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ABSTRACT

Sound scattering and attenuation by small solid spheres in viscous fluids at

freq ies is i igated th ically. The h is based upon
that of Aliegra and Hawley [1972], and Pierce [1981], and involves separating the
sound field into different modes, which include strongly damped thermal compres-
sion and viscous shear wave modes, in addition to the usual weakly damped
acoustic modes. A simplification of the computational problem is then sought by
obtaining approximate expressions for the (six) boundary conditions at the fluid-
scatterer interface, through the use of a suitable boundary layer approximation.
We find that the radial stress at the boundary in the fluid may be approximated
as the dynamic pressure, and that the thermal waves generated at the boundary
are purely radial to an excellent approximation. This result for the thermal
waves implies that in a partial wave expansion of the attenuation, thermal effects
only appear in the isotropic term, and higher order, nonisotropic terms may be
treated in the viscous thermally non-conducting limit with high accuracy.
Numerical results are compared to Allegra and Hawley's measurements for aque-
ous suspensions of polystyrene spheres, and reasonable agreement is obtained in

the appropriate limit.
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CHAPTER 1. INTRODUCTION

This thesis considers the problem of absorption and scattering of sound

energy by a small solid elastic particle in a fluid. This problem is of interest in

K d

p d sediment

for port studies, for the related problem
of tracing water motion and turbulence by tracking particles suspended in the

fluid, and for other probl relating to the i jon of acoustic waves with

particulate matter in the ocean.

Many suspensions are so dilu’z that the total scattering and attenuation
effects are merely the sum of the contributions from individual particles, with
negligible interaction between the particles, thus ieaving no moticeable multiple
scattering effects. Therefore it is useful to consider the scattering from a single
particle, independent of any other particles in the fluid, and we do so.

The particular aspect of the overall problem which is considered here is the
absorption of energy due to the molecular diffusion of heat and momentum at the
boundary between the solid scatterer and the surrounding fluid, which act to
remove energy from sound waves propagating through a suspension, in addition
to that lost through scattering. To simplify the formulation of the problem, and
to understand better the physical mechanisms operating at the fluid-particle
interface we apply boundary layer approximations in the thin regions near the
surface of the sphere that are affected by viscosity and therme! conductivity, in
the fiuid and in the solid, and examine the results to see where such approxima-

tions are justified.



1.1. Historleal Background

1.1.1, Scattering Theory Without Absorption

In 1877 Rayleigh [1045] considered the problem of sound scattering by a
small spherical particle, solving for the case in which the acoustic wavelength is
much greater than the scatterer circumference. In 1948 Morse (1988] generalized
the problem to encompass all wavelengths, but assumned the scatterer to be rigid.
Then Faran [1051] allowed the scatterers to be elastic, thus permitting longitudi-
nal and shear waves in the solid. His theoretical work agreed well with his experi-
mental results for long cylinders, which showed that the backscattered pressure
amplitude is a minimum if the sound frequency corresponds to a scatterer free-
body resonance frequency. Hickling [1962] and Hickling and Wang [1988] used

I to calculate the b d intensity from spheres in

Faran's f
water, for spheres of various materials. They also considered the case of the
spheres being rigid and movable (this means the sphere has finite density, but is
perfectly rigid, allowing no acoustic waves in the interior). Experimental measure-
ments of backscatter amplitudes with spherical scatterers were made by Neu-
bauer et al. [1974] for alumninum and tungsten carbide spheres, for a wide fre-

quency range. Hay and Schasfsma [1989] have reported measurements of total

tion in ions of spherical particles. Both sets of results

agree well with Faran's theory.

1.1.2, Scattering Theory With Absorption

Lord Rayleigh [1945] observed that the zeroth order term in the partial wave
expansion of the perturbed pressure field was due to compressional differences

between the two media, while the first order or dipole term was due to density



=i

differences. In 1910 Sewell found that the dipole term was due to the relative

motion of the solid and fluid, and should produce a viscous loss. He then calcu-

lated the viscous ab due to a solid i ble sphere. This derivation was

simplified in 1932 by Lamb [1945] who extended this work to include a movable

sphere. Elasticity was included in 1941 by Epstein, who was only able to obtain

qualitati with i | data. Urick [1948] obtained measure-

ments in the long gth region from ions of kaolin and sand, which

were in good agrecment with losses predicted from viscous drag at the particle
surface, based upon the theory of Lamb [1945]. Isakovitch [1948] noted possible
thermal loss mechanisms at the scatterer boundary.

Then Epstein and Carhart [1953] performed a detailed snalysis for fluid
spheres in fluid media, including both viscous and thermal effects. This was gen-
eralized to the solid sphere case by Allegra and Hawley [1972], who noticed a for-
mal resemblance in the equations for a fluid sphere immersed in a fluid to those
of a solid sphere in a fluid. They also obtained experimental data for several
different fluid emulsions in water, and suspensions of polystyrene spheres in
water, showing that thermal eflects can be significant. Hay and Burling [1982)
recast the Allegra and Hawley theory in terms of Faran's [1951] phase shifts for

‘e partial scattered waves, and obtained an expression for the relative impor-
tance of viscous and thermal effects at long wavelengths. Hay and Mercer [1985)
obtained explicit expressions for the phase shifts in the intermediate and short
wavelength regions, including only viscous effects, valid for frequencies and
scatterer sizes such that the viscous boundary layer thickness was much less than
the particle radius. The existence of a viscous boundary layer in the fluid
allowed a simplification of the radial viscous dependence, allowing a simplified
solution that was not very restrictive. Hay and Mercer [1989] showed that the

attenuation coeflicient obtained using their expressions for the phase shifts is in
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agreement with Urick’s [1948] result in the appropriate limit.

1.2. Purpose and Organization of Thesls

‘The purpose of this thesis is to apply a boundary layer approximation to the
problem of sound scattering and attenuation from a solid sphere w water, where
the wavelength of the sound is much greater than the particle radius. By doing

so we hope to simplify ion of ion and ing effects, and we

also wish to see which mechanisms are important in attenuation and which may

be neglected. In doing so, we adapt a method used by Pierce [1981] which has

distinct advantages in interpretation over the previ used exact of
Allegra and Hawley [1972].

Chapter 2 reviews the work of Allegra and Hawley [1972], and presents a
derivation of the governing equations for the fluid and solid using the method of
Pierce [1081]. In Chapter 3 we review basic boundary layer theory. Then we
show some numerical results based on the Allegra and Hawley theory. This is
followed by a derivation of two boundary layer approximations. We denote the
simpler one by the first boundary layer approximation, where we apply various
simplifications to the radial stress boundary condition in the fluid to see what
mechanisms are important. The second is a formal derivation using the method
of Pierce [1981), which we adapt to the formulation of Allegra and Hawley [1972]
in terms of potentials. We examine numerical results using both the first and the
second boundary layer approximation, and in each case compare these results to
the exact results based on the Allegra and Hawley [1972] theory, in aqueous
suspensions of polystyrene spheres. Chapter 4 concludes with the useful informa-

tion we have obtained from the above analysis.



CHAPTER 2. THEOR'Y OF SCATTER'NG AND

ATTENUATION

In this Chapter we review the scattering and attenuation theory of Allegra
and Hawley [1072]. First we present the governing equations in both the solid
scatterer and the surrounding fluid. We solve for wave equations, which involves
separating the sound field into a weakly damped acoustic wave, a strongly
damped thermal wave and a strongly damped viscous shear wave in the fluid,
together with weakly damped compression and shear waves, and a strongly
damped thermal wave, in the solid. For each of these waves we find modal reln-
tionships between field quantities, using the method presented by Pierce (1081].

Then we present the six b dary diti at the fluid-solid interface, which

couple the various modes together. Then each of the modes is represented by a
series expansion in terms of a complete set of orthogonal eigenfuactions. This
results in six equations involving the ntl-order undetermined coeflicients in the
eigenfunction expansion, one equation for each boundary condition. The relation-
ship between the measured quantitiy of interest, the attenuation coefficient, and
the amplitude coefficients of the scattered wave, is presented. This Chapter ends

with a discussion of the inviscid, nonconducting limit at long waveleny ths.



INCIDENT PLANE WAVE

P(r, ¢, 0)

AN ISOTROPIC
SPHERICAL SOLID

Figure 2.1. The geometry of scattering of an acoustic wave by a sphere.



2.1. General Problem

In our most general case the fluid is viscous, thermally conducting, and has a

Newtonian rheology. The solid scatterer is a h elastic, and th 1
conducting sphere. The incident plane wave propagates in the positive z direc-
tion (Figure 2.1.). The coordinate system is spherical, with coordinates
(r , 8, ¢). The origin of the coordinate system is at the center of the sphere,
which has radius a and equilibrium density py'. In all cases we are primarily
interested in the total scattered emergy, and in the energy absorbed as the
incident wave passes by the sphere.

For the solid scatterer, the equations of motion are conservation of mass

[Allegra and Hawley, 1972,

215w =0 (2:1.1a)
conservation of momentum [Landau and Lifshitz, 1088, p.87),
.. O a0'y;
P+ (87 )i = —2 (2.1.1b)
oz
and conservation of energy (Allegra, 1970; see also Landau and Lifshitz, 1988,
p.137),
au' /L
p’—-—-a’ + 7 7% +p'v- (2.1.1¢)
=0+ K'g? T'

where &; is the strain tensor defined below, W is the displacement vector, T' is
the temperature, g is the density, p' is the pressure, K' is the thermal conduc-
tivity, U is the specific internal energy, @ is the viscous dissipation function, and
the z; are Cartesian coordinates. Note that the Einstein summation convention
is used, that primed quantities refer to the solid, unless noted otherwise, and that

the overdots denote differentiation with respect to time.

In equation (2.1.1b), ¢*;; is the stress tensor for an elastic isotropic solid and



may be written

o= NE&; & +2p; (2.1.2a)
where
_ 1 (98y Oy
o=y lmrre (2.1.2b)

Here &;; is the Kronecker delta tensor, and N’ and p' arc the Lamé constants of
the solid.
We may write the solid stress tensor as

i =(N+ % W6 by +2p €y, (2.1.2¢)

where
1

€y =& -3 & & oend & =0

In this form the first term is the bulk modulus times the relative change in

volume. Thus

pl=-( )J+%y’)£;; (2.1.2d)
and
oy =-pl By 2 gy (2.1.2¢)

Nonlinear effects are neglected in our treatment, since we are interested in
small amplitude forcing and response. Due to this we ignore all terms which are

second order or larger in small quantities (see Appendix 1). Equations (2.1.1)

simplify to
%+cn'5'(ﬁ)=0, (2.1.33)
=—6p'+-‘§'~6(6-a)+n'v’u, (2.1.3b)
and
Pa'%%’"+?a'$‘ﬂ= +K'AAT", (2.1.3¢)

where p¢/ and pg' are the equilibrium density and pressure respectively.
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There are seven unknowns (¢, p’, U, T', and ), but only five equations.
The two additional equations are provided by two implicit dynamic equations of

state [Allegra, 1970, page 15]:

o (2.1.3d)
and
; -ne
U= ;% [,,o: M.ﬂ’_]y O (2.1.3¢)
Here # and + are
1 (38
a'=—-ﬂ—n; [F%] (2.1.31)
14
and
o
=, (2.1.3g)
while ¢ ' is defined by
& iy 3 (2.1.3h)

C,' and C," are the specific heats at constant pressure and volume, respectively.

Similarly, the linearized equations governing sound waves in the fluid are

conservation of mass,

7,7+Pov v=0 (2.1.4a)
conservation of momentum,
av = 1= =
G =" VP tHo V2"+§V(V‘V) (2.1.4b)
and conservation of energy,
w4 poT V=K PT (2140

or equivalently

p,,T,,— =K 9T, (2.1.4d)
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where in the fluid ¥ is the velocity, g, is the molecular shear viscosity, p is the
density, U is the specific internal energy, S is the entropy, T is the temperature,

and K is the thermal conductivity. Entropy is related to energy by the iinear-

ized relation
a5 au =
T“W_ a0 + poVV. (2.1.4¢)

Agein, te close the system of equations we use the two thermodynamic equa-

tions of state [Pierce, 1981, page 515]

po B Ty
7 = l—c, I s, (2.1.41)
and
BT, To ]
= + [==15s, 2.1.4
[ng, ] [ G, (2.1.4g)

where we use entropy instead of energy in the thermodynamic relationships for
ease of calculation, and where ¢ is the adiabatic sound speed. We use eaergy for
our caleulations in the solid instead of entropy to facilitate comparison with the

derivation of Allegra and Hawley [1972].

