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Abstract

In this thesis a theoretical model describing the limiting flow structure in the centre
of a fully nonlinear. flat-centred internal solitary wave in a fluid of finite depth A has
been developed using the conjugate flow concept. The conjugate flow solution gives
the vertical structure of the isopycnal displacement and the Huid velocity at the centre

of a flat-centred internal solitary wave as well as the propagation speed of the wave.

The mode-1 internal solitary waves are calculated in a il Ly ified fluid
given by hyperbolic tangent density profiles with one or two pycnoclines. Solutions

obtained with and without the B imation are d. The non-

Boussinesq results are almost identical with the Boussinesq results if the surface
to bottom density difference is 4% or less unless the pycnoclines have a thickness
comparable to the total fuid depth.

For density stratifications with a single py jugate fow are

obtained when the pycnocline is not too close to the boundary. The size of the valid

solution range decreases as the thickness of pycnocline i When the Boussi-

nesq i ion is applied. the itude of the isopycnal di
grows as the centre of the pycnocline in the undisturbed region moves away from the
mid-depth: the wave propagation speed increases as the centre of pycnocline moves
toward the mid-depth. [f the thickness of the pycnocline is greater than 8.4% of the
fluid depth. the parallel shear flow in the centre of a Hat-centred internal solitary

wave is linearly stable. As the pycnocline gets narrower the flow becomes potentially



nstable over an i ing range of pycnocline heights.
For stratifications with two pycnoclines multiple conj flow sol may
exist. When the two pycnoclines ace equidistaat from the mid-depth. one above and
one below. there are two solutions if the pycnoclines are well s 1 and not too

close to the boundaries. If the pycnoclines are close together there are no solutions if
the Boussinesq approximation is made and one solution if the approximation is not
made. If the two pycnoclines are not equidistant from the mid-depth there can be

0. L. 2. or 3 solutions. Flat-centred wave can exist only if there is a conjugate fow

solution. but the converse is not true. Having a conjugate flow solution does not

necessarily mean that there is a flat-centred internal solitary wave.
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Chapter 1

Introduction

[nternal waves occur in density stratified Huids due to gravitational restoring forces
acting on vertically displaced fluid. They are ubiquitous features of the ocean and
atmosphere. An internal solitary wave (ISW) is a special kind of internal wave. [tisa
vertically trapped wave propagating in the horizontal that arises because of a balance
between linear dispersive and nonlinear processes in the fuid (Osborne and Burch.
1930). Internali solitary waves have many important properties. one of which is that
they propagate with permanent shapes and speeds. The phase speed of the nonlinear
internal solitary wave exceeds the associated linear long wave phase speed co. and
larger solitary waves travel faster than smaller ones. In the past several decades.

great advances have been achieved in the general theory of nonlinear internal solitary

waves, including the devel of an asymptotic theoy.

The generation of internal solitary waves strongly depends on the geographic area



and local conditions. Most are generated by tidal flow over topography. In a density
stratified sea the tidal motion over a ridge or slope continually disturbs the pycnocline.
thus creating an internal tide which travels away from the area of generation. If the
internal tide is sufficiently large nonlinear effects cause wave steepening and then
dispersive effects result in the formation of a number of shorter higher frequency
waves including internal solitary waves.

Oceanic observations of internal solitary waves have often been reported. The
observations of solitary waves were first accomplished primarily in inland seas and
lakes or in the shallow regions of a shelf area (Ostrovsky and Stepanyants. 1989). [n
shallow water regions. the stratification often has a pronounced two-layer character:

the lower layer may be either thicker or thinner than the upper one. If the upper layer

is thinner (thicker) the internal solitary wave is a d i levation) (Keul,

1953). In the 1970s. Apel et al. (1975a. 1975b) reported how a subsurface wave can
be observed from a satellite because surface waves interact with the surface current of
internal waves which produces bands of choppy or calm water. The in situ measure-
meats in the coastal region off New York showed that the maximum vertical isopycnal
displacements were about 15 m. They argued that the waves were generated by semi-

diurnal tidal flow at the shelf break and appeared as sh d ing packets

of solitary-like waves 20-25 km apart. Sandstrom and Elliott (1984) observed solitary
waves generated by the internal semi-diurnal tide on the shelf edge of the Atlantic

coast off Nova Scotia. Canada. In each tidal cycle on the average two solitary waves



shaped like Korteweg-de Vries (KdV) solitons could be distinguished. [n some cases
there were four solitary waves of this type. The solitary waves were moving from the
open sea toward the coast at a speed of about | m/s. Cummins and LeBlond (1984)
presented the experimental observations of internal solitary waves in the Davis Strait
on the Atlantic coast of northern Canada. Their data showed about 20 solitary waves
shaped like KdV solitons. The characteristic length scale at half of the maximum
amplitude value of the internal solitary waves was 250-275 m. Based on the satellite
image data. Fu and Holt (1984) reported that there may be 20 internal solitary waves
generated in the Gulf of California in one tidal cycle. Numerical simulations have
shown that internal waves observed near the Georges Bank were generated by strong
tidal ow across the bank edge (Lamb. 1994). Nagovitsyn and Pelinovsky (1983)

observed internal solitary waves in the shelf zone of the Okhotsk Sea from a vessel

moored at a depth of 70 m using three ly distributed sensors 20
m long. Their experiments were carried out for 10 days in the summer of 1986 with a
maximum continuous cycle of measurements of 52 hours. The internal solitary waves
were observed to move from the open sea toward the coast. A total of 45 internal
waves were registered. with a typical amplitude of 5 - 10 m. and a spatial scale of 200
- 400 m. Halpern (1971 a.b). Haury et al. (1979). and Chereskin (1983) also reported
the observatiouns of internal solitary waves in Massachusetts Bay.

Internal solitary waves not only exist in shallow water. but also in deep waters up

to hundreds of kilometres from the shelf (Ostrovsky and Stepanyaats. 1989). Osborne



and Burch (1980) observed large amplitude. long internal solitary waves in the An-
daman Sea which has a depth of 1093 m. They found that the internal solitary waves
occurred in packets of rank-ordered waves. the largest leading the rest. The packets
occurred every 12 hours and 26 minutes. which indicated a tidal origin for the inter-
nal solitary waves. Apel et al. (1985) and Liu et al. (1985) reported internal solitary
waves in the Sulu Sea. After analyzing the observations and the dynamics of internal
solitary waves from their birth to decay at the coastal shelf. both Apel et al. (1983)
and Liu et al. (1985) point out that tidal waves produce an initial perturbation which
gradually becomes steeper. forms an undular bore. and then decomposes into a group
of about six solitary waves. This result is identical to that of Osborne and Burch
(1980). Pingree and Mardell (1985) found internal solitary waves in the Celtic Sea.
Their observations showed that internal solitary waves appear both on the seasonal
and on the main permanent pycnocline. Their propagation velocities vary from | m/s
to 2.5 m/s: they are essentially depressions of a pycnocline with amplitudes of 20-100
m and more. Their characteristic lengths vary hetween 200 and 3000 m.

Many theories have been developed in the study of vertically trapped horizontally
propagating internal waves. The most widely used theory is weakly nonlinear theory
which assumes that the amplitude of the internal wave is small compared to the
water depth and that the wave is long compared to a vertical length scale. Three
different theories have been developed according to the relative sizes of the fluid

depth H. a length scale h measuring the thickness of pycnocline. and wavelength L



(Koop & Butler. 1981). Each theory vields a different evolution equation to describe

the temporal and horizoatal structure of the wave. Shalls ter theory (B
1966: Benney. 1966) has H/L << | and h/H = O(l) and results in the Korteweg-
de Vries (KdV) equation. Deep water theory has H/L >> | and h/L << | and

results in the Benjamin-Ono ion (Benjamin. 1967: Ono. 1975). The finite depth

theory has /L << | and h/H << | which results in the Joseph equation (Joseph.

1977: Kubota et al.. 1978). These equations are the results of first-order theory and

they all have exact solitary wave soluti These solutions are app
which represent the dominant terms in an asymptotic expansion for the corresponding
exact solution of the governing equations. Alternatively. large amplitude long waves
in a weak stratification can be treated by similar asymptotic methods (Benney. 1978.

1982). [n weakly i theories the principal small € used in the

asymptotic analysis is a2 measure of the wave amplitude and is related to the ratio
of the vertical to horizontal length scales of the waves. The balance of the nonlinear
and dispersive terms gives the internal solitary wave solutions.

The theory of internal solitary waves was initiated by Keulegan (1953) and Long
(1956). They considered a two-layer fuid with a small discontinuity in density and
pointed out that the interfacial displacement is positive/negative if the upper layer
is thicker/thinner than the lower layer. Benjamin (1966) and Benney (1966) derived
the KdV equation by keeping the first order terms in the asymptotic expansion and

obtained a solitary wave solution. It predicts that solitary waves travel faster than

o



linear long waves. and that as the wave amplitude increases the waves become nar-
rower. The latter prediction is generally true only if the waves are not too large

(Lamb. 1997). The validity of the theory decreases as either the wave amplitude

faocik
or the g

Observations of internal solitary waves show that moderate or large amplitudes

are quite common. For these cases the modified KdV equation and g lized KdV

equation have been derived by including the second-order terms of the asymptotic
expansion (Lee and Beardsley, 1974: Miles. 1979. 1981: Gear and Grimshaw. 1983:

Helfrich et al. 1984: Helfrich and Melville. 1986: Lamb and Yan. 1996). The inclusion

of second-order terms signifi ly i the between the theory and

experiments.
The weakly nonlinear theories are based on the assumption that the amplitude
of a wave is small compared to the fluid depth. These theories are approximations

to the fully nonlinear theory. [n applications. the weakly nonlinear theories are often

extrapolated into amplitide regimes where the assumptions under which they are de-
rived are violated. Although it is remarkable that the predictions of weakly nonlinear
theories for some flow quantities agree quite favorably with experimental data even

some notable dis ies. both

for moderately large wave
and qualitative. exist for other important flow quantities (Tung et al.. 1982). For
example. weakly nonlinear theories predict that the propagation speed of a solitary

wave is linearly related to the wave amplitude. The experimental data of Davis and



Acrivos (1967) showed a definite and substantial slower rate of increase with ampli-

tude as it passed the weakly nonlinear regime. Also. weakly nonlinear theories predict

that the wavelength of the solitary wave d as wave litude i while
studies of fully nonlinear solitary waves show that for some stratifications both the
amplitude and the wavelength increase as wave energy increases (Tung et al.. 1932
Turkington et al.. 1991).

