ON THE NONLINEAR EVOLUTION OF INTERNAL
GRAVITY WAVES

LIREN YAN












ON THE NONLINEAR EVOLUTION OF
INTERNAL GRAVITY WAVES

By

@Liren Yan, B.Sc.

A thesis submitted to the School of Graduate
Studies in partial fulfillment of the
requirements for the degree of

Master of Science

Department of Physics
Memorial University of Newfoundland

October, 1993

St. John’s Newfoundland Canada



National Library
of Canada

Acquisitions and

Bibliothéque nationale
Canada

Direction des acquisitions et

Bibliographic Services Branch  des services bibliographiques

395 Wellington Street
Ottawa, Ontario
KI1AONG

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, foan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellngton
Ottawa (Ontano)
KIAONS

Vo e Vot e

Outie Mo itovonce

L'auteur a accordé une licence
irrévocable et non exclusive
per a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
thése a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
thése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-315-91587-0

Canada



Abstract

s to compare the nonlinear evolution of internal

The purpose of this th

gravity waves obtained from a fully nonlinear primitive equation model with the

ey the KAV and mRdV equations).

evolution predicted by weakly nonlinear theories

s of an

In order to focus on the nonlinear evolution, we consider the idealized ¢

Lilications,

inviscid, incompressible Boussinesq fluid of constant depth with simple s

¢ analyzed

In such an covironment, the evolution of internal waves
up 1o second order in amplitude by the method of asymptotic expansion following
Lee & Beardsley [1974]. The resulting governing cquation is the mKdV equation.

simulated by a fully nonlinear, inviscid

Meanwhile, the evolution of the same sysien i
numerical model. The model is believed to be reliable (Lamby [1993 a,b]) and thus can
he used to quantitatively verify the derived theory. The theory is compared against
the model results. An initial deprossion is generated and the noulincar stecpening of
the wave front and its subscquent. evolution into an undular bore is investigated for

different ifications and wave amplitudes, It is found that the theory is in very

good quantitative agreement with the model results, The mKdV equation generally
improves the first-order KdV results for waves with nondimensional amplitude ¢ up Lo

0.07. For small waves with ¢ < 0.02, the second order nonlinearity is not crucial, ‘The



KAV equation is not appropriate for waves with ¢ larger than 0.07. These results

provide further evidence that the fully nonlinear prim

ve equation model is reliable

and give some indication of when the KAV and mKdV equations correetly predict the

wave evolution. It

o shown that. after the indular bore begins to form, rotation

s o minor effect on its subsequent, evolution.
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Chapter 1

Introduction

Internal gravity waves (denoted as IGWs hereafter) occur within subsurface layers ol

the ocean where the water is stratified b

 of temperature and salinity variations.

These waves play a significant role in transporting momentum and encrgy within the

ocean and can be an important source of mixing. It has been realized that IGWs and

their side effects desorve carefnl attention, for they can significantly influence ocean

current, meas , inderwater navigation, antisubmarine warfare operations and

even the feeding of marine animals (sce Osborne & Burch [1980]).
Over the past two decades, there have been many reports of observations of
large internal waves occuring in the ocean. These waves are usually in the form of

1 undular bores

solitons o solitary waves, typified by large amplitude and




steepuess. Most of them are generated by intense tidal flow over abrupt nnderwater

Lopography. and propagate in packets of several large amplitnde waves ranked in

order with the largest wave leading the group. alpern (1971 a,h], Hauey of al. [1979]

and Cheres|

in [1983] reported such wave formations observed in Ma

chussetts Bay.
Farmer & Smith [1980 a,b] in Kuight Tnlet, Osborne & Bureh [1980] in the Andaman

Sea and Apel el al. [1985] in the Sulu Sea and

rom & Blliobt, [1981] on the
Scotian Shelf all observed similar wave patterns evolving from either a thermocline
depression or a lee wave Lrain formed by suberitical tidal flow near a sea sill, There are
also lahoratory experiments which reproduced similar wave formations in a two-layer
luid system, e.g. Maxworthy [1979], Koop & Butler [1981], Segur & Hammack [1982].
La Violotte cf al. {1990] discussed phiotographs taken over the Georges Bank from the

11.8. space shuttles, which clearly reveal the snrface signatures of internal wave packets

propagating away from the bank edge.
AL the same Lime, theoretical investigations of 1GWs have heen cartied ont

with various foc

In the framework of weakly nonline: allow water theory,

Benney [1966], Lee & Beardsley [1974], Ono [1975] , Kubota [1978] derived nonlin-

ear theoretical models for IGW evolution in stratified and/or sheared fluid of shal-

low, finite and infinite depths, respectively. These theories say that the evolution of

weakly nonlinear IGWs i governed by equations of KAV type (KAV stands for the

2



Korteweg-de Vries equation), in which the associated nonlincarity and dispersion are
totally determined by the environmental equilibrium state. Lee & Beardsley [1974)
qualitatively reproduced the main features of tidally generated large amplitude wave
Lrains observed in Massachussotts Bay. Maxworthy [1979], Parmer & Smith [1980] and

Hibiya [1986] investigated the goneration of internal wave Lrains through

tidal-topograpliic interaction. Koop & Butler [1981], Segur & Hammack [1982], and
Cammins & LeBlond [1984] tested the range of validity of the KdV, Benjamin-Ono
and Kubota solitary solutions against experiments and observations of internal soli-
tary waves, focusing on the wave shape and amplitude-wavelength scaling relation-
ship. They found that the KAV theory has a larger range of validity than the theory

might imply; in particular, it is not strictly limited to shallow water. Liu cf al. [1985]

modified Kuhota's model by incorporating spreading and dissipation effects into the
model, thus formulated the evolntion of the internal packets observed in Suln Sea.
The comparison shows that the simulated propagation speed of the front, the number
of solitons, their amplitudes and lengths are in good qualitative agreement with the
data.

As pointed ont by Ostrovsky & Stepanyants [1989], a thorough theoretical de-
seription of IGW evolution processes in real oceans is a rather difficult problem. The

KdV-type theories used are two dimensional and include only first or possibly sec-

3



ond order nonlincar and dispersive effects (and possibly parameterized radiation and

pation effects). In contrast, the observed waves are three dimensional and are

ions of shear, stratifi

alfected by many hydrodynamical factors, such as the va
tion, topography, radiation, hottom/eddy dissipation, tide, ete. 1t is also dillienlt to

This makes

follow the space-time evolution of a wave for comparison with theorics
good quantitative comparisons difficult. Thus, the comparisons are only qualitative,
Although it is possible now to obtain a general pattern of propagating 1GWs from

aireralt and satellites, reliable simultancous hydrological data are still rarely available

for the formulation of theoretical models. All of these present significant. obstacles (o

the nnderstanding of the nature of observed | motions,

Numerical modelling of IGW evolution in an idealized occan could he a pre-
liminary solution of the problem. By taking iuto consideration important factors one

by one, their roles in IGW evolution can be better understood. A reliable model can

be used to quantitatively verify the existing theories which are usually derived un-

der idealized conditions. In contrast, field measurements are temporally or spatially

sparse and affected by a number of physical processes. Tlence, they are only useful

for qualitative comparisons. There are also some advantages of numerical modelling

al

over laboratory experiments for the cases considered here. For example, a nime
model can be run in an inviscid mode or al large, realistic Reynolds mimbers. 1t also

4



allows greater control of the physical processes that can influence the wave evolution,
and can incorporate more realistic background conditions. In addition, a complete

data set can be obtained.

