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In this work, a number of numerical models have been adapted to study the wind-

driven circulation_of Like Melville. The first two models examined are the steady-state

- and the time'dependent Homogeneous models.. The results indicate that the complex -

bottom” hy forces a ficated ci pattern which is relatively

3mle;:_ted by the value of the bottom stress coefficient -I'.hth the choice of such
affects the current speeds directly. For a consiant wind of seven meters per second, the

vertically averaged horizontal velocity is about ten centimeters per sécond, suggesting a

- surface velocity of about thirty to forty centimeters per second. The third m_d Im;,

model is a vertically integrated two-layer model also driven by a éonstant wind of seven

eters per second.  The results from this model indicate that bafoclizic eflects such as

nearinertial oscillations*and internal waves are important, since the internal wave

phenomena associated with stratified Iakes dominates their dynatics: To date, np field

measurements have been’ carried out on Lake Melville, The simu]azio'ns from the
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CHAPTER 1 : INTRODUCTION

1.1. Background

Lake Melville, Labrador, is one u” the three main water bodies making up -HIHI“'
ton Inlet, the largest inlet along the lenslar cosst. The other two water bodies are
Groswater Bay and Goose Bay (Figure 1.1). - As shown in Figure 1.2, the entrance to

‘ Hamilton: Inlet consists of Groswater Bay which is about fifty kilometers in length and
constricts into a narrow, shallow area averaging about 2.8 ki‘loqnmf in width ;nd thirty

° meters in depth withta length of twenty-two kilometers known as the Narrows. Before
entering Lake-Melville, the Narrows are d‘ividtd into two channels by Henrietta, Island
and Eskimo Island (Figure 1.2).

e Melvile: o oo b et o s Karvous sy average depth of about
eighty-six n:uun. The sub-arctic climate of the Lake Melville area aflects the circula-
tion in terms o‘f runoff and the prescence of ice and is described by Krueger and Boucaud
(1963) from data collected at Goose Bay Airport. The weather patterns of Goose Bay
Airport have 3 tendency to alternate between those of maritime and continental cli-
mates, and the summer tzmper‘ll\u'es’in the Goose Bay area tend to be comfortable but
often cool. Winter is u;ually characterized by cold, crispy weather and rain, but

e " : ~
midwinter thaws are not uncommon. -

Figure 1.3 gives ghe wind roses for Goose Bay Airport. As can be seen, the dom-

inant winds are the westerlies and the southwesterli

These winds appear to be

by the h hwe i ion of Hamilton lnlet and bave a mean
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" both the theoretical and practical points of view.

-5- 5

‘wind speed of about seven meters per second.
The majority of oceanographic data for Lake Melville were collected from 1949 to
1953 by the Blue Dolphin expeditions led by Captain David Nutt of Dartmouth éolltge.

New hire. Salinity and t cments were taken Hamil-

ton lolet during summers in the years 1950 to 1953. In all, about 350 hydrographic

samples were collected and the four major rivers were gauged to determine the amownt—-

of fresh water discharge into the lake. Additional data collected by the Fisheries
Research Board of Canada in the late summer of 1952 aboard the vessel the lnvestigator
11 included the sampling 'of four stations in Lake Melville and one-in Groswater Bay.
The most recent field trip in the post-Churchill hydroelectric development period was
carried ‘out in August 1081 by the Department of Fisheries and Occans aboard their
vessel ths Buria Bay. ‘The piuitions.af the statioos sampled by, the various expeditions
are givenin Figare 1.4, The density profles for stations BB-4, BB-7, BD-52 and BD-47
are presented in Figure 1.5 and show that a two-layer structure of Lake Melville can be
assumed with o, = 9 for the upper lsyer and o, = 22 for the lower layer. The salin-
ity versus depth profiles (Figure 1.0) more clearly show a two-layer stracture with the
salinity of the upper layer (the epilimnion) being in the range three to five parts per
thousand and the salinity of the lower layer (the hypolimnion) being in the range

twenty to twenty-five parts per thousand. The thickness of the upper layer varies from

ten to twenty meters. For this study, an upper layer thickness of fifteen meters has

been taken. The bathymetry of Lake Melville is shown in Figure 1.7.

1.2, Motivation for the Present Study
Circulations in bodies of water as large as Lake Melville are of great interest from_
From a theoretical point of view, 'Laké Melyille is of such a size that the effects of

the earth's rotation are important to its dynnmies. but at the same time not large
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Figure 1.5 ; Plots of sigma-t versus depth for different stations (after Bobbitt and Aken-

head, 1982). ’ ’
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enough to make the effects of the curvature of the earth's sufface and the variation of
the Coriolls parameter with latitude’important factors. In addition, Ju lake is almost
detached from the sea but still has' a two-layer salinity and density. structure. Other
modelling of wind-driven circulations, as;uhlly in the Great Lakes, considered thermal
stratification only, but Lake Melville is also strongly salinity stratified. It was interest-
ing to see the effect of strong stratifications on simulations since models were generally

adapted from v,he Great Lakes work.
.

On the pracu:al side, a study of circulation in Lake M,:lv:lle can. help umhr

cconomic development of the area'and d

pmblems into the inland

-y Labrador communities of Northwest River and Goose Bay. With industrial dayelopmenl

currently takiog place in this area, - Port Labraor i being plansed to’ service such
developments. For this particular lake, modeliing can help to shed light in this data-poor
atea by suggesting important circulation features a0d help plan field programs (see
Chapter 8). , » .

The ion of the lectric devel of the Churchill River began in

; ;
1967 and was dompleted in 1971, As a fosult, hundreds of existing lakes and hundreds

of square kilometers of bog and muskeg: were linked to form the Smallwood Reservoir

from which water is released ibrough various control systems. The inerease in draigage
area resulted in an increaséd and regulated freshwater nflow into Lake-Melville. This
increase in freshwater input has the potential for changing the water pmpertief of tr;is
inshore water mass ‘and local fishermen- bave for some time felt that the decrease in
codfish stocks in the region since 1071 may_be due in part to this hydroelectric develop-
meat (Bobbit and Akenkiead, 1982). Further ydroelectric development in ¢his area could
introduce greater changés in the water prpertis of Lake Melvile Tn addition the for-
matidn of ce in the lake depends at least in part upon the water propeties  and
change in such properties of Lake Melville would p;bubly change the patterns of ,

‘ o

freeze-up and affect winter season navigation.
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. 1.3, General Factors of Circilation . . -\ §

The term ‘fjord’ is applied to an ‘estuary or an inlet that has steep sldes. tdc(p
ha.sm and a sill at the mouth, with a salinity distribution affected by a mher -hallow
surfa:e layer which is appreciably diluted by fresh water rundfl. Below this lnyer: lhe‘ 4
horizontal and the vertical salinity gradients are small. Siace Lake Melvitle generally .
satisfies these criteria quite readily, some of it circulation features may be similar to
basic fjord features. . DT

Estuarine circulation is determined .by the frésh w;ter inflow and liic mixin;;i‘lh
seawater influenced by tidal currents. It is appnrcnt (og .hetchum 1951; Pickard and -

Rodgm, 195\1) that the-wind eah bave an |mpor(an', influence on cxrcnlnuon—nnd nuxm;

as welln By exerting 3 stress on the surface of the lake, the wmd as an external force ,

y N

can produce a net transport of water and the waves generated will increase the inten
of vertical mixing. The water transport in the sutface layer will be mainly T the direc!

: . e ,
tion of the wind and hence, the normal seaward flow will be increaséd if the wind &

blowing seawards along the estuary. The fw will be decreased or in some cases,

! - a
reversed in direction if the wind blows in the opposite direction along the essary. s

External forces which cause water. movements in lakes consist of chapges in atindfF
pheric pressure at the lake- snrface. the grzmauonnl forces of the sun and thy moon
that generate tides, and of i lmeust here, the wmd or air currents blowm; over lllr lake.
Although the Brst three of'lhe above mentioned hclors will nov. be :onnldtred in _l_hu .o

study, their importance in inﬂuencing circulation relative to t#:e wind stress depends on

each lake or basin under study. As far as the udnl inflyence | lrom the sun and lht moop
is concerned, it would appear that it is directly” proparuon-| to the size of lhc b in
question. It is difficult to study such tidal oscillations in lakes since they exhibit v%

small tidal movements in the first place. Furthermore, in order to.accurately determin .

the mogaitude of the true tide, it would be necessay to somebow.diflrentiate the tids}




% L B
oscillations from all the other mass fluctuations like internal and external seiches. As it
turns out, the effect of tides is generally negligible on the circulation patterns in most
. . 3
lakes according,tp Harlemat (1961). However, Lake Melville may bebave as an

oscillator (a a resonator) with significant tidal forcing which

occurs thfough the rises and falls of water leveld at its entrance. There is some data on
tidal levels in the lake (J. Bobbfft, personal communication) but it was aot available for
this study. 4 b
~ By far, the most important external current generating force in a lake is the wind.
The wind afects the cireulation in two ways. First, the air currets exert o shearing
+ stress, (the wind stress) at’ u;e air-water interface causing the water at the interface to \\)
sccelerate.- Viscous friction, then causes the water layers deeper down to gain momen- .
P .+ wm. As-avecond constuence; the wind action on the surface of -the lake causes the
e " surface to oscillate and produces travelling waves.. The velocity of the currents in a lake
is related to the &i{d :l.ressl and does l.lot depend on the waves directly, but, since the
waves determine whetber the lake surface is smooth or rough, they infuence the wind
stress on the loke swrface and heace afect the ficiency with HRITE §ive Wit
duces eurrents. When the wind blowing over a lake reaches a certain eritical speed;, sur-
‘\\ face woves are generated. Munk (1947) has arrived at a value of seven meters per
S second for the critical wind speed. For winds blowing at a speed of greater than seven
/ meters per second; surface waves are created and the lake surface becomes hydraulically
. tough, whérens for speeds of less than this eritical wind speed the surface may con-
© sidered ss smooth. o ' -
Since the wind that blo!‘s ;wer a lake surface exerts a s!;enri'n; :lressﬁ the surface

of the water, the determination of the shearing’stress T from observed wind velocities

W has been undertaken by a large number of researchiers. Most investigators have con-

§ S
cluded that the wind stress varies as’'some power of-the wind velocity relative to the - \

‘water and is given by. . ! 5

\
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T = Cypu (W-VP* .

where C4is a drag coeficient, p, is the density of the air, V is the velocity of the water
at the lake surface, and W -is the speed of the. wind. ln general, |V << |W, and the

wind stress may be writtea as
T=Can (W) (12)

Taylor (1915) deduced that for turbul ir, n=2 and most hers have arrived at

° the same or similar values of n. More recent observations by Large and l’{w.nd (1081)

conclude that this quadratic wind stress law is quite valid for moderate or strong winds.
Althnug’h values for the drag coeflicient Cy have varied among dil!erenl. researchers, Wil-
son (1960) dedu:es that .C4=0.002 is a good value in accordance wuh the wurk of several
researchers. Assuming p,=0.001 grams per cubnc ‘centimeter as an :veﬂ;e value for the
den:ily of air, the quadratic stress law for'small to moderate wind speeds may now be

.
written as © - 4

2 x 10°W? N (1.3)

which is valid for moderate Lo stroug {includiog critical) wind speeds. lere, T is the vur-
face strchs in dyses per sqeare centimeter and WV is the wind speed in cetimeters per
second. This formula for the wind stress is to be used for the duragion of this work.

