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Abstract

In this work, we present theoretical evidence illustrating that cyano derivatives of con-

ducting pol such as polythiophene, polycy and p have
smaller intrinsic band gaps than their parent polymers. The geometric and electronic

properties of the parent and the derivative polymers are studied with the use of two

hodologies: (1) the pseudo di ional band lculati fc d

at the level of the semiempirical molecular orbital theory (Modified Neglect of Diatomic
Overlap (MNDO) and Austin Model 1 (AM1)) and (2) oligomer calculations performed
at the level of the ab initio molecular orbital theory. In particular, we have found that

an organic polymer, poly-(dicy yclop (PCNFv) has a

comparable (possibly lower) band gap to the one observed in poly-(dicyano-methylene-
cyclopenta-dithiophene) (PCNTH) (which has a band gap of 0.8 eV). The precursor of

PCNFv is poly-(dicy hyl lop dicycl diene) (PCNCY) in which

1 di % 1ooy

two rings are ibya group. Trends in struc-
tural properties indicate that the lower band gap in the cyano substituted polymers
is accompanied by greater charge delocalization in the aromatic or trans-cisoid forms

and by greater charge localization in the quinoid or cis-transoid forms in comparison to



their parent polymers. Other important factors that contribute to band gap lowering
are maximum planarity, weak interactions of the chain backbone with the bridging
groups, enhanced = character of the highest occupied and lowest unoccupied bands

and the additional ilization of the duction bands due to the charge transfer

phenomena. The comparison of the heats of formation for the compounds indicates
that polymers in planar-anti conformation are more stable than those in twisted-syn

conformation.
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Chapter 1

Introduction

1.1 Conducting Polymers

In general. synthetic polymers are large macromolecules that are made of repeating
units called monomers. [n this work we study a special class of synthetic polymers
called conducting polymers (CP’s). CP’s are conjugated. often organic. linear. un-
branched chains of atoms covalently bonded. CP’s are increasingly becoming important

Li such as ducting fabrics. cond

because of their many i

fibers. i b field effect transistors etc. [L, 2, 3, 4]. The many uses

in the electronic and optical industries arise from their properties and characteristics

ility and ease of synthesis in ison to the con-

such as greater strength,

I metals and semicond Examples of ively studied CP’s are shown
in Fig. L.1.
CP’s can be metals or semiconductors. Possessing a finite band gap, E,, means that a
polymer s a semiconductor. Most of the undoped CP’s are semiconductors that exhibit

intrinsic conductivity when valence electrons are thermally or photonically excited
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from the highest filled band into the lowest unfilled band. Thus, one of the desirable
properties of CP’s is a small intrinsic band gap in order to achieve readily intrinsic
conductivity. It is the main goal of this work to identify CP’s with small band gaps.

Having a small band gap is also important for the doped CP’s (which are not studied
in this thesis). This can be shown as follows. Roughly, in a simple metal, the electri-
cal conductivity, o, decreases almost linearly with temperature 7' [5]. In non metals

conductivity increases with T. according to the activation law
o = n(T)leluo = e T (1.1)

By definition, o is proportional to the concentration n of charge carriers with the (mean)
mobility po. In Eq. L1 e is the electronic charge and & the Boltzmann constant. In a
simple semiconductor (such as some of the doped CP’s), the charge number density,
. (Relectrons OF Mhotes) Produces the activation of conductivity, o, (Getectrons OF Thotes)-
[n Eq. L.1. we note that o also depends exponentially on the ratio £,/kT indicating
that smaller £, will result in larger extrinsic conductivity for given temperature T and

charge carrier concentration.
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Figure 1.1: Common conjugated polymers. This figure is taken from
6].
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1.2 Literature Review

The field of CP’s has experienced phenomenal growth over the past few years. Interest
in the theory of conjugated molecules, particularly the polyenes made of alternating sin-
gle and double bonds, for instance hexatriene (H-CH=CH-CH=CH-CH=CH-H) dates
back to the early days of quantum chemistry and in the 1960’ [7, 8, 9] reached a high

level of unde dis This was i di followed by ion of th ical

framework for the study of conjugated polymers.

On the other hand, a key development in the evolution of the CP area is the discovery
of polyacetylene (PA), which was synthesized by Natta et al., in the late 1950 [10],
using Ziegler-Natta catalysts and observed at room temperature, to have a conductivity
of the order of 10~¢ S/cm. Later in 1970’ [11] Natta’s synthesis was modified yielding

self standing fibrillar films with metallic luster. Another decisive discovery was that PA

could be doped with el and electron-donors. This process is universally
known as “doping”. (Shirkawa [12] has made a polymer PA that was highly conducting
(= 50 to 500 S/cm) by exposing it to strong acceptors such as I.) It was then shown
that doping can also be produced electrochemically, whereby, for instance, ClO; ions
are intercalated to compensate for the positive charges injected into the Shirkawa PA

chains, with resultant conductivities of about 10* S/cm [13].
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Table 1.1: Relationship between | and tk I routes for i
conducting polymers.
Experimental Theoretical
Preparation Chemical, Electrochemical,

Synthetic Routes
Geometric Structure X-ray, Electron Diffraction Quantum or Classical Models
Frequency Distribution | Raman, NMR Spectra Force Calculation

Electronic Structure | Absorption or Emission Band Structure, Density of
(Ultra Violet, Visible) Spectra | States

A significant breakthrough occurred in 1979 with the discovery [14] that polypara-

phenylene, (PPP). could be doped to cond ble to those

levels quite

obtained in the PA system. This discovery was i in that it d d the

non uniqueness of the PA system and paved the way for the discovery of a number of

polyaromatic based CP systems. These now include polypyrole(PPY),

polythiophene(PT), polyaniline(PAni). Even more important, it opened the way to a

general ion method of the el hemical p izations of pyrrole by anodic
oxidation [15, 16] which produced smooth, highly conducting doped (100 S/cm) films.
The same method was then used to prepare PT (with similar results [17]) for which
the electrochemical band gap (E.;) was measured from the difference between onset of

using cyclic vol [18].

oxidation and reduction
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Once the interest in CP was established several strategies were tried to improve the

processibility while keeping (most of) the conductivity. All al ioned in

Fig. L.l are neither soluble nor fusible. They are generally poorly ordered and non
compact films, whose morphology is determined by the chemical or electrochemical
growth conditions. An exception is PAni [19] which is soluble in few solvents and
strong acids [19]. Earlier few attempts were made to generate CP from a soluble
precursor polymer. But this was hardly a general method. Later in 1986. the first

soluble alkyl-substituted polythi was synthesized [20]. Its el

were similar to those of PT and high quality films were easily formed from solution.
This is. a fairly general method. The bulkiness of most substituents had structural
consequences. which in turn affected their electronic properties.

CP’s are rarely “crystalline™ polymers in that they always contain an amorphous frac-
tion > 50% of the total volume. Typically the crystalline fraction may be < 10% of
the volume. It is the latter that is selected in ‘structural studies’, but the amorphous
phase may often dominate the physical properties. The same material depending on
synthesis method can be either crystalline or amorphous. For example, electrochemical

PT is amorphous [17], whereas the chemically prepared polymer is partly crystalline

of

[21). Ui ly, their hous nature has p d X-ray d

their structure and only a few X-ray scattering data [21, 22] are available at present.

Diffraction methods and work in the reci 1 space are i hni used in




Chapter 1. Introduction 7

determining atomic positions. However, in poorly ordered materials such as CP’s the
amount of structural information that can be obtained from a typical X-tay, neutron
or electron diffraction experiments is minimal. Real space methods, such as scanning
electron microscopy (SEM), scanning tunneling microscopy (STM) are major sources of
information about morphology of these systems at mesoscopic scales, mainly of surface
regions. On the Angstrom scale, NMR has been used to measure CC bond lengths
accurately without a complete structure determination. On the scale of 10 to 100 A,
resonance raman spectroscopy (RRS) is generally used to infer conjugation lengths,
deduced from a measure of the extent of spatial order along the CP chains (23, 24].

Spectroscopic methods such as X-ray, ultra violet, visible gives pertinent information

about energy gap. The photo induced ak emission and lumi spectra

are widely used for determining the mid-gap states. With soft X-ray photons (XPS).
for example. both electrons in the atomic core levels and valence electrons can be
studied. With ultra violet (UPS) and visible photo electron spectra only the valence
electrons can be studied, but with certain resolution and cross sections that are better
than those obtained with XPS. The most important point is that there is a one-to-one
correspondence between the distribution of electron energy states in the sample and
the kinetic energy distribution of the photo electrons in photo electron spectra.

The visible absorption spectra of all CP’s shows a broad and intense band. Its threshold

is anywhere between 12,500 A (or 1 eV) for polyisothionapthene [25] to 4000 A (or 3
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eV) for PPP [26], and at 8000 to 9000 A ( or 1.35 eV to 1.5 V) in trans-PA, depending

on the i ditions [27]. The absorption band is usually well separated from
further absorption at higher energies. The corresponding transition is assigned to the
x electrons. [n polymers this refers to direct transition of 7 electrons from = band to =*
band which is measured from the threshold of the intense absorption. [n oligomers this

transition corresponds to the energy of maxi bsorption [28]. This

is often referred as optical gap (E,p). From electro absorption spectra of films of PT
[29] and its hexamer, a-sexithiophene (aTs), [28] the optical gaps were calculated to be
2.1 eV and 2.78 eV respectively. The absorption threshold differed approximately by

0.7 eV which indicates that in PT conjugation extends over more than six monomers.

Naturally solid-state theory otherwise called electronic band structure theory could be
used for studying polymers. This theory is the application of the Hartree-Fock one
electron approximation to solids based on the assumption that the solids have trans-

lational symmetry underlying their atomic level structure. Although solids can have

symmetry elements other than lational i it it is the symme-
try that leads to the characteristic classification of the energy levels and eigenfunctions.
The wave functions describing the electronic states in the bands extend throughout the
solid, unlike the atomic orbitals, which are localized around particular atoms, and de-

cay exponentially away from those atoms. In this sense, we refer to solid wave functions

as delocalized orbitals. The concept of electronic charge delocalization is an important
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one. [t is responsible for most of the electronic transport phenomena in solids, for

example, the and Li optical ies. The picture of el

levels broadening can be understood from the Fig. 1.2 given below.

For example, consider a free lithium atom: the electron moves in a potential well, as
shown in Fig. 1.2(a). The electronic energy levels are denoted by Ls, 25, 2p. The
lithium atom contains 3 electrons, two of which occupy the s subshell (completely
full). and the third the 2s subshell. Now consider the situation in which two lithium
atoms assemble to form the lithium molecule Lis. The potential “seen” by the electron
is now the double well shown in Fig. 1.2(b). Each atomic level-that is the ls, 2s,
2p. splits into two closely spaced levels called molecular levels. Each molecular level
can accommodate at most two electrons, of opposite spins. The Li; molecule has 6
electrons: four occupy the Ls molecular levels and the other two the lower level of the
25 molecular level.

The above i ions may be lized to pol. ic Li of an arbitrary number

of atoms. The lithium solid may then be viewed as the limiting case in which the
number of atoms has become very large. What happens to the shape of the energy
spectrum? Each of the atomic levels is split into N closely spaced sublevels, where N
is the number of atoms in the solid. Since N is very large (order of 10%) the sublevels
are extremely close to each other so they coalesce and form an energy band. Thus

Is. 2s. 2p levels give rise, respectively, to the 1s, 2s, 2p bands, as in Fig. 1.2(c). The



Chapter 1. Introduction 10

Atom Molecule Solid
2
2 2 A
12 1sf 1 1
@ ® ©

Figure 1.2: For example energy levels of lithium: (a) atom, (b) molecule, (c) solid.

intervening regions separating the bands are energy gaps, E,, i.e. regions of forbidden
energy which cannot be occupied by electrons. This broadening of discrete levels into

bands is one of the most fundamental properties of solid.

Band of a solid d ines most of its i ies. As shown in

Fig. 1.3 no conduction can take place in an empty band because it contains no electrons.
Conduction is also impossible in a full band because the total population of electrons
in such a band can have no net motion. A metal is a material with partially filled
band. where the electrons can be given a net velocity by shifting some of them to
infinitesimally higher energies within the band. An insulator has only completely
filled bands and completely empty ones, with a large £, > 2 eV between them. A
semiconductor has a band structure much like that of an insulator but has some mobile

charge carriers. The carriers can be introduced by i ities, by defects, by
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]

11
1A |

e L

—
L
Metal Semiconductor  [nsulator Semimetal
Figure 1.3: Difference between metal, semi insulator and
The shaded portion represents the filled levels and unshaded portion the unfilled

levels.

of electron from the highest filled band (the valence band) to the lowest empty one

(the duction band). What distinguishes a icond from an insulator is that

the E, is ively small in iconds Ina i I the valence band is

filled and the conduction band is empty, but these bands overlap in energy. As a result

electrons redistribute themselves to create two partially filled bands.

The electronic structure of the parent (undoped, unsubstituted) polymers is now known

fairly well. Many different and tk ical techni have been applied

to the various conjugated polymers. with varying degrees of success in predicting, for



Chapter I. Introduction 12

example, electron affinity (EA), ionization potential (IP), band gap or energy gap (£,),
band width (BW). The band width at least in a qualitative sense gives some indication
of the extent of electron delocalization in the system and suggests how mobile the car-
riers will be once produced (e.g. by the ionization process). The IP is important, since
it determines whether or not a particular electron-acceptor is capable of ionizing the
polymer chain. lodine, for example, will onize PA to produce a conducting complex,
but has little effect on the conductivity of PP [30]. This result is due to the fact that

iodine is a relatively weak electron-acceptor and PPP has a higher IP than PA.

[f the CP is a purely one-dimensional polymer. say linear PA (whose bonds are all
equal), that contributes one electron per lattice site, and then it should be a metal.
However. the linear PA transforms into a semiconductor. The linear PA becomes semi-
conductor because of the lattice or Peierls distortions [31, 32, 33]. Lattice distortions
in LD systems arises because of the modulations of the electronic densities [34] and
vibration of the ions in the lattice. Due to this modulation electronic states may be
degenerate and they may interact with a vibrational mode. That is, the electronic
states may be coupled with the phonon causing the lattice to distort from the original
configuration and thus splitting the degeneracy. The distortion opens a gap in the
incompletely filled band forming the valence and the conduction bands. This splitting
of the band is produced by the net lowering of the electronic energy. Thus the bond

alternate structures are created. The bond alternation may be in phase or out of phase
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depending on the orientation of the bonds in the respective mesomers. Thus in the
CP’s after lattice distortion the resulting mesomers can be degenerate (e.g. PA) or

non-degenerate (PPY, PT, PPP, PAni).

Typically theoretical calculations may be performed at the ab initio or semiempirical

level. In the case of conjugated molecules or polymers the large number of atoms
per unit cell precludes the use of ab initio methods. The most successful technique
developed to date for general applicability is the Valence Effective Hamiltonian (VEH)
technique [35. 18]. In fact. many VEH calculations have shown a close agreement
between the theoretical density of states and experimental X-ray photo electron spectra
[36]. The semiempirical methods which is computationally efficient, is also used by
many workers [37, 38, 39] to study the topology of bands and density of states. The
results predicted with this method were in close agreement with the VEH method. Also
the [P and E, values were in agreement with the experimental results. Therefore, in

practice. to understand the qualitative aspects of the solids as pertaining to their band

structures and the charge transfer ph the appears
to be valid and hence we have chosen it for our calculation. Further validation of
our results was carried out with ab initio molecular orbital calculations on the stable

mesomers for the oligomer systems.
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1.3 Current Research

The work, in this thesis, focuses on identifying low band gap organic polymers with

thiophene and cyclopentadiene as the initial building blocks of their backbones. Specif-

ically, we investigate the ic and el i ies of the following systems,

polythiophene (PT), polycycl diene (PCY), polyfulvene (PFv). poly-(dicyano-

methylene-cyclopenta-dithiophene) (PCNTH), poly-(dicyano-methylene-cyclopenta-

dicyclopentadiene) (PCNCY) and poly-(dicy hyl lop diful (PC-

NFv) (see Fig. 1.4 for the correspondi ic units). The d which has

ly either tk ically or i lly is PCNFv which

not been studied pi
consists of two PFv rings which are bridged by a dicyano group as seen in Fig. 1.4.

The above polymers are of interest because historically the = p

polythiophene and polypyrole, have been shown to be promising (i.e. having small
intrinsic band gaps) organic CP's (see the discussion in the previous section). Recently
[40]. it has been shown that enhanced conductivity can be obtained in polymers contain-
ing both electron-donating and accepting groups which form charge transfer complexes.

Accordingly, compounds containing fulvene and/or cyano groups are of special interest.