Tung et al.(1982) analyzed large amplitude internal solitary waves with the Boussi-

nesq imation using continuati hods and iteration schemes.
They proved analytically. and confirmed through ical computations. that with
the Boussi imation large amplitude locally-confined mode-1 internal soli-

tary waves are possible in a stratified fluid of finite depth. By using a variational

formulation of the governing equations. Turki et al.(1991) proposed a numerical

hnique for computing fully nonlinear solitary wave solutions in a stratified fAuid.
and presented several examples of mode-1 solitary waves. By studying the internal
solitary waves in a density stratified fluid of shallow depth. Akylas and Grimshaw
(1992) proved that solitary-like waves of mode higher than I actually develop oscilla-
tory tails of infinite extent consisting of lower mode short waves. Thus Turkington’s
method (Turkington et al.. 1991) can only compute mode-1 internal solitary waves.

For accurate evaluation of large amplitude internal waves. methods that do not
assume a priori the isopycnal displacement. 7. to be small compared to layer depth

must be used. The question of “how large can internal solitary waves be?” is of



considerable interest in the oil industry because large internal solitary waves can
affect oil rig production in marginal seas.
To find the maximum internal solitary wave for a given density stratification is

also of the th. ical interest. R many (Tung et al.. 1982: Meiron

and Saffman. 1983: Funakoshi and Oikawa. 1986: Grimshaw and Pullin. 1986: Pullin

and Grimshaw. 1938: Turner and Vanden-Broeck. 1988: Turki et al.. 1991:
Evans and Ford. 1996) have focused on large amplitude internal periodic and solitary

waves and have discovered that for some stratifications (including the 2-layer case)

the wave amplitude. measured in terms of the i isopycnal displ or

the maximum surface current. is bounded by an upper limit. Meiron and Saffman

(1983) proved the exi: of overhanging large internal gravity waves

for a two-layer fluid. That is. the wave shows an S-shape in which heavy Huid lies
above light fuid. As solutions of steady equations of motion. the S-shaped wave
is probably unstable and does not exist in nature. Pullin and Grimshaw (1985)
calcnlated the large amplitude waves of the overhanging forms in a two-layer Huid.
They only considered periodic waves. This phenomenon seems to be only possible
for periodic waves. as such behavior has not been found in work on internal solitary

waves (Turner and Vanden-Broeck. 1988: Evans and Ford. 1996).

Using integral i hni Turner and Vanden-Broeck (1988) studied the
internal solitary waves for a two-layer fluid confined in a channel of finite vertical and

infinite horizontal extents. They argued that as the wave energy level increases. the



wave amplitude first increases. but then the most d featureisab
of the wave while only a slight increase in amplitude takes place. The solitary wave
becomes flat-topped (or flat-bottomed). As the waves become broader the amplitude
and wave speed appear to approach limiting values. The flow in the broad midsection
of the wave becomes uniform and horizontal. Benjamin (1966) termed such a flow
“conjugate” to the uniform flow far upstream and downstream of the solitary wave
(the outskirts flow). Using the exact potential flow integral equation approach. Evans
and Ford (1996) studied two-layer internal solitary waves. They showed that the
concept of a conjugate flow could be used to successfully predict the properties of the
flow in the centre of a flat-topped wave in a two-layer fluid system.

The flow in the middle of a flat-centred internal solitary wave is conjugate to the
far upstream fHow. Thus. for a given stratification a fat-centred wave can exist only
if there is a conjugate flow. Because it is much simpler to find a conjugate flow for a
given stratification than it is to compute an internal solitary wave. in this thesis. the
existence of conjugate flow solutions for a variety of rontinuously stratified density
fields is investigated. We examine which kinds of density fields have conjugate How
solutions and explore the properties of those solutions. The results are useful for
improving our understanding of when fiat-centred internal solitary wave can occur.

The Boussi pproximation is in hic applications as the

total density variation is small. By this approximation. the density is replaced by a

constant reference value pg in the momentum equations except when it is multiplied



by g. Concerns have been expressed about the validity of the Boussinesq approxi-
mation in the context of internal solitary waves. Long (1956) and Benjamin (1966)
pointed out that the Boussinesq approximation may lead to serious errors for some

ifications. In our calculati we ine cases with and without this approxi-

mation and make comparisons between the g fow

We also use the fully nonlinear computational method to compute the internal

solitary waves with various litudes in a i Ly ified fuid. For large
amplitude internal solitary waves. comparison is made between the results obtained
from the fully nonlinear computational method and from the conjugate flow model.

The conjugate flow model is developed in Chapter 2. Chapter 3 describes the
computational model for fully nonlinear internal solitary waves. Chapter 4 verifies
that the flow in the centre of a flat-centred internal solitary wave is given by conjugate
flow solutions. The results for single pycnocline density stratifications are given in

Chapter 5 and the results for double pycnocline density stratifications in Chapter 6.

Chapter T contains the summary and conclusion.



Chapter 2

Conjugate Flow Model

For a di ional. i ible. inviscid. ifft fluid motion the gov-

erning equations are:

O+ T -VC) = —%p — pgh. (2.1

pe+C-Vp=0.

(2.3)

P(z.:_t) = (u.w) is the velocity vector in the vertical plane with u the horizontal
velocity in the r direction and w the vertical velocity in the upward = direction. Vis

2) and ¢ is the time. p and p are the density and pressure.

the gradient operator (£

respectively. g is the gravitational acceleration and k is the unit vector in the upward



direction. The rigid lid imation is made on the surface at = = H. where H is

the fluid depth.

Math ical proofs of the exi of mode-1 internal solitary wave solutions of
(2.1)~(2.3) exist (Tung et al.. 1982: Turkington et al.. 1991). Weakly nonlinear theory
predicts that as the amplitudes of these waves increase they become narrower. In the
fully nonlinear case this occurs for some stratifications. In this case solitary waves
grow in amplitude until they break (streamlines become vertical and overturning). For

other stratifications. the 1 h first d as the litude i but

when the wave amplitude passes a certain value. both the wavelength and wave am-
plitude increase as the wave energy level increases. With further increases in the wave
energy level. the most pronounced feature is the broadening of the wave: the wave

amplitude measured in terms of the maximum isopycnal displ is bounded by

an upper limit. The internal solitary wave becomes flat-centred and the How in the
broad centre of the wave (midsection) becomes uniform and horizontal (Tung et al..
1982: Turner and Vanden-Broeck. 198%). Benjamin (1966) termed such 2 midsection
flow to be “conjugate” to the uniform flow far from the wave (the outskirts flow).
This conjugate flow concept was first proposed by Benjamin (1962a.b) with refer-
ence to swirling flows and was pointed out to be equally valid to heterogeneous Huids
(Benjamin. 1962b). Turner and Vanden-Broeck (1988) predicted the limiting vertical

in the midsection by ing the flow. The localized. non-uniform flow

regions joining the uniform conjugate flow region and uniform outskirts regions were

12



termed as wave front or ~fluid surge™ regions (Turner and Vanden-Broeck. 1988).
Evans and Ford (1996) applied the conjugate flow concept to a two-laver fluid and
successfully predicted the amplitude and propagation speed of flat-topped or fat-
bottomed internal solitary waves. We extend the notion to a continuously stratified
fluid.

Consider a continuously stratified fluid with density 4(=) and depth H in an
undisturbed state and a steady flat-centred internal solitary wave propagating toward
the right into a fluid at rest at phase speed c. Suppose the fluid velocity in the centre
of a flat-centred internal solitary wave is {(=). In a reference coordinate frame moving
with the solitary wave at speed c. the flow field far ahead of the solitary wave front
is given by

(u.w.p.p) — (—¢.0.5(=). p(=)) (2.4)

while far behind the solitary wave front (at the centre of the flat-centred internal

solitary wave) the perturbed flow is given by

(u.w.p.p) — (U(2) = €.0.pp(=). 5ol 2)) - (2.5)

Defining n(=) to be the vertical displacement of the isopycnal at height = behind
the wave front. where the Huid velocity is {7(z) — c. relative to its height ahead of
the wave front. where the Huid velocity is —c. the isopycnals (or streamlines) passing

through heights = and = + d= in the conjugate flow region have heights = — (=) and

13



Figure 2.1: Geometrical interpretation of isopycnals passing through point (z. =) and

(£.z+ dz) in the conjugate How region.

2+ dz — (= + d=) in the outskirts (see Figure 2.1). Thus. conservation of volume

gives

(C(z)—c)-(=+d=—

or in the limit as d= — 0.

(z)=c-7q'(z).

The conservation of density gives

FAEEY:

= n(=))-

—el[z+dz—n(z+d=)]| = [z=n(z)]) = —eldz—n'((2)dz] (2.6)



Applying Bernoulli's theorem along an isopycaal with height = and = — 5(=) behind

and ahead of the wave front respectively, gives

| 2 3
5P (NU(=) =€) + Bpl(=) + 9pp(2)= =
i :
58z = n(=))e + B(= = n(=)) + ga(= — n(=))(= = n(=))- (2.9)
Using (2.7) and (2.8) the above equation gives

&
5A(= = n)ln'(n' = 2] + Bp(z) = (= = n) — gAl= = n)n. (2.10)

differentiating this equation with respect to = and using

di_(/ﬂ-' —n(z)) = (=) (L=n'(=))- (2.11)

57z = (=) - [L = 7' ()n'(2) = 2)]

+4(= = n(=))*(n'(2) — n"(2)

dpy(=)
&

225 = (=) = gp(= = n(=)'(z)

=9p'(= = n(z){L = n'()In(=).(2.12)



The hydrostatic conditions give

= = —pl=)g. (2.13)

dpy(=
—‘:_E ! —9p5(=) = —gp(= — n(=))- (2.14)

Substituting (2.13) and (2.14) into (2.12) we have.

& s
3F== (=)' (2)(0'(2) = 2) = p(= = n(z))n"(2) = =gd'(= = n())n(z). (2.15)

Denoting
(2.16)
(2.15) b
7=+ = (2.17)
with boundary conditions
n(0) = n(H) =0. (2.18)

The nonlinear eigenvalue problem (2.17)-(2.18) is solved numerically by a stan-

dard shooting method in which (2.17) is solved by the initial value method for initial



conditions 7(0) = 0 and some guessed value of 7/(0). This results in a value 7(H)
which depends on c. In general there is a discrepancy between the n(H) value and
the desired boundary condition. A root search is then done to determine c in order
to satisfy the boundary condition. [n general there are an infinite number of roots. or
eigenvalues. for ¢ corresponding to different modes. We focus on mode-1 waves only.
in which case we take the largest eigenvalue. The corresponding solution (=) has no
zeros between the bottom and the surface. For the linearized eigenvalue problem. by
choosing any value of n/(0) we get a solution n(=) and a - (=) is also a solution for
any constant a. So that we are free to choose any nonzero value for 7/(0) in searching
for the solution. This is not true for nonlinear eigenvalue problem (2.17)-(2.18) since
here the solution depends on #/(0). We need an auxiliary condition to determine the

value of 7'(0). and this condition is obtained by idering the hori | flow force

in the fluid.