2.1.1, Allegra-Hawley Formulation

Now we simplify the governing equations following the approach used by
Allegra and Hawley (1072]. For the solid, placing 7p’ from (2.1.3d) into equation
(2.1.3b) and U’ from (2.1.3¢) into equation (2.1.3¢) gives

. P e olf P
Po'ﬂ:—[—f/v#+——————' ;“ ST+ £ (@ 0+ avE, (216
and

,v[, 2l = 1)C
B lpe

'
- ]+ﬂu’6‘.'T'+ P’V A=K (2.1.5b)

Po g
We climinate o' by using the mass conservation equation (2.1.33), and assuming a



wills

time depend e~ for perturbati ities, we obtain the following equa-

tions for the solid:

WP+ [iﬁ+-ﬂ'—l'("-ﬁ)——'1‘T’+ﬂ——o 2.1.8
THag Vv (2.1.8a)

and

(-iw) { 7 ]e ct-f wT'-+dy? T'=0, (21.6b)
where ¥ is the displacement vector .
Similarly, for the fluid we eliminate S and p from (2.1.4b) and (2.1.4c) using

(2.1.4f) and (2.1.4g), and then eliminate p using (2.1.4a) to get

2 dupg iwe ﬂ = ()
W+|‘—- ] V) T - —2gW=0 2.1.7
T 3 GV + v g (2.1.7a)
and
[il;—l—l]e-v_mr_wv11=o. (2.1.7b)

Using Helmholtz's Theorem [Arfken, 1970, p. 67], we may represent the velo-
city field in the fluid and the displacement field in the solid by scalar potentials §

and vector potentials X in the following manner:

V=-93%+7V %K, (2.1.8)
T=-9§+T xA, (2.1.9)

where
F=1¢, + ¢, (2.1.10)

and ¢, and ¢; are scalar potentials for the compression and thermal waves
defined below, and where

b =40+ &, (2.1.11)
o and § being the scalar potentials for the incident and scattered compressional
waves in the fluid.

Because the problem is axially symmetric A= (0,0, Ay) and
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X=(0,0, Ay') [Faran, 1951]. If we assume wavelike solutions, the four
equations (2.1.7) reduce to three Helmholtz equations (Appendix 2),

4. k26, =0,

Vo + kP4 =0,

VAR A4=0, (2.1.12)
where 7 - A = 0. The wavenumbers resulting from this reduction are

-1
k“m—{l— { +(7- ua]] 5 (2.1.13)
X % (2.1.14)
preif @1.15)
o

In addition, a relation between the temperature and the scalar potentials is pro-
duced as follows:

(8 & +b ¢ )
T= TG (2.1.16)
Here b, and b, are given by

2 4
b,=[__"_ [wz - """"Ik’] @L17)

and

ﬁl={__’;_| [J_[ﬁ._%ﬂ}kﬁ]. (2.1.18)
c’p 9 P

There are three waves: the usual weakly damped compression wave (2.1.13),
a highly damped thermal compression wave (2.1.14), and a highly damped viscous
shear wave (2.1.15). In obtaining equations (2.1.13) and (2.1.14) from (2.1.7), it
has been assumed that |k, /k | <<1, |k [k, | <<1, and

For water the viscous wavenumber condition holds for f << 10 Hz (see Table
2.1), which is not unduly restrictive. The thermal wavenumber condition holds

for / << 10 Hz, and is even less restrictive.
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For a solid, the same procedure yields [Hay and Burling, 1982]

. 5 -1
em (82 (o B2 ) )
c c

(N+24)
kP (2.1.20)
k,’-’._T, (2.1.21)
and
T'=b"¢'"+b'9,', (2.1.22)
where

]
. 2_[°_‘. ii] ”
jie= oo (G| e |,

(2.1.24)

In this case there are again three waves: a compression wave weakly damped
by thermal diffusion (2.1.19), a highly damped thermal compression wave (2.1.20),
and an undamped shear wave (2.1.21). The shear wave is undamped because
viscous dissipation in the solid has been ignored (see equation 2.1.1c).

As in the fluid, equations (2.1.18) and (2.1.20) have been obtained by assum-
ing that | k' | ~w/c' and |k '/k'| <<1 . For example, for quartz and
polystyrene in water, the thermal condition holds for / << 10" Hz (refer to
Table 2.2). This restricts o/ to be close tc 1, instead of a frequency restriction as
in the fluid. We use guartz as an example because of its relevance to sediment
transport, and we use polystyrene because comparisons will be made with meas-
urements in polystyrene suspensions.

Because | k, /k | << land | k'/k'| << L, then | b /b | <<1
and | b,'/b' | << 1. Also, for most solid or fluid particles in water,

k, =0 (k') sothat | b, /b' | << land | b,'/b, | << 1as well
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Table 2.1. Physical properties of water at 20 °C, taken from Allegra and

Hawley [1972].

density 2o 0.998 g em

thermal conductivity K L41X107al’C em s

specific heat c, 1.000 cal°C-lg
thermal exp. coeff. B 2.1X10 °C

7-1 5.77x10°°
viscosity Ho 1.002x102g cm 1 g -t
speed of sound c 1483m st

Table 2.2. Physical properties of polystyrene at 20 °C. taken from Allegra
and Hawley [1972].

Polystyrene

density g 1055¢ cm

thermal conductivity K' 0.27%10° cal’Clem’

specific heat G,'  0.287 cal'C g

thermal exp. coeff. 4 264x107 °C
-1 0.069

comp. wave speed ¢! 2380m s !

shear wave speed ol 1097 m s
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Table 2.3. Physical properties of quartz at 20 °C, taken from Hay and Bur-
ling [1982].

Quartz
density A 265g cm ™
thermal conductivity K'  84X10% cal’Clem™ls™!
specific heat G, 0.192 cal°C'g™!
thermal exp. coeff. ;4 3.4%10%°C

7-1 5.2x10%
comp. wave speed c! 5100m st

shear wave speed b 3200 m st
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2.1.2. Decomposition Into Acoustic, Thermal And Viscous Fields

In this section we present an alternate derivation which shows some physical
interactions more clearly, and which is used in the boundary layer approxima-
tions. This derivation is based largely on the treatment of Pierce [1081, pp.510-
523] for Auids, and is here adapted also to solids. The governing equations and

s eoine "

h d d are into three modes: an acoustic mode, a

thermal mode, and a viscous mode.This yields three dispersion relationships
between modes, both for the solid and the fluid. We will first solve for the fluid
case.

We have a pls disturb of freq win ah time

independent medium, where each field quantity is represented by ¥ and varies
with ¢ and X as

¥ (2, t)=Re yexpli (KX - wt)] (2.1.25)
where K is the same for each ¥ , and ¢ independent of X and # and is gen-
crally complex, as is '3

We seek values of K which allow (2.1.25) to be a solution of the governing

equations, thus getting the dispersi ionship k (w). We itute § = ik,
8 /0t =-iw, and p, S, or ¥ as iate into the g ing i

(2.1.4), thus obtaining for (2.1.4a, b, snd d)

w[-}z—-%ﬁs] —pkv=0, (2.1.268)
~iwpg¥ = -ikp - po(k2 ¥ +1/3K (K- V), (2.1.26b)
and
(WS = £
iwS = ak? Is + pop] (2.1.26¢)

where p is the complex pressure amplitude, ¥ is the velocity amplitude, and S is

the entropy amplitude, and where (2.1.4d) and (2.1.4e) have been used to elim-



|

inate p and T. The vector and scalar products of K with (2.1.3b) give respec-

tively
(~i wpo + ok?) (ExV) =0 (2.1.27a)
and .
(wpo + i (4/3)ukIE -V = k?p . (2.1.27b)
Equation (2.1.27a) implies that either
kxv=o0, (2.1.280)
or
i (2.1.28b)
Ho
(a) Viscous Mode

Consider (2.1.28b} first. Substituting this equation in (2.1.27b) and in
(2.1.28a,¢), it can be shown that k2 must be purely real (which would contradict
(2.1.28b)), unless K - V= 0. This implies, using (2.1.26), that for this mode T,
p, p, and S are all zero. Thus we have a mode which is transverse and
solenoidal, which produces no pressure, temperature, density, or entropy pertur-
bations, and for which the wavenumber depends only on the viscosity. This is

the viscous mode. Summarizing, it has the following properties: the dispersion

relation,

B2 =iwfl (2.1.208)

Ho

which is identical to Allegra and Hawley's relation (2.1.15); the polarization rela-
tion,

kv, =0 (2.1.28b)
which implies

V'Y, =0 (2.1.20¢)

and
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P =5=7T=p, =0. (2.1.20d)
The relations (2.1.20d) are an example of the additional information regarding

field quantities provided by Pierce's approach.

Next we consider the condition KXV = 0. To simplify the algebra, let us

make the following abbreviations

2.2
x = £ (2.1.30a)
(2.1.30b)
and
iKw
o= (2.1.30¢)
‘ ﬂo”tcp

Equation (2.1.27b) and (2.1.26¢), with K - ¥ taken from (2.1.26a), represent two
simultaneous equations for S and p, which can be rewritten with the above

abbreviations /2.1.30) and with the identity ¥ - 1= 42 Tyc?/C, [Pierce, 1981,

p.30] as
(1+6X)S + (4,)()-’;11 =0 (2.1.31a)
0
(-1 +6X)S +(l+(,X—X)%’-= (2.1.31b)
0

For a nontrivial solution we require that the determinant of the coefficients van-

ish. This produces a quadratic called Kirchoff's dispersion relation [Truesdell,
1953]

(& +16,€)X2+ (e, +76 - )X +1=0. (2.1.32)

For water, |¢, | ~3.8X1072f, and |¢ | ~ 4.02X 10713/ . Therefore,

for our frequency range f < 100 MHz, both €, and ¢, are much less than 1.

Thus we solve (2.1.32) to lowest order, obtaining the following

dispersion relations

L+¢ +(7-1)¢, (2.1.33a)
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€,
Xo=-L+-n[i-3). (2.1330)

where the subscripts denote positive and negative roots.
(b) Acoustic Mode

The dispersion relation in (2.1.33a) gives

¢2 |30
This result is the same as (2.1.13}, which is Allegra and Hawley's dispersion rela-

i fiwfik o GK
K _J[H- { -0 } (2.0.30)

tion for compression waves in the fluid, since the imaginary term is much less
than one for water at frequencies less than 100 MHz. Hence the use of the sub-
seript ¢ in the wavenumber,

Since KXV = 0, these waves are longitudinai. To obtain relations between
the different field quantities, we ignore terms of first or higher order in ¢, or ¢, .

From (2.1.31a) and (2.1.33a), we get

s -gf-. (2.1.35)
s0 S, =~ 0. In a similar manner, we obtain the following from equation (2.1.33b)
. - ”
Po—g N -VPe (2.1.36a)
and from equation (2.1.4f)
To
T, ~ [h_c’l,,‘ (2.1.36b)
and from equation (2.1.4e)
PR (2.1.36¢)
¢

(¢) Thermal Mode

The other dispersion relation (2.1.33b) becomes, after dropping all but the
first term ( since y =~ 1 and |¢, | << 1),



w=i% (2.1.37a)
which is the same as the Allegra-Hawley thermal wave dispersion relation,
(2.1.14). As for the acoustic mode

TXV, =0, (2.1.37b)
and for the relations between field quantities we neglect terms of order 1 or
higher in ¢, and ¢,. From (2.1.33b) and (2.1.31 a or b)
2 —t--a)s (2370

0
and thus, we have p, = 0. With p, = 0 and using (2.1.4e), we get.

P A~,_| £BTo ]s, ; (2.1.37d)

and from equation (2.1.41)

To
T, ~ [c—']s, (2.0.37¢)
Then through a tedious derivation (see Appendix 3 ) it is found that
ToK ) =
v, ~ [ L2 °’f ]vs, . (2.1.371)
20y

Note that combining the velocity and temperature modal relationships

results in

v~ |pf+§'|6 T, (2.0.37g)
which implies flow from cold regions into warmer ones. As explained by Pierce
[1081, p.523], this can be understood from the fact that at a local temperature
maximum the diffusion equation predicts that the temperature must decrease
with time. Since the thermally induced pressure is negligible, thermodynamic
considerations require that the density simultaneously increase with time, which
in turn requires the mass flow from cold to warm regions implied by (2.1.37g).

Now we present the equivalent results for the solid case, which are obtained
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in the same manner. The governing equations for a solid are again (2.1.3).

As for the fluid, replace the time derivative by —iw and let ¥ =i K’ to

obtain the following relations

o= .'-fi,- (2.1.388)
0
2 7
(wpg! - Wk Bt = e'f% + c'—/{;"'z] + Lew-n (2.1.38b)

and

(T _ne.!
iw _"L(";?_T_._.(."/_ﬂ'l:‘ﬁl} = K'k®T", (2.1.38¢)
(a) Shear Wave Mode

As for the fluid, the shear wave mode is obtained by taking K'- @, =0,

from which it is seen, using (2.1.38) that
- o
k== (2.1.30a)
which is the same as Allegra and Hawley's dispersion relation (2.1.21), and
pl=p'=T,'=0 (2.1.39b)
For the case K'X =0, we ugain substitute for K’ - W from (2.1.38a) in

equations (2.1.38b and c¢), to get two equations in two unknowns; p' and T". That

is,

(=105 - (14 70 XPT! =0 (2.1.400)
0
[ - (e’ + 1)X’l;f"7-x'ﬁr'=o (2.1.40b)
0
with the following abbreviations
PO i (2.1.41a)
=) 1.
o b Al (2.1.41b)
‘ 3pg'e\? '
v 0 2.1.41¢
“'=itE ( )
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As before, for a nontrivial solution to exist the determinant of the coetficients
must equal zero. This determinant is
1+(7e'-1-6¢) X' -¢'(1+7¢1X%=0 (2.1.42)

and on solving for the roots we get
.‘%.,_ =(1-7¢'+¢") £ [(1 - 76" + ¢, + 161 + ¢, (2.1.43)
which is identical to Allegra’s result.