[n 1978, Mizuno et al., [41] first reported that bis(etk

(BEDT-TTF) (of a fulvene origin) is a ducting organic d. In this

molecular system an electron-donor unit TTF is attached to an electron-acceptor unit
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BEDT forming a charge transfer complex. This work was followed by the synthesis of
small band gap polymers such as polysquaraines and polycroconaines [42] that were
formed by attaching an electron-donating and/or an electron-withdrawing groups to
the conjugated backbones. Before this, in 1973, Ferraris et al., [43] produced organic

charge transfer material i inolone (TTF-TCNQ) with the

conductivity of 10* Sem™" which is in the range of conductivity of graphite. Again in
1991. Ferraris and group synthesized [44] a polymer PCDM (referred to as poly-+-

" hylene-4H-cyclop: [2,1-b;3.4-b|dithiophene in his work and PCNTH in

our work) whose band gap was measured with the use of absorption spectroscopy and

found to be 0.8 eV. Recently, ical polymer ions were perfc d for PC-

NTH [45] and PCNCY [46] (called PDICNCY in [46]). In these cases, the geometrical
(fully optimized) structures were obtained using semiempirical AM1 (Austin Model)
approach which was followed by electronic band structure calculations that employed
the pseudo-potential method. VEH [47, 35]. The band structure calculations predicted

a band gap of 0.56 eV for PCNTH and 0.16 eV for PCNCY polymers. The discrepancy

between the lly and th icall values for the band gaps can

be attributed in part to the fact that in the computations polymers are treated as

their inherent three dimensional nature

pseudo systems,
and their intermolecular interactions that are present in the solid-state.

In this work, we focus on examining the geometries as well as the band structures
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of the polymers listed above. All calculations are performed using the semiempirical
solid-state cluster method [48, 49] as implemented in MOPAC93 [50]. In this method,
polymers are considered as infinite pseudo one-dimensional systems. We have used
both AM1 and MNDO(Modified neglect of Diatomic Overlap) methods for geometry
optimizations and BZ (Brillouin Zone) functionality in MOPACY3 for band structure

calculations. Both the space group symmetry and periodic boundary condition are

ployed in the solid-state cluster ion [49]. The cluster method works best
for clusters that are large enough so that the influence of the end groups on the bulk
is negligible. For our systems, the optimum cluster size is an octamer [51] for the
systems with smaller monomeric units such as PT, PCY and PFv and tetramer for
the polymers with larger repeat units such PCNTH, PCNCY and PCNFv. However

for consistency only the results obtained for tetramers (with unit cells containing four
monomers) are reported in this work.

For the systems considered in this work, the size of the unit cell which is a fundamental
part of the cluster must be determined with care. Typically, in the molecular calcula-

tions one monomer (e.g. one ring in PT) is considered to be the fundamental unit of

the polymer. However, in the solid-stat ions the sy y alone
dictate that a unit cell should contain at least two monomers if the long range transla-
tional symmetry and planarity of the whole systems is to be maintained. To assess the

importance of this, calculations were carried out on systems with two monomers and
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one monomer per unit cell. The main finding of these computations is that with two
monomers per unit cell one obtains a planar structure [52, 53] (with the rings pointing
in the opposite directions [52, 53] i.e. anti conformation) whereas with one monomer
per unit cell one obtains a twisted structure [54] since the rings in this case point in
the same direction i.e. syn and steric interactions prevent the formation of a planar
structure. The extended. twisted structure would form a narrow helix in the infinite
chain.

[n addition. in the case of having two monomers per unit cell, we investigated the
importance of applying symmetry constraints (other than the translational symmetry)

‘We have found that for the

in the geometry optimizations and solid-stat

parent polymers [55] PT. PCY and PFv the full band structure calculations gave the

dditi

same results for band gaps irrespective whether the | symmetry

were used or not. The reason for this is that the unconstrained geometry optimized
stable structures already exhibited most of the point group symmetries included in the
symmetry constraint computations. Thus, for large systems such as PCNTH, PCNCY
and PCNFv we did not impose symmetry constraint in their geometry optimizations
and consequently in the full band structure calculations.

From our previous discussion on lattice distortion it is clear that the polymers studied
can exist in two mesomeric forms. In PT and PCNTH either aromatic(A) or quinoid(Q)

mesomeric forms [56, 57] have been observed. That is, they are aromatic when the
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monomeric units are connected by longer (referred to as “single”) bonds and quinoid
when they are connected by shorter (referred to as “double”) bonds (see Fig. 4.12).
The PCY, PFv, PCNCY and PCNFv can also exist in two forms, the trans-cisoid(A)
and cis-transoid(Q) [46]. S-cis form has a “single” bond between the monomers and

s-trans form has a “double” between the monomers [18].

The i iempirical ions have been followed by all-electron. molecular

orbital calculations using Gaussian94 at a level of 3-21G*/RHF basis set for a selected
set of polymers. That is, ab initio calculations have been performed on the most
stable mesomeric forms for short oligomers (dimers) [6] with chemical compositions
corresponding to all polymers studied. In the oligomer calculations hydrogen atoms
were used as end groups and compounds were kept planar by constraining dihedral
angles to values 0° or 180°.

In this thesis, chapter 2 outlines the Hartree-Fock self-consistent methodology and
semiempirical methods. In chapter 3, we concentrated mainly on the solid-state the-
oretical aspects. The first section of this chapter reviews briefly solid-state theory,
application of Bloch’s theorem and brief description of energy spectra. The cluster
model is outlined in section 2 of this chapter. The geometry of a conducting polymer
can have a marked effect on the band structure. It is for this reason that chapter 4
is used to analyze the structure of model compounds in their mesomeric forms both

in syn and anti orientations. In chapter 5, the band structures, the dispersion of =
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bands and wave functions of the valence and conduction bands are discussed. Also,

their features are lated with their i ies and the trends

in the E,. [P. EA and band for the two ic forms of the pol;

are discussed in chapter 5. [n chapter 6 we summarize our conclusions.
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Figure L.4: Conjugated polymer systems studied.



Chapter 2

Hartree-Fock (HF) Method in Semiempirical Models

Quantum chemical methods use the ipl

of quantum to

the various properties of atoms, molecules and solids. One group is concerned with
purely non-empirical methods (often called ab initio methods) while the second group
is concerned with semiempirical methods, i.e. calculational methods that utilize an ad-
ditional posteriori information. In the present chapter, we briefly discuss the main
features of the semiempirical methods. We summarize the evolution of semiem-
pirical methods as derived from the exact formulation of the linear combination of
atomic/molecular orbitals, LCAO/MO, method within the Hartree-Fock (HF) approx-

imation.

2.1 Hartree-Fock Approximation

The central equation in quantum mechanics is the Schréedinger equation Eq. 2.1

AY = EV, (2.1)
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For systems larger than HY it is difficult to solve this equation exactly and certain

must be i

in the exact quantum mechanical theory. The
solutions, ¥, of Eq. 2.1 are functions of the space and spin coordinates of all particles.

They are called wave functions of the states with eigen energies E.

The motion of nuclei is relatively slow compared to that of electrons. This leads to

Born-O hei imation. In this imation the Hamiltonian in Eq. 2.1

is treated to be lativistic and time inds dent with nuclei assumed to be sta-

tionary [58]. In general, for many-body system containing N nuclei and 2n electrons

the electronic Hamiltonian (in atomic units) is given by

N
e W (2.2)
==l A
We define (7. m,; R) as a solution of the Schroedinger equation given by
HoWu(7 my; B) = Ea(R)Wa(7.my; R). (23)

In Eq. 2.3 E.(R) is the potential energy which represents the electronic energy for a
fixed set of nuclear co-ordinates. Thus, the total energy E is defined as the sum of

the electronic energy, Eu(Ro), calculated for the given nuclear geometry Ro and the
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nuclear interaction energy:

Z,;Zg

Ed(Rﬂ)+ZZ (24)
Considering that electrons are indistinguishable particles, their fermionic character
requires that they satisfy Pauli exclusion principle. i.e. the total many-electron wave
function is antisymmetric (with respect to the electrons interchange of the electrons’

quantum numbers.) To satisfy the Pauli exclusion principle the wave function is written

in the form of Slater d. i [59] in HF imation as follows
e(le(l) $i(2)a(2) . $1(2n)a(2n)
el(DB(L) $u(2)8(2) oo ©1(2n)8(2n)
W(Fma) = —=—| s e e (2:3)
ua(l)a(l) Yn(2)a(2) ... n(2n)a(2n)
Gn(1)B(1) ¥al(2)B(2) oo #n(2n)3(2n)

The elements of the above determinaat are spin orbitals ®; which are given by the
product of a function of electron space coordinates, i(#), and one of the two possible

+} spin functions

(7, mai) = il FE)( (i) (2.6)
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—3- In the HF approxima-

where ((my) = & for my; = +1 and ((my) = B for my;

tion, it can be shown [58] that the spin orbitals are eigenfunctions of single electron

Hamiltonians.

H1(0)8(0) = E:@(i). 27

2.1.1 Basis Set Expansions

Basis set i are used to i ;. For example, each molecular orbital
w; can be led as a linear bination of ic-like orbitals x, '
N
=Y cixe (2.8)
=

where the atomic-like orbitals called basis functions x, constitute the basis set for the

1 ion and the molecular orbital i i c,i can be di ined from

the variational principle [59].

2.1.2 The Electronic Energy

The el ic energy is d ined by the jon value as obtained from the

equation. £ = <—<'l{l'—\,,‘;—> where W is given in Eq. 2.5 and H = H. is given in Eq. 2.2.

!In semiempirical methods Slater type orbitals (STO) are used as basis functions.
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After dividing the electronic Hamiltonian into one electron and two electrons contribu-

tions and ing the i ions over space coordinates and the spin
ding to rules explained elsewhere [58], the total el ic energy is given by
E:2g <Vl > +$$(2J.~, - (29)
where
< ilhV]i >= /vb,‘(l)ix"w;(lldu‘ =HY (2.10)

are the one electron integrals that consist of first and third terms of Eq. 2.2 and I3
is called the one electron operator. There are two types of two electron integrals: the

coulomb and the exchange integrals. The coulomb integral can be represented as
- - 1
Ji = [ 6L @) wi@dvalyi(t)din @11)
and exchange integral can be represented as

= [ e d@ (vl (1. @12)
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Similarly the terms inside the brackets can be identified in the above integrals as the

coloumb operator, J;;, and the exchange operator K respectively.

2.1.3 The Variational Principle

The variational principle states that an arbitrary function ¥’, (which, in the basis set

expansion approximation depend on the particle co-ordinates and numerical parameters

¢,i) used in ions to i the exact eij ¥ of the lowest energy

eigenstate of a given system satisfies the following condition for the eigenvalue E'

corresponding to ¥’

E'>E (2.13)

where E'is the exact energy (refer Eq. 2.9) eigenvalue of state ¥ (true ground state).
It follows from this inequality (Eq. 2.13) that the best approximation of £’ to the
eigenvalue £ will be obtained when v; (refer Eq. 2.8) will be adjusted to minimize the
expectation value of the energy E’ i.e.,

SE' _

=0 Ueratld (2.14)
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where

< WA >
—<-vl"|i|7>_ =E>E (2.15)

After substituting Eq. 2.9 into Eq. 2.15 £’ is varied with respect to v;. Performing the

unitary transformation which diagonalizes the matrix of Lagrangian multipliers leads

to eigenval ions called Hartree-Fock integro-di ial ions of the form
[R¥ (1) + 3(205(1) = Ki{(D)]ei(1) = el 1) (2.16)
=
where i=1 or equivalently

HF g, = e (2.17)

To provide the physical i ion of the L i ipliers, ;, we multiply

Eq. 2.16 by ¥} and integrate over electron coordinates, then

L=< iRV > +f: < il2d;(1) = K1)l >=< i| T7F|i > (2.18)
=

where /¥ is called ‘Hartree-Fock Hamiltonian® [60] or the effective one electron ‘Fock
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operator’ [58] defined as
1 = hi) + 3200 - &), (.19)

2.1.4 The Hartree-Fock Roothan (HFR) Equations

Introduced by Roothan [61] in 1951 the substitution of Eq. 2.8 into Eq. 2.16. and addi-

tion of an arbitrary function ¢ (orthogonal to all basis function) and multiplying both

sides by y; and i ing over the we the int

equations into algebraic ones
1
S cnlHl + X Pal< polde > ~5 < pollv )| = Fcne <ulv >, (2:20)
v = 2 7

We define subsequent integrals that are part of the above equation as follows:

Fuu = [HY + X< wldo > —+ < ualav >)] (223)
Ao =
=HY + G

B = GaUIEY - 5 22l )). (@229)
2= (GG - 2 2k
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This allows us to write down the above set of equations in a more compact form as

follows
3 el Fuw — €S) =0,i = 1,2, ...n. (2.25)

These are the algebraic HF equations (with basis functions x,), the so-called Hartree-
Fock-Roothan (HFR) equations. Py, Sy, and F,, can be treated as elements of square
matrices: P (the charge density matrix), S (the overlap matrix) and F (the Fock matrix
containing one and two electron integrals) respectively, with dimensions equal to that

of the basis set y,. HFR equation can be written in the abbreviated form as
FC =SCe (2.26)

C is a square matrix, the i** column of which are the MO coefficients c,; obtained via
masrix diagonialization. The basis functions are orthogonal and upon unitary trans-
formation of the basis functions will produce molecular orbitals. That is we proceed

as follows:

SCUARSCIASIAC = sACe (2.21)

F'V=Ve
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In the HF method the total electronic energy is given by Eq. 2.9. Expanding the
integrals HY, Ji; and K;; in terms of the basis functions we obtain the electronic

energy in the HFR method as:
1
Eu=3Y Pu(HL+F.). (2:28)
=

2.1.5 Self-Consistent Procedure

The following steps are common to all self-consistent field molecular orbital calcula-

tions:

(1) Calculate the integrals for F, S.
(2) Diagonalize S.

(3) Form the Fock matrix F.

(4) Form F’ as in Eq. 2.27.

(5) Di lize F' for the MO ei lues €.

(6) Back transform V to obtain the MO coefficients.

(7) Form the density matrix P. '

(8) Check P for convergence. If P for the n'* cycle agrees with P for the previous
cycle within a given tolerance, stop. If not, extrapolate a new P matrix and repeat

from step (3) until a self-consistent field (SCF) (step 8) is satisfied.
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2.2 History of Semiempirical Methods (SEM)

Prior to 1965 only qualitative 7 HMO methods existed. Originally Hickel Molecular
Orbital (HMO) method was limited to the = system. Later it was extended to the o
framework, this gave rise to the extended Hiickel method (EHMO). With the exception
of these two methods, ab initio methods had an automatic claim to respectability since
they were nominally fundamental and gave (in most cases) accurate predictions. It was
clear from the beginning that ab initio methods would be impractical for the study of
large molecular systems.

From the form of the HFR equations derived above (refer. Eq. 2.25), the calculation
of several integrals are required with an assumed set of basis functions. [n its non-
empirical form the HFR method is conceptually simpler but it becomes impractical

for the study of large polyatomic systems. Attempts were made to use empirically

determined data to imate the licated integrals (refer. Eq. 2.23) used in
the ab initio theory. All of the difficult three- and four-centre integrals were ignored,

and one- and tre terms were i d using a mixture of functions based

on atomic spectra and on formal theory. (Refer Appendix A for the nomenclature).

| are

Procedures of this type, which had both i | and th

called semiempirical methods (SEM). Usually the derivation of semiempirical equation
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involves two steps. The first step involves additional approximations to the HFR equa-
tion and the second step involves the calculation of non-empirical integrals (integrals
which are evaluated numerically using basis set functions, typically done for valence

electrons only in the semiempirical approach).

2.2.1 All-Valence Electron (AVE) Approximation

[n SEM the molecular electrons comprise two subsets: subset A which consists of the
inner shell electrons of all atoms in the molecule and subset B which consists of the
atomic valence shell electrons (we assume that these subsets are separable). Thus the

total molecular wave function can be written as

¥ = X[¥4¥5] (2.29)

where X is an antisymmetrization operator. The separability of wave functions corre-
sponding to the subsets A and B is obtained when the so-called strong-orthogonality

condition

(2.30)

is fulfilled. For the above equation if subset A comprises of o-type electrons and subset

B comprises of #-type electrons, Eq. 2.30 is automatically satisfied on the symmetry
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grounds. With this approximation for all electrons of a given system one can derive

equation analogous to HF equations (refer Eq. 2.16) assuming the separa-

bility of subsets A and B.

