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Abstract

u freely suspended films

We have studied electrically driven convecti
of smectic A liquid crystal. The layered molecular structure of the smectic

nd well

mesophase makes the film behave like a two-dimensional isotropic fluid,
s thin as two molecular

controlled hydrodynamic flow has been achieved in films
layers in thickness. When a d.c. voltage applied across the film
critical value V¢, a one-dimensional pattern of convective vortics
critical pattern wavelength appears to be independent of film thickness, and the
critical voltage is lincar in filin thickness for thin films. Me
tern amplitude indicate a supercritical bifurcation at convection onset, and the
amplitude grows as a 1/2-power law with respect Lo the normalized control pa-
rameter €. The correlation length of the pattern varies as £='/2, and the patt
relaxation time varies as £, These results are in agreement with prodicti
a Ginzburg-Landau amplitude equation. Measurements of the flow velocity show
that the amplitude of the pattern is suppressed at the lateral boundaries.
range of wave numbers for stable convection has been obtained experimentally.
Close to onset we find the width of the stable band is proportional to ¢, con-
sistent with predictions of the lheory of boundary-induced wavelength selection.
In addition to i a set of el ic equations
is presented for und ding the t i i ion. Theoretical
analysis indicates the normalized control parameter to be V?/V.? - 1, in agreement
with the experi jons. A hydrodynamic model is also proposed to de-
scribe the flow observed near the sidewalls L-.luw the onset of convection. The flow
in this model is caused by the ic sh Lres ion which
originates from an interfacial charge density distribution at the lateral houndary.
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Chapter 1

Introduction

“Virtually cvery structure in the natural world is the result of a long
of successive symmelry breaking instabilities duc to nonlincar pro

noneguilibrium conditions.” - Nicolis and Prigogine [1412]




1.1 Patterns out of Equilibrium

Nature displays order in many different contexts — snow flakes, cloud strects,
sand ripples, and the morphology of plants and animals are examples. In

cell lled laboratory experiments, regular ordered structures have been
produced in a variety of nonequilibrium systems, such as convecting gases [26,
132], flowing films [21, 93, 120, 198], chemical reactors [74. 145, 146, 166, 214],
magnetic colloids (190, 200, 205, 206], and solid-liquid [76, 92, 96, 103, 192],
nematic-isotropic (16, 36, 177] or nematic-smectic interfaces [35]. Even bac-
terial colonics (18, 19, 33, 34] can exhibit fascinating self-organized patterns.

Patlerns are ordered structures which appear beautiful, but also myste-
rions. Undl ling the origin of spatio-temporal patterns, as well as the
mechanisms by which they evolve, has been a major theme of the active
field of nontincar science [111]. Pattern-forming phenomena are of interest
in many fields, ranging from physics, chemistry to material sciences and biol-
ogy, and the study of pattern formation is particularly interdisciplinary [210]
which may stimulate the growth of new ideas and therefore potential new

technologies.

It is a common scenario that a new organized pattern arises in a com-
plex system in response Lo some external stress. Under the influence of the
external stress, such a system may undergo a series of symmetry-breaking bi-
Jfurcations [53, 85], analogous to phase transitions in an equilibrium thermo-
dynamic system [81]. For small stress, the system remains in a homogeneous
state that may be described simply in terms of a dissipative flux or gradient.
As the stress exceeds a certain critical value, the system bifurcates towards a
new stable state in which some of the original symmetries are broken. Usu-
ally, such a symmetry-breaking bifurcation, loosely called a pattern-forming
instability, gives rise to new length scales not existing in the original symmet-
ric phase and leads to spatial or spatial-temporal patterns, called dissipative
structures [141). At a high level of stress, after repeated bifurcations, the
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system will exhibit complicated behavior which is often doscribed in torms
of cnaos [24, 41, 67, 167) or turbulence (130, 179, 184].

Although patterns arise in systems governed by very difforent micro-
scopic laws, similarities among patterns in divers
theory of pattern formation should be general. The intense inte

stems suggest that a

in pat-
tern formation outside cquilibrium has been inspired by the development
of theories that tend to simplify and unify problems seemingly unrelated
at the microscopic level. While the appropriate microscopic equations of
motion for most pattern forming systems are either not known or too com-
plicated to analyze, phenomenological order parameter models [I138], such
as the Ginzburg-Landau model [199], the Swift-Hohenberg model [153, 188].
the reaction-diffusion model [75, 135], and the Kuramoto-Sivashinsky model
[112, 180], yield simple litud L which ly describe the
large scale modulation of weakly nunllllcnr patterns. In analogy to the the-
ory of thermodynamic phase transitions [156], the degree to wh
are described by amplitude equations of universal form reflects a degree of
universality in pattern-forming phenomena [56]. Although it is not clear yot
how far this concept can be extended, a universal theory of pattern formation
outside equilibrium has been one of the goals of nonlinear science,

| patterns

A large part of the progress in understanding nonequilibrinm pattern
Bsunation s pesulted fom deiailed suudiesof Ruyleioh: Bénond wonvection
[23, 143}, in which a layer of fluid is heated from below. Once a critical ther-
mal gradient or temperature difference across the layer is exceeded, a regilar
pattern of convective rolls develops. | g variants of Raylcigh-Bénard
convection involve thermal convection in binary fluids (67, 94], thermal con-
vection and electroconvection in nematic liquid crystals 64, 109], clectrocon-
vection in dielectric fluids [113], as well as surface tension driven canv
104, 105, 169], magnetically driven convection [30, 157), and convection in
porous media (90, 174].

on
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The subject of this thesis is electrically driven convection in a freely sus-
pended film of smectic A liquid crystal. The layered structure of the smectic
phase makes the film behave like a two-dimensional isotropic liquid, so the
film is particularly suitabie for the study of two-dimensional hydrodynamics.
In most other systems, it is experimentally difficult to isolate the primary
two-dimensional flow from flow in the third dimension, although efforts have
been made such as by introducing rotation [89], a magnetic field (182], or by
using frecly suspended nematic flms (71, 72). Hydrodynamic cxperiments
employing soap films [52, 78, 102, 207] have also been carried out more re-

cently.

Our objective is Lo explore the one-dimensional pattern-forming phenom-
ena exhibited in a highly ¢ system. In particular,
we will focus on the behavionr of the system at and near the bifurcation to

di P

convection.

In the remainder of this chapter, we introduce liquid crystal materials
with a focus on the smectic phases. Then, convection in the Rayleigh-Bénard
system s discussed, followed by an introduction to the Ginzburg-Landau am-
plitude equation. The last scction of this chapter provides a description of
the general features of different types of electrically driven convective insta-
bility.
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1.2 The Liquid Crystal Phases

Many organic molecules form mesophases called liguid crystals {19, 59, 155],
which combine the proper ties of crystalline solids and isotropic liquids. They
were discovered about one century ago and have found many tec hnulow al
applications [11], such as the widely-used liquid crystal displa 5.
Liquid crystal molecules are geometrically anisotropic. The material used in
our experiments is composed of highly anisotropic rod-like molecules, which
can form nematic and smectic liquid crystal phases.

and sens

Nematic liquid crystals (Figure 1.1) are characterized by long range ori-
enlational order of the molecules, but translational order is absent. They
differ from isotropic liquids in that the molccules tend to a

g parallel to
each other. They are optically uniaxial and strongly birefringent.

Smectic liquid crystals are layered systems with a well-dofined interlayer
spacing and as such have partial (one-dimensional) translational order. There
exist a variety of smectic phases characterized by different mole=ular arr:
ments within the smectic layers, the two simplest of which arc
smectic C phases. In a smectic A phasc molecules within cach
ented normal to the layer plane, but have no positional order (Figure I 1).
The thickness of the smectic layers is on the order of a molecular length.
Like the nematics, smectic A liquid crystals are optically uniaxial with the
axis perpendicular to the layers. Smectic C can be regarded as a tilted form
of smectic A, that is, the long axis of the molccules points al an angle Lo
the smectic layer normal (Figure 1.1). As a result, smectic C liquid crystals
are optically biaxial. The layers in smectic A and smectic C mesophase
flexible and readily distorted, but only deformations that tend to pre
the interlayer sparing are possible [150].

The direction of preferred orientation of the liquid crystal molecules is
characterized by the director, a “semi-vector” n satisfying n = —n. For both
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the nematic and smectic A phases, the director coineides with &« direction
of the optical axis, which is normal to the layer plane in the smeetic A case,
However, for smectic C liquid erystals. the director is inclined to the molec-
ular layers.

For thermotropic liquid crystal materials that pass through more than
one mesophase batween the solid and isotropic liquid phases, the sequence
of phases with increasing temperature is typically: solid — smectic ¢

smectic A — nematic — isotropic liquid. This

quence i

con:
the general observation that increasing temperature results in a progres
loss of molecular order.

The anisotropic nature of the molecular
sults in anisotropy of the diclectric permittivity ¢, clectric conductivity o,
optical refractivity n, as well as the viscoclastic and other phys

tructure of liquid erystals re-

al proper-
ties. Under the influence of an applied clectric or magnetic field, varions
processes, includi [19, 59. 107], may take
place in which a change in the orientation of the molecules is involved. The
anisotropy of e electrical properties of liquid crystals is the origin of such
reorientation, whereas the dynamics of the processes also depends on the
viscoelastic properties of the material [68, 118).

clectrohydrodynamic instabiliti

In the smectic A liquid crystal used in our experiments, molecules can
move freely in the plane of the smectic layers [32, 84]. Each molccular layer
behaves as a two-dimensional isotropic liquid while, in the direction normal to
the layers, flow is generally difficult. At temperatures close to the smectic A
- nematic phase transition, permeation effects may cause flow perpendicular
to the smectic layers [25, 117, 158]. However, this Lype of flow is ¢
negligible in the temperature range of our experiments.

npletely

Smectic liquid crystals can easily form frecly suspended fitms spanuing a
solid frame [151, 212], similar to soap films [136, 170). The molecular lay




in a freely suspended film are oriented parallel to the surface of the film by
surface tension, and a change In the number of molecular layers is necessarily
discontinuons [32, 150]. Discovered at the beginning of the 20th century [77],
freely suspended smectic films reccived renewed interest in the 1970s, when
the technique of preparing the flms was developed by the liquid crystal group
at Harvard [212]. Since then, theoretical and experimental investi-
gations have been performed [12, 13, 50, 79, 91, 101, 110, 151, 152, 165, 178,
183, 185, 186] in order to understand the extraordinary structures of smec-
tic liquid crystals as well as the underlying physics in reduced dimensionality.

In our experiments, frecly suspended films have been made with thick-
ness as small as two molecular layers. Observed under a beam of reflected
white light, such a two-layer film resembles a so-called Newton black film
[140], which have been made by various surfactants [17, 70, 86] spanned on a
frame [31, 151]. A smectic film in our experiments is subjected to an electric
field in the plane of the film. The resulting electrohydrodynamic instabil-
ity, which will be discussed later, gives rise to a one-dimensional pattern of
two-dimensional vortices. In our experiments, hydrodynamic flow has been
observed in a system so closely two-dimensional that the third dimension
contains only two molecular layers. Our observations in extremely thin, uni-
form films do not indicate any change in thickness under the influence of the
applied field or the convective flow, even when the flow proceeds to the un-
steady regime. In addition, the reorientation of the liquid crystal molecules
are not observed to accompany the convective flow when the film is viewed
between crossed polarizers, and this is in agreement with the report of Morris
ct al. [133]
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1.3 Rayleigh-Bénard Convection

The Rayleigh-Bénard system is probably the simplest example of an isotropic
pattera forming system that is accessible to both experimental and theoret-
ical igati The primary i [ results on convective motion
were established by Bénard around the turn of this century [20]. In au at-
tempt to interpret his observations, Lord Rayleigh performed the first theo-
retical analysis of the origin of the convective motion in 1916 [163]. Although
it is now known that Rayleigh’s analysis docs not actually apply to Bénard’s
original system — in which surface tension effects were dominant - their
work has stimulated the long lasting interest in what is now called Rayleigh-
Bénard convection.

The classical Rayleigh-Bénard system consists of a thin horizontal flnid
layer heated from below [4]. The fluid layer is cunfined between two infinite
rigid parallel plates separated by a distance d, as shown in Figure 1.2 Due
to the effect of thermal expansion, the fluid near the bottom plate is less
dense than that near the top. This unstable vertical density profile drivi
the sustained convective motion.

The dependence of the convective motion on material propertics and ex-

I conditions can be ch ized by Lwo dimensionless numbers
[39]: the Rayleigh number Ra, which is proportional to the temperature dif-
ference AT between the top and bottom plates, and the Prandtl number Pr,
which gives the relative importance of thermal and viscous diffusion:

P = ﬁ, (1)
pr =2 (1.2)
x

Here a, &, and v denote the coefficient of thermal expansion, the thermal
diffusivity, and the kinematic viscosity of the fluid respectively, and g is the
acceleration due to gravity.
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Due 1o the influence of viscosity, which always acts to oppose the motion
of the fluid, and to the influence of heat diffusion, which tends to dissipate
the temperature gradient that drives the flow, the onset of convection does
not take place at an arbitrarily small value of Ra (or of AT). The motion-
less steady state, in which heat is transported across the vertical fluid layer
by conduction, remains stable until the Rayleigh number reaches a cortain
critical valie Ra, at which the buoyancy of the fluid is able to overcome the
dissipative eflccts of viscosity and thermal diffusion. At this point convective
flow sets in in the form of a periodic pattern of vortices characterized by a
specific wavelength A or wave number k., as illustrated in Figure 1.2,

— A—
T T
i OOOOOO
1 T

Figure 1.2: Rayleigh-Bénard convection. A temperature difference (T} > T3)
is maintained between the top and bottom plates.

For Rayleigh numbers greater than Ra., the convective state exists over a
continuous band of wave numbers. This band is determined by the marginal
stability curve shown in Figure 1.3, below which the motionless steady state
is stable against fluctuations. The marginal curve can be obtained from
a linear stability analysis of the microscopic equations, first performed by
Rayleigh and discussed in detail by Chandrasekhar [48].

Thesc one-dimensional periodic states do not remain stable over the entire
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rangeof wave numbersbounded by the marginal curve. Based on very general
stability considerations, Eckhaus [66] showed that the possible range of wave
numbers for stable convective motion is restricted to a narrower band (Figure
1.3),

ke -k = —

(km — k). (1.3)

V3
where k. denotes the critical wave number of the lincar theory, and kg and
kyn correspond to wave numbers at. the Eckhaus and the marginal stability
boundaries for the sane Rayleigh number. A narrower range of allowed wave
numbers is also implied by the weakly nonlincar theory based on perturha-

tion expansion of the complete convection equations, which was initiated by
Gor'kov [82], Malkus ct al. [122] and developed by Schiter et al. [171].

For Ra 3 Rae, the two-dimensional flow may give way to steuly thre-
di jon, and lly to chaotic or turbulent conveetion
[3, 46, 176, 208). The nature of a variety of possible instabilitics with dliffer-
ent symmetrics has been documented by Busse and coworkers [37, 38, 40),
who numerically investigated the stability of a family of straight allel
rolls with respect. to gencral three-dimensional perturbation:
has proven highly valuable in characterizing experimental observatio
it makes Rayleigh-Bénard convection “the best characterized nonlinear pat-
tern forming system” (56].

Their

While most theoretical results on Rayleigh-Bénard convection have been
obtained for an ideal systemn of infinite geometry, appropriate boundary con-
ditions must be applied in a real system, which is typically a finite convection
cell vith rigid sidewalls (57, 63]. For a two-dimensional systern with rectan-
gular symmetry, the lateral exlent is usually described by introducing the
aspect ratio I', defined as the ratio of the length of the system [ toits height
d. Rigid sidewalls tend to suppress the fluid flow via viscous cflects, and
this has been confirmed by experiments [201] in which the amplitude of the
flow velocity was seen lo vanish at the sidewalls. Such a bonndary condition
shifts the convection threshold [6], and results in an even further restricted




band of stable wave mimbers [56].