In this thesis work, we investigate the nonlinear evolulion of an isopycnal de-

pression. The depression steepens becanse of nonlinearity and then evolves into an

undular bore through dispersive effects. This process is simulated with a fully non-

linear primitive equation model (Lamb [1993 a,b]) which solves the inviscid, incom-

pressible Boussinesq equations. The KdV and mKdV equations appropriate to these
cquations are then derived following Benney [1966] and Lee & Beardsley [1974]. The

evolution predicted by the KAV and mKdV equations is then compared with the

evolution given by the fully nonlinear primitive equation model. Any differences in
the evolutions can only he due to the approximations made in deriving the KdV

and mKdV equations, to numerical error in numerically solving the KdV and mKdV

equations, or to numerical error in the model. The numerical errors can be reduced by

fliciently bigh resolution. The theoretical evolutions are 1 with the model

and wave litudes, and also for a case

resulls for several hyd
with rotation included. In order to sce the improvement made by mKdV, comparisons
between the model and the first-order KdV theory are also given.

In chapter 2, the numerical model used is briefly introduced, and then the



domain geometry and the hydrologi

al environment, in which the model is run and

the theory is derived, are given. In chapter

after a bri

[ review of long wi

theorics, we give a detailed derivation of the mKdV cquation, together with the

associated vertical mode functions and coeflicients. Then, the numerical method w

to solve the KAV and mKdV cequations is des

vibed. The theory is compared with

the model in chapter 4, along with in-sitn and general discussions. The conelusions

are in Chapter



Chapter 2

Numerical Simulation

In this chaptor we briefly introduce the numerical model which has been used in this
study to simulate IGWs. Weakly nonlinear theoretical results will be compared to
the fully nonlinear results obtained with this model. This model was developed by
Kevin Lamb [1993 a,b] and will be referred to as IGWsim in this thesis (standing for
Internal Gravity Wave Simulation). The model is run within a fixed physical domain
and for different baciground states. Some of the results will be given later in this

chapter as examples,



2.1 The Numerical Model

IGWsim solves the time dependent, inviscid, incompressible Bonssinesq equations

0409 = ~Vp—pd, (21
p+0-Yp = 0, (2.2)
V.00 = 0 (2.3)

Here (7 is the velocity vector with horizontal and vertical components (it,w). (x,2)

are the cor li li

with = positive upward and ¥ is the

gradient operator (9/dz, 0/9z). The luid density is

iven by o1 +p) and po(gz+p)
is the pressure. § is the vector (0,9) with g being the gravitational acceleration.
Note that pog balances the constant, hydrostatic part of the pressure gradient, and
the Boussinesq approximation removes the factor of 14 p on the left side of (2.1).
The equations are solved in a two dimensional domain hownded helow by a
given topography and above by a rigid lid as shown in figure 2.1. AL the upper and
lower boundaries inviscid honndary conditions (no normal flow) are wsed. ‘The flow
is forced by specifying U, at the loft boundary. An outflow houndary condition is

specified at the right boundary (see Bell & Marcus [1992], Lamb [1993 a,b]).

The numerical method used Lo solve these equations is the second-order pro-



N2(z)_nov:zero.

" =
b = o

— &« —
Figure 2.1: The sketch of physical domain,

jection method developed by Bell ol al. [1989 a,b] and Bell & Marcus [1992]. The
theory of the method is based on the following:
i. Hodge decomposition: Any veetor field ¥ can be decomposed into a divergence
free component and a gradient part, i.c.

V=714V, (24)
where ¥ - P = 0 and @ is a scalar field. This decomposition is unique given appro-
priate boundary conditions for V4 (e.g., V4.7 = 0).

By rewriting the momentum equation (2.1) as

04+ Vp=V=—(-9)0 - pg, (2.5)
ane sevs that, with suitable boundary conditions and because of equation (2.3, 0 is

9



the divergence-free component of the veetor V and the pressure gradient S is the
corresponding gradient part.

ii. Orthogonality: For any vector V7 and scalar ¢, we have

M

where A is the computational domain, dA its boundary and 1 is the element, length

A = '/./,‘ Vol + f,‘ ¥ -, (2.6)

of the houndary, Tn particular, for a divergence-free V4, we have

/ / A Vi Vpdd = 74 SV, (1)

Thus, if V4 has a zero Dirichlet boundary condition, V¥ and Ve are orthogonal within
the domain.
For our problem, if a divergence-free houndary velocity field satisfying the given

bonndary condition is subtracted from the momentum equation, (2.5) reduces Lo
Ol +Vp=V' =V -8, (2.8)

where 0! = {J, — (7 has zero Dirichlet boundary condition. According to the above,
! is orthogonal to Vp.
iii. Projection: The projection is defined by specilying a basis of divergence-free

vectors " with zero Dirichlet boundary. Then ¥ is orthogonal Lo Vp. From (28)

10



we have

//‘ G ldA = //‘ T VA, (2.9)

the orthogonality property climinates the scalar gradient, part

(2.4) indica

entirely from the problem. It will be seen that becanse of this property boundary

conditions for the pressure are nol, required in solving this problem.

Now suppose (7] has k dimensions. I then can he written as
- L3 -
0l =3 o0 (2.10)
o=

Substituting into (2.9) gives a linear system with & equations and k unkuown os,

K

i [/‘ Gt = //‘ B A, (11
s 2

with 1 going from 1 to k. Therefore, for any known ¥/, we can determine the o,,s and

consequently the divergence free component 7/, This is what the so called projection

means. Let P denote this projection operation. Then we express the projection as
PPy =07 (2.12)

Qur interior divergenee-free velocity field 7} is obtained by projecting (f,— 72,

The desired T is then recovered by adding back the known divergence-free boundary

ficld (75,



In the following, a briel overview of the method is given. One should conslt

the above mentioned papers for more details.

2.1.1 Grid scheme

To begin with, we fizst introduce the grid scheme used (ligure

. which provides

the most natural setting for the handling of the convective terms in the system.
{,p and Vp are defined at. the veetor grid points which inelide the interior

vector grid points located at cell contres and the houndary vector grid points at the

midpoints of cell edges lying along the houndaries. The latte

o used Lo spoeify
boundary conditions. The scalar grid points are located at cell corners where sealar

fields (such as ¥ - 7 and the v defined later) are defined. The exeeption to t]

which is given at the vector grid points.

2.1.2 Transformation

The model caleulation is not carried out in the above domain, Tnstead, tie physi
domain in (i, 2) space is mapped onto a rectangnlar computational domain in (,7)

space so that any given quadrilateral grid coll in (i, z) hecomes a it square coll in

(&,7). This makes the model more flexible in that, it can take any grid mesh given in



o
zw °
L ™
xu °
o Interlor vector grid polnts o
« boundary vector grid points
x scalar grld points ~

Fignre 2.

id scheme with quadsilateral grid colls in

) space.

(i, 2) and do the caleulation in the same way on Uie unit square grid mesh in (€,7).

This is done by a coordinate transformation

w o= (&),

= = &)

Ow,z) | we %
aEm

&

(2.13)

(2.14)

(2.15)



From (2.13) and (2.14) we have

& o W —%
" (2.16)
(S8 =y g
whore T is dofined as
5 -
r=| " | (2.17)
—% e
The relations botween the original and transformed divergence operator is
5.0 1 —
G = e+ e = ity ~ 5000) (2.18)
1a -
= =v.7il. 2,19
7 (2.19)

Therefore, the original equation system in (i, 2) veduces to the following in (&, 1):

l7,+}(f/. V)i = —Vp- pi, (2:20)
o+ 5090 = 0, (221)
V-0 =0 (2.22)

where V = (9/9€,d/dn) and
7 =Ti. (2.23)
Note that Vp = (p=(€,7),p<(€,7)), instead of Z9p, has been nsed, sinee only the

pressure gradient is needed in the ealenlation.