In this thesis, 00 computstions wil be made for 3 divergeat wind Beld. T view of

lhe fact that the wmd stress on the surface of Lake Melville is due mainly to the wester-

lies wlmh hnve a mueh largrr scale than lhe dimensions of m lake, a uniformity in the .

x and y di iony “is an adrqnn&c imation for wind slrcu where s:éwdy—nlale cireus
Jation patterns are concerned, as shown by Rao and Murty (1070). - )
; . .
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In general, lake currents can be separated into two categories : quasi-steady and
time-dependent. In practice, no steady currents exist in a lake because of the time scale
of the factors that cause currents to vary. However, it is true that there are periods

during which the wind is vary\i:ig sufficiently slowly so as to permit a steady-state

\ -
analysis. Such an agalysis gives rise ‘to what are known as quasi-steady currents ~
(referred to later in this work) and is appropriate if.equilibrium can be attained. The

shortest period oscillations of water flow are simple capillary waves. In deeper parts of

the lake, capillary waves th Ives are not signil as P of water, but

when they reach shallow areas they change character from an orhltal type motion to a
simple to and fro motion. , B

A A

1.4. Scope of the Present Study

r
In this work, the study of the wind-induced circulation dynamics of Lake Melville

revolves around three models : a steady-st model, a depend,

homogeneous model and a time-dependent two-layer model. A wind set-up lasting for

four days s used for the time-dependeat bomogeneous model and one of a single day for
the tworlayer model. Typically, this wind period forms a standing wave called a ‘seiche’
which decays due.¥ frictional effects after the wind is switched off.

Wind-induced circulation in shallow, Jomogeneous basins is governed by depth
variations with the water transport running .in the direction of the wind in shallow akas
and against the wind in deeper areas (Csanady, 1082). A steady-state model is useful
because it is the easiési obe to implement and the resulting circulation pattern gives a
good idea of the mean dynamic state of the lake in response takthe average wind regime.
Because the wind velocity varies somewhat on a day to day basis, it is pn!siblt‘thnt

steady-state is mot always reached, though upon a close ‘examination the climatological

. and oceanographic records usually show quite consistent mean wind components and
C




models are very sensitive to the bottom stress specifications ang the topography, fac’
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persistent water movements at various locations in the Great Lakes (see Bennett, 1974).

models are also affected strongly by the
bathymetry, and are probably more realistic than steady-state ones. Although applica-
ble to many lakes (especially the Great Lakes) during the late fall, ice free periods in
winter and early spring: these types of models are the next step up in terms of complex-
ity. : ’

A two-layer model of Lake Melville is by far, the most realistic one cnnsidc‘rrdr
here, and also the most difficult one to implement. Since circulation in stratified basins

is aflected by the presence of internal \-ave: like Kelvin waves alongshore and standing *
Poincare waves offshore (Simons, 1980), - certain numerical istabilities can be induced

which cause a degree of uncertainty in the simulations.
. ¢
1.5. Resultg of the Work

There is a large amount of consistency in the results of the bomogeneous models of

Lake Melville.” As is shown in chapters three and four, the circulation pattera resulting

from the . steady and time-dependent simulations of the h us model

appears to be in agreement with the physics of the problem at Bqud. The homogencous |

tors which appear to be the most imp: in d

patterns.in”
homogeneous lakes. "
The two-layer model of Lake Melville discussed in chapter five is by for, the most
realistic one. The simulations indicate that the baroclinic effects totally dominate the
dynamics of the sysle’m; The eflects of the topography of the lake appear to be small in
determining the characteristics of the currents in most of the lake.
1t is probable that in view of the lack o! current measurements from the uu, none

of the models can be calibrated accurately enough to represent the magnitude of the

J

e
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currents found at various points in the lake. The main objective of this thesis at this
time therefore, is to determine the circulation pattern for Lake Melville by using bomo-
geneous and two-layer models and make an attempt o deduce the approximate order of

~ megnitude of the currents that may be fm_md there.
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CHAPTER 2 : THE HYDRODYNAMICAL EQUATIONS

« OF MOTION AND CONTINUITY

2.1. General Equations for Barotropic Models - )

" The following equations describe the time-averaged turbulent motion of a water

.. body on a rotating carth (Proudman, 1953; Defant, 1961) ;

u B PO - 2 T 4
_+“6)(+V5 +w—!v Bx+k—+Av" (z.n"
o v v dv 1o, O s
et TE T E T ke + AT (2.2)

\
aw 3w ow , ow _ 13p - 3w .,
'az+"ax+"ay+wax_ A ;+k012+/\v"‘w . (2.3)

where u, v and w are the velocity components in the x, y and 2 directions respectively
with x positive eastwards, y positive northwards and z+positive upwardy and zero at the
surface of the lake ; ¢ is the time ; p is the local pressure : [is the Corols parameter
» is the fuid density : k is the vertical eddy viscosity : g is the acceleration duc to

gravity ; A is the the horizontal eddy viscod¥i deat oMposition) and o* is the

two-dnmensmnﬂ Laplacmn By considering lhe water in the. basin to be lm‘umprrquhle

we use the continuity equation in the form i




8 8w
W+E+T=° (2.4)

- Dimensional analysis on equations (2.1) to (2.4) -it} the mmp;iywhn

", (3) the bydrostatic approximation applics,
"(b) the wavelengths of the motion are large compared to.the average depth so

that the vertical accelerations are small (this follows-from (a) above),”

(c) the -nonlinear accelerative terms are small i.e. the Rossby number R,

<< | (see Simons (1980), pg. ).’ y @

(d) the Coriolis. parameter and the horizontal and vertical eddy viscosities are -

constant over (he lake,

simplifies equations (2.1) to (2.4) to

— | peezzas ) e
L %%": & - (28)
%‘Z‘: . . ©(s)

where the non-linear and the borizontal diffusive terms have been neglected. These

. f——— describe motion in the borizontal plane ouly if we simplify equation (2.3) {0 the bydros:
. ]
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tatic appraximation (equation (2.8)) which requires only that 2 << Integation of
“~ equation (2.8) in the vertical gives an expression for the free surface pressure as :
1
§ (29)

P (xy.t) = pu(xy.8) + pg(n-2)
. " 7>

where p, (x,y.t) is the atmospheric pressure at the air-water interface and 7 is the sur-

face elevation.
Let us now define the x and y components of yolume trinsport as
3 VLT :
. '
MO = [udz, MV= [ v,
M v

the components of the vertically integrated velocity as

ME MO =
=2 V=o 2.
U= T (2an
and the components of stress at a borizontal surface as P
(2.12)

™= .k%':. o= ,x%.

If we differentiate equation (2.9) with respect to the spatial coordinates, -_} get the

forms -
H
® " B |
- ; chsy oy
. ~ S VP=EYn SRR e On (213)
a’ . .
which can be used to replace the pressure term from equations (2.5) and (2.6).
.
A
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If we integrate equations (2.5) to (27) in the vertical (see Simons (1980), pg. 13)°

and use the definitions (2.11) and (2.12), we get the equations of volume transport

~
- o O
— M ) o | T T
T-EM" A e (2.14)
, aM"’ T'm T
: fM“’= L -— 2.15,
* ® 01 T T (218
\ “n
oMW oM an . X
, g g a (2.16)

after using the incompressibility condition. The deep water assumption

H+n=H M

is used as well. In terms of the depth averaged current, equations (2.14) to (2.16)

become

s (2.17)
(2.18)

A(HY) . S(HV) o
R T+ o - , (2.19)

As indicated in section 1.3, the surface stress is computed in accordance with the: qua-

"1 dratic drag law, equation (1.4) far all three models considered here. The bottom stress

\____/
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" follows from the convention of Simons (1980) : If we use depth averaged velocity distri-

bution, then it is possible to write the bottom stress as

= KM

|

where the various designations for K are (Simons, 1980)
(1) linear : K = a/H, =001 to 0.05'cin/sec,

(2) quasi-linear : K = b/H? b =100 cm? / sec

(3) nonlinear : K =£IM| / H? k =~0.0025

For all models of Lake Melville considered here, the lint
was used only since it was established from test runs (no
tion is relatively unaffected by the other bottom stress spec

> -

| 2.2."General Equations for the Baroclinic Model

= (220

ar definition of bottom stress
shown here) that the circula-
cifications.

N

The equations of bydrodynamics for a two-layer time-dependent system follow from

equations (25) to (27). Leth and b denote the depfhs’ol the upper and the lower:

layers respectively and assume that the densities are con

izontal pressure gradients are now uniform within each la;

vp=rgvn, vp' =pgwn’ -(¢' - o)

.-+ Where the unprimed and the primed quantities pertai

tant in each layer. The hor-

er and are given by

svh X (2.21)

to the upper and the lower

>




‘aged equations for the upger layer (the ¢
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layers respectively. It followa from equations (2.5) to (2.8) that the vertically aver-

I VR Cia e |7, )
s R T (222)
3
L\
s o (229)
On-n') _ _8bU) _ BV . B E
o) A0 (221)
and the equations for the lower layer (the hypolimnion) are
B2 g By B mU U (,,U
5 s, o1 it - L2 4 - og (2.25)
. : .
Y U= gt o¥Y-V oo ¥
U T - O (2.26)
o _ oW U) o V) L (227)
at Bx By

where the interfacial and the bottom stress coefficients are given to a first approximation

by (Beanett, 1978)

c= #‘- sec”! (2.28)
-
Com B2 gect (2.20)
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respectively. In order to simplify the analysis; it has been assumed that the surface and
the interface displacements 7 and ' are small compared to both depths b sad b ™

such that the approximations .

b+n=h
and

CW e = Y

bold reasonably well in accordance with deep water theory.

2.3." Finite Difference Forms of Derivatives

Finite difference approximations to the derivatives were used to solve the equations
of sections 2.1 and 2.2 numerically. Thus, the equations were reduced to their fnite
difference forms consisting of a ‘standard fve-point representation of the derivatives

which follow from the Taylor Series expansions (Smith, 1985)

Flx + Ax) = F(x) + ﬁ‘f‘m ERT (2.30)
( ox
Flx - A%) = Flx) - I%M 5B (2.31) {
i .
The central difference imation to the spatial derivative was obtained by subtract-

i
ing equation (2.31) from equation (2.30) with the result

Flx-ax)} - O(IAT):)' (l‘;;(: )

Rearrangements of equations (2.30) and (2.31) yiclded “the forward and backward
. 1
‘

‘A
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difference schemes.given by i . :
2 - (ot 2Pl 0 -F) 4 o 42 271 (233"
’ 4 ————
3 o L pes) | ouox T, s

respectively. These approximations have an error term which is an order of Ax  higher
than the central difference approximations of équation (2.32), R

Apseoximations to d-ord

follow by addipg equations (2.30) and .
¢ . .

+ —(2731) and solving for the term with the resulting expression

. ' = ‘ ) ) r/ .. % '/’. T

8F(x)
S

" FF(x 1 : ) :
—0‘(,-1 = (A lFle + 80 - 26(2) + Fix-ax) . (2.35)
The time derivatives were evaluated similarly for computational purposes. For numeri-. .= "
~ cal stability, different differencing schemes were used and the, relevagt schemes will be .
' .
noted as they occur.
B » )
Y’\ ) , | : 2
; . . A
“ N
. \-
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% CHXPTER 3: THE STEADY-STATE MODEL OF N
j
o o
LAKE MELVILLE b
: 4 W

3.1. Derivation of the Stream Function Equation .
terms are retained u the equmous

For the steady model, no ti

of volume trfnsport (2.14) to (2.16) (Ramming and Kowalik,  1980) ‘which now becomie

a T T - .
~tMY = o gHT 4 L 2 . ¥
; =-sfig v Fi “ . (3.1)
L \
- » 5 °
% B 1’”‘ T,,"’ . i ks
Mg Sl T (8
&l Dy T (32)
Pl
) M p) ’
MY oM v
© Tty 3 (38}
. . 5
.
in which the rigid-lid approximation is inlﬁeni since the'time-dependent term ‘;_:' van-
. . L o -y
# ' B
Z -

ishes from equation (3.3).
) 4

The sptuﬁmuons used for the wind stress T, nnd the bottom stress T,, arg as

given by equations (1.3) nnd (2.20) r:sptclwely 8" % .