0.8

0.6

0.4

0.0
-0.25 0.00
(k-kc)/ke

Figure 1.3: The marginal stability boundary (solid curve) and the Eckhaus
boundary (dashed curve) for the one-dimensional Ginzburg-Landau equation.
"The parameters of the cquation are chosen to correspond to Rayleigh-Bénard
convection,
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1.4 The Ginzburg-Landau Model

The Ginzburg-Landau model, which was first introduced to describe phase
transitions in superconductors [S0], provides a starting point for understand-
ing many aspects of pattern formation in convective systems.

1.4.1 The Amplitude Equation
The one dimensional Ginzburg-Landau amplitude equation has the form [4]

L0 ;
Toﬁ:fég;;*‘é’/"!)l.““/‘. (1)

where ¢ is normalized control parameter which is defined by ¢ (Ra —
Ra.)/ Ra, for thermal convection, and which measures the distance from the
threshold of convection. The parameters 7o and &g represent the character:

time and length scales of the varialions of the pattern respe

ic

cly, md g
is the nonlinear coupling constant of the system. The complex amplitude
Alz, 1) is related to the velocity field for a convective system and may be
conveniently written as

Al t) = Ao(a, )e=0), (1.5)

in which the time evolution of the modulus Ao(z,!) (amplitude intensity)
and the phase ¢(z,1) (wavclength modulation) can he expressed as [124]
o 9. JPA
g = [E—fg(a—z) Avt & - oA, (1.6)
3 a (aw 2 aA.,o¢)
i ===

"o = %\3z2 " A 2 0z (o)

These equations show that, for a spatially uniform system, the relaxation
of the phase is mostly diffusive, and the evolution of the modulus is mainly
controlled by a balance between e4o and gA3. Very close W onset, if both
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the spatial and temporal modulations of the pattern are small, the equation
for the amplitude Ay takes a simpler form:

dA
r.,d—: =eAp — gA3. (1.8)
“This is often referred to as Landau cquation [4].

The trivial steady state solution Ap = 0 of the Landau equation corre-
sponds to the motionless steady state that is stable for & < 0, but unstable
fore > 0. For € >0, the jon regime is rep d by a ivial

solution
| Aol = /e/g. (1.9)

From the point. of view of a dynamical systems approach [85), such a continu-
ous change of the qualitative structure of solutions when a control parameter
is varied is called a forward or supereritical bifurcation, analogous to a second
order transition in equilibrium systems, and in contrast to the backward or
suberitical bifurcation which is the analogue of a first order phase transition.

14.2 Relaxation Time and Correlation Length

In addition to the stationary solution of the Landau equation described
above, the general llm&dqx:ndent solution can also be obtained with appro-
priate initial conditi the litude is initially Aot = 0) = A;,
integration of the Landau equation (1.8) gives

€.

2o ”n
Aoft) = (W) 3 (110)

In this fon, 7 = me™! the relaxation time of the system,

and its value diverges as ¢ approaches zero.
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On the other hand, to look at spatial modulations of the pattern, one has
to consider stationary solutions to the Ginzburg-Landau equation, for which

9A0/d1 = 0. Equation (1.6) then becomes
PA
cg# = —cho+ g (L)

With the boundary conditions Ao(x = 0) = 0 and Ao(x = c0) = \/&/g (from
Eq. (1.9)), solution of Eq. (1.11) shows that the time-independent
state has an envelope of the form

Ao(z) = ﬁtsmh (\/‘L:'f) (1.12)

where § = £oe™'/? is the correlation length, which diverges as & vanishes. In
Chapter 4, we present experimental measurenients of both & and 7 for our

onary

system.

1.4.3 The Range of Stability

In general, the range of stability of the solutions of the one
Ginzburg-Landau equation can be found by substituting a disturbance of
the form [4]

A(z,l) = agettilk—kz, (1.13)

wherew represents the growth rate of a mode with wave number k, and k. is
the critical wave number. For an infinite system where boundary conditions
do not play a role, the marginal curve (on which w = 0) can be obtained
from the Ginzburg-Landau equation,

en = (k - k)'€5. (1.14)

Patterns with wave number & will grow if & > &5, but decay if € < £,,. For
€ > &, the Ginzburg-Landau cquation has steady-state spatially uniform
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solutions Ag = [(€ — £,)/9]'/% lHowever, these steady-state solutions [4] are
only stable in a narrower region € > ¢, with

ek = 3(k - k)2€2. (1.15)

“This quadratic boundary marks the Eckhaus instability at which patterns
become linearly unstable with respect to slow spatial modulations of the
periodic structure. ‘Therefore, stable pattern at a given € should be observable
only over the wave number range

k= ke] < (==
\5e3

In Figure 1.3, the marginal and the Eckhaus stability boundaries for Rayleigh-
Bénard convection (£ = 0.38d and )\, = 2.0d) are plotted.

(1.16)

While a laterally infinite system is attractive from a theoretical point of
view since it simplifies the calculations, lateral boundaries confine the fluid in
any laboratory experiment. Theoretical analysis based on one-dimensional
convection models [54, 55, 108, 154, 193], as well as numerical work based
on the full hydrodynamic jons (8, 129] of Rayleigh-Bénard
predicts an even more restricted band of stable wave numbers due to the
presence of rigid boundaries, as compared to the Eckhaus boundary for infi-
nite systems. However, no convection experiment has been carried out [125]
that bi ly verifies this predicti In our i we have
measured the stability boundary for one-dimensional convection patterns.
We sce evidence for this boundary induced wavelength selection mechanism.
This mechanism will be discussed in more detail in Chapter 4.

Starting from full nonlinear i i for Rayleigh-Bénard
convection, Segel [173] and Newell et al. [139] mdependently denved an am-
phLudL equalion that is identical to the Ginzburg-Landau equation in the
I in nematic liquid crystals, sim-
ilar amplitude equations have also been obtained from the complete system

| case. For
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of electrohydrodynamic cquations by the Bayreuth group [27, 98, 99, 106].
For our two-dimensional clectrically driven convective system, close to on-
sel, the experimental results. di

ed in Chapter 4, are consistent with
what would be epected from the Ginzburg-Landau equation, although the
connection between the amplitude cquation and the governing electrohydro-
dynamic equations has not bex . worked ot




1.5 Electroconvective Instability

Rayleigh-Bénard convection is driven by the buoyant force due to gravity.
In contrast, convection driven by an clectric force due to an applied electric
field is called electrohydrodynamic convection, or electrocontection. The ex-

perimental control paramelers of clectroconvection are often easily accessible
[56], and the observation of clectroconvection patterns was first described by
Avsec b al. [10]. Since then, electroconvection systems have been widely
used for studies of patiern formation and the transition to turbulence [56].
Under the action of an clectric field, there are basically two types of elec-
trohydrodynamic instability which have been understood to some extent.
These are electroconvection in isotropic diclectric fluids subject to ion injec-
tion, and electroconvection in nematic liquid crystals with negative dielectric
anisotropy.

Electroconvection in isotropic diclectric fluids [9, 73, 113] is driven by
the nonuniform distribution of space charge which originates from ion in-
jection at one or both of the parallel plane electrodes which enclose the
liquid. The transport mechanism [47, 123, 149] is different from that in the
Rayleigh-Bénard problem, since charge carriers move by diffusion and migra-
tion under the action of the electric field, while heat is transferred solely by
diffusion, Convective motion in a dielectric liquid subjected to ion injection
may organize itself into two-dimensional rolls or hexagonal patterns, and the
amplitudes of the current and the flow velocity exhibit hysteresis [9] as the
control parameter is varied through the onset of convection. This hysteresis
indicates that the convection onset in this case is subcritical, in contrast to
itical bif observed in Rayleigh-Bénard i

the

At least partly because of three-dimensional nonlinear coupling between
the space charge and the velocity field via Maxwell interactions, electro-
convection in isotropic dielectric fluids has received far less attention than
Rayleigh-Bénard convection, where the lincar Boussinesq approximation [97]
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is often assumed. The electrohydrodynamic instability in nematic liquid ¢
tals, on the other hand, has attracted growing interest. It is probably the
simplest anisotropic pattern forming system. Oue of the most significant os-
perimental results on this system is the verification of the Eckhaus stability
boundary [121, 137, 161] predicted by the Ginzhurg-Landau cquation.

The setup for observing clectroconvection in nematics cor
nematic layer sandwiched between two plane clectrodes, with the dircctor
oriented parallel to the electrode surface [109]. The instability' depends
the anisotropic nature of the material and the finite conductivity of nematics
is cssential [45, 88, 147]. As the applied voltage reach srtain th
a roll pattern with a periodic distortion of the nematic alignment appears.
These rolls were first observed by Williams [203] and Kapustin et al. [100],
and are now commonly referred to as Williams domains. At higher voltages
the Williams domains become disordered, with defec
lated continuously [137, 162].

ts of a thin

on

shold,

created and annihi-

The unique structure and flow properties of the freely suspended smectic
film make it an attractive system for the study of two-dimensional hydro-
dynamics. The layer structure of the smectic A phase constrains the ilow
to remain in the plane of the film. The first experiments on flow in freely
suspended smectic films were carried out by Morris et al. in 1990 (131, 133].
By applying an electric field in the plane of the film, they observed one-
dimensional convective patterns in the form of a series of two-dimensional

Uin the presence of an electric field and a small distortion of the director, the conductiv-
ity anisotropy (o) > o) produces charge separation such that space charges are focused
at locations where the director bends. For nematics with negative dielectric anisotropy
(¢ < ¢1), liquid erystal molecules tend Lo align themselves normal to the applied e
field. Therefore, a dielectric torque that enhances the initial director distortion may r
due to the transverse field created by space charge distribution. On the other hand,
accumulated space charges are subjected to a bulk electric force which drives a velo
field and thus exerts a strong hydrodynamic torque on the liquid erystal molecules
is reinforced by the dielectric torque and eventually, via viscous coupling, uid motion
amplifics the spatial variation of the director, yielding more charge separation and more
fluid motion, and producing a growing instability.
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Figure 1.4: Schematics of electroconvection in two dimensions. Upper graph:
a two-dimensional film is suspended between two electrodes which are main-
tained at an applied voltage +V'. Lower graph: illustration of the profile of
a convecting smectic film with two molecular layers in thickness.
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vortices. Just above the onset of convection, their velocity measurements
indicated that the convection was well described by a single Fourier mode,
whereas several modes were present further above onset. Measurements of
the electric current through the film showed an enhanced charge transport
due to convection, and no hysteresis was observed at onset. Their visual
observations, as well as the current result, suggested that the onset of con-
vection was a furward or supercritical bifurcation, as in Rayleigh-Bénard
convection.

"The basic setup of our experiments is similar to that of Morris et al. [1:3]
and is shown in Figure 1.4. A smectic film is s
nar wire electrodes through which a d.c. electric field is wpplied in the plane
of the film. The onset behaviour and the nonlinear convection state have
been investigated in our experiments. In particular, the correlation length €
and the relaxation time 7 are determined for our system, and the stability
boundary for convection above onset has been measured.

uspended by two linear copla-

The remainder of the thesis is organized as follows: Chapter 11 presents a
theoretical model for two-dimensional electroconvection. A set of electroby-
drodynamic equations is derived and the microscopic convection mechanisim
is analyzed. Chapter Ill is a gencral description of the experimental sctup
and measurement procedures. Chapter [V presents experimental measure-
ments of the onset of convection, convection above onset, and the stability
boundary for convective patterns. It also contains an analys
findings of our experiments — the critical behavior and the wavelength sc-
lection — in terms of Ginzburg-Landau theory. Chapter V is a conclusion
and brief discussion of possible future work. In Appendix A a hydrodynamic
model is proposed to describe the observation of flow vortices at the lateral
boundaries below the convective onset. Finally, Appendix B dis
measurement, which was used in determining the thickness of the freely sus-
pended smectic film.

s of the main

s colour




Chapter 2

Theory

Overview

| k for a two-di ional

In this chapter, we develop a th
isotropic fluid exposed in a nonuniform electric field. In section 2.1, we write

down the electrohydrod ions for a three-di ] isotropic
fluid in a nonuniform electric field. In section 2.2, we develop a linearized sys-
tem for two-di ional el ion and analyze the ion mech-

anism. In section 2.3, we show that the correct normalized control parameter
for our system is e = V2/V? - 1.



THEORY 23

2.1 Hydrodynamic Equations for Isotropic
Fluids in a Nonuniform Electric Field

Consider a three-dimensional isotropic fluid with a small conduetivity in a
nonuniform electric field. Conservation of mass may be exprossed as [37, 114]

9,
S (pav) =0, (21)

where v is flow velocity, and pp, the mass density. For an incompressible
finid, Eq. (2.1) reduces to
Vov=0. (2:2)
Assuming that the only external force acting on the fuid is duc to the
electric field, the momentum equation can be written as
dv
pm‘;—[ +puv - Vv = ~Vp 4 uViv + F,, 2.)
where p denotes the pressire and j the viscosity. In general, for a nonmiforin
electric field E, the clectric force F, may be expressed as [115]

F

1 LAY N .
pE+ §V[ n (ap.,.) b‘] - EI:‘V(, (2.4)

where p, is the space charge density in fluid, and ¢ the diclectric permittivity
of the fluid. The first term on the right hand side of Eq. (2.4) originates
from the interaction between free charges in the fluid and the clectric field,
while the other two terms arise due to polarization in the nonuniform field.

We assume that ¢ is a function only of the mass density pu, that is,

€= ¢(pm) and
Ve= (a‘j’—:) Vo (2.5)

We further consider a linear dependence of € on pp,

€= co(l +vpm), (2.6)
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which is an approximation to the Clausius-Mossotti relation if  is small
(25,29, 95]. Here g denotes the permittivity of free space, and 7 is a positive

constant depending on the material. Therefore, the electric force F. has the

simpler form

1 [ 9 o
F. = pE+ 3pm (5;) VE2 (27)
For & weakly conducting fluid, ic fields are negligible, and Maxwell's

equations for a quasi-static clectric field become [69, 95]

VxE=0, (238)
V- (cE) = pe- (2.9)
In addition, the charge conscrvation equation is
9pe
@ - v
= =V.j+aV., (2.10)

where J is the total electric current density which includes contributions due
to migration and convection (j), and due to charge diffusion with diffusion
coefficient a. The clectric current density due to migration and convection
is assumed to have the form

j=0oE+pv, (2.11)

where o is the conductivity of the liquid, assumed to be constant. In writing
Eq. (2.11), it has been considered that the fluid behaves like a weak ohmic
conductor, as is the case for smectic film below the onset of electroconvection
[134).

Throughout the following analysis, we consider p, to be constant. Col-
lecting together the above equations we have

Vv =0, (2.12)
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v
i&vn +pmv - Vv
ape
BTV
V- (E)
V xE

with

Given appropriate initial and boundary conditions, the clectrohydrody

; 1
—Vp+puViv 4 pE 4 5Pm (

~V . (0E) +aV?p,,
Pey
0,

€= ol +7pm).

25
&

) VE(2.13)

(2.14)
(2.15)
(2.16)

(217)

amic

problem posed above reduces Lo solving the system of equations (2.12 - 2.17).
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2.2 Mechanism of Two-Dimensional Electro-
convection

A smectic liquid crystal film behaves as a two-dimensional isotropic liquid.
The equations for electroconvection in the film can be approximated as the
two-dimensional version of the governing equations for a three-dimensional
isotropic, incompressible fluid derived above. In the following, we will con-
fine ourselves to a purely two-dimensional system, with v = (v,v,), V =
(9/0,0/dy), and with g, = g.(z,y) and E = (Ex, E,), denoting the charge
density and the components of the electric field in the plane of the film re-
spectively. In a rigorous analysis, the two-dimensional limit of Eqs. (2.12 -
2.17) must be taken with some care, since the electromagnetic part of the
problem remains three-dimensional (58], and the transport coefficients of the
Hl-behaved in purely two-di ional system [119]. We

fluidd may not, be
neglect such details here.

Consider a smectic film (Figure 1.4), infinitely long in the z-direction and
infinitely thin in the z-direction, spanned by two ideal parallel wire electrodes
separated by a distance d in the y-direction. The two-dimensional versions
of Egs. (2. n) and (2.14) are

/1,.. 3 Y oV VYV = —Vp+uViv+pE+ %7eop,..VE’, (2.18)

?’ +v-Vo = —%eg +a¥%, (219)
in which p is the isotropic pressure for two-dimensional fluid. Here we have
used Eq. (2.17) to obtain the last term on the right hand side in Eq. (2.18),
and Eqs. (2.14) and (2.15) have been combined to give Eq. (2.19)

" Tln writing Eq. (2.19), we have made the following approximations.