The horizontal low force F acting on a vertical section of the system is equal to
the horizontal pressure force plus the fux of horizontal momentum (Benjamin. 1966).
that is

H 2
F=/ (pd= + pu*ds) (2.19)
o

where p is pressure. p is density. and u is the velocity of the fluid. For a steady

flow system. because there is no external horizontal force acting on the system. the

horizontal flow force acting on any vertical section of the system is the same. i.e.. '



is independent of =. This is easily proved. from (2.19) we have

H
&= = /o(p,+(;m"),)rl:

H
B jﬂ (P« + 2puts + u?po)dz. (2.20)

By using the continuity equation

ur +w: (2:21)
the above equation becomes
dF H 2
& = L (pz + puur — puw. + u’p.)d=
H H "
= / [p= + pluus + wu.)|d= +/ (psuw + u?pz)d=
o o
H H
= /; [Pe + pluus + wug)lds + A ulups + wpsld=. (2.22)

From the momentum conservation and mass conservation equation in a steady fow

system. we know

p= + pluur + wu.) =0.

and

ups + wp. = 0. (2.24)



So that (2.22) becomes

dF
5 0. (2:25)

The horizontal flow force is independent of =.
By setting F equal on the two vertical sections far ahead of the wave and at the

wave centre we have. using (=) = oy'(=).
H 5 H
[ @atz = nene) = 17 + () de = [ (@5 +5) ds. (226)

Changing the variable of integration for the right-hand side of (2.26) to s by
= =s —n(s). then d= = (1 — n'(s))ds and using s = 0 when = = 0. s = H when

== H. this side of the equation (2.26) becomes
H H
/ﬂ (¢*8(=) + pt=)) d= =L (*ts — ) + s — () [L = '(s)]ds.  (2.27)
If 5 is replaced by =. the right-hand side of equation (2.27) can be written as
H G =
[ (@t = =0 + otz = ntz) 18 = o'(d=. (2.28)
Thus (2.26) becomes

H
[ (521 = B = nNlt =211 = o= = n()[L = 1'(=)' () d= = 0. (229)



To simplify. we use 7 to represent (=) in the following equations. From (2.9) we

have.

Bo(2) = B(=— 1) = 5E5(= —n)r'[2 — 0] + 9Bz — n)l= — n] — gBp(=)=.  (2.30)

Substituting into (2.29). gives

H - ,
[ (== mn' + 3630z = a2 = ) = gp(= = i — otz = )1 = )’) d =
(2.31)

or

/n” B(=—n)n'd= +/UH (éC"ﬁ(: —n)n"™ —gpl= — '7)7I) d==0.

Using integration by parts and the hydrostatic condition (2.14) the first term can be

rewritten as

H dp H
/P(:-n)nd- —/ " AL — ')z L ghl= =M1 —nind=. (233)

Thus. equation(2.32) becomes

/QH (yﬁ(: =’

(2.34)




Integrating by parts of the first term we have
v H -
/ 98(= — n)m'dz = —/u (L= )3z = m)N3(= = n)d=. (2.35)

The governing ODE (2.17) is now used to replace V*(= —n)7 and then the right-hand

side of (2.35) becomes

np(=—n) (Tl —i) d=

G . 2 (71
/yﬂ(:—'l)vmd: = el s

o 2

1 N3(=—p)
¥ g

(L —n')n'(n" —2)d={

'e\‘o\

Using the definition of .V*(z — ) given by (2.16) and integrating the first term of the

right-hand side by parts we get

L e o P Vi A
[ otz = mmtaz =& [ ptz = i % - g, (237)
Substituting (2.37) into (2.34) gives the auxiliary condition

H
/o plz—n(z))n™(=)d= = (2.38)

which 7(=) must satisfy.

Since U() = en'(=). the auxiliary condition (2.38) indicates that in a ref

frame fixed with respect to the outskirts region. the kinetic energy flux is zero.
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[n order to find the solution we must find the root of
7, o 3,
T/ = [ fz = (=)= = 0. (2.39)

Given a value of 7'(0). the eigenvalue problem is solved for c. n(=) and 7'(z). With
these solutions T(7'(0)) can be evaluated. The root search is done to find the value
of n’(0) for which T(n/(0)) = 0.

[t is important to point out that the valid solution of n(=) must satisfy the condi-
tion

fiz) <1 (2.40)

because the streamlines. which pass = at the centre of the wave and = — (=) far ahead
of the wave. are assumed to extend to +oc. Thus = — n(z) must be an increasing

function of =. so

d
Zz=n(= o
ZE-nn>0 (2.41)
ie..
L-7q'(z)>0 (242)
or
7(z) < L (2.43)
When n/(z) = | the breaking (U/(z) = ¢) of the conjugate flow solution occurs.



If the Boussinesq approximation is applied. the problem simplifies considerably.

The nonlinear eigenvalue problem (2.17) becomes

N
7"(=)+

—(:—;"(:—”r/(:) =0 (2.44)

with boundary condition

n(0) = n(H) =0. (2.45)

The auxiliary condition (2.39) used to determine 7/(0) becomes

H
T(/0) = [ n*(z)d= = 0. (2.46)



Chapter 3

Computational Model for Fully

Nonlinear Internal Solitary Waves

3.1 Governing Equations

Turkington et al. (1991) developed 2 method for computing the exact steadily trans-
lating solitary wave solutions of the equations (2.1)~(2.3). [n this chapter this method
is discussed for the simpler case where the Boussinesq approximation is made. Under

the Boussinesq approximation equations (2.1)-(2.3) are



ur+w. =0. (3.1)

pe+ ups + wp: = 0. (3.2)

polte + uuy + wu) = —ps. (3.3)

polw + vw: + ww:) = (3.4)

where r and = are the hori: | and vertical ly. p is density.

and po is the reference density. p is pressure and (u.w) are velocity components in

borizontal and vertical directions. and g = 9.81m/s? is the acceleration due to gravity.

A streamfunction ¢ is introduced which satisfies u = ¢.. w = —u,. Defining vorticity

as ¢ = u. — w,. equation (3.2) can be written as

pe+d(p.w)=0 (3.5)

where the notation J(A. B) = A.B. — A.B.. Manipulating the curl of ions (3.3)
and (3.4) we have

poloe + J(o.w))— J(p.g=) =0. (3.6)

For the nonlinear solitary wave. assume the solutions of (3.5) and (3.6) have the form
p = p(r—ct.z),0 = o(z—ct. z) for some positive wave propagation speed c. The fuid

is bounded by a fixed boundary at = = 0 and = = H. respectively. The fluid domain

o
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is —oc < r < 42c. 0 < = < H. In a reference frame moving with the propagation

speed c. the motion is steady and equations (3.5) and (3.6) reduce to

J(p.w —cz) =0. (3.7)
po(J(o. 0 —cz)) — J(p.g=) =0. (3.8)
The ion speed c is unk and needs to be determined as part of the

solution.
The undisturbed density stratification of the Huid at r = +oc is specified by a

function p(=) satisfving

A(z)>0. p(=)<0 (0<=<H) (3.9)

A solitary wave disturbance is a solution of (3.8) satisfying the asymptotic conditions

ple.z) =+ p(z). o(r.2)=0. e(r.2)—=0. as |z] = <. (3.10)

For the study of solitary waves we impose a restriction that every isopycnal surface
(p(z.z) = constant) must connect to r = —oc and r = +00. or equivalently. that
there are no closed isopycnal surfaces (entrained eddies). The isopycnal displacement

n(z.z) at point (r,z) represents the vertical displacement of the isopycnal surface



Figure 3.1: Geometrical interpretation of the vertical displacement n(z. =) of an isopy-
cnal surface passing through a point (z.z).

passing through the point (z.z) from its undisturbed level as z — +oc. Hence. the
density in the disturbed region can be represented by the density in the undisturbed

region (Figure 3.1) via.

ple.z) = pl= —nlr.2)). (3.11)

A wave of elevation (d ion) is iby n >0 (7 < 0) in the domain.
n =0 at the upper and bottom boundaries and n — 0 as £ — +oc.

The (p. o) system in (3.5) and (3.6) may be expressed in terms of 7. Note that

JU(A). B) = f(A)J(A. B) = J(A.f'(4)B) (3.12)



and using (3.11). equation (3.7) vields

J(p(z=n)e—cz) = pz—n)J(z—nw—c3)

= ple=—nJ(z=—ne-—a—-cd=—n)=0. (3.13)

Jiz=nw—-ep—cz~n)) = Jz—nv-em)—clz—n.z—n)

= J(z=nue—e). (3.14)
so that (3.13) gives
J(z=n.—cn) =0. (3.15)
This implies that
Riz—np)=v-a. (3.16)
Now
v—=0. =0 as r—x. (3.17)
Using this in (3.16) we have
R(z)=0 (3.18)



for all = so that (3.16) gives

- (3.19)

Equation (3.8) is now reduced to

—pocS(o-n—2) + 5 (= —n)J(z=n.92) = J(z—n.—poco + (== n)g(==n+n))

= J(z=n.—poco +§'(= — n)gn) = 0(3.20)

from which follows

J(z = n.—poco + p'(z = n)gn) = 0. (3.21)

So that

—poca + §'(= — n)gn = G(= — n). (3.22)

Setting r — +oc in (3.22) and using e -0 and 7 —0as o — +oc we get

G =0 for all =. so that

—poco + p'(= —n)gn = 0. (3.23)
or
a & v
2= Lyp(z—n). (3.24)
e e

Combining (3.19) and (3.24) and using o = 7*¢, the nonlinear eigenvalue problem



becomes (Turkington et al.. 1991)

where the eigenvalue parameter is defined by

=

y= I (3.26)

a2

and (=) is the density profile far from the wave. Equation (3.25) simplifies to equation

(2.44) if n depends only on :. The boundary conditions are
n=0 at ==0.H. (3.27)

n—0 as r—toc. (3.28)

The iteration procedure used by Turkington et al. (1991) to solve (3.25)-(3.28) is
based vn a variativnal formulation of the problem. Equations (3.25)—(3.23) are pre-
cisely those that we use when a streamline displacement. n(z.z) . is sought which
minimizes the kinetic energy subject to the constraint F(n) takes on a prescribed
value. Define

Fin) = [ [ fle.n)dz.dz. (3.29)



where

Fen = [Mlatz = ) = it - lde (30)

F(n) is proportional to a potential energy. The value of F(n) will be denoted by A.
It will be used to define the wave amplitude in the remainder of this thesis.
The iteration procedure can be divided into the following steps:

(I). Give the value of A which d ines the litude and ! h of the

g

internal solitary wave.
(II). Estimate the initial value n°.
(I11). Solve

PN i " s
vt = e~ ) (3.31)

Wé=0o0n:z=0.H
W* = 0as r— +oc.

where k =0. 1.2 ...