Since the continuity equation (3.3) requires that the divergentce of the net horizon-

tal volume flux vanish,. M® and MY can be represented in terms of a stream function

W(x,y) such that t
e L .




IR T R —

(x) v Al
I_W‘uAT,y—. M‘-"=~m—‘ (3.4)

5 =,
Equations (3.4) were used to eliminate M®) and M) from’ equations (3.) to (33).

After cross-differentiating equations (3.1) and (3.2) and elimiating the 7 terms, an

~ equation representing the steady-state dynamics of Lake Melville and incorporating the

£ linear bottom stress formulation {equation (2.20)) was arrived at after using the con-
tinuity equation (33) (Simons, 1980)-4
! " K - i OH, m_ﬂ“m ’
e H g (o) + 0Hy) =1 (Cun 1), + Sl Sy (35)
* " ‘
. where FN
/
' / 4 J Fal
Z o . Y
W om — o — 3.6,
- i vHEe o . (38)
@ :
- OH ov OH av
) = . . (3.7)
1Y rq;mtion (3.5) above, the latitudinal variation in the Coriolis parameter f given
by
' . =4
P ¢ (7” .
* has been neglected. It s possible Yo do this if the horizontal dimensions of a lake are
; Speaed e !
much smaller than the radius of the carth (Rao and Murty, 1970) which is the case with
\ \ *
Lake Melyille, ~
r *
The components of the velocity field are computed by using the definitions
' =
. s
ot -1 o Lov
J-— -—
et . U V=T (08)
A
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The wind stress forcing on the right hand side of equation (3.5) appears in the
form of three separate terms. The first term on the right hand side, (H Curl T,), is the
vertical component of Curl T, and depends on the curl of the wind stress field. The last
two terms on the right hand side —“r"" and T"‘ depend esunlnlly on the bottom
configuration o(_v.he basin and may be referred to as the 'bol;u}n‘ slope component™.
Since the problem %t band is linear in mmkf the stream function ¥, it may be

expressed as

r

. ) Vo e+ (3.9)

where ¥ is thé contribution from the curl of the wind field " sad ¥, is the contribution

N
from the bottom slope part. There can be other factors contributing'to ¥ such as ‘pre-s

ion, evaporation and drainage components. Such factors will be negletted for

cipits

the duration of this work.

lransﬁ normal to the boundary or the perimeter of the lake vanish (Pedlosky, 1979).

This col

tion of no normal transport implies that ¥ is a constant, or

Vixy) =0 ’
\ > .
on the boundary. f )
3.3. Method of Solution . (
! .
] In the steady state stream function equation (3.5) . *
Y M

u' v. |—vw| +umg) = o Moy 1 (eun 1),

ox

the last term on the right hand side vanishes for a constant wind stress that is used in
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_all the simulations in this paper. Using the linear formulation of the bottom stress

coefficient K (see section 2.1), we may write the first term of the left hand side of equa-
C -~

.

.
tion (39) 2
Ol o¥) = Kol o¥) = alv™? - ZoH. o¥)

Equation (3.8) now becomes

g 2 L -t -
O - TOH . OY + L) = "

(3.10)

After multiplying through by the square of the grid spacing & and expanding the Jaco-

bian terms and collecting the various terms, we end up with the form

oy (2sPH , B OH OV —
Lol e o
= PR W

9 adx
_ﬁfm ““1-4-’-0,

If we define the following,

7
CClxy) = ﬁ% +l-£-';’—“
.
E DD(xy) = .%% it
. ‘ N
Py = £y & Lo

then equafion (3.12) can be written conveniently as

b

(3.12)

(3.13)
'
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£97% - CClx,y) |u%] - DD(xy) [5%| +Flxy) = 0. @31’

& ' . P

The grid used for computations in this model is a single-lattice symmetrical grid &te
Ramming and Kowalik (1980), page 115). Although it is conventional to use central
differences in evaluating such equations, these often give poor convergences. In equation
(3.14), terms like CC(x,y) and DD(x,y) seem to act like advection terms (T.J. Simons,
personal communication) and conventional finite difference schemes are often inadequate
in dealing with the advection of variables that have steep gradients. Therefore, to help
the solution canvtrge,‘ such terms of equation (3.12) are treated as follows in the finite '

- differencé scheme ;

for CC{xy) > 0 a% = ¥(LJ) - Y(L,3-1)

v
- for CC(xy) < 03850 = W(L+1) - V(L))

for DD{xy) > 0: 5%1"- = V(LJ)- ¥(I-1,3)

for DD(xy) < 0; 52;— = Y(1+10) - V(L))
where s the grid spacing (uniform in both the x and ¥ directions) and | and J are the
spatial coordinates in the y and x directions respectively in the grid. The other deriva-

tives were cvaluated using ceatral di and the was cased by the pro-

cess of successive aver-relaxation of the finite difference scheme (Simons, 1980). *

\ . . - ° N
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3.3. The Input Data

The bathymetric data for Lake Melville were obtained from Canadian Hydro-

graphic Service chart number 5142 with scale 1:100000. A grid of mesh size 1.9 centime-
ters corresponding to a spacing of 1.833 kﬂnmeun was drawn over the chart and the
depths Hyy read off at all the interior points of the lake. At the boundary and land
. points, Hy; was set equal to zero and the small islands at the nortbeastern end of the
lake were deleted. In order to eliminate computational instabilities that Eni;ln arise

Trom shallow depths wjthin the donmin of integration, all depths that were greater than

zero but less¢han t

depth profile (3\fesented in Figure 11) was then smoothed by using the formula (Rao.

and Murty, 1970)
~ Hyy = (Hyp + Hyy + Hygg + Hyyy o+ 4H) /8. (3.15)

This procedure left most of the depths over the lake relatively unaflected.

The smoothed depth profile of Lake Melville is given in Figure 3.1 and has a con-
tour interval of twenty meters. The deepest part of the lake is in the northeastern sec-
tion, whereas the shallowest part is on the western side. The depth gradients are much
greater along the northeastern lower shore than anywhere else, and in fact the whole
northeastern half of the I'h. is quite deep with some depths exceeding 200 meters. It
will be shn'}that such a depth profile,exerts a stroog influeace op the circulation pat-

-
tern. A= . Lol

nty-five meters were set equal to weu«.y.ﬂve m'.m ‘The -I:olg'
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3.4. The Results of the Model

. Meteorological data for the period 1955 to 1980 from Goose Bay Afrport indicate
that, the two most common winds are the westerlics and the southwesterlies. In view of
the available meteorological data, a wind speed of seven meters per second corresponding
to wind stress of about one dyne per square centimeter was chosea for al the simula-
tions.

Figure 3.2 shows the stream function contours for a southwesterly wind and Fig-
ures 3.3 t0'3.5 illustrate the circulation pattern for a westerly wind. For the same value

of the bottom stress coefficient K =0.025 / Hsec”, it is appareat from Figures 3.2 and
3.4 that v,h_m two wind directions give essentially the snﬁe ove‘r-ll circulation pattern.
In view of this, a, westerly wind was chosen for all subsequent calculations..

The bottom stress coeflicient K ranges in, value from 0.01 / Hsec™ to 005 / Hsec™
for the Great Lakes (Simons, 1980). A vlhle.;o,( 0,025 / Hsec™® was chosen as a reference
in order to see what effect, if any, was created o the circulation pattern by different
values of this skin coeficient. As is clear from Figures 33 to 3.5, the different values of
K bad virtually 5o efect on the position of the gyres in Lake Melville, altbough a
chaoge in the value of this bottom stress coefiient did affect the stream function values
and bence the current values directly. Table 3.1 shows the affect of different values of K

on the maximum computed current %

K (sec)  Maximum Total Current in cm/sec

0.01/H . 10.60
0.025/H 1405
005/H & 037

. - Table 3.1 : Maximum value of current as a function of K

In view of the lack of field data from the area, a particular value of K cannot be deter-

mied from the simulation results and hience, the-precise magnitude of the currents can
R 2 N
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Dot be the primary concern. However, the second value in Table 3.1 (above) gives max-
imum currents of an order of magnitude similar-tothose found in the Great Lakes and
may be the most appropriate one.

The circulation pattern consists of one main ;yfe covering most of tEe lake and o
smaller gyre in the western part which is considerably smaller than the main one. There
is also some evidence of a third gyre along the lower shore of Lake Melville which i nar-
row and elongated. The main gyre rotates clockwise as does ihe one'in the western end.
The gyre slong the lower shore of the lake bas an ani-clockwise sense o rotation. The
lagk of field dah does not allow -any verification of these resulu however eommumc-uon,
with a local ﬁ:hemnn indicates that the currents |n Lake.MelnlIe are :nnms'.*ﬂ. with
these results (private communication with Mr. M. Best). .

Comparison of Figure 3.1 with Figures 3.2 to 35 illustrates just how remarkably
the streamline pattern is determined-by the depth profile since the relative dil_'mion: of
the currents follow from the approximate balance between the total gravity force gHyn
due to the surface slope and the local wind stress because the Coriolis term is relatively-
small. Since the total gravity force is directly proportional to the local depth, it is small
in shallow ‘areas compared to the wind stress and the [m’mias here allected by the same
wind stress causes the shaflow water currents to be higher than in deep water. The for-
mation of the convergence and divergence zones due to the Ekman transport near the,
lower and.-the'upper shores respectively also contributes to this. However in deep water,
the prissuresgradient dominates because of the Coriolis term being small and a return
flow is evident (Figure 33'which imtypically weaker than the coastal currenits. Such a
pressure gradient results also from the wind setups at the downwind end of the lake, as

well as from some from Ekman ' ports to the right of the wind (in the

northern hemisphere). Thus the currents are larger and in the direction f<the wind in-

shallow areas, but smaller and against ‘the wind in deep water (Figure 3.6).



> - £

-38w

_29s H/SZ0°0=N SS3ULS WD1109
. N ®/"L 40 ONIN 1WILEIN
3181S 10U3LS

y © pUE §/@ £ Jo puim A(315om © J3pUN NUIS-APENS 10] FIWAIMD [BAUOZOY ¢
e i -~ s

.25 Hfeg00 = 3 Jo 1sIGe0 ssans momoq

og am3y




-39- ' . ]

CHAPTER 4 : THE TIME-DEPENDENT BAROTROPIC

MODEL OF LAKE MELVILLE

[y

&
’

A1, Introduction , ' .