Experiments indicate that inner shell electrons are relatively inert in typical chemical
processes. Moreover, W 4 should not depend on the state of valence shell electrons. Thus
inner shell electrons represent only a source of electrostatic potential and simply screen

the nuclear charges. These electrons may be effectively by substituting the

atomic core charges Z for the corresponding nuclear charges Zi. Then the one electron

operator A¥(1). defined previously can be replaced by the core Hamiltonian A

Nogooq ~

Vi- Y L =3Vi- Y V1) (2:31)
=T = k=1

According to Eq. 2.31 the core Hamiltonian k(1) represents the total energy operator

for an electron moving in the field of N atomic cores with charges Z{. The elimination

of direct reference to inner shell electrons forms the basis of the so-called all-valence

electron (AVE) approximation.

2.2.2 Neglect of Diatomic Differential Overlap (NDDO) Approximation

Moreover, there are additional approximations involved in the HFR equations and they

are classified according to the degree and range of assumptions. Historically, the first in
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the series of zero differential overlap (ZDOQ) method was the simple x electron method
due to Hiickel [62] in 1931. In the early 1950’s the Pariser-Parr-Pople (PPP) model
[63]. a true SCF model was developed. In 1965. Pople and his co-workers introduced

a series of ZDO imations that lized the w—electron PPP scheme to all-

valence electrons [64].

To start with, in neglect of diatomic differential overlap (NDDO) scheme the differential
overlap of atomic orbitals on different atoms is neglected in both overlap and two

electron integrals, leading to the following conditions

Suave =Suave (2:32)

where p. v refers to individual orbitals and A. B C and D refers to atomic centres

(ravslAcop) = (pavalAcoc)basécn- (2.33)

Due to this approximation the matrix element F will not contain three-, four-centre
two electron integrals entering via the element G, in Eq. 2.23. The latter element will
have G,y With A = B becoming Gy, and similarly Geu, with C = D becoming

Goev. thus involving only one- and two-centre terms. Thus, the matrix elements of
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HFR operator in the NDDO approximation are given by

‘ 1
Faws = Bt B Pucilleaaliara) = 5uadaliara) - (234)
A
+ 3 Y 2808Pygos(pavalrsos)-
B#A
1
Fuwn = Hipp—3 \2 Pros(patalvacs) for A#B.
Sy

The introduction of NDDO imations to the matrix elements of core operator is

an another problem. Let us rewrite the core Hamiltonian in Eq. 2.31 as

k)

1= Va(l) = X Ve(1) (2.35)
C#a
and then
H oy = Ui = 3 (malVelva) (2.36)
C#4
where the one-centre one electron integral is defined as

-1 .
U oa = (#al 5V = Valwa). (2.37)
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2.2.3 Choice of Empirical Parameters in SEM

The formal reduction of HFR ions for irical schemes must be followed by

1 of some irical ities by

The introduction of ical into iempirical schemes is ad

providing these parameters are of sufficient generality. Such parameterization both
compensates for the intrinsic inaccuracies and errors of the simplified scheme and re-

duces the computational effort by replacing certain types of integrals. We can dis-

tinguish two different types of iti ing in the i (i) atomic or

lecular integrals calculated theoretically from known atomic orbitals. (ii) empiri-

cal parameters whose values are fixed by direct reference to experimental data. Each

specific i irical ization of the i HFR method can be completely

characterized as follows:

(A) The form of the assumed AQ basis.

(B) The determination of the one-centre one electron integral parameters U, ,.,.
(C) The determination of one-centre two electron integrals.

(D) The calculation or approximation of two electron Coulomb integrals.

(E) The calculation or imation of integrals B,,,,, for two-centre core

integrals.

(F) The calculation or imation of the repulsion energy Cag.
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2.2.4 MNDO, AM1 Schemes

The first practical NDDO method was introduced by Dewar and Thiel in 1977 [48]
called MNDO. This method is superior over other semiempirical schemes because this
takes into account the lone pair-lone pair interactions (i.e. interactions between two

pairs of unshared els and ization of integrals is d from ex-

| molecul heats of ion, dipole moments and ionization

potentials.

The Fock matrix in MNDO has the form of Eq. 2.34. The orbital exponeats. core inte-

grals are regarded as empirical and to be determined by fitting
The core-core repulsion energy term was made as function of the electron-electron re-
pulsion integral. The atomic parameters U, ,,, are derived from atomic spectral data

using transition energies between different atomic configurations, ionization potentials
and electron affinities using the formulae of Oleari et al., [63].

MNDO is superior than other schemes but it is poor in predicting the hydrogen bond
[48]. Shortcomings in the MNDO model has led to reexamination of the model and thus

AMI [66] scheme was developed. In the AM1 imation each atom was assigned a

number of spherical gaussians which were intended to mimic accurately the repulsions
at van der Waals distances. Recent development in the SEM is the Parametric Model

3 (PM3) scheme by [67]. This scheme is still being tested, thus our calculations were
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performed with MNDO and AM1 schemes.
[n 1983 the first MOPAC program [68] was written and contained MNDO models. In
1985 AM1 code was implemented and present model contains MNDO, AM1 and PM3.

The accuracy of these three schemes in duci il has been ined

in considerable detail [48, 50, 68]. The average errors in predicting heats of formation,

IP. EA. dipole moments etc. are discussed in details in [69).

The more useful quantity is the standard enthalpy of formation or simply heat of
formation H of a substance. It refers to the amount of heat absorbed in a reaction
that produces one mole of a compound in its standard state (i.e. in the gas phase,
at 298 K), from elements in their standard states. For large molecules or polymers
Hy is determined from the energies required to ionize the valence electrons of the

atoms involved ( d using semiempirical Eisai( A), and the heats of

atomization. Egom(A), which are then added to the electronic and the nuclear energies

[70. 60]. This yields the following equation
Hy = Eu+ Base + 3 Bowt( A) + T Eutom(A). (238)
A A

[n the above equation, the sum of the first and second terms constitutes the total
energy of the large molecule or polymer which can be obtained from a self-consistent

electronic calculation (refer Eq. 2.4). The remaining two terms relate the energies of
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the isolated atoms, i.e their ionization potential energies and average bonding energies
to the total energy of the molecule or polymer.

At the present time, SEM are evolving with increased accuracy, and the study of ever
larger systems is their target (refer chapter 3). The data for the parameterization have

often been from for semiempirical methods are

also derived using ab initio results (e.g. PM3). Also semiempirical Hamiltonians have

always been the testing ground for new theories, and they are used increasingly to gen-

erate the input data (geometries and trial MO coefficients) for high level calcul
Moreover. it can be seen from our calculations, that SEM offer a good qualitative de-
scription of the problem. and even a quantitative one in some cases before the more

xpensive calculations are




Chapter 3

Theory of Electronic Structure of Solids: Solid-State vs Molecular

Approach

In Chapter 2, the Hartree-Fock theory has been summarized. HF approximation can

be employed in quantum mechanical cal for atoms, molecules or solids. The

actual implementation of the HF theory depends largely on the system studied. In this
thesis. we study extended systems such as polymers. Polymers are long chains of cova-
lently bonded atoms. Since synthetic polymers are formed from repeating units, there
are two types of approaches that can be used to study their electronic properties: (1)

pseudo one-dimensional solid-state approach that employs the translational invariance:

(2) molecular approach that applies molecular orbital ions to oli that
are large enough to accurately simulate bulk properties of the polymers. Both methods
should lead to the similar results and conclusions. Yet another way is to retain certain
features of (1) and (2) and thus form the basis for the cluster solid-state approach. We
will summarize the main, fundamental concepts used in solid-state physics in section
3.1. In section 3.2 we will make a connection between solid-state concepts and the

molecular orbital picture. In section 3.3, a hybrid solid-state cluster method will be

40
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discussed. Finally, in section 3.4 technical details of the hybrid method as implemented

in MOPAC93 are briefly discussed.

3.1 Solid-State/Band Theory

The study of electronic structures of solids is really the study of the energy bands

and the distributions of electrons in real and in space. The fi

theorem underlying the formalism of solid-state theory for periodic crystals is the
Bloch’s Theorem (Bloch, 1928) [71].
3.1.1 Lattice Vectors

The essential aspect of a periodic lattice is its regular arrangement of atoms. A crystal

lattice is defined math ically by specifying three it vectors d;, @2 and @

(called primitive vectors). Starting from some arbitrary point, all points in the lattice

can be d from it by i lations with vectors, 7, that are linear

combinations of @, @. @ (thus creating an infinite array of points)

1@y + lads + lads (3.1)

where [y, ly, I3 are integers. The volume of the parallelogram whose sides are the prim-

itive vectors @, @, ds is called the fundamental or primitive unit cell of the lattice. If
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such a cell is translated by all the lattice vectors the infinite lattice, sometimes called

Bravais lattice, is constructed.

3.1.2 Periodic Functions

In order to develop a physical model of a crystal structure with its underlying transla-

tional symmetry we often need to consider periodic functions, f() such that

SFE+D) = f(F+ha + bz + ba) (3.2)

= f®-

In real space, f(7) could be an electron number density p(F) or an electronic potential
V(7) ete.

Beginning with a lattice in the three dimensional space, whose primitive vectors are
. @, @, we can define set of wave vectors by, by, by such that the resultant plane
waves will have the periodicity of a given Bravais lattice, thus generating the reciprocal

lattice (in Fourier space). A general vector of reciprocal lattice has the following form

7 =10y + g2by + g3bs (3.3)

where g1, g2, gs are integers. Vectors by, by, by are called the reciprocal lattice vectors.
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From an elementary vector analysis, we can verify that the direct and the reciprocal

lattice vectors will satisfy following relations:

&

= 2r6;; (3.4)

where §; = L if i=j and &; = 0 if i and

§-T= (g8 + 9252 + gabs) - (b + oz + bsds) = 27 x integer 3.5)

(3.6)

3.1.3 Bloch’s Theorem

Bloch'’s theorem describes the general form of wave function of one electron Hamiltonian

for periodic systems such as single crystals or gular polymers.
electrons, each of which obeys a one electron Schrddinger equation with a periodic
potential, are known as Bloch electrons (in contrast to free electrons). The periodicity
of the lattice as expressed by the periodic potential, V(7) = V( + I), requires that
electronic properties such as the electronic charge density are also periodic. The pe-

riodicity of the electronic charge density can be used to obtain a general form of the



Chapter 3. Theory of Electronic Structure of Solids: Solid-State vs Molecular Approach44

Bloch’s wave function.
In quantum mechanics we can define a translational operator ([} that has the the

following property

() = o7+ = D) (3.7)

where A(0) is the eigenvalue of (i) !. Since the electronic charge density p(7) must be

periodic we must have

A7) = [P = (7 + 1) = [w(F+ DI (3.8)

which requires that

AP =1 39

The condition in Eq. 3.9 can be satisfied if

The vector ¥ ch izes a particular eigenfunction, and d ines the ei 1

!Detailed proof of Bloch's theorem can be seen elsewhere [5].
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for every translation [ in the Bravais lattice. That is, substituting Eq. 3.10 into Eq. 3.7

the following phase relation between the solid-state orbitals can be obtained:

(3.11)

The above equation is one type of statement of Bloch’s theorem. An alternative (but
equivalent) form of Bloch’s theorem states that the Bloch function %(F, ) in Eq. 3.11
can be written as a product of periodic function, u(F,7) such that u(F,7) = u(k,7+1)

and a plane wave e*7 or

b(k,7) = e*Tu(E.7) (3.12)

or more generally as

balk,F) = eFTun (B, 7) (3.13)

where the index n will be discussed in the next section.
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3.1.4 Periodic Boundary Condition

The wave vector ¥ is a quantum number characterizing the electron wave function. In
principle, we could specify the allowed values of ¥ by imposing some boundary condi-
tion on the lattice potential. However, most solids are large in comparison to atomic
dimensions (a solid sample of 1 cm® contains & 10% atoms), and surface conditions
are quite diverse. Thus, in order to simplify the solid-state formalism, the periodic
boundary conditions [5] are invoked. The periodic boundary implies that the crystal
repeats itself in all respects after translations and surface effects are discarded. It can
be shown that the application of periodic boundary conditions means that the general

form for allowed Bloch wave vectors is

o

(3.14)

where m; are integers and N is of order N'/3 with &V being the total number of primitive
unit cells in the crystal.
Furthermore we note that if the eigenfunction %(F,) has a wave vector ¥ associated

with it such that

F=F+d (3.15)
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where § is some reciprocal lattice vector then %(F,) and %(F',) are said to be equiv-
alent since ¥ and ¥ are equivalent. This is clearly true when one notes that the phase

factor in Bloch's theorem (see Eq. 3.11) obeys the following

(3.16)

and @(F.7) = 6(F+§.7) = @(K,7). Consequently, the wave functions w(F,F)
and (¥, 7) have the same eigenvalue A for all lattice translations. The solution of
Schrédinger equation (with 7 and F being restricted to a single primitive cell of the
crystal) results in an infinite spectrum of eigenvalues for a wave vector £. These differ-
ent solutions are labeled by an index n. Thus, the eigenvalues of the states with wave

vector £ are denoted by en(F) or

Hpo(F,7) = en(R)gu (. 7) (3.17)

where A is the Hamiltonian. The function e,(F) is referred to as an energy band and
wa(k.7) is called a Bloch function. The function ,(F) is a continuous and differentiable

function of k.
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Table 3.2: Molecular vs solid-state terminology

Solid-State
Hiickel LCAO-MO method Tight Binding method
Molecular Orbital Crystal Orbital
Highest Occupied Molecular Orbital (HOMO) Valence Band (VB)

Lowest Unoccupied Molecular Orbital (LUMO) Conduction Band (CB)
HOMO-LUMO Energy Difference Energy Gap or Band Gap (E,)

Jahn-Teller Distortion Peierls [nstability

3.2 Qualitative Aspects of Band Theory

Thus far the fundamentals of closed shell HF molecular orbital and solid-state theories

were briefly described in the previous chapter and above sections. Polymers can be

treated as closed shell y well as solid-state (pseudo one-dimensional)

infinite systems. [n order to develop a qualitative picture of the band energies for poly-

mers we apply the molecular orbital hodologies to very large systems and

discuss how the solid-state concepts arise from this extrapolation. It is illustrative to do

this using the Hiickel Molecular-Orbital (HMO) imation [72, 73] 2. A

analogs between molecular and solid-stat inologies are listed in Table. 3.2

The HMO method is a simple and an useful tool for explaining the stabilities and physical prop-
erties of organic 7 systems. Full discussion of HMO method can be seen elsewhere [73, 74, 8]
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a+2fk 0000

Electronic levels spreading into a band (as for example in Hiickel calcula-

Figure
tion).

3.2.1 Energy Bands
Simple Hiickel theory (73] cites an analytical expression for the energy of orbitals of

linear polyenes whose j** level for an N atom chain is given by

jr
e,=a+2ﬂoosN+l.

(3.18)

When  is very large, the lowest level will lie at ¢ = a + 28 where there are bonding
interactions between all adjacent atom pairs and the highest level will be at ey = a—28
and it contains antibonding interactions between all adjacent atom pairs (see Fig. 3.5).
Between them lies a continuum of orbital energy levels usually referred to as an energy
band with an energy spread of [( — 28) — (a + 28)| = 4. In the middle of this stack

of levels one of ¢;’s satisfies the equality eicje(ven) = a. a level corresponds to a
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Figure 3.6: One r orbital per unit cell in one-dimensional polymer.

number of nonbonding molecular orbitals (see for example Fig. 3.5).

If the polymer is treated as a very large molecule then within the molecular orbital
picture this molecule would be represented by a very large number of orbital energy
levels. How can we handle this “infinite” collection of orbitals? The answer is we
can make use of the solid-state concepts such as periodic boundary condition and
primitive unit cell. In order to illustrate how these concepts are applied to polymers
we discuss two cases: (1) one-dimensional chain with monoatomic unit cell and (2)

one-dimensional chain with diatomic unit cell.

Case 1

As shown in Fig. 3.6 assume that the atoms in a very long one-dimensional system

can be described by a single orbital per atom and the system bebaves as if the atoms
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were embedded in a very big ring (to satisfy the periodic boundary condition). Given
the above approximations we can assume that the system correspond to an analogous
macroscopic “bulk” system. Again from HMO analogy for cyclic systems the energy

of the j** level can be given by

s
& =a+2ﬁcos$ (3.19)

where j/=0. £1. %2, ......... Since NV is large we can rewrite the Eq. 3.19 using the variable

k= %2 as follows

e(k) = a+23coska (320

The value of & ranges between 0 and %X or equivaleatly the value of j ranges between 0

and 1 (similarly to the case for finite system). One important difference between
finite and infinite cases, of course, is that the use of k allows us to treat energy as
function of a continuous variable whereas in the finite system with j increasing in
discrete steps the energy is also a discrete function. In both finite and infinite cases,
we note that ¢; (for the finite system) with |j| > &= and €(k) with [k| > £ (for the
infinite system) lead to redundant information. In the solid, the region of k between

+Z is referred to as the first Brillouin Zone (BZ). The points k = +Z are called the



Chapter 3. Theory of Electronic Structure of Solids: Solid-State vs Molecular Approach52

o-28;
-~ N
. &
el
{ gg gg T“
L L% % %
-
a2
3

Figure 3.7: Two = orbitals per unit cell in one-dimensional polymer.

zone edges and k=0 is called the zone center. Since the Fig. 3.6 has a mirror symmetry
about k=0 it will be sufficient just to use one-half of the first BZ (we choose the right
half in our discussion). As explained before, the index k is called the wave vector and

the variation of energy as a function of k is called the dispersion of the band.