14



Only the coordinates of the dual grid in (i, z) space need to he provided. The
appropriate differences of the dual grid coordinates are used to evaliate the elements
of the 7' matrix and the grid point coordinates of (€,y). This ensures that the method

e a wniform flow (soe Bell el al, [1989b]).

preses

2.1.3 Numerical Algorithm

To solve the above system, we rewriie the momentum equation (2.20) in the decom-

position form as in (2.5):

T+ Vp=V, (2.24)
where
V= -l’(f/ ST - od,

then sublract off a boundary velocity field 77 and project V = (78:
O, = P(V - ) + TP, (2.25)

According to the theory, (2.25) means that the non-divergence-free vector V —

08 s d | by the projection into a divergence-f U,—UB which
has zero Dirichlet boundary condition, and a scalar gradient part Vp. The desired
updating veloeity field is then recovered by adding back the boundary field 2. The
orthogonal property of the projection P eliminates the pressure entirely from the

15



system, and the equations arc integrated as a velocity evolition system within the

space of a divergence-lree veetor field. This theoretically explains why no boundary

condition is needed for the pressurc.

Dircetly discretizing (2.25) using a sccond-order dilferencing is possible, but, the

resulting linear system is poorly conditioned (sce Bell of al. [1989]). Therefore, the

following approach is used to treat the nonlinear convective terms,

In order to have a scheme which is sceond-order in time we diseretize (2.25)
using a centered time differencing. The nonlinear conveetive terms at the half time

step n+1 a

calculated using an explicit second-order Godunoy procedure (a mod-

ificd Piccewise Parabolic Method) deseribed by Bell ef al. [1989b]. Values at the

midpoints of the cell edges at the half time

are evaluated by

Paylor expansions
of the known values at the cell centres at time n. The time derivatives appearing

in the Taylor expansions are then eliminated by using Uie governing cquation, Ui

time lagged pressurc gradients are introduced here (this is the only place where Uie

pressure gradient is used). Two kinds of spatial de

ives appear in the resnlting

expi

sions: normal and transverse derivati

(with respeet to the cell edges). The

normal derivatives are

| nsing L ty-limited central di which

prevent introducing new maxima or minima into the flow field, while the transve

derivatives are evaluated via a modilied upwind scheme. For each cell edge there are

16



two cell centres Lo extrapolate from. The appropriate choice is the cell centre upwind

of the cell edge. With the values at the cell edges known ab the hall time level, the

conveetive terms are calenlated nsing centred difl ing in space. An example of

this procedure is shown below for the term (- W'+ (the transformation is dropped

here, since it introduces only cocfficients and makes no difference to the algorithm. It

1 fi

should also be noted that 77+, which is the from the diverg

velocity field at time n and involves lagged pressure, is not divergence- frec

[ - )+ is discretized as

(0] - uy+t

et
[ N TR DT
= E(llx+%'j +§(m‘.”%+m‘.

Note that the centred differencing used here indicates the second order accuracy in

space,

Fstrapolating from 77 (sce fgure 2.3) gives four mid-cdged, half time val-

ues for cach (72,

which are denoted by L, R, B,T (for left, right, bottom and top,

nHyL .

respectively). For instance, extrapolating from the loft, u/y £ is given by

wy A AL
= i S+
Ax
2

Al
. Pr—
g+ Gy —

= ui+ i
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The governing cquation for  has been used to eliminate the time derivative, “This
introduces the time lagged pressure gradient.

The normal derivative and transve

lerivative uf g and ul,

2 in (2.27) @

1]

treated in differ

ent ways as mentioned before. Details will not be given here. Readers

should refer to Bell cf al. [1989 a,b]. The purpose of the treatments is Lo prevent

spurions illati or instabilities, even for d data. The

normal derivatives involve central diffe

ing, which again leads to the second order
accuracy in space.

+

The values of, for tigal

) are chosen from the corresponding

if W >0 and
+i
it =0 Wt <0
":1 " otherwise
a ke
= it <o (2:29)
5(10:‘:'; +m""="’) if 1‘:@—0

It is seen that at L, R edges, the vertical component w s treated as an advected
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Figure
L denotes the extrapolation of (wf, vf) to the left side of edge (i + 1, j);

R denotes the extrapolation of (wl, vl}) Lo the right side of edge (i — 1,7);
18 denotes the extrapolation of (ufl, v!t) Lo the bottom side of edge (i,j + 2

T denotes the extrapolation of (w5, v}t to the top side of edge (4,5 — ).
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is only alfected by those values on the left side of the

s wty
acer. 10w}, ¢ i
tracer. If L >0, LN

ntdL
i+4

edges. Thus, it is natural to sel it equal to w] which is extrapolated from the
left side.

By the substitution of the obtained mid-edge hall-time values into (2.26), the
velocity convective term is evaluated. The density advective term is calenlated in a
similar manner.

The velocity, density and pressure are then npdated by solving the following

time forwarding cquations

o L
"T”— = —5(1/~v,y)“+% (2.30)
(et _ jn e
— = PV~ GF) + OF
L Ty it N, AV T
= P09y - g ) 4 0] 2.31)
Tt = (1 P) P = 8. (2.32)

Since centred time differencing is used, the scheme is also second order accurate in
time. The flow field influences the density field throngh advection, and the influenced

density field foeds back into the velocity field. This conpling is reflected in (2.30)

and (2:31). Since the hydrostatic approximation has not been made, the pressure is
aflected by both the velocity and density as expressed in (2.32).
The projection is then discretized, which involves solving a linear equation
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system for the oy,'s defined in (2.11). The associated basis of discretized divergence-

frea vectors which are zero on Dirichlet boundary is specificd by

= Vi = (G -xE) (2:33)

where 1 goes from 1 1o 1(.J = 1), X" is the basis of discretized scalar fields with zero
Dirichlel boundary, which has a constant value on one scalar point indexed by n and

is zero clsewhere,

"Phus, the discretized projection can be rewritten as
Pi =35, (2.34)

where 17 is the projection matrix given by P, = (9™,%),, & represents 1(J — 1)
unknowns, and § is (¥, P+ — 78),. (Readers should refer to Bell ¢l al. [1989 a,h]

for more details about the dimension of the discretized velocity field, the definitions

of diseretized gradient, divergence and vector inner production, etc).
Pis a positive, symmetric matrix which is block tridiagonal. (2.31) is solved
using a standard block tridiagonal solver (Golub & Van Loan [1989]). Note that the

P matrix is fixed once caleulated, since the basis vectors are independent of time.

The

ystem is updated by (2.30) to (2.32). For the explicit Godunov scheme

used, a lincar constant-cocfficient analysis shows that for stability, the time step must
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satisfy a CFL condition (Conrant-Fricdrichs-Lewy condition), i.c.