For a solid, ¢,” is not a small quantity, while |¢,’| is small over the fre-
quency range of interest. For example, for polystyrene, |¢,/| &~ 1073/, but
€¢,’ =2 0.395 (see Table 2.2). Therefore we may approximate (2.1.43) by keeping

only terms in the square root of first or lower order in ¢, '/(1 + ¢, ).

(b) Acoustic Mode
The positive root reduces, to first order (Appendix 4), to

_alre,)

o (2.1.44)

XL’, = 1+e,’

If we write X, in terms of frequencies and wavespeeds, we obtain
]
EP= -“'%[1 + ia’u{—‘—l-] - u] (2.1.458)
¢ "

which is equivalent, to first order in the imaginary term, to Allegra and Hawley's
result (2.1.19).

Let us consider the polarization relation. We have

X, =0 (2.1.45b)
For the modal relations between field quantities we kecp terms of order zero or

lower in ¢,". Using equations (2.1.40a or b) and (2.1.3d), we get

P~ —=, (2.1.45¢)

then we substitute (2.1.3d), (2.1.38a), and (2.1.45¢) into (2.1.38¢) to obtain



-23-

e? o
o~ e Jp'. . (2.1.45d)

We also use (2.1.3d) and {2.1.45¢) to get

U, ~—tp!, 2.1.45
f pon“gh (2.1.45¢)
T, =~ (2.1.450)
Po
(¢) Thermal Mode
For the negative root, we have
1, i+
X T (2.1.46)
N o -1,
~-e!|1+ ST
Substituting (2.1.48a) in either of equations (2.1.40) gives
!~ BT
£ S (2.1.47)
An approximate dispersion relation may be obtained from (2.1.46) if
: o -1,
g << 1 (2.1.48)

1 which does hold for the materials that we are interested in (Tables 2.2 and 2.3),

since 4 is very close to one. This gives the dispersion relation (see Appendix 5)

K= L;’J_ (2.1.49a)
Summarizing, we have

IX®, =0, (2.1.49b)

~ PP
oo~ 5T Tols (2.1.49¢)

g and using (2.1.3d)
6t

n'= TEgeT pfe T, . (2.1.49d)

We derive the velocity relation in a derivation analogous to the fuid case
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(2.1.37g)

n
o, ~ %‘:—‘nvﬂ' : (2.1.49¢)

while the energy relation is found using (2.1.3¢) and (2.1.49¢)

1 Brd
U"=1—WT,T[C"(H(")‘T v, (2.1.491)
As can be seen, the differences in form between the liquid and solid thermal
waves are obvious, with the most important effect for our purposes being the fact

that the thermal pressure wave is not negligible in the solid.

2.2. Boundary Conditions

Consider the boundary at r = a in our coordinate system, which is the
interface between the solid and the fluid. The boundary condiiions at the surface
of the sphere are continuity of velocity, stress, temperature and heat flux. By
symmetry, velocity and stress in the azimuthal ¢ direction are zero, and we are
reduced to six boundary conditions. These are [Epstein and Carhart,

1953;Allegra and Hawley, 1072)

(a) continuity of radial velocity

v, =uv', (2.2.1a)
(b) continuity of tangential velocity

vy=1, (2.2.1b)
(c) continuity of temperature

T=T, (2.2.1¢)
(d) continuity of heat flux

3T _ 18T
KST=K S, (2.2.1d)

(e]

continuity of radial stress



-25-

0, =0, (2.2.1¢)
(f) and continuity of tangential stress

o =d,. (2.2.1)
Equivalently, for the fluid the stress tensor is [Batchelor, 1967, pp.141-7)

1
i =P Oij + 2o (e - 3 € §j), (2.2.2)
where p =(1/3)0; and
a oy 6 By
3 ;

Therefore the required stress tensor components are

2 = 9,
ﬂ-v=’l”§“‘uV'7+2l‘ow' (2.2.3)
)2 = ' 0y,
"'"='P—§IIV'W+QJI T (2.2.4)
9 (vi) . 1 o
=ty [fj;; T]+73_r;]’ (2.2.5)
and
24,
=y [ [ i — . (2.26)
2.3, Matrix Solution

2.3.1. Partial Wave Expansion

Series solutions of equations (2.1.12) for the fluid, which are independent of

the angle ¢, are [Epstein and Carhart, 1953; Allegra and Hawley, 1972,

¢n=ii'(2ﬂ+l)i.(k,r)l’.(cow), (2.3.13)
n-0

b= f;’-"(zuH)A, he (ko r )P, (cos8),  (23.b)

b= 5 i*(2n+1)B, b (k r)P, (cos8),  (231c)

» -0
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d P, (cosf) 231!
— (@31d)

Ay=- i (20 +1)C, hy (K, 1)
where j,(z) is a s;h-:ricsl Bessel function of the first kind, &, (z) is a spherical
Hankel function of the first kind, and P, (cos) is a Legendre polynomial. g
represents the incident wave, which must remain finite at the origin in the

absence of the scatterer and therefore has radial dependance j, (k. 7). 4, 4,, and

A repi the d compression, thermal, and viscous waves, which must
propagate outward at large &, r and therefore are expressed in terms of h, (kr).
For the solid scatterer, the solutions for the scalar and vector potentials
which are finite at the origin are
o
de'= 3 i"(2n +1) A" jy (k'r )Py (cosf), (23.22)
=
&
G'=3 i"(2n +1)B, " j, (k'r )P, (cos0), (2.3.2b)
n=0
d P, (cosf)
do '
Appendix 2 shows why the form of equation (2.3.2¢) differs from (2.3.2a and b).

A,'=-§0i"(en+1)o,'j,,1k,'r) (2.3.2¢)
2

2.3.2. Partial Wave Boundary Conditions
Defining z =k, a ,8 =k, a ,t =k a , and substituting the equations
(2.3.1) and (2.3.2) into the boundary conditions (2.2.1) gives
(a) Radial velocity
T2 )2 A k(2 )+t By By (E)=Con(n+1)h (5)
=-fwl[z' A4, (") +t'B, . ' (1) (2.3.3a)
=C'n(n+1)j,(s")]
(b) Tangential velocity
Jn 2 )+ A4y by (2)+B, by (t)-Co [ by (8)+2h,"(2)]
=-iw{A4 jn(2')+ B 5 () (2.3.3b)
-Gl (8" 8" 5" (a")]}



-27-
(c) Temperature
b [Jn (2 )+ Ay by (2)]+8 By hy ()
=-iw[b A g (2')+b' B (1)) (23.3¢)
(d) Heat Flux
be [z ju'(2)+ Az b'(2)]+B, bt h'(1)
'
=i B At e B () (s
(e) Radial Stress
[~iwpa®+2pn(n +1)] 4y (2)-4mz jy' (=)
+4, {[-iwpa®+2ppn(n +1)) by (z)-4pzh'(z))
+ By [(~iwpa®+2pun(n+l)) by (£)-4pt b'(1)]
+Co2pgn (n+1) [k (8)-0h'(s)]
=4 {[-w?pa*+2pn(n +1)] )y (') -4p'2" 5,0 (2')) +
By [(~Foa® +2pn(n+1)) j, (4')-4p't!j,' (1))
+C 2 (n 1)y (8')-0" 5! (a))] (23.30)
(f) Tangential Stress
pofz (2 )~dy(z )+ Ay [z h'(2)-h (2)]+
By [t h/(1)-h (1)]
2
=G [-shy' (8 )+ (-S4t tn-1) b (a)])
=s{A 20 () =G ()] + B3 (H) - 4, ()]
7
-c,'[-.';','(.')+(-‘7-+nl+ n-1)j, (o))} (2330
Note that the primes on j, and 4, denote differentiation with respect to the
argument. The above results are identical with those of Allegra and Hawley
[1072), except for a sign change in the viscous term in the fluid, and the shear
term in the solid, in (2.3.3f), which Davis [1079] and Hay and Burling [1982] have
observed.
It should be noted for n = 0, that every term in the tangential stress and
velocity contains dPg( cos6)/d@ as a multiplicative factor, which vanishes

identically, and therefore there are only four boundary conditions to satisfy
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instead of six. Furth Cgand Cy' di from the

2.3.3. Attenuation Coefficients

Attenuation of the incident sound wave is due both to energy scattered by
the sphere to infinity (i.e., r such that k, r >> 1), and to absorption in or near
the sphere. The scactered energy is contained in the scattered compressional
wave . In the farfield we may use the intensity expression for a plane wave

[Pierce, 1981, p.516], neglecting thermal and viscous effects;

I=<p¥>= . (2.3.4)

where the brackets < > denote taking the average over a wave period.

e | V|2
2

To find the scattered power IT we integrate (2.3.4) over a large sphere cen-

tered on the scatterer. For larger, | ¥ | — | 4, |, s0

*
M=2rpyec r®f | 9 |%sinddf. (2.3.5)
0
Now #, is given by
3 4, & Ghy (k. 1)
i, =-——=-% " —_—
i, = L i (2n +1)4, 5—Fa (cos0). (2.36)
Al large distances [Arfken, 1970, p.524]
Ohy (ke r) L efkr
— i (2.3.7)
and therefore
. ” ©
li=2mpocf Y, (2n+1)(2m +1)A, A, P, (cos6)P,, (cost) sindd 6, (2.3.8)
0 mnm0
where A denotes the complex conjugate of A, . By orth lity [Arfken,

1670, pp. 432-6]

{ P, (c0s ) P, (cosd)sind dg = -2—"%—15,,,, (2.39)
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and therefore (2.3.8) becomes

M=drppe 3 (2m+1)] 4, |2 (2.3.10)
n=0

To determine the energy absorbed, the total velocity potential at infinity is
written in terms of incoming and outgoing waves. First, we let r — o, and con-
sider the asymptotic approximations to the spherical Bessel functions [Arfken,
1970, p. 524);

sin(k, r + n%)
Fu ik P)SUEL P e (2.3.11a)
ke r
ekt
by (keor )= (04 S0 (2.3.11b)
e
Therefore using equation (2.1.11) the total radial velocity component becomes

o= 9 ¢ 6&
by =528 (2.3.12)
or
" . 1& 1) ke e ke
'l.m;w,——rnz_:o(h+l)l’.(oos0){{A,+2]¢ Hr 5 } (23.13)

Here e’ * * represents the outgoing wave and ¢ * * * the incoming wave. The

difference between the incoming and outgoing power at infinity is the power
absorbed by the sphere: that is, calculating the power as before,

My = Micoming ~ Moutgeing (2.3.14)

]

—drpe 3 (2m+1) l-]A,+—
=} 4 2
N
Wy =-drpme 5 (2n+1) [Rea, + 14, 1] s
n -0

or

Then for the total power removed from the incident wave by one particle we

have

My =T, +f=-47p¢ 3 (20 +1)Re 4,,  (23.16)
=0
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Expressions equivalent to (2.3.10), (2.3.15), and (2.3.16) are given elsewhere [e.g.
Morse and Ingard, 1968, p.427; Hay and Mercer, 1985].

‘We are considering dilute surpensions, for which the total attenuation should
be the sum of contributions from individual particles, so if n is the particle
number density, then the power loss per unit volume is All =n (I, + i ).
To obtain the attenuation per unit pathlength this quantity is divided by the
incident wave intensity, which for a plane wave with unit amplitude velocity

potential is

[=hc k2
2
from (2.3.4), so the attenuation coefficient is
=
o =AL __ATE § (20 4 1)Rea,. (2.3.17)
1 k2 W20

A few points should be noted. First, for uniformly sized particles the volume

fraction € can be related to the number density through the following equation;

¢
n=—t (2.3.18

(4/3) 7 a® )
Second, we should relate the attenuation coefficient for intensity a; to the
attenuation coeflicient for pressure ay,. Since I is proportional to p? the two

cocfficients are related by a; =2 a,. If welet @ = a,,, then

a=-2 £ R (20 +1)Re4,. (2.3.19)
2 “ezﬂn =0

2.4, The Viscous Nonconducting Limit

Now suppose that absorption due to heat conduction can be ignored in com-
parison to viscous losses. Hay and Burling [1982] have shown that in the long
wavelength limit this should be true for aqueous suspensions provided the acous-

tic frequency is such that the thicknesses of the thermal and viscous boundary
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layers are less than the particle radius, and provided the particle grain densities
are greater than 1.3-1.7 g cm %, This is born out by Urick’s [1948] expcrimental

results at megacycle fi ies with ions of sand and kaolin.

