flat-centred internal so litary wave is given by conjuga te

flow solut ions . The results for sing le pycnoc line de nsit y st ratification s are given in

Cbapter ~ an d the result s for dou ble pycnocline density st ra ti ficat ions in Cha pter 6.

F'hap rer 7 con tains th e summary and conclusio n.
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Chapter 2

Conjugate Flow Model

For a rwc-dimension al. incom pressible. invisc id . con -di ffusiv e fluid mot ion the gov•

ernia g equat ions are:

Pt+ c· 'tIJ = O.

V · C =0.

(:l. L)

(:1.:1)

f\r.:.l ) = (ll.lL·) is t he velocit y vect o r in t he vert ical plan e wi th II th e hor izon tal

velocit y in th e L d irect ion an d lC t he verti cal velocity in th e up ward z direction. V is

t he gradie nt operator C~ .:/;) an d t is t he t ime. p and p are the dens ity and pressure .

resp ectively. 9 is t he grav it at ional accelera ti on and k is th e unit vector in the upward

II



direc tion . T he rigid lid approx imat ion is made on the surface at == H . where H is

the Iluid depth.

)'Ia themat ical pr oofs of the existence of mod e- Linternal solita ry wave solu tion s of

(2. 1)-(2 .:J) exist (Tung ee al.. 19li2; Turkington e r al.. 1991). Weakly no n linear eheoey

pred icts that as the amplitud es of these waves increase they bec ome na rrower. In the

fully nonlinear case thi s occu rs for some st ra t ifica t ions. In this case so lit ary waves

grow in amplit ude unt il t hey brea k (st ream lines become vert ical and ove rturn ing) . f or

other st ra tifica t ions. t he wavelengt h first dec reases as the am plitude inc reases. but

when the wave am plitude passes a certai n value , both the wavele ngth and wave am ­

plitude increase as t he wave energy level increases. With further increases in the wave

energy level. the most p ro no unced feature is the broadening of the wave: the wave

am plit ude measu red in te rms of the max imum isopycnal dis placement is bou nded by

a n u p pe r limit . T he inter na l solit ary wav e b..ce r nes flat -ce ntr ed and the How in t he

broa d centre of the wave [mid se-ct io n] becomes uniform and horizonta l (T ung et al..

1 9~2 : Turner-ann Vand..n- Beeeek . 19.x.'n . Benj ami n (l966) ter med such a midsect ion

flew to be -cc nj ugat e" to the un iform dew far from the wave ( th e outskirts How}.

T his conj ugate flow concept was first proposed by Benjami n ( 1961a.b) with re f..r­

ence to swirling flows and was pointed out to be equally valid to he te rogeneous Huids

(Benjamin . 1962b) . Turne r and Vanden-Broeck (1988) predicted the limit ing ver tica l

stru ct ure in the midsec t ion by comput ing th e flow. T he localized . Don-u niform flow

regions join ing the un iform conjugat e flow reg ion and uniform ou tsk irts regio ns were

12



te rmed as wave front or -tluid surge- region s (T urner and Yande n- Broeck . 1988 ).

Evans an d Ford ( 1996) ap plied th e conj uga te Bow concep t to a t wo-layer lluid and

successfully predicted the ampl itude au d propagation speed of fiat-topped. or fiat­

bottom ed inte rn al solitary waves. \VE" ex tend t he notion to a cont inuously st rati fied

Ruid.

Consi der a cont inuously stra ti fied fluid with density p(=) and depth H in an

und istu rbed st ate and a stea dy flat-cen t red. int e rna l solitary wave propagating toward

the right iuro a Ruid at res t at phase speed c. Suppose the fluid velocity in th e cent re

of a Bat-centred interna l solitary wave-is t ·(= ). In a referen ce coo rdin at e frame mo ving

wit h th e solita ry wave-at speed c. th e Bow field fa r ahead of the solita ry WaH" front

is give-n by

(u . u-.p.p) __ ( -c. O.p(.: ). p{=» (~A )

while far be hind t he solita ry wave front (a t t he cent re of t he flat-cent red inte rnal

solita ry wave ) th e pe rtu rbed How is given by

[ u. lr .p. p ) -+ «("(=)- c. O'PI'(=).p,(=)) .

Defining ,,(=) to be the ve-rtical disp lacement of t he isopycoa l at he ight = behind

t he wave front. where the fluid velocity is U(=) - c. rela ti ve to its height ant-ad of

t he wave front . where tnt' tluid ve locity is - c. th e Iscpyc nals (or st rea m lines ) passing

tbrough heights = and = + dz in the conj ugat e Row region have heig hts .: - ,,(=) and



Figure z. l : Geometrical inte rp retation of isc pycnels passing through point (.£. : ) and
(.£. : + d=) in t he conj ugate How region.

=+ dz - '1(:: + d= ) in t he outs kirts (see F igur e :2. . 1). T hus . conservat ion uf volume

gives

IFi : I - r) ·I :+d: -:1 = - r( [: + d: - q( : + d: )I- [: - ql : )lI ~ -qd: - 111:)d: 1 I~.• )

or in. the limit as d:: -+ O.

l"(:: ) = c"{(= )'

The conservat ion of de nsity gives

" ,I :) = pc: - 'II: ))·

t:1.. '1

(:1..8 )



Appl ying Bernoulli 's t heorem a long a n isop ycna.l with beigbr c an d c - '1(:; ) beh ind

acd ahead of t he wave Iroor res pec t ive ly, gives

~Pp(:; )( £.."( :; ) - c)J + pp( :;) + 9Pp(:; ):; =

~p( : - '1( :;ll cJ + p( :; - '1{: 1I + 9,11(: - '1(=)) (:; - 'J( :; )) . It.9 )

Using (2.7) and ('L S) t he above eq uation gives

~P( :; - rJJlr/('1' - 2 >1 + pp{: ) = p(:; - '1) - 9P(:; - '1)'1. (2.[0 )

di fferen tia t ing t h is eq uation with respect to :: and usi ng

1;(;;(= - ql =» =;tl= - '/1=)) (L- ,,'(=»).

gives

~P{= - ql=)) ' IL- ,,'(=)1[','( =)(',' (=1-111

+,11(: - '1( :: ))cl ( '1' ( :: ) - l )rl' ( :: )

+dp~;:: )

(t.lll

;tl= - q( =)) - 9;;(= - ,/(=))q'(=)

-9;;'( = - ,/(=))[1 - "( =)I,,( =) ·(~ ·l ~ )
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The hyd ros ta tic conditions give

(:U:H

a nd

( :'U-l)

Substit ut ing (:.U :J) an d (2. 14) int o (:U :2) we have.

Denoti ng

(:l. lt i )

(2. l' i) becomes the following nonl inear e igenvalue problem for ,,(=1 and c:

with bou ndary condit ions

(:l .18 )

T he non line ar eige nvalue problem (2.11 )-( 2. 18) is solved numerica lly by a stan­

da rd shoot ing met hod in which (2.1i) is so lved by the init ia l value method for ini ti a l

16



cond it ions ",(0 ) = 0 an d some guessed. value of '7'(01. T his res ul ts in a value ",(HI

which depends on c. In general there is a discre pancy bet ween th e ",( H ) value and

th e desired boundary condi t ion. A root search is then do ne to de te rmine c in orde r

to sa t isfy the bo undary cc cdit ioe. In gener a l t here art" an in finite Dumber of roots. or

eigenval ues . for c corresponding to di ffer ent modes . \\'1." focus on rno de- I waves onl y.

in which case we take the lar ges t e igenvalue . T he correspondi ng solution '1(=) has no

zeros bet wee n th e bot tom and the surface . for th e linearized. e igenval ue problem . by

choosing an y val ue of '1'(01 we ge t a so lut ion /1(= ) and a » '1(=) is a lso a solu tio n for

any constant Q . So t hat we an- free to choose aDy nonzero value for '1' (0 ) in sea rchi ng

for th e solut ion. T his is not t rue for non linear eigen value problem (2. 11 )-(2. IS) since

here the so lut ion depends 00 '7'(0 ). We need an auxiliary condit ion to det er mine th e

value of 1/'(0) . and this condit ion is ob ta ined by considering th e horizonta l flow force

in the fluid .

T he horizon ta l tlow force F act ing 00 a vertic a l sectio n o f rbe sys tem is equal to

t he horizo nta l p rt"S.<;II f'f" for.... fl l ll ~ th .. flux o f horizontal mom entum (Becjemic . l 'Hio).

th a t is

where p is pressur e. p is density. and u: is t he velocity of th e fluid. fo r a steady

Bow system . becau se th en ' is no externa l ho rizo ntal force ac t ing 00 th e system. the

hor izonta l flow for ce acti og on any verti ca l sec t ion of th e system is the sa me. l.c .. F



is independent of s , T his is easily peeved . from (1.19) we ha ve

dF
'z:

By using the co nt in uity equat io n

th e above equaeicn becomes

l H
(Pr + (pu l)r)d.:

l H
(Pr + 1puur + ulp r ld.: .

Ur+W" =O.

(1.:!0 )

(1.11 )

dF
;r; l H

(Pr + PUUr - puw" + u1p r Jd.:

l H[Pr+ p(uur + wu"l ]d.: + L"(p"UW + ulp r ).L.:

lH [Pr + p( Ullr + wu,,)]d.: +LHu[ltPr + wp"Jd.:. (:!.?'l )

f ro m rh.. mom e ntum conservation and m as s cc use rva rio n equation in a. steady tlow

system. Wt' know

and

Pr + p(UIt. + Wit ,,) = o.

up" + WP: = O.

18
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So tbat ( :L 22) becomes

dF
J; = 0.

The horizontal Dow force- is independent of or.

(2.2'l)

By sett ing F eq ua l on the two vert ical sec tions fa.r abe-ad of t he wave-and at the

wave cen t re w (o have. using (" (= ) = ale=).

Changing t he va ria ble of integra t ion for th e right -hand side of (::!.26) to s by

== .s - '1 ( .~ ) . t hen dz = (( - rT ( .s ) ld,~ a nd using s = a when == o. .~ = H when

-= = H . th is side of the equat ion (2.26 ) becomes

If s is replaced bv =. th e eigbe-hec d side of equation (2.2, .1 ran h.. written as

1," (c';;I= - 'If =)1+ fi(= - . I=)}) [I - ' I=IJd=. 12.281

Thu s (2.16 ) be com es
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To> sim plify. we use " to represent '1(=) in th e follow ing equ at ions. From (2.91 we

ha ve .

p,,1=)- 1'(= - q ) = ~c'p(= - q)q' l" - q1 +gp(= - qll=- ql- gp, I=)=. (2.:10)

Substit ut ing into (1.29). gives

1H
(.0(= - '1)q' + ~C~p(: - '1),,'(1- ,,') - 91'(= - "1 ,, - clp(= - ,,)( I - '1')'1') dt: = 0

(1.:11)

(si ng integrat ion by part s and t he hydrostatic condit ion (2. 1·1) t be first te rm ca n be

rew ritten as

T hus . equation (2. :12) beco mes

\ :!.:14 )

to



Integratin g by parts of th e tirst term we have

T he governing O DE /1. 17) is now used to rep lace .V;l(:: - '7)'7 and the n th e right -bend

side of (1.:l."i) becomes

LH
gpl::- '7)'7Ti'd;

l"sin g the de finit ion of .YA(:: - '7l given by (1. 16) and intt"grat ing the first term of t he

right- hand side by par t s we ge t

Subst it ut ing (1.:17) into (2 .:J.I) gives th e auxiliary condition

which '7(::) must satisfy.