A < s min

where s is a safety factor taken as 0.5. The stiffness of the gravitational forcing term

requires a more restrictive time step. I practice, for onr nonlinear model, df is taken

considerably smaller than the value given by the standard CFL estimate,

2.2 Domain geometry and background state

2.2.1 Domain geometry

The two dimensional physi

al domain, as shown in figure 2.1, is confined by a rigid
upper boundary at z = I/ and a bank edge topography at z = (). The bank wdge

is simulated by a hyperbolic function given by

h(x) = a(1 — tanh ay(e — ay)), (2.36)

where ay is half the height of the bank top, 4, is a slope parameter and ay is the contre
of the bank edge. = is the height above which the fluid is siguificantly stratified.
For such a systom, the controlling parameters are the geomelric ratio /1,

the bank slope az, and the dynamical parameter ¢ = 1g/U? (€!is the square of the
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verse Fronde number for SGWs. 1L has no direct relevance to supercriticality or

subcriticality of IGWs), which will appear in the non-dimensional equation system
(see chapter 3), where U is the velocity scale. Tor fixed ratios and different U and H,
il (7 is the same, the flow patiern will be the same but on a different time scale.

In our runs, the geometric parameters themselves are usually fixed as H =
360m, L = 80km, z. = 260m, ¢; = 220m, a; = 0.000375 and az = 0.25 » L. The
only parameter controlling the flow is the dynamical (7, which depends on U only
(since I is fixed). Therefore, different U will result in different flow patterns.

Our primary purpose in specifying a bank geometry is to gencrate an initial wave
through flow-topography interaction. Thercfore, when the bank can not produce a

desired initial wave, we will use a flat bottom and artificially specify an initial wave.

2.2.2 Background state

Two kinds of density profiles are used in the present study. For convenience, instead
of giving the density profiles, we present helow the associated stratifications defined
by

NY(z)=— (2.37)
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The first is given by a hyperbolie function of the form

Ni(z)

Py 4+ i e
_ M‘:‘))' o<:< il (238)

where ¢ is a slope parameter and N2 s the characteristic value of the stratilication
which is set t0 0.002/s2. z is the height above which the fluid is significantly stratified,
When ¢ — oo, N2() approaches a stepwise function. Figure 2.1 (a) shows N¥(z)

with a small ¢ = 0.007 and a large ¢ = 10. The model is ran for both ¢ values, The

le-one baraclinic phase speed associated with N2(z) is about 2.5m/s for hoth ¢
values, while the mode-two spead is about 095 m /s.

Secondly, we consider a density stratilication of the form

{0,0(]:!11 z=1+10
=y oA 0

ERLE

_,0.05(= = Il +200) N
B +W )7]‘} (2.39)
T

which is shown in figre 2.4 (b). The mode-one baroelinic phase specd &
with N2(z) is abont [ m/s, and the mode-two phase speed is about, 0.5 m/s,

These two stratification profiles approximate observed density profiles on the
Scotian Shell (N2(z) with small ) and at, the edge of Georges Bank (N2(2)) where
large amplitnde nonlinear waves have been obsarved (Sandstrom & Elfiot [1984],
Loder et al. [1992] and La Violette et al. [1990]).
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Besides the density stratilications, the fluid needs to be driven from rest so that

IGWs can be generated throngh the interaction between the flow and topography.

This is achioved by initializing the model with a wniform rightward flow « in the
shallow flat region. The amplitnde of the generated 1GWs dopends on  and the

bank slope given by az. Other geometric parameters are never changed.

The theory derived in the next chapter is essentially for 1GWs with smali to
moderate amplitude. We want to know how far the theory can be extended for IGWs

with larger amplitude. Therefore, the model is run for three diffe

L u which produce
small, moderate and large 1GWs. Specifically, w is seb Lo 0417 m/x, 0.858m/s and

5556 m/s,

nd the corresponding runs will be referred Lo as the weak, moderate amd

strong lorcing cases, respoctively.

2.2.3 Running strategy

In order to obtain the desired flow patterns in the fixed domain within a specifiod

evolution tir

¢, some parameters such as the hackgronnd velocity u, the bank stope
a, deceleration time, ete. have to be adjusted.

When @ is large, the llow on the top of the bank miight become supe

i

The IGWs can not. propagate upstream and wave energy acenmulates over e bank
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edge. Such a sitwation will strong overturning which results in large drops in

o
the time step and ultimately in large numerical errors. To avoid this, we decelerate
the fluid after the IGWs are generated and the wave front has become detached from
the topography. This has no offect on the subsequent evolution of the wave front.
The termisial values of @ for the hree forcing cases are listed in Table 4.1.

For the strong forcing case, since the generated initial depression has a large
amplitude, the nonlinear effect, will quickly steepen the wave front, thus resulting in
the development of an undular bore before the front can propagate away from the

bank. What we need is a smooth initial depression with only a mode-one wave which

is detached from the bank so that the theory can be applied to it and its theoretical
evolution can be scen clearly. This can be done by using a smaller bank slope az.

Then the g will have a smoother front and away from

the bank hefore developing ripples.

2.3 Running the Model

Usually, the model is ran for a time length of about, 7' = 16000s (approximately four

and hall days), the output (the velocity field, the density field and the pressure field)

is stored atan interval of 1600s and is labeled by output number | to 10. Figure 2.5-



2.8 are some of the run results with background st

tes indicated in the captions.

depr

fon i isopyenals in the deep flat region ovolve into an undular hore about
10000s later. Note that only the density field of the output is presented, sinee the

theory derived later will be compared with the density perturbations only.

The code IGWsim was originally written Lo investigate the waves generated by

tidal flow acr

a bank edge. Because of this it was straightforward (o generate a

depression via this mechanism. Later on, for runs with the

ratification N3(2), it

was found that it was hard to generate an initial depres

fon thal. was steep enough

to form an undular bore before it left the computational domain, This difficulty was
partially due Lo strong overturning at the bank edge. Therefore, for the runs with
N3(=), the initial depression is not generated by flow over a hank edge. Instead, we
simply initialize the model with a mode-one linear wave in a flat. hottom domain by

the use of the first order perturbation derived later,
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Chapter 3

Nonlinear Theory of Long

Internal Gravity Waves

3.1 Introduction

"The nonlincar theory of IGWs is an extension of the surface gravity wave (denoted
as SGWs hereafter) theory. In the classical problems concerning SGWs, the fluid is
homogencons and incompressible and the motion is taken to be irrotatonal. On these
Dasic assumptions, two distinet theories have been developed:

(A). Au infinitesimal amplitude theory which leads to the linearization of Euler’s
equations and results in linear dispersive SGWs. This theory is the zeroth term (or
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the zeroth order solution) in an asymptotic expansion in powers of the perturhation
parameter ¢ = a/H with « and I denoting the wave amplitude and the undisturhed
depth of the Mluid. The theory was also extended to finite amplitude waves by the
perturbation method. The basic idea is that the higher order terms in the expansion

can be regarded as correction terms to the zeroth order lincar solution for a situation

where finite amplitude waves oceur and e nonlinearity can not be neglected.
(B). A loug-wave (or shallow water) theory for waves which are long compared to

the undisturbed depth of the fluid. This theory is based upon the smallness of the

controlling scale p:

meter ju = 12/ 1* where L is the typical wavelength. In the limit,

Jt = 0 the flow becomes hydros

atic and the perturbation quantities are independent,
of depth. ‘The result is a nonlinear shallow water oquation system. In this theory, it
is found that an initial disturbance tends to be distorted and hreak, a phenomenon

absent in the lincar wave theory.