A time-dependent homogeneous model of Laké Melville is the next ng;}.p- in terms

of complexny and ‘helps ope nndemand the time resppns! of ‘the Iake asa I'uncuon of

an.nosphenc forcing. For this parucular\mudel the stream. functmn approach was found *

to present numerical-di \x like a ‘numerical drift' fo.the Gauss-Seidel iteration pro-
cedure used. In order to reduc\e\such ertafs, a solution basid on the time integration of

the fnite-diflereace forms of the p\nmmu equations was chosen. Au examination of the

energetics of the systemn helps in idbatifying the dynamie mechank ible for the

variatlons and fluctuations in the lal e&mpzl’liu which tell us how and when the model -

approachesy sleady~slal! This mod is a free surface one whlch means v.hat the surface
waves.are present in zhu model as ppposed to the sleadyqlala model of Chnpler
s

3 VAN they are not. The equations of volume transport for such  homogeneous sy>-

tem are given by equations (2.14) to (2.16).

o

-
- Motions in lakes can be better displayed if the amount of energy contained in the

4.2. Total Circulation Energy for Homogeneous Basins

is inVesti In' parti the spincup dad spin-dowd times < b be

drduccd from l‘e energy considerations and ‘certain basic oscillations examined. -

Y . ' #
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"
The total potential energy in a homogencous basin is given by the area integral - ~

I

PE. = [ 2" dA (4.1)

. and the total kinetic energy is given by the volume integral ) .
Al

KE. = ]v%[lﬂ + Vi dv. L (42)

The (6% enery in the lake may be expressed aa the sum f the total Knetic energy and

the total potential ¢nergy, or__ . F =~

i Total Edtjey = [, %q? dA+ jvg[u1 + V4V 2 » 43)

] ¥ %
“where these integrals are evaluated aumerically. ‘

43, TheMethod of Solution
.

» e

43.1. The Staggered Grid
The variablesrare defined on a staggered grid representagion of the Richards:m‘lypc
. ‘:n;rl their relative positions for computational purposes are shown in Figure 4.I. The
hydml,-n‘n}niux equations of volume transport are evaluated at time steps TAt where T

. = 0,1,2, and At is the time step. For the grid, the mesh size is taken to be the

£ same in the x apd the y directions, ie.

’ Ax == Ay == § = 1.833 kilometers

(Y i

A s

.4
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V(I1,d) defined at point o .
in grid square above.

Figure 4.1 ; (a) the staggered grid representation of variablesy (b) the grid square.
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¢ ¥
4.3.2. The Boundary and Initial Conditions -

The wind is turned on at time ¢ = 0 and the initial conditions
N nlxy.t) = MPxyt) = MO xy,t) = 0 for t<0

are used. Since we require that the component of volume transport normal to the boun-
dary be vanishing, the boundary condition
v

Fi(x.pormms = O on the boundary
7

-~

is used for all ¢.

4.3.3. Numerical Solution of the Equations

The‘zime step in this model is restricted by the Courants-Friedrichs -Levy criterion
/)

JS

(4.4)

which requires that the inequality (Simons, 1980)

be satisfled for numerical stability. For Lake Melville, l.he largest time step that can be
used is about forty seconds. As a matter of convtnlence, a time slep of thirty seconds
was selected. /
All derivatives are evaluated berg using forward differences. The time extrapolatida.
proceeds by predicting the surh:e elevation  first and then the velocity components by

utilizing the most recent previously computed value of each variable (Simons, 1082).



-43-

4.3.4. Prediction of the Surface Elevation

The finite difference form of the continuity equation (2.16) using forward differences

is found to be

PS4 =

ﬁ{n [MWLI+1T) - MO - %|M"‘(I+I.J] M . (48)

Rearrangement of this equation yields the form

o ] (8
- %uu"'u.ul) LML)
+ MUY(+LY) - ML
which is iterable in time.
4.3.5. Prediction of the Mass Transport Components
The atum equation in the x-direction, equation (2.14) can be written in ity
finite-diflerence form as
B
-AITIAF"(I.J)‘*“ S ML = (ML (1.7)
- Bl
RO 3 [T
R 3 T
e ‘ -,
Upon rearrangement, this equation becomes w .
i
ML = ML) + S ML ")
a8l - s

- AYKMMLI) + AT
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-

g v
As is clear from Figure 4.1, the x and y compounents of vohlm:‘ transport are computed
on the adjacent sides of the grid square. In order to use equation (4.8), we must first
compute the y component of volume transport at the same point by using the simple

averaging formula

Moy o LMoL 4 M 10 . (49)

v+ MYLI) + MUYI+1,0))

before computingathe value of _M"‘(l,y‘,* ak

The y component of volume lran&n, is computed in a similar way. The finite 4

difference form of the equation in the y-direction, equation (2.15) is found to
be .
ﬁ[mﬂ’u,w A M"’(I,J):] = M % (4.10)
- Bli-10) - i+ ‘
= [RMOYLI + [T .
. ! i
Reéarrangement of this equation yields the form
! ML)+ = le(i,J)' - At ML) e L)
# - a8y g) -+ e
- AUR-MYYLI + AT L) ‘

Because the x component of volume transport is evaluated at a different point relative to

the y componeat, an averaging formula of the type

ML)+ %M*‘u-n.;] + ML)




= -45- u i »
+ M1, 34+1) + MOYLJ4+1) + &

must be used to compute the value of MUY to be used in conjunction with equation
(4.11) above. ’

4.4. Results of the Time-Dependent Model

44.1. Response of Lake Melville to Wind Forcing
The current vector dia‘rams‘nf Lake Melville are shown !ran/v.h}‘onm of the wind
ot time ¢ = 0 to near its cut-off afte minety-six hours in Figure 4.2, The current pat-
tern closely reseinbles Figure 3.6, especially from forty hours aad onwards. From the dis-
cussion in section 3.4.2 then, in around. forty hours the model approaches stendy-st:;.e
where .lhe depth contours determine the magnitude of the currents. As is clear from
“these figures, the circulation pattern changes little throughout the forcing period.
Currents are simulated as running downwind along the upper and the lower shores and
npw'ind in the interior of the lake. The rupon!e.nf the currents to the wind in the shal-.
low regions (i.c. along the shores) appears to be faster than the response in the deeper
areas.  For this time-dependent hombgenepns model, the currents near the shore con-

stf:uiing a ‘coastal jet’ phennména are part of whkl, is known as the ' quasi-static

" response’ or nmb\t flow. This is especially doinagt near the shores during forc-

ing and is due to the ion of the and di zones due to Ekman

transport. Ehtnc! of ehis s found in Figures 4.2(a) to 4.2(d) where the ciredjation pat-
tern adjusts to wind forcing in the interior of the lake (i.e. in the deeper ateas) later
than it does i shallow areas, poar the goast;

The basic circulation patterh ot oAl gyres.in-the upper and the lower

parts of the lake. The uppe} gyre has a clockwise sense of rotation and covérs most of
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. Figure 4.2 ; ﬁesyqnse of Lake Melville to wind forcing. The wind acts for four days or

ninety-six hours from the west.
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JIME (HOURS) = 20
WESTEALY WIND OF 7a/s:

TIME (HOURS) = 40
WESTEALY NIND OF 7a/s

15.0 on/s =

—




. WESTEALY NWINO OF 7w/s

-48-

O

“~
TINE (HOURS) = 60
HESTEALY 'n('u?r T/a

TIME (HOURS) = 80

(c)
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the basin with the return flow centered along the talweg (the line joining the deepest
points along the longitudinal axis of the lake) of the lake ;vhere the pressure gradient
dominates over the wind stress. The lower gyre is narrog: and elongated and has an
anti-clockwise sense of rotation. Againblhe return flow for this gyre (as for the upper
one) is along the talweg of the lake. A couple of much smaller aaticyclonic gyres can be
seen at the western end of thofpke which probably arise fram higher order efects, how-
gver hese gyres also show up in the steady-state model (Figurés 3.1 to 3.5). The loca-

tion and sense of the largest gyres though, is consistent withj the bathymetry of the lake

(Figure 3.1) (as for the steady-state model) in that th‘ey are pentered around the areas of

the largest depth gradients. o

4.4.2. Response of Lake Melville after wind cut-off i
After ninety-six hours (of four days) of wind forcing, model wind stress is cut of
and the spin-down response of the lake of begins. By this time, the lake had reached

equilibrium for a bottom stress coefficient of K = 2022 m{' (see Table 4.1).

Rigure 4.3 illustrates the decay of the circulation pattern. Along both the upper
and the lower shores of the lake, some evidene of current weakening and subsequent
reversal is apparent one day after wind cut-off (Figure 4.3(b)), thoughg eurrent pat-
tern-over the rest of the lake does not respond as rapidly as this. Beyond a day. after
wind cut-off (Figure 4.3(b)), the n:;:l of the basin starts to respond and large scale
Surrent reversala are appavent kpeciall; ,along the shores rhi{:; lead to eddy formation
in both ends of the lake. These drift somewhat with éime, and their formation and
behaviour can be explained from the point“bf view of the conservation of potential vorti-

city which is given by the equation &




Figure 4.3 ; Response of Lake Melville after wind cut-off at ninety-six hours after onset.

Note that the scale has begn changed in Fi

igure 4.3(d) in order to better illustrate the

currents.
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where ¢ denotes the vorticity and Fy -and F, are the x and y co;xﬂems' nl Lhe nel
horizontal stress. The vommy distribution in the basin is illustrated in F,;ure 4 4 bmh
during and after wind forcing episodes. Duriag the wind forcing episode, lhe fuid crosses

the depthr contours in the downwind or the far end moving rrom the shnllﬂw regions of---

the Basin to deeper ones. This action contributes tos 2

,vol‘ the
vortex lines and produces the posflive’_eign én vthe left hand side of this equation (4.18). ,
As aresult, a ;;;:sitive depth integrated vonicit} results at !I!e far end of the lake. <At
the upwind end of the lakk, a negative vorticity is generated in a like ‘mxnner because

the fluid is forced from deep to shallow parts of the lake. Such a mode of mornn is

part of what can be best described as a ‘vorticity wave! which is ot pmpdm; when ’V

the: wind is steady. This type of a wave dépesds for its exlstence on depth variations

and the earth's rotation and is related to the vortex stm:hmg phenomenu By \Lht

stretching of vortex lines on a rolatln; earth therefore, cyclonic vorticity is generated at

the downwind end and anticyclonic vorticity at the-upwind ead. At ghe far end o ihe

lake, the vorticity i

reased to the right of the m.t and decreased to the lft
because of the conmbuuon of the planezary vorticity (the Coriolis effect) to Ih:s wind-

induced vorticity. The change of vorticity here is positive on both sides al the talweg.
’

At the upwind end of the lake, the opposite oacurs with the vorticity, being strengthened
: & e

to the left side of the talweg and weakened to the right of it! Thazefore, on the left df

N - o
the talweg the vorticity was originally negativeso it will first weakén and then change

sign, but on the right hand side, the vorticity was already positive, so it will strengthen,

Now the line that separates the cyclonic and the anticyclonie varticities (which

'l"yt

[N %




"“( » . -
.
.
L
.
- y
%
..
i JEm——— @ " . .
. ?
r
- . ;
. & .
— . Y e
Figure 4.4 ; (a) Vorticity distribution associated with wind Torcing inga basia ; (b) vorti-*
; : % 3 :
s Jcity distribution in a basin after wind cut-off. (after Csanady, 1982) -
’ - . d = . * "
‘ : *
- & i .
: 0 . Y
. 9 /
- ~ :
- - o
v 4 g
oy ) ‘ /
. ¢ ~ ! e
§ * . , .
, N *



' ALY & ,

coincides with the talweg, Figure 4.4(a)) begins to rotate counter-clockwise, or in other

#ords, the gyre pattern of the lake starts to rotate cyclonically under the influence of
the Cfariolis parameter after the wind is 'niuhtd off until a short time later, the pattern
appears as that shown in Figure 4.4(b). In the :ue‘\o.l Lake Melville, such a rotation is
not more obvious because of the dissipative effects of l;ounm friction. >

'}hr behaviour of the free surface of Lake Melville is illustrated in Figure 4.5. Dur-
ing the period of wind forcing (Figures 4-5(a)flo 4.5(c)) the water starts \n)jie up at the

N—
eastern end &f the lake as indicated by the positive values of the surface elevation here.