(2.:~)

Since lIt:: ) = CTJ'(::) . t he au xiliary condition (1.:18) indicates that in a. re ferenc e

frame fixed with respec t tu tbf" out skirts region . the kine tic energy flux is zero .
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In o rde r to find the solu tio n we must find the root of

11.:191

Given a value of '1'(0 ). the eigenvalue prob lem is solved for c. 11(= ) and 1'/'( =) . With

these so luti ons T{ 1]'(0 )) ca n be evaluated. T he root sear ch is done to find t he va lue

of 1'((0 ) for which T(,.,'(O)) = o.

It is im portan t to poin t out that the valid solution of ,.,(=) must satisfy t he ccndi-

tion

,.((= ) < ( 11.-10)

because t he s t ream lines. which pass .: a t the cent re of t he wave and.: - 1'/( .: ) far ahead

of th e wave. are assumed to exte nd to ±x. Thus =- '1(.:) must be a n increas ing

functi on of z, so

i......

1 - ,,'(= ) > 0

"'1=1 < I.

( :!.-H)

(1..121

W hen ,.,' (.:) = l the break ing ( (l ( =) = c) of the conjugat e flow solut ion occurs.



[ f the Boussinesq approximation is applied. tbe problem sim plifies considerably.

T he nonli near eigenvalue pecb lern ( ~. I i') becomes

( ~ .HI

with boundar y cond ition

Th C" auxiliary cond it ion (1.:m) used to determine 1'( 0) becomes

(:!.-I6 )

:M



Chapter 3

Computational Model for Fully

Nonlinear Internal Solitary Waves

3 .1 G overning Equations

Turkington t' t al. (199 1) de veloped a method for comput ing the exac t steadily trans­

lat iog so lita ry wave solutio ns of t he equat ions 12. 1)-( :L l). In this chapter this method

is di sc ussed for the sim ple r case whe re the Bcu ssi nesq approxima ti on is mad e. Under

t he Bouss inesq app roximat ion equations (2. 1)- (2.:)) a re

2-1



u., +w: = 0.

Pt + up ., + U'Po = O.

Po(Ut + UU .. + wu :) = -p...

(:I.:!I

I:U )

where z and c are the horizontal and vertica l coo rdin at es. respect ively. p is densi ty.

and Po is t he reference density. p is pressu re and ( u. w) are ve locity co m ponents iu

horizo nt al a nd vert ical d irec t ions. and 9 = 9.:Hm l s1 is the acce leration d ue to grav ity.

.-\ stream func no u C' is int rodu ced which satis fies u = i ' • . tt' = - t;.'., . Defining vorti city

as rr = u: - I t· ... equation p .:!) can be wri t ten as

Pt +J(p . t.. ) = 0 (:1..'»)

when." t he not ation J (A.. 8 ) =A..8 . - .1.8 ... ~I ani pu(at ing t he cu rl or equations (:1.:1)

a nd (:Jo4) we have

Po(rr l +J(u . t.· J) -J(p . g.: ) =0.

For the uoulinear solitary wave. assume the solutio ns or (:l ..')) and (:1.6 ) have the form

p = p( .r -ct • .:l. u = rr( z - ct • .:) for some positi ve wave propagation speed c. Th e fluid

is boun ded by a fixed boundary at .: = 0 and .: = H . respectively. The tluid doma in



is - oc < .r < +'X. 0 :5 =:5 H. In a referen ce frame moving with th e prop agati on

speed. c. the mot.ion is stead y and equations p ..:;) an d p. 6) reduce to

J (p. t; ' - c.:} =O.

Po(J(u. I,('- c.:l1 - J (p . g= ) = O.

(:1., )

Th e propagat ion speed. c is unknown and need s to be determ ined as pa rt of th e

solution.

The undisturbed density st rat ificat ion of the fluid at s: = ±'X is speci fied by a

functio n .0(=) sat isfy ing

p(= ) > o. p' (=) < 0 (0 $ =$ H ). 1'1.9 )

:\ solitary wave d is turb an ce is a solut ion of p.S) satisfying the asymptot i.. ccudirions

p( ..r• ..:) _ p(=) . IT{..c. =) -;.O. 1;.·(..c.=) _ 0. as l..cl ---+ x. (:1.10 )

For t he study of solitary waves we im pose a res t rict ion th at every iscpy cnal surface

(p( ..c. =) = constan t ) mu st connect to z = -coc and .r = -ecc, or equ ivalentl y, that

t here are no d osed isopycn al surfaces (ent rained edd ies) . T he iscpycual di splacement

'/(..c. =) at poin t (..c.=) represent s the vert ical displ acement of t he isopy cnal surface
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Figure d. L: Geometri ca l interpretation of th e vertical displacement ,,( .£. =) of an isc py­
cnal surface passing t hrough a point (.£.= ).

passing throug h the point (.r. c ] from its undi st urbed level as ..r --+±'X. Hence. the

density in the disturbed region can be rep resen ted by the den si ty in the undist urbed

region ( Figure :J.ll via.

p{ ..r. =) =p( = - ,/(.£.=11. FU ll

.-\ wave of e leva tion [depression] is rep rese nted by 'I > 0 ( 'I < 0) in the domain .

'I =-0 a t the up per and bottom bccndar ies and '1 _ 0 as .£ _ ±-x:.

The (p. a-) system in (:J..'i) and (:J.6) may be expressed in te rms of '1. Xote that

JIfI ·4). 8 1~ F I.4)JI A. 8 ) ~ JI .4-FI.4)B)

:tj"

(:J.11)



and using p .ll ). equ at ion (:J.i ) yields

Sow

J (P(:: - '1). u.' - c::) l (=- '1)J (: - '1.C' - C:)

p(, - ")J(, -". ,· _",- <{ , - " )) ~O. 1'1.1'1)

J (: - ,/ . 1/.' - C7/ -c( : - ,/ ) ) J ( :: - '/ . 1.:' - C7/) - cJ(= - '/ . = - ,/ )

J(:- '/.l;.' -C7/) ,

so that (:J.l: J) gives

J (=- '/ . I!' - C7J ) = 0.

T his implies t hat

RI= - '1) = C;'- Cfl ·

S ow

t:. -+ o. '1 -+ 0 as J: -+ cc.

l ;sing this in (:1. 16) we ha ve

(:u , )

(:US )



for all ;; so t hat ( :1.16 ) gives

Equa tion (:J.8) is now red uced t o

l(· = CfJ· (:1. 19)

-Pou(u , " - =J+1 (= - " )J (= - " ,g o)

from whic h follows

J( = - ", - f'oC'T + p" ( = - " )g(= - " + "J)

J(: - '1. - />oCU+ p ( ;; - '1).9'1 ) = 0(:1.20)

J(: - '1.-PoCq+jj'(: - '1)971) = o.

So that

(:1.2'.!)

Sett ing oX -+ ± x in (:J.21 ) and using a -+ 0 an d 'I --+ 0 as oX -+ ±'Xwe get

G = 0 for a ll c . so t hat

p .24 1

Combi ning (:1. 19) and (:J.24) and us ing a = 9 2
"" . the nonlinea r eigenvalue probl em



beco mes (Tu rkington et aL 199 1)

C:J.:!·'i ;

where the eigen value pa rameter is defined. by

and p(.: ) is ebe deneley profile Iar from the wave. Equation (:I.2.'l1 sim plifies to equation

(2.44) ir '1depe nds only on .:. T he boundary condi t ions are

'1=0 at .: = O. H.

tt -+ 0 as z -+ ±x.

(:J.:!i )

The iteration procedure used by Turkington tot a l. ( 199l ) to solve (:J.:!·'lH:t:!Sl is

based un a var ia tiuual Iormul...tiou ort be problem. Equations (;J. ~.'l)-(:J.lSJ are pre-

cisely those t hat we use when a st ream line disp lacement. '1(z • .: ) • is sought .....hich

m in imi zes th e kinet ic t"nergy subj ec t to the co nst rai nt F ('1) t a kes on a pres cr ibed

value. Define

(:J.:!9)

:10



where

F e,, ) is prop ort ional to a pote ntia.l energy . T he value or F('1) will be deno ted. by ...\,

It will be used to de fine t he wave amp lit ude in th e remainder or this thesis .

T he iteration procedure can be divided into the following steps :

(I )..Give the value or .-\ which det ermi nes the amp litude and wavelength or the

inte rn al solicary wave.

(H). Est im ate t he initi a l value 1"/0.

(III). Solve

W"= Oon = = O. H

W" -+ 0 as L -+ ±oX.

when- k =O. 1. :! ...

( IV). Evaluate in tegr als

S\ = - polH f ! p'(:; - rr") rr" W "dLd=

51 =- polH Jf p'(= - '1"H'1")1d.rd= .

:ll

I :U I )

I:U :II

1'I.:l4)



(V). Define

(Vl). Update

Assum in g converge nce as k -+ cc it is easily wen that

A'" = max ( ..-I. - ~(r('O ) + Xx» .
.:"1

T his gives

and" x:.solves eq uarjon (:1.2.'5) with A = A'><' .

Once the eigenvalue A and eigenfun ction " are determi ned. the nonl inear phase

speed of t he wa ve c and sr ream funcrio n 1,.' ca n be o btained easily.

(;IAO)

l/.'=CTf · ('IA I )



Thus. the ho rizo nta l and vert ical veloc ity of the Buid can be expressed as

U =CTj: .

an d

3 .2 Numerical M ethod

Equa t ion (:J.:I I ) is the Poisson equat ion: for a given density field. t he right- hand

side of the' equ aricc is known. T her e are many met hods to solve the Poisson equat ion

(Hac kney. 196.'i: Buneman. 1969: Doer. 19iO ). but we use the direc t marchin g me thod

(Roache. 19i~). T he bas ic idea is to so lve a boundary value pro blem with spli t bou nd­

ary condit io ns. by guessing the missing conditioos at one bo und ary and ma rching tb..

solut ion. as a n initial value problem . to the second boundary. T he resuleing final

values at t he end of t he mar ch are co mp ared wit h th e desi red boun dar y values. and

on that basi s the guessed condit ions are correc ted an d th e mar ch is repe at ed for t he

final correc t soluti on . f or linear eq ua.tions . the correct ion can be exact and only

two marches are req uired to obt ain t he solution . Thi s met hod is common ly used for

ordinary diffe rent ial equaricns . Roache ( 19i ::J ) proved t ba t t his metho d can also be

applied to Po isson ellipt ic equa t ions and is sta ble if a cell aspect ra tio .:l.rI ,J.::> t.

where .:l.r and .l= are tbe grid spacing in th e .r and :: d irect ions. respecti vely.



To simplify. equ a t ion (:L l l) can be written in th e!' form o f

(:1..1-11

We con s ider a rec-tan gular domain bo und ed belo w by ==0 an d above by a rigid lid

at :: = H and L =± L a t the left an d right boundaries. T he domain is divided into I

even ly s paced gri d ce lls in E di rect ion an d ./ grid ce lls in =direct ion . The bound ary

con di t ions a re

']=0 at = =O. H.

'I = 0 at L = ±L.

The second -o rde r acc urate . five-point finit e differencing scheme is

whe re ~.l' is .e:rid span- in L di recti on and ~= is ~ri spar-e in =<lirf"'f·tion. Th ..

bo undary condition is U' =0 at upper ADdbot tom ~ well as left and right bcundarjes .