The two theories can be combined. This leads to nonlincar, dispersive waves
for a homogeneous (luid.
It is well known, through the pioncering work of Scott Russell (1837, 1844],

Rayleigh [1876], Stokes (1847, 1880], and Kortewog and deViies [1895], that. long

nonlinear SGWs in a homogencous shallow fluid depend crucially on two p:

netrs,

i.e., the nonlinearity ¢ and the disp

rsivity . When /3> 1, te nonlinear effect
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dominates and the waves tend Lo steepen and hreak, while if ¢/p < 1, the dispersive
effect, dominates and the waves tend Lo be linear dispersive ones. When ¢/~ 1 the
two opposite effects tend Lo cancel cach other. In this case a class of finite amplitude
wave profiles of permanent form can be obtained, e.g., solitary or cnoidal waves.
The above theories can be extended to vertically trapped waves in stratified
shear flows. Long [1956, 1965, 1972] has shown that long nonlinear IGWs are possible
in a bounded stratified fluid. Benjamin [1966] found that permanent, IGWs are also
possible in shear flows with stratification. Benney [1966] extended Benjamin’s work
1o include the time dependent properties by introducing a two-parameter (¢ and p)

expansion method. By this method, he derived the KAV equation which governs the

long nonlinear 1GWs on isopyenals. Lee & Beardsley [1974] further developed this

method by inchiding in the perturbation fon a third | asuring the

nou-Boussinesq effeet, and thus obtained a KdV type equation which involves three
small parameters. A modified KdV with a second order term in ¢ (a cubic lerm) was
also derived in their paper, in e case of IGWs with large amplitudes,

In this section, long nonlincar IGWs on isopycnals in an inviscid, stratified,
Boussinesq fluid with shear flow confined by rigid boundaries are investigated. By

ter perturbation expansi ped by Benney, Lee and

the method of t

Beardsley, a modified KdV (mKdV) equation with the cubic term is rederived. This
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equation is supposed to describe the evolution of the long nonlinear isopyenal wave

profiles with large amplitudes.

3.2 Derivation of Modified KdV Equation

Consider an incomy inviscid, y stratified tluid with a shear low

in a two-dimensional domain confined by flat rigid honndaries.

The governing equations for the

em are Buler's equations,

Pl g +wn) = =, (8.1)
plow+ oy +wws) = —ps— pg, (3:2)
Pt ups+wps = 0, (8.3)
wtw, = 0, (34

with no-normal-flow houndary condition,
w(0) =w(ll) =0, (3.5)

where p is the density, p is the pressure, 1w and w are the horizontal and vertical
velocitios, respectively, ¢ is the aceeleration due to gravity, and the subseripts denote

partial differentiation. The vertical 1i z is directed upward with zero at the

bottom, and the horizontal coordinate x is directed to the right.
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An exact solution of (3.1)-(3.5) is the hasic state:

ro= =),
r o= =),

i o= i=(u(2),0,0),

1

with

dp_
&= =T

(3.6)
(3.7)

(3.8)

(3.9)

where fi(z) is the shear flow, (=) and j(z) are the undisturhbed density and pressure

distributions.

We now consider small perturbations about this basic stale. Introducing per-

turbations in ¢ = a/Il which is assumed small,
d=i+cl, p=j+ep, p=p+a, w= v,
and substituting this into (3.1) through (3.4) we have
(p+ )y + il + @) + (5 + Ep) (Wl +w'il) = —pl,
(7 + o) (W) + awl) + (5+ Ep) (Wl +w'wl) = —pl—plg,
P+l +0'ps + (Wpl +w'pl) = 0,
wtw, = 0.

37

(3.10)

(3.11)
(3.12)
(3.13)
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We nondimensionalize this system by
= L, 2= l31= I‘i ! = pap
w= Lz =3 0= gl = pop.

i %
o = Uity uf = #,;,, o = mollgp, u =i (.15)

where the scaling factor W = (/1] L comes from the equation of continuity (3.38). and

T = LU is the convection time seale. Then we have the nondimensional equations
(with the hats dropped):

(7 + ) + Ty + wzw) + (p+ Ep) g+ wu) = —Cip,, (.16)

a(+ ep) e+ ww,) + pulep+ Ep)um +wws) = —~Clps 4 p), (317)

P iips + wps + (ups +wps) =0, (4.18)

wtw, = 0, (5.19)

where (i = gll/U? is the square of the inverse Fronde number (see section

and ju = H?/L% Note that now all variables withont an overhar are perturhation
variables.

We now make the Boussinesq approximation which leads to the disappearance
of the factor i+ ¢p in the cquation system (3.16) and (3.17). This is based on the
fact that the water density in the ocean has only small variations (< 0.3 %) about
constant non-dimensional value of 1. The incompressibility of the fluid allows us 1o
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introdnee a perturbation streamfunetion 3, such that

w o= by
wo= =iy, (3.20)

After substituting these two and climinating p in (3.16) and (3.17), we get equations

for p and 1

thez = ecthe + (e

= Pathes:

ar + pe(hsthars — Ysthrrs) = Gpr = 0 (3:21)
p= petpe + (peps = thapz) = 0 (3.22)

e, 054) = Pa(, 154)

0 (3.23)

Equation (3.23) says that the streamfunction  is constant along boundaries. This
system of equations involves three parameters (7, € and .

For te long nonlinear [GWs considered liere, we assume that the parameter
sy along with ¢, is small. ¢ is assumed to be O(1). Thus, we can search for an

asymptotic expansion soltion of the form

o= e,z ) 4 'O, ) ™ (s

FCEPO e, 2 ) + epp™ (e, 23 0). (3.24)
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po= "0zt 4 M ez o™ (e 20
+Ep0(e, 2 0) + upt (e, 250)

Substituting these into (3.21), (3:22) and (3.23) gives:

The O(1) problem:

(;)—)/ + aa»‘);)w/";;“ — a0 = G =0,
0.0
@ padyn gy = 0,

P00, 05 0) = P20, 130) = 0.

The O(e) problem:

= e — 2R

1O pplo = 0000 _ g
YL, 052) = 2 e, 150) = 0.
The O(p) problem:
D oD yon o ovon _coon _ B D
(g + Ry = B! = Gt = —(gp +uyildy
9 Do o oon
(,.”+u”‘")/‘ by =0,

PO (2, 051) = 2, 150) = 0.
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(3.31)

(3.52)
(3.33)
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The O(c?) problem:

0GR = (D )
(2O + (3.3

() = e = (BP0 + P20
(RO 2 @0
92w, 030) = 92w, 158) = 0 &

i the following, we will discuss and solve he above problems one by one up to

the second order in ¢

3.2.1 The O(1) problem.
A simple manipulation of (3.26) and (3.27) gives

— il

B "
)0 = Gpad3E =0, (338)

(()L

with the boundary condition as before.
‘The equation (3.38) has an infinite number of solutions, most of which are

difficult to find and to deal with. It would be nice if it had a separable solution,

hecause this kind of solution is casy to handle. To see whether there exist such
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solutions, we assume
10 = A, (=), (3.39)
and substitute this into (3.38). This gives

& +Az; . ‘/l] e [A,, + n/\,.,.](

Are

ipe = { (3.10)

The left side of this cquation is a function of = only, so the right side must he as well,
This requires that

An

Ars
)

+i(z) = fil=), (3.41)

1 y2

= [fofz), (3.42)

where f; and f, are functions of = only. From (3.41), it is obvious that we must lave

Ayt = —cAg; for some constant e. This leads to

A= —ch, +T(L). (3.43)

Substitution into (3.42) shows that d7'(t)/dt must be a constant. We are not inter-
ested in solutions which become nnbounded as ¢ increases, so we must sel 7' = 0.