‘At the western end of the lake, the opposite is true, and the surface elevation is

.
“lowered. As the wind forcing prograsses, the rotational eflect of the earth causes water

piled up at the eastern end to move southwatds. These effects, are small since’ the
Coriolis parameter exerts little influence i narrow, elongated basins that typically have
» magmum width of less than one Rossby radius guch as Lake Melville. The rotational

bebaviour of a more circular basin would be more obvious.

Figure 4.6 shows-a plot of surface elevation as a function of time at two selected

points diametrically opposite to each other and at the opposite ends of the lake. The

/

oscillations are 180 degrees out”of phase with respect toeach other. The external (or

the barotropic) Kelvin wave (see Csanady, 1967) is apparent from the oscillations in this

plot which bave a period of a little over 1.5 hours. This is in good agreement with first
a -

order calculations (for n==1) which also yield a period of slightly over 1.5 bours usiog

the Merian formuls 4
e S
A
T- m’:’."‘“-; whete am1.23,... ) “.14)
) .

% F 2
where L is the Tength of the lake of approximately ninety-five kilometers god I is the

nvenxe'deplh of Lake Melville of about cighty-six meters. In this particulariease, the
f : b e A

barotropic Kelvin ‘Wave vl up and dBwa the lake with a phase speed of a surface. |



; B :

Figure 4.5 ; Contours of surface elevation of Lake Melville in centimetery during and after
the wind forcing episode. The wind cut-off is at ninety-six hours after onset. (all values
multiplied by a factor of 10D) .
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gravity wave given by 5 %
C=[gH) v (4.15)

(where H is the average depth of Lake Melville of eighty-six meters). The ‘fine structure’
’ :

of the peaks may be due to higher order barotropic Kelvin wave oscillations (i.e., for

n>1) in the basin.

—

H

4.5. Energy Considerations - .
* A reasonably good idea of the spin-up and spin-down times of Lake Melville can be
obtained from the energy considerations—Three values of t,hc bottom “stress coefficient

were considered and the mpnnu times deduced by taking u.e e-folding ¢l n:’ “The values

ul'e tahulaled below;

K (sec’)  Spin-up tgme (hours) Spin-down time (hours)
-~ :
0.01/H 72 93
: 0.025/H 45 38 N
_— 0.05/H 25 . 25
. ‘Table 4.1 : Spin-up and spin-down times of Lake Melville
1 computed from the total energy in the
o model as a function 4
K.

5f the bottom stress coefficient 'K

.
The spin-up and spin-down times vary invérsely as K, a relationship that follows from
the fact that in these rehonse processes. a high K means greater friction- and lower
adjustment time, According to Simons (personal communication), the spin-up times for

an Ekman suction model of a constant depth aré given by the expression ~

39 where His thie mean depth of the lake
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where a is t‘he stress coeflicient as discussed in section 2.1. However, | have chosen to
use the Ekman depth instead of the mean depth of the lake because the region directly
aflected by vertical friction is of the order of the Ekman layer thickness (Pedlosky,
1979). The spin-up times given in Table%.1 for the model arain reasonable agreement

with those for an Ekman suction model of constant depth which are given in Table 4.2

befow ;

. [

- K (sec?)  Spin-up time (K in hours

Table 4.2 : Spin-up times for an Ekman suction model of
constant depth. Dg is the Ekffan depth for Lake ,
Melville‘of thirty-seven meters which has been used i~ (g

computing the above times instead of the mean depth .
depth of eighty-six meters (see text above).

" The Ekman depth is compuud by modifying equation (9.13) in Pond and Pickard (1078)
fqiavmd drag coefficient of Cy=0.002 (which has been ns:d in‘equation (1. 2)) and get-
ting the form
“nw
where W' is the wind speed of seven meters per second and ¢ is the, latitude of Lake 7.
Melville of fifty-two degrees north. This equation guves ar Ekman depth of thirty-séven
meters. The plov.s of total energy against time for 3 wmd forcing episode lasting ten
days for the first tvlo cases, and ﬂfteen days for the third case are.presented in Figure
4.7. Since most of the energy in the lake is in the form of kinetic energy, the plotg of the
Kinetic energy closely resemble thode of total energy and the kinetic energy is about a

thousand times greater than the potential energy (see Figure 4.8). The '@jp' in the frst
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w0 plots may be due to some kind of 2 fictional sdjustment or sesond ordet Hects
- that are sot elesly resolved. )
The plots of potential enérgy ngun!f. time ra Lht same values of K are shown in
Figure 4.8. There appear to be two types of gmllmou present in these plots. The first

type is due to the barotrgpic Kelvin wave and appears as the finer structure. The period

Consider

is eqifal to the barptropic Kelvin wave period and ean be explained ax-follows

a motion of the form "

:

nmA+ E\lin at + C singgt ‘(4.1

i o,
where A, B ad C are the fargest surface =n=m.on smplitudes'due to. the wind m-up,‘

the Kelvin. wave, and'ds waI be showg, the nelr-merthl omllmnns respecnvely Lel the

external Kelvin wave o the inertal oscillgtions bave frequencies of o; and” o A ¢

Fulu’l!r transform nn.lylu on Figure 4. B{b) mdlc tes that the values of these frequencies
correspond to. penad: ‘of-1.8-and 1745 hours lap!cuvclyu From section 4.3, ‘recall that
potential energy is proportional to 72 If we square both sides of equation (4.16), we get
_the expressidn ’ .

)

] . ' . .
e A*4 2ABsinost + 2A Cuinoat y J© “_mﬁ. .

+ 2B C sinoyt sinogt + B? sinst + C*shaozt.
The wind set-up is dominant at the surface, and its suplitude A is much greater than
that due to the barotropic Kelvin wave ﬁlhe inertial oscillations, esl.im’ned to be one '
contimeter. From the Pourich transfofans, the ubinodal Kelvin wave period is observed
to be nbc\u. 18 houn Tlns value is about the llm_; a9 that tvmpuled to a first. approxx-y
mation from Merian's lormull (equation’ (4. ll)) From the contours-in Fl;ure 4.5, the

d litude is Almn 0.5

A second lyvc of afi oscillation. which is a

v \ nearinertial one, which from the Fullner lnnsform has a yenod of 17.5 houls. has an
— -




! [ 8- . -
e . i L J 2 : & A
amphmde ‘of around 0.1 cemmietm The inertial penod is usn:lly gven by E A e
~. oy ¥ _ . § =
. : * . ‘ .
Tinertat = ZT" a7 F (4.18) -
‘ > : . > ,‘ . :
which wasks out to be about 14.7 hours for Lake Melville. The I7.5 kiour period is the ~ . _.

inertial oscillation but probably- has been shifted by frictional effects which degend on
the water depth (see equation (220)). . # -, ~ . .

~ ; B . “ B "
When we. put the fréquencies,gad the, amplitudes ia this, cquation, we do notget

" the ‘'wave packets’ that appear in Figure 18, however is #ill be shown Inl;r, this’ equa-
P

“tion works:for the two-layer model. Th{ difficulty here wmtld 2ppe ho that the hﬁ

e Tl vionally shifted. Anerual penod Speads on the local water depth and that the 1735 hour

p:nud is l.herefore an average value. | leel that Lhe use o{ this averbge period is ot mie

qnm to reproduce L‘é wave pMkeL structure of F‘ugure 4 8 wnh equnuon (‘ 7). 5 2,
. . , . , . 3 i " ar
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51, Introductlory -

* (o many fiords and estuaries, the density structiire consists or two layers as is the
LI _ \:ue‘ with kaq Melville: Such stnuﬁ:anan yv'cs e to FinternsBwaves:and soiier
. ' phnnnmennn of a Baroclisic nalu:e‘not found in huyoxeneous b\ma or barotropic sys-
¢ mns A um.hyu model it s therefore one step further up in complexity in the set of.

* three models of lee Melville consldeﬂ_hem COR W * .

. S Aubough ali models are complicated ta use in circulation studies because of

various complications mentigned in secuon 5.1, data acquisition and analysis by Bobbit
¥ nnd Ahnhe-rl,nmz) iinplesthat the stratifleation of Laké Melvlle into a0 oo Iager
* 5ad w lower one is retained lhmughout the year (unlike the Great Lakes) and hetce,
 bomokeacous models of the lake are probably inadequate-in rrprcstnlln; the dynamics

® ' f the lake. The equations relevant to such a twolayer model are given by equations

PPNy A I O 3

. “Total Clrculation Energy for Two-Layer Basirs d %
. . s b k i
4 Foratwo-layer system, the total porential energy is given by - { 4

. EEC Y -

PE =] lm’ W ONA + [ an' Al (6.1)
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combinations

/59 : S 4 '—_

3 . N
5 g & 1 .

. i o 2
where the first and the second inl\t;nli refer to the upper and the lower layers respec-
oy \

tively. < - » %y
}

- - - 5 5 =
The total kinetic energy in the like is givea by (Yuea, 1960)
. :

KE. = [2£ (U V) dv‘)ij é—(u’ 24w e 15.2)

: . ’ . N N
Again, the-frst and the second intexn‘s refer (o te upper and the lower layers respee-
tively and are evajuated numerically. The toial enefgy in this twolayer system is

A

merely the sum of the total potential energy and the total kinetic energy.-

' 53. The Surface and Internal Modes of a Two-Layer System

According L Proudman (1953), the solutions of the equations (2.22) to (2.27) are *

, characterized by a number of wave-like modes or propagating didMances of the surface’

and the interfacial Braviood n and 7 ively. Given the coupling terms like

. 4 -
and 7' in the equations of a two-layer system, these modés are not independent. The ,

physical i ion and h ical formul.

are’ greatly facili d if wibear .
m 2 2 =
combifiation is made of the two sets of equations in section’2.2. Such a combination wame

. » - .
considered by Veronis (1056) and resulted in the transformation of the cquations of a

: . -
two-layer system into an equivalent one-layer set as follows : suppose we use phe linear

. U (1= 40U+ U . (5.8)
. * 5
s a4 a V=gV ¥ .

a e (1-Bln-n' )+ .
I i / . 1 7
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F{ = (1-B)F +F
where 5 (i = 1,2) are the roots of Stoke's equation

A= B (- =0 T (54)

i

b+ b 0
& VO e M

Let U and V denote the x and y components of volume transport Tather than the depth

b=

averaged Wlocites for  this section qply. Equnm' (222) to (2.27) may be

" transtormed into zhe three equations

Vg .n.%’:_‘ F® i (5.8)
-\ & s - - N
- - _41 . . ;

. T' MU= .’.:‘.,,, ¥FP * (5.7)

» o oU, oV, % :

] A

K (58)

. : \

where the borizontal stresses F, (Csanady (1908), notation) may be set o tero so that
£

the free modes can be looked at more easily.

* Consider the non-dimensional ratio ] ' * toe

.

ys small in practice (of the order of 107), the aquare root in
. .

L
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equation (5.12) can be expanded in Taylor Series. This enables

5 us 4o write the roots 4

(5.10)

¥4 Ly 2
Byl 4 e - —+ 0(F)
/ F I

e TS @

If we let the depih b in the depth averaged equations of volume transport (5.13) to

(5.15) be replaced by _

.
. by= < It (5.11)
s0 that the equivaleat depths are : Y )
: ~r
by=h+b' +0() . (5.12)
hb 2
by ey +0(¢%)
. .
It now follows that the displacements m, (i=1.2) become P
: e
- l_h:_hl“_ + om | (503)
g ' o N 2 2 ’ i
- LSRN LR ALY ) s
ram - Ben (14 o *J—h‘;‘n}f—""“’ (5.14)

m and m in equations (6.13) -m{

class of ‘pure’ modes results lr

(5.14) ure determined by the nature of the lake. A

ﬂ.‘- 0 and n,p% 0 |and from equation (5.14), it fol

‘o= o !

lows that

-
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L-|+-—+qm- (5.15)

n b’

the solutions for which include waves propagating with t&e phase velocity ¢

.
B

: § - C= Vi ‘ (5.16)
.
given for these modes by .