Case 2

Consider a case as shown in Fig. 3.7 where the unit cell contains two atoms (thus, we
have a lattice with a basis) each with one electron represented by a single molecular
orbital and the lattice constant is a’ = 2a; how does the qualitative picture described
in the Case L change? First we note that the BZ will range from ¥ to £, as shown

in Fig. 3.7. Consequently, the energy spectra will differ from those given in case 1. In

the Hiickel imation all the ighboring i ions are



Chapter 3. Theory of Electronic Structure of Solids: Solid-State vs Molecular Approach53

00100
00

@ ]

=

=
[
=

00100
00J0C

)

e

Q
0070

Figure 3.8: Inter-cell and intra-cell i fons in regular one-dimensional polymer
chain. Unit cell possesses two = orbitals.

Solving the secular determinant in this case will result in the eigenvalues given by
i
e(k) = @+ 28 cos - (3.21)

The r orbitals that correspond to the lowest energy point in the  band will combine as
shown in Fig. 3.8(a) thus result in intra-cell and inter-cell bonding. At the same time
= orbitals that correspond to the highest energy point in the 7= band will combine
as shown in Fig. 3.8(b) thus contribute to antibonding between cells and within cells.
At k = % the combination of x orbitals as shown in Fig. 3.8(c) results in intra-cell
bonding but inter-cell antibonding. Similarly in Fig. 3.8(d) the = combination results
in intra-cell antibonding but inter-cell bonding. Clearly molecular orbital arrangements

corresponding to Fig. 3.8(c) and (d) have the same energy (we have a degeneracy at
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this point) and the top of the = band and bottom of the 7 band touch at this point.
And since we have an even number of electrons (in contrast to the case 1), each state in
the 7 band is filled with two electrons. Thus in the ground state the 7 band is full and
the 7* is empty. The material is still metallic due to the presence of the degeneracy at
the BZ edges (see Fig. 3.7).

Next we discuss the general form of single electron wave functions for the cyclic chain
consisting of A unit cells in the limit of N being very large. As described in Eq. 2.8
chapter 2. we can let \’s be the basis functions which form the basis set for the Bloch
single electron wave functions. That is the Bloch function, (. 7), shown in Eq. 3.13
can be expanded in terms of single atomic orbitals, Y,(r — d, — 4,) (LCAO), (which

are centered on the p* atom in the »*® unit cell) as follows:
JE 1 X E ey .
v =33 cuibuxulr —dp — L) = v eI Phiu(r —dp — L) (3.22)
st NS=

Substitution of k = %2 leads to expression
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or
b= =l E E' biule™]xu(r — dp — L, 3.24
'k /N == T Cang PG ) (3.24)

Thus ¥4 can be thought of as symmetry adapted linear combination of atomic orbitals
that has been acted on by the translation operator. The wave functions in Eq. 3.24 are
orthogonal to each other for different k values. Also at zone center (k = 0) the wave
functions are in phase and at zone boundary (k = 7 /a) they are out of phase and in
between the wave function is complex [50, 75, 3].

We shall now show that the number of orbitals (corresponding to the allowed values of
k) in a band inside the first BZ is equal to the number of unit cells in the crystal. The
requirement of a periodic boundary condition means that the only allowed values of &

are
E= (3.25)

where L is the length of the system. The number of states inside the first BZ, whose

length is 2, is equal to

(3.26)

o5
I
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I
B
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Figure 3.9: Inter-cell and intra-cell i ion in distorted
chain. Unit cell possesses two = orbitals.

di I polymer

where .V is the number of unit cells. Thus each band has V states inside the first zone.
Since each state can accommodate at most two electrons (which must be of opposite
spins in accordance to Pauli exclusion principle) it follows that the maximum number
of electrons that may occupy a single band is 2V. With a given number of electrons in
the solid the bands, doubly occupied, will be filled to a certain energy level e, called
the Fermi level. Fermi level corresponds to a specific value k = kr. This result will be

used in later chapters to establish the criterion for predicting whether a solid is going

to behave as a metal or an insulator.

3.2.2 Distortions in One-Dimensional Systems
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5% &
Figure 3.10: Metallic (on the left), semiconductor (on the right) behavior of linear,
one-dimensional polymer chains. Bands near Fermi surface are shown in the reduced

zone scheme. Solid dark line indicates the filled band. Dotted (horizontal) line indicates
the Fermi surface.

Case 3

In the previous cases it has been shown that a regular linear chain with one or two
electrons per lattice site is a conductor. Whereas. as we shall see, this is not so for the
chain with unequal bond lengths (often referred as the alternating bond lengths). Asex-
plained in the introduction, lattice distortion are common in the quasi one-dimensional

and linear systems. As shown in case 2 if the lattice with a basis has two atoms, the
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bands are folded and BZ ranges from 3X to 3. Since there are two orbitals per lattice
site. the = band is full and Fermi surface crosses from the 3% to  points (Refer.
Fig. 3.10(a)). Due to the lattice instabilities (see Fig. 3.10(b)) the degeneracy at the
BZ edges is lifted in the case of two atoms per unit cell. Also the filled = band is
pushed down in energy due to intra-cell bonding and 7~ band is pushed up in energy
due to intra-cell antibonding. Thus the folded band is separated, that is, a forbidden
region is formed between x and 7* bands. In the case of one atom per unit cell a band
gap appears at the Fermi level. The formation of the band gap in either case signals

the transition from a metallic to a semiconductor state for a linear chain.

Case 4

The polymeric material such as PA as shown in Fig. 3.10(c) with one = orbital per
atom has a = band structure. In this case the primitive cell contains two atoms and
the lattice constant is g, so that the BZ ranges from =X to I. Since we have two
electrons per primitive cell = band is full. Similarly to the case 2, there exists some
degeneracy of the orbitals so that the bands stick at the zone edges (effectively doubling
the size of the BZ). Hence the PA will be metallic if all bond lengths are equal in the
polymer. Now consider the lattice distortion occurring in this system. The regular
PA will exhibit bond alternation as shown in Fig. 3.10(d). In contrast to the previous

case 2, here the lattice constant is not doubled but the glide plane is lost due to the
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reconstruction. Note the primitive unit cell has still two atoms, hence two electrons
per lattice site. Due to this reconstruction, the degeneracy of the Bloch orbitals for &

points equal to d £ is lifted and a gap opens at the zone edges.

The electronic structure of regular PT, PCY, PFv are essentially similar to that of PA.
Owing to the extension of the unit cell from two to four or more carbon atoms, a folding
of the bands takes place. The BZ extends from 3% to £ in the reduced zone scheme
(refer Fig. 3.10(e) for doubly folded band). In order to understand this more complex
problem it is easier if the bands are unfolded (i.e. consider the extended zone scheme).
Then the two bands 7 and 7 will stick together at =% and at T due degeneracy of these
Bloch orbitals. This extended zone is called Jones zone [76]. Moreover the electrons
fully occupy the lower 7 band in this zone and upper 7~ band is completely empty
thus conduction can take place. Lattice distortion will cause the formation of alternate
mesomeric forms as shown in Fig. 3.10(f). Due to this alternate structure, degeneracy
in the middle of Jones zone is lifted and a gap is formed. Again in the reduced zone
scheme. the bands are refolded so that the direct band gap appears at the center of
the BZ [33, 77, 76]. Note the Bloch functions at the zone boundary are degenerate,
(i.e. sticking at the zone edges) as a consequence of screw axis (rotation followed by
translation operation) symmetry [76]. Hence although the regular (with equal bond
lengths) chain behaves as conductor, the lattice distortion and the formation of stable

mesomeric forms give rises to semiconducting polymers for practical purposes.
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3.3 Solid-State Calculation in Semiempirical Models

As described in the previous chapter, the basic idea of molecular quantum chemical

calculation is the usage of LCAO imation. A direct application of LCAO ap-

proximation to an extended systems such as solids leads to a problem of solving a very
large number of single electron. self-consistent equations for the nearly infinite number
of atomic orbitals. One way of overcoming this problem is to use the full solid-state
methodology (as described above). However, due to the low symmetry involved in cases
such as polymeric solids a pure solid-state approach is also very cumbersome. Another
way is to use the so called cluster or the large-molecule approach to simulate the bulk

properties of solids. Cluster solid-state approach is a hybrid method that uses concepts

from as well as from solid-state theories. The large-molecule or cluster ap-

proach was first described in the early 1950’s by Inui et. al [78]. During 1970’s cluster
calculations for studying vacancies and defects in semiconductor solids were carried on
by Messmer et. al [79, 80] for HMO. The above approach faced difficulties due to the
neglect of surface effects and the two electron interaction terms in the Hamiltonian.
Then in late 1970s the above problems were rectified in the so called cluster model
for solids (CMS) by appropriate semiempirical schemes that included the two electron
interactions and some solids state aspects that allowed for the neglect of the surface

effects (by making the cluster large enough so that it becomes a good approximation
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for a solid). In this section, we give a very brief discussion of cluster approach as it is
used to study solid-state properties and its implementation in MOPAC93.

hanical, electronic structure calcul for polymers are

Traditionally quantum
performed in two ways. One involves the use of oligomers (short chain segments with
end groups) and other is a solid-state type of approach with the appropriate boundary
conditions. [n order to simplify the calculation of polymers, CMS has been adapted

in conj ion with MNDO Hamiltonian. In this approach, the cluster unit cell (CU)

is taken as the multiple of the primitive unit cells in order to accurately represent the
bulk properties of the polymer chain. If the translational vector or the size of CU is
large enough, the nature of the bands in the BZ will not change significantly at the
zone edges. Thus a sufficiently large cluster unit cell would allow the use of only one k
point (obviously " point) to represent the entire BZ. Clearly, if the primitive unit cell
is small, several k points may be needed in order to obtain a good representation of
the band.

From the previous sections on qualitative aspects of band theory explained using HMO
methods for cyclic polyenes we have obtained e; where j=1 gives the lowest and j=N
gives the highest 7 eigenvalues. These limiting values are to be identified with the
“solid-state” values at T and X point of the = band in the BZ. The following paragraphs
explains how the eigenvalues are generated for a cluster of atoms that are used to

produce the corresponding band structure.
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Consider a di ional cluster isting of NV primitive unit cells. The cluster

basis set will be generated by 3/, 7;x where 7 is the translational operator which can
translate the basis set y over j primitive unit cells along one translational axis. For the
time being assume that the translational symmetry of such a one-dimensional system
is the only symmetry that the system has. Because of N translational operations there
will be N irreducible representations. Suppose that if we consider j** representation in
I** translation then since the group is Abelian the character of the representation will
be equal to &%, The effect of time reversal is to replace i by -i in the characters of

all the representations.

As a consequence of time induced d v, any linear bination of eigenfu
related by time reversal are also eigenfunctions of the Hamiltonian i.e. the time reversal

operator T~ commutes with the Hamiltonian. Then

Ty >=Ix; > (3.27)
¥ = ax; + 8y

¥ = Bx; — exj-

We can calculate the phase of a function xZ in one primitive unit cell from that in the
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adjacent unit cell using Bloch’s theorem
0,8 >= 0,1 X% > F. (3.28)
Now because of mixing of the wave functions y; and y;s we have, in general,

0, = [ae™™* + geTHJg;, ) (3.29)
2y ey

0, = B — ey,

However. cluster calculations yield only real numbers, @ and 3 are constrained to those

values which give rise to real phase factors. If &, ¥; are real then, the eigenvectors

calculated by any LCAO calculation on a cluster leads to two eigenvalue equations

related to two points in the real space.

Then the back ion of cluster ei fici obtained from these

two equations yield k-points that are generated from the relation

C = a (3.30)

C =8

275

G = acosBd) 4 pein(2

2. )
Gy = ﬂcos(%)-ys;n(%
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N
reos(

CiC3 + C2C4y

civct ) (3:41)

3.4 MOPAC93 — Software Description

MOPAC93 [50] software has many utilities. Among them MAKPOL is used for build-

ing Z-matrices, BZ is used for producing band upon introducing space group
operations. DENSITY is used for plotting wave functions and calculating total elec-
tron density of the system. The part of MOPAC that performs HF molecular-orbital
calculations is the part that is used in our investigation. As described in section 3.3
phase functions are introduced in MOPAC and cluster coefficients are created from

this calculations.

3.4.1 Cluster Method in MOPAC93

Unlike more conventional methods, MOPAC93 does not normally uses the fundamental
unit cell or samples the BZ in order to produce the electronic structure. Instead, it

uses a large unit cell called “cluster” and applies the boundary conditions.

If a unit cell supplied by the user called central unit cell (CUC) is large enough (which
can be represented in terms of translational vector), then a single point in k-space,
the [—point is sufficient to specify the BZ. The secular determinant for this point

is setup by adding together the Fock matrix for the central unit cell plus those for
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the adjacent unit cells. The periodic boundary conditions are required to be satisfied.

Di. lization of the secular d i yields the correct cluster coefficients and

from the density matrix the [' point is constructed. The contribution to the Fock
matrix arising from the orbitals which are more than half the translational vector away
are ignored.

The optimizations on polymeric cluster usually produces equilibrium geometries. These

refer to thy i of nuclei to given

distribution. When the energy gradients vanish

oy

B (3.32)

this means the geometry optimization is completed.

In our calculations, during the geometry optimization the gradients calculated are not
zero since the Cartesian energy derivatives for an atom in a unit cell is sum of forces on
that atom due to all of the atoms in that unit cell. The Cartesian derivatives do not
include the terms from the surrounding unit cells. This is why, at the cell boundaries,
energy is likely to have finite (larger) derivatives. By choosing large translational

vectors this adverse behavior can be minimized [50]. Numerically the condition of

vanishing energy gradients is satisfied to within a certain convergence criteria. A tight

convergence criteria is setup by choosing a cutoff value of 10~ Typically in our
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lation we used Eige Following, EF, optimization method [50].

3.4.2 MOPACS93 and Brillouin Zone Outputs

The output generated by MOPAC93 usually contains information needed to run the
Brillouin Zone. BZ, calculation. The BZ utility provides the information needed for
studying band structures of solids. MOPAC93 calculations generate the cluster Fock
matrix from which the Fock matrix of the fundamental unit cell is produced. The
cluster coefficients are then used to generate the eigenvalues in the k-space. Then the
band structures are readily constructed by joining the points in the order in which they
are generated. In general. the bands of different symmetries are allowed to cross. But
by simply joining the k-points generated as stated above bands will not be allowed to
cross.

The symmetrization of Fock matrices, done by means of modified cluster technique. is
performed by the Brillouin Zone utility program [50]. For this BZ needs to know how
the Fock matrix is organized, and MERS=(nx,ny.nz) keyword gives the number of unit
cells in each direction. For a polymer, the BZ consists of a line, for a layered structure,
a surface and for a solid, a three-dimensional shape. The Fock matrix representing the
interaction of the fundamental unit cell with the other neighboring unit cells are stored
in a large matrix. The cluster theory assumes that the interaction matrix relating two

unit cells which are separated by more than half the distance of the translation vector is
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vanishingly small. Although this Fock matrix does include the point group symmetries

it lacks in the space group or non-primitive group sy y fons such as screw

axis or glide plane ies. The non-primitive or space group ions are sup-
plied by the user and the Fock matrix is further symmetrized. Since the cluster Fock
matrix generated by MOPACY3 will not exhibit the high symmetry of the associated
(infinite) polymer the band structure generated using cluster method will be almost.
but not quite, identical to the one generated by the fully symmetrized band structure

calculation.
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Chapter 4

Owing to their potential d p

cyclic repeat units (phenyl, thiophene, furan, etc) have recently become major tar-
gets of studies in the field of CP’s. The ground state of the CP’s corresponds to the
mesomeric conformation [81] that possesses the lowest energy. Some CP’s such as

lydiacetylene and trans-PA, pernigraniline (see Fig. 1.1 and 4.12) have degenerate

poly y

ground states. [n these cases two mesomeric forms can be present in a single chain
with the accompanied formation of a soliton [82]. Most CP's, known today, have non-
degenerate ground states. However, for a given ground state mesomeric conformation,
most CP’s can exist in a number of torsional isomers.

Many structural studies conducted in the solution have shown that free rotation around

the inter-thiophene linkages is a prevailing factor ining the mean
conformation in oligothiophenes. In these systems the tendency to coplanarity can be

hindered by intramolecular steric interactions such as those created by bulky groups.