For smectic A liquid erystals, Eqs. (2.14) and (2.15) can be written as

=4V Vp,=—0y (aﬁﬁ + %) - n“ a 2 4 aVpe, (2.20)

ar dy
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Equations (2.18) and (2.19) serve as a starting point for the elucidation of
the mechanism for two-dimensional electraconvection. The relevant values of
¢ i and @ are those in the planc of the film, and o here denotes an offective
conductivity for the two-dimensional film. In the motionless base state, the
clectric field E° and the charge density distribution g arc

E° = (0, E°(y)). (2.25)
and
o =olu), (2.26)
with .
/DE“(y),z. =avo, (2.27)
ad o8, _ o, oE,
[n ( o+ T;) a9 . (2.21)

Solving Eq. (2:21) for (9E:/0z + 8E,/Ay) and substituting into Eq. (2.20) gives

(2.22)

oK,
Ly 4 aVip + (m(—’ = nn) E
€L Q

By assuming that the charge density in the plane of a two-dimensional filmi can b writt
as

ez = limy [ pets, (2.29)
we obtain
Jee __n 2 ( q ) 0B, i
F TV Ve =Vt (il - oz (2.2)

Here v = (vz,u,) and V = (8/0z,0/0y). In writing this equation, we have ignored diffu-
sion in the z-direction.

‘We now introduce an effective conductivity o* for the two-dimensional film and make
the approximation that the contribution from the first and last termns of the right hand
side of Eq. (2.24) can be integrated to give (0°/cs)o.. We then obtain Eq. (2.19) in
which, for simplicity, we have written o rather than ¢". The detailed connection betw
the three-dimensional clectric field and the two-dimensional hydrodynamics is beyond the
scope of this thesis [58].
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where the two clectrodes are maintained at £V°. By setting v = 0 in Eq.
(2.18), we find that in the motionless state,
V1= 628+ SrcapnV(EY, (2:28)

from which we see that the static pressure p° in the film in a nonuniform
field is different from that when the applied field is uniform.

We now apply small perturbations to the motionless state. We introduce
the perturbation velocity v, electric field EY, charge density o', and pressure
o such that

vo= v, (2.29)
E = E°+E, (2.30)
o = ol+e, (2:31)
p=r+p. (2.32)

It is worth noticing that the contribution due to the fionuniform electric
ficld in the momentum equation is the gradient of a scalar and thus can be
incorporated in the pressure gradient term by defining an effective pressure
P = p - $yeopn E*. From this definition, the perturbation for the effective
pressure is P' = p' — yeopm(E° - E'). It is also convenient to express E' in
terms of a perturbed electric potential ¢' defined through E' = —V¢'.

If Eqs. (2.18) and (2.19) are linearized in the small perturbations, we
obtain
0
Py = ~VPHAVV+ 0B - V), (2.33)
L
a
Together with the incompressibility condition

V.v=0 (2.35)

= —v.Vl- %p,’ +aV2,". (2.34)
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and Gauss’ Theorem

Vi = 2 2.36)
3
Egs. (233 - 2.36) are a st of five cquations for the five unknown func-
tions, vz, vy, o'y ¢, and P'. With appropriate boundary conditions?, these
equations are a complete lincarized system for the two-dimensional electro-
convection problem.

After some algebra similar to that used in the analysis of Rayleigh-Bénard
convection [48], Egs. (2.33) and (2.34) can be further simplified to give

) B (2 . | 08 (0% )
(E—"V’)V’vy = ﬂm(ag,)Jrﬁﬁ‘;—( : ) (2.37)

o
(% - aV’) PRa—T %g (2.38)

where ¥ = 1/pm is the Kinematic viscosity. It can be seen, from q. (2.37),
that the spatial variation of the perturbed charge density causes convection
(Bv,/8t # 0), while convection will in turn, from Eq. (2.38), modify the
charge distribution (dg.'/dt # 0). On the other hand, viscosity and charge
diffusion damp out the perturbations.

It is important to note that the source of the space charges in the film
is not, contained in the above analysis. Furthermore, while the velocity field
can be exactly two-dimensional, the electric field remains three-dimensional.
In fact, the z-component of the electric field is responsible for the generation
of a charge distribution at the two smectic-air interfaces, and this charge dis-
Lrlbutlon can interact wnh the in-plane components of the field to cause flow

The el ical dissociation of dopants in liquid crystal ma-
terials might also affect the charge distribution gencrated by the z-component
of the electric field, however, details of such a influence is not yet clear.

2for our electroconvection system, we may choose vz = vy = 0, du, /dz = duy /Dy = 0,
and ¢/ =0fory=0,d
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It is interesting to observe that the term containing effective pressure
gradient VP’ has been climinated in the analysis. Hence the effect of po-
larization is not responsible for the origin of electroconvection in an incom-
pressible fluid with constant mass density. However, as discussed before, the
polarization due to a nonuniform electric ficld does influence the pressure
distribution in the fluid, so it cannot be ignored for the discussion of static
equilibrium of a dielectric fluid. It must be emphasized that the electrocon-
vection model proposed here involves the assumption that the fluid has a
constant mass density p,, (thercfore constant €), although the electric field
is nonuniform. In cases that this assumption breaks down (such as when
a temperature perturbation is involved), the effect of polarization may con-
tribute to the convective motion [168, 194, 195, 196, 197] and in general, an
extra term of the form 3 £*Ve will then be involved, as seen from Eq. (2.4).
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2.3 The Dimensionless Control Parameter

A complete solution of Egs. (2.37) and (2.38) is beyond the scope of this
thesis, however a linear stability analysis of this problem is being carried
out by Daya et al. [58]. Without a complete solution, simple dimensional
analysis [14] can give some insight as to the dimensionless control parameter
for two-di siunal elect ection. For licity, we drop the term in-
volving ¢' in Eq. (2.37), and ignore the charge diffusion term in B, (2.38).
In doing so, we have assumed that the influence on the electric field of the
perturbed charge density in a liquid film of vanishing thickness is negligible,
and that the coefficient of charge diffusion nall [148, 191). Furthermore,
in analogy with the base state temperature distribution for Rayleigh-Bénard
convection, we make the approximation that the charge distribution ¢ of
the base state depends linearly on y, that is, 9o2/8y = f with /3 constant.

Equations (2.37) and (2.38) can then be rewritten as

9 B (9%, .
(ﬁ - uv*) Vi, o ( Tt ) s (2.39)

9 .
(35 = -1y e

We introduce €/c as a characteristic time, d as a characteristic length, and
use 4d as a characteristic charge density. We write

w = () vt (21)
o = (Bd)R(G)eHH, (2.42)

in which V(j) and R(j) are dimensionless variables related to the vertica
velocity component and the charge density, k and & are the dim
wave number and growth rate, & and § are the dimensionless coordinaics,
and { is the dimensionless time. Substitution of Eqs. (2.41) and (2.42) into

onless
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the Eqs. (2.39) and (2.40) yiclds

[Lu;-::dz - (- I")] (0*-F)y (2.43)
@+hR = -V, (2.44)

BBl
o

where D represents d/dj. In analogy to the Rayleigh-Bénard convection
problem, we define an electric Prandtl number Pre and an electric Rayleigh
number Ra® as

e

o= 25 (2.45)
0
fe = E f;‘p. (2.46)

These are the only two dimensionless parameters contained in the electro-
convection equations. Eliminating R from Eq. (2.43) gives an cquation for
v,

o . . [
['T (D= k’)] (0 -F)y- Ry =0, (2a7)
which has a similar form to the corresponding equation in the Rayleigh-
Bénard convection problem [48, 211]. The marginal curve corresponds to
& =0, for which
(0* =)'V + RV =0, (248)

which involves only the electric Rayleigh number Ra®.

A complete solution of the clectroconvection problem requires the knowl-
edge of the base state charge density distribution g2, and thus of 8 = 802/8y.
We know that both the charge density distribution and the electric field in
the base state originate from the voltage £V applied to the two electrodes.
From dimensional considerations and the Maxwell equations, both the char-
acteristic charge density and the characteristic electric field intensity al base
state should be proportional to V, that is, [E°] & V and [g¢] o V. Therefore,
from the definition of di ionless control Ra®, we have

Ra® o V2 (2.49)




THEORY 33

The exact form of Ra® will depend on the base state solution, which will
involve the film thickness s as well as film width d.

As in the case for Rayleigh-Bénard convection, we define a normalized
dimensionless control parameter Ra® by

Ra’ - Ra;

£ i,

Rag

e

(2.50)

Ilere Ra denotes the electric Rayleigh number at the onset of convection,
Using Eq. (2.19), we thus obtain

m
i
<SS
I

=

This is the form of normalized control parameter we nse throughout. this
work. Its validity has been confirmed in experiments [134].

A complete lincar stability analysis of the base state, as well
quent weakly nonlinear analysis is necessary in order to get more
the nature of the onset and the dynamies of the two-dimensional convective
patterns. Numerical simulations [43, 83] of this system would also be helpful.
Such work falls beyond the scope of this thesis.




Chapter 3

Experiments

Overview

The experiments consist. of applying a d.c. voltage across the plane of freely
suspended smeetic liquid erystal film, and studying the flow pattern which
develops in the plane of the film. The experimental setup is described in
section 3.1, Two techniques are enployed to determine the thickness of
the Tiquid crystal flms, which typically contain two to about one hundred
molocular layers. These techniques are described in detail in section 3.2 In
section 3.3, the method of flow visualization used in these experiments is

ssed.

briefly d
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3.1 Experimental Setup

Experiments are performed on thin smectic films which are freely suspended
between two electrodes. The film holder is shown in Figure 3.1.

slider slider

~djustment screw

Figure 3.1: Construc’ion of the film holder.

The long sides of the smectic liquid film are supported by two 23jum di-
ameter tungsten wire electrodes which are under tension. The ends of the
film are supported by plastic wipers 50pm in thickness and
the edges. The edges of the wipers contact the film dircctly, rc
clectrode wires under their own weight. Two nylon threads lic outside the
electrode wires, acting to reduce the influence of the wipers’ weight on the
electrodes. The wipers are supported by two spring loaded plexiglass sliders.
One of the sliders is fixed and the other one can he driven with a motorized

arpened at

ing on the
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micrometer serew controlled by a Newport Model 850CD-1 motor controller.
This allows variation of the film length [ in the range 0 < I < 30 mm. The
clectrodes and nylon threads are attached to two plexiglass holders shown in
Figure 3.1. The scparation of the electrodes d can be changed mechanically
by moving one of these holders relative to the other. This is done by using a
fine adjustment screw accessible from outside the housing that encloses the
experimental cell. For the experiments reported here, d is in the range 0.5
mm<d < 4.0 mm.

bottom

Figure 3.2: The convection cell mounted inside a shielding box with optical
and clectric access.

The film holder is mounted inside an aluminum box (12.5 cm x 10.0 cm
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% 6.0 cm) as shown in Figure 3.2. The aluminum box provides electrical
shielding. Windows in the top and bottom of the box allow optical access
the flm. The box is placed in a plexiglass honsing (29 em x
The temperature inside the housing is controlled to 0.1°C over a given run
by an Omega Model CN9111A temperature controller and a Cole-Parmer
Model 12101-10 constant temperature water circulating system. All experi-
ments were performed at temperatures in the range 252:1°C, well below the
smectic-nematic transition at 33.5°C.

L0

em x 15em).

=+ —

700000007,

=V

et

Figure 3.3: Schematic view of a convecting film. The film length [ and width
d, and the wavelength X of the vortex pattern are illustrated.

The electric field that drives the electroconvection is produced by ap-
plying a constant potential diffcrence across the two wire electrodes (Figure
3.3). Balanced potentials of £V (0 < V' < 60 volt) with respect to ground
are generated by two Hewlett-Packard 6024A DC power supplies wired in
series. The power supplies are controlled by a personal computer via a Data
Translation DT2815 D/A converter board. Voltages are monitored using a
Hewlett-Packard 34401A multimeter via a IEEE-488 interface hoard. The
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Figure 3.4: Schematic diagram of the electroconvection experiment setup.
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entire experimental arrangement is shown in Figure 3.1,

The liquid crystal material used in the experiments is 4,4 "-w-octyley:
biphenyl (8CB), doped with a small amount (0.15% by weight) of tetra-
3B
is very chemically stable and has a smectic A mesophuse between 21.0°C

cyanoquinodimethane (TCNQ) to control the nature of ionic impuritics

and 33.5°C. In this temperature range, the rod-like 8CB molecules associate
themselves into layers with the long molecular axis normal to layer plane.
The thickness of the smectic layer is 31.6A, about 1.3 times the $CB molec-
ular length.

Films were made by bringing the two wipers together, placing a small
amount of liguid crystal material at the place where the wipers joined, and
then slowly drawing the wipers apart at an adjustable rale of several microns
per second using the micropositioning motor driver. The relative wiper po-
sition with respect to an arbitrary zero can be controlled to within 1.0pm.
Once the film reaches the desired length £, the motorized wiper is stopped.
The film making process is monitored with a low power microscope, which
is also used to monitor the film thickness and record the two-dimensional
convective flow.

With some practice, uniform films can be made as thin as two molecu-
lar layers in thickness. A two-layer-thick film corresponds to the thinnest
thickness for a film to be stable [151]. Such a film can last for several hours
without breaking in experiments. In general, one can make an existing film
thinner by a short, and rapid movement of the wiper to slightly enlarge the
film surface. This usually results in the creation of defects with fewer mol
ular layers, and these defects tend to expand over the film. A film is then
made uniform by slowly drawing it further. Once a film is made uniforrn, its
thickuess can remain constant even in the presence of strong convection, or
when the length of the film is slowly changed.
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3.2 Film Thickness Determination

Observations indicate that the onset voltage for electroconvection depends on
the thickness of the film. It is therefore important in each individual experi-
ment to know the film thickness accurately. The film thickness is determined
in two ways: by measuring the reflectivity of the film, and by measuring the
colonr of the film when it is illuminated by whitelight incident perpendicular
to the film plane.

3.2.1 Measuring Reflected Intensity

Liquid crystal films in the smectic A mesophase are birefringent, with the
optical axis normal to the plane of the film and therefore in the plane of an
incident light beam. The reflectivity of the film depends on its thickness, so
the thickness can be delermined from measurement of the relative intensity
of a beam of spolarized monochromatic light reflected from the flm plane.

The reflection coefficient of spolarized (i.e., polarized perpendicular to
the plane of incidence) light. from a surface is given by (2]

. 2
cosli = (n,? - sin?0)/?

b= | ot T (a7 w0 | *

3.1)

where 0; is the incidence angle and n; the refractive index perpendicular to
the plane of incidence. For smectic A films, the optical axis is normal to the
film surface, so ny is simply equal to n,, the ordinary refractive index of the
material.

A freely suspended smectic film is essentially a thin layer of smectic ma-
terial with two free surfaces. The reflected beam received by a deuector in-
cludes contribulions due to reflecti from both tic-ai . The
intensily of s-polarized monochromatic light reflected from a smechc film N
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molecular layers thick is given by (23]

1R, sin?(4/2)

Iny = lym— g ———————, £ B
N = TR R, (97D (3:2)
where Ioy is the intensity of the incident light of wavelength A, and ¢/2 is
given by %

6/2= 5T Nes{n2 — s’ 0)'", (3.3)
where d, is the thickness of each smectic layer. The expression for Iyy im-
plies periodicity of the reflected light intensity as a function of flm thickness
s= N molecular layers.

The basic optical setup is shown in Figure 3.4. A Uniphase Model 1125
Helium-Neon laser (wavelength 63284, output power 10 mW) is used in all
experiments. The laser output is unpolarized, and a polarizer in front of the
laser is adjusted so that the polarization of the incident beam is perpendic-
ular to the plane of incidence.