(IV). Evaluate integrals

Futy = [ [ flznt)deds (3:32)

L - i T

S = _pD—H//F (= — n*)n*W¥ded= (3.33)
e So kN RV 2 334
=y [ 7= = n ) ded. (3:34)



(V). Define

e m{uﬂ'l"'_’f%}

St
(VI). Update

g = ARHLE

Assuming convergence as k — c it is easily seen that

S = A*S1.
— F(y™
X" = max (MH*).
Sz

This gives

FA®)=4

and 7= solves equation (3.25) with A = A™.

Once the eigenvalue A and eigenfunction 7 are

speed of the wave c and jon ¢ can be obtained easily.

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

phase

(3.40)

(3.41)



Thus. the horizontal and vertical velocity of the fluid can be expressed as

u=a.. (3.42)

and

w=—en.. (3.43)

3.2 Numerical Method

Equation (3.31) is the Poisson equation: for a given density field. the right-hand
side of the equation is known. There are many methods to solve the Poisson equation
(Hockney. 1965: Buneman. 1969: Dorr. 1970). but we use the direct marching method
(Roache. 1978). The basic idea is to solve a boundary value problem with split bound-
ary conditiouns. by guessing the missing conditions at one boundary and marching the
solution. as an initial value problem. to the second boundary. The resulting final
values at the end of the march are compared with the desired boundary values. and
on that basis the guessed conditions are corrected and the march is repeated for the
final correct solution. For linear equations. the correction can be exact and only
two marches are required to obtain the solution. This method is commonly used for
ordinary differential equations. Roache (1978) proved that this method can also be
applied to Poisson elliptic equations and is stable if a cell aspect ratio Ar/A= > I,
where Az and Az are the grid spacing in the r and = directions. respectively.
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To simplify. equation (3.31) can be written in the form of

(3.44)

We consider a rectangular domain bounded below by = = 0 and above by a rigid lid
at == H and r = +L at the left and right boundaries. The domain is divided into /
evenly spaced grid cells in £ direction and J grid cells in = direction. The boundary

conditions are

n=0 at ==0.H. (3.45)
n=0 at z=+L (3.46)
The second-ord, five-point fnite differencing scheme is

=Ff, (3.47)

Wigry —2W,, + Wiy, % Wejer —2W, + Wi,
A2 As?
where Az is grid space in £ direction and A: is grid space in = direction. The
boundary condition is W = 0 at upper and bottom as well as left and right boundaries.
First. it is necessary to pick an arbitrary vector of provisional values W}, just
inside the bottom boundary. say W}, = W,o. This W/, is in error by the error vector
€it

Wo=W,, +eir (3.48)



With WY, so chosen. the remaining provisional values for 1 < i < (/— 1) and j up to
J (surface boundary) are calculated in one march starting at (i.2). Equation (3.47)

can be rearranged as:

Wiin = A2, + (242000, — a(Wiy, + Wiy ,) = Wi, (3.49)

where a = (Az/Az)?. The correct boundary values of Wy, at the left boundary
and W7, at the right boundary are used in equation (3.49) when needed. The error

propagation equation is then

€ipnt = =iy, + (2 +2a)e; — acipr, — € (3.50)

with boundary values along the bottom. left and right boundaries of

eo=ep; =er;=0. (3.51)

After the first march of W/ . the values of the final error vector ;s are calculated
from

s = Wis = W, (52)

where W; ; is zero (this is the known boundary).

From equation (3.50) a linear relation between e, ; and e, may be established.



allowing the solution for e;, in terms of €; ;. With e, known. the correct values of

W1 are obtained from (3.43) and a second march using the recursive relation equation

(3.49) (with W replacing W") blishes the final

The method to relate e;; and e, s is as follows: from equation (3.50) we have
Ejp=C-E, —Ejy (3.53)

where E; = {e;,}.i=1.2.-+-[ — L. and

242 —a 0 0
-« 242 -a 0 0
0 -« 242 —a 0 0
= (3.54)
0 ¥ : . —a 2422

is a tridiagonal matrix.

We can also relate £, and E, in the form

E; =GBy



From (3.53) and (3.55) we know that

E; =CE, - Eo = C2E\.

so that

Similarly. we can get

Ey=CE;— Ey=(C-Ca—)E;

C3=C-C—[=C*-1.

[n general we have

E,=CE;y —E,3 =(C-Cjoy = C2)Ey

so that the general formula for C, is

C; =260 = Cas:

Since £, is known and C'; is known we can solve

E;=CE,.
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(3.58)

(3.59)

(3.60)

(3.61)

(3.62)



to get Ey.



Chapter 4

Verification that the Flow in the
Centre of a Flat-Centred Internal
Solitary Wave is Given by the

Conjugate Flow Solutions

[n this chapter. we use the computational model discussed in Chapter 3 to compute
internal solitary waves for a variety of wave amplitudes. A continuously stratified
fluid for which flat-centred waves form at large amplitude is used. The purpose is
to show how the flow in the centres of these waves converges to the conjugate flow

solutions.



4.1 Model Initialization

The fully noulinear model is solved in a rectangular domain bounded below by = = 0
and above by a rigid lid at = = H and x = +L at the left and right boundaries. The
domain is evealy divided into / grid cells in the horizoutal () direction and ./ grid
cells in the vertical (=) direction.

The background state consists of a stably stratified fluid at rest. The density is
nondimensionalized and scaled by a typical value of 1000 kg/m?. so that the nondi-
mensional density is around 1. Other quantities are nondimensionalized by a length
scale of 1 m and a time scale of 1 s. The first density (density 1) profile we used in

our study is a single pycnocline density stratification. given by

() = 1.0 — a - tanh( (4.1)

where = represents the centre of the pycnocline. d the thickness of the pycnocline. and
a/d the strength of the density stratification. With different a. z and d values. the
above formula gives different density profiles. The density and buoyancy frequency

profiles with a = 0.01. 70. and d = 10 are given in Figures 4.1 and 4.2.

In our model simulation. the nondimensional water depth is H = 100 and L is
set to be 5000 initially. After we compute the wave we compare L and the wave
half-length. L should be at least four times that of the wave half-length. The wave

half-length is the horizontal width measured from the wave centre to the location
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Figure 4.1: Density profile for density | with a = 0.01. 7 = 70 and d = 10.
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Figure 4.2: Buoyancy frequency profile for density | with a = 0.01. z = 70 and d =
10.



where the surface horizontal velocity is one-half its maximum value. The coordinate

system is set up such that the centre of the initial wave is at « = 0. The largest

buoyancy frequency for this density stratification occurs at = = zo. If 75 > 50. the
internal solitary wave is a wave of depression: if 5 < 50. it is a wave of elevation.
According to the weakly nonlinear theory. if 2 = 50 there is no internal solitary wave.
The value of A, which determines the extreme isopycnal displacement 7,z and wave
half-length. is chosen before the calculation. For small A values. i.e. small amplitude
waves. we initialized our model based on the KdV approximation. For large A values.
the model is initialized by giving a wider wave. The initial guessed value of f(z. =)
will not affect the final result. even with a poor initial guess. Nevertheless. it affects
the speed of convergence.

The boundary conditions are

n=0 a ==0.H. (42)

n=0 at r=+L. (4.3)

(4.3) is an approximation to the correct boundary conditions for a solitary wave.
namely that n — 0 as £ — +oc. Thus. the left and right boundary conditions will
introduce a small error into the final results. This error. which will be discussed later.

can be made smaller by increasing the domain size L.



The stopping criterion of the iterative algorithm in our computation is
max (jn*! = 7¥) < 5= 107 (44)

in the whole domain. where 7* is the solution after k iterations.

4.2 Model Results

We have computed internal solitary waves corresponding to different A values using
density | with @ = 0.01. 5 = 70. and d = 10. Figure 4.3 gives the surface current
profiles for different A values. [t shows the shape of the internal solitary waves cor-
responding to different A. The absolute value of the extreme isopycnal displacement
Nezt is plotted as a function of A in Figure 4.4. Also shown is the 7.z, obtained from
the conjugate flow solutions. no. [t is clear that when A increases n.; increases
monotonically and asymptotically approaches the conjugate flow solution. Figure 4.5
shows the variation of wave half-length A with A. When A increases from 0.1 to 2. A
decreases. This behaviour is predicted by the KdV equation. For large A. A increases
linearly with A.

The curve of the propagation speed c as a function of A is similar to that of ..,
versus A. The propagation speeds of internal solitary waves reach their upper limit
value of ¢ = 1.98289 for A = 50 and subsequent larger values (Figure 4.6).

Figure 4.7 shows the relationship between .., and A. For small amplitude waves
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(Meze < 3). the fully nonlinear model results agree well with the KdV model results.
AS ez increases from about 5 to 20. the wave half-length is almost unchanged. When
TNeze is between 20 and 20.5. increasing A causes both n... and ) to increase. When
Nezt is greater than about 22. increasing the wave energy results in an increased wave
length with insignificant change in n.z.

In our calculations. the numerical resolution is Az = 12. Az = 1. For A = 50.
the internal solitary wave propagatiou speed reaches its upper limit value of 1.98289
and remains constant for larger values of A. The extreme isopycnal displacements

2.8577 and 22

for A = 50. 70. 100. 120 are 577, respectively. It is

apparent that both the extreme isopycnal displ and wave p fon speed
reach their upper limit values when A = 100 for internal solitary waves in this density
field.

We have also calculated the extreme isopycnal displacement .7 and wave propa-
gation speed c./ for the Hat-centred internal solitary wave in the same density strati-

fication (density 1) nsing the conjugate flow model. The accuracy used in finding the

root of equation ( 2.46) is 107%. The results are n.; = 22.8616 and c.; = L9827,
respectively. It is obvious that feg is bounded by and approaches asymptotically
to nes as the internal solitary wave becomes flat-centred. Wave propagation speed
¢ also approaches asymptotically to c.; as A increases. The c value of a large fat-

centred internal solitary wave obtained from the fully nonlinear model for A > 50 is

about 0.0076% larger than the conjugate flow model solution. Resolution tests show
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Figure 4.4: Magnitude of the extreme isopycnal displacement 7. as a function of A
for density | with @ = 0.01, zo = 70 and d = 10. Sohd lme fully nonlinear model
results: dashed line: itude of the extreme isopy calculated from
the conjugate flow model. Stars correspond to the values of A used.
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Figure 4.6: Wave propagation speed c plotted as a function of A for density | with

a =0.01. 5o = 70 and d = 10. Solid line: fully nonlinear model results. dashed line:
conjugate flow model results. Stars correspond to the values of A used.
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Figure 4.7: Wave half-length A plotted as a function of the extreme isopycnal dis-
placement .., for density | with a = 0.01. % = 70 and d = 10. Dashed line: KdV
model results.

that the error di as the ical lution i this indi that the

is a result of error.