First. it is necessar y to pick an ar bitrary vector of provisiona l val ues ""':.1 j ust

inside the bo tto m boundary. say "VI.I = "V,.G• Th is W:.1 is in e rror by t he erro r vec to r

W•.l = ""~.I +t: i.l·

:14

( :1.48 )



Wleh W;.l so chosen . the remaining prov isional values for I :s j ::s ( f - l) and j up to

J (surface boundary) are calc ulated in one march starting at (i .2) . Equation (;JA7l

can be rearranged as:

where ct = (.l=I.l..t}l . The cor rect boundary values o f ~~o .; at the left boundary

and H' f.j at the right boundary are used in equation (:JA9 ) when needed . T he er ror

propagation equation is then

with boundary values along the bottom. left and right boundaries of

~; .o =£ 0 .; = e /.j = O. (:L'i l l

After the first ma rch of W:.;. th e values of t he final error vecto r fi.J an' calculated

from

where l-Vi•J is zero (this is t he known boundary).

From equation (=J..50) a linear rela t io n betwee n ei.J and er.r may be established.

:15



allow ing t he solut ion for t' ; . 1 in terms orccr - With t' i .1 known. the correc t val ues or

~~ ·i. 1 are obtained Irom (:J.41'1 1and a second ma rch using ebe recursive relat ion equation

FlA9) (wit h W rep laci ng W ' ) establishes t he final solut ions.

T he method to relate e•.l and t!aJ is as fol lows: Ircm equation (: t .j() ) we have

where E, = { t! ;v~ . j = 1.2 . · · · ( -I. and

'2+ "1.0

'2+20

2+20 -0 0
c= FI.~)

-0 2+ '20

is a t rid iagonal matrix .

\ Ve ca n a lso relate EJ and £ 1 in the form

:16



From (:t~:J) and (:J..So'i) we know that

so th at

Similarly. we can get

£, =C£7.- £ 1 = (C- C: - /) £1

ln general we have

so that the general formu la for CJ is

Since £ J is known and CJ is known we can so lve

(:J _~6 )

( :1..')9)

(:1.601

{:1.6 11

(:1.621



to get £\ _

:18



Chapter 4

Verification that the Flow III the

Centre of a Flat-Centred Internal

Solitary Wave is Given by the

Conjugate Flow Solutions

In this chapt er. we use t he com pu ta tional mode l discussed in Ch apte r :1 to com pule

interna l soli t a ry waves for a varie ty of wave amp litu des . A cont inuously srrat itied

Buid for wh ich flat- centred waves form at la rge am pli t ude is used . The purpose is

to show how t he flow in t he ce nt res of t hese wa ves co nve rges to th e co njuga te> How

solut ions.

:19



4 .1 M o del I n itialization

The fully nonlinear mo del is solved in a recta ngu lar domain bounded be low by :: =::; 0

and above by a rigid lid at :: = H and s:= ±L at the left and right bo un da ries. The

domain is even ly divi ded into [ grid cells in th e horizontal (.r ) di rection and J grid

cells in the vertica l (=) direction.

The background state consis ts of a st ably st ratified fluid at res t. T he den sity is

uondimensioualized a nd sca led by a typica l value of 1000 kg /moJo so that th e nondi-

rnensicnal density is aro und I. Other quantities are nondimens ionalized by a length

sca le of 1 m and a time sca le of l a. The first density (density I ) profi le we used in

our study is a single py cnocl ine dens ity st ratification. given by

,0(::) = l.0 -a· tanh(:: - ':0,.
d

H. I )

where =0 represents the centre of the pycnocline. d the t hickness of th e pycnocli ne. ami

aid the stre ngth of t he density stratificat ion. With different a. =0 and (i values. the

above formula gives diffe rent dens ity profiles. The density and buoyancy frequency

profiles with a =0.01. =0 =70. and d = 10 are given in Figures 4.1 and 4.2 .

In our model simulat ion. the nondlmenslonal water depth is H = [00 and L is

set to be '5000 initially. Afte r we comp ute the wave we compa re L and t he wave

ha lf-length . L shou ld be at leas t fou r times that of the wave half- lengt h. T he wave

half-length is the horizo nta l wid th measu red from the wave centre to tbe location
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Figure 4.[: Density profile for dens ity I with a = o.Ol. =0 = TO and d = 10.

• '0"

Figure 4.2: Buoyancy frequency profile for density I with a. = 0.0r. =0 = 70 and d =
LO.
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where the surface horizonta l velocity is one-ha lf its ma ximum value . The coordinate

system is set up sucb that the cent re of t be ini t ia l wave is at z = O. The largest

buoya ncy frequency for t his density st rat ifica t ion occurs at == =0' If =0> ·'50. the

internal solitary wa ve is a wave of depression : if =0< .'50. it is a wa ve of elevati on.

Accor din g to t he weakl y nonlinear t heory . if =0 = 3)0there is no inte rna l solitary wave.

The value of ..t. which de te rmines t he ext reme isopycna l displacement '1<:"1 and wave

half-lengt h. is chosen before ebe calculation. For sm all .4. values. l.e . small amp litude

waves. we initialized our model based on t he h:dV approxima t ion. fo r large ..t values.

tbe model is init iali zed by giv ing a wider wave. T he init ial guessed value of '/(Z. =)

will not affect the final resu lt . even with a poor init ial guess. Nevertheless. it affects

the speed of con vergence.

T he boun dary condit ions are

'/ = 0 at = = O. H.

,/= 0 at z =±L.

(4.2)

\.L I I

(4.:1) is an approxima t ion to the correct boundary condi t ions for a solitary wave.

namely th at TJ ...,. 0 as .t' ...,. ± oc . Thu s. the left and right bounda ry condit ions witt

int roduce a sm all erro r into the final resul ts. This erro r. which will be discussed later .

can be mad e smaller by increasing t he domain size L.
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T he stop ping crit e rion of the iterative algorithm in ou r computation is

in th e whole domain. whe re "k is the solut ion after k itera t ions.

4 .2 M odel R esults

We have computed interna l solitary waves corresponding to differ ent .-I. values using

density 1 wit h a = 0.01. ':0 = 70. and d = 10. Figur e 4.;J gives t he surface current

profiles for diffe-ren t .-I. values. It shows t he sha pe of the internal soli tary waves cor­

respon d ing to differen t .·L The absolu te valu e of the ext reme isopy cna l disp lacement

IJ~~. is plotted as a fun ct ion of .-I. in Figure 4.4. Also shown is the 'h$' ob ra iued from

t he conju gate flow solu tio ns. ' Ief . It is dear that when .-I. increases lJe.' increases

monotonically and asymptot ically approaches th e conjugate Bow solut ion. Figure -I..')

shows t he variati on of wave ha lf-lengt h>. with .-I.. When .-I. increas es from 0. 1 to 1. ..\

decrease s. T his behaviou r is pred icted by t he Kd V equation . f or large .-\.. >. increases

linear ly wit h .-t.

The curve of the prop agatio n speed c as a func tion of A is simi lar to t hat of'lw

versus A. T he prop aga t ion speeds of int ernal solit ary waves reach their upper limit

value of c = 1.98189 for .-t= .')0 and subsequent la rger values (Figur e 4.6 ).

Figur e 4.7 sho ws t he rela t ionship betwee n '1•• e and >.. For sm a ll amp lit ude waves



( "~"' l < ;1). t he fully no nlinear model result s agree well wit h t he Kd V model res ult s.

As '1~"'t increases from abou t .') to 10. t he wave half-l en gt h is almost unc hanged. When

'1~d is bet weeu :W an d 20..'i. increasi ng .-\ causes both '1~"" and A to increase. When

'1~",1 is greater than a bou t "12 . inc reasing the wave energy results in an increased wave

lengt h with ins igni ficant chan ge in '1~"'I'

In our calc ula t ions. t he nume rica l resolut ion is ...l.c = (2. ...l= = I. For .-\ :::: ·'iO.

th e inte rn al so lit a ry wave propa ga tion speed reac hes its upper lim it value of 1.98289

and remains const ant for larger values of.-\ . The extreme isopycnal disp lacements

for A = so. 70. 100. 120 are 22 .8467 . 22.8.'i7 l. 22 .8=i77 and 22.8.'i77. res pect ively. It is

apparent t hat both th e ex t reme isopyc ual displa cemen t and wave prop aga t ion speed

reach thei r upp er limit values when A = LOO for int e rna l solita ry waves in tb.is de nsity

field .

\Ve have also calculat ed the ex t reme isopycnal disp lacement 'Ic'/ and wave propa­

gation s peed (',./ for the llat -ceu tr ed interna l solit ary wave in the same de nsity st ra ti­

fir-ario n (dpn"ity I ) us ing rh.. r-onjl lgat.. How mod ..1. Th .. f\t"'11rar-y ' l ~...-l in fin-li ng t il!"

root of equa t ion ( 2,4 6 ) is LQ_6 . T he resu lts are '1~/ = 22.86 [6 and C~f = U1827·L

res pect ively. It is obvio us tha t '1~:rt is bounded by an d approaches asymptotically

to '1cf as t he int ernal solitary wave becomes flat -cent red. 'Nave propagation speed

c also a pproaches asymptotica lly to C~f as .-\ incre ases . T he c value of a large Hat­

cen t red intern a l solitary wave obt a ined from the fully nonlinear mod el for .4. > ·')0 is

about 0.007 6% large r th an th e conju ga te flow model so lution . Resolu t ion tes ts show
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Figure 4.:}; Surface curre nt profiles for differen t A values. Density I with a = 0.0 L.
=0= TO and d = to. A = 0.1. 0.2.5. 0..1. L. 2. :1. 4. ,''). T. to. 1.1. :W. 25. :10..')0. TO. 100.
120.

"

Figure 4.4: Megnirude of the ext reme isopycnal displacemen t rJ~rf as a funct ion of A
for densi ty l with a = 0.0r. ':0 :; TO and d = 10. Solid line: fully nonlinear model
results : dashed tine: mag nit ude of the extreme isopyc na l disp lacemen t calc ulated from
the conjugate Bow mode l. Stars correspond to the values of .-tused .



Figure 4.5: Variation of wave half-len geb A withA for density l with il =0.01. =u = 70
andd= !O.

::(

"l-. ----,;;--- -:;----;;- ---.;:;--=----,!

Figure 4.6: Wave propagat ion speed c plotted as a function of .\ for de nsit y l with
a = 0.01. =0= 70 and d = to. Solid line: fully nonlinear model resul ts . dashed line:
co nj ugate flow model resul ts. St a.rs correspond to the values of .-1. used.
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'.
Figu re 4. 7: Wave hal f-lengt h>. plotted as a functio n of t he ext reme isopycnal ,lis­
placement 'l~.j for den sity I with II -= 0.01. :0 = ';'0 an d d = 10. Das hed line: 1\:.1\/
model res ul ts .

that th e e rror de creases as t he numerical resol ut ion inc reas es. t hi s indica tes that the

difference is a result of numer ica l error .

T he vert ical pro files of the horizootal velocity u at th e cent re of t bt> wave for

di ffe rent A values Mil" shown in Figure ~ .8 . The curves for A = :)(). ,0. 100 and I:!O

are indis ti ngu ishable frum the conj uga te liow solut ion . It reveals t ha t the ven it"al

profiles o f u approac h the conj uga te dow solu t ion as .-\ increases. Therefore. the

conj uga te flow model soluti on describes t he Bow at the centre of Bat-ceot recl inte rna l

so lit a.ry wa ves .