Based upon an analysis by Lamb [1945] of the rigid sphere case, Urick [1948)
obtained

D

D%+ (o+ C)
for z << 1and z << a /§,, and where §, is the viscous boundary layer thick-

= [ %—k,‘a’ +k(o- 1P (24.1)

ness given by

201"
5 = ‘_] 2.4.2
. o (2.4.2)
and
P«' "
=2 2.4.3)
3 Po ¢ )
L, 9%,
C=g+=0 (24.4)
D %4, [1 & (2.4.5
irre Sty B HE)

The first term of (2.4.1) is the loss due to scattering. The second term
represents absorption of energy due to viscous dissipation in the vicinity of the
scatterer, and is caused by velocity differences between the scatterer and the

fluid.
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CHAPTER 3 BOUNDARY LAYER APPROXIMATIONS

In this Chapter we review laminar boundary layer theory, and discuss some
of the general properties of boundary layers. Then we discuss the applicability of
the usual boundary layer approach to our problem. We present cxperimental
data obtained by Allegra and Hawley (1972], together with a discussion of the
applicability of a boundary layer approximation to this data set. We examine
the radial stress boundary condition in the fluid, and derive an approximate form.
We call this the first boundary layer approximation. Then a more general form is
derived, which affects all six boundary conditions, which we call the second boun-

dary layer imation. In each case, i results are compared to the

tion results are d to exact plots based upon

exact theory. The
the Allegra and Hawley theory.

3.1.1. Laminar Boundary Layer Theory

Prandtl [1905] proposed that there exist layers near boundaries where
viscous effects are significant, and that outside these layers the inviscid equations
hold. The basic idea is that as we approach a boundary, the no-slip condition
requires that the flow decrease to zero. At some point, regardless of the Reynolds
number of the exterior flow, the low speed becomes small enough that viscous
effects become significant relative to inertial effects. The region where this holds
is called the boundary layer, and at high Reynolds number it is a thin layer next

to the boundary. This theory is not mathematically rigorous in general, but it



has proved useful in many cases.

Viscous terms are comparable to inertial terms when

[v-€v|w -’;:-v'-'v . 3.1.1)

To illustrate the basic properties we consider a flat plate with an infinite fluid
above it, where the origin ic at the left edge of the plate and the x-axis coincides
with the surface, while the positive y-axis points up into the Auid. Vorticity is
created at the surface of the plate, and is advected downstrearn by the exterior
flow before it can diffuse far from the boundary, and is therefore confined to a
thin layer near the boundary, especially in fluids with low viscosity.

We also restrict ourselves to two-dimensional steady flow and an incompres-
sible Aluid, whece we have a farfield flow V¥ = (U(z), 0). Let us scale the boun-
dary layer thickness by &, the scale over which the exterior fluid velocity changes
along a streamline by L, the scale of the exterior velocity by Uy, and we scale
the velocity normal to the boundary, in the boundary layer, by Vo Then the

continuity equation

du v
i il [ (3.1.2)

shows that Vg &~ Uyb/L . Using this and scaling (3.1.1) we find that

A R™.
The boundary layer thickness varies as the inverse square root of the Reynolds
number R, for the exterior flow, and tends to zero as R, tends to infinity.
‘The basic procedure of the boundary layer appoach is first to derive the
inviscid equations far from the boundary, then to derive the approximate equa~

tions in the boundary layer (for high Reynolds number), and then to join the two
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regions using suitable matching conditions. Across the boundary layer we scale
the pressure by a factor Py , while in the inviscid exterior we scale it by Py.

The equations in the boundary layer are the continuity equation (3.1.2)
together with the x and y components of the Navier-Stokes equation (with their

scales included) as follows,

du Au 1 9, Ho Pu Mo 9%
oty et et ey
ug UVo _, UG Po Uy #Uq (214
T 5 57T W WE
where UgVof§~ Ug /L from the continuity equation, and
B8 gy o L0 e B By
oz Ay oy po Bz Po dy2
U$s Ugs Py MU #mlo @18
T Lz e poL® ofls

We consider the case when R, >>> 1,30 that § << L (see 3.13).

In this case the y momentum equation is at most of size /L, relative to the
Xx-momentum equation (3.1.4), except for the pressure term. Therelore
9p /3y == 0. Also, the second term on the right hand side of (3.1.4) is negligible

compared to the third term. Thus the boundary layer equations are

du  du 1 3p, Hodu
uaz + uay 703 By . (3.1.8a)
du | v
FrRaT =0, (3.16b)
and
_al ~ t
3 0. (3.1.8¢)

Since dp /Ay = O in the boundary layer, we may extend the pressure in the exte-
rior flow across the boundary layer to the surlace.
At the boundary y = 0,

u=v =0 (3.17a)



and in the farfield

u— U(z)as y »00. (3.L.7b)
3.1.2 Oscillatcry Boundary Layers

Let us cousider a periodic flow characterized by high Reynolds number,
where the oscillatory motion in the flow might be caused by a moving boundary
[Batchelor, 1067.p.353), but will be taken here to be due to a sound wave pro-
pagating parallel to the boundary. We investigate when it is possible to linearize
the equations of motion in this case, and the consequences.

For the case where there is no mean flow, to linearize the Navier-Stokes’

equation we assume that

v

5 | > |vlav|. (3.1.8)

If we scale ¥ by Uy, the time by the angular frequency w, and the distance
over which ¥ changes significantly by 1 / k., then (3.1.8) implies that

Uy
w

= .% << 1 (3.1.9

Vorticity arises from viscous diffusion away from the boundary, and for
periodic flow the vorticity generated is alternately positive and negative over one
period. Thus if vorticity does not travel far from the boundary in this time, then
no net vorticity is generated, and the layers of positive and negative vorticity are
confined to a thin region next to the boundary where they diffuse together and
cancel [Batchelor, 1067, p.353).

Since the time available for diffusion of vorticity (of one sign) away from the

boundary is T = r/w (half the wave period), then by dimensional analysis we

W
2
have a length scale § = lﬁl . Since we consider a flow with a high Reynolds
o
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number, and

= (3.1.10)

then we obtain
s<< b (81.11)
So when § << %, the flow is irrotational over most of the field, and the velo-
city of the low may be found from the speed and position of the boundary.
Let us consider an irrotational low ¥ = U(z) e "“! %, where U is in general

complex and varies along the boundary. For the irrotational flow exterior to the

boundary layer we have

U Lyl _ 18
AL St (3.1.12)

resulting in the x-component of the boundary layer equations

B _ 0y giw) 4 PP
5= 6l[U eivt) 4 P (3.1.13)
‘The boundary conditions are that
u o Ue’™ a5 y 200 (3.1.14a)
and
u=0 al y =0. (3.1.14b)

If we convert to coordinates moving with the fluid far from the boundary,
this is equivalent to a flat plate oscillating in a fluid at rest, which has solution
[Batchelor, 1967, p.354]

ulz, y,t)=U(z) eiwt (1- g(1+|')1/.5)
where

b= [%]% (3.1.15)



~8T=

From (3.1.1), the boundary layer approximation should apply when § is
much smaller than the wavelength, which places a limitation on the acoustic fre-

quency w. That is, using (3.1.16), equation (3.1.11) becomes

25
<€"h
W< - 3.1.16)
249 ¢ )
Recall that in the previous chapter we found that the viscous wavenumber was
given by
€L
wpe ) 7
k= (147 [—l 3.1.17)
= (04 [ @
(A
6
We identify the reciprocal of the imaginary part of the ber with the e

folding scale for the viscous wave, aud see that it is identical to the viscous boun-

dary layer thickness,

3.1.3. The Effects of Boundary Curvature

Suppose we have a curved boundary with radius of curvature a. Then the
boundary layer theory will be locally applicable if the gradients normal to the

surface are much larger than those tangential to it [Tritton, 1977, p.101]. We

obtain i pressions for the local gradi in Cartesian

For a boundary layer of thickness § we have (see Figure 3.1)

9 1
E; = (3.1.18a)
and
3 1
—_— — 3.1.18b
az z5 (L1n8)

where z 4 is defined by



Figure 3.1. Curved Boundary Layer.

5= [a+6-a* . (3.1.19)
— (205" ll 3 %l .

For the boundary layer imation to be appli we require

/8y >> 8/0x which implies that 6/1; << 1. So

(&) [+ &) <« Gim
2a 2a
and we find that
5"
(&) << (3.121)
and therefore
%<< 2. (3.1.22)

Thus for a boundary layer approximation to hold we expect that § << a.
The boundary curvature therefore imposes a constraint on the size of an
immersed body, in addition to the requency constraint found earlier (3.1.16).

Furthermore, since our variable s from the last chapter is



s =ka (3.1.23)
=(+i)3
ther we expect that the boundary lsyer approximation will work when
le] >1

3.1.4. Thermal Boundary Layers

Thermal diffusion of heat away from a boundary in a flow is similar to
diffusion of vorticity, in that heat is advected downstream before it can extend
far from the boundary, resulting in a thin layer with a high heat flux next to the
boundary, particularly for fluids with low thermal conductivity [Schlichting, 1968,
p-263}.

As an example we consider a two-dimensional flow, as before. The flow is

assumed to be incompressible and steady with con:lant properties. The govern-

ing equations are continuity (3.1.2), (3.1.4 and 3.15), and energy as
follows:
[,,_+ P FT) P, (3.1.24a)
327 397 ) " nC,

where the viscous dissipation [\mcuon $ is given by

o_z[l l ) " l . (3.1.24b)

In a manner analogous to that in section (3.1.1), we obtain the boundary
layer equations for a flat plate. The resulting momentum equations are identical
to those in the viscous nonconducting case (3.1.8a and c), so the same scaling and
approximations hold.

Let us scale the energy equation (3.1.24). As before let the farfield flow be
¥V = U(z)x, with scale Uy, L is the length scale in the x-direction as before,

and the boundary layer thickuess is scaled by §,. From the continuity equation,
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8,
Vor -i-v,, (3.1.25)
in the thermal boundary layer. If we give a scale AT for the temperature, equa-

tion (3.1.24) scales like

aT aT T *T
eyt va—y = oo + ”ayz
v ATy AT AT AT 229
(=73 [y 72 7
L Mo é_u_]z o @l’ N a_ul’
p0Cp 02 £0Cp | By poCp \ 82 dy
2
Mo ' Bo_ [ Ugb Yo
oC Pnc G, L L2 é
Since 6, << L, wnhm the boundary lnyer we have
aT aT T o '
e L 3.1.27
v (23 E ay® 2oC, ( )

Our boundary layer assumption is that in a thln region near the boundary,

advective and diffusive terms are comparable in magnitude, which implies

Uo g
—_—~ 1.2
7 5 (3.1.28)
and this can be rearranged to give
2
4 l 1
—_—] s ——— 3.1.29
l L P.R, ¢ )

P, = Tﬁl is the Prandtl number and is the ratio of the kinematic diffusivities of

momentum and heat. Since § << L, we require P, R, >> L.

Thus the boundary layer equations for a thermal boundary layer on a flat
plate are the continuity equation (3.1.6b) the momentum equations (3.1.8a,c) and
the energy equation (3.1.27), together with boundary conditions as for viscous
boundary layers together with continuity of temperature or heat flux.

The and inui ions are ind dent of thermal effects

so that the solution for the viscous boundary layer in, the flow is the same as



ik

before. In addition, the thermal field is dependant on the flow but does not affect
it, because buoyancy effects have been ignored. Thus we may solve the viscous
boundary layer problem without worrying about thermal effects, then solve the

thermal problem, and superpose solutions.

3.1.5. Th Acoustic B y Layers

The decomposition of the exterior flow into acoustic, thermal and viscous
modes, which are uncoupled except at boundaries [Pierce, 1981, p.519], provides a
solution in principle to the thermoviscous problem we are considering. The

acoustic field can be rep d by an eig i ion, where the cigen-

are the complete set of ei ions to Helmholtz's equation for each
mode in the particular gecometry of the problem being considered. The unknown
coeflicients in the expansion may then be obtained by satisfying the conditions of
continuity of velocity, stress, temperature, and heat flux at the boundary, and
the problem is reduced to solving for these coefficients.

A boundary layer imation to the g ing equaiious, of the type

p in the di h ily useful in this

P sections, is not
instance, except indirectly. Instead, approximate forms of the boundary condi-
tions themselves are needed to simplify the problem.

Thus far we have considered the boundary layers in the fluid. Under
appropriate conditions, a thermal boundary layer will also be present in the solid.
However, it is not evident that the thermal wave in the solid decays rapidly

inwards. The thermal wave in the solid scatterer is given by (2.3.2b)
$'v= 3 i (2 + 1) B’ j, (k'r) P, (cos6). (3.1.30)
n =0
In general, we may write j, (k 'r) as the following sum

Ja (k'r) =AW (k'r) + b1 (k'r) (3.1.31)
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where k(") and A, are Hankel functions of the first and second kind [Arfken,
1070, p.522]. Asymptotically, for | k'r | >> 1, this becomes [Arfken, 1970,
p.524]

] . L
Ja (k'r) = #{(—-‘)‘“e YRR pipre e T} (3.1.32)
For r >> §,, the second term predominates. So near the boundary r = a
the thermal wave propagates radially inwards, and decays exponentially toward
the center of the sphere. This suggests that a boundary layer approach might be
useful inside the scatterer, provided however that §, << a. Again, a constraint
on the size of the scatterer is implied.
There is a very important consequence of the fact that thermal wave motion

is predominantly radial in the boundary layer. Let us consider the fluid. For the

thermal mode in the fluid the velocity is given by (2.1.37g).

v, = %5 T, © (31m)
Since 9y,,7; << 8T, /3r in the boundary layer, then the tangential component
of the thermal velocity is negligible compared to the radial componemt. If we use
Helmholtz's theorem we may write the thermal velocity as ¥, = -9¢,, where
the vector potential is missing due to the modal relation va, =0. The fact
that the tangential component of the thermal velocity is negligible in the boun-

dary layer means that

ﬁ'—wo for all 0 (3.1.34)
30 or all 0 . 1.