The vertical profiles of the horizontal velocity u at the centre of the wave for
different A values are shown in Figure 4.3. The curves for A = 50. 70. 100 and 120

are indistinguishable from the j How solution. [t reveals that the vertical

profiles of u approach the conjugate How solution as A increases. Therefore. the
conjugate flow model solution describes the flow at the centre of flat-centred internal
solitary waves.

We assessed the numerical simulation error caused by the left and right boundary
conditions by examining the numerical results with different L values. Our results

show that the results are almost not affected if the domain size (2L) is eight times
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Vertical profiles of horizontal velocity u for A = 0.1.0.25. 0.5. 1. 2. 3. 4.
20, 25. 30. 50, 70. 100, 120 and for conjugate flow solution. Dotted line:
fully nonlinear model results; solid line: conjugate flow model solution. Dotted lines
for A =50. 70. 100. 120 are indistinguishable from the solid curve.

larger than the wave half-length. [n our calculations. the domain is about ten times
larger.

[n order to check whether the internal solitary wave obtained from the fully non-
linear model will retain its shape and phase speed in propagation. we initialized a
time stepping numerical model (Lamb. 1994) which solves equations (3.25)-(3.28)
with 2 solitary wave and let it evolve for 20 hours. The reference frame moves with
the phase speed of the internal solitary wave. so that the wave centre always stays at
£ = 0 if the wave propagates with constant phase speed. Figures 4.9 and 4.10 show
the internal solitary waves for A = 25 and A = 100 at time t = 0 and t = 20 hours
with numerical resolution Ar = 10 and Az = 1.67. [t is clear that twenty hours later

the waves retain their shapes. The centres of the waves are at about £ = 50 at ¢ = 20
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hours. This means the propagation speed decreases during the wave evolution. Ex-
periments show that the error is caused by the numerical dissipation. with the error

as the

is i d. When Ar = 6.67 and Az = 1. the shape
and position of the wave at ¢ = 20 hours is almost exactly the same as at ¢ = 0 with

its centre stay at £ = 0 (Figure 4.11).
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Figure 4.9: Density contours for A = 25 at (a) t = 0 and (b) t = 20 hours. Wave is

propagating to left.
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Chapter 5

Results for Single Pycnocline

Density Stratifications

Meiron and Saffman (1983) and Grimshaw and Pullin (1936) have discovered “over-
hanging” limiting internal periodic wave profiles at very large amplitudes. Turner and
Vanden-Broeck (1938) argued that these probably arose as a consequence of their use
of periodic boundary conditions in their computations and that genuine limiting in-
ternal solitary waves would tend to be very wide with a uniform flow in the middle
region that is conjugate to the outskirts flow. a uniform flow far from the wave in the
frame moving with the wave. It is of interest to investigate the limiting amplitudes of
internal solitary waves. measured by isopycnal displacement. We showed in Chapter
4 that the.canjugal.e flow model solution gives the upper limit of phase speed and
isopycnal displacement for curves with open streamlines for stratifications in which

33



flat-centred waves exist provided that a conjugate flow solution exists. [t may be pos-
sible to have lager waves with recirculating regions (Davis and Acrivos. 1967: Tung
et al.. 1982: Stamp and Jacka. 1995). The waves with recirculating regions have
been observed experimentally and they are mode-2 waves (Stamp and Jacka. 1995).
The properties of the conjugate How model solutions in a single pycnocline density
stratification with and without the Boussinesq approximation are investigated in this
chapter.

Two deusity profiles are used. The first one describes a stratification with a single

pycnocline centred at z;. given by

A(z) = 1.0 — atanh( 7

The buoyancy frequency .V is given by

In order to examine the effects of the Boussinesq approximation. we also use the first

density profile in a slightly modified form. This gives the second density profile as

(=) = 1.0 — 0.001d tanh (= (5.3)

This density also has the hyperbolic tangent profile. and is the same as the first with
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a proportional to d. For the second density stratification. V* is

(5.4)

In the limit of d — . g goes to
A(z) = 1.0 —0.001(= — o). (5.3)

i.e.. is linear in =. and .V? goes to
(5.6)

In this case the limiting buoyancy frequency is constant under the Boussinesqj ap-

proximation.

5.1 Results for the First Density Stratification

We investigate the properties of the solutions for a range of d. = and a values. When
the Boussinesq approximation is used we need to consider only one value of a since the
solutions can be scaled to obtain solutions for other a values. The reference density

can be written as



where R is a coustant for a given density stratification and its form depends on how
the reference density is chosen. We consider two options: either po is the average of
the surface and bottom density values. or it is the vertically mean density. For the

first case R has the form of

H- -
-] )

and for the second case.

=7 J, tanb( (5.9)
[o either case j(=) can be written as
p(:]:(l—aﬁ)(l (5.10)

Since the solution of the nonlinear eigenvalue problem (n(z).¢) in (2.44) is unchanged
by multiplying p by a constant because .V? is unchanged. the factor | — aR can be
dropped. The resulting density profile has a reference density po = 1 for all values of
a. Thus changing the value of a from a to @ changes the buoyancy frequency N by

a factor of

a a =
T—ar/T=eR" B



Hence the eigenfunctions n(=) of the eigenvalue problem are unchanged while the

square of the propagation speed. ¢*. is changed by the same factor 3.

When the Boussi imation is not used changing a will change the eigen-
functions n(=). Now let us examine the results of the single pycnocline density strat-
ification for different a. = and d values.

Figure 5.1 shows the variation of extreme isopycnal displacement ... as a function

of zo for d = 5.10. 15 with the Boussinesq approximation. The results show that the

curves pass through 0 at =5 = 50. This means that when the centre of the pycnocline
is at the mid-depth (=) is identically 0 and there are no conjugate flow solutions.

The conj flow solutions are el ions when the centre of the pycnocline is below

the mid-depth (o < 50) and d ions when the py is above the mid-depth
(=0 > 50). The absolute value of .., increases as the distance between zo and H/2
increases. This means the farther the centre of the pycnocline from the mid-depth.
the larger the magnitude of 7, is. The curves begin and end at the values of =,
for which the solution is at the breaking limit which is when 7(z) = | first vccurs.
It can also be seen that the distribution of .. as a function of = is antisymmetric
about z = 50. This means that the extreme isopycnal displacements n.-. have the

same magnitude with the opposite sign when the centres of the pycnoclines are at

Zo and at H — =o; one is a depression and the other an elevation. Since the density

profile is antisymmetric about = = % and the governing equations (2.1)~(2.3) with the

Boussi imation have a sy i property. it is not difficult to understand

o
=



Figure 5.1: Variation of .. as a function of =g in the Boussinesq case for d = 5 (solid
line), d = 10 (dashed line).and d = 15 (dash dotted line).

50. If

that the solution ne;. from the conjugate flow model is antisymmetric about =z,
the centre of pycnocline is fixed. the magnitude of the extreme isopycnal displacement
increases as d increases. As can be seen in Figure 35.1. 7. is almost linear in zo. The
slopes have magnitudes greater than one which increase linearly as d increases. being
about 1.08. 1.15 and 1.22 for d = 5. 10 and 15. respectively. The slope approaches |
as d — 0. i.e.. in the 2-layer limit.

Figure 5.2 shows the profiles of n for d = 10 using the Boussinesq approximation.
It is clear that the extreme isopycnal displacement happens around = = 50. When
20 > 30. Neze occurs at = < 50; when zp < 50. feg occurs at = > 50. The absolute
value of 1z is always greater than |zo— H/2|. This means the centre of the pycnocline
is displaced past the mid-depth in the centre of the wave. For zo = 70. the extreme
isopycnal displacement of -22.86 is the isopycnal which passes through = = 49.42 in
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Figure 5.2: n profiles for d = 10 in the Boussinesq case. zo = 80. 70. 60. 52. 43. 40.
30. 20 from left to right.

Figure 5.3: n profiles plotted as a function of = — n(=). Same cases as in Figure 5.2.
2o = 80. 70. 60. 52, 48. 40. 30. 20 from left to right.
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the conjugate flow region and = = 72.28 in the outskirts. For a two-layer flow with the
Boussinesq approximation the interface is exactly at the mid-depth in the conjugate
flow region (Amick and Turner. 1986). Figure 5.3 shows the 7 profile as a function
of = —(=). the height of the isopycnal in the outskirts region. for the same cases as
Figure 5.2. [t is clear that the isopycnal which is displaced the furthest toward the
mid-depth is farther from the mid-depth than the centre of the pycnocline. When
the Boussinesq approximation is not made 7(=) depends on a.

Figure 5.4 shows the variation of 7. as a function of =, for three values of a.
namely 0.01, 0.1 and 0.5 using d = 5. 10. 5. The solid lines are the results in
the Boussinesq approximation. the dotted. dashed and dash dotted lines without the

Boussinesq approximation for @ = 0.01. 0.1 and 0.5. As expected. as a — 0 the

Boussinesq solution app h the B i solution. Excellent agreemeant is
obtained for @ = 0.0l. in which the lines for the Boussinesq and non-Boussinesq
cases are indistinguishable. [t is obvious that the difference between the results with

and withont the Boussinesq approximation increase as « increases: and the differcnce

1 asdi Making the Boussi pproximation. n.x is about 2.2

smaller than without the approximation for d = 5 and about 1.5 smaller for d = 15

when a = 0.1. [f a = 0.5. the errors are about 11.7 for d = 5 and about 7.8 for d = 15.

Figures 5.5 and 5.6 show the density and buoyancy frequency profiles in the undis-

turbed and disturbed density fields for o = 80. 70. 60. and 52. In the disturbed
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Figure Ne=: for conjugate flow solution plotted as a function of = for @ = 0.01
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Figure 5.5: Density profiles in (a) undisturbed and (b) disturbed density fields with
the Boussinesq approximation for @ = 0.01. d = 10. = = 80 (solid line). 70 (dashed
lie). 60 (dash dotted line). 52 (dotted line).

region. the the pycnocline is near the mid-depth: the maximum buoyancy frequency
decreases as zo approaches H/2.