The polarized laser beam is dirccled onto the filmat an angle of incidence
0; of 45.0°+2.0° in all experiments. The intensity of the incident light is de-
termined by a beam splitter-detector combination as illustrated in Figure 3.1,
The intensity of the reflected beam is measured using an identical photadiode
detector. The voltage output of the photodiode detectors is measured with
Keithley Model 196 digital multimeters and transmitted by an IEEE-488 bus
to the personal computer. A simple program in C was written to calculate
the ratio of reflected to incident, intensity Iny//ox.

The 8CB used in our experimentshas d, = 31.6A and n, = 1.516 [65,116].
Figure 3.5 illustrates the relative reflected intensity or reflectivity of the film
Iny/ Iox, calculated from Eq. (3.2), for films up to 200 molecular layers thick.
Film thickness is determined by comparing the measured reflectivity with the
calculated values. Due to the periodicity of the theoretical curve, a given
flectivity may correspond to any of a number of diffcrent film thicknes
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However, if it is known in which period the thickness lies, high accuracy (the
thickness determination is exact for films thinner than 15) can be achieved
by considering the fact. that the film thickness must be an integer number of
molecular layers.

o
IS

reflectivity
o o
N w

°
=

0.0 " "
0 50 100 150 200

s (molecular layers)

Figure 3.5: Reflectivity of an SCB film as a function of film thickness cal-
culated from Eq. (3.2). spolarized light beam of wavelength 63284, at an
incident angle 45.0°.
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3.2.2 Maeasuring Reflected Colours

Since the thickness of onr smectic films is comparable to the wavelength of
visible light, they, like soap films, show brilliant interference colours when
viewed under reflected white light. The thickniess of a smectic film can there:
fore be determined by measuring the apparent rellected colour produced by
incident white light.

The reflected intensity for s-polarized light of single wavelength A and
incidence angle 8; from a smectic
consisting of N molecular layers cach of thickness d,, is given by Eq. (3.2
For s-polarized incident white light with a continuous sity d
tribution, the reflected intensity Iy for cach monochromatic component can
also be determined from this expression. Once the reflected spectral intensity
distribution is known, the reflected colour can be determined [51].

A film, with index of refraction n, and

spectral int

A General Electric Model 778D mini illuminator with a polari
is used in all experiments. It is mounted inside a Ricchert Model 580 stereo

T in front

microscope and produces a s-polarized white beam incident normal to the
smectic film plane (the incidence angle is therefore zero). A camera port on
the microscope is fitted with cither a 35mm Nikon SLR camera, or a Sony
SSC-C354 CCD colour video camera connected toa Panasonic AG-1960 mul-
tiplex VHS recorder and a Hitachi CT1396VM colour video monitor. The
microscope is also used for the flow visualization described in the following
section.

A description of how colour is measured is presented in Appendix B. The
spectral intensity distribution Joy of the incident white light from the above
illuminator is assumed to be that of the standard source A of the Commission
Internationale de I’Eclairage (CIE) [51]. Using this incident intensity distri-
bution, the spectral intensity distribution /vy of the light reflected from a
smectic film N molecular layers in thickness was determined using Eq. (3.2)
at each wavelength A




As described in Appendix B, the spectral distribution of the reflected
light Jya is transformed into corresponding tristimulus values X, ¥, and Z
using the CIE colour matching functions Zx, 7, and £, which are tabulated
in Table B.1),

X =/o°°l,vmda,
v o= [ hngadh (3.4)
z = /u” InaEadA.

These tristinulus values are then used Lo compute the chromaticity coor-
dinates = and y (and the relative brightness X + Y + Z) for specifying a

colour,

X
X7 33
¥

y (36)

“Xir+ 2z

The locus of the calculated chromaticity coordinates for light reflected
from smectic 8CB films, for varying film thickness, is shown on the standard
CIE chromaticity diagram in Figure 3.6. For films thinner than about 25
molecular layers, the calculation indicates that films appear dark gray, be-
coming brighter as the thickness is increased. The film then passes through
a sequence of colours as the thickness increased further, appearing yellow,
then orange, red, purple, blue, yellow, orange, red, blue, green, yellow and so
on, The first two colour loops, corresponding to films thinner than about 150
layers, are sufliciently different to be distinguishable by eye with experience.

The thickness of smectic films does not vary continuously, but in steps of
one molecular layer. A step in film thickness of a single molecular layer cor-
responds to a discontinuous change in film colour, which is easily visible for
films between 20 and 150 layers. With some practice, the thickness of films
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in the range between 45 and 65 molecular layers thick can he determined to
an accuracy of 42 layers simply from their colour,

08

Figure 3.6: Chromaticity of an 8CB film illuminated by a CIE standard
source A at normal incidence. The complicated enrve shows how the chro-
maticity changes with film thickness, with the numbers indicating the thick-
ness in molecular layers.

As described in last section, the thickness is also determined by directly
measuring the reflected intensity of a polarized monochromatic laser beam.
The intensity and the colour arc
rently in all experiments. Together these two techniques pl:nnil o
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termination of film thickness for films thinner than 15 molecular layers. For
filims between 16 and 30 layers the uncertainty is +1 layer, and for films
lietween 31 and 75 layers the uncertainty is £2 layers. In the experiments re-
ported in this thesis, the flm thickness is between 2 and 75 molccular layers.
The calenlated reflectivity as « function of film thickness and the calculated
chromaticity coordinates for films with thickness smaller than 75 molecular
layers are plotted in Figres 3.7 and 3.8 respectively. These two plots are
used for direct comparison with the reflectivity and colour measurements.

0.4 ,
s
03
=
2 - Y
§ by 3
9 o
0.1 & %
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o

30 45 60 75
s (molecular layers)

Figure 3.7: Calculated reflectivity for 8CB films up to 75 molecular layers in
thickness.
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Figure 3.8: Chromaticity of 8CB up to 75 muolecular layers thick, ilnminated
by a CIE standard source A at normal incidence. The munbers indicate the
film thickness in molecular layers.



3.3 Flow Visualization

Colour variations across a nonuniform film allow a simple method of flow vi-
sualization. Convection in such a film causes a spectacular swirling of colours
as the regions of different thickness are advected with flow. However, obser-
vations of advected colour variations provide only qualitative information
about the convection since, as mentioned before, the flow phenomena de-
pend on thickness. All quantitative measurements are performed using films
of uniform thickness. For a completely uniform film viewed in reflected white
light, the appearance of the film alone gives no indication of any flow. How-
ever, the flow can be visualized by the motion of small particles suspended
on the bim and advected by the flow [128].

Of the several different flow visualization particles tested, incense smoke
particles were found to give the best results. A small amount of smoke is
admiitted into the experimental housing, and some of the smoke particles
settle on the film and are advected by the flow. Flow is visualized by shining
a collimated heam of white light onto the film from below. To avoid very
strong background illumination, the beam is directed at a small angle away
from the vertical. The light scattered by the small smoke particles is readily
ble with the microscope described before. In some of the flow velocity
measurements, a HMS Model 230 light beam chopper, synchronized with the
video camera, is used.

The illuminated particles moving with the flow were imaged by the video
camera at a rate of 30 video frames per second. Particle trajectories can be
extracted from the video by projecting the recorded images frame by frame
onto the screen of a computer terminal. The particle coordinates are deter-
mined by finding the pixel position of the particle on the screen, which were
then entered into a data file on which analysis is performed.

The velocity of the flow al a given position is assumed to be equal to
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the instantaneous velocity of the particle at that position. It

determined
approximately by subtracting the position coordinates of a given particle in
consecutive video frames, and dividing by appropriate time interval. The
flow field at a certain instant can then be obtained from the velocities of
many particles scattered over the film.

sualization

Continuous play of the video record of a run allows direct
of the streamlines of the flow. For a time-independent convection

ate, the
separatrices belween neighbouring vortices could be readily Tocated on the
screen, allowing the vortex size and the wavelength of the pattern to b de-
termined.



Chapter 4

Experimental Results

Overview

In this chapter, we present of two-dimensional el
tion and discuss our results in terms of the Ginzburg-Landau model. In
section 4.1, measurements of the onset vollage as a function of film thick-
ness, and of the pattern wavelength and flow velocity near the convective
onset, are presented. In section 4.2, we present measurements of the wave-
length and amplitude of the convection pattern above onset, and discuss the
cvolution of the pattern towards a stable convection state. The characteristic
length scale & is obtained from measurements of the patlern amplitude along
the length of the film, and the characteristic time scale 7 is determined by

itoring the time evolution of the i litude after the applied
voltage is raised from below to above threshold. In section 4.3, we present
the results of experiments on wavelength selection, and the range of sta-
ble wave numbers for the one-dimensional convection pattern is determined.
In section 4.4, the results presented above are discussed in terms of the
Ginzburg-Landau model. We first summarize those results that are in agree-
ment with the predictions of the Ginzburg-Land: litude equation, then
discuss the wavelength selection mechanisms possible in a one-dimensional
pattern forming system. Our results are consistent with a boundary-induced
wavelength selection mechanism proposed by Cross et al. [55].

50
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4.1 Onset of Convection

4.1.1 The Onset Voltage

Observation reveals that a critical applied voltage must be exceeded before
convection begins. This onsct voltage V; is determined by observing the mo-
tion of flow visualization particles as the magnitude of the applied field is
slowly increased or decreased. V, is taken to be the voltage at which the
flow organizes itself into a pattern of vortices throughout the entire length
of the film. A voltage of £V is maintained on each of the two clectrode
wires so the voltage V. is half of the potential difference between the two
clectrodes at the onset of convection. Within the measurement une

tics, the threshold voltage is the same when the voltage is slowly in
or slowly decreased.

Figure 4.1 shows how V; varies with the filin thicknes
number of molecular layers. The data points represent an average over several

s, given as the

measurements in films of the same dimension and thickness. Data from lilms
with length 20.0 mm and width 2.0 mm are given in Figure 4.1. For small
thickness the data look linear, but beyond about 25 layers the thickness
measurements fall below the extrapolation of the thin flm data. Figure 4.2
shows three sets of data for thin films of different aspect ratio. They extend
to very small s and overlap well within experimental errors. A lincar fit to
all three sets yields

V. = (0.54 £ 0.02)s — (0.06 = 0.08). (1.1)

The intercept at the vanishing film thickness is equal to zero within exper-
imental uncertainties. The data in Figure 4.2 do not show any dependence
on film width.
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Figure 4.1: Thickness dependence of the onset voltage for electroconvection
in films with length 20.0 mm and width 2.0 mm.
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Figure 4.2: Onset voltage as a function of film thickness for very thin films.
The data are from experiments on films of threc different sizes: 10.0 mm x
0.7 mm (solid circles), 20.0 mm x 2.0 mm (open circles), and 15.0 mm x 1.0
mm (open triangles). The solid line is a linear fit to all of the data.
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=
1

4.1.2 The Onset Wavelength

The wavelength A of the pattern can be determined simply by counting the
mumber of vortex pairs along the film. Due to the finite length of the film,
X is quantized, since there must be an integer number of vortices along the
length of the film.

14.0 T
@ 120 E
g
» 10.0 1
o
€
S 80 1
k]
5 60 g
5
3 40 4
&
2 A film width 1.0mm |
= 29 ® film width 2.0mm

0.0

0.0 4.0 8.0 12.0 16.0

aspect ratio

Figure 4.3: Number of vortex pairs as a function of aspect ratio at the
convective onset. The open triangles are from experiments on films of width
1.0 mm, and the solid circles on films of width 2.0 mm. The solid line is a
linear fit to both sets of data.

For a regular pattern containing N vortices, or P pairs where P = N/2,
the average dimensional wavelength is the length of the film divided by the
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number of vortex pairs, A = I/ P. Because of the quantization condition. the
uncertainty in the number of vortices N is roughly 1/4, and the uncertainty
in A is therefore £A/4.V.

Figure 4.3 shows the number of vortex pairs in the pattern at onset, I,
as a function of aspect ratio I' = [/d. The thickness of the lilms in Figure
4.3 varies from 2 to 75 molecular layers. A lincar fit gives

P. = (0.773 + 0.009)1", (4.2)

which describes the data well. The small scatter in the .
nates from the fact that only an integer number of vortices is

= I/P., the reciprocal slope of the lincar fit in Figure 4.3 yiclds the ratio
of the onset wavelength A to the film width d, A./d 04 £ 0.015. T
result is found to be independent of the filin thickness and agrees with carlier
measurements by Morris et al. [134].

L points origi-

lowed. Sinee

4.1.3 The Amplitude close to Ounset

Much detailed information on convective patterns can be obtained from mea-
surements of the flow velocity. In our experimental geometry (see Figare 1.1),
the z axis is directed along the long dimension of the liquid film, and the y
axis is directed across the width of the film. The origin s st at one horizontal
film boundary, so that the two electrodes are at y = 0 and y = d respectively.

Velocity Profile

Detailed of the two-di ional velocity ficld were carried ont
by Morris et al. in a sctup slightly different from ours [134]. We have mea-
sured the horizontal component of the flow velocity, vy, as a function of =
md y close to onset, and our results are consistent with those of Murm ol

. [134]. v, is plotted as a function of position over a pair of vortic
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Figure 4.4. v; is measured at scattered locations in the interior of the film,
at y=~d/5 or y~A4d/5, where v, has its maximum value (sce Figure 4.5). The
ble a simple sinusoidal function, with little harmonic distortion.
solid line in Figure 4.4 is a least squares fit of the experimental data to
apsin(2rz), with ap = 3.0 mm/s. Here z has been normalized by the pattern

! h. The good with the i | data indicates that
for convection close to onset, the onc-dimensional vortex pattern along the
length of the filin is dominated by a single sinusoidal mode.
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Figure 4.4: The horizontal component of flow velocity as a function of z-
position normalized by the pattern wavelength. The range of = covered by
the data is far from the lateral sidewalls. The solid curve is a fit of the
cxperimental data Lo a sine curve.
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Generally, a velocity field may be expanded in cigenfunctions which are
consistent with the symmetries and the boundary conditions imposed on the

flow. Assuming a single Fourier mode for the r-dependence of vy, as deter-
mined from Figure 4.4, the horizontal velocity can be expressed
as

vrlir,y) = v2(y)sin(2rz), (1)

where v(y) describes the y-dependence of v,.
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Figure 4.5: The horizontal component of flow velocity as a function of y-
position normalized by film width d. The data are taken along a line passing
the center of a convection vortex in the interior of the film. The solid curve
is a fit of the experimental data to the lowest order Chandrasckhar function
S1.
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‘The y-dependence of the horizontal velocity component has also been
determined experimentally along a line passing through the center of a con-
vection vortex and is plotted in Figure 4.5. These data show that v, vanishes
both at the clectrodes and at the center of the vortex. This result is consis-
tent with the so-called rigid boundary condition, v = vy = 0 for y = 0 or
y =d. From the i ibility of the two-di ional liquid,

Qoo Doy (44)

one has an additional boundary condition on the velocity derivative at the
clectrodes, that is, dv./0z = duy/dy = 0 for y = 0 or y = d. These
boundary conditions are satisfied by the set of orthogonal functions known
as Chandrasckhar functions [18, 134],
cosh(Anz) cos(Anz)
cosh(Am/2) ~ cos(Am/2)’
_ sinh(pmz) _ sin(ptmz)
sinh(ptm/2)  sin(itm/2)
C,, and S,, vanish at = = £1/2, and their derivatives will vanish at these
points if A, and i, are the roots of characteristic equations
tanh()/2) + tan(}/2) = 0,
coth(p/2) — cot(p/2) 0. (4.6)
Provided the spatial distribution of the hori 1 velocity
vz(z,y) is strictly sinusoidal in the z-direction, v: can then be written [134]
as

Cn(z) =

Si(2) (4.5)

u

wle,) = 5, BeSaly — 3)sin(2rz), )
where the position z is normalized by the pattern wavelength and y by the
film width d. In Figure 4.5, the full line represents a fit of v; to the lowest
order term in the above expansion in Si. The fit describes the experimental
data well. This suggests that for convection slightly above the threshold, only
a single Chandrasekhar mode S, is necessary to describe the y-dependence
of the flow velocity.
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Supercritical Transition

The y component of the flow velocity was measured as a function of applied
voltage V in a film of 20.0 mm x 2.0 mm size. The number of vortices or
equivalently the wavelength of the pattern docs not change over the range
of V studied. Figure 4.6 shows the maximum amplitude of v, measured at
= 1/2 and far from the sidewalls, as a function of €, where ¢ is the reduced
control parameter given by

ve
e=yz-l (1.8)
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Figure 4.6: The maximum v, as a function of the dimensionless control
parameter e. s = 45 molecular layers.