As noted before, we may write ¢, as the complete orthonormal series
4 =S i*(2n +1)B, hy(kr)P, (cos0). (3.1.35)
n=0
Thus (3.1.34) implies that

¢ = Bohglkr), (3.1.38)
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so that the thermal potential contributes only to the n = 0 partial wave. This
means that the viscous nonconducting case should be enough to describe the
n > 0 terms, which greatly simplifies the problem. A similar result holds for the

solid, using an analogous argument.

3.1.8. Allegra and Hawley's Results for Polystyrene Spheres

Allegra and Hawley (1972] d the i ient in aqueous

suspensions of polystyrene spheres. Five suspensions were used, four being mono-
disperse (uniform size) and one being heterodisperse (non-uniform size). The
monodisperse suspensions had polystyrene spheres of radii 0.653 ym , 0.504 um,
0.178 pm, and 0.044 pm, while the single heterodisperse suspension had a nomi-
nal particle radius of 0.11 gm . Volume concentrations were stated to be about
10 % . Measurements were made at 20° C for sound frequencies ranging from
around 3 MHz to around 100 MHz.

The quantity measured by Allegra and Hawley was the excess attcnuation
due to the suspended particles, which according to Allegra and Hawley is the

diff

intrinsic i d from

losses via point by point com-
parison of signal amplitudes as a function of distance for water and for the
suspension. Hawley [1967, p.81] determined experimentally that for polystyrene
volume concentrations of up to at least 10 %, the attenuation was a linear func-
tion of the concentration, leading him to conclude that the total attenuation was
a simple sum of the independant attenuation effects of each particle, and that
particle-particle interaction and multiple scattering effects were negligible for this
material at these volume concentrations.

The experimental and theoretical results obtained by Allegra and Hawley for
polystyrene are reproduced in Appendix 6. These same experimental data,

together with theoretical results computed using equations (2.3.3; our so-called
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Figure 3.2. Excess attenuation versus frequency for an aqueous suspension of
polystyrene spheres at 20° C, a = 0.653 ym . Points are measured excess
attenuation . (Allegra and Hawley [1972]). The thickest line is the total theoreti-

cal attenuation, and the legend indicates which lines are oy, a;, and ay, respec-

tively.



0.1E+04

0.1E4+03

0.1£4+02

0.1E4+01

dalphq/(f)++2 in 1.0e—17 .ecooz-/em

X ]
° fmbizy  ©

Figure 3.3. Excess attenuation versus frequency for an aqueous suspension of
polystyrene spheres at 20° C, & = 0.504 um . Points are measured excess
attenuation . (Allegra and Hawley [1972]). The thickest line is the total theoreti-
cal attenuation, and the legend indicates which lines are ag, o), and ay, respec-

tively.
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Figure 3.4. Excess attenuation versus frequency for an aqueous suspension of 1
polystyrene spheres at 20° C, @ =0.178 pm . Points are measured excess
attenuation . (Allegra and Hawley [1872]). The thickest line is the total theoreti-

cal attenuation, and the legend indicates which lines are ap, @, and ay, respec-

tively.
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Figure 3.5. Excess attenuation versus frequency for an aqueous suspension of
polystyrene spheres at 20° C, a = 0.110 pm . Points are measured excess
attenuation . (Allegra and Hawley (1072]). The thickest line is the total theoreti-

cal attenuation, and the legend indicates which lines are ap, oy, and @y, respec-

tively.
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Figure 3.6, Excess attenuation versus frequency for an aqueous suspension of
polystyrene spheres at 20° C, a = 0.044 pm . Points are measured excess
attenuation. (Allegra and Hawley [1972]). The thickest line is the total theoreti-
cal attenuation, and the legend indicates which lines are ag, ay, and ay, respec-

tively.
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exact case), are shown in Figures 3.2 to 3.6, for a volume concentration ¢ = 0.1.
Only the contributions from terms n = 0,1 and 2 are shown, because Allegra
and Hawley (1972] found that for their particle sizes and frequencies the higher
order terms were negligible. In Figures 3.2 to 3.6, the terms ag, ay, and ap
represent the n = 0,1 and 2 teins of the partial wave expansion. The total
attenuation shown is the sum of ag, ay, and ay.

The numerical method used was as follows. We solved the set of boundary
conditions (2.3.3) for each n, to obtain the coefficient A, , using the IMSL (Inter-
national Mathematical and Statistical Library) Gaussian elimination subroutine
LEQTIC. The attenuation coeflicient a, was obtained using equation (2.3.19)
and A,. In order to solve the system of equations numerically, it proved neces-
sary to normalize the thermal terms. We did this by dividing every B, term by
h, (t), and dividing every B, term by j, (¢'), in equations (2.3.3). Otherwise we
were faced with a numerical overflow problem. Finally the results for n =0, I,
and 2 were plotted using the GRAFMAKER subsct of the DI-3000 set of graphics
software. All numerical calculations were made on a Digital Equipment Corpora-
tion VAX 8800 computer, with the VMS 4.7 operating system.

Comparing Figures 3.2-3.6 to Figures A5.1-A5.5, we find that for the n =0
term our results decrease more rapidly with frequency than Allegra and Hawley's
for all particle sizes. This results in lower total attenuation at high frequencies
for the largest particles. The reason for this discrepancy is not known, since our

calculations are based on the same equations as those of Allegra and Hawley

{1072}, except for the previously ioned sign diff in the ial stress
boundary condition, which does not affect m = 0. With one exception, the
n =1 and n =2 terms agreed well. The exception was the n =1 term for
particle radius a = 0.044 pm (Figures 3.6 and AS5.5), where the Allegra and

Hawley [1972] result is much larger than ours. We believe this to be an error in
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their diagram for several reasons. First, our result provides a better fit to their
data for this size. Second, the a; term tends to decrease with decreasing particle
size in all of our graphs, and in all of their graphs, except the one in question.
Third, as has been suggested, thermal effects should be insignificant for n >0,
which implies that the n = 1 term should match the corresponding term in the
viscous nonconducting case. This turns out to be accurate for all results in the
Figures being discussed, cxcept for a = 0.044 ym, for Allegra and Hawley
[1972]. Thus we conclude that our a; term is correct in this instance.

We expect that a boundary layer approach will be useful for the Allegra and
Hawley data set if the viscous and thermal boundary layer thicknesses are less
than the particle radii. As has been shown, these thicknesses can be taken equal
to the e-folding scales of the corresponding waves, which from the complex

wavenumbers (2.1.14), (2.1.15), and (2.1.20) are:

L
P [ 20 ]

= | =

W
Noting that |s| =v2a/5,, |t| =V2a/§, |t'| = v2a/§', the
magnitudes of &, ¢, and ¢’ should thus be much greater than unity. Table 2.3
gives the range of values of |a | , |t | and |¢'| over the measured frequency
range, for each particle size used. Clearly a boundary layer approximation should
work well for the larger particles over most of the frequency range, and it should
have the least validity for the lowest frequencies and for the smallest particles

considered.
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Table 3.1. Range of magnitudes of s for Allegra and Hawley's [1972] data
set. a is the particle radius.

ey T
J =1MHz | f = 100 MHz
0.653 168 188
0.504 129 129
0.178 0.457 4.57
0.110 0.282 2.82
0.044 0.113 L12

Table 3.2. Range of magnitudes of ¢ for Allegra and Hawley's [1072] data
set. a is the particle radius.

a(pm ) (]

/ =1MHz | [ =100 MHz

0.653 4.35 435
0.504 3.36 33.8
0.178 L19 119
0.110 0.734 7.34

0.044 0.203 2.93
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Table 3.3. Range of magnitudes of ¢’ for Allegra and Hawley's [1972] data

set. a is the particle radius.

a(pm) [

=1MHz | / = 100 MHz
0.653 5.48 54.8
0.504 4.23 423
0.178 1.49 149
0.110 0.923 9.23
0.044 0.369 3.69
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3.2. First Bound Layer App 1!

3.2.1. Viseous Noncoaducting Limit

‘The basic approach to be followed here is to examine the validity of several
approximations to the radial stress boundary condition in the fluid, in the viscous

nonconducting case. Because of the well-known importance of the n = 1 term

to the viscous absorpti tion, this h is taken for n = 1 initially.

First we obtain the boundary conditions, in partial wave form, in the viscous

non-conducting limit by taking i (2.3.3), ing both the

and heat flux boundary conditions, and dropping thermal mode terms from the
other boundary conditions. The radial stress boundary condition in the fluid,
0,y , is then the left hand side of (modified) equation (2.3.3¢),

o =[-iwpal+2pn(n +1)] 4, (z)-dpgz j,'(z) (3.2.1)
+A ([-iwma®+2pn(n +1)]h (z)-4pgz h'(z))
+Cy 2pgn (n+1) by (8)-0h'(2)]

We might simply approximate the radial stress in the fluid by the inviscid
pressure field outside the boundary layer. This approach is suggested by laminar
boundary layer theory, in which the pressure inside the boundary layer is approx-
imately the same as the exterior pressure. In this case the radial stress o,, is just

O = iwpga®ljs (244, by (2)] (322)
How -er, this approximation, when applied to polystyrene in water, results in oy
being larger than both the exact result and Urick's result (see Figure 3.7) for the
smallest (@ = 0.04dpin) and largest (a = 0.653pm) particles examined by
Allegra and Hawley. For the small particle it is initially larger, while for the
large particle the divgrgence from the exact case only becomes significant at high

frequencies.
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Figure 3.7. The n = I contribution to total attenuation, first boundary

layer approximation, viscous ducting ~»se, polystyrene spheres in water at
20 °C. Particle radii are given. The exact result (3.2.1), Urick's [1948] result
(2.4.1; second term), and the first boundary layer approximations (3.2.2 and 3.2.3)

are shown. Radial stress 1 is (3.2.2), Radial stress 2 is (3.2.3).
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A hat less restricti imation is to leave the radial stress of the

incident plane wave ¢, unaffected but to maintain the approximation with
respect to the other terms in o,, . That is:
o =[-iwppa®+2pugn(n +1)]jy (2)-4poz j'(z) (3.2.3)

~fwpoAy by (7)
When this approximation is tsed we obtain much better agreement with the

exact case and with Urick's result (Figure 3.7).

This raises an interesting question. Why are viscous effects in the incident
radial stress so important, while viscous effects in the radial stress due to the
scattered wave are relatively unimportant? To examine this question, it is help-
ful to recognize that for Ailegra and Hawley's data set, z << 1 (for the largest
particle, a = 0.853 ym, so at the highest frequency considered, f/ = 100Mhz,

s
we get z ., = 0.277). Noting that — L) - = we expand (3.2.1) to order
iwpga®

+3, obtaining ( for n = 1)
Ter LA l 8
~ig -1+—]+ 3.2.4
~iwpga® 3 3 a? )
3
z z 8
afE e f-e ~ |+

A 12 1 4 z? 4
'[zzl'l+‘z"2[l+,.l+ 3[l+u’”}

£ 1 a0 1
-Fc.|. = I[a- + 8 -7]
where the Cy term is exact [Arfken, 1970, p.525

We recall (see Table 3.1) that
| & | is not small at high frequencies. If we consider that part of (3.2.4) associ-
ated with the incident plane wave (the part not multiplied by A ), it is inviscid
to lowest order in small quantities, and thus viscous terms should be relatively
unimportant. On the other hand, the scattered wave terms (the part multiplied

by A ) bave a significant viscous component to lowest order, and this contribu-
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tion to the attenuation should be measurably modified when viscous terms are
dropped (see equation 3.2.2). As shown in Figure 3.7, the actual result is the
opposite.

The ay term exhibits none of these difficulties. Both approximate forms of
the radial stress match the exact case for both sizes, and for all frequencies con-

sidered (Figure 3.8).

3.2.2 Viscous Conducting Case

Again, the set of boundary conditions used is the general set of equations
(2.3.3), and again the term to be modified is the radial stress in the fuid, o,,,
given by the left hand side of equation (2.3.3¢). Now, however, thermal terms
are retained, and we are most interested in the n = 0 term, because it is this
term which we expect will be most sensitive to thermal effects. Thus, the radial
stress in the fluid at the boundary is
o, =[-iwpgat+2ppnin +1)]Jjy (z)-dpgz j'(z) (3.25)

A, {([-~iwppa+2pnin +1)]h (2)-dpez h'(z))
+ B {[-iwpga®+2ponin+l)] hy () -dppt h'(t)}
+Co2ugn (n+1)[h(8)-0h'(s)]

As in the last Section, we first assume that the radial stress in the fluid is
given simply by the pressure. We recall from (2.1.37g) that the thermal pressure
is expected to be negligible within the thermal mode, and we will, at least ini-
tially, assume that the thermal pressure is small compared to the acoustic pres-
sure. In this approximation we obtain

0 = —iwpya[fy (2 1+ Ay by (2)] (3.2.6)
which is the same as equation (3.2.2) for the viscous non-conducting limit.