We now turn to the propagation speed c. When the Boussinesq approximation is
applied ¢ depends on both a and the reference density py (as both a and py change
N?(z) by a constant multiple). We first choose the average of bottom and surface
densities as the reference density po. Figure 5.7 shows the distribution of phase
speed c as a function of = for @ = 0.01 and d =5. 10 and 15 with and without

the Boussi imation. The B inesq results are indistinguishable with the

non-Boussinesq results for a = 0.01. With the Boussinesq approximation. the largest
phase speed occurs at z = 50 and the amplitude of the wave is zero for this value of

zo: the phase speed c is smaller for a thicker pycnocline (larger d) than for a thinner
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Figure 5.6: Same cases as Figure 5.5 for V2 profiles.
pyenocline (smaller d) because V? increases as d decreases. [nlike the magnitude of
Nezt. the phase speed c is not symmetric about o = 50. because the reference densities
for 2o = q and = = H — q are different. When =, = q. where ¢ is a constant. the

reference density is

Hze _ 1
poy = | BT taah§ 5.12
When =y = H — q. the reference density is
H H
tanh(2) — tanh( =) . lanh(f{,— unh(gj' (5.13)

2

In general it is apparent that the reference densities po; % po. Thus, the N? for
20 and .V? for H — zq are not symmetric about zo = 50. Figures 5.8 and 5.9 show

variations of phase speed c as a function of Z for a = 0.1 and a = 0.5. respectively.
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Figure 5.7: Variation of phase speed c as a function of = fora = 0.0l and d = 5.10. 15
in the Boussinesq (solid line) and non-Boussinesq (dashed line) cases. The latter are
indistinguishable from the former at this scale.

Comparing the ¢ values for @ = 0.01 and a = 0.5 confirms that ¢* increases by a factor
of J given by (5.11) in the Boussinesq approximation. For a = 0.1. the errors in ¢
caused by the Boussinesq approximation are 0.0083 for d = 5 and 0.0070 for d = 15.
For a = 0.5. the errors in ¢ caused by the Boussinesq approximation are 0.5147 for
d =5 and 0.4423 for d = 15. The relative difference in ¢ is about 0.12% for @ = 0.1

and about 3.34% for @ =

5.

We also examine the case in which the reference density used for the Boussinesq
approximation is taken as the vertical mean of the density in order to determine the
effect of the choice of the reference density on the phase speed. Since the variation of
the reference density will only affect the buoyancy frequency, the solution of n(z) will

be the same as when the reference density is the average of the bottom and surface
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Figure 5.3: Phase speed ¢ plotted as a function of = for @ = 0.1. Solid line: with the
Boussinesq approximation: dashed line: without the Boussinesq approximation.
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densities. The phase speed c will change. Figure 5.10 shows the phase speed c as
a function of = for @ = 0.01. 0.1. 0.5 with d = 10 in the cases with and without
the Boussinesq approximation. [t is clear that the Boussinesq approximation using
the average of surface and bottom densities as the reference density results in smaller

errors for all the three a values than that using the vertically mean density. The use of

the vertically mean density results in signifi diffe in the p ion speed

for this density stratification. In the remainder of the thesis. we use the average of the

surface and bottom densities as the reference density without further investigation.
The horizontal velocity profiles {(=) are shown in Figure 5.11 for different =

values using d = 10 with the Boussinesq approximation. When z = 50. the maximum

ifi 1 and

density ion is at the mid-depth. there are no j How
U'(z) = 0. If = moves away from = = 30. the magnitudes of horizontal velocities
at both bottom and surface boundaries increase. At the layers near the surface and
bottom boundaries. the fuid velocities are almost constant. This is because the
density near the boundaries is almost constant. thus the flow is irrotational. i.e..
0. — w; = 0. Since the boundaries are rigid-lid. no vertical flow at the boundaries.
w = 0. so that ;. = 0. U is nearly constant near the boundaries.

btained only for a range of = values

The valid conjugate flow soluti can be
which satisfy =(d) < % < z(d). =(d) and z,(d) are the lower and upper breaking
limit of =p values in which /(=) = | first occurs. [n Figure 5.12 the breaking curves

% = 5(d) and z = =,(d) and of the minimum Richard: bers for
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Figure 5.10: Comparison of phase speed ¢ as a function of = for d = 10. (a) a = 0.01.
(b) @ = 0.1. (c) @ = 0.5. Curves are for the non-Boussinesq case (dashed line). the
Boussinesq case with the average value of the surface and bottom densities as the
reference density (solid line) and with the vertically mean density as the reference

density (dash dotted line).
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Figure 5.11: Horizontal velocity u(=) profile at the centre of flat-centred internal

solitary wave for @ = 0.0 d = 10 with the Boussinesq approximation. Z =
20,3040, 48.52.60, 7030 from left to right in the upper half.
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Ri = 0.25. 0.5. 1.0 are shown for the Boussinesq case (for which the curves are
independent of a) and for the non-Boussinesq cases with @ = 0.01 and @ = 0.1. The

Richardson number is defined as

(5.14)

where V? is the square of buoyancy frequency and (. is the gradient of horizontal

velocity {'(=) in the conjugate flow region. [t needs to be pointed out that

n)(L=n'). (5.13)

The linear stability condition is

Ri >0.25 (5.16)

everywhere in the flow (Kundu. 1990). Ri < 0.25 is a necessary but not sufficient
condition for instability. Figure 5.12 indicates that there are no conjugate fHow <o-
lutions if d and =g lie outside the two breaking limits. This occurs when the centre
of the pycnocline gets too close to the upper or lower boundary. [t should be em-
phasized that although there are no conjugate flow solutions. solitary waves are still

possible. For these i ions as the wave ampli i the solitary waves

break before a limiting, flat-centred wave is formed. The conjugate flow is linearly

il bl

stable if d and zo are between the two Ri = 0.25 and
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if d and = are in between the breaking limit and R:i = 0.25 contour. The region of

potentiall ble fow i as d d below about 8.4. As d = 0.

zu = H and the contour of Ri = 0.25 tend to meet at 3o = 50. the minimum Ri
number is below 0.25 for all . so that the flow is potentially unstable for all values of
Zo. In the two-layer limit. there is a velocity jump across the interface. thus the fluid
is always unstable for sufficiently small horizontal wavelengths (Kundu. 1990). When
the Boussinesq approximation is applied. the breaking limit curves and the minimum
Ri number contours are symmetric about o = 50. In addition. because changing «
leaves .V?/c? and n(=) unchanged. the breaking curve and the Richardson number are
independent of a. [t is clear that the results in the Boussinesq case are almost iden-
tical to the non-Boussinesq case for @ = 0.01: for @ = 0.1 the non-Boussinesq effect is
large. [n the non-Boussinesq case. the breaking limit curves are moved down slightly
by an amount that increases approximately linearly with d from a negligible amount
for small values of d to about 1.1 at d = 30. The curves of Ri = 0.25.0.5.1.0 are
moved up ahont 2.4 at d = 1.0: the difference decreases as d increases uatil the two
lines (solid line and dotted line) intersect. then the difference increases as d increases.

The above c i of the soluti btained with and without the Boussinesq

approximation suggest that for @ = 0.01. the Boussinesq approximation is very good.
For this value of a there is a 2% change in density between the surface and the
bottom. When a = 0.1. which represents a 20% density change from surface to

bottom. the errors caused by the Boussinesq approximation are large. In the real
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Figure 5.12: The breaking curves =;(d) and z,(d) and contours of minimum Richard-
son number for density 1. Curves are for Boussinesq case (solid) and non-Boussinesq
cases for a = 0.01 (dashed) and a = 0.1 (dots).



ocean. the density variation from surface to bottom is usually less than 1%. so that the
Boussinesq approximation is appropriate for the oceanographic conditions if there is
a well defined pycnocline (e.g.. with d less than 20% of the fuid depth). As discussed
in the next section. the Boussinesq approximation gives large errors if the density

profile is nearly linear. or if d is comparable to the half fluid depth.

5.2 Results for the Second Density Profile

We compare the results of the conjugate flow model solutions for the second density
profile given by (5.3) with and without the Boussinesq approximation and analyze the
validity of the Boussinesq approximation in this density stratification. Figure 5.13
shows the density and buoyancy frequency profiles for d = 10. 100. 1000 and = = 70.
The dashed line in Figure 5.13b is V* using the Boussinesq approximation with the
reference density pg = I. As d — oc. the density field becomes linear and V? is

constant ga/po in the Boussinesq approximation and the curve of N is a hyperbola

without the Boussinesq approximation. Under the Boussi imation V* is
a the eige lue problem li; izes and has an infinite number of solutions
() = Ansin(£2) (3.17)

z) = Amsin(= 3.
n b sin( 77 5.17
where the amplitude A, is an arbitrary t. [f the B i imation is

not made. then N? increases monotonically with = in the limit d — oc. There is no
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Figure 5.13: Density (a) and V? (b) profiles for = = 70 and d = 10. 100. 1000. Ia (b).
the dashed line and solid line are with and without the Boussinesq approximation.
respectively.

solution for the ej 1

problem. This indicates that the Boussinesq appr
is not valid because it leads to serious errors. We need to know for what value of d
the Boussinesq approximation is valid in this density field.

Figures 5.14 and 5.15 shows the variation of n.z. c. n’(0) and 5'(H) as a function
of d for the density field with the centre of the pycnocline at zy = 60 and 2 = 70.
n'(0) and n(H) are the derivative of 5(=) with respect to = at = = 0 and = = H.
respectively. For o = 60. it is clear that the results in the cases with and without
the Boussinesq approximation agree well only for d < 35. As d increases above 35 the

diffe i When the B i imation is not made. the solution

breaks down (n'(H) = 1) when d > 170. The Boussinesq solution asymptotes to

a solution with .. = —15. n'(0) = —0.46. n'(H) =~ 0.46. The absolute values are
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much smaller than those of 7.z = —30. 7(0) ~ —0.93. 7’(H) = L0 at the breaking
point for the non-Boussinesq solution. Similar behaviour is seen for other values
of 2. As zo increases the non-Boussinesq solution breaks at smaller d values and
the asymptotic limits of n.z. n’(0). n’(H) for the Boussinesq solution increases in
magnitude (Figure 5.15).

Figures 5.16 and 5.17 are the profiles of the isopycnal displacement n(=) and n'(z)
of the internal solitary wave in the density field with zo = 70 for d = 40. 50. 60 and
70. The solid lines are the results without the Boussinesq approximation and dashed
lines with the approximation. [t also shows that the errors of 7(=) and 7/(=) in the

Boussi imation i as d i The above analysis confirms the

that the B may lead to serious errors for some

stratifications.



Chapter 6

Results for Density Stratifications

with Two Pycnoclines

6

In this chapter. we consider density str with two py lines centred at

height =, and =, with thickness d; and d;. respectively. The density (we called density

2 hereafter) in the undisturbed region is

ﬁ(:):l—a,tanh(:d| ) — astanh( (6.1)

a; and a, are parameters measuring the strength of the stratifications. For a stable
stratification. a; and a, are both positive. When the two pycnoclines are well sepa-
rated and away from the boundaries, the density decreases by 2a; and 2a, across the

two pycnoclines. We present the results of the conjugate flow model for this density
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Figure 6.1: Density 5 (a) and :V? (b) profiles for density 2 with @) = a; = 0.01.

dy = dy = 10. z; =20. =, = 80 with the Boussinesq approximation.

stratification for the parameters a,. a.. 2. dy and d; with a range of values in the

cases with and without the Boussinesq approximation.