Typically iated with the ground state can be in the
true anti or syn ot anti-like or syn-like orientations (see Fig. 4.13). For instance, the

69
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Figure 4.12: The non-degenerate ground state geometries of five membered ring sys-
tems.

structure of bithiophene. which may be envisaged as a simple model for PT, is well

known in the gas phase [33] and in the crystal form [84] from X-ray diffraction results.
In the gas phase, the two rings are nonplanar with a torsional angle of 146°, whereas a
planar arrangement is found in the crystal with the two rings in the anti orientation.
On the other hand '*C-NMR results [24] for bithiophene in liquid crystal solvents
indicated the existence of both the anti and syn orientation at the room temperature

and predicted a rotational barrier of 5 + 2 kcal/mole between them. For unsubstituted

quarterthi; (four ) there is no cr; data found as of yet.

But studies on '>C-CPMAS (cross polarization magic angle spinning) on even and odd

indicated that terthi (three ) possess high torsional
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olo- {Oko-

Figure 4.13: One monomer per repeat unit in syn orientation (Al, Q1) and two
monomers per repeat unit in anti orientation (A2, Q2).

mobility [85]. For larger oligomers, as well as their substituted compounds, the crystal
structure data show an anti conformation 86, 3, 28], whereas in the chloroform '°C-
NMR measurements show an anti-like conformation is found [87, 88, 89]. Recently

have been il i using infrared, NMR spectroscopies

[90]. The results again indicated the presence of twisted as well as planar conformations

for the substituted polymers. The ability of polymers to exist in two or more torsional

isomeric states results in the optical ph referred to as ther y (color

change). Thus far, for other polymers and their respective oligomers we have not found

many crystallographic and/or theoretical results that would enable us to characterize
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their conformations.

We can ize the above di: ion by noting that nature of the poly-
mers prevents an accurate determination of their structure from say the X-ray diffrac-
tion patterns that require that polymers form crystals. For example, oligothiophenes
are difficult to crystallize and only in recent years X-ray structure determinations have
been reported for a number of oligothiophenes such as bi-[91], ter-[92] and sexithio-
phenes [36] [93]. These studies confirmed that single crystals of oligothiophenes prefer
planar. anti orientations in the crystalline packing. Their geometries are aromatic,

thus ensuring that the ground state is non-degenerate as expected for these systems.

The few th ical calculations related to confc ional studies of poly

as modeled by bithi and their derivati provide a description of the tor-

sional potential energy surface for the different rotational isomers. The recent ab

initio ions [94] confirmed the exi: of syn-like and anti-like conformations
in bithiophene in with i | ions. Also singls ded poly-
mer films examined under scanning probe mi in iation with th I

calculations using AM1 (MOPAC93) [95] indicated the existence of syn-like conforma-

tion in vacuum. ing this, our i igation of i of
was extended to include both the syn-like and anti-like conformations of polymers. The
first step in this analysis involves the determination of the most stable mesomer and

for each mesomer we, in turn, determine the lowest energy rotational isomer. In the
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second stage, solid-state optimizations were d with two types of unit cells for
syn and anti orientations. Different unit cells were chosen since in accordance with the
translational symmetry, the syn or anti ordering will result depending on the size of the
unit cell. Thus the clusters are classified according to the following scheme: Aromatic
unit cell type one (A1), Quinoid unit cell type one (Q1), Aromatic unit cell
type two (A2) and Quinoid unit cell type two (Q2) (See Fig. 4.13). In agree-

ment with i | and th ical cal ions our results show that there are

rotational defects in the polymeric systems when symmetry constraints are relaxed.
The polymers in the A2 or Q2 orientations are coplanar and symmetrical with dis-
tortions of less than 1° arising from the monomers at the end. On the other hand,

the i igation of the ical ies of polymers in Al or QL conformation

leads to the generation of pronounced rotational defects in polymers in order to relieve

conformational strain due to the steric hindrances.

In this chapter initial geometries for PT are taken from the gas phase electron diffrac-

tion data on bithiophene [83]. For PCY the input geometry was chosen from the

AML optimized values [46]. The input ies for the ining p are es-

timated from data obtained for PT and PCY. Heat of formation values are used for

determining cluster size, ive stability of and rotational isomers (the
results are discussed in section 4.1). Geometries are fully optimized for clusters and

the di ical values for are d in section
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Figure 4.14: The inverse of the heat of formation per monomer (r’}';) plotted as a
function of the inverse conjugation length (%), n' is the conjugation length or the
number of monomers.
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Table 4.3: Heat of formation H (in kcal/mole) calculated in the AML scheme for the
polymers in A2 forms are given.

POLYMER | PT PCY PFv

Dimer 53.821 79.685 149.081 | 326.570 378.805 499.620
Tetramer 111.548 144.554 285.883 | 660.737  758.371  999.340
Hexamer 171.881 216.461 428.833 - - =

Octamer 230.700 288.330 571.359 | 1342.467 1525.408 2008.829

Table 4.4: Inverse of the heat of formation per monomer () and inverse conjugation
length (%) (n'is the conjugation length or the number of monomers) are given. Values
are calculated in the AML scheme for polymers in A2 form.

POLYMER PT PCY PFv |PCNTH PCNCY PCNFv

Dimer 0.5000 | 0.0372 0.0251 0.0134

0.0061

Tetramer 0.2500 | 0.0359 0.0277 0.0140 | 0.0060  0.0052  0.0040
Hexamer 0.1667 | 0.0349 0.0277 0.0140

Octamer 0.1250 | 0.0347 0.0277 0.0140 | 0.0060  0.0052  0.0040
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Table 4.5: AM1, MNDO heats of formation (H) (in kcal/mole) for polymeric clusters

in AL QL, A2, Q2 forms.
MNDO Dimer Tetramer
Polymer | Al A2 Q2 | Al Q1 A2 Q2
PT 5446 1923 6342 | 9600 16581  O7.14  116.64
PCY | 6745 69.11 60.28 | 12321 928172 12278  114.20
PFv 11342 13851 13472 | 21645 287.94  267.95 262.16
PCNTH | 206.73 29804 308.03 [ 595.63 643.16  599.64 61429
PCNCY | 328.71 30020 | 657.50 77407  657.50 60024
PCNFv [421.91 44578 420.18 (85449 01878 89208  840.69
AM1 Dimer Tetramer
Polymer | Al A2 Q2 QL Q2
PT 5106 5382 6553 |11 : 1155 1548
PCY | 8235 7969 7236 [14510 292456 144.55 13519
PFv 13540 14908 14131 | 26320 296094 28588 273.26
PCNTH | 32640 326.57 332.63 66389 - 660.74  717.83
PCNCY | 378.81 37881 34681 |758.37 857.550  758.37  693.62
PCNFv | 486.98 499.62 463.25 [ 98492 1074.365 999.34  926.98

~Tndicates the geometries for which converged results have not been obtained.
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4.1 Heats of Formation — Cluster Size and Conformational Stability

As stated in the introduction, the values of heat of formation play a dual role in our
calculations. Firstly, they are used to determine the optimum cluster size [96]. Little
or no change in the value of the heat of formation per monomer (also called the average
heat of formation) AHj, indicates that the cluster is sufficiently large [96] to simulate
bulk properties of polymers (see Fig. 4.14 and Tables 4.3 and 4.4). In our computations.
cluster size was increased in steps of two monomers (N=2, 4, 6, 8) per unit cell. Very
small changes (of the order of less than 1 kcal/mole) have been observed in the values
for AH; between the tetramers and octamers) for a selected sample of systems (see
Tables 4.3 and 4.4). This fact and the large size of the repeat unit for some of
the polymers meant that the full analysis of geometty optimizations were performed

for tetramers only. Secondly, heats of formation. Hy, are also used to determine the

relative stability of the mesomers (aromatic versus quinoid) and rotational isomers (syn
versus anti) of the polymers. The two mesomeric forms were found by performing non-
rigid energy scans with respect to the distances between the monomers in the dimer.
That is, total energies were determined as a function of an inter-cell distances, ranging
from 1.30 A to 1.48 A, using AM1 scheme. Fig. 4.16 shows local minima located near
inter-cell distances 1.34 A and 1.45 A (for most of the polymers) and there seems to be

a large rotational barrier approximately A 10 kcal/mole per unit cell for PT, PCY and



Chapter 4. Geometric Structure Investigation

NNDO Tewmer

MO Dinet

=

2]

!
H

o

H H

o 2 %o H

* - &« H

so i " - H

i * |
i EY
ER T i

Figure 4.15: Stable mesomers of the polymers.

78



Chapter 4. Geometric Structure Investigation 9

PT PCY PFv
%‘ @85 150
£% £
g g 80| 145
%55 e w
2 275 2 140

13 1.4 15 13 1.4 15 13 14 1.4
Inter cell distance (Ang) Inter cell distance (Ang) Inter cell distance (Ang)
NTH PCNCY

PCNFv
%0 1

500
%0 .%,380 =
e S 490
Easp £ 370]
g g 480|
gm gaso &m0
T 330 T as0 T 460

13 1.4 1513 14 15 13 14 15
inter cell distance (Ang)  Inter cell distance (Ang)  Inter cell distance (Ang)

Figure 4.16: Scan of inter-cell distance in a dimer using AM1 scheme.



Chapter 4. Geometric Structure [nvestigation 80

PFv and ~ 40 kcal/mole per unit cell for PCNTH, PCNCY and PCNFv. The former
minimum (at 1.34 A) corresponds to the planar quinoid or s-trans form (Q2) and the
latter to the planar aromatic or s-cis (A2) form. Complete geometry optimization

beginning with the two local mini is then

Predicting the most stable ion for the in poly i in
this work is a subject of many ongoing investigations in the field of CP’s. The AMI,
MNDO Hy values for A2 and Q2 forms are listed in the Table 4.5. For completeness and
comparison. the dimer values are also given since our initial geometry optimizations
were performed on dimers. However, it should be noted that tetramers produce the
more accurate data and the following discussion (unless otherwise stated) will focus
primarily on the results for tetramers. As expected from the previous works [83, 36, 37].
PT(A2) is more stable than PT(Q2) by 19.5 kcal/mole in MNDO and by 42.7 kcal/mole
in AM1 calculation. For comparison purposes we noted that for dimers PT(A2) is more
stable by 14.2 kcal/mole (MNDO) (see Table 4.5, by 14.4 kcal/mole from solid-state
calculation [37] and by 16.1 kcal/mole from molecular calculation [56] that used end
groups instead of T,. Also, PCNTH(A2) is more stable than PCNTH(Q2) by 14.6
kcal/mole in MNDO and by 57.1 kcal/mole in AM1 calculation. In contrast to PT
and PCNTH, for PCY [46], PCNCY [46], PFv and PCNFv, the Q2 (corresponding to
quinoid) forms are more stable. For PCY and PFv. the Q2 forms are more stable by

approximately 10 keal/mole in both the AML and MNDO calculations. For PCNCY
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and PCNF'v, the Hy for their two forms differ by more than 50 kcal/mole (see Table 4.5),
again in both the AM1 and MNDO calculations.

Rotations around inter-cell bonds are also possible in CP’s. That is, the varying of
the corresponding inter-cell dihedral angle leads to the rotation of one monomer with
respect to the another. Plots of total energy as a function of central dibedral angle
in the dimer unit cells of PT, PCY, PFv, PCNTH, PCNCY and PCNFv mesomers
showed that anti- and syn-like conformations are possible for these systems. That is, by
increasing the dihedral angle and optimizing at each value of the angle we have found
the AL (syn-like) conformations in addition to the A2 and Q2 (anti-like) conformations
for dimers. Polymers in the Al orientation do not belong to the point group C54 because

of the coil like twisting of the polymer monomeric units.

A ison of the heat of fc ion values for the Al and A2 forms illustrates that

some polymers are more stable in Al ion or are nearly with the

A2 conformation (see Table 4.5 and Fig. 4.15). For dimers, the Al conformation is
more stable for PT (by ~ 3 kecal/mole), PFv and PCNFv (both by ~ 15 kcal/mole)

and is d with the A2 ion for PCNTH and PCNCY for the AM1

The MNDO calculations agree with these findings with the exception

of PT and PCY where they predict that A2 conformation is more stable for PT and Al
conformation is more stable for PCY. For the PCY this discrepancy is not very critical

since both AM1 and MNDO calculations show that the most stable conformation
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for the dimer of this polymer is Q2. Given these initial results for dimers, we have
then attempted to obtain stable syn Al conformation for tetramers. The results of

these ions have been ized in Table 4.5 and Fig. 4.15. First we note

that complete geometry optimization using the dimer results as our initial (input)

for instead

geometries does not result in an all syn
undergo inter-cell rotations. The net result is: the dihedral angle between the central

is i ly 180° but it is i ly 0° inside the dimer units of the

tetramer. Due to this the tetramer of these polymers has syn orientation at the edges
and anti in the middle which makes the orientation of the monomers to be planar in
some cases. Given this arrangement it is seen that PFv and PCNFv are more stable in

the Al conformation relative to the A2 confc ion in the AM1 ion (PCNCY

the two conformations give the same enetgies). The dihedral angles in these polymers
are around 150° with the relative energy difference of approximately 20 kcal/mole
in PFv and 8 keal/mole in PCNFv. MNDO also predicts that the Al conformation
is more stable for PFv and PCNFv (by approximately 20 kcal/mole) relative to the
A2 conformation and that there is a degeneracy or near degeneracy in PT, PCY,
PCNTH and PCNCY (in most cases the energy differences are less than 1 keal/mole).
Summarizing this rotational analysis, we see that the Al conformation is more stable
than the A2 conformation for PFv and PCNFv however for the remaining polymers

Al and A2 conformations have nearly the same energies.
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The trend in the relative stabilities of Al versus Q1 forms is different from the one for
A2 versus Q2 planar forms. Unlike planar forms, MNDO calculations (see Table 4.5
show that the Al (aromatic or s-cis) mesomers are more stable (by a large amount,
typically larger than 50 kcal/mole) than QL (quinoid or s-trans) mesomers for all of
the polymers. The AM1 calculations for PCY, PFv, PCNCY and PCNFYv also support
this observation. This result is not surprising since typically, a rotation of single bond
takes less energy than a corresponding rotation of a double bond. We note that for
some polymers indicated with — in the table we have not been able to obtain stable
Q2 conformations (for tetramers) with the AM1 calculations. We suspect that this is
due to the fact that, in PT and PCNTH the syn conformation for quinoid mesomers

is not stable.

Further ab initio Hartree-Fock calculation using 3-21G* basis set on PFv(Al) (dimer-
oligomer) also confirms that Al conformation is more stable. The dihedral is around
° and pure syn conformation is energetically favorable by 7 kcal/mole relative to

PFv(A2). Finally comparing the Al, A2, Q2 conformations for PFv and PCNFv we

note that PFv prefers A1 and PCNFv prefers Q2 conformation.
In summary we point out that when all conformations are considered, the following
trend emerges: A2 conformation is the most stable one for PT and PCNTH, Q2 is the

most stable one for PCY, PCNCY and PCNFv and Al is the most stable one for PFv.
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aromatic or s-cis (A1) form (tetramers).
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4.2 Optimized Geometries

The full geometry optimizations (using both AM1 and MNDO methods) were per-
formed with the use of the translational vector (Tv). In the solid-state cluster approach
translational vector defines the size of the cluster (not the size of the unit cell which is
the more conventional use of this term). Thus, in this work, the translational vector is
closely related to the size of the cluster. Also in the geometry optimizations the value
of T, is subject to the optimization procedure (i.e. it is allowed to vary). The optimized
values of T, for tetramers are given in Tables 4.3 and 4.4. The T ranges from 15 to
30 A (unit cells are half this length for tetramers). Large translational vectors (T%) are
needed [49] for the solid-state cluster calculations in order to minimize the edge effects
on the monomers in the center of the cluster. A decrease in T, indicates a switch from
aromatic or s-cis (Al or A2) to quinoid or s-trans (QI or Q2) mesomeric form of the

compound.