Thus, for a separable solution, A must satisfy the linear nondispersive wave equation

b — (3.44)



As Tor the vahie of ¢ and the vertical mode $(z), we need o solve the corresponding

cigenvalue problem which is obtained by substituting (3.44) into (3.38)

0, (3.45)

#0)=@(1) = 0. (3.46)

This cigenvalie problem is solvable, at least numerically, Imposing the condition
(=) # ¢ for any = (i.c., no eritical layors), there is a discrete, infinite spectrum of

cigenvalues ¢ > ¢z > ¢ > -+ with corresponding cigenfunctions ¢y, ¢, -+ The

solution euy g (2

is the mode-n linear wave. The nondispersive aspect of the zero
arder solution is a result of ¢ < 1 (i.e., the long wave approximation).

From (3.27) we immediately see that p%0 also has the separable solution
PP = A, ) Du(z), (3.47)

where

(3.48)
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3.2.2 The O(¢) problem.
We again choose to seck separable solutions for O(c) problem (3.20) to (3.31). There-
fore, we assume
P = AN, 1)¢M(2), (3.19)
A= B ) DY(2). (:3.50)

Substituting the O(1) solution into the right hand side of (3.29) and (3.30), we see

that

= AA(be

(3.51)

A (3.52)

Since the inhomogencons terms have the separable AA, factor, we want 10, pl g}
and p}*® to have the factor as well. By taking
A = B = A%, (:3.58)

we get the required separable form.
Substititing 19, p'0 into (3.29) and (3.30), and climinating D'9(z), we end

up with an equation system for ¢'0:

(= ' L2 — [( = e)ite: + Cips]d"™" =

1



30 e = ) + 2 (3.54)
$90) = $9(1) = 0. (3.55)

Note that, the operator on the left side of (3.51), which acts on ¢, is the same as that
for the O(1) problem (3.45). Thus (3.51) is an inhomogencous form of the cigenvalne

problem (3.45). Now the question is whether equation (3.54) has a solution which

s the given boundary condition.

Multiplying (3.54) by $/(it — )? and then nsing (3.45) we get
d X
B0 = 4:410) = J(2), (3.56)

where

(it = )(bse: — P:ee) + G

T

Here we have assumed nowzero (i — c).

Due to the associated boundary conditions of ¢ and ¢, integrating (3.56) from
001 gives

(3.58)

A' J(z)dz =0.

Thus, in order for there to be a separable solution condition (3.58) must be satisfied.

One special case for which this is true is the one with @ = constant and . = constant.

But in general, (3.58) is not satisfied.



I1(3.58) is not. satislied the problem may be fixed by assiming that A does not
strictly propagate at constant speed without changing its shape as represented by
Ac=—cAz Benney [1966] suggested that the evolution equation (3.4) be modilied

by adding an O(c) correction of the form
A= =eAe+Qr0). (459)

We now st return to the O(1) problem. This time we substitute (359), instead of

(3:44), into (3.40). This gives
(it~ €)hee —itsep = DA, = =0 Qut, iz, (8.40)
[(it= €)= e A = = Q(r, )10 (361
This is the same problem as we had in (3.45) excepl with additional Ofc) lerms

appearing on the right side which are vt al the same order as Uhose on thee left side,

“These O(c) terms helong in the O(c) problem. Thus the O(1) problem

11 iven by
(345) and (346). However in the O(c) problem, the right sides of (151) and (3.52)

become:

= hathes) = Qe sy (462)

) — Q0D (363)
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respeetively. A separable solution now requires that Q o AA,. This clearly indicates

that the assumed shape change, or the phase speed deviation, is due to the nonlincar

cffect arising from the AA; term. Following Benney[1966] we let the proportionality

constant, e 2 so that, (3.59) becomes

A= —cAp + 2 AA,. (3.61)

Physically, the effect of the new term is Lo introduce an O(c) correction to the prop-
agation specd, which is now (¢ — 2rA).

Now the O(c) problem becomes

(it = )Pl = e = GD' = (3.65)
(a=e)D" = jg® = (8.66)
#90) = $91) = o, (3.67)
or alternatively,
(3.68)
(3.69)




= (:.70)
with the corresponding
=) = -
(3.71)
I o
r=7 (3.72)
where
o= (5.73)
I = (3.741)

Thus, with r caleulated by using the solution ¢ of the cigenvalue problen (3.45), the
O(c) problem for 0 and D™ is solvable.

3.2.3 The O(y) problem.

The procedure adopted in this problem is the same as in the previons problen. So

only an ontline is presented lere,



We again want to seck a separable solution for the system (3.32) to (3.34), so

we sel
P = AN, 1)@ (2),
M= B (e, 1) D (z).
Substituting $°° into the equations (3.32) and (3.33) suggests that
A =B = A,

The substitution of this able form and the climination of D! gives

— (@)t + Gp:J™ = —(a—c)¢

PO =¢1) = 0

(3.75)

(3.76)

(3.77)

(3.78)

(3.79)

where only the leading order term of A, (namely —cA,) has been used. Note again

that, (3.78) is the inhomogencons form of (3.45). By the same procedure used for the

O(c) problem, the existance of a solution of (3.78) requires

/“' J(z)dz =0,
where

J(z) = =¢*(2),
el corily o beantiafod unles $=0;
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To solve this dilemma we set
Ay = —ele 4 200A A + pli(x, 1), (3.81)

with ptR as another factor cansing the deviation from lincar nondispersive waves.

With (3.77) and (3.81) substituted in (

) and (:333), the foreing Lerms of

the O(j) problem become

Ty —

(3.82)

(3.8%)

which indicate that for a separable solution we shonld have B = sA,,, with s being
a constant. This in fact implies that the new term in the evolution equation for A
results in dispersion.

Then the O(1) problem hecomes

MG = (3.81)
(@—e)D™ — g™ = —sD, (3.85)
#0) = ¢*'(1) = 0, (3.86)

or alternatively,

T Gp:_] g0
3l o i o K

#'(0)=¢*(1) =

p. .
[reerrild D0

i
S

(3.58)



and

D = (3.89)
and consequently, J(z) is now
(3.90)
(3.91)
where
== ! s, (3.92)

and [ s the same as in (3.74). With this value of s and a wave profile evolving
arcording lo

Av=—cAg + 200 A + 3 Acss, (3.93)
the O(1) problem for ¢ and D% is solvable. Equation (3.93) is the KAV equation
which describes the time development of long waves under the combined effect of the

lirst order nonlinearity and dispersivity.

51



3.2.4 The O(¢*) problem.

In the last section, we derived the KdV equation which is of fiest order in ¢ and g and

therefore is good for IGWs with small or moderate amplitude. But in the

reported by many authors, IGWs frequently have amplitudes which are quite large,
For these IGWs a second-order amplitude effect must be ineluded. “This leads to
the derivation of modificd KdV equations as was done hy Lee & Beardsley[1971]. In
this section, following Lee and Beardsley, we solve the O(c?) problem and obtain a
modified KdV equation (will be denoted as mKdV hereafter).