The results for n = 0 are shown in Figure 3.9 as the plot of radial stress 3:
Clearly the approximate attenuation is too small at low frequencies for both par-

ticle sizes, although the discrepancy decreases as the frequency increases.
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Figure 3.8, The n =2 ibution to total ion, first boundary
layer approximation, viscous d case, polysty spheres in water at

20 °C. Particle radii are given. The exact result (3.2.1) and the first boundary

layer approximations (3.2.2 and 3.2.3) are shown. Radial stress 1 is (3.2.2),

Radial stress 2 is (3.2.3).
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layer approximation, viscous conducting case, polystyrene spheres in water at 20
9C. Particle radii are given. The exact result (3.2.5), and the first boundary layer
approximations (3.2.8 and 3.2.8) are shown. Radial stress 3 is (3.2.8), Radial

stress 4 is (3.2.8).
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The convergence to the exact result at high frequencies, however, is mostly due
to the fact that, relative to the contribution of scattering to the attenuation, that
from thermal absorption becomes negligible (see Figure A5.1). This suggests that
thermal terms are not negligible in the radial stress.

We now reincorporate thermal effects, and make an approximation by
assuming that the radial gradient of thermal quantities may be scaled by the
boundary layer thickness. This produces the following equation for the radial
stress in the fluid:

rr = i upoa®ju (2)+A, by (2)] (327

+ (=1 wpoa®+2p1gn (1 +1)-dp1it )B, h, (t)
which, for n = 0 becomes

a,p = —1wpea?(jo(z)+A gholz)] (3.2.8)
+ (=¥ wpya~dpgit )Boh(t)
When this was done, agreement with the exact result was very good for both par-
ticles. This case is labelled radial stress 4 in Figure 3.9.
The results of the calculation for n = 1 and 2 using (3.2.7) are not shown
because they are virtually identical to the first boundary layer approximation in

the viscous nonconducting case (Figures 3.7 and 38). This shows that the

d effective | of thermal effects to the ag term carries

through to the boundary layer approximation. This indicates that the use of

viscous d boundary conditions for n > 0 terms would be an excel-

lent approximation.

To summarize, the first boundary layer approximation works well for ay, the
agreement with the exact case increasing as s,¢, and ¢’ increase, provided that
the thermal pressure term in the fluid is retained. For a, agreement with the
exact case is considerably improved when the viscous terms in the radial stress

due to the incident plane wave are included. For a; the agreement is excellent
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for both sizes and both approximations cver the whole frequency range.

3.3. Second Boundary Layer A

This is a more formal treatment which considers the thermal and viscous
houndary layers in the fluid, as well as the thermal boundary layer in the solid,
for all of the boundary conditions. The approach is primarily based upon the
method Pierce [1981] used for boundary layers between two half-spaces separated

by a plane interface.

2.3.1 Boundary Conditlons in the 2nd Boundary Layer App: i

The modal relations in Section 2.1.2 indicate that in the fluid the pressure is
approximately p,, and that the viscous mode in the fluid and the shear wave
mode in the solid have negligible effects on temperature or pressure.

We separate field quantities into the three modal components, and use the
above simplifications, and the earlier result that the tangential component of the

thermal velocity should be negligible, to re-express (2.2.1) as

Vpt o, tv, =u (3.3.13)
Vut Y=o g+, (3.3.1b)
T+ =T'+T/', (33.1¢)

aT,  OT, I [T aTt'l
i R e =ad B (3.3.1d)

2 s S )
Pe + gHo [V'V, +v -"'x]- 2l‘n['3-r("'=,v +ou, +-I.,,)]
=p¢’+p.’+§u’[$-ﬁ,'+€,-n,']

-2 %(vg,,'i- u' ), (3.3.1¢)



d [ Yy 1 O, 0y
Bo [r—[ +2
or

e or
o[ra (i lvu.ﬂ' o,/
=pu [r + T + 2 R (3.3.1f)

where the compression wave cor‘:ibution to the tangential stress has been

d as shown in Appendix 7, and the ibution of the ial thermal

velocities to the tangential stress has been ignored.
We now wish to represent equations (3.3.1) in potential form, and therefore
need the relationships between modal field quantities and the potential functions.

For the velocities of the three modes in the Auid we have

Ve=-Té. , (3.3.2a)
= O, 109
= Tor r 86
Vi =-Véy (3.3.2b)
B, 120
or r a0
and
v, =9xXk, (3.3.2¢)
1
by ap(A‘,smﬂlr— ——(rA ‘)ﬂ

with similar relations for the solid.
The acoustic pressure in the fluid is found by substituting ¥, = -7¢, into

modal relation (2.1.36a) to obtain

P = -iwpod. (3.3.3)
We have shown, using (2.1.37¢), that the thermal pressure p, is negligible.

For the acoustic temperature, we use (2.1.33b) and (3.3.3) to obtain

T, =-i wTﬂuﬁ, (3.3.4)

_-iw (743
i P

using the thermodynamic identity [Allegra, 1970, p. 27}
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tzﬂ’ To
q-1= - (3.3.5)
Here we identify the coefficient on the right hand side of (3.3.4) as an approxi-

mate form of b, /(-iw), where b, is Allegra and Hawley's coefficient, equation

(2.1.17). The ap i quival is shown in A dix 8, and thus
£2
b~ (e (339)

and (3.3.4) becomes T, == b, /(-iw).
The thermal mode temperature in the fluid is related to the potential ¢; by

taking equation (2.1.37g) and substituting ¥, = ~§¢, into it to obtain

B nG,

T, =

g, 33.7)

where we recall that 0 = and that k2 = iw/o. The coefficient on the

K
7C,
right hand side of (3.3.7) is an approximation to Allegra and Hawley's thermal
coeflicient b, /(-4 w), given in equation (2.1.18) (see Appendix 8). Thus

b~ f;;- (33.8)
and (3.3.7) becomes T, = b, ¢, /(-iw), Thus we recover Allegra and Hawley's
relation for the total temperature in the fluid, equation (2.1.18).

Now we derive similar relations for the wave modes in the solid. To get the
potential form for the acoustic pressure p,', we substitute ' = -G¢, ’ into the

modal relation (2.1.45d) to obtain
2 et
pe'= il — 4! (33.9)

= [~w2iu‘+ —;-ﬂ’k," 4

where the second expression is obtained using k, ? ~ w?/¢ %
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The thermal pressure relation is obtained by substituting W' = -7'¢, ! into
the modal relation (2.1.49¢), and then substituting this into (2.1.49d) to obtain

Pe'=po'c n[ o '
e'= po'c ky T é (3.3.10)

= [~ + Bun= oy
using (2.1.41b) and (2.1.3h). This can be approximated by

PR kR4 (3a11)
We relate the acoustic temperature in the solid to the acoustic potential by
substituting ®, ' = -7¢, ' into (2.1.45d) and combining this with (2.1.45() to
obtain
2
T, = _Lug_ 8 (33.12)
B'ode
This is approximately the result obtained by Allegra and Hawley (sce Appendix
8),and so T,' = 5,9, ', with
~ (1) W?
L (33.13)
The last relation we need is between the thermal mode temperature and ¢, .
‘We do this by using (2.1.49%) and the scalar potential to obtain
k'e® 4
Bel '

which is approximately the same as Allegra and Hawley's result (see Appendix 8),

so that T,'= b,'9,', where

7=

¥ (3.3.14)

cok?
e B
and we recover Allegra and Hawley's relation (2.1.22) for the total temperature in
the solid.

(3.3.15)

o'~

Now we proceed to substitute the above relations between potentials and
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modal field quantities into equations (3.3.1). The resulting set of equations is

9. 34
“ar " Tor rsmﬁ 80“""‘9)
3 3. o'
] ”M aa(A‘unB)] (3.3.163)
198 1 e %' 10
'TW'TTr(’“""‘“[‘TW“ TaAN {5.108)
bod +bdy =-iefb s, + b'8,) (33.160)
B ¢,"
K[b a:° in ] - nwK’[b i b,'—:—:-] (3.3.164)

" 2
- whobe + ho ["zzh + /‘12¢4]

O 0% o
ot 9r? or

(A,smﬂ)]

+ 2 rsm0 a6

2 4
= (Pa + kA + ! +
' [ke AR ]

. P a1 9 ;
R e o b LU I

108,

19
no |r [ 2ar(r4‘]]+ alsmoao"‘"”"’)l‘2_[r = (3.3.100)
S R = O s IR - N W R |_1L1¥
=gy TT a4 )] T virr L] R ol b

Now we apply the second boundary layer approximation, which is to replace

radial gradients of the thermal and viscous modes in the fuid, and of the thermal

mode in the solid, by



-65-

ar

at the boundary r = a. This comes from assuming a radial dependence of the

2~ [til- - -‘r-] ~ ik (33.17)

form e* /¢ for these waves near r = a, where the -+ sign represents outward
propagation in the fluid, and the - sign inward propagation in the solid. Further-
more, we may assume that | ka | >> 1 for both thermal modes and the viscous
mode, which implies that the sccond term in (3.3.17) may be neglected, as indi-

cated.

We rewrite equations (3.3.16) using these approximations, obtaining

9. .
T TRt nsmﬂ BO(A'smo)
=-iw ——B—@— + ik, "9, + (A 'sinf) (3.3.18a)
ar *TT Tasin 9 90" ¢ -
104 199, 18
L ika= —|w[—;~—57- - 12 (3.3.18)
b + b =-iufb 9!+ b4 (3.3.18¢)
K [b, oaLr + ik b, ¢,] = ik’ [b '—“’-‘— —ik'b, up,'] (3.3.184)

2 2
~iwped, + Zuo (k28 + k7%,

Po. ., 9 L9,
+ 20 ar2 ke - —07i rsind T‘ﬁM ‘smﬂ)]

= (= + 3k R0+ (P + R
o [kg %5, 1%,

¢:

+2u 2! -

5
“rsind 90 (A,sma)l (3.3.18¢)



-66-

2yl (1.9
to ["' AT [sma w4 ""’”] )
wil-sl L2, N S Ry
=¥ [ i el 260 wind 99 A 400
1 94"
“25 T o !]

(3.3.181)

Next we present the approximated boundary conditions in partial wave form

by expanding the potentials in terms of (2.3.J) and (2.3.2), and setting r = a.

Note that in the boundary conditions for radial velocity, radial stress, and

tangential stress we make use of Legendre's equation [e.g. Arfken, 1970, p.542].

1 d (. ,dP,(cosf)
ET] smﬁ—T + n(n+1)P, (cost) = 0
Then the boundary conditions are
(a) radial velocity
zlja" (2 )+ Agh' (2 )]+ itB,hy(t) - n(n +1)C, by (8)
=(-1w) [2'4,'5,"(z") - t'B, ', (1) = n(n + 1)C, "5y (8')]
(b) tangential velocity
Jolz YAy hy (2 )-iCohy ()
=) {Ads (2')-Co'lin (') + 8%, (8" )]}
(¢) temperature
be [ (2)+ Apby(2)] + b By hy(t) =
(=50 [6."Ay'a (£7) + b "B,y (¢ ],

(d) heat flux
Kb 2Uia) + 4y by o) + ith By b ()] =

iR (bt e - B, 0]
(e) radial stress

[iwpea? + 2pon (1 +1)]j, (2 )-4pg2i, (2)

(3.3.192)

(33.19b)

(33.19¢)

(33.19d)
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+ Ay 4 wpye? + 2qn (n +Llh, (2 )-4pigzh, )
- 2i8 pon (n +1)C, hy (2)
= A, {[-w%/a? + 2p'n (n +1)]j, (a)-4p'2 "5, (2 )}
~wPpg'a? B! (1) + 20" n(n+1) Cy ' [ju(s") - a'ju(a")]  (3.3.19¢)
(f) and tangential stress
polizia" (2 )= jo (2 )] +[eh' (2 )- b, (2 ))A4,
+ %(»Z- n(n+1))C, by (s) }
=p'{[z'7" (2') -4y (24,7
”
+ Cylls'in (') = s (8" )(—iz— +0i4n-1)) (3.3.101)

In the radial stress we have used the spherical Bessel equation

22, "z) + 22, "(z) + (22 - n(n+1)f,(z) =0 (3.3.20)

to eliminate second derivatives. We have also eliminated a term 022 from

3
the left hand side of equation (3.3.18¢) compared to ~i wpp, because the ratio of
these two terms is ¢, (equation 2.1.30b). This deletion is necessary to be con-
sistent with the approximation to p, made in Pierce's modal separation.