The optimized ies for the in AL, QL, A2 and Q2 conformations are
displayed in Fig. 4.17, 4.18, 4.19 and 4.20 respectively. In Tables 4.6 and 4.7 the
geometric structure parameters are given. Bonds are labeled as indicated in Fig. 1.4.
The average bond length alternation, ér, which is the signature of the given geometry

will the focus of the discussion below.
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The main structural feature of the polymers in the Al and QI (syn or syn-like) con-
formations is that they form twisted coil-like structures which may possess C, point
group symmetries (most often they belong to the C, point group). As noted above
the geometry optimization of tetramers in the Al and QI conformations resulted in
syn-like structures whose dihedral angles between the monomers in the inner and outer
portions of the polymers are not the same. It was suggested [54, 95] that these syn-like
(twisted) conformations are due to the steric hindrance between the sulfur atoms in PT
and PCNTH and between hydrogen atoms in the other tetramers located on the 3, 8’
positions as well as between the bridging groups (such as the cyano groups) in the cyano
substituted polymers. For example, in PCY the Al or Q1 geometries constrained to be
planar would result in the distance between the non-bonded hydrogens to be less than

1.5 A which in the (relaxed) fully geometry optimized structure is i near

3 Ain(Al) forms and 2 A in (Q1) forms both in (AM1 and MNDO). In other words,
there is strong electrostatic repulsion between the hydrogens which in turn results in
the rotation (twist) around the bond resulting in the formation of syn-like or anti-like
conformations. Tetramers of PT, PFv, PCNTH and PCNFv belongs to C; point group
and PCY and PCNCY belong to Cy point group.

The inter-cell bond distances and bond length alternation ér values are discussed next
for the Al and QI conformations. Only the MNDO values are discussed since they are

available for all tetramers. We note that the inter-cell distances for the Al conformation
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in PT, PCY and PFv approximately range from 1.45 A to 1.46 A (in PFv) which do

not change significantly in the cyano substituted ds (with the ion of

PCNFv where this value decreases to 1.43 A). Similarly, the inter-cell and/or intra-cell
distances range from 1.36 to 1.35 A in all the tetramers in the QI conformation. In
addition, we note that &r is of the order of —0.08 A in Al conformation for PT, PCY
and PFv and —0.05 A for PCNTH, PCNCY and PCNFv. In the Q1 conformation 6r
is approximately 0.12 A for PT, PCY and PFv and approximately 0.14 A for PCNTH,

PCNCY and PCNFv. Thus bond length alf ion d in the cyano d:

in the aromatic or s-cis forms but it increases in the the cyano compounds in the quinoid

or s-trans forms relative to the unsubstituted tetramers.

Next we analyse the geometry optimized results for A2 and Q2 conformations. Since the
most stable conformations are the A2 or Q2 rotational isomers they will be discussed
in greater details than the corresponding Al or QI isomers. We consider the inter-

cell distance in PT which from the electron diffracti iment [83] in bithioph

was determined to be 1.480 A. In PT(A2) this distance is equal to 1.447 A (MNDO)
which agrees with the value found in [36] but is smaller than the experimental value.
AMI calculation also underestimates this distance (equal to 1.424 A). This significant
lowering is due to poor parameterization of sulphur in the MOPAC93 [97] in the AM1
method. For the remaining discussion, only AMI results for the geometrical parameters

for A2 and Q2 conformations will be discussed. In PT(Q2) the inter-cell distance is
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1.345 A which agrees with the computational findings of [37] and [36]. Using the AM1
bond lengths we determine that the &r is —0.03 A for PT(A2) and 0.13 A for PT(Q2)
clearly differentiating between PT’s aromatic and quinoid forms (see Fig. 5.43).

The AMI geometrical structure for PCY is similar to the one obtained by [46]. The
inter-cell bond distance obtained for the s-cis form is 1424 A (AMI1) and for the s-trans
form it is 1.339 A (AML). These values are relatively close to the corresponding values
found in PT (see Table. 4.7). This is also reflected in their &r values (see Table. 4.7
and Fig. 5.43) which are —0.07 A for the PCY(A2) and 0.12 A for the PCY(Q2) in the
AML calculation. However. it can be seen from the increased absolute value for 6 (by
0.04 ) that. in PCY(A2), its aromaticity is decreased relative to PT(A2). In other
words the replacement of sulphur with carbon leads to greater charge localization.
The structure of PFv is even more similar to PCY (than PCY to PT structure) as can
be seen from the values of &r. The average bond length alternation for PFv(A2) is

~0.08 A (also agrees with [38]) and for PFv(Q2) it is 0.11 A [98] which are very close

to the corresponding values in PCY (see Fig. ). A closer look at the magnitudes of
the bond lengths reveals that there are some structural differences between PFv and
PCY, for example, in both of the mesomeric forms, the inter-cell distances (1.442 A
(AM1) in PFv(A2) and 1.357 A (AM1) in PFv(Q2)) are consistently longer (by 0.02

A) than the respective values in either PT or PCY. However, overall, the addition of

the vinylene group to PCY does not lead to significant changes in its structure and
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electronic properties.

Next we consider the cyano substituted systems. In the following discussion we will
focus on the trends in the values of the outer (Cs-Cgr, Cor-Cy, inter-cell) and inner (Co-
Cs. Ca-Ch, intra-cell) bonds (the values of bond length alternations, §r will be discussed
in chapter 5). as obtained in the AM1 and MNDO calculations (see Table. 4.7). Our
first observation is that the presence of the cyano group distorts the thiophene rings in
such a way that the inner bonds such Co-Cs become longer than outer bonds of the type
Cor-Cgr by approximately 0.02 A. At the same time, the inner bonds of the type Co-C
become shorter than the outer bonds of the type Car-Cy by approximately 0.03 or 0.04
A. Similarly, the intra-cell distances are shorter than inter-cell distances. In general
the outer bonds (further from the cyano group) are closer in value to the corresponding
bonds in their parent polymers (see Table. 4.7) than the inner bonds (closer to the cyano
group). [n other words, the electron-withdrawing effects of the cyano group on the
structure of these compounds are localized to the central (inner) part of the monomer.
Bonds of the type Cs-Cyr remained relatively unaltered between the cyano substituted
and unsubstituted compounds (Cs-Cg slightly decreases in cyano derivatives, typically
less than 0.01 A). Similar observations have been made by Toussaint et al., [45] for

PCNTH and PCNCY.
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lid-stat g

Table 4.6: C ison of the fully

(for

tetramers) of the polymers as indicated in the mesomeric forms with one monomer/unit
cell. The bond distances are in A. The intra-cell distances in PT, PCY, PFv are same
as the inter-cell distances thus the space is left blank in column six.

(Car.

POLYMER DISTANCE (4]
G=A[B-F | F—o | lter | Wi | T+ = [HE=5)
cell | cell
PIAD 1381 T450 | 13.78 | 0085 | 3840
1.389 a8 | 1337 | 0043 | 3781
PT(Q1) 1.480 1361 | 1358 | 0a21 | 2488
PCY(AD) 1378 T4 | 1296
1370 1423 | 1283
PCY(Q1) 1478 1357 | 1148
1468 1309 | 1107
PEV(AT) 1373 1463 [ 13.06
1370 1153 | 1271
PFv(Q1) 1477 L1346 | 1153
1485 1368 | 1198
PCNTH(AL) TAI9 | 1442 | [452 [ 2841
1396 | 1440 | 1438 | 28
PCNTH(Q1) 1505 | 1356 | 1.364 | 25.66
PCNCY(AT) TAOT | 1447 | 1455 | 2748
1437 | 1439 | 1423 | 27.19
PCNCY(Q1) 1505 | 1349 | 1359 | 23.49
1341 | 1342 | 7283
PONFW(AD) [ 1429 [27.36 | 0.043 | 3354
1464 | 27.32 | 0033 | 3936
PCNFv(Q1) 353 | Lasa | 2501 | o8 | 2108
1355 | 1514 | 1349 | 1350 | 2453 | ouas | 20140
“ 6r is average bond length alternation. For PT, PCY, PFv it is calculated as

(Car-3)+(Cp-a)~ (Ca-ar)H(Cai-5)(Cpi-5;) +(Cpi-a;)-Cat-ar)/4-

(Corsr)-

3)+(Ca-a) -(Cacar))/2 [38, 99] and for cyano substituted ones 6t is ((Car—gr)-
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Table 4.7: C ison of the fully optimi: lid-stat: ical (for
tetramers) of the polymers as indicated in their two mesomeric forms with two
monomers/unit cell. The bond distances are in A. The blank spaces in column three
indicate that o/-1 and l-a (in column four) distances are the same in PT, PCY and
PFv. Also since the intra-cell distances in PT, PCY and PFv are same as the inter-cell
distances the space is left blank in column eight.

POLYMER | _ DISTANCE (A)
o] ta [ op [ 6P | 5o | Gtracel

PT(A2) 1389 | Laar | Laso
1399 | La17
1476 | 1361
1459 | 1354

PT(Q2)

FCY(AZ)

PCY(Q2)

PFv(A2)
PFV(Q2)

PCNTH(AZ)

PCNTH(Q2)

PCNCY(AZ)

PCNCY(Q2)

PCNFV(AZ)

PCNFv(Q2)

Tér is average bond length alternation. For PT, PCY, PFv it is calculated as ((Car—pr)-
(Cgr—p)+ (Cp-a)-(Ca-ar))/2 [38, 99] and for cyano substituted ones &r is ((Car—pr)-
(Ca1-3)+(Cp-a) ~(Ca-ar)+(Cay~5, )-(Cai-g;) +(Cpy—at)-(Cag—ar))/4.




Chapter 5

Electronic Structure Analysis

As was stated in the introduction the main goal of this research is to identity properties
and characteristics of CP’s that would produce small band gaps. First we must deter-
mine which polymers have small band gaps which in turn means that we must study the
electronic structure of CP’s. In this work, CP’s are treated as quasi one-dimensional
systems whose electronic structure is studied using the molecular orbital theory and
solid-state concepts as discussed in chapter 3. It was determined in chapter 4 that the
A2 or Q2 conformation is the most stable one (relative to the Al or Q1 conforma-
tion) for most of the polymers studied. Thus in this chapter full quasi one-dimensional

band structure calculations are d for planar, conj single polymer chains

i.e. ones with unit cells that contain two monomers connected by an inter-ring bond.
The periodic boundary conditions (underlying the translational symmetry) are used to
generate the infinitely long chains. Further symmetry considerations dictate that the
inter-ring bond is not parallel to the chain axis direction [100]. Specifically, we note
that for our systems the primary center of symmetry is located at a half-way point on

the inter-cell bond located between monomers. (A center of symmetry, if there is one,

95
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Figure 5.21: Space group operations for the polymer in the anti (A2) orientation.

is always at the center of gravity of a system.) Relative to this center of symmetry.
all of the two-monomer unit cells could be characterized by C;4 point group symmetry
which consists of eight symmetry operations (E, Cz(x), Cz(y), Ca(2), i, o(yz), o(zx),
(xy) [49]) (refer Fig. 5.21) The full specification of the space group requires that in our
symmetry considerations we have also included non-primitive translational symmetry
elements such as screw axis. Polymers studied possess screw axis symmetry which are

rotations followed by a translations by a half of the unit cell vector.
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This chapter is organized into following sections: in section 5.1 the general features of
the band structure are described; in section 5.2 the valence and the conduction bands
are discussed in greater details; in section 5.3 the trends in [P, EA and E, are analyzed;
in section 5.4 the effects, as related to the presence of the donor/acceptor groups, on
the band structure are briefly commented on; in section 5.5 the correlations between

the electronic and geometric structures are pointed out.

5.1 Electronic Band Structures — General Features

The results for the all-val electron, iempirical di ional cals

for polymers in the aromatic or s-cis (A2) forms are shown in Fig’s. 5.22, 5.24, 5.26.
5.28. 5.30 and 5.32. Similarly band structures for the quinoid or s-trans (Q2) forms
are shown in the Fig’s. 5.23, 5.25, 5.27, 5.29, 5.31 and 5.33. [n all these figures,
the energy is measured relative to vacuum (not to the Fermi energy levels which are
designated with dashed lines). From these diagrams it can be seen that the bands are
degenerate at the BZ boundaries which is due to the fact that the unit cell consists of

two “identical” (at least as far as their chemical itions is d)

Thus. it is sometimes useful to think of these two bands (that are degenerate at the
zone) as being two parts of one band [101] that would be have been produced if the
unit cell were taken to consist of one monomer. That is, two bands connected at the

BZ boundary arise from the folding of the respective (longer) single band when the
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unit cell is doubled in size from one monomer to two monomers.

The main features of band ions are ized in Table 5.8. Since

the i irical calculati are an all-val electron imation, only bands
produced by valence electrons (of the constituent atoms) are shown in the above band
structure figures. In addition, the Bloch functions for the valence electrons are con-
structed using Slater type minimal basis set. Thus, for PT pseudo one-dimensional.
cluster solid-state calculations generated 24 filled bands and 20 empty bands (the num-
ber of unfilled bands is, of course, related to the size of the basis set, the bigger the
basis set. the larger the number of unfilled bands). A comparison of our band structure
of PT(A2) with the one obtained by Bredas et.al using non-empirical VEH calculations
[102] illustrates that they are very similar in structure. For PCY and PFv, the calcu-
lations produced 24 and 28 filled bands and 24 and 28 empty bands respectively. In
the case of PCY(A2) when we compare the = bands with the one generated by Hong

et al.. [99] the topology of the bands seemed to be similar.
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Figure 5.22: Band structure of PT(A2) cluster of tetramer from AM1 calculation.
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Figure 5.23: Band structure of PT(Q2) cluster of tetramer from AMI calculation.
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Figure 5.24: Band structure of PCY(A2) cluster of octamer from AM1 calculation.
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: Band structure of PCY(Q2) cluster of tetramer from AMI1 calculation.
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Figure 5.26: Band structure of PFv(A2) cluster of octamer from AM1 calculation.
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Band structure of PFv(Q2) cluster of tetramer from AMI calculation.
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Figure 5.28: Band structure of PCNTH(A2) cluster of octamer from AM1 calculation.
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Figure 5.29: Band structure of PCNTH(Q2) cluster of tetramer from AM1 calculation.
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Figure 5.30: Band structure of PCNCY/(A2) cluster of octamer from AM1 calculation.
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Figure 5.31: Band structure of PCNCY(Q2) cluster of tetramer from AMI calculation.
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Band structure of PCNFv(A2) cluster of octamer from AM1 calculation.
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Figure 5.33: Band structure of PCNFv(Q2) cluster of tetramer from AMI calculation.
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L |

Figure 5.34: HOMO is for PT(A2). Figure 536: LUMO is for PT(A2).
HOMO of PCY(A2), PFv(A2) and LUMO of PCY(A2), PFv(A2) and
LUMO of PT(Q2), PCY(Q2), PFv(Q2)  HOMO of PT(Q2), PCY(Q2), PFv(Q2)
are similar. are similar.

Figure 5.35: HOMO is for PCNTH(A2).  Figure 5.37: LUMO is for PCNTH(A2).
HOMO of PCNCY(A2), PCNFv(A2)and  LUMO of PCNCY(A2), PCNFv(A2) and
LUMO of PCNTH(Q2), PCNCY(Q?), HOMO of PCNTH(Q2), PCNCY(Q2),
PCNFV(Q?) are similar. PCNFv(Q?2) are similar.
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Table 5.8: This table summarizes the band structure results for the polymers as indi-
cated. The primitive unit cell of the direct lattice is a dimer containing two monomers
in either A2 or Q2 mesomeric form.

PT PCY PFv
C8 H4 S2 C10 H8 C12 H8
# of valence electrons 48 48 36
per unit cel
# of filled bands 24 24 28
# of unfilled bands 20 24 28
Total # of bands 4“4 48 36
PCNTH PCNCY PCNFv
C24 H4S4 N4 C24 HI2N4 C32 HI2 N¢
# of valence electrons 144 144 160
per unit cell
# of filled bands k] Kt 80
# of unfilled bands 60 2 30
Total # of bands 132 144 160
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The number of valence electrons increases significantly in the cyano substituted com-
pounds hence, of course, the number of bands also increases (see Table 5.8). Another
way of looking at this increase is to note that if there were no cyano group present
in the unit cell we would have four monomers per unit cell (instead of two as in the
parent polymers) which means that single bands that could have been obtained for one
monomer per unit cell would have to be folded four times in order to account for the
fact that the first BZ must correspondingly be decreased in size by a factor of four. This
fourfold (instead of twofold) folding of the bands for the cyano compounds causes the
bands to become flatter relative to the ones for unsubstituted polymers. This flattening
of bands has also been observed by Bredas et al., for other low band gap polymers (that
used emaraldine base [103]) who found that as the number of monomers per unit cell
increases the corresponding bands become flatter. As shown in Table 5.8 in PCNTH.
we have found 72 occupied and 60 unoccupied bands, in PCNCY, we have obtained 72
occupied and 72 unoccupied bands and in PCNFv we have found 80 occupied and 80

unoccupied bands.