Vie ass essed the nu me rica l simu lati on er ror caused by th e left and right boun dary

condit ions by examinin g the"num erical results wit h differen t L values . O ur result s

show t ha t the resul ts ar e a lmost not affected if the do ma in size (2 £ ) is eigh t t imes



_t .

Figure 4.8: Vert ica l profil es of horizontal velocity 1.1 for A = O.L 0.15. 0.5. I. 1. ;1. ..L
5. 7. LO. is. 10. 1.S. :10. ·')0. 70. lOO. 120 and for conj ugate flow solut ion. Dotted line :
fully nonli near model resu lts ; solid line: conjugate Bow model solut ion . Do tt ed lines
for .-\ = ;}O. 70.. lOO. 110 are iudi sciugu ishable from the solid cu rve.

larger than the wave ba lf-Iength.. [0 our calcu lat ions. the domain is about ten t imes

large r.

In order to cheek wh.. th..r the in ternal solita ry wave obtai ned from t he fully non-

linear model will retain its shape and phase speed in propagation . W I" initi alized a

ti me steppin g numerica l model ( l am b. (994 ) which solves equation s (:J . ~.')}-( :t~SI

wit h a solitary wave and let it evo lve for 10 hours. Th e reference frame moves with

the phase speed of the inte rnal solitary wave. so that th .. wave cent re alway s s tays at

z = 0 if t he wave propag at es with constant phase speed. Figures 4.9 and 4. 10 sho w

the intern al soli tary waves for A = 15 and A = 100 at t ime t =0 and t = 20 hours

wit h numerica l resoluti on ,;l.r = 10 an d ,;l : = 1.67. {t is clear that twen ty hou rs later

the waves retai n thei r shapes. T he centres of the waves ar e at abo ut .r = ·')0 a t t = 10



hours . Tb is means tbe propagation speed dec reases during t be wave evol uti on . Ex­

periments show tha t the erro r is caused by the numerical di ssipat ion . with th e er ror

decreasing as the reso lu t ion is increased . When ~..r =6.61 an d ..1= = L t he shape

an d pos ition of tbe wave at t =20 bc urs is a lmost exactly the sa me as at t =0 wit h

its ce n tre stay at x = 0 ( f igu re 4.1 f l.
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Figure 4.9: Densley contours for .-l = :2.') a t (a) t: = 0 and [b] t = 10 hours. Wave is
propagating to left .
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Figure 4.10: Density contours for .-\ = 100 at (a) t = 0 and (h ) t = 20 hours. ,-Vaw
is propagat ing to left .

.')1
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Figure 4.1 1: Density contours for.-l = lOO at (a ) t = 0 and (b) t = 20 hours wit h
higher numerica l resolut ion. Wave is propagat ing to left .



Chapter 5

Results for Single P ycnocline

Density Stratifications

Meirc n and Sa ffman (l9S:I) an d G rimshaw and Pulli n ( 1986) have discovered -o ver­

baogiu g" lim it ing internal p...riodic wave' profiles at very large amplitude>. TUTUt> T and

Vande n-Broec k ( 19::18 ) argu ed t ha t these probab ly arose a... a consequence of t he ir I I*'

of per iod ic bound a ry cond it ions in their com pu ta tio ns an d that gen uine limi t ing in·

terual solitary waves would tend to be very wide wit h a uniform flow in the m iddle

region t ba t is conj ugate to th e outs kirts How. a unifor m Bow fa r from rh e wave in the

frame moving with t nt' wave. It is of interest to invesrigace-rhe limit ing amplitudes of

internal solit a ry waves. meas ured by isopycnal disp lacement . \li t' showed in C hapt..r

4 tbat t he conj ugate flow model so lution gives t he upper limit of phase speed and

isopycual di splaceme nt for curves with open st ream lines for st ra t ifications in which



Bat -cen tred waves exist provided that a conjugate Howsolution exist s. It may be pes­

sible to have larger waves wit h reci rcu lat ing regions (Davis and Aceivos. 196, : Tung

e t al.. 19~'!: Sta.mp and Jacka. 1995). The waves wit h recircu lat ing regions have

bee n observed exp erimentally and they are' mode-Z waves (Stamp and J acka. 199.')).

Th e prop ert ies of t he conjugate How mode l solutious in a single pycnocli ne density

st ra t ificat ion with and without the Boussin es q a pproximation are inves t igat ed in th is

cha pte r.

T wo densi ty profiles are used . The first one describes a strat ifica t ion with a single

pycccc lice centred at =0. given by

p(.: ) = 1.0 - a ta-Db! ': ~ =0).

The buoyan cy frequen cy .V is given by

(.i . I)

(~. :!l

In o rder to exam ine the effects of the Bcussiu esq approximat ion. we a lso use the first

den s ity profi le in a slight ly modified form . This gives the second den sity profile as

p(.:) = 1.0 _ O.OO ld t an h ( = ~ =0). (.;.:11

Thi s den sity also has the hyp erbol ic tangent pro file. and is the same as th e firs t with



a pro por tion a l to d. For the second de nsit y s t rat ificat ion. .\.[Z is

In the limit of d ....... cc, Pgoes to

p(,) = l.O- O.OOI( ' -',I.

i.e.. is linear in z, an d .\'-Jgoes to

(.')..'))

(.'i.61

In this case t he limit ing buoyan cy frequency is constant unde r t he Bouseicesq t ap-

prox imat ion .

5 .1 R esults for t h e Fir s t D ensity Stratificat ion

\V~ invesrigare th e prcp er r ies of the solut ions for a range of d. =0and a values. \Vh~n

the Boussiuesq approximation is used we need to consider only one va lue of a since the

solutions can be scaled to obtain solutio ns for oth er a values. Th e refe rence densit y

can be written as

(.'i.i)



where R is a constant for a given de nsit y st r-at ilicat ion a.nd its form depends on how

the refere nce density is chosen . \Ve conside r two options: ei th er Po is the average of

the su rface and bott om density values . or it is the vert ica lly mean density. For the

first case R has th e form of

R= ta.nb(Tl -tanhl, l
:2 •

and for t he secon d case.

R =~ l H
tanh ( = ~ :Q)d=.

In either case pc:) can be writt en as

(.'l .S l

(.'l.9 )

Since the solur iou vf th o:' uculiueer ..igeuvelu.. problem i 'Ji= j. c / in t ~."'-4j is unchanged

by mu lt ip lying p by a constant because .\"1 is unchanged. the factor 1 - aR can be

dropped. The result ing dens ity profile has a reference den sity Po = I for all values of

a. T hus chang ing t he value of a from a to ci changes the buoyan cy Frequen cy S "l by

a factor of

(5. Ll)

.;1;



He nce the eigenfuncrlcns '1(=) of th e eigenvalue problem are unchanged while rhe

square of the propagation speed. t? is chang ed by t he same fact or J .

Wh en the Boussinesq approximation is not used cha ngi ng a will cha nge the eige n­

funct ions '1{.:). Xcw let us exa m ine th e resu lt s of t he single pycnocline d..nsity srrat ­

ificat loa for diff..rent a. ':0 and d values .

Figu re S. Lshows t he vari at ion of ex tre me isopycnal displ aceme nt '1czt as a funct ion

of ': 0 for d =.'}. LO. t .'} with the Boussi nesq a pproxima t ion. The res ult s s how that t he

curv es pass through 0 at =0 = .')0 . This mean s t ba t when t he ce nt re of t he pycnocline

is at t he mid-de pth '1(.: ) is ide nt ica lly 0 an d t he re are no cc cjugere flow solutions .

Th e conjuga te flow solutions are- ele vat ions when the ce nt re of rhe pycno cline is below

the mid-de pth (.:0 < .')0 ) a nd depressions when t he pycnocl ine is abov e t he mid-d epth

( ': 0 > .; 0 ). T he abs olu te value of tk u inc reases as t he distance between ':0 a nd HI"1

increases . T his mean s t he fart he r t he ce ntre of t he pycnocl ine from t he mid -de pt h.

the la rger th e magni t ude of '1-1' is. T he curves begin and end a t t h.. va lues c f .:.,

for which the so lu t ion is at t he break ing limi t which is whe n tl".:J = l lir"t occurs ,

It can also be seen that rh e dist rib u tion of '1u l as a funct ion of.:o is a.nti sy m metric

about ': 0 = ~O . Th is means t ba t tbe ext re me iso pycna.l disp lace men t s '1~t ha ve t he

same magn itu de with t he oppos ite sign when the ce nt res of tb .. pyc noclines are a t

.:0 and at H - ':0; one is a depression a nd the o t her an elevation . Sin ce the density

profil e is a ntisy m met ric a bout .: = ': 0 and t he gove rni ng equations ("1.1)-( "1.;1) with t he

Boussinesq approxi ma t iou have a sy m met ric proper ty. it is not d ifficult to understand



figure ·1.1: Va riati on of Tk r f as a function of ':0 in the Boussiu esq cas e for d = ·1 (solid
line ). d = 10 (das hed linel .and d = Li) (dash dotted line).

t hat t he solu tion '1 rr t from t he conjugate flow mode! is an ti symmerric ab out ':0 = ·10. [f

t he cent re of pyc noc line is fixed . th e magnitude of the ext rem e isop yc na l disp lacement

in creas es as d increases. As can be see n in f igur e :.i.L. '1~r' is a lmost linear in ':;0. The

s lopes have mag nitudes greater t ha n one whic h increase line a rly as d inc reases . being:

ab out 1.08 . l. L.1 and l.~~ for d = .1. toan d 115. respective ly. Th e s lope ap proac hes I

as d -+ O. i.e .. in t he ~-layer limit.

f igure .1.~ s hows t he profiles of 'I for d = 10 using t he Bous sic esq app roxima tion .

It is clear tb at t he ex treme isopy cnal d isplacemen t happens ar ound c = .; 0. Whe n

':;0 > .lO. '1~r t occur s at .:; < ·lO: when ':0 < .')0. '1~",. occu rs a t :: > i}0. T he ab solu te

val ue of '1~rt is always greate r t han 1::0- HI?. I. T his mean s the centr e of t he pycnocli ne

is displaced pas t th e m id-d epth in the cent re of the wave . For ::0 = iO. t he ext reme

isop ycn al d isp lacement of -22.86 is th e isopycn a l which pas ses th ro ugh :: = 49.4?. in

.18



Fig ure .'5.2: ,., profiles for d = 10 in the Boussiuesq case . .:0 =80. iO. 60. .')2. -18 . -10.
:JO. 10 from left to righ t .

figure ;'LJ: ,., profiles plotted as a. funct ion of = - ,.,(= ). Same cases as in Figu re .'5.1 .
=0 =::l0. i O. 60. :;1:. 48. -10. :10. 10 from left to right .

.')9



t he conj uga te dow region and == 1:!.28 in the outs kirts. For a. two-l ayer Bow with the

Boussinesq ap proxi ma tion the inte rface is ex actly a t t he mid-d ept h in tbe conju gate

Bow region ( Amic k and T urner. L986) . Figu re 5.=1 shows th e '1 profile as a. function

of = - '1(= ). the height of th e isopycnal in t he outskirts region. for t he sa me rases as

Figure 5.2. It is clear tha t th e isopycnal which is di splaced t he furt hest toward the

mid -dept h is farther from the mld-d eptb than t be cen t re of the pycn ocline. When

the Boussinesq approxi mat ion is not mad e '1{=) depends on o .