In addition, a term —%uot 28, h,(t) has been dropped from the left hand
side of equation (3.3.19e), since if we substitute ¥, = -7¢, into the momentum
equation (2.1.26b), we obtain p, =(-iwpe+ 4/3uek,2)p, . The second term may
be identified with the term we have dropped. The ratio of the second to the first

k, 2
term in p, is %T"' 2 9. This implies that the term we have dropped is of the
;

same order as p,, which is supposed to be negligible.
For n = 0 we obtain
(a) radial velocity

z[jo(z) + Ag ho(z)] + itBy ho(t) =
(-iw) [z'Adjd(z) -it'Byljolt"), (3.3.21a)
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(b) temperature
be (solz) + Agholz)] + b Boho(t) =
(~iw) [b'Agjolt!) + b 'Bojolt!) |, (3.3.21b)
(e) heat flux
b x[jg(z) + Achgz)] + ith Boholt) =
(il 1ot g gta) - i B (3.3.210)
(d) and radial stress
(ciwma? Vialz) + [(-iwpoaBbale) - tuaehelz) | Ao
= {aie - aticlen 4d
—u?p'a?Byljo(t") (3.3.21d)

Note that the temperature condition (3.3.21b) is identical to the exact condi-
tion (2.3.3¢).

For n > 0, as discussed previously, we drop the thermal boundary condi-
tions, and the thermal mode terms in the boundary conditions. Therefore equa-
tions (3.3.19) become
(a) radial velocity
2lia" (2 )+ Aghy' (2 )= n(n +1)Cohy (8)

=(-iw) [ 24,7, (z") = n(n + 1)C, "5, (8')] (3.3.22a)

(b) tangential velocity
Ja ()4 Aghy (2)-isCih, (8)

=i { A (2') =Gl ia (8" + "5, "(a')]} (33.220)
(¢) radial stress
i wpga? + 2ugn (n +1))j, (2) - dppzs, (2)

+ [iwiwpoa? + 2ugn (n +1)A, (2) - amoeh, 2) ] 4,
~ 2pgian (n +1)C, h, (s)

= [(‘W".ﬂglaz + 2u'n (n+1))j, (2') - dp'z "5, ’(z’)] A’ (3.3.22¢)



-69-

+C 2pn(n+1)[Jy (8')-a"J"(8")]
(d) and tangential stress
sl [2ia" () = o (2 )]+ [2he (2 )= hy (2 )4,
+ (8%~ n(n+1)Cyhy (o)}
=u L (2" - ga (2 )4,
+C sy (8") = Ja ( a‘)(—%s"n& n?+n 1))} (3.3.22d)

3.3.2. Results For the Second B dary Layer Ap i

We wish to examine the effects of the second boundary layer approximation

on the different boundary diti ly. Our ional di

was therefore to take the set of exact boundary conditions (2.3.3), and replace

one with its epproxi t from fons (3.3.21) or (3.3.22). Each

computational run therefore involved one approximate and three exact boundary
conditions.

The results for n =0 are shown in Figure 3.10. The approximate radial
velocity condition (3.3.21a) yields values for the attenuation which are too large

in comparison with the exact case, but this difference decreases with increasing

particle size and i ing frequency. This behaviour is expected because 6, /a
becomes smaller with increasing frequency and particle size. When the heat flux
boundary condition is approximated, for small particle radii the quantities ¢ and
t! are so small (Tables 3.2 and 3.3) that the accuracy of the approximation is not
expected to be good. In fact negative values of attenuation were obtained for the
smallest particle at the lowest frequencies. However, at the high frequency end
for @ == 0.044pm, there is an indication of convergence with the exact case, and
for a = 0.853um, the approximate and exact results are nearly the same at high
frequencies. The approximate radial stress is the same as was obtained in the
first boundary layer approximation (Figure 3.9). The temperature condition is

unaffected by the approximation for n = 0, so this result has to match the exact
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case, and therefore is not plotted in Figure 3.10.
For n = 1 the radial stress boundary condition is approximated only in that
the thermal mode terms have been dropped, and is not shown because it is then

| ioned

identical with the exact case, as previously When we

the radial velocity boundary condition, for the small particle (Figure 3.11) we find

a large diff which d for higher f ics, and for the large particle

we find a rapid convergence to the exact result, as expected. The approximate
radial stress boundary condition produces negative attenuation for the small par-

ticle over the whole frequency range, and for the large particle (Figure 3.12) there

is negative attenuation at the lower fi ies, but there is g towards
the cxact case at high frequencies. The tangential stress boundary condition,

when

pp d, yields poor for the small particle, but agreement
improves with increasing frequency for the large particle (see Figure 3.11). The
results for » =1 are poorer than the thermal approximations for n =0
because, for the same frequency and particle size, the viscous boundary layer is
2-3 times thicker than the thermal boundary layer in the fluid.

The approximate boundary conditions for n = 2 produce good agreement
with the exact case, except for the approx'mated tangential velocity condition.
We obtain negative attenuation values for the small particle, but for the large
particle rapid convergence to the exact case occurs as the frequency increases

(Figure 3.13).
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Figure 3.10. The n = 0 contribution to total attenuation, szcond boundary

layer approximation, viscous ducting case, polystyrene spheres in water at 20

°C. Particle radii are given. The exact result (2.3.3), and the second boundary

layer approximations (3.3.21) are shown.
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Figure 3.11. The n = 1 contribution to total atteauation, second boundary

layer imation, viscous conducting case, polysty spheres in water at 20

°C. Particle radii are given. The exact result (2.3.3), and the second boundary
layer approximations (3.3.22) are shown, except for the approximate radial stress

result.,
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Figure 3.12. The n = 1 contribution to total attepuation, second boundary
layer approximation, viscous ducting case, polysty spheres in water at 20

9C. Particle radii are given. The exact result (2.3.3), and the result of the second

boundary layer approximation (3.3.22¢) to the radial stress, are shown.
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Figure 3.13. The n = 2 contribution to total attenuation, second boundary
layer approximation, viscous conducting case, polystyrene spheres in water at 20
°C. Particle radii are given. The exact result (2.3.3), and the second boundary

layer approximations (3.3.22) are shown.
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CHAPTER 4 SUMMARY AND CONCLUSIONS

Bouadary layer approximation techniques have been applied to the problem
of sound scattering by an elastic, heat conducting sphere in a viscous, heat con-

ducting fluid. The i results are d to exact calculati and

te measurements of atlenuation made by Allegra and Hawley {1972 in aqueous
suspensions of polystyrene spheres at long wavelengths. Computations are there-
fore made only for the n =0, 1, 2 in the partial wave expansion of the acoustic
field.

Both the Allegra and Hawley [1972] and the Pierce [1981] modal decomposi-
tions of the acoustic field into compression and shear wave modes were used. In
the fluid, this results in viscous shear waves and thermal compression waves in
addition to the usual acoustic compression wave. In the solid, a thermal wave
exists in addition to the usual elastic compression and shear waves. These modes
are uncoupled to lowest order except at boundaries. Pierce’s approach has been

generalized here to include the solid case, and has been adapted to spherical

geometry. The boundary conditions at the surface of a sphere obtained using the
two modal separations are shown to be comparable in form. One of the main
differences between the two approaches results from Pierce's assumption that the
thermal wave in the fluid does not contribute significantly to the normal stress.
Pierce’s modal decomposition has two main advantages. First, by not intro-
ducing vector and scalar potentials the governing equations are easier to interpret

physically, and the relationships between different physical variables are clearer.
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Second, the modal relations reveal the relative importance of the different field
quantities in each modal wave. For example, the viscous wave has no first order
effect on pressure, entropy, temperature, or density. The importance of this here
is that some terms can be justifiably dropped from the boundary conditions at a
fluid-solid interface.

To test the accuracy of our computational procedures prior to making any
approximations, comparisons were made with Urick’s [1948) result for rigid, mov-
able particles in the viscous, non-heat-conducting case, and with the exact caleu-
lations made by Allegra and Hawley [1972] for polystyrene spheres. Good agree-
ment was obtained with Urick [1948]. For the viscous conducting case, we were
able to obtain equivalent results to those of Allegra and Hawley [1872], except
that at high frequencies the contribution from the n =0 term is lower in our
case.

In general, solving for the attenuation coefficient in the viscous heat-
conducting case involves solving six-by-six matrices, in which the matrix elements
are the coeflicients in the six boundary conditions for the nth-order partial waves.
In order to simplify the computational problem, approximate forms for the boun-
dary conditions were found by using boundary layer approximation techniques.
Two types of boundary layer approximation were introduced. The so-called first
boundary layer approximation involves only the radial stress in the fluid, and in
the first instance all terms involving viscosity and heat conduction were removed.
In the so-called second boundary layer approximation, radial gradients of the
thermal and viscous waves are assumed to be large compared to their tangential
gradients, and are scaled by the imaginary parts of their respective wavenumbers

(which are the reciprocals of the corresponding boundary layer thicknesses).

For the first boundary layer approximation we obtained the following

results. For n ) the agreement was good for the full frequency and particle



size range idered. The i ion for n = 1 was larger than

the exact result, and the relative error increased with increasing frequency. By
reintroducing the viscous terms for the incident wave, improved agreement was
obtained. The results for n = 1 and n = 2 in the viscous conducting case and
in the viscous non-conducting case are the same, indicating that thermal effects
are unimportant for n > 1. This confirms the result derived in Section 3.1.5,
which indicated that the thermal wave should be isotropic and therefore contri-
bute only to the n = 0 term. The results for n = 0 in the first boundary layer
approximation showed that in order to obtain a reasonable approximation to
thermal absorption, it is necessary that the thermal pressure in the fluid be
included in the radial stress, at least for polystyrene.

Next we consider the second boundary layer approximation, and consider the
contribution of the various boundary conditions separately. For ag, the approxi-
mate radial velocity condition yields values for the smallest particles which are
too large, but converges to the exact result at high frequencics, and provides a
good match for the larger particle size. The approximation for this boundary con-
dition is in the thermal terms, and ¢ and ¢’ are too small for good accuracy,
which accounts for the large difference at low frequencies for the small particle
(see Tables 3.2-3). The temperature boundary condition involves no gradients,
and therefore has no approximate form here. Heat flux, on the other haud, is
approximated, and strongly depends on the values of ¢ and ' being large. Since
they are not at low frequencies for the smallest particle considered, we get poor
agreement with the exact case in this size/frequency range. However, much
better agreement is obtained for larger particles and higher frequencies. For the
radial stress condition, the results are similar to the first boundary layer approxi-
mation: that is, the thermal terms in the fluid must be retained, although approx-

imate forms of these terms may be used.
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For n >1 all thermal wave terms are dropped in the second boundary layer

and an ion is made to radial gradients of the viscous

shear wave. When the boundary conditions for n = 1 are approximated, we find
that the resultant attenuation converges towards the exact case for the larger
particle as the frequency increases, which we expect. Although the approximate

radial stress boundary condition in the second boundary layer approximation pro-

duces an i flicient that ges as the boundary layer thickness
decreases, the approximate radial stress in the fluid in the first boundary layer
approximation results in much better agreement with the exact case. Why the
first boundary layer approximation produces better agreement with the exact case
for the attenuation is not clear, and merits further research. The approximation
for n = 2 produces good agreement with the exact case, except for the attenua-
tion due to modifying the tangential stress boundary condition, and even this
converges for the large particle for increasing frequency.

In the Pierce approach p, = 0, which results in no thermal terms in the
radial stress boundary condition in the fluid. But we have shown in both the first
and second boundary layer approximation that neglecting thermal terms
decreases the attenuation, and that (in the first boundary layer approximation)
when thermal terms are reintroduced into the fluid radial stress, reasonably good
agreement with the exact result is obtained. This approximation is also the
major difference between the boundary conditions of Allegra and Hawley, and
Pierce. The rationale was that p,, within the thermal mode, was negligible, and
thus was neglectable overall. In order to obtain a better scaling for p,, the boun-
dary conditions could be solved explicitly, but this was not the objective here.
This would be a potential area for further work.

To conclude, thermal effects are important only in the n == 0 term of the

attenuation, and the viscous is at
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least for polystyrene in water. A good approximation for the radial stress in the
fluid for n =1 requires that the radial stress due to the incident wave be
unchanged, and the reason for this is not fully understood. The approximation
p; =~ 0in the n = 0 radial stress did not work well for the data set considered.
Additional measurements using larger particles over a similar frequency range
would provide a useful test of the boundary layer approximation as larger values

of n become important with increasing k, a.
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A dix 1 Lk of G ing E: 1

We consider the governing equations for the solid (2.1.1); conservation of

mass,

%+§.(/ﬂ)=o Alla

conservation of momentum,

5 i a
Pij+p(2-7) i =

ALlb
and conservation of energy,
au' . au' =
j O A LA
L TaA 3 TPV u Alle

=0+ K'¢*T'
We assume that any motion in the solid is a small perturbation from an

equilibrium state of no motion, and express the seven unknowns as

f=p+p Al.2a
p'=pd+0p/ Al2b
T'=T¢+ T/ Al2¢
U'=Ug+ Uy Alr2d
=+, Al2e

where the subscript 0 denotes the equilibrium value of the appropriate variable,
and where the subscript 1 refers to the perturbation from equilibrium of that
quantity. We further assume that the solid is homogeneous and isotropic.