5.2 Valence and Conduction Bands

As mentioned in the introduction, 7. electrons are important in defining the conduct-

ing properties of CP’s. The bands formed by = orbitals are called = bands. The =



Chapter 5. Electronic Structure Analysis 108

bands are identified in the process that involves extracting the cluster orbitals’ ex-
pansion coefficients and phases at the k-points (k=0 or k=X) generated using solid
state calculation. This process clearly identifies the pure r bands and the hybrid (r
with o) bands. Following this procedure we found that, for ail the polymers in any of
the mesomeric forms, the valence (the highest occupied) and conduction (the lowest
unoccupied) bands are . bands and that they have almost identical shapes. Similar
result has been found by [38] for PT, PCY, PFv polymers and by [104, 45, 46] for
PCNCY, PCNTH polymers. There are five doubly folded . bands in PT, PCY and

PFv of which three are occupied and two are ied. [n the cyano

polymers. there are eight doubly folded . bands of which five are occupied and three
are unoccupied. The topology of the . bands in PCNTH, PCNCY, PCNFv differs
from the ones in unsubstituted systems. As stated above, because of the larger number
of the effective monomer units in the unit cell . bands are narrower (fatter) in the

cyano substituted systems.

By examining the x. bands in A2 structures, we note that the valence and conduction
bands are formed from the orbitals whose symmetries are bg and au. That is they

ibonding orbital combinati ively. Also, in

are formed from bonding and
most of these sytems, there is a second 7. band that is flat and lies just below the
valence band. The flattening corresponds to the states that have almost no overlap

with the orbitals corresponding to the C, and C,s atoms. This band is present in all
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polymers since the monomers are linked by the bond formed between the C, and C,r
carbon atoms. The third . band is lower than the other two. In Q2 structures valence
and conduction bands are formed from the au and bg combinations respectively. The
splitting of the doubly folded bands in Q2 structures is comparable to the one in A2

The diffe in lapping of orbitals in the Q2 structures in comparison

to the di ing in A2 causes the valence band to be raised

or lowered in energy relative to the same band in A2 structures.

[n one-dimeansional infinite systems, the behavior of Bloch eigenvalues (for the valence
and the conduction bands) at the zone centers (the [ point) or at the boundaries (the
X points) are important in defining the primary physical characteristics of the band

structures. For example, even though the band gaps spread out over a cousiderable

energy range, the threshold of ion observed i ily will often d
to the smallest energy difference between the valence and the conduction bands. Thus it
is useful to study the Bloch functions that correspond to these two points (giving the
smallest energy difference) on the valence and conduction energy dispersion curves.
Fig. 5.34 displays the Bloch function at the top edge of the highest occupied state
which is often called HOMO (in analogy to the molecular energy levels) and Fig. 5.36
displays the Bloch function at the bottom edge of the conduction band called the
LUMO. Fig. 5.34- 5.37 are contour plots of Bloch orbitals which are cross-sections in

the planes of the chain backbones. The results of our calculations for HOMO and
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LUMO for PT(A2), PCY(A2), PFv(A2) are in agreement with [38, 99, 45]. In this

ic form, the main ibution for the HOMO comes from the carbon along the
chain backbone (i.e. Co, Cgr, Cg and C,) and there is no contribution from bridging
atoms Xy (such as S or C,) at the 1 position. As a result, the highest occupied band
is very similar to the highest occupied band for cis-PA. On the other hand, the LUMO
has some contributions from the Xy group for the A2 forms. The second highest .
band in the valence region is stabilized, in contrast to the highest occupied band by a
relatively large contribution from the X, and a low contribution from C, and Cor 7

electrons.

As pointed out above, the main difference between aromatic or s-cis forms and quinoid
or s-trans forms comes from interchanging the phase and the symmetry of the corre-
sponding orbitals. This can be clearly seen from Fig. 5.34 - 5.37 where it is shown that
the HOMO and LUMO of the Q2 structures are exactly the LUMO and HOMO of
the A2 structures. That is, the HOMO of A2 in Fig. 5.34 becomes the LUMO of Q2
and the LUMO of A2 in Fig. 5.34 becomes the HOMO of Q2 form. This interchanging
of the Bloch functions between the A2 and Q2 forms is seen in all of the polymers.
The Bloch functions of cyano substituted polymers are shown in Fig. 5.35 and 5.37.
In agreement with [45, 46, 104] the Bloch functions of cyano substituted polymers for
the LUMO(A2) and HOMO(Q2) have large contributions from the cyano groups (see

Fig. 5.37).
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Theoretical calculations, such as the Hickel calculations [44] and VEH calculations
[45, 46] provide us with informations regarding the wave functions of the polymer
systems studied, however these calculations give different nodal characteristics from
the ones we have obtained. More recently, another theoretical study [104] obtained
nodal properties of the wave functions that agree with our calculations. In summary,
then. in spite of different calculation producing different orbital patterns all of the
calculations indicate that in A2 forms (or Q2 forms) there is no contribution from the
electron-accepting cyano groups Y, and electron-donating bridging groups Xy for the
HOMO (or LUMO). And, in the case of LUMO(A2) or HOMO(Q2), there is strong
contribution from the cyano and the bridging groups. Therefore the main difference
between the mesomeric forms must be in the bonding patterns since the number of
electrons and consequently the number of orbitals are the same in both forms. This

different electron distribution also produces different band gaps for these two forms.

5.3 Trends in IP, EA and Band Gaps

The ionization potential (IP), electron affinity (EA), energy gap (E,) and the band
width (BW) are quantities that are used to describe the intrinsic, electronic properties
of conducting polymers [103]. Not all of these quantities are independent. For example,
the values for a direct band gap, E,, are obtained by subtracting EA from IP or

E, = IP - EA (106, 107, 108]. This assignment is possible because the removing or
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Table 5.9: A comparison of values of IP, EA and £, (in units of eV) for A2 forms for
systems as indicated in the table.

PT PCY PFv PCNTH PCNCY PCNFv

AM1 IP | 779 746 751 8.24 7.79 7.72
EA| 136 126 166 2.54 2.68 2.94
E, | 643 620 585 5.70 5.11 4.78

MNDO IP | 808 7.64 T.57 8.50 8.07 7.91
EA | 160 119 141 2 2.55 62
E, | 648 645 6.16 5.52

THEORY [ [P [4.69° 427" 4687  420° 3.93°

EA 307 3.8 3.64° 307
E, |162* 1.19® 064  0.56° 0.16°
2.19° 0.87/ 3.78¢
EXPT E, | 210° 0.80%

“Ref. [45](VEH calc.).
SRef. [46](VEH calc.),

“Ref. [104](MNDO-AMI calc.),
“Ref. [38](Huckel calc.),

“Ref. [L00](VEH calc.),

IRef. [98](VEH calc.),

“Ref. [105]

hRef. [44]

adding of an electron from a state will not affect the equilibrium configuration of the
system as explained by Koopman's theorem [109]. In turn, the values of [P and EA
are determined by taking the negative of the highest occupied and lowest unoccupied
Bloch function eigenvalues corresponding to k=0 point of the valence and conduction
bands.

The values for IP, EA and E, are given in Tables 5.9 5.11, 5.10 and 5.12 for the
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Table 5.10: A comparison of values of [P, EA and E, (in units of eV) for Al forms for

systems as indicated in the table.
PT PCY PFv PCNTH PCNCY PCNFv
AM1 IP (9.16 7.46 8.80 9.14 7.79 792
EA (070 1.26 068 230 2.68 2.81
E, (836 620 8.2 6.84 5.11 5.01
MNDO | [P |867 7.64 8.73 9.07 8.07 8.15
EA L1l 119 059 2.50 2.55 251
E, | 756 6.45 8.4 6.57 5.52 5.64

mesomeric forms and for AM1 and MNDO approximations. In Fig. 5.38 the band gaps
are compared between Al and A2 forms. This figure shows that Al forms have larger
band gaps than A2 forms. Similarly Q1 forms have larger band gaps than Q2 forms.
This is because A2 and Q2 forms are truly planar with the monomers alternating with
each other. This enhances the . orbital overlap to the maximum extend. Therefore the
larger 7. delocalization along the chain backbone in A2 and Q2 forms lowers the band
gap. [n Al and QI forms the . orbital is overlapping over only few monomers due to
the rotation of one monomer with respect to another which occurs because of the steric
repulsions. Thus in Al and QI forms the uninterrupted . electron delocalization will
only occur over short distances. Thus once again, the remaining part of this subsection

will focus on the discussion of A2 and Q2 forms.

From the ison with i lly determined data [105], [44] (see Table 5.9)




Chapter 5. Electronic Structure Analysis 114

systems as indicated in the table.
PT PCY PFv PCNTH PCNCY PCNFv

Table 5.11: A comparison of values of [P, EA and E, (in units of eV) for Q2 forms for

AM1 IP | 689 757 T7.57 720 8.37 8.27
EA|[216 105 125 3.07 2.30 249
E; | 473 652 6.32 4.13 6.07 5.78
MNDO P | 750 7.76 749 8.07 8.53 8.17
EA| 194 LOL 112 2.69 2.19 227
E, | 556 675 637 5.38 6.34 5.90

THEORY [ IP [398° 4.3¢% 4.90°

EA 2.87
E, 147 1.80°
187

TRel. [43] (VEH calc.),
“ Ref. [46] (VEH calc.),
< Ref. [98] (VEH calc.),
4 Ref. (3] (Huckel calc.)

one can see that semiempirical values for E, differ by more than 4 eV (by 4.3 eV in
PT(A2) and by 4.9 eV in PCNTH(A2)). This difference can be attributed to number

of factors such as the fact that all calculations are performed for single chains, ne-

glecting inter chain i ions, errors in iempiri ization and the use

of Hartree-Fock approximation. Thus a direct comparison of the calculated values for

band gaps and ionizati ials with the di i | data exhibits
large errors. However, it is our conjecture (supported by the few cases when a direct

comparison is available) that these large errors are essentially system independent since

as stated above they are related to the 1 hodology and imations that
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Table 5.12: A comparison of values of [P, EA and E, (in units of eV) for Q1 forms for

systems as indicated in the table.
PCY PFv PCNTH PCNCY PCNFv
AMI1 P 8.46 7.54 8.54 8.39
EA 1.56  0.76 2.28 2.38
E, 6.90 6.78 .26 6.01
MNDO [ IP [755 834 7.65 8.17 8.67 8.18
EA|L78 146 0.73 2.69 221 2.19
E, |578 7.08 6.92 5.49 6.46 5.99

are common to all systems studied. It is for this reason that we postulate that while
the absolute values may not be accurate the trends observed in Tables 5.9 and 5.11
will compare well with experimental results. That is, we expect that the results for the
trends will be more reliable than the absolute values and thus the main goal of this

work is not to discuss the absolute values for £, but to focus on their general trends.

In Table 5.9, it is shown that the values for E, for the aromatic or s-cis form for PT,
PCY and PFv are of similar magnitudes and there is a decrease of the order of 1

eV between their values and those di

to the cyano ds: PCNTH,
PCNCY and PCNFVv (see also Fig. 5.39). The trend in this set of values for E, indicates
that PCNFv would have the potential to have the lowest band gap amongst the systems
studied. Our trend is also in agreement with VEH calculations that gave the following

values for Ey: 1.62 eV for PT(A2) [45], L.19 eV for PCY(A2) [46], 0.87 eV for PFv(A2)
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98], 0.56 eV for PCNTH(A2) [45] and 0.16 eV for PCNCY(A2) [46].

In Table 5.11, the corresponding values for IP, EA and E, are shown for the Q2
form. These values exhibit number of trends. First, the decrease in the band gap
values between the PT, PCY and PFv and their corresponding cyano derivatives are
not as large as for the aromatic or s-cis form (they are of the order of 0.5 eV or
less instead of 1 eV). Second, while in the case of A2 form, the values of band gaps
decreased continuously from P'T to PCNF, this is not the case for Q2 form. There is
an increase in £, of the order of 2 eV (AML) (or 1 eV (MNDO)) between PT(Q2) and
PCY(Q2) (PCY(Q2) and PFv(Q2) have band gaps of similar values). Also, there is
an increase of the order of 2 eV (AML) (or 1 eV (MNDO)) between PCNTH(Q2) and
PCNCY(Q2) (PCNCY/(Q2) and PCNF(Q2) have band gaps of similar values). This is
clearly illustrated in Fig. 5.43. Similar trends have also been observed in previous VEH
calculations that determined band gaps of 0.26 eV for PT(Q2), 147 eV for PCY(Q2)
and 1.80 eV for PFv(Q2) [98] which agree with our trends in general (in our calculations

E, for PFv(Q2) is of comparable value to that of PCY(Q2), i.e., it is not larger).

The general trend of decreasing the values of the band gap for the cyano derivatives
is observed in both mesomeric forms. It is interesting to point out that the lowering
of the band gaps occurs for same reason in the two mesomeric forms. It is clear
from Fig. 5.39 that in both forms there are significant increases in the values for EA,

typically by more than 1.0 eV for the cyano compounds. IP also increases in the



Chapter 5. Electronic Structure Analysis u7

.
Oean
T

Energy gap (in ¢V)
g ®
el ol L

PTPCY PFv PCNTHPCNCY PCNEY

Figure 5.38: Comparison of energy gaps for the polymers in AL, A2, Q1 and Q2 forms.

cyano compounds, however, this increase is greater in the the quinoid or s-trans forms,
thereby canceling more effectively the concurrent increases in EA in the quinoid or
s-trans form. The net effect is that, with the exception of PT and PCNTH, the values

of E, for s-trans compounds are larger than for those in s-cis form. In PT and PCNTH,

the actual values of EA and IP are i and | ively in the quinoid
form relative to the corresponding aromatic form values resulting in a large decrease
in E, (by 1.6 eV in AMI and by 0.7 eV in MNDO calculation).

As given in Fig. 5.40, if one were to relate these results to the stability of the compounds
as discussed above, we note that, in all cases, lower band gaps are obtained for the

less stable mesomeric form of the compounds. That is, PT(Q2) and PCNTH(Q2) have
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Figure 5.39: Band gaps E, plotted as functions of IP and EA for the polymers.

lower band gaps than PT(A2) and PCNTH(A2) and PCY(A2), PFv(A2), PCNCY(A2),
and PCNFv(A2) have lower band gaps than PCY(Q2), PFv(Q2), PCNCY(Q2) and
PCNFv(Q2). This is may be due to the fact that electrons are more bound in the
valence state in the more stable conformation. In contrast to this conclusion, however,
we have found that polymers that are least stable in Al forms have larger band gaps

than in their A2 or Q2 forms. This appears to be due to smaller (discontinuous) =
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above).
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Table 5.13: Values for [P, EA and Ej (in units of eV) for oligomers and polymers in

mﬂuﬁ?’mﬁv(qz) PCNTH(A2) PCNCY(Q2) PCNFv(Q2)
1P* 7.89 .25 12 7.81 7.26 7.09

(4 3.08 7.76 749 8.50 8.53 8.17

P | 779 7.5T 7.57 824 8.37 8.27
EA® 338 ERE] [ 020 0.53
EA® | 1.60 Lo L.12 277 2.19 2.7
EA<| 136 1.05 1.25 254 2.30 2.49

E; | 1016 1053 935 731 7.06 6.57

E | 648 6.75 6.37 5.73 6.34 5.90

Es | 643 6.52 6.32 5.70 6.07 5.78
“Values for oli ( ing two as obtained from ab mitio calcula-

tions using 3-21G* basis set.

* Values for polymers (tetramers) as obtained from semiempirical MNDO scheme.
¢ Values for polymers (tetramers) as obtained from semiempirical AM1 scheme.
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Table 5.14: Energy gap vs cluster size of the polymers in A2 orientation.

AM1
Polymer | Cluster | HOMO LUMO E, | HOMO LUMO E,
P Dimer -0.73 -8.34 -1.22 712
Tetramer -1.36 -8.08 -1.60  6.48
Hexamer -L4T7 -8.05 6.39
Octamer -1.49 6.39
PCY Dimer -1.19 6.89
Tetramer 6.45
Hexamer 6.38
Octamer 6.37
PFv Dimer 6.69
Tetramer 6.16
Hexamer 6.10
Octamer 6.09
PCNTH | Dimer 5.83
Tetramer 5.73
Hexamer
Octamer | -8.26 -2.54 -8.52 -2.80  5.72
PCNCY | Dimer -7.84 -2.56 -8.04 -2.43 561
Tetramer | -7.79 -2.68 -8.07 -2.55  5.53
Octamer | -7.79 -2.68 5.1
PCNFv | Dimer -1.78 2. 496 [ -7.88 5.37
Tetramer | -7.72 <294 479 | -7.91 5.28
Hexamer
Octamer | -7.73 -2.91 481
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Table 5.15: Valence band width (BW) for the polymers studied.