Figure .j A shows t he variation of '1~r. as a functi on of =0 for t hree values of n.

namely 0.0 1. 0. 1 and 0.5 using d = ii . to. t.'). The solid lines a re the resu lt s in

the Boussinesq ap prox im at ion. the dott ed . das hed an d das h dott ed lines wit hout the

Bcuss inesq ap proxim at ion for n = 0.0 L 0.1 and 0..'). As expect ed. as n -+ 0 the

non-Boussinesq so lution app roac b the Boussinesq soluti on . Excellent ag reemeer is

ob tai ned for 11 = 0.0 l. in which the lines for th e Boussinesq and non- Boussi nesq

cases a re ind ist ingu ishable. It is obvious that the differ ence between the result s with

a nd wit hout th t' Hou ssln...·"l app roximat ion inc rease as If inc reases: and the di ffcrcno-

dec reases as d increases . :'vlaking the Bousainesq approx imation. '1. rt is abo ut 2.2

smaller than without t he approximation for d = 5 anri about L') smaller for d = I.j

when (J =0. 1. If a =0..'). t he-er rors are about 11.1 for d =.') and ab out 1.8 for d = (·i .

Figures 5..; and .').6 show t he densit y and buoyancy freq uency profi les in the undi s­

t ur bed and di st ur bed de nsity fields for =0 = 80. 70. 60. and ·')2. In the dist urbed
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Figu re :.i.-t: '1~z. for conjugate flow solu tion plotted as a. fun ct ion of :0 for a = 0.01
(dotted line ). a = O.L (d as hed line) an d a = 0.5 (das h dotted line ) in th e 0 00­

Bc ussinesq case. Solid lines art' t he Boussinesq a pproximation results . (a ) d =:>. (h)
d= 10. (e) d= I,>.
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figure 5,.,): Density profi les in (a ) undisturbed a..ad (b ) di stu rbed density fields wit h
the Boussinesq ap proximation for a = O.Ol. d = La. =0 = 80 (so lid line] . , 0 [das hed
line }. 60 (das h dotted line). 7i1(dot ted line] .

region. sbe the pycnocl ine is nea r the mid-depth: t he maximum buoyancy frequen cy

decr eas es as =0 ap proac hes H/2.

\V""now t urn to t be propa gat ion speed c. \Vben the Bousslceeq approxim atio n is

a pplied c depends on bo t h a an d t he reference density Po (as both a and tJu change

S 1(=) by a co ns tan t mu lt ip le ). I,\'e first choose the ave-route o f bottom and su rfac e

densities as the reference den sity Po- Figure .".' sho ws the dist ribut ion of phase

speed c as a [unction of =0 for a = 0.01 and d =-'i. LO and 15 with and with out

the Boussinesq ap proximation . T he Bo ussinesq res ults a re ind ist ingu ishab le with the

non-Bousalnesq result s for a = 0.0 1. \OVith the Boussiaesq approximation. th e la rgest

phase speed occurs at ::'0 = .; 0 and the a mpl itu de of the' wave is zero for this value of

::'0 : t he phase speed c is smalle r for a th icker pycnocl ine (la rge r d) t han for a thinner
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Figu re ·').6: Same cases as Figure :i..') for .'tt l profi les .

pycnocl ine [s m al le r d ) bec ause ....~l increases as d decreases. L'nlike t he magn itu de of

'1=1' the phase speed c is no t sym met ric a bou t =0= ·')0. bec au se t he refert"ncedensiti~

for =0 = q a nd =0 = H - q are d ifferent . When =0= q. whe re II is a constant. t bt'

re feren ce d en sity is

t a nh t!=J. - tanh ~
P'O ,=[ -a :l 2 ,I.

When =u = H - q. ebe refe rence de nsit y is

(.'). 12)

t anb( ~ I - tanh l~ I ta nb l~) - ta u b ( 3 )
An = I - a 2 = I + a :! . j5.I:l)

In gene ra l it is a p pa rent t ha t t he reference deosi ti es Po l t {Jo"l. T hus. t he .V~ for

=0and .V~ for H - =0are no t sy m m et ric ab out =0 = ·')0. Figur es .').8 a nd .'j.9 show

variati ons of phase speed c as a func t ion o f =0 for a = 0. 1 a nd a = 0.5. respect ively.

6:1



Figure .i .7: Var iation of phase speed c as a. functio n of ': 0 for a = 0.0 I and d = ·i. to. t·i
in the Bcuss iuesq (solid lioe ) and ncn -Bouseinesq (das hed line ) cases . T he lat ter art'
indis ti nguishab le from t he former a t th is sca le.

Comparing the c values for a = 0.0 1 and it = o.~ confirms that 2 inc reases by a facto r

of J given by ( ~. lL l in th e Boussinesq approximation . For a = 0.1. the errors in c

caused by t he Boussin esq approx imation a re 0.008:) for d = .i an d O.OOiO for d = I.i .

for a = 0.5. t he ..rrors in c caused by t he Bou ssiuesq ap proxima t ion are- O..i U i fur

(J = .i and 0.·IA2:J for d = t.i. The- relati ve diffe-rence in c is about 0.12% for <.l =0.1

and abo ut :t :J.t% for a = 0.5.

We a150examine th e case in which the reference density used for t he Boussinesq

approximation is ta ken as the verti cal mean of the' de nsity in order to de te rmi ne th..

effect of the choice of t he re fere nce dens ity 00 t be phase speed . Sinc e t he varia t ion of

the re ference de nsity will only affect t he buoyancy frequ ency. t he solution of '1(.: ) will

be th e same as when the reference de nsity is the average of the bot tom an d surface
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Figure -1.8: Ph as e speed c plotted as a funct ion of =u for II = O.l. Solid line: wicb t he
Bousainesq approximati on: das hed tine : wit hout th e Boussiu esq ap proximat ion .

-----------------

Figur e ·; .9: Sa me as Figure ·'i s for a = 0.·').



densit ies. T he phase speed c will change. Figu re ·').LO shows the phase speed c as

a funct ion of .:0 for a = O.OL. 0.1. 0..:; with d = lO in the cases wicb and without

the Bcussicesq ap proximat ion. It is d ear th at th e Boussinesq approxim at ion using

th e average of surface and bot to m den sit ies as t be refere nce de nsity resul ts in smaller

errors for all the t hree a va lues t han that 'Ising tbe vert ically mean density. T he use of

the ver t ica lly mean densit y res ult s in significant differences in the propagation speed

for rhis de nsity st ra ti ficat ion. In the remainder of the t hesis. we use t he averag e of the

surface and bottom densit ies as the reference density witbo ut furthe r inves tigat ion.

T he hor izontal velocity profiles U( .:I are shown in Figure ·:;.1L for different .:a

va lues using d = 10 wit h ebe Bou sainesq approxima tion . When =0 = iiO. t he maximum

density st ra t ifica t ion is at the mid -dep t h, there a re no conjugat e Bow solutions ami

C (= ) = O. [f =0 moves away from ';;0 = 50. t be magn itud es of hori zontal velocit ies

at both bott om and surface boundaries increase. At the [ayers near t he surface and

bot to m bou nda ries . tb e 611id veloc ities are almost constant . T bis is because th o:"

density nea r the bo unda ries is almost const ant . tbus the :low is irrot a tio nal . i..,....

F; - 11.'. ~ O. Since the boundaries are rigid- lid . no vert ical Bow at the bound aries ,

lL' = O. so t hat Cz ~ o.F is nea rly constan t nea r the boundaries.

T he valid conjugate How so lut ions can be obtained only for a range of =0 values

whicb sat isfy =/(d) < =0 < =..(d) . =/(d ) and .;;..(d) are the lower and up per breaking

limit of =0 values in which ,/' (=) = 1 first occurs. In Figure 5. 12 the breaking curves

=0 == =j (d ) and =0 = =..(d) and contours of the minimum Richa rdson numbers for
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f igure .1.11 : Horizo ntal veloc ity u (=) profile at the cen tre o f f1at-<'t'!otred internal
solitary wave for a = 0.01. d = 10 with the Bcussinesq approximation. ~ =
ZO. ;JOAO.4$ .·U.60 . 70. SO from left to right in the upper half.
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Hi = 0.25, 0.;). La are shown for th e Boussiuesq case ( for which the curves are

indepe ndent of (1) an d for t he non-Bcu ssinesq cases wit h <1 =0.0 1 and <1 =0. 1. T he

Richardson numbe r is defined as

v
Ri {=) = fr' ( ii l-t )

where .V~ is rhe square of buoya ncy frequ ency and C. is t he grad ient uf hceizc ntal

veloc ity £"(=1 in th e conjugate flo....· reg ion. It needs to be poi nted out tha t

.y 2 = _~p"" ( = ) = g_~(= _ ,, )(1 - ,( ). FiL 'i )
p,( =) , p(= - '1) d;

The linea r stability condit ion is

Ri > 0.2.'5 (.'i.lti )

everywhere in th e flow [ Kun du . (990 ). Ri < 0.2.') is a necessar y hut not sufficient

condi tio n for ins ta bility. f i!!11rf" :;. 12 indira tf"'< that. th"ro> "ro- no .-onj ' lg i\tP ttow "4')-

luti ons if d and =0 lie outside the two break ing limi ts. Thi s occurs when the centre

of the pycn ocl ine gets teo close to t he uppt"r or lower boundary. It shou ld be ern-

phasized that alt hough there are no conju gate flow solut ions. solit ar y waves an- st ill

possible. For these stra t ificat ions as t he wave amplit ude increases t he solitary waves

break before a limit ing, fla t -cen tred wave is formed . T he conj ugate flow is linearl y

stable if d an d =0 are between the two Ri = 0.2.5contours an d poten tially unst able
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if d and =0 an> in bet ween the breaking lim it and Ri =0 .2.') contour. T he region of

potentially unstable 1I0wincreases as d decreases below abo ut SA . As d -+ O. =1..... O.

=.. -+ H and the contou r of Ri = 0.:!5 tend to meet at =0 = ·i O. th e minimum Ri

num be r is be low 0.25 for all =0. so t hat th e dow is pote nti ally unstab le for all values of

=0. In th e two-layer limi t. t here is a velocity j um p across the in terface. th us th e fluid

is always unstable for sufficient ly sma ll hori zontal waveleng t hs (Kundu. L990) . \Vhen

the Bou ssin esq approxima tion is appl ied . the breaking limit cu rves and the minimum

Hi cumber contours are symmet ric about =0 = .50. in add it ion. beca use chan ging .1

lea ves .V"J12 an d '1(=) unchanged. th e breaking curve and the Richardson cumbe r are

independen t of u, It is clea r tha t t he results in t he Boussinesq case ar e almost ide n­

t ical to t he non- Boussinesq case for a =0.01 : for a =0_1 th e non-Boussinesq effect is

large. In t he nc c-Bcussi nesq case. t he breaking limit cur ves are moved down slight ly

by an a mou nt that increases approximately linearly wit h d from a negligible a mount

for small values of d to abou t 1.1 at d = ;)0. T he cu rves of Ri = O.2·'j.O..'l. l.O art'

mo vffl l i p aJ'01 1t 2A at d = La: th e d ifference dec reases as d increases unt il the two

liues (so lid line and dott ed line ) int ersect , then the d ifference incre ases as d increases .

T he above compar ison s of the so lut ions obtained with and wit hout the Boussiuesq

a ppro ximat ion suggest th at for a = 0.0 1. the Boussinesq app rox ima tion is very good .