The data plotted in Figure 4.6 show a transition at which the mutmnlms
steady state loses stability to the convecting state. The onset volt: -
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termined from the film thickness s according to equation (4.1). Figure 4.6
indicates that the amplitude grows continuously from zero. The data above
onset are plotted on logarithmic scales in Figure 4.7. The data fall on a
straight line with slope 0.50 £ 0.01. The data in Figures 4.6 and 4.7 suggest
that the velocity amplitude follows a simple 1/2-power law, v}"**~e'/?, up
Lo x5,

0.5 T T T T

logVy (arbitrary unit)

15 . A A "
-15 -10 -05 00 05 1.0

loge

Figure 4.7: The amplitude of v, as a function of the dimensionless control
parameter € on logarithmic scales. The solid line is  linear fit to the exper-
imental data.
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The continuous transition, the 1/2 power law, and the lack of hy:
are important signatures of a so-called supercritical or forward bifurcation,
analogous to a second order thermodynamic phase transition, These results
suggest that the third order Ginzburg-Landan equation (Eq. (1.4)) should
give a correct description of the electroconvection pattern close to onset, as
in the case of Rayleigh-Bénard convection [22, 23, 63].

Tv
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4.2 Convection above Onset

4.2.1 Measurements of Convection Wavelength

The electroconveetion pattern at onset consists of an array of regular two-
s at slightly supercritical . A large
indicates that the pattern wavelength will change as

dimensional vortices, This pattern persis

number of ubservatio

the onset voltage is exceeded. Figure 4.8 shows the pattern wavelength as
a function of position at three different values of &. The length and width
For each vortex, the wavelength is twice the width

ed by the width of the film d. The position of cach

of the film are fixed,

of the vortex, norma

vortex is the r-coordinate of the vortex center, normalized by the ilm length

L. The solid cireles in Figure 4.8 are data from runs in which the final state is
obtained from Lhe motionless state by increasing the voltage from zero. The
open cireles are from runs in which the final state is obtained by decreasing
the voltage from the unsteady convection state.

The mean pattern wavelength for the whole film is shown by the solid
id circles) or the dashed lines (for open circles). Figure 4.8 illus-
istence of nommigue wavelengths above the onset of convection.

lines (for s
trates the
This is partienlarly apparent from Figure 4.8(b) and (c). The number of
vortices in Figure L.8(b) and (c) is also different for the states reached by the

different routes. The wavelength above onset can be cither larger or smaller

than the onset value A,.

Direct ohservation indicates that vortices adjacent to the sidewalls are
usnally larger and have slower flow velocities, compared to those far from
the sidewalls. The local pattern wavelength has been measured for different
lengths { of the film. [ is varied by moving one of the sidewalls while the
film is convecting at fixed &. In Figure 4.9, waveleugth measurements at two
different values of I, with £ = 0.3, are shown. The solid curve in each graph is
a fourth order polynomial fit to the experimental data. In the middle of the
film, the pattern wavelength is relatively uniform compared with that near
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Figure 4.8: Measurements of pattern wavelength at three different super-
critical ¢ as a function of normalized z-pusition. At each g, the solid and
open circles are data from final convection states reached by increasing the
voltage from motionless stcady state, and by decreasing the voltage from the
unsteady convection state, respectively. The mean pattern wavelengths are
shown as cither solid lines (corresponding to the solid circles) or the dashed
lines (corresponding Lo the open circles).
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the two sidewalls. The vortex adjacent to a sidewall could have a wavelength
as large as twice that of a vortex in the center of the film.

a. film length 15.0mm

b. film length 13.0mm

5.0 10.0 15.0
position x (mm)

Figure 4.9: Pattern wavelength versus position along the z-axis for films of
different length. The solid curves are fits of the experimental data to a fourth
order polynomial.

Figure 4.10 gives the combined results of g for
cleven films of length 10.0 mm to 15.0 mm. The right sidewall is moved
leftward to decrease { from its initial value of 15.0 min, and the sizes of the
vortices are determined after each 0.5 mm change of I. The vortex position
has been normalized by the actual film length at each measurement. From
Figure 4.10, we sce the range of size for vortices adjacent to the sidewall is
larger than that in the middle of the film. The sidewalls seem to affect only
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the boundary vortices, and do not have a significant influence on the rest of
the film.

3.0 v .
208
° ' °
2 o S g anaovesanindy §
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Figure 4.10: Pattern wavelength versus position along the r-axis for cleven
filins of length 10.0 mm to 15.0 mm. The position has been normalized by
the actual film length at each run.

4.2.2 Measurements of Convection Amplitude

In general, viscous friction at the sidewalls damps the flow, resulting in a
reduced flow amplitude near the sidewalls. M of flow velocity
along the whole length of the film shown in Figure 4.11 and 4.12 indicate
that the flow amplitude vanishes at the sidewalls, consistent with the no-slip
boundary condition expected to apply at a rigid wall.

Figure 4.1 shows the results of velocity measurements made by tracing
the motion of visualization particles at scattered positions throughout I
film. The film has dimensions 16.0 mm by 2.0 mm, and the absolute value:
of the horizontal velocity e is d at y=<d/5 and y~4d/5.
For a lower value of ¢ (Figure 4.11(a)), the cffect of the boundary penetrat
well into the center of the film, while for high ¢ (Figure 4.11(b)), only vor
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Figure 4.11: Suppression of convection near sidewalls. The solid points show
velocity measurements along the length of the film for two different super-
critical .
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adjacent to the lateral boundaries appear o be inflienced by the sidewalls.
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Figure 4.12: The amplitude of electroconvection versus horizontal distance
from the sidewall for two values of supercritical €. Solid curves are fits of
the solutions of one-dimensional Ginzburg-Landau equation to experimental
data. s = 3 molecular layers.

Figure 4.12 gives the envelopes of [v:| for two different € as a function
of the distance from the sidewall. The film here is 10.0 mm in length and
0.66 mm in width, and the envelope is found from the maximum value of
|uz| for each individual vortex in the film. As before, |u,| is measured al
y=~d/5 and y=4d/5. The solid curves in Figure 4.12 are fits Lo the function
C tanh(z/v/3) (Eq. (1.12)), with £ and C adjustable parameters. Here z



MENTAL RESULTS 68

is normalized by the film width d, as is the correlation length ¢. The fitting
function is the solution of the Ginzburg-Landau amplitude equation when
v, =0 at £=0is imposcd as a boundary condition. Figure 4.12 indicates a
good agreement beween the experimental data and the prediction based on
the amplitude equation.

o
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Figure 4.13: Correlation length £ as a function of ¢ on logarithmic scales.
Each data point is derived by fitting the experimental amplitude at a par-
ticular € to Eq. (1.12). The solid line is a fit of the experimental data to a
power law. s = 3 molecular layers.

Fits of cxperimental data at many values of ¢ to the hyperbolic tangent
function given above yield the results for the correlation length ¢ given in
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Figure 4.13. These data are well described by a power law of the form
€= (0.34 £0.03) 054004, (1.9)

This is consistent with the prediction from the amplitude cquation that
£ = &oe™"?, and gives an experimental value for the characteristic length
31 £0.03.

scale for variations in the clectroconvection pattern: & =

4.2.3 Evolution Towards a Stable State

The amplitude measurements presented in section 4.2 were made on a time-
independent steady state pattern. It is also interesting to consider the dy-
namics of the pattern amplitude as the system evolves lowards asteady state.

Measurements of the velocity amplitude as « function of lime are shown
in Figure 4.14. The film is 20 molecular layers thick. The two curves in
Figure 4.14 show the growth of the amplitude after a change of € from zero
toe = 036 and toe = 178 respectively. For the larger value of &, the du-
ration of transient is much less, but the general shape of the growth curve
qualitatively similar. As before, the maximum value of [u,| is measured in
the middle of the film at y~d/5 or y=dd/5.

s

The full lines shown in Figure 4.14 are fits of the solution of the Landau
equation, Eq. (1.10), to the experimental data. The amplitude has the form

1
Cret® \?
Aft) = [ 4.10,
olt) (1+C,c(?) #10)

where 7, Ci and C; are used as filting parameters. It can he
Figure 4.14 that the amplitude equation describes the experimentally deter-
mined time evolution very well. It is interesting to notice that the ampli-
tude in Figure 4.14 cannot be extrapolated exactly to zero at ¢ = (. The
non-zero intercept may reflect the fact that the amplitude grows from small
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Figire 4.14: Time dependence of the velocity amplitude after a sudden
change of applied voltage from zero to a supercritical value. The solid curves
are fits of the solutions of the one-dimensional Landau equation to the ex-
perimental data. s =20 molecular layers.

The values of r obtained from a number of curves like those in Figure
4.11 are plotted as a function of the final value of ¢ in Figure 4.15. A least
squares fit to these points yields the relation

770 = (1.95 £0.14)¢! 0006, (411)
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where 7 is in scconds. This result is consis
tion that 7 o ¢!, and gives the characteri
electroconvective pattem: 7o = (0.51 £0.04) .

cnt with the theoretical predie-

time scale for the variation of
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Figure 4.15: The growth rate 1/7 as a function of the final value of £. The
values of T are obtained from fits such as those shown in Figure 4.14. The
solid line is a linear fit to the experimental data. s = 20 moleeular layers.
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4.3 Selection of Pattern Wavelength

4.3.1 Experiments with Varying ¢

An important issue in the study of pattern formation is the selection of pat-
Lern wave number or wavelength, Typically, the range of wave numbers over
which the pattern is stable will be limited to a band of selected wave numbers
by various instabilitics [56). For our clectroconvection system, observations
indicate that convective vortices are always created or destroyed at the side-
walls as the voltage applied across the film is varied to keep the wave number
of the pattern within a stable range.

time

00 20 40 60 80 100 120
position x (mm)

Tigure 4.16: Evolution of the pattern in a 12.0 mm x 2.0 mm film following
a sudden change in the applicd voltage. The lines show v; along the whole
length of the filin at thirty equally spaced times immediately after the voltage
is reduced.
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Figure 4.16 illustrates the evolution of the convection pattern from one
stable convection state to another after a change in the applied voltage. The
experiment was performed on a film 12.0 mm in length and 2.0 mm in width.
The horizontal velocity v was measured over the entire length of the film

every three seconds from the moment when the applied voltage is suddenly
reduced from € = 5.25 to ¢ = 1.78. As before, the horizontal velocity is
determined at y =~ d/5 or y = 4d/5. For cach vorlex in the pattern, the
measured values of v, are fitted to a sinusoidal function. In Figure 4.16 the
fitted curves are plotted for the whole film for cach time during the evolution
process.

Figure 4.17: A dithered black and white plot of the same process as shown
in Figure 4.16. The horizontal coordinate represents position in the film and
the vertical axis represents elapsed time. Black corresponds to positive v,
and white to negative v,.

Figure 4.16 shows the pattern changing from a stable 14-vortex stale to
an 8-vortex state, after the applied voltage is suddenly reduced. Wavelength
adjustment takes place through the creation or loss of vortices at the ends
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of the film, not. in its interior. A dithered black and white plot of the pat-
tern evolution is given in Figure 4.17, in which the horizontal coordinate
represents position in the film and the vertical axis represents clapsed time.
The darkness level gives the horizontal velocity. The adjustment of the pit-
tern at. the latera] boundaries is shown clearly in this spatial-temporal graph.

Alind)

0.0 200 400 60.0 80.0
time (s)

Figure 4.18: Variation of mean pattern wavelength with time at fixed aspect
ratio following a sudden reduction in applied voltage. The pattern changes
from a 14-vortex mode to an 8-vortex mode final state.

The average wavelength of the pattern as it evolves from the 14-vortex
stale Lo 8-vortex state is plotted in Figure 4.18. In making such measure-
ments, the vortices nearest the rigid sidewalls are excluded to minimize the
effects due to the adjustment at the lateral boundary. Similar curves were
found for all cases studied, independent of the initial and final convection
stales.
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25 T T T T

20 G
8

0.0
-0.25 -0.15 -0.05 0.05 0.15 0.25
(k-kc)/ke

Figure 4.19: The pattern wave number measured as the vollage is dec
step by step from a state above onset. The wave number has been normal
by its onset value. The solid and dashed curves are the marginal and Eckhans
stability boundaries calculated from the experimentally determined value of

o

By varying the voltage applied across a film of fixed length, the range of
stable wave numbers for the steady convective state
stable convection pattern is first prepared by inc
from zero to a chosen value above the onset of convection. Patlerns

an be determined. A

ing the applied vol

wave numbers k close to k. = 21 /), are casily obtained by increas
slowly through the onscet. A sudden jump of voltage from zero to s
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tially above threshold usually results in a pattern with & different from k..
Phen the voltage is increased or decreased in small steps and the flow pattern
Jonitored. Figure 4.19 shows ow k changes as the voltage is decreased step
In this graph, and in those follow-
ing, e ol and dashed curves are the marginal and the Eckhaus stability
litude equation with &o/d = 0.34 and

by step from a particular initial state.

lated from the

A/d = 1204, as determined experimentally.

6.0

5.0

4.0

3.0

A
20 Al

~ %A 4 -

0.0
-0.50 -0.25 0.00

(k—ke)/ke

Figure 4,20+ Stability range of steady electroconvection patterns measured by
increasing (solid triangles) or decreasing (open triangles) the applied voltage.
“The solid and dashed curves are as in Figure 4.19.

0.25

0.50
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The step size in £ is roughly 0.05 to 0.1, which thus represents the ex
perimental resolution of the stability boundary with respect to ¢. Typically,
varying the voltage eventually leads to a wave number adjustment though
cither the creation or the loss of a vortex, which always occurs at the ends
of the film, as shown in Figurc 1.16. Abont 50 too 100 vortex turnover times
are required for the system Lo cquilibrate after a change in V.

Figure 4.20 shows the stability range of the steady vortex pattern mea-
sured by varying the voltage across the film at fixed length.
%)

thirty-six runs, using films with thickness bety
aspect ratios T' in the range 3 < I < 15, have heen combined Lo produce the
stability boundary in Figure 4.20. The data shown represent the maximum
and minimum values of ¢ at which a given wave number state is observed. For
some films, wave number changes occur inside the plotted boundary. This
may be due to differences in end conditions in different rans. No
variation in the position of the boundary with cither film thickne
ratio is detected.

and 45 lay

spect

4.3.2 Experiments with Varying T'

Measurements of the range of stable wave numbers for steady convective
states have also been performed by varying the length of the film al con-
stant applied voltage. After a stable pattern is prepared, the film length is
changed by slowly moving the motorized wiper at a speed of about, 20jum/s

The thickness of the two-dimensional liquid film does not change throughout
the experiment. When the film length | is increased or decreased, a strotch-
ing (for increasing ) or a compression (for decreasing 1) of the vortex patern
results, followed by the creation or loss of one or more vortices when the wave:
number k reaches the stability boundary. As before, the creation or luss of
vortices usually occurs at the ends of the film.

Figure 4.21 shows the wavelength A of the patlern in two experiments in
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which the filn length was varied by moving the end wiper.

2.8 33 3.8 43 48

Figure 1.21: Paltern wavclength as a function of film length I, as 1 is varied.
“The wavelength plotted is the mean over the pattern, excluding vortices at
the ends of the film. The solid and open circles are obtained by increasing
and decreasing [, respectively. Arrows indicate wavelength changes caused
by the creation or loss of vortices. Upper plot: s = 50 layers, & = 1.0. Single
vortices are gained or lost at the arrows. Lower plot: s = 25 layers, € = 4.0.
“I'wo vortices are gained simultancously at the downward arrows; they are
lost one-at-a-time at the upward arrows.