Substituting the previons results %, ! and ' into the right side of the

0O(c2) problem (3.35) and (3.36), we see that

([EX0))

(3.5)

and so on. Thus we are inspired to set the Tollowing form for a separable solution
P20 = AP, (:3.96)
P o= A, (3.97)

By the substitution of (3.98) and (3.96) and (3.97) into the O(c2) prablem (4.35) o

3.37), we obtain the equation system for 629 and the corresponding condition for
, y:




the existence of separable solutions as we did before, But again that condition is not
always satisficd. By the same argnment as before, another Lerm representing an even

slower change in the wave shape is introduced into the equation governing A
Av=—eAp+ AN+ psAprs + EM (1), (3.98)

Now we substitute (3.98) and all the obtained results of the lower order problems

into the full pertarbation equation of the form
O(1) + O(¢) + pO(p) + *O(*) -+ (3.99)

where O(1) to (%) denote the corresponding hierarchy perturbation equation sys-

tems. Properly arranging the terms with the same order, we find the equations for

e O(c) problem

BARAL (0 = ) —

10 4 beedl) — drplP]AA,

(3.100)
BAR A (0 = YD — ] =
[($DX 4+ 2D:6") = (26 D' + DL — ArD' )| A2A,
~AD, (3.101)



where the terms involving  are from O(c) problem hecause of their higher order, ax
the terms involving M do from the zero order problem. This requires that AL s A%,
for a separable solution. Let

M(r.) = A%, (:5.102)

we then got the equation system for ¢ and D2

(it — )62 = 126" — G =

St 42 et gt = M), ()

(= ) — gt =
%(él)_!" 204" — 26, D' — DG — 4D - \D), (.104)

¢*0(0) = 42°(1) = 0. (3.105)
With D" eliminated, these are rewritten as

PRI

L8 g 2l g
FTrr Ll - il = dbe

19— gl — Mbec)

(DY 424" — 24 D' — DGLY — 46D — AD), (3.106)

F90) = (1) =0, (.107)



and

-

+W )(4,1)_!“’ 420,60 = 26. D" — DG —4rD'® ~ AD). (3.108)
Hi-e

Another form of (3.106) is

L0 ) = (o),

with J(z) eing
4

i—0)

(4D 4 20,410 = 2. D' DL — 4rD" — AD). (3.109)

Jz) = (0 2§ = 29810 = peopl® — Argld — Mgsz)

Phen by the condition fJdz = 0, and substitnting (3.48) and (3.70) for D and D',
we immediately get

A==, (3.110)

where

Upree 8"~ 20,

- {:x (£)°¢I‘“¢z+(ﬂl}c)"§%
2 ¥ -

() e -n () (£ ) N
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and [ is again given by (3.74). Thus the problem (3.106) to (3.108) for ¢** and D*

can be solved. Note that coeflicients r, « and A have the same denominator 1.

3.2.5 Summary.

ing the method of the pertirbation expansion in powers of the Lwo small pa

ne-
ters, we have fomid the approximate solntion for long nonlinear IGWs in a stratified
fluid with shear flow confined by flat rigid boundaries in a two dimensional domain.
For long nonlinear [GWs with finite amplitudes, the sccond-order nonlinear term in
« may be hig cnongh to play an important. role in the overall nonlinear effect and

therefore can not be neglected. Thus we choose to have the solution consisting of the

perturbation solutions np to the second order in ¢ and negleet all the obher igher

order terms which are much smaller due to the smallness of . ‘To summard

the perturbation streamfnetion is given by

1= At AP A g™ A (.112)
while the perturhation density is
p=AD 4 A DY 4 A DM 4 AT, (3,113
Ais governed by
At ehy = AN, = psh,,, = CAAPA =0, (3.114)
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e, ¢ are determined by the eigenvalie problem (3.45)-(3.46) which has a count-
ably infinite seb of solitions (eu, ¢y) with ¢ > ¢ > ¢+~ The other variables
$1O(z), 47 (2), $29(z), D(z), D'O(z), D™ (2), DO(z) and the constants 7, s and A
are given in terms of ¢ and ¢, Since we are only interested in the mode-one wave
(1 = 1) which propagates the fastest, we do not use the subscript . and refer all
quantities Lo those associated with the first mode only.

Waves can travel in either the positive or negative direction. The solution

(3.112)-(3.114) should have the appropriate symmetry. 1t is casy to check whether

(3.114) does this. Suppose we have a solution for some (=) and N(z) which describes

a wave propagating in the positive direction. Then we should obtain a solution

deseribing a wave: propagating in the negative direction by letting 2 — —u, ¢ —
and w — —i. Examining (3.72) and (3.91), we find that » remains the same and
s changes sign. For A, we note by (3.45), (3.48), (3.68) and (3.70) that ¢ and D'0
are independent, of the sign while D, ¢ depend on the sign, which ends up with the
expression of A, .., (3.110), depending on the sign. On the other hand, A(i, £) will
change sign itself sinee w = 4, changes sign, as well as the derivatives with respect
to . With all these incorporated into (3.114), it is found that the resulting equation
i exactly the same, i.e., it does hold for the propagation in both directions.

The equation (3.114) s the mKdV equation which describes the case when
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the wave amplitudes are

ge. As stated at the heginning of this chapter, it is
controlled by the two parameters ¢ and p1. one of which comes from the extension of
the infinitesimal theory and the other from long-wave theory. When ¢ 3+ i, the waves
are dominantly nonlinear and tend o steepen and hreak; when 1 3 ¢, we have linear
dispersive waves. Note however that this dispersive term is nob the same dispersive
term oue obtains from the linear nonhydrostatic equations. Tl dispersion is only an

pproxi lispersion valid in the | limit.

3.3 Application to our special case.

The theory and the nondimensional formulation derived in the above seetion is a
general result for flows with any stratification and shear velocity. Our purpose is o

examine to what extent this theory predicts the evolution of long wave

i Lhe fully
nonlinear numerical model (IGWsim). Therefore, we need to select some particu-

lar case and apply the theory Lo it for comparison. In onr nmmerical experinents

described in chapter 2 the background flow is, instead of shear, a uniform velocity

field. Thus, in this scetion, we will apply the theory to such a flow, and calenlate

the corresponding cigenvalie (lincar pl

specd), vertical modes and coeflic

This work involves the following: first, the equations and expressions are

i



iy selding it = constant; socond, dimensions of variables and cocfficients are defined,
and the whole system is transformed back to the physical domain accordingly; third,
a summary of all dimensional equation systems and formulations, based on which
numerical solutions are sought, is given for convenient reference; and finally, some

solutions are presented as examples.

3.3.1 Simplification of r,s, A expr

For the simple hydrology considered here, f.e. constant i, all terms involving deriva-
tives of (= ¢) in the relevant equations and expressions vanish. Taking the derivative

of (3.45) with respect to = and multiplying it by ¢ we have

(3.115)

(3.116)

and similarly,

(3.117)

As for X, we first eliminate the terms involving ¢ezz, #12 by partial integration, then

substitute these and the expressions for ¢12, ¢ ((3.45) and (3.68)) into the expr

ssion
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(3.110), thus fnally expressing 1y in terms of ¢, ¢, ¢, 10 and pu:

, /’tl/':.u_'_(

SrCip, g
(3.118)
and consequently,

A= 2 (3.119)

3.3.2 Conversion to dimensional form.

We must remember that the numerical simulation is in the deseribed physical domain

while the above theoretical analysis is carried ont dimensionlessly. [norder to compare

them later we now convert, the analysis to dimensional form. ‘This can be done quite

| i

that one

casily. R G and one sealing parameter g were

introduced when we did nondimensionalization. Now by replacing Cip; with — N* and
o with 1 in the previous section, and regarding all variables as dimensional, we can
immediately obtain the dimensional form of the system. The dimensions of the three
coefficients r, s and A depend on how we define the dimensions for the vertical modes.
Doing this dimensional analysis checks the dimensional consistency of the mKdv

equation. In the following, we first define the dimensions of the variables in the zero

GO



order problem. Based on this, the dimensions of other variables and coefficients are

found. Then we impl conversion and ize the di ional system.