For t his valu e of a there is a 2% chang e in density between the surface and th e

bottom. Wh en a = 0. 1. which repre sen ts a 20% density change from surface to

bot to m . t he e rrors caused by the Boussinesq approximat io n a re large. In th e real
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son num be r for de nsity I. Cu rves are fo r Boussi aesq case (sol id ) a.nd ncn -Boussinesq
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ocean . t he dens ity varia t ion from surface to bottom is usually less than 1%. 50 tha t the

Bcussiues q app roximat ion is appropriate for the ocean ogra phic condit ions if t here is

a well defined pycn ocline (e .g.. with d less t han :.'0% of the tlnid dep th ). .-\s disc ussed

in the next secti on . the Bc ussinesq approximat ion gives large eITOC'5 if th e density

profile is near ly linear . or if d is com parab le to t he half fluid depth .

5 .2 R esults for the Se cond D e nsity Profile

We com pare th e result s of t he conj ugate flow mudd solutio ns for the second dens ity

profile given by (.'5.:1) with an d without the Boussinesq ap proxim atio n and a nalyze t he

validi ty of the Bousslaesq a pproxim a tion in th is density st rat ifica tion . Figure ~ . I :l

shows rhe de nsi ty and buoy an cy freq uen cy profiles for d = LO. LOO. 1000 and =0= iO .

Th e dashed lint' in Flgure .,}. l :Jb is s» 'Ising the Boussinesq approxima tion with t he

reference densi ty Pu = L. As d ~ oc, the density field becomes linear an d .".1. is

cons tant ga.!Po in tb e Bousainesq approxima tion and the curve of .\""l is a hyperbola

witho ut t he Bousai uesq ap p roximar iou. l:n ut"r t he Boussinesq approximat ion ."-~ is

a constant. the eigenva lue pro blem linearizes and bas an infinite numb er of solutio ns

'1(=) = ..t", sin(7l=1 (.'U i )

where the amplitude .-\,.. is a n a rbit ra ry constant . If the Boussi nesq approximat ion is

uot ma de. then N"l increas es monotonica lly with = in the lim it d --1- cc . T here is no



Figure ·,). I:}: Density (a) and .V1 (b) pro files for =0 = . 0 an d d = 10. LOO. lOOO. In (b).
the dash ed lice and solid line are with and wit hout the Boussinesq appeoximaricu .
respec t ively.

solu tion for the eigenvalue problem . T his indicat es t hat the Boussiuesq ap pro ximat ion

is not valid because it leads to serious erro rs. Vie need to know for wha t value of fi

th e Bou ssinesq approx imat ion is valid in th is density field.

Figu res ·').14 and .').1.; shows t he varia t ion of '1e"t. c. 11'( 0) a.nd '1'(H ) as a functi on

of d for the den sity field with the cen tre of the pycnocli ne at .:0 =60 and '; Q = .0.

'1'(0) an d fI'l H ) are- the tl..rivat ive of ' f( '; ) with respec t to .; a t .; = U and c = H.

respectively. for =0 = 60. it is d ear that the results in t he cases wit h and with out

t he Bou ssinesq a.pproxima tion agree well only for d < :l.'). As d increases above :l.') th e

difference increases . When t he Bouss ines q approx imation is Dot made . tbe solution

brea ks down ('1'( H) = L) when d > liD. The Boussinesq solut ion asy m ptotes to

a solution with 7Je"l :::: - I·'). '1'(0 ) :::: -0.46. '1'( H) ::::0.46. The absolut e valu es are



-10,,-
-'5 ,-,- - - - -
-20

J
- 25

-30 ,

-35 L.:la-'.I---, c:-----,...,-_ ...,-____='
o 50 100 150 200

d

~
, ,-o.e , ,

-<l.8

lei
- 1

50 150 2000 100
d

3.5,-----------,

'0 50 100 150 200
d

(dl

0.8

f igure -'>.14: 'lu I (a). c (b). '1'(Ol (e ). and ",(H l (d) versus d for =0 = 60 in the second
density fie ld for the Bonss inesq (so lid line) and non - Boussinesq (dashed line ) cases.



-20 3.5

0
3

-25 12.5
!

"" a 2
-30 J!!

0.. 1.5

-35
(') (b),

0 50 100 0 50 100
d d

o.s
,

~
""

-o.s
Ie)

- 1
0 50 100 50 100

d d

Figure .'>.1:): '1w (a). c (b). '1'(0) (e) . and '1'( H) (d) versus d for ';Q = i Oin the second
density field for rbe Bc ussicesq (solid line) and non-Boussinesq [dash ed line ) cases.

i ii



Figure .:;.16: '1(= ) pro files for =0 = i O. d = i O. 60. :)(). -l0 from IfOft to righ t. Solid
lines: eo n-Bcuss icesq case: dashed lines : Boussiuesq case .

f igure .:;. Ii: 17:(=) profiles for =0 = iO. d = 40. 50. 60. iO from left to right in t he
uppe r part . Solid lines : ccc-Bcusslcesq case: dash ed lines : Bousainesq case .
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much smalle r tha n those of ,,~z. ~ -:10. ,,'(0) ~ - 0.9:), '1'( H ) = LO at the brea king

point for t he non -Boussinesq solution. Similar be hav iour is seen for oth er values

of.:o . As .:o increases the coc-Bcussiuesq solut ion bre aks at smal ler d values and

t he asympt ot ic limits of 'hi . '1'(0). ,,' (H ) for the Boussinesq solut ion increases in

magnitude (Figu re :i . I.'}).

Figur es ·;.16 a.nd .'i.l i are the pro files of th e isopycual displac em ent 1/(,;;) and /7'(.;;1

of t he in ternal so lita ry wave in. the den.sity field wit h. .:0 = ,0 for d = -l0. .'i0. 60 and

i O. T he solid lines are the resu lts wit hout the Boussinesq app roxim at ion and das hed

lines with the ap prox imat ion. It also show s th at the erro rs of '1(.;;) and 1 (.;;) in the

Boussinesq ap proximation increases as d increases . T he above a oaly sis confirms rhe

argum ect th at the Boussinesq ap proximation ma.y lead to ser ious erro rs for some

st ratificatio ns.

il



Chapter 6

Results for Density Stratifications

with Two Pycnoclines

[0 this cha pte r. we consider density stratifications with two pycnoclines cen t red at

height =, an d =l with th ickness d, a.nd dt.. respectively, The density (we cal led den sity

2 hereafter ] in t he und isturbed region is

p( .:) = L - a t t an b ( ': ~1 ':' 1- a1.ta.nb(': ~1 =1 ) . (6. 1)

a, and 4 1 are pa ra meters meas urin g the at rengt h of the stratificat ions. fo r a stabl e

stra tificat ion. "\ and a 1 are bot h posit ive. Whee the two pycnocl ines are wel l se pa.·

ra ted and away from t he boundari es. the density decreases by 2a l and 241 acro ss t he

two pycnoclin es. WI:"present th e result s of the conjugat e Bow model for this de ns ity
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Figure 6. 1: Densit y p (a) and .vJ (b) profiles for density 1 wit h a , = aJ: = 0.0 1.
d, =dt = 10. =, =10. =t =80 with the Boussinesq approximar ic n.

stratifica t ion for the par ameters al' at . =,.=J:.d, an d dJ with a ran ge of values in t ilt"

cases with and without the Boussinesq a pproximat ion.

In this case'. the two pycnoclines are the same distance from th.. mid-d ept h " nrt rt,..

density p( =) is eutisymmereic about th e mid-dept h. When th t" Boussinesq approxi-

ma t ion is made. .\' J:is symmet ric abou t the mid -depth . Figu re 6.1 shows the densit y

and ;Vt profi les for this de nsit y st ra t ificat ion wit h a = 0.01. d = 10 an d =, = 10 in

the Bcuseicesq case.

Figur e 6.2 is the var iation of .,,~~/ as a funct ion of =t with. an d wit h.out the Boussi -

Oeiq a pproximation. T he curves are sym metric about = 1 =.''i0.
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Figure 6.:l: Variation of 'l u I as a func tio n of = 1 for density 1 wit h al = II I = 0.0 l .
d. = dol = 10. =l = H - =1 ' Solid line: Boussiuesq approximatio n: dashed lin..:
wit hout t he Boussinesq appro ximat ion.

In t he Boussinesq case. the cur ves an" also symmet ric about =1 axi s. Wbe u =. = .; 0.

t he cent res of t he two pycnoclines overlap a nd th e st ra t ificat ion becomes t he single

pycnocl ine case wit h the centre of tb e pycnocline a t t be mid-de pth. so that the re is

no conjuga te flow solution . T h.. sing le pyeuocl ine st rat ifica t ion is a sp...-ia l •.ase- of

tbe two-pycnocline stratification. Corresponding to each value of =r- there a re eith ..r

two solu tions (1 '1ut values] or no so lutions ('1..£01 = 0 ). Whe a =. (also =1) is c10S<."

to t be mid -depth (:Jt.44 < =. < 67..;6 ). t here are no Don-zero so lutions. T bis result

shows tbat no Bar-cent red waves exist . Wh en the cen t res of the pycn ccliues are c lose

to the bounda ries (=1 < 14 or =1 > 86). t he conjug ate How break s clown. When

16 < =1 < :1:l.44 or 67.56 < =. < 84. th ere a re two solut ions for each value of =1' One

solut ion is an elevat ion and the ot her is a depress ion.

• 0
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fi gu re 6.;J: Den sity (a) and N"l. (b) pro files in undisturbed (solid line) and d isturbed
(das hed line) regions for densit y 2 with <1 ( =: a-J = 0.0 1. d1 = d1 = 10 an d =, = :J:!.H
(=J = H - .:d .

When t he Boussiuesq appro ximation is not made .V"l. is no longer symme t ric about

;; = .")0. :\ 0 od d numbe r of sol u t io ns ca n now exis t . FOf =, = .')1) th ere is a si ng le

pycnoc line cent red at the' mid-depth as shown in sect ion ."i. 1. thee> solution is a. small

eleva tio n. .-\5 =1 decreases a single small elevat ion is found unti l =1 ::::: :1• . For smaller

va lues of .:'1 a sing le-sma ll depression is obtained unt il at = 1 ::::: ;)1. the solu tion bifur -

cates. And two solutions. an ele vation and a depression an- ob tained.

Figur e 6.;) shows the densi ty a ud .\i 1 profiles in t he dist urbed and uudisrurbed

regions for a = 0.0 1. =. = ;J2.44 and d = to in the' Boussinesq case. In t his case

t here is no conjug ate flow solut ions. so that the disturbed profile is ident ical with rhe

undiat urbed profile.

In Figu re 6.4 . the curve of propa gat ion speed as a fun ction of ':1 is sym met r ic



'..
figure 6.4: Propagat ion speed c plotted as a function of =1_ Same cases as in Fig­
ure 6.2. Curves are for Boussinesq cas e (so lid line ) and nc n- Bo uss inesq case for
de pr essed wave (das he d lin e ) a nd e levated wave (dash dott ed line ).

about =1= ·')0 for both the Boussinesq and non-Boussinesq cases . T he propagat ion

speed increases as ;;\ approaches t he mid-dep t h . In the non-Boussluesq case. the

propagation speeds of the depression is slightly larger than tbat of the elevation .