As lis increased (solid circles), A increases to accommodate the change in
length at fixed number of vortices. Eventually A reaches a va.ue above which
the pattern is unstable. At this point one or more new vortices form at the
end of the film, and the mean wavelength of the pattern decreases back to a
stable value. When the film length is decreased (open circles) the opposite
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process occurs, with a vortex disappearing at the end of the film when \
decreases below a stability boundary. The appearance and disappearauce

of vortices is always hysteretic so that it
different states for the same value of 1. In Figure 4.21 the downward arrows
indicate abrupt transitions from one wavelength to a smaller one which ocenr
with increasing /, and the upward arrows show trans
decreasing I.

s possible to observe two or more

tions which occur with

6.0 | -
40 F —_— J

-0.50 -0.25 0.00 025 0.50
(k—kc)/ke

Figure 4.22: Stability boundary determined by varying the film length at
constant -Apphcd voltage. The experimentally determined stability range: for
a given ¢ is represented by two solid circles connected by a horizontal line.
The solid and dashed curves are as in Figure 4.19.




The range of stable wave numbers obtained from data such as that in
Figure 4.21 is summarized in Figure 4.22 in the form of solid circles con-
neeted by horizontal lines. The onset wavelength A; = 1.294d is used to
determine ke in this figure. Data from films having s between 3 and 65 layers
and 3 < ' < 15 are shown. Again there are no systematic variations in the
boundary with either film thickness or aspect ratio.

6.0 . 1

\ N,

0.0 \&f '
-0.50 -0.25 0.00 0.25 0.50

(k—ke)/ke

Figure 1.23: Superimposed plot of the stability boundaries measured by vary-
fug ¢ at fixed L and by varying  at fixed €. The triangles and circles are as
in Figure .20 and 4.22 respectively, the solid and dashed curves are as in
Figure 4.19,
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The stability boundaries measured with the two techniques!
above are shown superimposed in Figure 123, They are consistent in the
general shape over the whole range of measurements and appear to lie inside
the boundary for the bulk Eckhaus instability, shown by the dashed enr

described

Techniques analogous o ours were used [42, 62] to nvasure th
of Taylor-Couctte flow [60]; they observed the creation or loss of ‘T
the interior of the system, and their measured stability bonndary was in quant it
agreement with the calculated Eckhaus stability boundary [164)

stability o...uu.x by
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4.4 Discussions

4.4.1 Critical Behaviour

The Ginzburg-Landan amplitude equation, Eq. (1.4), predicts characteris-
tic mean-field critical cffects for length and time scales [56] of a convective
system. Our measurements of the velocity profile and convection amplitude
cluse to onset arc in agreement with these predictions. Within our experi-
mental uncertainty, the amplitude of the velocity field grows as v/ for € > 0.
Figure 4.7 indicates that this 1/2-power law remains valid up to € = 5, even
though the amplitude equation is expected to be valid only for small e. Al-
imilar result was found for Rayleigh-Bénard convection [63], this

though a s

st be regarded as “a numerical accident” valid only for particular systems
4], and not a general phenomenon,

Our measurcments of the suppression of convection near a rigid sidewall
at supercritical & showed that the correlation length € varies as € = &oe™'/2,
also in with the predicted behaviour. According to the Ginzburg-
Landau equation, the relaxation time 7 of the pattern behaves as 7 = 7oe™.
Measurements of time evolution of the convection amplitude after the applied
¢ is raised from below to above threshold confirm this prediction. The
divergence of the relaxation time at vanishing ¢ corresponds to the critical
slowing down which occurs at a second order thermodynamic phase tran-

sition. The excellent agreement between these results and the theoretical
predictions indicate that the Ginzburg-Landau amplitude equation can be
used to describe the behaviour of the system near the onset of convection,
although a derivation of the Ginzburg-Landau equation from the equations
of motion for this electroconvection system does not exist at present.

“The form of the one-dimensional Ginzburg-Landau equation (Eq. (1.4))
is quite general, and the detailed properties of the individual systems are
contained in the real constants € and 7o, which set the characteristic length
and time scales of the pattern [56]. These constants can be determined di-
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rectly from the prefactors of the above mentioned power law dependences.
We find & to be equal to (0.34 £ 0.03)d, and the experimental value of 7y is
0.51 = 0.04 second?, somewhat smaller than the vatue of 7y = (20 £ 4) 5 in
thermal convection experiment (201},

4.4.2 Wavelength Selection

There are basically two mechanisms [56, 62] that could pls
length sclection in one-dimensional patterns. The fir
bility, which is a long-wavelength instability of the ba
is a boundary-induced instability which is due to the fact that the pattern’s
amplitude goes to zero at the lateral sidewalls.

role in wave-

s the Eckhaus insta

pattem, The second

For an ideal convective

system without lateral boundaries, the band

of stable wave numbers is limited by proce:

ily oeeur in
the interior of the system. The one-dimensional Ginzburg;

idan equation
has stable solutions only over the range bounded by the
boundary. For & > 0, the Eckhaus stability boundary
ke(e) = ke = (km(e) = k)/V3 (Eq. (1.3)), where ky(e) is the marginal
stability boundary. Both the marginal and Eckhaus stability houndaries
are parabolic. According to Eq. (1.14), the correlation length & gives the
curvature of the marginal stability houndary, and therefore of the Eckhaus
boundary (Eq. (1.15)). Using our cxperimental result for &, we obtain the
Eckhaus stability boundary plotted in Figure 4.24.

tability

For a finite system of fixed length £, solutions of the
equation must satisfy specific lateral boundary conditions. For rigid bound-
aries, the amplitude of convection is suppressed tirough viscous effects near
the sidewalls, and the appropriate boundary condition is A(z) = 0 for z = 0,1
[6, 55]. Our measurements of the flow velocity along the cutire length of a

GinzburgLandan

Zsince the material paramneters of 8CB are not accurately known, we do not atlempt
to write o in dimensionless form.



convecting film shown in Figure 4.12 indicate that this boundary condition
is consistent, with experimental observations in this system.

0.8

0.6

0.0
-0.25

0.00 0.25
(k-ke)ke

Figure 4.24: The marginal stability boundary (solid curve) and the Eckhaus
boundary (dashed curve) for two-dimensional electroconvection.

Cross et al. [54, 55] have shown theoretically that the rigid sidewalls pro-
vide a means whereby the wave number in the bulk of the system can adjust
its value by the creation or destruction of vortices near the walls, where the
amplitude of the pattern is suppressed. In contrast, the Eckhaus instability
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normally results in the gain or loss of a pattern unit in the interior of the
system. From calculations using the Ginzburg
al. showed the boundary-induced wavelength selection mech

ndan equation, ('

10 a range of stable wave numbers much narrower than that allowed by the
Eckhaus instability. For the former case [54, 55], they found the width of
the band of allowed states to be proportional to ¢, while the Eckh
band has a width proportional to £'/2.
stable band depend on the fluid properties as well as the exact nature of the
boundary conditions at the sidewalls.

stable

The slopes of the boundarics of the

able wave numbers due to rigid

Qualitatively, a restricted band of
boundaries has been observed in numerical simulations of the hydrodynamic
equations for Rayleigh-Bénard ccavection [8, 129]. Some hints of tl
havior have also been observed in experiments [125]. Towever, in most ex-
periments, three-dimensional effect:

s be-

and there has been no

are important,

unambiguous experimental observation of wavelength selection by houndary
eflects.

The stability boundary obtained from the experiment
ied is shown in Figure 4.25 for ¢ < 2. The
linear fits to the experimental data for k& < k; and &k > k.. Both branches of
the stability boundary appear linear, that is, & & |(k — k;)/kc|. Furthermore,
vortices always form or vanish at the ends of the system in our experiments,
not in the interior. These results are consistent with what would be
pected from the boundary-induced wavelength selection mechanism. The
long-dashed curve in Figure 4.25 is the Eckhaus stability boundary ¢
lated using the experimentally determined value of €. The soli
the marginal boundary. As Figure 4.25 shows, the stability range of the
convection patterns is restricted to a region well inside the
boundary.

short-dashed lines in this fignr

enrve

Jekhans stability
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2.0

3

-03- -02 -0.1
(k=ke)/ke

Figure 1.25: Stability boundary for two-dimensional electroconvection close
to onset. The two dot-dashed lines are linear fits to the experimental data on
cach branch, and the solid and dashed curves are the marginal and Eckhaus
boundaries respectively.



Chapter 5

Conclusion

Overview

In this chapter, we summarize the results of our experimental study, as well
as theoretical development, of one-dimensional pattern formation in a lwo

dimensional clectrically driven convective em. A briel disenssion of the

possible extensions of the current work is also presented.,

87
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5.1 Conclusion

di | electro-

vective patterns in at ic system d of
suspended smectic-A liquid crystal films. The smectic-A mesophase
has a layered structure, and a uniform smectic-A film behaves like a two-
dimensional isotropic liquid. In our experiments, films have been made as
thin as only two molecular layers thick. As far as we know, this is the first
time that hydrodynamic flow has been studied in a substrate-frec system
[172) so two-dimensional that it has only two molecular layers in the third
dimension. We apply a d.c. voltage in the plane of the film, and a one-
dimensional convective pattern in the form of an array of counter-rotating
vortices develops when the applied voltage exceeds a certain critical value.

In this work, we have

Direct observations indicate that a vortex adjacent Lo each of the lateral
sidewalls may form below the onset of electroconvection. With increasing
applied voltage, the stable one-dimensional vortex pattern persists up to a
certain value, beyond which the flow becomes unsteady. Vortices are created
or annihilated far from the lateral boundaries in the unsteady convection
regime, but always appear or disappear at the sidewalls close to onset.

We have i lly de ined the d de on film thickness s
of the onset voltage V. of two-dimensional electroconvection. V. is linear in
thickness for very thin films and we see no apparent dependence of V. on
il width. A lincar it to the data gives V. = (0.54  0.02)s — (0.06 + 0.08),
dicating that V. goes Lo zero for zero thickness within experimental un-
certainties, T1': pattern wavelength at the convective onset has also been
measured. We find A./d = 1.294 + 0.015, independent of the film thickness.
is consistent with the results of Morris et al. [134).

For convection slightly above threshold, we have determined the spatial
dependence of the horiz | velocity of the ive patterns.




CONCLUSION 89

Experimental results suggest that the spatial dependence of vz, y) of the
one-dimensional vortex pattern along the length of the film (the -direction)
is dominated by a singl
drasckhar mode 8 describes the y-dependence of 1, y) well. These results
arc also consistent with those of Morris et al. [134].

nusoidal mode, whereas the lowest order Chan-

1 litude indicate a supereritical hifurca

as < for ¢ > 0.
ation length of

of the pattern
tion at the onset of convection. The amplitude grows

Close to onset, our experiments have shown that the correl
~0.5240.04

In addition, the relaxation time of the

the pattern varies as € = ¢
pattern is found to behave as 7 = 7o
the exponents are in good agreement with the values of 1/2 and 1 for § and
7 respectively predicted by the Ginzburg-Landau equation. ‘The constant
& in one-dimensional Ginzburg-Landan equation is found to he 034 0.0
in units of the film width d, and the constant 7o for a conveeting film 20
molecular layers thick is determined to be 0.51 £ 0.04 s. The
that the Ginzburg-Landau equation describes the behaviour of our sys
hurg.

crimental values of

»results show

near onset very well, although it has not yet been shown that the G
Landau cquation can be derived from the electrohydrodynamic cquations of
motion for our system.

Above onset, the convection pattern exists over a range of stable wave-
lengths. Wave number adjustments oceur by the creation or destruction of
vorlices near the sidewalls, and our experiments show that the amplitude of
the pattern is suppressed there. Close to threshold, the width of the band of
stable wave nurabers is found to be proportional to ¢, in contrast to what is
the case for the Eckhaus instability, for which the width of the band gocs as
€'2, Our experimentally determined stability boundary appears to be nar-
rower than the Eckhaus band determined from the exp
These results suggest that we have ohserved the one-
induced wavelength sclection process, rather than the long-wavelength Eck

erimental value of €.

imensional boundary-

haus instability.
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Apart from convection cxperiments, a sct. of electrohydrodynamic
tions has been presented for the understanding of two-dimensional clectro-
convection. Without solving the cquations, theoretical analysis indicates the
normalized control parameter to be & = V?/VZ2 — I, in agreement with the
experimental observations.

qua-

In Appendix A, a hydrodynamic model is proposed to deseribe the flow
observed near the sidewalls below Uhe onsct of electroconvertion. The flow
in this model is caused by the clectrohydrodynamic shear-stre
which originates from an interfacial charge density distribution at the Jateral
boundary, rather than by an electric body force. The solution of the hydro
dynamic equations in this model gives results in qualitative agreement with:
the flow observed in experiments.
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5.2 Future Work

led smectic A

Beeanse of the extreme b y of a freely
film, effects due to three-dimensional flow are inhibited. Therefore this sys-
tem wonld be favorable for experiments aimed at making contact with some

two-dimensional hydrodynamic theories.

A natural extension of current experiments is the study of convection in
unsteady regime. Many aspects of flow evolution observed in other hydrody-
nanic systems are expected in Lwo-dimensional clectroconvection. We give in
Figure 5.1 examples of time series (1, 5] of the horizontal velocity component,
ue(t) and the corresponding Fourier spectra as ¢ is varied. The measure-
ments were by tracking the motion of passive tracer particles moving with
the flow over long periods of time. Detailed experiments would be necessary

to identify the transition from steady convection to unsteady flow.

Our system would also be attractive for the study of the transport of
passive impurities (44, 159, 160, 175, 181, 213]. In general, the trajectories
of individual passive particle are very complex [126], and chaotic trajectories
[7, 144] may arise even though the flow field is laminar. Examples of the in-
dividual particle trajectories and the cor ding horizontal displ
as a function of time for our system are given in Figure 5.2. In Figure 5.3,
an example of the variance! o%(t) of the horizontal particle displacements for
flow near the unsteady convection state is shown. A large number of experi-
ments of such kind sould be expected in order to get insight into the nature

TThe transport of passive impuritics can be analyzed as a one-dimensional process in
the horizontal direction. The variance (the second moment) of the horizontal particle
displacements () is calculated by the relation

o21) =< (Ax(t, 1)~ < Ax(t,7) ) >, (5.1)

with
Az(t,r) = z(t+ ) - 2(t), (5.2)

whiere < ....> denotes a time average (over ) over the record.
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Figure 5.1: Velocity time series (a-c) and Fourier spectra (d-f) olbtained
from measurements of the horizontal velocity component v,(t). (a) and (d):
€ =0.12; (b) and (e): € = 4.54; (c) and (f): € = 33.6.



ONCLUSION 93

of the transport due to the combination of convection and molecular diffusion.
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Figure 5.2: Particle trajectories (a-c) and the corresponding horizontal dis-
placements as a function of time (d-f) for various values of &. d = 2.0 mm
for all films.

It would be of interest to continue the study on the flow velocity field at
very high values of e. Improved measurement techniques [2, 189, 202, 209]
such as a computerized system for particle image velocimetry would be nec-
essary. A comparison of such measurements with established results from
th di ional Rayleigh-Bénard i i among others,
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would be interesting.

20 T

-2.0 -1.0 0.0 1.0 2.0
log(t)

Figure 5.3: The variance of the horizontal particle displacements for the data
of Figure 5.2(b).

Another direction for future experiments is a study of the effect. of dop-
ing level on the onset behaviour of convection. Systematic cxperiments of
this kind could be helpful in testing various models and in elucidating the
underlying mechanism for electroconvection in thin system.

The two-dimensionality of the velocity field in a thin film makes com-
putational work on this system attractive. Numerical simulations of two-
dimensional electroconvection would be highly valuable.
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This type of electroconvection experiment could also be performed on
wltrathin filns of certain kinds of polymers or bilayers. These experiments
might be useful in understanding electric-field-induced transport as well as
the significance of surface effects in macromolecular membranes, and which
may find applications in biological and materials sciences.



Appendix A

Boundary Vortex Problem

In this appendix, a hydrodynamic model is proposed which deseribes the flow
observed near the lateral sidewalls below the convection onset. The flow in
this model originates only from an interfacial charge density distribution at
the lateral boundary.
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A.1 The Electrohydrodynamic Shear-Stress
Interaction

Experimental observations indicate that slow vortices adjacent to cach of the
two sidewalls may form below the convection onset (Figure A.1(a)), even
though there is no flow in the central region of the film. These boundary
vortices differ from the flow pattern observed above onset (Figure A.1(b)),
which consists of an array of vortices along the entire length of the film. The
Lonndary vortices are also present when ¢ is reduced from above to below

onset.