-

CF m gl + 4 )+ 00> ¢ (5.17)
: " A7)

. -~ e
where b and o are assumed o be independedt of position and the whve is propagat-
ing nlon; a straight wall. From equation (5. 17), it is |mmed|ately clear that lheu mndes

are virtually indistinguishable. from those found in homogeneous basins. Thése are the

““barotropic’ modes which include the longitudinsl and the rotating barotropft Kelvin

waves as well-a8 the inertial oscillations. These mm{es are also characterized by a max-

imum displacement at the surface. N 3
. X . s L .
If now we have the bituation where 7, = 0 “4nd n.#0_.we get'a second class of

‘modes characterized by s -
£ . . = .~
: W o ’
L G I (5.18)
) . i 5 .

! 3 c,-,/%“h,u)m) - (5.19)
) RS

which apply strictly to a stratified system (where b and b ate assumed to be constant
for simplicigp) since il ¢ tends to zero, these modes vanish as well. Here, the max-
imum displacements occur at the interface between the two layers. The wave propaga-

tion velocity C, as given by equation (6.19) is condiderably smaller than that associated,
. .

-
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i
with the suface modes. These are the baroclnic moded'for » two-layer system and
O waves and the Poincare waves.
For iml and im3, the set of equations #h2) to (2.27) yilds two sets of solu-

tions. The two-layer soldtion may_be obtained by the inverse tragpformations

_ M mthn

3 T 2 (5.20Ka)
’ s
- % ,
v = (1= T AV E (5.208b)
“ -
< >
U'= (U, - U,)lI e h, ¥ (5.20¢)
b’ Uy - by, - 4
O g (5.20%d)
I3 . ‘ N
i L

The solutions for ghe y-components can be written similarly.

5.4, Method of Solution
o L e omd
541 The Numerical System
Using the fnite-difference expressions of the first order derivatives given in section
23, the eqistions of motion for tiffwolayer system gi\en by equations (22) to
" (2.7) are transformed by Buite difigrences int6 forms suitable for numerical um‘._unu by
the procez_ziltenuon. The form of centered difference schemes is suitable for a grid
- systeny’like Richardson lattice (Platzman, 1003) where the continuity equations may
o ev-ln‘.‘(‘ﬁc even time steps 208, where nm=0,123,... Let U represent some even
'mulﬁpl’e‘ of the lim‘e_ step At. In this |;id (Figure 5.1) tl;o mesh size in the x and the y

dimti{onu is the same, l.e..
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Ax = Ay == 5= 1.833 kilometers
. 2 ~
, . .
and all grid points that represent similar variables are displacetl two grid spaces apart.
’ s
The relative positions of the variables are as shown*in Figure 5.1 and the variables are 2

evaliated at the followidg points (Yuen, 1969) "
" e & i)

i 4 . . .
7 valies at M = even, N = even and T = even (s21) -

U valies at M = even, N = odd and T = odd

4 .
Vvalues st M= odd, N = evenand T =odd. - E [}
/

&

Although other types of grids may be used, for example one where all the variables are

) computed at each grid point (as use& by Jelesnianski, 1984), this particular grid was

“chosen over the Jelesnianski-type grid because the gradient approximations have erfors

. proportional to 8 which are of a lower order than the errors proportiod®¥*to (28)? for the -

grid uséd by Jelesnianski.

- In ing the variables in accordance’ with (5.28), M, N and T will denote’
the even space and time indices, and M1, Nl and Tx1 the odd sp‘ue and time
indices, ) ki ’ ) T
" The boundary and the initiai conditions are the same as those used for the time:
dependent homogencous model (see section 4.4.2) and are applied separately to each
Iayer in this two-layer model. L ,

" . .
a
. b 1
ceS .

. ; ' ' ~




54.2. Conumm.y Fquluon:

The tqultwn uf :oullnm'.y (2.24) and (2.27) are evaluated before the other
eq.uciou in the solution z«bnique used here. This requires that all variables be zero at

some initiak-time.

Let ¢ represent scfe-even multiple of the time step At. Consider equation (2.27)
in its uite difference form

(o:_‘rm__(ﬂ;x_u._x_(g,;f_',.m 7wy

- = 2 3
Now'lt (1 )' is known from the pnvio\u time step, then the rearrangedlent of a cen-

wral diflerence expresson for (B2 )+ gives
\

(7 14 = 20y B )‘*“w‘ P  (523)
. e
Sumlarly. the remaining continuity equation” (2.24) may bé evaluated if 7' is known

fmn a previous time step. Using the relation
(#2222 et (g (5:24)

o " a ] -
along with the expression (5.25), the equation (5.3) is finally evaluated in accordance
T N .

(ﬂ‘_m_.l.)um'_’_,(ﬂ;_:lj_)uu_tﬁgl)w» " ] / {5.8) ©




5.4.3. Momentum quutinns 5 \

The dynamic equations (z 22)-and (223) can be writien s

u an
ot = (V) - 1(7,;);+ (R

= () - st 20 b (- iy ’ s

where t stands for an even multiple of the time step At. The stresses (F) and (F) are

given by ~ ‘ ] ‘
. (P.)‘=(:—p')‘ ' ‘ (5,28)
. () = % (B : U“ ) : (5.20) —
B T LY n' (O ) (Ff.:w)

In equations (5.28) to (s 30), the interfacial and bauam stress coefficients () and

7. are defined by equations (2.28) and (220) respel lively. Now, rearranging ce
difference schemes in time as

. T e e oy .
) Wit S e Mgy s (5.32)
' ¢

Lo ¥ - =
and simply time-stepping with .U'* known from the previous time step, equation

1
5

©(5.20) /(:l ’

+




‘ -
along with the surface and interface elevation values as discussed in section 5.3.2.
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(5.20) is evaluated if V**4' and n**%' are known. V'*% is obtained by an expres-
sion similar to (5.23) and 7'+ is known from the Fgpults of section (5.25) at even._

time steps. Similarly, the dynamical equations (2.25) and (2.26) may b:*vrimn as
. :

4—-—‘ = ) - TR ) + () - (R (633)

.

%r -l )‘-zT ‘,,l‘—!(h—)(a"’ FHED-ES ) (53)

where i, is defined as for equations (5.26) and (5.27). The time stepping is given by the

sc hzmvls

‘ ‘.

N (u' ,.m,.,m( ).+(U. oo )
“
W ,‘u.am(%”(v, oo (5.30)
LAY

' 12
5.4.4. Summary of the Computer Algorithm - i‘i .
- ¥ .
< - -
In accordaice with definitians (5.9), all spatial derivatives were evaluated using

central difference schemes. Using the notation - +

FIMN, 'r) - F[y-(M 1y, x-(N-l)Ax t=Tal) (5. 37)

the hydrodynamical equations were put ml.o lmle dnﬂmnce forms, lltre, thc -l terms
were ‘introduced to' case trnnslumn into FORTRAN IV as rcqmrcd by the computer
" o

slgorithm of Yuen (1009, s waasdd ’

In order to put equnlmn (5.12) inta_its appropriste finite dlller!nte form, !.hn

_-' / 2\ . Y :
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o (7 Y 09 required by (5.21)as

,beforehand in thls-elder.—
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‘
expression for (%’(’-M,., was written as

1 '
A% [n[M.N+E.T] - n(M.N.T) (5.38)

’

{The first term on the right hand side of equation (5.17) was written as

" :
(ﬂ‘%‘u)mm = T‘(h' (MNHLT+1) U (MNALT+1) (5.30)
- b' (MN-1,T+1) U [M.N~I‘T+l)]
e ) et
s A
and the second term as
. . ° ’
o v , . . ‘
(‘T).)w,mﬂ = TS?"‘ N LNTH) U M-LNT+1) (5.40)
- (M+l.N,T+|) v R+ LNTH) .
R , =
where b’ bas been corrected for depth usiny the expression
7 B (MN£1,T+1) = DIMN£1) + 1 (MN£1T£1) L (san)
-, )
Here, DIM,N) is the thickness of the bottom layer initially at time tz=0. But 1’ is not
known at odd times Txl.

”
Therefore; we use the finite diference scheme to define .

‘ ( )munn' W[” (MNTH1) - o' (MNT)X- _1(5-12‘)

which gfves the vnmor oot tige siep T2 asuming that the vnlue.n the previe

ous time step T is knnwn Equnnun (6 5) is then evaluated for n since o/ 1”




e

Equations (5. 2'0)¢ lnd (6 27) lnu to be evnllnled in accordance with convention
(5.35). ‘l'lum;h U and V are both evaluated at vdd time Steps by using oqunons (5.31)
sod (5:32) in nddnum to equations (520) and (527), U nd V are evaluated at points

~
adjacent. to each other on the md pWe use the tqnuolu (fnn simple lnurpnluwn)
- - : .
~a ¥ . i 5 B
. - UMHLNT) = L[UMN+1,T-1) + UM+ 2N+1,T-1) . . (5.43)
° g ‘g + UMN-LT-1) + UM+2N-2,T-1)] .
- .
; ¢ ‘ . T e e
b aid - = ; Nl A
. e e s " s - #
% ) " e AV C g s M
. ) VIMN+1, 1-) = —|V(M+l NT—\) 4 V(M-H N42,T-1) (5.44)
: i ~ " + V(M-1N, T—l) + V(M-l N+2 1'-11| s
e * i
~ For equations (5.33) and (5.34), sm:lllr nr[ume&h allow the finite difference forms to
be written in murdance with the conveuunn (5.21). B2 3
8 / 0 \i" .
The derivatives are tulnaltd using cenlnl differences as * /
- . .
U 1 ;i s
(e hwnr = Soo{UIMN1,.T+1) - UMN+1,T-1)] (5.45) e
~ 28t
5 ' "y i 0 iy
< 4 :
¢y
av g o B / % J
(e hinr = ZrIVMHLNTEN - VMHLNT ) (5.40)
M. for the velocities in the upper\‘\ld'!zrer Inyerst. The gradient term for both ‘the s\ufn.ce
., " .oy ’ g = b . ‘
N “ and interfaditt #levations is y;ynrn as - a8 My v
N s . d
i P )
- 12"-)».».." AT N T e
% - - b . . <
' AR
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L e w’[w(M*.ﬂ-Nle»n(M-N.Tll
w5

final, iterable formi are

o (MNT42) = 7 MNT] -
5 %{h’ MNELOU (MN4LT)
. ~B (MN-1T)U' (MN-1,T)*
B (MENT) V' (MLNT)
2B (M-UNT) V! (M-1LN,T) I
"Nl
~ L 5
AMNT42) = nMN,T) + 1 (MNT+2) - nf (MRT)
. z :—;{bw,‘Nﬂ:) UMN4LT),
= BM.N=1T) UMN-1,8)
eupeintfvanNT o

- BM-LN.T) V(MALN.TY] \

\- "L"'l

B U(M N+1,T+1) » UM,N+1,T-1) = s y :
. +l— (wmnnvmumn.n

¢
[M-l N,T-1) + k‘l N+2,T-1))

-eBbpMNeRT) M

w 24tF "‘(u N+1T) - 200F M, N+t T

Using these finite difference forms in equations (2.22) to (2.27) the

7 (B9

(6.48) -

ons in ‘thelr-

s Ji v




e . - 5

s T e . %
V(M+1,N,T+) = V(M+1N.T-1)
) C : . v%‘wmn.mm; + UM+2,N-1.T-1)

+ U(MN+1T-1) + UMN-1,T-1)|

—:—lr;(M+2.N.T): AMN.T)

o + 2AFI(MALNT) - 2AF{M+1LN.T)
) -2 MeLN
»

U (MN+1,T+1) = U' (MN+1,T-1)
" b ALV (MHLNT-1) + V' (M+1LN4+2,T-1)

+ V! (M-LN.T-1) + V' (M-LN+2,T-1)|

; " 5TE[n(I\LN~..T) - n(M.N,T)]

S el (MR T) - (MNT)

-~ 3 '.!F,J"(M,N-'i»l,‘i‘) - 2F,MM,N+1,T)

V' (NHLNT+1) = v' {M+1,N,T-1)
(—|U' (MIN+1,T- l)+ U (M+2N+1,T-1)

. . +u (M.N—l.T—l) + U (MH2N-LT-1))

£ i In(M- NT)~'1(MNT)|

where

. FMNLT) = ‘%W(M,N,T) -0 (MNT)

T RMNT) = 10 (N

(5.54)



5.5, R-nll.- of the Model

. L, .4 )
83 N s f

) F,(M,N,‘l‘)—hl; ‘ .