6.1 Casel:a =ar=a,d =dy=d, za=H — 2z

In this case. the two pycnoclines are the same distance from the mid-depth and the
density p(=) is antisymmetric about the mid-depth. When the Boussinesq approxi-
mation is made. .V? is symmetric about the mid-depth. Figure 6.1 shows the density
and N? profiles for this density stratification with @ = 0.01. d = 10 and =, = 20 in
the Boussinesq case.

Figure 6.2 is the variation of 7.z as a function of z; with and without the Boussi-

nesq approximation. The curves are symmetric about = = 50.

9



Variation of ). as a function of =; for density 2 with a¢; = as = 0.01.
dy = d, = 10. Solid line: Boussinesq approximation: dashed line:
without the Boussinesq approximation.

In the Boussinesq case. the curves are also symmetricabout z; axis. When z; = 50.
the centres of the two pycnoclines overlap and the stratification becomes the single
pycnocline case with the centre of the pycnocline at the mid-depth. so that there is
no conjugate flow solution. The single pycnocline stratification is a special case of
the two-pycnocline stratification. Corresponding to each value of =;. there are either
two solutions (2 7z values) or no solutions (f.e = 0 ). When = (also =) is close
to the mid-depth (32.44 < z; < 67.56). there are no non-zero solutions. This result
shows that no flat-centred waves exist. When the centres of the pycnoclines are close
to the boundaries (s, < 14 or z; > 86). the conjugate flow breaks down. When
16 < = < 32.44 or 67.56 < =, < 84, there are two solutions for each value of z;. One

solution is an elevation and the other is 2 depression.
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Figure 6.3: Density (a) and V* (b) profiles in undisturbed (solid line) and dlsturbed
(dashed line) regions for density 2 with a; = ay =0.0l. d = dy = 10 and =, £
(z2=H —=).

When the Boussinesq approximation is not made V? is no longer symmetric about

50. An odd number of solutions can now exist. For =, 50 there is a single

pyenocline centred at the mid-depth as shown in section 3.1. the solution is a small
elevation. As z; decreases a single small elevation is found until z; = 37. For smaller

values of =; a single small depression is obtained until at =; = 32. the solution bifur-

cates. And two soluti an el ion and a d ion are obtained

Figure 6.3 shows the density and .V? profiles in the disturbed and undisturbed
regions for @ = 0.01. z; = 32.44 and d = 10 in the Boussinesq case. [n this case
there is no conjugate flow solutions. so that the disturbed profile is identical with the
undisturbed profile.

In Figure 6.4. the curve of propagation speed as a function of z; is symmetric
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Figure 6.4: Propagation speed c plotted as a function of z;. Same cases as in Fig-

ure 6.2. Curves are for Boussinesq case (solid line) and non-Boussinesq case for
depressed wave (dashed line) and elevated wave (dash dotted line).

and non-Boussinesq cases. The p

about z; = 50 for both the B

id-depth. In the non-Boussinesq case. the

speed i as 3y hes the

propagation speeds of the depression is slightly larger than that of the elevation.

6.2 Case2: a =ay=a,d =dy=d, z9# H—z

[n this case the .V* profile is no longer symmetric about the mid-depth. We will
discuss the most significant findings for various values of a. d. =; and z,. Figure 6.5
shows the variation of the extreme isopycnal displacement as a function of z; for
various values of =, using d = 10. The results with the Boussinesq approximation

are plotted in solid lines and without the Boussinesq approximation with ¢ = 0.01



in dashed lines and @ = 0.1 in dash dotted lines. The most striking feature of the

h

results is the of multiple solution b

The solutions with the Boussi imation are di: d first. For =3 = 50.

three solution branches are found. The main branch occurs in the range with =,
between about 14 and 86. The other two branches occur in a range with =; close to
the boundaries. one is for z; < 8.5 and the other for z; > 91.5. When =; = 50. the
two pycnoclines overlap to form a single pycnocline with its centre at the mid-depth.
There is no conjugate flow solution. This is in agreement with the single pycnocline
case. The main solution branch shows an elevation for z; < 50 and a depression
for =y > 50. This is the same feature as that of the single pycnocline case: when the
centre of the pycnocline is in the upper/lower half of the fluid layer. the conjugate flow
solutions are depressed/elevated. As =, moves further away from the mid-depth. the

king solution

magnitude of the extreme isopycnal displ i until the b
is reached at about z; = 12 and 88. There is no solution for =, between about 8.5 and
12 and between abont SR and 91.5. When =, is close to the boundaries. two solutions

are obtained again. For z; = 50 the two solutions are elevations for z; < 8.5 and

depressions for z; > 91.5. The solutions are antisymmetric about =, = 50.
As =, increases the forms of the three solution branches change. The zero point of
the main branch moves to the left. For =, between 50 and about 67.6 the zero point

is at H — z;. For this value of z; the buoyancy frequency is symmetric about the

id-depth, there is no ji flow solution as discussed in the previous section.
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The left solution branch increases and the right solution branch decreases in size
and they both move downward as =, increases. When =, = 60. the right solution
branch disappears and the main and the left branches overlap. so that there are three
solutions for some values of =,. The region of overlap increases as =, increases. The
two branches join and form corners at =, between 67.6 and 67.7 (Figure 6.6). For
larger values of =, there are again two solution branches. One branch is a depression
over a large range (from 0 to about 86) of =; values (called the main branch) and
the other branch (upper branch) has two solutions for some values of . Thus three

. there are two solutions

solutions are obtained for some values of =,. For =, > 6
for 5, = H — =,. one is an elevation and the other is a depression. This is the case
discussed previously in section 6.1. Along the upper branch f.; =0 at 5 = H — =,
for =2 > 67.56. The elevation and depression have the same propagation speed and

the same extreme isopycnal displ in itude. For le. for =, = 80

and =y = 20. g = 32.7402 and c = 2.064307 for the elevation and n... = —32.7402
and ¢ = 2.064307 for the depression. The lower part of the upper branch crosses =,
axis at = = 20 (Figure 6.5g). The main solution branch flattens and the region of
the upper solution branch increases as =, increases.

The solutions for the non-Boussinesq case with a = 0.0l are very similar to the

Boussinesq solutions. The largest difference occurs near the point where the two-

solution branches join near =z, = 67.7 (Figure 6.6). For = = 67.6. the Boussinesq

solution has the left and right branches. while the non-Boussinesq solution has upper
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Figure 6.6: Joining of solution branches for density 2 when 7. is plotted as a function
of 2. @y = ay, dy = dy = 10. Boussinesq case (solid line) and non-Boussinesq case
for a = 0.01 (dashed line). (a) 67.6: (b) =, =67.7.

and lower branches. When a = 0.01. there is approximately a 4% change in density
from surface to bottom. This is extremely large for coastal ocean regions. When a

to 0.1. the diffe es between the Boussi and B i I

increase. For example. when =, = 50 the left solution branch extends further to the
right by about 2.4 in =, value and the right solution branch shrinks by a similar
amount. The form of the solution changes from left and right branches to upper and
lower branches for =, is between 60 and 65. When =, = 80. the upper braach in the
non-Boussinesq case is always above the = axis.

Figure 6.7 shows the propagation speed c as a function of z; for density 2 with the
Boussinesq approximation for different =, values. The propagation speed ¢ increases

as z; moves closer to =; and the largest ¢ value occurs near =, = =;. For = > 67.36.
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Figure 6.8: Dependence of n, on d for density 2 in the Boussinesq case. Plotted as
a function of =, for =, = 60 (a) and = = 80 (b). @, = ay = 0.0, dy = dy = 5 (solid
line), 10 (dashed line) and 15 (dash dotted line).

the elevation and d i at the same speed ¢ when =y = H — z,. This

is shown in panels (e). () and (g) in Figure 6.7 where the dashed line crosses the

solid line at point =, = H

The dependence of .« on d for =, = 60 and 80 in the Boussinesq case are preseated

= 60 and the

in Figure 6.8. As d increases the right limits of the left branch for =,

upper branch for =, = 80 decrease and the region in which the three solutions exist

decreases significantly.
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density 2 with d; = dy = 10. @y = 0.1. ay = 0.0L. = = H — =z;. Solid line: Boussinesq
case: dashed line: non-Boussinesq case.

6.3 Case 3: a; #a», d| =

In Figure 6.9 the variation of n.-. and propagation speed c are plotted as a function of
=y for density 2 with d; = dy = 10. ¢; = 0.1. a; = 0.0l for the case when =3 = H —=,.
i.e.. the two pycnoclines are equidistant from the mid-depth. The pycnocline centred
at z; is ten times stronger than the one centred at =;. The results are much like the
case of single pycnocline centred at =; (Figure 5.4b) and have the properties of the
single pycnocline case. In the Boussinesq case. there is no solution when = = 50
and solution is an elevation/depression when the centre of the strong pycnocline (=)
is in the lower/upper half of the fluid layer. The strong pycnocline dominates the
behaviour. There is no multiple solution in this case.

Figure 6.10 shows the solutions as a function of z; with =, fixed for density 2
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Figure 6.10: .o plotted as a function of =; for density 2 with d = 10 in the non-
Boussinesq case for 2, = 20 (solid line). 60 (dashed line), 50 (dash dotted line). Dotted
line is the result when only the stronger pycnocline presents. (a) a; = 0.01.ay =0.1:
(b) @y =0.1.a; = 0.01.

with d; = d = 10 in the non-Boussinesq case. [n panel (a) solutions with a, = 0.01
and a; = 0.1 are shown for =, = 20. 60. 30. The variation of 7.z is small in the
whole region of =;. If only the stronger pycnocline were present the solution would
be independent of z; and would be given straight lines with values of about 36.3.

20. 60. 30. respectively (dotted lines in Figure 6.102). The

-9.5. and -32.8 for =,
presence of the second weaker pycnocline whose position depends on = results in
small variations about these straight lines. Similar conclusions can be made from
panel (b). Since the pycnocline centred at =, is ten times stronger than the other one.
the results are much like the case in which only the pycnocline centred at =, exists.
The variation of the centre of the weaker pycnocline has little influence on the results.

Figure 6.11 shows the variation of propagation speed c versus =, for the same
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Figure 6.11: Propagation speed c versus =, for density 2 with d = 10 in the non-
Boussinesq case for z; = 20 (solid line). 60 (dashed line). 30 (dash dotted line). (a)
a; =0.0l.a; = 0.1: (b) @, =0.1.a; =0.0L.

cases as in Figure 6.10. The maximum propagation speed occurs at different place
compared to the single pycnocline case (Figure 5.10(b)). [n the single pycnocline
case. the maximum phase speed occurs when zo approaches the mid-depth. [n the
case with the stronger pycnocline centred at =, the maximum phase speed occurs
when = is near =, (Figure 6.11a). If the stronger pycnocline is centred at z,. the
maximum phase speed again occurs when = is near =,. but in this case its position
is shifted towards the mid-depth. [n all cases the propagation speed is within 5%
change of the value for a single pycnocline with a = 0.1.