A (e=-05) O.1mmis
RARN s

b (e=10) YoSmm/s,

Figure A.1: Vector plots of the flow field measured below (a) and above (b)
the convection threshold. I = 9.0 mm, d = 2.0 mm.
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In general, viscous friction at lateral sidewall increases damping and there-
fore inhibits flow. However, discontinuities in electrical propertios at the
sidewalls can result in a charge density which could induce a fluid motion.
In the following, the boundary vortex observed below the convection onset
is explained using a model which shows that the presence of an interlacial
charge density at the lateral boundaries can drive vortex flow in a viscous
liquid film, even in the absence of space charge in the bulk of the film.

Figure A.2: Schematic illustration of the lateral boundary of a frecly sus-
pended film. § represents the width of a boundary layer.

In real electroconvection experiments, the smectic films are of finite extent
in the o-direction. Wetting effects result in a boundary layer at the sidewalls
as shown in Figure A.2. The boundary layers will have a finite (but small
compared to the width of the film) thickness along z-direction, shown as 6 in
Figure A.2, and a curved profile in the z-direction. Electic propertics such
as the dielectric permittivity are necessarily discontinuous at the inte:
between the film and the rigid sidewall, as well as at the two free surfaces

ace
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of the filin. These discontinuities break the Lranslational symmetry of the
clectric field which exists when the film is infinitely long. An interfacial
ty distribution along the smectic-sidewall interface and at the
smectic-air interface will be produced by the non-zero z and = components
of the field, given by [95, 187]

charge der

n:(eE; - aEi)=p, (A1)

where n is the unit normal to the interface, g is the surface charge density
at the interface, and the subscripts 1 and 2 refer to the different media on
the Lwo sides of the interface.

To simplify the analysis, the film is regarded perfectly two-dimensional
(Figure A.3), with a large aspect ratio ' = I/d. An electric field Eg is ap-
plicd in the plane of the film in the negative y-dircction. Ey is treated as
a constant, even at the lateral boundary. The electrodes are assumed not
responsible for the initiation of the flow. We assume that no free charge
is present in the bulk of the film, so the film is not subject to an electric
body force. Tlowever, we assume that there is a constant interfacial charge
density distribution g (g > 0) along the boundary surface normal to negative
z-direction at x = 0. In the case of a two-dimensional film, such a boundary
surface is actually a boundary line with vanishing area. However, in the fol-
lowing analysis, we still use the words “boundary surface” and “interfacial
charge density” to describe the lateral boundaries of a two-dimensional film.

The interfacial charge density distribution g is a simplified approxima-
tion to the actual situation, which would involve contributions from the non-
symmetric components of the electric field on the smectic-sidewall and the
smectic-air interfaces, as discussed above. We only consider the effect of one
lateral boundary (z = 0), and will ignore any change in Eq and g due to the
influence of fluid flow.

Without external forces acting on the bulk of the incompressible fluid
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Figure A.3: Sch ic plot of a two-di ional film with length £, width d.

film, the momentum equation takes the form

av _ 1 [ 4
e +v-Vv= —P—mVp+ ,’—MV v, (A2)

where, as in Chapter 2, ¥ and the flow velocity v are two-dimensional, and
the mass density pn is assumed constant. In equation (A.2), p denotes the

pressure and i is the viscosity of the fluid.

Consistent with experimental observations below the onset of conveetion,
we are interested in two-dimensional fluid flow with small characteristic veloe-
ity U, small characteristic length d, large kinematic viscosity v (.
so the Reynolds number Re = Ud/v is small. Here the characteristi
is chosen as the film width. The equation of motion for steady flow in a fluid
with small Reynolds number can be reduced to the Stokes cquation,

~Vp+uViv=0. (A3)
Together with the incompressibility condition
V.v=0, (A1)

Eq. (A.3) completely determines the motion of the fluid when boundary
conditions are specified. By defining the vorticity w(z,y) for flow in two
dimensions (here w is actually the z-component of the vorticity vector, we
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use it as a scalar),

_9vy v .
b i (A.5)

Eq. (A.3) can be written as
Vi =0. (A.6)

Boundary conditions at the two clectrodes at y = 0 and y = d are chosen
to be v, = v, = 0 and w = 0, as required for a rigid boundary. Since the
length of the film [ is large compared to its width d, we ignore the influence

of the bowndary layer at & = I and st w = 0 there.

Atz =0, we assume v; = 0 and dvz/dy = 0. However, we allow v, to be
nonzero at £ = 0 because of the finite thickness  of the boundary layer, and
we place the rigid sidewall at z = —8. Due to the presence of the interfacial
charge density o, however, there will be an interfacial force acting on the
boundary layer, tangential to the boundary surface at z = 0. It is given by

P-: = —oEoy, (A7)

and acts in the direction of the electric field. Here p_; represents the inter-
facial force acling on a unit area of the surface that is normal to negative
z-direction. This force can be determined from the viscous stress tensor o;;
for an incompressible fluid,

dy; Bv,') (A8)

%5 =“P6-':‘+I‘(ax + 5

where p is the isotropic pressure. The expression for p_. can therefore be

written as 8 P
(g, 0= =y v, | Ove
P-x ( 2Wge +p)x “(az"'ay) (A.9)
and since dv;/dy = 0 at z = 0, we obtain the additional boundary condition
vy

-0
=3P (A.10)



APPENDIX A 2

at x =0, or equivalently, w = oFo/pt at r = 0.

Therefore, the original problem of vortex generation due to the interaction
of the viscous stress and the electric shear force at one lateral boundary is
reduced to sceking solutions of

Viw =0, (A1)
with the boundary conditions

oko/p, (A12)
0,
0,
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A.2 Solution of the Boundary Vortex Model

The solution of the cquation (Eq. (A.12)) for vortex generation at boundary
can be obtained by the method of separation of variable, We assume that

the solution can be written in the form
w(z,y) = X(2)Y (y). (A.13)
Substitution of Eq. (A.13) into Eq. (A.12) yields
X(n)Y(y) + X(2)Y"(y) = 0, (A.14)

where the primes denote differentiation with respect to the associated inde-
pendent. variable. Rewriting Eq. (A.14) gives
Xz) _ _Y'(y)
X(x) Y()'
The left side of this cquation is a function of x only and the right side is
a function of y only, so both sides must equal the same constant value A.

(A.15)

Equation (A.15) may then be written as two equations:

Y'(y) = -AY(y), (A.16)
X'(z) = AX(z). (AIT)

Considering first the function ¥ (y), we have
Y(y) + AY(y) =0, (A.18)
with the boundary conditions

Y(0)
Y(d) = o (A.19)

[}
&



APPENDIX A 104
The corresponding solution is
Y(y) = Csin (#) (A.20)
i
with eigenvalues
_nn? i B A2
A=EE =123 (A1)
From Eq. (A.17), the solution for X(z) corresponding to the same cigonval
As
X(z) = 4e"F 4 Be™ ", (A.22)
We thus obtain the general solution for w(r,y),
&, u _arey . (nAY -
wiz)= g (Ane™ 4 Boe™*) sin (T) . (A.23)
The boundary conditions at z = 0 and x =  lead to
=
3 (Aa+ By)sin (EZ_") = ooy (A.24)
=
and -
3 (Aue? + B ) sin (12 =0, (A.25)
=
These two equations can be reduced to
4
A+ B, = E(EE«:/M), n=(2m+1) (A.26)
At By = 0, (n=2m) (A:27)
and
(A + Buem™®) =0, (n=1,23) (A.28)
In writing the above expressions, we have used the Fourier serics
Cag Ty L Sy 1 Bmy ,
1_;(sm7+55m7+5sm7+ ) (O<y<d) (A29)
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Ay and B, can now be casily obtained. The results are

4 1 i
A = ;l;(aﬁa/ﬂ)]*_—e@v (A.30)
4
B, = ;;(EEO/M)‘_I_ (A31)
for 1 udd; and
A= 0, (A32)
B, =0, (A.33)
for n even. The gencral solution for w(z, y) can therefore be written as
obn if &F e .
wle,y) = ( ) g (1-e’~"f‘ ,)sm( ). (a34)
111> d, w(z,y) can be reduced to
w(z,y) = ("Tb") (A.33)

In our experiments we always observe the n = 1 mode. Keeping only the
n=1term in Eq. (A.35) gives

W)= ("E") &% sin (’;”) (A.36)
The resulting vorticity field is plotted in Figure A,

The corresponding stream function 3(z,y) can be determined from the
relation

Vi = u(z,y) (A.37)

for two-dimensional fluid flow. The values of 1 are obtained by numerical

integration of Eq. (A.37), where w(z, y) is given by Eq. (A.36). The Green’s
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g 2= 0 below

Figure A4t Calculated vorticity field near the lateral boundar
the onset of convection.
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function for the Laplace operator V2 in two-dimensional space,

Glz,y:6m) = (A38)

is used in the caleulation. The results for stream function are given in Figure
A5, in which contours of constant #(z,y) are shown and the vortical flow
are indicated by the closed streamlines.

1, o"' e

SBET]

0.0 .0 2.0 3.0
x/d

Figure A.5: Calculated streamlines near the lateral boundary 2 = 0 below
the onset of convection. The electric field in the plane of the flm and the
boundary layer adjacent to sidewall are also indicated.

So far we have considered the effect of only one lateral boundary. When
the interactions of the viscous stress and the electric shear force at both
lateral boundaries are considered, assuming the same charge distribution o
atther sidewall, the boundaty’ conditionsfor w(z, §) it = a5 wes =
—wleen = ~0Fo/ . Solving for A, and B, as shove givcs

14e7F

A = -— (QEn/ﬂ) mv (A39)
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(A40)

for n odd; and

Ay = 0, (A1)
B. = 0, (A.

for n even. When 13> d, the general solution for w(r,y) can be written as

= (2 Aoy (BRV ;
wloy)= ( - )..=,Z,a.s,.. L .m( i ) (AA3)

which is the same as when only one lateral boundary is considered.

It is worth b
electric body force. The only source of the vortical flow in this model is the
clectrohydrodynamic shear-stress interaction [127), which originates from an
interfacial charge density distribution at one lateral boundary. The stream-
lines given by this model are in qualitative agreement with the flow observedd
in experiments below the onset of convection.

that the model y I above contains no bulk
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B.1 Colorimetry

Colour! is a human perception. The first step in determi
perception that a particular light source or colored sample will produce is a
measurement of the spectral intensity distribution of the Tight coming from
the source or sample. The question that colorimetry addresses
spectral intensity distribution is known, how can the colour be measured
quantitatively? We desire an objective system of colorimetry in which, from
the spectral intensity distribution, one can derive one quantity called fumi-
nance, that determines the brightness, and two quantities which together are
called chromaticity, that determine the hucand saturation.

ng the visual

s, once the

Experiments show that virtually all colonrs can be produced from a
of three lights whose colours are in widely separated regions of the spectrim.
These three are called primary colours if they can
to produce white, We denote by es, eg, and ep the unit amounts of the
primarics, and for convenience the relative intensities of t1
may be chosen in such a way that they give white (achromatic colour) when
added together?,

so be added together

it amonnts

We designate as B, G, and R the quantities of each primaries needed to
match the colour S of the sample, that is,

S= Bep+Geg+ Reg. (B.1)

B, G, and R are called the tristimulus values of the colour with respect Lo
the specific set of primaries. By definition, the tristimulus values for white
are all equal, and increasing or decreasing B, G, and R by the same factor
will change the overall brightness but not the hue and saturation. Thercfore,

"This section is primarily based on reference (51, 204)

2Experiments show that a useful set of primaties is monochromatic blue at 436 nrn,
green at 546 nm, and red at 700 nm. To match white the power from these thres must
be in the proportion 14:19:1000. Consequently, the unit amounts of ey, ¢q, e could be
chosen as, say, 0.014 Watt at 436 nm, 0.019 Watt at 546 nm, and 1.0 Watt at 700 nin.
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we can describe a colour by its chromaticity, which depends on the relative
magnitndesof B, G,and R, but not their absolute numerical values.

If we could measure the spectral intensity distribution of an unknown
light source or a colored sample illuminated by white light and convert it
into equivalent tristimulus values, then the colour would be specified. Any
two colours with the same values of B, G, and R must look alike, no matter
how different their spectral intensity distributions.

The key to this conversion lies in the use of colour matching functions by,
Gy, and 7y, which delermine how many units of each of the three primaries
arc needed to match one unit of monachromatic light at any wavelength A.
“The tristimulus value B (or G or R) for a given spectral intensity distribution
is thus obtained by the summation of by (or ji or ) over all wavelengths,
weighted by the actual intensity /5 at that wavelength:

B= [J “ Ihyd), (B2)

G:/';mhj,\d,\, (B3)
=

R= /e A, (B4)

By defining new variables,

B

BT R (B5)
G

I"BrG+R (B5)
R

"SBICr+R @

weobserve that b, g, and 7 have an important feature: they are unchanged if
samples differ in luminance but not chromaticity. As noted before, to specify
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chromaticity we need quote only two of these numbers.

For computational convenience and to ensure the tristimulus values are
always positive, the Commission Internationale de I'Eclairage (CIE) recom-
mended aset of primariesex, ey, and ez as astandard. They were defined as
linear combinations of the monochromatic primarics eg, eg, and ep. These
primaries were chosen so that a match to white occurs for equal tristimulus
values of X, Y', and Z, as was the case for B, G, and R above. In addition,
the combinations were arranged so that the value of Y determines the lumi-

nance of the sample colour.

2.0 pr—— T T

15}

1.0}

05}

tristimulus value

0.0 .
400 500 600 700

wavelength (nm)

Figure B.l: The standard CIE colour matching functions.
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“The tristimulus values X, ¥, and Z can be calculated by using a new set
of colonr matching functions 2y, §a, 2, given in Table B.1 and plotted in
Figure B.1. The tristimulus value for a colour sample of interest is calculated
by the same procedure described for B, G, and R, that s,

X= jo” L), (B3)

v=[7 Linh, (B9)
-

z;] Id). (B.10)
o

08
0.6
> A
(117 81 (- gt
02
0.0 \/
0.0 0.2 0.6 0.8

Figure B.2: The CIE chromaticity diagram. The chromaticities of the CIE
standard light sources A, B, and C are indicated.
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As before, we introduce new variables that have the overall strength of
the primaries divided out:

X
Xivaz wan
d
Y EXiv+ 2 (B.12)
2 (B.13)

TX+Y+7
2,9, and = are called the CIE chromaticity coordinates, which are indepen-
dent of the luminance according the definition. Together they comprise what,
is termed the CIE chromaticity of a colour.

The chromaticity diagram recommended by the CIE is shown in Figure
B.2, in which the horizontal coordinate is x and the vertical coordina
y. Since only two of the three quantitics are needed to specify a colour,
any colour can be specified in terms of these two coordinates, supplemented
by the tristimulus value Y expressed in an appropriate photometric
All possible colours on the C1% chromaticity diagram fall within an area nf
the diagram bounded by a horseshoe-shaped curve called the spectrum locus,

is

on which the monochromatic hues are found (sce Table B.2). Achromatic
colours which differ only in luminance have cqual values for X, ¥, and Z,
with coordinates {1/3,1/3).