— -~ . : .

5.1. The Velecity Field in the Basin -

Fof all the simulations of this model, a constant wind impulse lasting for one day "
was used. The velocity field in the upper layek is shown in Figuré 5.2 for the value ¢ =

0.013. Initially, the acceleration is in the direction of ‘the wind in the early. stagea or

" wind, forcing (not showp here) though in the: later stages of the simulation, the velocn.y

figld is affected by the baroclinic eflects in the system. ;
Plots of the x component of the velocity feld at selected points are presented in
Figure 5.3. It can_be scen from these plots that there are two'types of oscillations

present. The large peaks'are due to the internal Kelvin wave oscillation (the rotating

internal Kelvin wave) the period of which is given by (Csanady, 1082)

s_,.,_, - _.L__. 4 .
v 852 p, Ty v
where L is the penmeur of the lake whlzh is abom. 340 kilometers and b and b’ are

the average lhlekneuu of the upper and lower layers equal to ﬁh.een and sevenly-nne

meters respectively. It is ,pnmhle to take.the thicknesses as such because the un.mul

radius of deformation given by -

(5.56)

A

)
'



N
" |
‘
,;’ b L e .
L 2 "
¥ : L]

R 2 3 .
N ; ;
L 8 = = . 5
-~ Figare 5.2 ; Velocity feld in the upper layer at various stages in the simulation. The wind

cut-off is at twenty-four hours after onset.
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Figure 5.3 ; (a) x-component of velocity. at point (12,20) in the upper layer as a function
. of time ; (b) x:component of velocity at point (14,16) in the upper layér as a function of

- time ; (c) current hodograph at, point (12,20); (d) current hodograph at point (14,18).
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(where b _and b' are the average thicknesses of the upper and the lower layers of

fifteen and y-one’ meters respectively) is about eight kil rs and extends almost

to the talweg of the lake. From the simulations, this internal Kelwr}n wave period is
found to be about 55 to 60 hours and is in good spreement with a first. order estimate of
80 hours obt;ined from equation (5.55) above. The smaller oscillations have a period of
about 15 hours which is close to the theoretical inertial periégd of 14.7 hours vomputed

from the formula E T —

" Tipartat = 3,1 4 (5.67)
and may be due to such oscillations.
" . | Current hodographs (Ffgures 5.3(c) and 5.3(d)) for the points (12:20) and (14,16):
indicate that the current vectors at these points in the lake rotate in a counter-

clockwise direction since_the internal Kelvin wave oscillations (or the rotating internal

Kelvin waves)-are stronger than the inertial effects. However, the inertial effects a

|
apparent in these current hodographs since theytend to deflect the hodograph to the
right at various points. This is typical behaviour for the currents towards the center of ~

e 3
the lake and ag: ggests that the period of the largest oscillations may be of the order

of about fty to sixty hours. Along both the upper and the lower shores of the lake,
‘constl je! phenomenon (Csanady, 1998) occurs during tbe wind forcing episode (Fig
ures 5.2(a) to 5.2(d)). The nét current s in the direction of tHé wind and is part of the
{quasi- static’ response of the lake. A response in the opposite dircction develops afeer
the wind cut-off. ’ - ‘

The veociy ld o the lower layer i showa in Figure 5.1, The ety bere ire «
only about half as large as-those-in-the upper layer. It s clear from Figures 52 and 6.4

that the current directions in the upper and Iowercayen‘ are directly opposite to each

other in‘direuinn. As for the upper layer, the currents in the lower layer




Figure 5.4 ; Velocity field in the lower layer at various stages in the simulation. The wind

- cut-off is at twenty-four hours after the onset. .
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rotate cyclonically wnh a period similar to that of lhe fotating internal Kelvin wave.
This is illustrated more vividly by plots of the x compnnem of velocity and current
hodographs at selected points in Figure §.5. Unlike the velocity vectors in the upper
layer, the ones for the bottom layer show the barotropic oscillations due to the longitu-
dinal Kelvin wave as ‘fine structure’ in the curves. The fundamental barotropic Kelvin
wave period of about 1.5 bours is apparent from Figure 5.5 and is in approximate agree:
ment with that computed from the Meian formula (equation (4.20)) for n==l. Motions
in Lake Melville away from the boundaries in the upper and the lower layers display an
oscillatory character more strongly than the couml’ zones which are dominated by a
q\l:m-sullc response. The, fact that the internal mdms of derormnuon 28 given by
equation (5.56) is about eight kilometers means that coutmlly trapped waves do not
infuence lh’t circulation pattern much beyond this disun:.c. The motion away from the
bou‘ndaries within this internal radius of deformation is therefore dominated by baroe-
linic effects dlne internal Kelvin waves abd inertial oscillations due to Poinm;e waves
offshore. This also causes the pycnocline excursion to be the greatest near the boun-

daries and to decrease rapidly away from the shores (showa in Figures 5.8 and 5.7).

5.5.2. Response of the Surface find the Interface.
The contours of surface elevation of Lake Melville ar¢ shown.in Figurr 5.0 during
and nher the wind ' forcing episode. The numbers on the axes represent the dl!hnre scale

muluphed by the grid mesh size of 1.833 kilometers. P

As the westerly wind is applied to the lake, water starts to pile up at the éastern
end of the basin with the opposite happeniy; at the western end. Because of the effect of
the Coriolis force, the water is deflected to .lhe south until the surface slopes upwnr,d;! o
the wulheut’during the forcing episode. Figure 5.7 is a plot of the surface elevation as
a function of lime at two' points focated at the opposite ends of the basin. The oscilla-

tions appear to have o period of about 1.5 hours which.is the barotropic Kelvin wave
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Figure 5.5 ; (a) x-component of velocity at point (12,20) in the lower layer as a fynction of -~
time ; (b) x-component of velocity at point (14,16) in the lowgr layer as a function of time; -

(c) current hodograph at point (12,20); (d) current hodograph at point (14,18).
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Figure 5.6 ; Contours of surface elevation in centimeters of Lake Melville at different

stages i the sigulation. Wind cuteoff is at twenty-four hours from ouset. (all values mul-
tiplied by a factor of 100)
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pefiod where the interface displacement is roughly the same order of magnitude as the
surface elevation as implied by equatidn (5.15). At all times, there appears to be a quasi
geostrophic balance in the cross shore direction, especially near the shores.

The greatest infuence on. the interface of the lake is due to the internal Kelvin
waves, and the associated baroclinic effects at wind setup when the changes in the inter-
tacial elevation are un smplified mirror image of dhe surthce changes, This second dlaes of
modes s implied by equation (5.18). The interfacial behaviour is predo;nimny ofa
baroclinic nature bemg due to the presence of an internal rotating Kelvin wave whlch
propagates cyclonically around ‘the basin with aperiod of about 00 hours. The
wavelength of this Kelvin wave is equal to the perimeter of the basin.

' From Figare 6.8, the maximumedownward displacement at the interface is found to

the ngln of the wmd‘ The maximum upward displacement is to the left of the wind.

“This is an mternal -Kelvin wave of a Ia.rge litude ‘which

fround the basin and is apparent from the motion of the ‘zero' contour which moves

nmnnd lhe ba:ln (Flgure 5.8). The longshore of velocity is m

balance with the pressure gradlenl. as can be seen froi these ﬁg\u-es and those of the

velocity field in the upper and the lower fayers (Figures 5.2.and 5.4). The high pressure
is to the right of the current vectors in the nearshore zones so the ‘light to right' rule is

followed. \

L From Figure 5.8, one can get an idea of the speed of this internal Kelvin wave by

following the ‘zero’contour', It appears that the average specd of the wave is about 1.24
m/s at the shore. The period of this wave seems to be about fifty to sixty hours, since
this is the amount of time it takes for the zero contour to complete orfe rotation. This is

in agreement with first order calculations using équation (5.55). For Lake Melville, the

. P
phinse speed of the internal Kelvin wave yrns out to be about 1.27'm/s from the fof

mula ¢

\}
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Figure 5.8 ; Contours of interfacial elevation of Lake Melville in centimeters at various

stages in thie simulation. Wind cut-off is at twenty-four hours from onset.
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(5.58)

(where b and B are the average thicknesses of the upper and lower layers of fifteen
and seventy-one meters respectively) and is in very good agreement with the result from
the model. The ‘large scale vertical movements of the pycnocline near the shores that

accompany these Kelvin waves lead to a very rapid generation of vorticity which affects

" the currents here.- Since the rotating internal Kelvin wave is a coastally trapped wave,

the motions associated with it are dominant in the nearshore regions. i

The offshore regions of Lake Melville, and. indeed moststratificd lakes (Simons,
1980), are affectoiul the Poincare waves that have near-inertial frequencies and ampli
tudes which are m¥ smaller thon those of the internal Kelvin waves as the eurrent”
vector. plots (Figures 5.3 and 5.5) suggest. Figures 5.7 and 5.8 show that the highest

values of both the surface and the interfacial elevation are in the nearshore rc’ginns.

5.0: Energy Distribution in Lake Melville

The‘plou of potential energy as a function of time are presented in l:‘i;';un.- 5.9.
Thesdare iwé types of oscillations evident in the upper layer as Figure 5.\;(:1) shows. The
finer structure of the curve represents the barotropic oscillations with a period closely
resembling' the fundamental Merian period of 1.5 hours. In thiy particular case, the

potential energy oscillates -t the period of the external (or barotropic) Kelvin wave (as

for the homogeneous model).

A second type of oxcillation is evident bere in Figure 5.0(a) ’I‘Bp period of this
< of
oscillation is twenty-five toghirty hours which is roughly one-half of the internal Kelvin

wave period discussed earlier. This can be explained as follows :

Suppose we have the
surface glévation given by equation (4.16). Recall that potential energy is proportional to

s 4 . -
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the surface elevation squared as given by the expression (4.17), which upon the use of

trigonometric identities becomes
E
7% == A?+ 2 A Bsinoyt + 2 A C sinozt + 2 B C sino,t sinogt

B i £ L s

Here, the frequencies o, and o, are due to the baroclinic effects at the interface (the

. internal Keh}n wave) and ‘the inertial effects respectively. Since the surface elevation is

a ‘reflection’ of the interfacial elevation (Yuen, 1969), the amplitude B which results
from these baroclinic effects is dominant over the other amplitudes A and C which result
fiam the wind setup ind.'.h_e inertial ;Hecl: respectively: Consequently, the most dom-
inant terms fn this equation are those containing B? in particular, the six‘|h and the '
seventh terms on the right hand side of the above equation. In these terms, the fre-

quency 3ppears at twice its initial value and hence the period is halved.