6 .2 Case 2: al = a, = a, d j = d, =d, =, # H - =l

In thi s case the ;V'l profile is no longer symmet ric about t he mid-dept h. \Ve will

discuss the most significant findings for various values of a . d. =. an d =2- figure 0.5

shows the variation of the ext reme isopycnal displa cement as a fun ction of =\ for

va rious values of =;! using d = 10. T be resu lts witb the Boussinesq approximat ion

are plotted in solid tines and without the Bouss iuesq approximation with a = 0.01
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in das hed lines and a = 0. 1 in dash dott ed lines . T he most st riking feat ure of the

result s is the occu rrence of multiple solut ion branches.

The solutions with the Bcussinesq approx ima tion are discussed first . For =2 =.w.

th ree solut ion bran ches ar e found. T he main bran ch occurs in the range with =1

between about 14 an d 86 . The other two branches occur in a range with =1 c10$C' to

tbe boundaries. one is for =1 < 3..') and th e other for =1> 91.5. When =1 = .W. t he

two pycnoclines overla p to form a single pycnocli ne with its cent re at tbe mid-depth.

Th ere is no conj ugate flow solution. T his is in agree me nt wit h the sing le pycnocline

case. The main solut ion branch shows an elevat ion for =1< :)0 and a dep ression

for =1> :i0. T his is t he same feat ure as that of tbe single pycnocline case: when t he

cent re of tb e pycnocline is in tb e upper / lower half of the fluid layer. the conjugate Bow

solut ions are dep ressed /e leva ted . As =1moves furt her away from the mid-de pth . the

magn itude of the ext reme iscpyc nal displacement increases unti l t he breakin g solutio n

is reached at about =1 = 12 and 38. T here is no solut ion for =1 between about 3.;; a nd

12 an rl hoot w_n aho, ., J<oL~ anrl qI J' . Whe n =1is close to the boundaries. two eoluric ns

are ob tain ed again . For =1= :)() tbe two solut ions are elevations for =. < 8.·') and

depeessious for =. > 91..'). The solutio ns are anrisymmet ric about =1 = :>0.

As =1 increases t he forms of the t hree solution br a nches change. T he zero poin t of

t he main branch moves to the left . For =1between .'50 and about 67.6 th e zero point

is at H - =1. f or th is va lue of =1 t he buoyancy frequ ency is symmetric ab out t he

mid-depth. there is no conjugat e flow solut ion as discussed in t he previous sect ion .



The left solution bran ch increases and the right solut ion branch decreas es in size

and they bot h move downward as ': 1 increases. \Vben':l = 60. the right solut ion

bran ch disappears and th e mai n and the left br anches ove rla p. so that t here are th ree

solutions for some values of ': 1. T he region of overl a p increases as '::1increases. T he

two bran ches join and form corners at '::1 bet ween 67.6 an d 6,., (Figu re 6.6 ). For

large r values of ': 1 t here are ag ain two solutio n bran ches . One branch is a de pressio n

over a large range (from 0 to about 86) of ': 1 values (called the ma in branch) anti

the othe r branch (upper branch ) has two solutio ns for some values of ':\. T hus three

solut ions are obtained for some values of .:, . For'::1> 6, .,')6. there a rt" two solut ions

for ':1 = H - ': l ' one is an elevat ion and the other is a depression. Th is is the ease

discussed. previously in sec tion 6. L Along t he upper branch '1ert = 0 at ':\ = H - '::1

for ': 2 > 6, .:>6. T he elevatio n and depression ha ve t he sam e propagation speed and

th e sam e extreme isopyc naJ displacement in magn it ude. For example. for ':1 = 80

and ': 1 = :m. '1u. = :J;t 7401 and c = 2.0&lS07 for the elevation and '1~r. = - :1:1.'4l}'1

"n.' r =1.0fi.+':Ul' for the depression. T he lower part of th .. upp er bran ch crosses .:,

axis a t .:, = 20 (Figur e 6..:;g). The main solution branch fla ttens an d t h.. region of

the upper solutio n branch incr eases as ': 2 increases.

The solut ions for the non-Boussiuesq case with a = 0.01 are very simil a r to t h..

Boussinesq solutio ns. T he largest difference occu rs nea r the point where the rwo­

solution branches join near '::1 = 67.7 (Figu re 6.6) . ror '::1 = 67.6. the Bc ussinesq

solut ion bas the left and right breaches. while th e non-Boussinesq solution has uppe r
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Figure 6.6: J oio.io.g of solu tlou bra nches for deusity Z when 'k rt is plot ted as a function
of ':1' a ( = a1 . iii = d1 = 10. Boussinesq case (solid line) a nd noe -Bc ussinesq case
for a =0.01 (dashed line ). (a ) ':1 =67.6: (b ) ':1 =67.7.

and lower branches . Wb en a = 0.0t. there is ap proximately a -&% change in de nsity

from surface to bott om . Thi s is extremely large for coas ta l ocean region s. \\r"heo a

increases to O. l. the differences between the Bcussinesq and non-Bou ssinesq solut ions

increase. For ex amp le. when .:~ = ~o the left solution bran ch extends furth er to the

rie.:ht by about 2.4 in .:, value an d t he right solurion bran rh shrinks hy i\ simila r

amo unt. The form of the soluricu changes from left and righ t bran ches to upper and

lower branches for ': 1 is betw een 60 an d 65. wb en ': 1 = 80. t he upper branch in the

oco- Bcussinesq case is alwa ys abov e the .:, ax is.

Figure 6.7 shows the propagation speed c as a function of =, for den sity 2 wit h the

Boussinesq app roximat ion for different =1 values. T he prop ag a tion speed c increases

as ': 1 moves closer to =1 and the larges t c value occurs near .:, = ':z. For =1 > 67..'l6.
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Figure 6.8: Dependence of '1~%1 on d for densi ty:! in the Boussinesq case . Plot te-d as
a funct ion of =1 for =1 = 60 (a) and =1 = 80 (b) . (ll = "1 = 0.0 t. dl = d1 =.; (solid
line I. 10 (dashed tine ) and Vi (dash dotted line ).

the elevat ion and depressio n propag ate at the same speed c when =, = H - =1' This

is shown in pane ls [e ], (f ) and (gl in Figure 6.i where t he dashed line crosses [he

solid lint" at po int =, = H - =1-

Tbt" dt"pendt"n ,,-~ of '1~rl on d for =1 = 60 and 80 in the Boussinesq case ere presected

in Figure 6.8. .-\S d increases tb e ri~ht limits of th e left branch for =2 = 60 ant i rhe

up per bra nch fo r =1 = SO decrease an d t he regio n in which t he th ree solut ions exist

decreases signifi can t ly.
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f igur e 6.9: Variarlcc of '1~ce' (a) and propagarion speed c (b) as a. fun ction of =. for
decsity z with d t =1/1 = 10. a l = 0. 1. ti l = 0.0 t. =1 = H - =1_ Solid line ; Boussinesq
case: das hed tine : non- Bous si nesq case.

In Figure 6.9 tb e variat ion of 'Jut and pro paga tion speed. c are plotted as a [unction of

.:'1 for dens ity Z with d, = dJ = 10. d l = 0.1. (11 :=: 0.01 for t he cast" wbec = 1 = H - =._

l.e.. the two pycnoc lines arc- eq uidistant from the mid-de pth . T he pyc-nocline ce nt red

at = 1 is ten t imes st ronger than the ODt" ceurred a t =-:_T he resul ts are much like the

case- of single pycnocline centred at =, (Figu re :lAb ) and have th e properties of the

single pycnoclin e case . In ebe Bouss inesq case . there is no solution when =1= .)()

an d solu t ion is a n e levat ion / de p ress ion when t he ce ntre of the strong py cnocline (= 1J

is in the lower/upper half of t he fluid laye r. T he st rong pycnoc line dominates t he

behavi our . T here is DO mult iple solut ion in t his case .

Figure 6.l0 shows th e solutio ns as a function of =1 with =1 fixed for density 1
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f igure 6.10 : rJe:r. plotted as a. function of =. for den sity 2 wit h d = 10 in t h.. non­
Bousslnesq case for =.~ =20 (solid line ). 60 (dash ed line ), 80 (dash Jotted line ). Dot ted
line is the resul t when only the st ronger pycnocline presents. (a ) a l = O .D I.<1 ~ = 0. 1:
(b) "'. = D.l. a l =0.01.

with d, = dl = 10 in th e ncn-Bouasinesq case. 10 panel (a ) solut ions wit h .t.= 0.0 1

and 4-Z = 0. 1 a re shown for =1 = to . 60. 80. The variatio n of rJe:rt is small in the

whole region o f =1 . If on ly the stronger pycn ocli ne were present the solution would

be independent I,J f =1 and would be given straight linn with values of ab ou t :16.:1.

-9..'). and -:12.8 for =1 = m. 60. 80. res pec t ive ly [dotted lines in Fieure ti. lOa !. The

presence of the second weaker pycnoc line whose positio n depends on =. result s in

smal l varia t ions ab out these st ra ight lines. Simil ar conclusions can be mad e fcom

pa nel (b) . Since t he pycnocline cent red at =. is te o t imes st ronger tha n the other one.

the resul ts ar e mu ch like the case in which only th e pycnocline cent red at .:"1 exists.

Th e variat ion of t he cent re of the weaker pycno cl ine has littl e influen ce on t he results.

Figure 6. 11 shows tht" variat ion of propag ation speed c versus = 1 for t he same
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Figure 6. 11: Propagation speed c vers us =1 for riensi ty ~ with d = 10 in the 000­

Boussluesq case for =2 = 10 (solid line }. 60 (das hed line ). :ro (das h dot ted lioe ). la)
a , = O.Ol. a2 = 0. 1: (b ) a t = O.l. a2 = 0.0 1.

cases as in Figure 6. 10. T he maximum propag ati on speed occu rs a t differe nt place

comp ared to the single pycnocline case (Figu re !i. lOeb )). In the single pycnocline

case. t h... maxi mum ph ase speed occurs when =0 app roaches t he mid-dept h. [0 the

case with the st ronger pycnocl ine centr ed at =2. t he maxim um phase speed occu rs

when =, is near =1( Ftsure fi.Llal . If t he sreccge r pycn oc line is ce nt red at ':\. t h..

max imum phase speed again occurs when =\ is nea.r .;'1 - but in th is case its posi t ion

is shifted towards the mid -depth . ln all cases th e prop aga tion speed is within .'is(

change of t he value for a single pycnoc line with a = 0.1.

In figure 6.11 the ext reme isopyc nal displaceme nt "'n:e is planed as a func t ion of

':\ for de nsity 1 whe n t he la rges t density gradient of one pycnoclin e is double that

of the other for ': 2 = 60 and liO. T he do t ted line represen ts the res ult when only
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t he st ronger pycnoc line exists . It is clea r that the st ronger pycnocline dominates t he

behaviour and the weaker pycnocli ne only resu lts in a small varia tion. T he d ifference

from the single pycn ocline resul ts is that the mult ip le solutions exist for some .:,

values. fro m the above 4D.al.ysis we sugges t that the mul tipl e solutions occu r on ly

wbeu ebe st rengths of the two pycnoc line are compa rable . Whe n one pycnocline is

much st ronger t han t he other. the resu lt is much like th e one pycnocline cast" and

only one solu tio n exists.

f igure 6.1:) shows solut ions with out th e Bou ssin eaq app roxim atio n for a, = tJ~ =0.01

and d, f- d~ for .:~ = 60. f or com pa rison. t he results with d, = d"J are also shown.