In figure 6.12 the extreme isopycnal displacement 7 is plotted as a function of
=, for density 2 when the largest density gradient of one pycnocline is double that

of the other for =, = 60 and 80. The dotted line represents the result when ouly

93



z=60 @ 5-80 O
20 20|
E o
-20

~0 10 20 30 40 50 60 70 80 90100
Z

"0 10 20 30 40 50 60 70 80 90100 ~"0 10 20 30 40 50 60 70 80 90100
z, 7

Figure 6.12: Variation of 7.z as a function of =, for density 2 when the largest density
gradient of one pycnocline is double that of the other for 60 and 30 in the non-
Boussinesq case (solid lines). Panels (a), (b): a; = 0.01. a; = 0.0 panels (c).
(d): @y = 0.02, a; = 0.01. The dashed lines are the results when only the stronger
pycnocline exists.




the stronger pycnocline exists. It is clear that the stronger pycnocline dominates the
behaviour and the weaker pycnocline only results in a small variation. The difference
from the single pycnocline results is that the multiple solutions exist for some =,
values. From the above analysis we suggest that the multiple solutions occur only
when the strengths of the two pycnocline are comparable. When one pycnocline is
much stronger than the other. the result is much like the one pycnocline case and

ounly one solution exists.

6.4 Case4: a =ay,=001,d, #dy, 20 #FH—2

Figure 6.13 shows solutions without the Boussinesq approximation for a; = a, = 0.01
and d, # d, for z; = 60. For comparison. the results with d; = d, are also shown.
Paaels (). (c) and (e) show solutions with d; fixed and d = 5 (solid line). 10 (dashed
line) and 15 (dash dotted line) and panels (b). (d) and (F) are solutions with d, fixed
and d; =5 (solid line). 10 (dashed line) and 15 {dash dotted line). When d, is fixed
at 15 and 10. the solutions change from a form with left and right (main) branches
to a form with upper and lower (main) branches as d; decreases. The two branches
join at a value of d, between 15 and 10 for d; = 15 and d, between 10 and 5 for
dy = 10. When d, is fixed at 5. the solution has left and right branches with the
left branch decreasing as d, increases. Upper and lower branches form for sufficiently

small d;. The lower (main) branch of the solution for d; = 15 and d; = 5 is much
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like the case of single pycnocline centred at =, except for the upper branch. The
curve would be independent of z; and would be a straight line with a value of close
to -10 if only the pycnocline centred at =, with d; = 5 were given. Panels (b). (d)
and (f) show the results when d, is fixed. [t is clear from the figures that the thinner
pycnocline has a stronger influence on the solution than does the thicker one. This
is because the thinner pycnocline has the largest buoyancy frequency. Figure 6.14
shows the variation of 7.z as a function of =, in the same cases as in Figure 6.13 but
for =, = 30. The solutions have upper and lower (main) branches except for the case
of d; = 5 and d; = 15. where the solution has left and right branches. When d; is
fixed. the upper branch shrinks and the lower branch fattens as d; decreases: when

d, is fixed. the upper branch shrinks and the lower branch flattens as d, increases.

6.5 Internal Solitary Waves Corresponding to Con-

jugate Flow Solutions

When V? is symmetric about the mid-depth. the fat-centred internal solitary waves
corresponding to the two conjugate flow solutions can easily be obtained if the con-
Jjugate flow solutions exist. One is a wave of elevation and the other is a wave of

depression with the same amplitude in magnitude and the same propagation speed.

When N? is not symmetric about the mid-depth, there are three conjugate flow so-

lutions for some values of z;. Now let us see whether each solution corresponds to
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Figure 6.13: Variation of 7.z as a function of z; for density 2 with ¢; = a; = 0.01
and =; = 60 without the Boussinesq approximation. Panels (a). (c). (e): d, fixed and
dy = 5 (solid line), 10 (dashed line) and 15 (dash dotted line): pagels (b). (d). (f): dy
fixed and dy = 5 (solid line), 10 (dashed line) and 15 (dash dotted line).
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Figure 6.14: Variation of n..; as a function of =; for density 2 with a; = a; = 0.01
and =, = 80 without the Boussinesq approximation. Panel (a). (c). (e): d, fixed and
dy = 5 (solid line). 10 (dashed line) and 15 (dash dotted line): panels (b). (d). (f): da
fixed and d; = 5 (solid line), 10 (dashed line) and 15 (dash dotted line).
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a flat-centred internal solitary wave. Figure 6.15 shows the three solutions for two-

pycnocline stratification with =; = 30 and =, = 80 using d = 10 (see Figure 6.5).

The extreme i I displ cor ding to the three solutions are -30.37.

Py

-3.08. 1931. Internal solitary waves corresponding to the large depression and the

levati lutions are easily simulated using the fully nonlinear model described in

Chapter 3. (Figures 6.16 and 6.17). Waves corresponding to the small depression
have not been found. Whether they exist or not is not known. More energy is needed
to obtain the fat-centred waves of depression than the flat-centred waves of eleva-
tion. This is because the centre of one pycnocline is displaced to a position near
the mid-depth and the distance of the upper pycnocline to the mid-depth is larger
than the lower pycnocline. Hence. when the two pycnoclines are not symmetric about

the mid-depth. the two kinds of internal solitary waves. one elevated and the other

d d. can still be obtained. although the magnitude of the extreme isopycnal dis-

placements and propagation speeds of the two waves are no longer the same. Solitary

ding to the two conj fow sol for the case = = 10. =; = 60

waves corresp

Flat-centred internal solitary wave

with d = 10 were also sought (see Figure 6.5).

d were easily obtained (see Figure 6.13) with the same propagation speed
and i isopycnal displ: given by the conjugate flow depression. Waves
cor ding to the conj flow el were not obtained. This indi that

for the two-pycnocline case not all conjugate flow solutions necessarily correspond to

flat-centred internal solitary waves.
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Figure 6.16: Solitary wave corresponding to the elevation solution in Figure 6.15.
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Figure 6.18: Solitary wave corresponding to the depression solution for the case =, =
10, =, = 60 using d = 10.
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Chapter 7

Summary and Conclusion

For some stratifications internal solitary waves become flat in the centre at large
amplitudes. The horizontal uniform flow in the centre of such waves is conjugate to
the undisturbed flow outside of the wave. In this thesis a theoretical model which
describes the fow structure in the centres of Hat-centred internal solitary waves has
been developed based on the conjugate flow concept. The conjugate flow solutions
have been shown to give the How in the centre of such waves. easily providing such
quaatities as the extreme isopycnal displacement. wave propagation speed. and the
maximum fluid velocity. Flat-centred internal solitary waves can exist only if there is
a conjugate flow solution. Stratifications given by hyperbolic tangent density profiles
with one and two pycnoclines were considered. It was found that in order to obtain
the non-zero conjugate flow solution the maximum density stratification should occur

somewhere between the two boundaries; if the centre of the pycnocline is too close to
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a boundary. there is no conjugate flow solution. This indicates that there should be

no conj flow solutions if the buoy fr varies ically from one

boundary to the other. Solutions with and without the Boussinesq approximation are
compared. [t was found that when the density difference from surface to bottom is 4%

or less. the non-Boussinesq effects are small (errors <<1%): if the density difference

is of the order of 10% or larger. the Boussi effects can be signifi . The
exception for this is if the pycnocline has a thickness comparable to half the fuid

depth (e.g.. d > about 20). in which case the Boussinesq approximation can result

in larger errors. or letely false predictions of the exi of of conj: flow
solutions.
For the density stratification with a single pycnocline. in the conjugate How region

the pycnocline is displaced toward the mid-depth. [n the Boussinesq case the centre
of the pycnocline is in fact displaced slightly past the mid-depth. The magnitude
of the extreme isopycnal displacement grows as the centre of the pycnocline in the
undisturbed flow region moves away from the mid-depth. When the ceutre of the
undisturbed pycnocline is too close to the surface or bottom boundary there is no
valid conjugate flow solution because of 7/(z) > | somewhere. [n this case. as the wave
amplitude increases the internal solitary wave grows and the breaking limit (vertical
isopycnals) is reached before a flat-centred internal solitary wave is formed. When
the Boussinesq approximation is applied. the wave propagation speed increases as the

centre of pycnocline in the undisturbed region moves toward the mid-depth.
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e

also

The analysis of conj; flow for single-pycnocline
shows that horizoatal shear flow in the centre of a flat-centred internal solitary wave
is linearly stable (minimum Richardson number> 0.25) if the pycnocline is sufficiently

thick. In our calculati the dition for the thick disd > 38.4. For

thinner pycnoclines the flow is potentially unstable for a range of pycnocline positions

and the region of p ially ble flow i asd d The results show
that the flow is potentially unstable for all values of =, between 0 and H as d — 0.
This is identical to the result of the two-layer limit where the low is always unstable

at sufficiently small wavelength as the velocity is discontinuous across the interface.

For the stratifications with two py: if the two py lines are equidis-

tant from the mid-depth with their centres a distance of between 17.56 and 36 from

1 btained. One is an el and

the mid-depth. two conj fHow are
the other is a depression of an internal solitary wave. The solutions corresponding
to the elevation and depression have the same magnitudes of wave amplitude and

propagation speed if the Boussinesq approximation is applicd. When one pycnocline

is centred in between 0 and 4. there are no valid solutions because the waves break

down. When one pycnocline is centred between 32.44 and 50. there are no solutions

in the Boussinesq case: but there is a small elevation in the non-Boussinesq case.

The most significant result for some density il i with two py

are the o of three it flow This occurs only when the

two pycnoclines are in the upper and lower half laers of the fuid respectively and
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the relative strengths of the two pycnoclines are comparable. [f one pycnocline is
much stronger than the other (e.g.. a; = 10a;). this phenomenon does not occur. For
a, = 10a,. the results are much like the case of a single pycnocline centred at =,. [f the
stratification variation is caused by the variation of d; and d,, the thinner pycnocline
seems to have a larger effect on the results. Our investigation indicates that the
stronger pycnocline (represented by a larger density gradient) seems to dominate the
conjugate flow. If the difference of the strength of the two pycnoclines is very large.
the results would be similar to the case where only the stronger pycnocline were
presented.

Itinl :

The internal solitary waves ponding to the flow solutions

were sought. [t was found that for the stratification in which three conjugate fow
solutions exist. only two internal waves corresponding to two of the three solutions
were obtained: for the stratification in which two conjugate How solutions exist and
V*is not symmetric about the mid-depth. only one Hlat-centred internal solitary wave
corresponding to one of the solutions was easily obtained. The physical significance of
the conjugate flow solutions for which there is no corresponding flat-centred internal

solitary wave is unknown.
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