The potential energy as a function of time in the lower layer is plotted in Figure

~5.9(b). Since the interfacial elevation is much greater than the surface é?evaliom—"u.

could be expected that the potential energygof_the lower layer is correspondingly greater

than that of the upper layer (in fact, greater by a factor of a 100) and the simulations

“bear this out. As for the upper layer, evidence of the internal Kelvin wave appears in

the form of oscillations that have a period of twenty-five to thirty hours(as explained
carlier). There is no evidence of a barotropic componeat here possibly because of the lack
of sufficient resolution in the plot.

The kinetic energy as a function of time is presented in Figure 5.10 for caéh of the
two layers. The profiles of Kinetic energy are quite similar for both layers, and since the
highest velocities are in the upper layer, the kinetic energy is about twice as high there
as in the lower layer. From Figure 5.10{a), it is apparent thm, the baroclinic component .

again dominates the upper layer. Osclll.'n.mns with a pmod of lwenly-ﬁv: to Lhmi
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{




-120- . #

bours are evident in the upper layer. The kinetic energy associated with the lower Iayer

is shown in Figure 5.10(b). In addition to the thirty hour oscillations visiblé here, finer’

peaks due to the i are more bere than in the upper
layer though they have the same approximate period of about 1.5 hours. The kinetic
energy here increases with time possibly because of a transformation from the potential
energy which appears to decrease at the same time (Figure 5.9(b)). Such a transforma-
tion seems to be over a long time scale. s v
Figure 5.1 shows plots of the'total potential and Kinetc energies.in the system,
as w‘ell as the total overall energy in the. system as a function of time. The' oscillations
due to the internal Kelvin wave dominate the total kinetic energy-of the system. This
istrue’as well for the total energ in the sysiem. This indicates that the baroelinic com-
ponent dnm_inms the dynamics of a two-lajer system while the inertial oscillations

appear to be less significant in a lake such as this.
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8.1, lntrudnctlon
This chapter A the implications “of the various models n?mdena in‘this
thesis. ‘The strengths and weaknesses of :ach model are pointed] om hnd possible ”
simproverfents suggested. Some simple feld measurements are suggsted. sirce thie Ik of -
field data from the area méass that the models cannot be calibrated, or that oumerical-
results cannot be compared fo observed data. Field data are needed to more eflectively
assess the validity of the models and to calibrate them.  + =

8.2. General Discussion - . : .
The sleady-stau madel of Lake Melville was Eé;idered be;msa it was Lhe easiest

one to nmplumem. But still allow:d the usmment o factors like wmd du-ecunns and
houom stress coefficients. Ifjview of the meleoroluycnl data nvmlable rrom the‘lﬂ.‘n, it
was important to d:tGJ how the circulation pattern mngh«. be affected: by the two

" most common winds inthe area which_happen to be the westerlies and thé southwester-
lies. As it nmied oul,, tHe effect of using two different wind direclirys produ‘ced similar _—
mcuhuom and a wesmly wind ‘was chosen for-all subsequent compnuuonu Tor v,lm and._ # o
other models. The s'.ndy-sv.ne model would prablbly be lpplle:ble when ng[nrm or
near-unjform westerly wind episodes of ‘a durauon of two days or longer occur. Such

! wmd episodes are noz uncommon for the Goose Bay nrn (yersnnnl communication with A
T Men.

Cet from. one to three days for l.he rnnge of the bouom stress v-hles considered here, wind '

i

Bnuusmln Gnose Bay wm.l:er omte) Since the ppm-up tifme-of the I-ke varies




should be realized that in gederal circulation features are mainly of interest in ice-free
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episodes lasting for this length of time would give rise to \quasi-steady’ currents which
may be reproduced by auch a fodel. [t was found that the eflect of the bottom stress ’
coeﬂ‘_'ltiem on the circulation_pattern was not great, though the magnitude of the
current was inversely proportional to it. It is obvious that field data are necesary
before such & model can b calibrated and reproduce the quasisteady circulaion in Loke
Melville. Since the greatest depth gradients occur in the pearshore tones which can lead
to numerical mslabﬂmes, 3 greater resolution of the these areas could be an mprove~
¢

ment in the model. % N

. w -
The time-dependent homogeneous model of Lake"Melville is, the next step up in the

degree of complexity of two-dimensional models. A time-dependent model brings into

perspscilve ke Ay of  like oro eléarlys 1o pALticulih ke Sabure of ki euivesid

can be investigated during wind forcing which would be important i, as usual, the wind -
field is a fnnclim: of time. If the wind field varies sufficiently s‘uch that the the steady- ¥
state model ho longerrapplies, then 3 time-dependent model should be used. An estimate

of the corresponding response of the cureents sad the surface levation can then be made

again ogge cuhbruuon questions have been answered. This applies not only to models

driven by wind, buv. in fact tu those that are influenced by tidal forcing as well. Tidal

forcing could be neatly studied in Lake Melville during the ice season sinee the ice insu-

lates the water from the eflects of the wind, and the only forcing is from the tides. A

another point, one could also study the modification of tidal forcing by an ice cover.

suunmn& and it would not be dlﬂ'c\llt to include lldnl forcing by including s sinusoidal
Wume transport term. All the model: considered here are linear which Im])ll!! that the
solutions due to the wind and tidal forcing are sepnrable and, the relative lmpurluncc of
each type can be evaluated more quantitatively, The results !rom this mcdcl are in good
ngreement with those from the steady-state homogeneous mnde_l as.far as the circulation
pattera i concerned (during wind fordiég), further strengubening the skgumht thot for

[ <
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homogeneous basing; the most important rﬁ« affecting circulation patterns is the
bathymetry. As !c/r the steady-state model, a possible improvement in the model would

result probably frﬂ\;n a better spatial resolution in the numerical grid, especially at the
edge of the lake. S

As discussed In chapter | ol‘ this thesis, Lake Melville is stratMied thr

year. The homogeneous time-dependent, model dl:cusxgd above doefinot consider the
two-layer structure of the lake and the important question of frictional coupling between
zhe two layers. The available data indicates that tl'e‘l.wo-lxycr approximation to the
density profile is svery good one and hence the t'mlnynr model is the most realistic one

of all the mndels'conxldered in this thesis.

- ‘\‘
» -This ~thodel of Lake Melville shows v.lm toe largest currents and hence most uh.ha\

kinetic energy is in the upper layer. This i3 due to the strong stratification in the lake.

As far as the bottom layer is concerned, the currents there are only about a half as
strong as those.in the upper layer. In view of this, it is important té concentrate any

currept measurements in future in the upper layer. -

Sidce most of the efiécts in the two-layer model are of a baroclinic nature, it is
important to realize that the Kelvin wave, speed in such a two-layer model is allected
very much byvch'e depth at the shores (Simons, 1983) and it may be critical to select the
Jayer thicknesses carefully to get coastal currents correct. For any subsequent investiga-
tions '.hererm. this factor would have to be lodked ay more thoroughly, espmnlly when
field data becomes ullhble In this two-layer model, most of the energy is in the form
of potential enerly (see Figure (5.11)a)). In the ume-dependenl homogeneous model
though, mmt of the jnrn is in the form of lunau: energy (Figures 4.7 and 4.8). Then-
fore, it 1: _not posslble to compare these models accurately with one anothers by usln(

equations (5. 3) and flm.her mvnu‘aunn into this problem is bcyond the scope of ‘this

work. At this time, the two-layer model cannot be forced for longer than three days

\e

i
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;ince the pycnocline grows in time to the point where it intersects the surface and shal- )
low water theory I;e‘mmq invalid. This is the most important limitation of this model
which makes it diffcult to study the response (ie. the spin-up and spin-down) times of
the lake. The thickness of the upper and lower layers at the shores in this model was .
set to fifteen and ten.meters respectively in order to avoid thisproblem (suggested by
Dr~Nelson Freeman). A possible improvement on the model will probably result from
using wind episodes more characteristic o_l the area and retaining the non-linear terms in
the equations of motion as well as resolving the nearshore zones more. An improvement
on such a two-layer model would probably result from retaining ndi-linear terms in the
equations of motion since it is quite probable that the neglect of these terms is not valid

in the vicinity of the ends or ‘corners’ of the basin. The order of magnitude of the non-

Ainen (for the ti model) u %‘; for example, is about

10 em/s* which is approximately the same as that of the wind stress term le near

the eastern end of the lake. Since the ratio of these terms iy about unity, the neglect of

such non-linear terms is clearly invalid at the corners of the basin. Numerically, this
. . ‘

m'odil is complicated and time consuming. At this time, to the best of my knowledge,

there are no other such models of lakes with which to compare the res&lts of this two-

+ layer model to.

0.3, Field Program

From the mudflling effort bere, it may be expected that any water level measure-
ments 3bouldyield surface level Buctuations due to the Kelvin waves assuming that the
contribution from the tidal oscillations can be filtered out. sinte internal Kelvin waves
are often difficult to observe in the field, the surface l_ey. variations in (Bke Melville '

would probably be dominated by oscillations due to the b ic Kelvin waves.

Current observations in the “b r layer, particularly offshore, will probably show fre-

: . v T
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quencies that are similar to those of the inmn-i Kel‘vin wave oscillations. A ‘coastal jet'
may be detected near the shores, at least during any wind forcing episode 8 part of the
quasi-static response of the lake. | propose using two current meters, ‘water level
recorders and thermistor chains at the points A and B (see Figure 3.1) located at the
opposite ends of the lake. In accordance with the results of the two-layer model, | would
expect to see oscillations due to both the external and the internal Kelvin waves. It i
probable that the internal Kelvin wave will be observable as well in the 1urfa;e varia-
-tigns which ‘might be of about a one centimeter amplitude. According to the two-layer
model, the currents are dominated by the internal Kelvin wave I;!cil[nlinn!. There is aiso
evidence of near-inertial oscillations of the Poincare wave which are relatively weak, so
they may not be detectable in an actual field measurement. A thermi;tor chain could
help in detecting the movements of the pycnocline at the points A and B. It may be pos-
| study tidal currents in Lake Melville by d.ployin;'f..mm meter moorings
through the ice period when wind forcing is not present. Even though the tidal effects
have been neglected in, this work, Mexpect that these will be easily observed in the feld
Whether or not the ice is present. }iy far Lhoug:. the most important parameter to be
‘easured in the field would be the current at s:lt:led pointy in the lake because the
coefficients of stress affect the c;ln;nl values directly in the simulations. Only_ after such
field d?n become available would one be able to calibrate this two-layer model and
determine the appropriate interfacial and botto stress cocficients. Altbough the effcta
of other specifications of the in@gfacial and battom stress on the current values have not
been shown in this thesis, it is possi‘)le that in view of any future field data lhe'lincnr

lateral stress format used may not be ‘adequate, and a quadratic or a quasi-lincar

specification (which have a very small effect the ci

pattern in the
models at least) may be required. However, until such a time-as this data bernm-s .nvml-
able, it is very dnﬂ'.cult to say what the best types of interfacial and houam ‘stress

Pk e
spee}ﬂ:nuons are, » v
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