Pa nels (a) . (c) and (e) show solutions with d, fixed and d, = ;'j(solid line ). 10 (das hed

line ) and I ·j (dash dotted line ) and pan els (b). (d) and (f) are solutions with d~ fixed

and d l = ;'j (solid line ). 10 (dashed line ) aod 15 (dash dotted line ). When.d, is IhN

at l~ and 10. the solut ions chan ge from a form with left and righ t [main] bran ches

to a form wit h upper an d lower (ma in ) bran ches as d~ dec reases . T he two bran ches

join at a value of d~ be tween 1;')and 10 for d. = l;'j and d~ bet ween 10 and .') for

d l = 10. w ben d, is fixed at :). the solut ion has left and right bra nches wit h t he

left branch decreasing as d~ increases . Uppe r and lower branches form for sufficient ly

small d~ . T he lower (main) branch o f the solutio n for d l = 1.j a nd d, =.')is much
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like the case' of single pycnocli ne centred at :, except for th e upper branch . The

curv e would be indepe ndent of : 1 an d would be a st raight line with a value of close

to - 10 if on ly t he pycnocline cent red at :, with d, = ~ were given. Panels (b) . (d)

a.od (f) sbow t he result s when d1 is fixed . It is clear from t he figures t hat the thi nner

pycnocline bas a st ron ger influen ce on the solut ion tha n does th e thicke r one. Thi s

is becau se t he thinner pycnocline has th e largest buoya ncy frequen cy. Figure 6. 14

shows the variat ion of '1."" ali a funct ion of : 1 in the same cases as in Figure 6.1:1 hu t

for =, =80. The solutio ns beve uppe r and lower (main) bran ches excep t for the case

of dl = :)and d-z = I.'l. where the solu t ion has left and right bran ches . \ \'b t'u .11 is

fixed. the upp er branc h shrinks and t he lower branch Hattens as d, decreases : when

d, is fixed . t he up pe r branch shrinks and t he lower branch flat ten s as d1. increases .

6 .5 Internal Solitary W aves Corresponding to Con ­

j ugate Flow Solutio ns

Whe n .' -:1. is sy mmetric about the mid-depth. the flat-eent red internal solit ary waves

corresponding to t he two conj ugate How solut ions can easil y be obtained if the con­

jugate How solut ions exis t , One is a wave of elevatio n and t he other is a wave of

dep ression wit h t he sa me amplitude in ma gn itu de and the sa me pro pagatio n speed.

When N~ is not symmetric abo ut the mid-depth , there are th ree conjugate flow so­

lution s for some values of =1' ~ow le t us see whether each solution corresponds to
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a El.at-centred internal solita ry wave . Figure 6. 15 shows t he t hree so lut ions for two­

pycnocline st ra t ificat ion wit h =1= ;10 and =2= SO using d = 10 (see Figure 6..i ).

T he ext reme isopycnal dis plac ement s correspondi ng to th e th ree solutions are · ;10.:1• •

-:1.0:3. 19.:JL. Internal solita ry waves correspo nding to the large dep ress ion and t he

elevat ion solu tio ns arc." easily s imulated using the fully nonlinear model descri bed in

Chapt er ;1. (Figu res 6.16 an d 6. 17). Waves corres ponding to t he sm all dep ression

ha ve not be-en fou nd. Whether th ey ex is t or not is not known. :\fore energy is needed

to obtain the Bar-cenreed waves of dep ression t han the flat-cen tred waves of eleva­

tion . T his is because the ce nt re of one pycnocline is disp laced to a position Dear

th e mid-dept h and the distan ce of the upper pycnocline to the mid-d epth is larger

th an t he lower pycnocl ine . Hence . whe n t he two pycnoclines are not symmet ric about

the mid-dept h. the two kinds of in te rna l solitary waves. one elevat ed and the ot her

depressed. ca n still be obtained. alth ough the magn itude of the ext reme iso pycnal dis­

placements and pro paga t ion speeds of the two waves are no longer th e same. Solita ry

waves corresponding to the two conjugat e flow solu tions for rbc case =1= to. =l =60

wit h d = 10 were also sought (see Figu re 6.51. Fla t-centred inter na l solireey wave

depressions were easily obtained (see Figu re 6.18 ) with the sam e pro paga tion speed

and maximu m isopycnal d isp lacement given by t he conj ugate flow de pressi on. waves

co rresponding to th e conj ugate flow elevat ion were not obtained. T his indi cat es that

for the two-pycnocli ne case not all conjugate flow solutions necessarily correspond to

fiat -centred inte rn al solitary waves .
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10

f igure 6.1·'): '1(:) profiles she wing t he t hree co njuga te flow so lut ions for ,Iensity :!
wit h il l = II I = 0.0 1. J . = .11 = 10. =. = :10. =2 = l'W.

Figure 6.16: Solit ary wave corresponding to the elevat ion solut ion in Figur e 6 . 1 ~ .
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Figure 6 . (7: Solitary wa ve correspondi ng to the lar ge r depression solut io n in f ig­
ure 6 .1·').

f igure 6.1$: So lita ry wave co rres po ndin g to t he de p ress io n soluti on fo r the case =. =
10. =2 =60 using d = 10.
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Chapter 7

Summary and Conclusion

For some st rat ificatio ns internal solita ry waves become fla t in tbe cent re at large

amp litudes . Th e horizont al uniform flow in th e centre of such waves is conjugate to

t he undisturbe d flaw outsi de of t he wave . In this t hes is a theoret ical model whic h

describes the How structure in eb.. centres of flat- centred internal sol ita ry waves has

been developed based on the conjugate flow conce p t. Th e conjugate flow solut ions

have been shown to give the dow in the cent re of such waves. easily providing such

quanti tit's as the extreme isopycnal displacement. wave prop aga tion speed. and t he

max imum fluid veloci ty. Flat-centred iutemal sol itary waves can exist ouly if the re is

a conjugate flow solu t ion. Stratificat ions given by hyperb olic tangent density profiles

with one and two pycnocline s were consider ed. It was found that in orde r to obtain

the non-zero conjug ate Bow solu tion t he maximum density st ra t ification should occur

somewhere betwee n th e two boundaries; if the cent re of th e pycnocline is too close to
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a bo undary. t he re is no conjugat e Bow solut ion . T his ind icates that t here sho uld be

no co njug a te- Bo..... solut ions if the bu oyancy frequency va ries monotonically from o ne

boundary to t he oth e r. Solu tion s wit h an d without t he Bc ussinesq ap prox imation an­

com pared. It was found th at when t he de nsit y di ffer ence fro m surface to bottom is ~%

or less. t he non -Bc ussin esq effects ar e sm a ll [er rors « 1%): if t he de nsity difference

is of t he order o f LO% or larger . t be no n- Bc ussinesq effects can be significa nt . T he

excep t io n fo r t his is if t he pyc nocli ne has a th ick ness comparable to hal f the Buid

dept h (e.g.• d > about :!O). in which case t he Bousslnes q approximation can resu lt

in larg t"r e rrors, o r comp letely false predict io ns of the existence of o f conjuga te How

solution s.

fo r tht" de ns ity stratificat ion with a. single pycnocline . in t he co nj uga te Howreg ion

t he pycnocl ine is disp laced towa rd t he mid-dep t h. In t he Bc usainesq cas e t he centre

of th e pycno clin e is in fact dleplaced slightly past t he mid-depth . T he ma gnitu de

of th e ext re me iso pycnal d isplacement gro .....s as th e ce nt re of t he pycnocline in th,.

und ist urbed Bow region m OH "S away from rb.. mid-de pth. \Vb",,:.! th"" (rul e.- vrth""

undisturbed py cnocline is too close to t he su rface o r bottom boundary t he ft" is no

valid conjugate Bow solution because o f '1'(= ) > I so mewhe re. In th is case . as the wa ve

am plit ude increases tb e internal so litary wave gro ws and t be brea king limit [ve rt ica l

isopycnals ) is rea ched befo re a Bat -ce ntred internal so lit a ry wave is formed. \Vlle n

t he Bonsslnesq a p proxima t ion is a p plied . th e wave propagat ion speed in crease s as t he

cen tre of pycnocl ine in the undistu rbed region moves tow a rd t he m id- dept h.
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The analysis of conj ugate flow solu t ions fo r sing le-pycnocli ne st ra tifications also

shows that ho rizo ntal shear Bow in t be cent re of a tlar-ceur red internal solitar y wave

is linear ly stable (minimum Richardson num be r> 0.2')) ift he pycn ocli ne is sufficient ly

thick. In o ur calculat ions. the condi t ion for the thickness pa rameter d is d ~ 804. For

th inn er pycnoclines the flow is potent iall y unsta ble for a ra nge of pycnocline positions

and t he reg ion of pot ent iall y unstable flow inc reases as d decreases . Th e resu lts show

that the flow is pot ent ially unstable for all values of =0 between 0 and H as d ~ O.

Thi s is ide nt ica l to the result of the two-layer lim it where the Iiow is always unstable

at sufficientl y small wavelengt h as the veloc ity is disconti nuous ac ross the interface.

For the st ra t ifica.tions with two pycn oclines. if the two pycn oclines are eq uidis­

tan t from the mid-dept h with t heir centres a distan ce of be tween 1'i.ii6 and :16 from

t he mid-depth. two conj ugate How solu tion s are obt ained . One is an elevat ion and

the ot he r is a dep ression of an internal solita ry wave. T he soluti ons corresponding

to the elevation and depr ession ha ve t he same magnitudes of wave am plitud e and

propag ation speed if the Bouesieesq approxi mat ion is app lied . Wh en one pycno cline

is centred in between 0 and 14. there are no valid solut ions beca use t he waves break

do wn. When one pycnoc line is cent red bet ween :1:1.4-1OUlJ ·')0. t her .. art" no solut ions

in rbe Bous sinesq case : but there is a sm al l elevat ion in the noc-Boussinesq case .

T he mos t sign ificant resu lt for some density st rat ificat ions with two pycnoclines

are the occ urre nce of three conjugate flow solutio ns. Thi s occurs only when the

two pycnocl ines are in the uppe r and lower half layers of the fluid respect ively and
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the rela t ive st rengt hs of the two pycnoclin es are compa rable. If one pycuocliue is

much st ro nger than the ceber [e.g.. at = 100 J ) . t his pbe ccmeccc does Dot occu r . For

at = 104J. the resu lts an- much like t he case of a single pycn oc line cent red at .:, . It t he

st rat ifica t ion variation is caused by t he varia t ion of dt and d1.. t he thinner pycnocline

seems to ha ve a lar ger etfect on t he resu lts . Our investigation indicates t ha t the

st ronger pycnocline (rep rese nted by a lar ger density gradien t ) seems to domi na te t he

conjug a te flow. If th e differenc e of t he st rength of t he two pyc nocl ines is very la rge.

the- resu lts would be similar to the CCUit' where only the srrccgee pycnocline were

present ed .

The internal solitary waves corres pondi ng to th,. multiple co nj uga te flow solutions

were sough t. It was foun d that for th e st ra ti ficat ion in which t hree conj uga te How

solu t ions ex ist. on ly two internal waves correspon ding to two of the t hree solutions

were obtained; for th e st ra tificat ion in which two conjugate How solutio ns exist and

.'li1.is not sy m met ric about rbe mid -depth . on.ly one Hat-centred inte rnal solit a ry wave

corres ponding to one of th e solutions was eas ily obtain ed. Th e phys ica l significance of

the conju ga te flow solution s for which there is n.o corres ponding flat ·centred intern al

solita ry wave is unknown.
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