POLYMER | HOMO HOMO-L_BW
PT(A2) 7778 9419 164l
PT(Q2) 7534 -10.246 2712
PCY(A2) 7353 -10.675 3.320
PCY(Q2) | -7.520 -11.000 3.470
PFv(A2) 7405 9983  2.578
PFv(Q2) 7518 -10.349  2.831
PCNTH(A2) | 8262 -9.532 1270
PCNTH(Q2) | -7.203  -9.453  2.250
PCNCY(A?) | -7.793  -9.540  1.750
PCNCY(Q?) | -8.399  -9.674 1275
PCNFv(A2) -9.441 1.714
PCNFv(Q2) 9567  1.204
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The values of E, corresponding to the most stable forms of the polymers are sum-
marized in Table 5.13. We note that the trend for the parent polymers is as follows:
PFv(Q2) has the lowest band gap in this group, followed by PT(A2) and PCY(Q2).
Since the experimental value for E, for PT(A2) is 2.1 eV, the above trend would in-
dicate that PFv(Q2) and PCY(Q2) would have, respectively, band gaps slightly lower
and slightly higher than 2.1 eV. Similarly, for the cyano compounds, the trend for
the band gaps is as follows: PCNTH(A2) has the lowest energy gap, followed by PC-
NFv(Q2). PCNCY(Q2). This trend would indicate that, since PCNTH(A2) has an
experimental value for the band gap of 0.8 eV. then PCNFv(Q2) and PCNCY(Q2)
would have band gaps of the order of 1 eV with PCNFv(Q2) having slightly lower
band gap than PCNCY(Q2). Once again we note that inclusion of the cyano group
lowers the band gaps by approimately 1 eV and this is accomplished primarily by

correspondingly increasing the values of EA more than the values of IP.

5.3.1 Ab Initio Oligomer Calculations

In order to test these trends with a higher level calculations, we have carried out
molecular orbital calculations for short chain segments (dimers) for all of the stable
compounds. The results of the ab initio calculations are included in the Table 5.13.
Again we see a discontinuous jump in the values of E, between the parent polymers and

their cyano derivatives. Within each subgroup the order for Ej is as follows: PFv(Q2)
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has the lowest band gap, followed by PT(A2) and PCY(Q2) for the parent polymers and

PCNFv(Q?2) has the lowest band gap, followed by PCNCY(Q2) and PCNTH(A2) for

cyano compounds. Thus, overall the i l and ab initio ions predict

similar trends for E, for these compounds (with small rearrangement for the cyano
compounds). Within the accuracy of these calculations we can not predict whether
PCNFv(Q2) has a lower band gap than PCNTH(A2). We can only say that they will
be comparable in value. Also. ab initio calculations clearly indicate that the LUMO
cigenvalue is highly stabilized (i.e. lowered in energy ) upon addition of a cyano group
(thus increasing EA) whereas the HOMO eigenvalue remain virtually the same as in

the i 4 ds. Indicating once again, that the lowering of E, for the

cyano compounds is primarily due to the increase in their values for EA.

5.3.2 Cluster Size vs Band Gap Size

In Table 5.14, values for £, are given for various cluster sizes. In the previous chapter,
we showed that the heats of formation per monomer reaches a constant (bulk) values
as the cluster size increases. The results in Table 5.14 show that band gap also levels
off as the cluster size increases. That is, there is a very little difference between the
band gaps obtained for octamer and tetramers. This confirms out previous conclusion
that the cluster size consisting of four monomeric units is long enough to study the

bulk electronic properties of the polymers.
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5.3.3 Band Widths

Low [P and large EA together with large valence and conduction band widths suggests

the possibility of obtaining, upon doping dingly with weak and
strong donors or strong acceptors and weak donors, a transition from semiconductor
to metallic state in the organic polymers [110, 111]. Thus, we briefly examined the
valence band widths in the polymers studied. The approximate values for band widths,
as determined from difference between the corresponding eigenvalues for the HOMO
and the one less than HOMO (HOMO-1) eigenfunctions, are shown in the Table 5.15.
PCY has the largest band width of all the polymers. The next largest band width
is in PFv, followed by PT. [n comparison, the cyano substituted polymers has band
widths that are less than (approximately half the band widths) ones obtained for
parent polymers. Of all polymers, PCNTH(A2) has the lowest band width (1.25 eV).
The general trend obtained for the values of band width in the polymers agrees with
the ones obtained in VEH calculations. However, it should be noted that there is a

large disparity in the qualitative values for the band widths.

5.4 Presence of Donor and Acceptor Groups

From our calculations (refer to Fig. 5.39) it appears that PFv gives the lowest band gap
for the unsubstituted polymers and its derivative, PCNFv, seems to give the lowest

band gap of all the polymers studied. What makes this polymer a low band gap
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Figure 5.41: Effect of bridging groups X, on the ies and

of s-cis PA and s-trans PA.

polymer? It is not easy to answer this question. From the theoretical perspective the
following details may possibly give some answers. Bridging groups Xy and Y, play a
very important role in defining the geometric and electronic properties of the polymers.
Monomers in aromatic or s-cis (Al, A2) forms produce backbone skeletons of s-cis PA
and quinoid or s-trans (Ql, Q2) forms produce backbone skeletons of s-trans PA if

the bridging groups X, were not present. First, we consider the effects of the bridging
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groups, Xy, in PT, PCY and PFv parent polymers and then, the effects of cyano moiety

on geometric and electronic properties are analyzed in PCNTH, PCNCY, PCNFv.

5.4.1 Effects of Electron-Donating (X.) group

It is mentioned in our introduction trans or cis PA is a conducting polymer. So what
will be the effect of attaching the proper donor substances Xy to bridge the carbons in
s-cis PA? This would lead to the formation of five membered rings where X, could be
0. N-H, C, Si=H2, C=CH2 or CH2 or other similar group. In general, the inclusion
of Xy modifies the geometry of the backbone, for example it can cause the Co-Car
distance in s-cis PA to decrease (see Fig. 5.41) [112. 38, 99, 101, 104] in order to
accommodate the bridging groups Xy at the I position of the ring. The HOMO which
is already antibonding between the orbitals of these atom in the A2 (s-cis) form of PA
is raised due to further increased antibonding contribution from C, and C,- atoms. [f
the LUMO level remains unaffected this raising of HOMO eigenvalue would lower the
band gap. We consider two case: (a)if the X, is a strongly interacting group such as
S. N-H or O the interaction pushes the LUMO eigenvalue up in energy as well, thus
canceling the effect of the increased HOMO, the band gap may decrease but not by
as much of the LUMO remained unaffected; (b) if the Xy group is weakly interacting
group. the LUMO eigenvalue is not affected strongly, the net result is a decreased band

gap. Similarly in s-trans PA, the introduction of the bridging group leads to raising of



Chapter 5. Electronic Structure Analysis 128

Figure 5.42: a) Schematic energy levels for the benzenoid form of donor-acceptor poly-
mers. b) Schematic energy levels for the quinoid form of donor-acceptor polymers. The
pseudo- orbitals of Xq are omitted. Figure taken from A. K. Bakhshi et al., Synthetic
Metals 79, (1996), 115.
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the LUMO. If the HOMO level remained unaffected this would lead to an increase in
the band gap. Again we consider two cases: (a) if the Xy is strongly interacting it also
raise the HOMO causing the band gap to decrease; (b) if X; is weakly interacting the
raising of the HOMO is not very high hence overall the band gap will be increased.

Therefore, in either of the mesomeric forms, cases (b) are suitable for PCY and PFv
like polymers where the electrons interact only weakly with the polymer backbones.
Cases () are more suitable for PT, PPY, PAni like polymers where the electrons of the

heteroatoms are highly diffused and strongly interacts with the polymer backbones.

5.4.2  Effects of Electron-Accepting (Y.) group

As seen from the contour plots of e} ions shown for ituted polymers from

the top of the valence and bottom of the conduction bands, in aromatic or s-cis (A1, A2)

forms of the polymer the contribution of the electron-withdrawing group, ¥, to HOMO
of the valence band is negligibly small. In the case of quinoid or s-trans (Q2, Q1) forms
the contribution of ¥; group is negligibly small to the LUMO of conduction band. On
the other hand, the electron-withdrawing group ¥, makes a significant contribution
to the LUMO of the conduction band in the case of aromatic or s-cis structures and
to the HOMO of the valence band in the case of quinoid ot s-trans structures (see
Fig. 5.39). Therefore in the aromatic or s-cis cyano substituted polymers with a given

electron-donating group, Xy, the band gap is primarily determined by the strength of
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the bonding interaction between the LUMO of the conjugated skeleton containing Xy
only and the LUMO of the electron-withdrawing group Y, (see Fig. 5.42). Similarly,
in the case of aromatic or s-cis structures, this band gap is largely determined by the
interaction between the HOMO of the conjugated skeleton containing X only and the

HOMO of the group Y; only.

Since the LUMO of the Y, group plays important role in defining the orbital symmetry,
the LUMO of the cyano substituted systems found to be highly stabilized (i.e. EA is
raised and the corresponding energy level is lowered) in PCNTH(A2), PCNCY(A2) and
PCNFv(A2) mesomers. [n these systems: PCNTH(A2), PCNCY(A2) and PCNFv(A2)
HOMO eigenvalues remain almost the same as those for the parent polymers. For
PCNTH(Q2), PCNCY(Q2). PCNFv(Q2), the HOMO eigenvalues are affected more by
the presence of ¥, by increasing IP or lowering the corresponding eigenvalues relative
to the A2 forms. In this case the LUMO is also affected by increasing EA and thus
lowering the LUMO eigenvalues. The net effect is that in both cases, the band gaps
of cyano substituted systems are lower than those for the parent polymers. In some

cases, X, or Y, can be interchanged to obtain further reduction in the band gap values.

5.5 El ic-G ic Stru C 1

From the above discussion, we note that there is a close relationships between the

cyano substituted polymers and their parent polymers. In Table 4.7, 4.6 the geometric
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structure parameters were given (see Chapter 4). In this section, we correlate the
average bond length alternation, r, along the backbone with the size of the band gap.
We summarize the trend in Fig. 5.43. For the parent polymers we note that for PT(A2),
PCY(A2) and PFv(A2) the absolute value for r increases as E, decreases whereas for
the quinoid or s-trans form E, decreases for PT with virtually no change in ér. Thus,
for the quinoid or s-trans forms, a large decrease in E, is strongly correlated with the

presence of the sulfur atom in PT.

Next we consider the cyano substituted systems. The trends in the average bond length
alternations as seen in Fig. 5.43 indicate that the decrease in E, is accompanied by
charge delocalization in PCNTH(A2) since ér in PCNTH(A2) (0.002 A is smaller than
ér in PT(A2) (~0.03 A). In contrast, the &r of PCNTH(Q2) (0.13 A) is larger than
the r for its parent PT(Q2) (0.11 A). Thus indicating that the lowering of E, is now
accompanied by the greater charge localization. The ér in PCNCY/(A2) is —0.04 A and
in PCNCY(Q2) is 0.14 A indicating that the decrease in E, in PCNCY relative to PCY
occurs when the electronic charge is less localized in PCNCY(A2) than in PCY(A2)
and more localized in PCNCY(Q2) than in PCY(Q2). The same observatious can be
made for PCNFv which has ér equal to -0.04 A for PCNFv(A2) and to 0.14 A for
PCNFV(Q2). The ér for PCNFv(Q2) (0.14 A) is larger than the corresponding values
for the mesomers of PT, PCY, PFv and PCNTH with the exception of PCNCY(Q2).

It appears from the corresponding values for & that the attached vinylene group to
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Figure 5.43: Bond length alternation (6r) plotted as a function of band gap (E,) for
the polymers (AM1 data) as indicated for the two mesomeric forms. The solid lines
are drawn only for the purpose of guiding the eyes.

PCNCY does not significantly change the structure of PCNCY.
In summary, we note that while it was shown in section 5.3 that all cyano substituted
polymers displayed a decrease in the band gaps relative to the corresponding values

for their parent polymers, the respective trend in their geometric structures are not

as straightforward. The structural analysis as summarized by the values of 6 showed
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that the cyano derivati ibited an i d icity due to charge delocal-

ization in their aromatic or s-cis forms but a decreased aromaticity in their quinoid or
s-trans forms (see Fig. 5.43) when E, is lowered. These trends are mainly attributed
to electron-withdrawing property of the cyano group. In PFv and PCNFv the viny-
lene group has only a weak effect on the changing structures of PCY and PCNCY
correspondingly. However. the presence of this group improves the planarity of these

ds d interac-

systems and thus increases the inter-cluster di: resulting in
tions between the adjacent rings in the backbone [38, 99]. The more planar structure
would favor the formation of the solid and films and may enhance the conductivity in

the directions other than along the chain.
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Conclusions

We summarize our geometric structure findings as follows:

The quasi one-dimensional polymers studied can exist in two mesomeric forms
(aromatic or s-cis and quinoid or s-trans) that are produced as a result of lattice
distortions. The two forms are nondegenerate (i.e. often correspond to energies

that are widely different).

Crystal packing and ic energy iated with 7-elect
(that reduces strong steric repulsions) favor the appearance of coplanar con-

formations with monomers in anti orientation (A2, Q2 forms).

With monomers in syn orientation (Al, Q1 forms), twisted conformations are

generated due to large steric interactions between them.

Comparing Al and A2 structures reveal that both these structures are rather

close in energy in some cases thus i ducing the ibility of th h

behavior for these polymers.
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o In general, the geometries are not significantly altered between A1 and A2 confor-
mations and between Q1 and Q2 conformations, that is similar bond alternation

patterns are present in the respective conformations.

© The coosideration of the heats of formation, Hy, at the level of semiempirical
calculations, shows that the trend in the stability is such that most favorable
orientation preferred by the monomeric units in the polymer is anti (A2, Q2
forms) rather than the syn (A1,Ql forms).

o The geometries and the heats of formation calculated using AM1 are considered

to be more reliable than the corresponding MNDO values.

Next. we summarize our electronic structure findings as follows:

o The coplanar conformation maximizes the x orbital overlap.

® Our result for band gap indicate that PCNFVv is a low band gap polymer similar
to PCNTH of the order of 1 eV for the more stable form (see Table. 5.13. Semiem-

pirical i imate the experimental values for £, by approximately

3.0-4.0 eV.

o The average bond length alternation in PCNCY and PCNFv is increased (relative
to PCY and PFv) upon addition of cyano groups resulting in the more quinoid-

like structures than it is observed in their parent polymers. This can be correlated
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with a strong influence of cyano groups on their LUMO eigenvalues (EA’s) for

these compounds.

That is. in the cases of PCNCY and PCNFv, the band gaps decrease when
PCNCY and PCNFv become more quinoid-like in comparison to their parent
polymers. This is in contrast to the more “general” trend as shown in Fig. 5.39
which indicates that polymers with more aromatic-like structures tend to have

smaller intrinsic band gaps.

[nteractions of different bridging groups with the backbone often results in the
lowering of the band gaps. The strength of these interactions, in turn, deter-
mines by how much the band gap is lowered. For example, in the fulvene based
polymers. PFv and PCNFv, the vinylene group does not contribute significantly
to the lowering of the value of E,. However it enhances the planarity to their

backbones.

In heteroatomic polymers, such as PT and PCNTH, the the lone pair electrons
on sulfur atoms contribute extra r electrons (in contrast to the carbon atoms)

to the backbone  system [38] - thus enhancing their conducting properties.

between the ic and ic nature of

Upon studying the
the planar polymers (A2, Q2 forms), it is observed that the less stable forms of

the polymers have lower band gaps than the more stable ones.
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o The [P, EA and band gaps of the polymers in (AL, A2, Q1, Q2 forms) calculated

using AM are reliable than the values calculated using MNDO.

o Abinitio, investigation of oligomer confi jempirical findings.

The 3-21G" basis set appears to be sufficient for this comparison. More ab initio

calculations are planned for the future studies.

® Overall, in the of the poly studied, the cy group forms the
lect ing group and the remaining structure of a given monomer forms
the electron-donating group.

o Fig. 5.39 illustrates that the main role of the donor-acceptor groups in these
polymers is to increase EA and decrease [P values and consequently to lower

intrinsic band gaps.



From Eq. 2.25 it is clear that the integrand of any molecular integral contains a certain

one or t: lect: Aand the i tomic orbitals, which may depend
on the local coordinate system. The natural origin of coordinates for an atomic orbitals
is the nucleus of the corresponding atom. If A is one electron operator, a general one

electron integral has the form

< xulra(DlA(rs(Dix.re(1) >

The subscripts A, B, C refer to atomic centers and v, x subscripts to individual orbitals.
Depending on the coincidence of the origins of the various coordinate systems, the
integral is referred to as a one- (A=B=C), two-(A=B, B # C;B=C, A # B), three-

centre(A # B; B # C; C # A) one-electron integral. Of particularly importance are
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the following two-electron one- and two- centre integrals.

(kanalpapas)
(ravalpava)
(papalvavs)

(ravelpave)

the

the

the

the

one — centre

one — centre

two — centre

two — centre

Coulomb
exchange
Coulomb

exchange

integral,
integral,
integral,

integral.
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