Now we consider the conservation of mass equation Al.la, which we may

rewrite

%f‘i+d'v“ﬂ+ti‘$y=.u Al3a
We now substitute the density, pressure, and displacement from Al.2a, Al.2b,

and Al.2e, respectively, into Al.3a to obtain

Ztos+ p)+ (0 + 91T o + W) + (Go + T Tlod +p) =0 ALID
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; O . ; .
First we note that ®, and 9—7 are zero since the equilibrium state is not time-

dependent. Next we expand to first order in small quantities, noting that Gp,,’ is

zero by homogeneity, and obtain

Bpy! _
_;; + oS =0 Al4

Next we consider the conservation of momentum equation (A1.1b). We con-

sider the stress tensor explicitly, using the form (2.1.2¢)

0u; du; g 9y
PN T (L SL S K )
oyt =-v; + 32 T O 30 s

dug ; B laum; 5 }
dz; 8 o0z Y
i |

du
To zero order in small quantities the momentum equation becomes

’ , of Qtoi
=(pd +p1)5;j + {T +
du

a
We substitute this into the momentum equation Al.1b.

duy 2
" - -
“‘{az, .3 oz

P o + o Ty - Tugy Ale
F) , o O80s |, Buo; 2 Oug;
= ——{-p'b;; - bi;
9z; { LR I Pl P P
Time independance eliminates the left side. The pressure py' is the same

throughout the solid and thus has no gradient. Isotropy eliminates the non-
diagonal (f <> j) terms in square brackets There are no diagonal terms in the
brackets because the tensor quantity in the brackets is defined so as to be trace-
less [Landau and Lifshitz, 1986, p.10]. Therefore the equilibrium momentum
equation drops out as expected.

To first order in perturbation quantities we obtain
pu’u;_‘j = AlTa

Pl i Quy; 9uy; 9 Ouy; }
I ON T ST T 5
9z, { %t H [ 0z; + 8z 3 9z "

or in vector notation
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g = ! e
Wl =-Tpl+ GG W)+ Y ALTb
Finally we consider the energy equation Al.le. Expanding as before we

obtain

00+ P) SV + U + (pd + PTGy + 1) AL
=¢+ K'vHTy+ T))

Zero order terms again vanish, and to first order we find

a

vl
-+ POV = K'SPTY AL

The viscous dissipation function @ is a function of velocities [Landau and

oo

Lifshitz, 1986, p.137), and therefore W, is eliminated from it. Also, the viscous dis-
sipation function is composed of terms to second order in velocities, and therefore
is eliminated from the first order equation AL9.

A similar decomposition can be made for the fluid governing equations. We
eliminate the subscript 1 for perturbation results from the remainder of the

thesis, but retain the subscript 0, which represents equilibrium quantities.
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Appendix 3 Derivation of Helmholts Equations

Here e show, for the fluid case, how to obtain (2.1.12) using vector and
scalar potentials (2.1.8). The same procefiure will yield equivalent results for the
solid case.

Introducing (2.1.8) into (2.1.7a) results in

S 2 fwpy) - - . Mo o~ _
PGP - |- ] 28) +iw— ¢ +iw
vé- |5 N v(v? 9) Fbd (V9)
) -‘w—"—"%x}{ + 92 (TxA) Azl
Po Po

Both sides of (A2.1) vanish soparately, yielding

v‘(Gxiﬂ')+iw:—° TxA =0 A232
0

and

Consider A2.2 first. Recalling that ( Arfken, 1970, p. 42)

VHOXA) =T [T (IxA)] - FX[FX(TXA)) Az4
The first term on the right hand side clearly vanishes, therefore A2.2 reduces to
=u=or : Po =
vxvxn-.wTA=o. A25
o
Recalling that & = (0,0, A,) and that by symmetry there is no ¢ dependance,
we obtain the following using the separation of variables technique ( Arfken,
1970, pp. 87, 383):
o dP, ( cosf
Ay=- Y i"(2n+1)C, h,(k,r)# A28
2l do
where k,% = i wpo/ptg .

Taking the divergance of (A2.5) yields

v-A=0 A27
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and combining this with the identity used in (A2.4) on (A2.5) gives
VA +k2A =0 A28
Therefore equation (A2.5) requires that (A2.7) be satisfied, and that although
I satisfies the Helmholtz equation, we obtain dP, /d & instead of P, in our series
expansion (A2.6).
From (A2.3) we have
5 4 Mo ]
& + |-y A2.9
Twc?p [ g [ i Y "}
then we substitute (2.1.8) with (2.1.7b), obtaining

(”’—;i—'lv23+iwr+~,ov11=m A2.10

Eliminating T from (A2.9) and (A2.10), we obtain the following biquadratic
equation

(V2 +EH(V?+ kI =0 Az

where £,% and k,® are equations (2.1.13) and (2.1.14), respectively. It is easily

shown that k2 7 k,2 and thus we get two solutions ¢, and ¢, corresponding to

k. and k; respectively, such that

F=0. +¢,, A2.12
(P + k) b =0, A213
(PP +kH ¢ =0, A2.14

where each of the above solutions have the form

4= S i" (2n +1)D, hyikr) P,(cosd) A2.13
nw=0
and where the terms D, are constants.
Thus we get the three Helmholtz equations (2.1.12) and indicate why the

series solution for the vector potential differs in form from those for the scalar

solution.
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Appendix 3 lon of v, Pol

We are required to show that for the entropy mode in section (2.1.2), that

the thermal velocity is not negligible, and is in fact equal to

A3.1

BT K
o= (Ger) v

Using (2.1.26b) and setting p ~ 0 is lnsnﬂ'lclent, since | K| is large, and thus we
need more care. By |[K| being large, we mean that the relation
k2 = iwpyC, /K allows the possibility that | s, | >> (w/c) | & |. Take
equation (2.1.27b) and substitute this into (2.1.26b), obtaining

-iwpy (wpo + T (4/3)ok®)V = ~(Kp (wpo + i (4/3ok?)

= olk®(wpo + i (4/3)mok ¥ - K5 [(1/3)ok?) A32
which reduces to

(wpo + i w(4/3)uek )V = Kp . A33
Then using the modal relation (2.1.33b)

=(1-1(g-¢,) 8 A3.4

where ¢, and ¢, are defined by (2.1.30), the relation

x=-1 A35
L]
and the relation
Toc?
y-1= L“_ . A3.6

G

We substitute A3.5 into A3.3 to obtain
y P &
(wpo + I%p,k’w = 7" (v-1) (e -¢, )SE. A37

The trick here is to make

(ool Br-1) (€ei-¢,) _ BT oK
£0Cy? ’

A38
(wp + iz nok ?)
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For ronvenience, calling the left hand side (LHS), we get

- Toc?
LHS =_M ‘ﬁc—“‘ A3
o+ uokd O

_BTw  la-a)

G [“"_2 +it "0“"" kzl
3 poc?
BTW I U

[ +¢, k"]
_ BT (e-¢,)
TGk (€

and using A3.5 we get that

7 A3.10

Therefore we obtain the relation A3.1.
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Appendix 4 Error in Allegra's Solution of Kirchhof's Dispersion Rela-
tion

‘The positive root from (2.1.43), to low order in ¢,’, is

1 &'(1+7e,)

= et 4
N 146, -+ oo Adl
Since ¢, is small, then
&L+ e,
1/x',zx+e,'—»f<,'+Tl—'—,'—- A2
Since ¥ = 1 then 1 + ¥¢,' = 1 + ¢, and
‘,+ ~1+¢'"-¢'(Ve,'"-1), A43
Ay
which is Allegra's result. The difference between this and our result lies in writ-
ing
Y-l
=4 - Ad.
! 1+¢' ¥
or
-1)e, '
_ e Al
1+¢,'

Allegra seems to have ignored the second term of equation A4.5. If we make no
other approximations except for small ¢,', we get equation A4.4, which can be

markedly different. In our treatment we will use A4.4, and our result is

1 , &l -1)
SRt s A48
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Appendix 5 Thermal Dispersion Relationship for Solid

‘We need to start with the negative root of the Kirchhoff dispersion equation.

This is

A5.1

A5.2

~_‘7’-.:|ﬂ[l+ e+ (v -1
which reduces to

14
T

Y

I . p—
e'3
L+ (o~ 1):-:7‘—
If the second term in the denominator is small, which is true for the materials of

interest to us, then equation A5.2 becomes, to first order in small quantities
P iw 't
ke (-G — A5.3
which becomes to lowest order in small quantities

2 SW !
k = A5.4

We call this the thermal wavenumber, and write it k', .
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Appendix 8 Allegra and Hawley [1972] Attenuation Data Set

The following five figures, presented by Allegra and Hawley [1972], show

experimental results and th i ions of sound jon by small

polystyrene spheres in water. Figure AB.4 has experimental data for a hetero-
disperse suspension of particles with a mean particle radius of 0.110 yum. The

other four figures have i data for p p
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Figure A6.1. Excess attenuation versus frequency for an aqueous suspension
of polystyrene spheres at 20° C, @ = 0.653 yum . Points are measured excess
attenuation . [Allegra and Hawley, 1972]. a, is the attenuation due to scatter-

ing alone.
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Figure A8.2. Excess attenuation versus frequency for an aqueous suspension

of polystyrene spheres at 20° C', a = 0.504 um . Points are measured excess

attenuation . [Allegra and Hawley, 1972]. @, is the attenuation due to scatter-

ing alone.
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Figure A6.3. Excess attenuation versus frequency for an aqueous suspension
of polystyrene spheres at 20° C, a =0.178 pm . Points are measured excess

attenuation . [Allegra and Hawley, 1972},
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Figure AB.4. Excess attenuation versus frequency for an aqueous suspension
of polystyrene spheres at 20° C, a = 0.110 pm . Points are measured excess

attenuation . [Allegra and Hawley, 1972].
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Figure A6.5. Excess attenuation versus frequency for an aqueous suspension
of polystyrene spheres at 20° C, a = 0.044 pm . Points are measured excess

attenuation. [Allegra and Hawley, 1972].
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Appendix 7 Simplification of the T: ial Stress B Conditi

For both the acoustic and the thermal mode the condition 7 XV = 0 holds.
Since for us the velocity is V = (v, , v, , 0), then we get (Arfken, 1970, p.81)

Fxv="2 [_9 o |
UXV = - La'(”') 55| =9 A71
and then we obtain
v, F)
- .49—1-("") 2 A72

Note that for the tangential stress boundary condition there is a relation of

the form

i[."i] 10 )= J’.[.".'.I 19
"ol t a5l +r61‘"") A3

This holds for both ¥, snd ¥, , but by the boundary layer theory v, y = 0,

therefore we neglect it and the ial stress is ively ind dent of ther-

mal effects, both in the fluid and the solid.
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Appendix 8 Approximate Forms of b, , b, , b.',and 5,'

We approximate the Allegra-Hawley results for b, , b, b.’, and & " In the
fluid, Allegra and Hawley obtained (2.1.17) for &, in the fluid, which is

2 4iwpg
b =[-= ] - ‘—--——Ik*r. 8.
‘ l 8 { 7 3p0 ¢ A

Using k,%¢? & w? equation A8.1 becomes

fw)
4 I‘n] A8.2

kA1
by N ——|l-=+ —
¢ [ [ 7 3 ppe?
where we can identify the last term in the equation as the scaling parameter ¢,
(see 2.1.30b), which we know to be much less than one. Therefore equation A8.2

may be approximated by

k2
b, A~ _(-,-1)% . A8.3
Next we consider b,.Tie Allegra and Hawley result is (2.1.18), which is
2 4iwp
ol [ o
by = | -—— J-[—_-———]H P A8.4
t [ 28 ] [ 1 3m )
We again assume that k2e2 ~ ? and obtain
L [ 1 I |
b 7 1-—|=-¢ A85
' 8 PR J
which, since €, is small, is
k, k?
b~ e LS A8.6
[ vk,
and since the second term is much larger than the first, we obtain
s A8.7
iy .

Now we approximate b, ' and b,’ in a similar fashion. The exact result for

b, 'is (2.1.23) which is written
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= LL’ l ] A88
and we then assume &, %¢ = w? to obtain
| e 4 4
b1 LY _,[_+__1‘_ A8
‘ B oc®le® |7 3 pye?
/I A0
g 7
yoy! . '
where we use ¢? = )‘—+2,L ad ¢ 2= )‘+2,3 3
Po Po
Next we consider b,". The exact result is (2.1.24), which is
”
- [ ¢y 4p I
b'=—] - |5+ | k7. As.l
T AT
We make the approximation &, %c 2 & u? to rewrite A8.11 as
o e k7 z '
T [ B As12
¢y k2 7 e? 3 pyle”

Using the definitions of ¢ and ¢’ given above, equation A8.12 can be rewritten

as

- ] )
ﬂk, x 14+(¥-1) x'+2p' A813
Knowing that both (¥ - 1) and k, 2/k,® are much less than one, we may approx-

imate A8.13 as

b! e
mE A8.14
¢ o2 f
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