In summary, the CIE procedure converts the spectral intensity distribu-
tion into three quantities, z, y, and ¥ by the use of standardized tables
based on the perceptions of the “average” human observers. In addition,
the CIE has tabulated several standard illuminant spectral intensity distri-
butions (called standard sources A, B, and C) to approximate common light,
sources [51]. These are given in Table B.3 and Figure B.3. The spectral
intensity distribution /5 in our experiments was calculaled by assuming that,
our illuminator produced the spectrum Io; of the CIE standard source A (a
gas-filled lamp of colour temperature 2848K).
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Figure B.3: Spectral distribution of the CIE standard light sources.
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B.2 Computer Program for Colorimetry

SRR E R EREEREEES KR EEL RS KRS 1P R SR R0

#+4+% colorimetry: interference of s-polarized light from smectic film +44++
AR R

#+¥++ SORCE: data of standard light sources A,B,C

#6444 TRISTT: data of standard tristimulus for colorimetry

#++++ SLOCUS: data of standard coordinates of spectrum colours

k444 A PB,PC: spectral intensity distributions of standard source

#4444 XX, Y'Y Z2: standard tristimulus values of the spe

444+ XL YL,ZL: coordinate of the locus of spectrum colors

#4644 XRYR,ZR: Uristimulus values of reflected light

#++++ X Y: coordinates of colour in chromaticity diagram

#4444 R PHI: reflectivity of s-polarized light and the phase deference

*#+£4r RLMD: wavelength of light (nm)

#rxe THETA: incident angle

FFEREON: refractive index of uniaxial liquid crystal SCI

++%++ T\L: film thickness in molecular layers

##*%+ D: thickness of one molecular layer for 8CB (nm)
SEARERERE AR by

trum:

DIMENSION RLMD(81)

DIMENSION PA(81),PB(81),PC(81)

DIMENSION XX(81),YY(81),22(81)

DIMENSION XL(81),YL(81),ZL(81)

DIMENSION R(81),PHI(81)

DIMENSION SOURCE(81,4), TRISTI(81,4),SLOCUS(81,4)
OPEN(02,FILE="CIE source.dat’ STATUS="0LD’)
OPEN(03,FILE="CIE-tristimulus.dat’,STATUS ="OLD")
OPEN(04,FILE="CIE-locus.dat’,STATUS="OLD")

DO 101=1,81

READ(02,5) SOURCE(1,1),SOURCE(1,2), SOURCE(1,3),SOURCE(1,4)
READ(03,8) TRISTI(1,1),TRISTI(1,2), TRISTI(1,3), TRISTI(1,4)



8 FORMA
9 FORMAT(
10 CONTINUE

DO 20 =181
RLMD(1)=SOURCE(L.1)

OPEN(05,FILE="colour.dat’ STATUS="NEW")

TM=0.0

25 TM=TM+1.0

D=3.16

ON=1.516

THETA=0.0

DO 30 1=1,81
RRU=ABS(COS(THETA)-SQRT(ON*ON-SIN(THETA)*SIN(THETA)))
RRL=ABS(COS(THETA)+SQRT(ON*ON-SIN(THETA)*SIN(THETA )
RR=(RRU/RRL)*(RRU/RRL)
PHI(1)=(2.0%3.1416/RLMD(I))*TM*D*SQRT(ON*ON-SIN(THETA)*SIN(THETA))
F=L0*RR/((1.0-RR)*(1.0-RR))
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R(1)=F*SIN(PHI(1))*SIN(PHI(1))/(1.0+F*SIN(PHI(1) *'SIN(PHI(1)))
30 CONTINUE
XR=0.0

81
YYY2YYYHYY(1)*PA(D)*5.0

50 CONTINUE

DO 60 1=1.81
XR=XR+XX(I*PA(I)*R(1)*5.0/YYY
YR=YR4YY(I)*PAC)*R(1)*5.0/YYY
ZR=ZR+ZZ(1*PA()*R(1)*5.0/YYY
60 CONTINUE
X=XR/(XR+YR+ZR)
Y=YR/(XR+YR+ZR)
WRITE(05.63)X.Y

65 FORMAT(IX,2F10.6)
WRITE(*,*)TM

IF(TM.LT.200.0) GOTO 25
CLOSE(05)

STOP

END
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Table B.1: The CIE Standard Colour Matching Functions
Mmm) | 7y i Xam) |2 s B
380.0 | 0.0014 | 0.0000 585.0 | 0.9786 | 0.8163 | 0.0014
385.0 | 0.0022 | 0.0001 590.0 | 1.0263 | 0.7570 | 0.0011
390.0 | 0.0042 | 0.0001 595.0 | 1.0567 | 0.6949 | 0.0010
395.0 | 0.0076 | 0.0002 600.0 | 1.0622 | 0.6310 | 0.0008
400.0 | 0.0143 | 0.0004 605.0 | 1.0456 | 0.5668 | 0.0006
405.0 | 0.0232 | 0.0006 610.0 | 1.0026 | 0.5030 | 0.0003
410.0 | 0.0435 | 0.0012 615.0 | 0.9384 | 0.4421 | 0.0002
415.0 | 0.0776 | 0.0022 620.0 | 0.8544 | 0.3810 | 0.0002
420.0 | 0.1344 | 0.0040 | 0.6456 || 625.0 | 0.7514 | 0.3210 | 0.0001
425.0 | 0.2148 | 0.0073 | 1.0391 || 630.0 | 0.6424 | 0.2650 | 0.0000
430.0 | 0.2839 | 0.0116 | 1.3856 || 635.0 | 0.5419 | 0.2170 | 0.0000
435.0 | 0.3285 | 0.0168 | 1.6230 || 640.0 | 0.4479 | 0.1750 | 0.0000
440.0 | 0.3484 | 0.0230 | 1.7471 || 645.0 | 0.3608 | 0.1382 | 0.0000
445.0 | 0.3481 | 0.0298 | 1.7826 | 650.0 | 0.2835 | 0.1070 | 0.0000
450.0 | 0.3362 | 0.0380 | 1.7721 || 655.0 | 0.2187 | 0.0816 | 0.0000
455.0 | 0.3187 | 0.0480 | 1.7441 | 660.0 | 0.1649 | 0.0610 | 0.0000
460.0 | 0.2908 | 0.0600 | 1.6692 || 665.0 | 0.1212 | 0.0446 | 0.0000
465.0 | 0.2511 | 0.0739 | 1.5281 || 670.0 | 0.0874 | 0.0320 | 0.0000
470.0 | 0.1954 | 0.0910 | 1.2876 | 675.0 | 0.0636 | 0.0232 | 0.0000
475.0 | 0.1421 | 0.1126 | 1.0419 || 680.0 | 0.0468 | 0.0170 | 0.0000
480.0 | 0.0956 | 0.1390 | 0.8130 || 685.0 | 0.0329 | 0.0119 | 0.0000
485.0 | 0.0580 | 0.1693 | 0.6162 || 690.0 | 0.0227 | 0.0082 | 0.0000
490.0 | 0.0320 | 0.2080 | 0.4652 || 695.0 | 0.0158 | 0.0057 | 0.0000
495.0 | 0.0147 | 0.2586 | 0.3533 || 700.0 | 0.0114 | 0.0041 | 0.0000
500.0 | 0.0049 | 0.3230 | 0.2720 || 705.0 | 0.0081 | 0.0029 | 0.0000
505.0 | 0.0024 | 0.4073 | 0.2123 || 710.0 | 0.0058 | 0.0021 | 0.0000
510.0 | 0.0093 | 0.5030 | 0.1582 || 715.0 | 0.0041 | 0.0015 | 0.0000
515.0 | 0.0201 | 0.6082 | 0.1117 || 720.0 | 0.0029 | 0.0010 | 0.0000
520.0 | 0.0633 | 0.7100 | 0.0782 |[ 725.0 | 0.0020 | 0.0007 | 0.0000
525.0 | 0.1096 | 0.7932 | 0.0573 || 730.0 | 0.0014 | 0.0005 | 0.0000
530.0 | 0.1655 | 0.8620 | 0.0422 || 735.0 | 0.0010 | 0.0004 | 0.0000
535.0 | 0.2257 | 0.9149 | 0.0298 || 740.0 | 0.0007 | 0.0003 | 0.0000
540.0 | 0.2904 | 0.9540 | 0.0203 || 745.0 | 0.0005 | 0.0002 | 0.0000
545.0 | 0.3597 | 0.9803 | 0.0134 |[ 750.0 | 0.0003 | 0.0001 | 0.0000
550.0 | 0.4334 | 0.9950 | 0.0087 || 755.0 | 0.0002 | 0.0001 | 0.0000
555.0 | 0.5121 | 1.0002 | 0.0057 || 760.0 | 0.0002 | 0.0001 | 0.0000
560.0 | 0.5945 | 0.9950 | 0.0039 |{ 765.0 | 0.0001 | 0.0000 | 0.0000
565.0 | 0.6784 | 0.9786 | 0.0027 |[ 770.0 | 0.0001 | 0.0000 | 0.0000
570.0 | 0.7621 | 0.9520 | 0.0021 || '775.0 | 0.0000 | 0.0000 | 0.0000
575.0 | 0.8425 | 0.9154 | 0.0018 || 780.0 | 0.0000 | 0.0000 | 0.0000
580.0 | 0.9163 | 0.8700 | 0.0017
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A(nm)

E

n

380.0
385.0
390.0
395.0
400.0
405.0
410.0
415.0
420.0
425.0
430.0
435.0
440.0
445.0
450.0
455.0
460.0
465.0
470.0
475.0
480.8
485.0
490.0
495.0
500.0
505.0
510.0
515.0
520.0
525.0
530.0
535.0
540.0
545.0
550.0
555.0
560.0
565.0
570.0
575.0
580.0

0.1741
0.1740
0.1738
0.1736
0.1733
0.1730
0.1726
0.1721
0.1714
0.1703
0.1689
0.1669
0.1644
0.1611
0.1566
0.1510
0.1440
0.1355
0.1241
0.1096
0.0913
0.0687
0.0454
0.0235
0.0082
0.0039
0.0139
0.0389
0.0743
0.1142
0.1547
0.1029
0.2206
0.2658
0.3016
0.3373
0.3731
0.4087
0.4441
0.4788
0.5125

0.0050
0.0050
0.0049
0.0049
0.0048
0.0048
0.0048
0.0048
0.0051
0.0058
0.0069
0.0086
0.0109
0.0138
0.0177
0.0227
0.0297
0.0399
0.0578
0.0868
0.1327
0.2007
0.2950
0.4127
0.5384
0.8548
0.7502
0.8120
0.8338
0.8262
0.8059
0.7816
0.7543
0.7243
0.6923
0.6589
0.6245
0.5896
0.5547
0.5202
0.4866

{ =2 |
0.8209

0.8210
0.8213
0.8215
0.8219
0.8222
0.8226
0.8231
0.8235
0.8239
0.8242
0.8245
0.8247
0.8251
0.8257
0.8263
0.8263
0.8246
0.8181
0.8036
0.7760
0.7306
0.6596
0.5838
0.4534
0.3413
0.2359
0.1491
0.0919
0.0596
0.0394
0.0255
0.0161
0.0099
0.0081
0.0038
0.0024
0.0017
0.0012
0.0020
0.0009

Anm)

E

u

585.0
590.0
595.0
600.0
605.0
610.0
615.0
620.0
$25.0
630.0
635.0
640.0
645.0
650.0
655.0
660.0
665.0
670.0
675.0
680.0
685.0
690.0
695.0
700.0
705.0
710.0
715.0
720.0
725.0
730.0
735.0
740.0
745.0
750.0
755.0
760.0
765.0
770.0
775.0
780.0

0.5448
0.5752
0.6029
0.6270
0.6482
0.6658
0.6801
0.6915
0.7006
0.7079
0.7140
0.7190
0.7230
0.7260
0.7283
0.7300
0.7311
0.7320
0.7327
0.7334
0.7340
0.7344
0.7346
0.7347
0.7347
0.7347
0.7347
0.7347
0.7347
0.7347
0.7347
0.7347
0.7347
0.7347
0.7347
0.7347
0.7347
0.7347
0.7347
0.7347

0.4544
0.4242
0.3965
0.3725
0.3514
0.3340
0.3197
0.3083
0.2993
0.2920
0.2859
0.2809
0.2770
0.2740
0.2717
0.2700
0.2689
0.2680
0.2673
0.2666
0.2660
0.2656
0.2651
0.2653
0.2653
0.2653
0.2653
0.2653
0.2653
0.2653
0.2653
0.2653
0.2653
0.2653
0.2653
0.2653
0.2653
0.2653
0.2653
0.2653

B

0.0008
0.0006
0.0006
0.0005
0.0004
0.0002
0.0002
0.0002
0.0001
0.0001
0.0001
0.0001
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000




Table B.3: Spectral Intensity Distribution of Standard Sources
Num) | Ik 73 1= Mam) [ 13 [ I3 TS
"380.0 9.79 22.40 33.00 585.0 | 118.08 | 100.07 | 95.43
385.0 | 10.90 26.85 39.92 590.0 | 121.73 | 99.20 | 93.20
390.0 | 12.09 31.30 47.40 595.0 | 125.39 | 98.44 | 91.22
305.0 | 13.36 36.18 55.17 600.0 | 129.04 | 98.00 | 89.70
400.0 | 14.71 41.30 63.30 605.0 | 132.70 | 98.08 | 88.83
405.0 | 16.15 | 46.62 | 71.81 | 610.0 | 136.34 | 98.50 | 88.40
410.0 | 17.68 52.10 80.60 615.0 | 139.99 | 99.06 | 88.19
415.0 | 19.29 57.70 89.53 620.0 | 143.62 | 99.70 | 88.10
420.0 | 21.00 63.20 98.10 625.0 | 147.23 | 100.36 | 88.06
425.0 | 22.79 68.37 | 105.80 |[ 630.0 | 150.83 | 101.00 | 88.00
430.0 | 24.67 73.10 | 112.40 || 635.0 | 154.42 | 101.56 | 87.86
435.0 | 26.64 77.81 | 117.75 || 640.0 | 157.98 | 102.20 | 87.80
440.0 | 28.70 80.80 | 121.50 || 645.0 | 161.51 | 103.05 | 87.99
445.0 | 30.80 83.44 | 123.45 || 650.0 | 165.03 | 103.90 | 88.20
450.0 | 33.09 | 85.40 |124.00 || 655.0 | 168.51 | 104.59 | 88.20
455.0 | 35.41 | 86.88 |123.60 || 660.0 | 171.96 | 105.00 | 87.90
460.0 | 37.82 88.30 | 123.10 (| 665.0 | 175.38 | 105.08 | 87.22
465.0 | 40.30 90.08 | 123.30 || 670.0 | 178.77 | 104.90 | 86.30
470.0 | 42.87 92.00 | 123.80 || 675.0 | 182.12 | 104.55 | 85.30
475.0 | 45.52 93.75 | 124.09 || 680.0 | 185.43 | 103.90 | 84.00
480.0 | 48.25 95.20 | 123.90 (| 685.0 | 188.70 | 102.84 | 82.21
485.0 | 51.04 96.23 | 122.92 || 690.0 | 191.93 | 101.60 | 80.20
490.0 | 53.91 96.50 | 120.70 || 695.0 | 195.12 | 100.38 | 78.24
495.0 | 56.85 | 95.17 | 116.90 || 700.0 | 198.25 | 99.10 | 7€.30
500.0 | 59.86 94.20 | 112.10 |[ 705.0 | 201.36 | 97.70 | 74.38
505.0 | 62.93 | 92.37 |106.98 || 710.0 | 204.41 | 96.20 | 72.40
510.0 | 66.08 | 90.70 |102.30 || 715.0 | 207.41 | 94.60 | 70.40
515.0 | 69.25 89.65 98.81 720.0 | 210.36 | 92.90 | 68.30
520.0 | 72.50 89.50 96.90 725.0 | 213.26 | 91.10 | 66.30
525.0 | 75.79 90.43 96.78 730.0 | 216.12 | 89.40 | 64.40
530.0 | 79.13 92.20 98.00 735.0 | 218.92 | 88.00 | 62.80
535.0 | 82.52 94.46 99.94 740.0 | 221.66 | 86.90 | 61.50
540.0 | 85.95 96.90 | 102.10 || 745.0 | 224.36 | 85.90 | 60.20
545.0 | 89.41 99.16 | 103.85 || 750.0 | 227.00 | 85.20 | 59.20
550.0 | 92.91 | 101.00 | 105.20 || 755.0 | 229.58 | 84.80 | 58.50
555.0 | 96.44 | 102.20 | 105.67 || 760.0 | 232.11 | 84.70 | 58.10
560.0 | 100.00 | 102.80 | 105.30 || 765.0 | 234.59 | 84.90 | 58.00
565.0 | 103.58 | 102.92 | 104.11 || 770.0 | 237.01 | 85.40 | 58.20
570.0 | 107.18 | 102.60 | 102.30 || 775.0 | 239.37 | 86.10 | 58.50
575.0 | 110.80 | 101.90 | 100.15 || 780.0 | 241.67 | 87.00 | 59.10
580.0 | 114.44 | 101.00 | 87.80
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