The stream fanction perbnrbation has a volume flux dimensional scale cl/ H,
and the density perturbation of course has a density dimensional scale of ¢pg. Those,

by the dimensionless forms (3.24) and (3.25), can be written as

Po= =

1o
(WA + (’“”"Vﬁﬁ (U1 A
4o

e
A A A g AB R (3.120)

+( 1 AY

mo= = pop

2 po D'

nn "y
(iry Iz

((ulm);'“—l) + ((1/11/1)

H AP (l/ll)‘ 5z

+ (zl/ll/\),,

= ADT A ATDMY 4 AL DO AT (3.121)

where *4 represents the dimensional form and the subscript p stands for perturba-

tion. Obviously, the dimensional scales of the quantities in the above are:

[

=dll, [¢)=1, [¢"]=1/011,
(") = 1%, (¢ = 1/(UIY?, [D7] = po/UH,
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[D") = po/ (U, (DM = poll /U, [D*] = pof(U0EYY, (3122

where [ ] denotes the dimensional scale of a variable. Actually, we are freo t chioose a
dimension for A%, When this is done, the dimensions of vertical modes ¢*, D9* are
determined consequently. What we did here is to first define the dimensional scalo of
A* as that of the stream perturbation, thus leave ¢ dimensionloss with a seale of one,
and then determine the dimensional scales of others.

Using

) = (i = VU, D)0z = 1",

. N
_ll‘m'/,,

(:8.123)

(i8.124)

and similarly

A=AULIE (3.125)

These indicate that #*,s%, A" are defined as those calenlated by nsing dimensional

quantitics and thus have the dimensions 1/, U117 and VU1, respeetively.
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Up to this point, the dimensions for the whole system have been defined. The

conversion of the system back to the physical domain can be done by substituting —N?

for (ipay | for g1, and re

egarding all variables in the system as dimensional ones. Next,

for convenience and clearness, the whole dimensionalized system, based on which the

theoretical calenlations are carried out for our particular case, is summarized in the

following (with “+” dropped):
5 DI

the perturbations at some level z are

hy = A+ AP0 4 Ay 4 AP

pp = AD+ARDW 4 ALDM 4 A D
where the wave profile A is governed by

At ey = 20 AA; — 8Azes — AP A,

The nonlinear and dispersive cocfficients are:

f,, gz

r = ey g

L
2T gz
with

G( N2

@—op

,);/ ["Nld'lﬁ SO LGNGO 4
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(3.126)

(3.127)

(3.128)

(3.129)

(3.130)

(3.131)



_ N2 Py

mw dz.

; G+ SN "

(ih1:82)

The vertical modes appearing in these expressions are determined from:

the: +

I
=

, (3.133)

H0)=4(ll) = 0

which also gives the cigenvalie ¢ (only the largest cigenvalue ¢ corresponding Lo the

mode-one wave is considered here) thal appears in the mKdy as the linear phase

speed;

2t g =

$10(0) = $2(11) =

g A g

#(0) = (1)

L%

N2 420
+ g™’ =

i (3.134)

0
—2{f e — gt
i e g — v M g,

Tu=e)

i ”“‘(,I,/,m_,z(m 4 b (3.136)

#90) = g011) =
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and

(3.137)

(3.138)

(3.139)

=

3

where the correctness of the coefficients 7,5, A ensures the solvability of the above
inlomogencons equation systems.

Solving Lhis problem, one would adopt 4 solution procedute like this: first, solve
the cigenvalue problem (3.138); second, caleulate 7, s, A and solve (3.134) to (3.136)
for the other vertical modes; and third, solve the mKdV equation (3.128) for a given

initial wave profile. These will be done in the following two sections.

3.4 Solution for vertical modes.

“The four problems (3.133) to (3.136) are solved mumerically using a C-code EIG. Note

that for cach of them, there are an infinite number of solutions. A unique solution



can he selected by imposing a further condition. The solution to (3.133) is uniquely

determined by setting max(é) = 1. The general solution of (3.131) has the form

@M = g Mg, (3.041)

where ¢"%* is a particular solution determined by a houndary condition

#(0) = L"(0) =0, (3.142)

"% s an arhitrary constant, the selection of which will he discussed in more detail
i the next chapter, in conjunction with the mensurement. of wave profiles. e
gencral solutions of (3.135) and (3.136) have a form similar to (8.141), The numerical
solutions of (3.131) to (3.136) are obtained by integratimg from = = 0 with lwo

boundary conditions like (3.142). The values of 7, s and A given by (3.116), (3.117)

and (3.119) guarantee that ¢, ¢%', 62 are zero at = = 1. Note that only ¢ and

"0 are required in order to evaluate 7, 5, A, We will see later that, g™ is also necded

to obtain the initial wave profile from the ontput. of the model 1GWsim. Althongh
¢ and ¢ are not used in any formulac, the equations for them are integrated Lo
verify the correctness of the coeflicients. Note that s the fiest vertical normal mode

while ¢!, %! and ¢*© are in general combinations of all the linear vertical modes

Fu(z).
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Fignre 3.1-3.4 are the plots of the vertical modes for the case with the step-

NE(z) given by (238), 1 = 360m and z, = 260m. It can be seen that

Y, GO, 6 (1) and G#9(11) are zero, indicating that 7, x and A are caleulated

o sullicient aceuracy.
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3.5 Numerical solution of mKdV equation

Up Lo now, we have theoretically shown that, to O(c*), the evolution of long nonlinear

perturhation waves is governed by the mKdV equation (

caleulated the associated coefficients, To compare this theory with the model results,
we must solve this time dependent mKdV equation on a given initial wave profile.

This is done numerically using the psendospectral method doveloped by Fornl

& Whitham [1978]. This method usc

a lourier

isform treatment of Lhe sp

o

dependence, together with a leap-frog scheme in time. Tn this seetion, this method is
brielly deseribed and then applicd to our problem.
3.5.1 Numerical method.

For simplicity, lot us drop the advection term e, in (3.128), which can be eliminated
by changing o a reference frame moving with specd e. Thus we have the basic mKdV

equation of the form

A =2 AN, — 87, — AAPA, =0, (3.143)



Wihen diseretized, A s approximated by the leap-frog seheme with a traneation error
o the order of O(AL?)

AL, L4 AL) = A, L = Al)

= A2 3,144
7 = A+ O(AL), (3.144)

where Al is the time inerement, Uhe restriction on the size of AL will be specified later.
The space derivative terms are handled in a spectral way, First, the compntational
space donmain [, 4] is discretized by 28 cquidistant points with n spacing Aw =

LJ(2N), where 1,

= . Then forward and backward Fast Fourier Transforming

(1T hereafter) are performed on the domain according to

Ahyt) = Ir'(/\(.r./}

\/'_ Z A(j A, e Thntidn (3.145)
2N

and

Al d) = AGAL ) = FY{ Ak 1)}

2Nt
/lTV Z Ak, 1)e=alinn, (3.146)
VIN S

where /2 and #2=" denote the forward and backward FFT, respectively, A and A are

the Fourier pair, and the wavenumber is given by

27
—n n=0,1 2N — 1L
i

™



Note that to ensure the efficieney of the FIT, the number of grid points neads to be
a power of 2.

The idea is to forward time step in the physical domain instead of in the spee
tral domain, thus saving computing expenditure. Therefore, derivatives are taken of

(3.146) with respect to o to give
Adlet) (8.117)

Apeslarst) (3.148)

One advantage of this approsimation is that. information from all of the diseretized
points, instead of from only several surrounding points as in the usual finite dilfer-
encing scheme, has been used, This will give a more aceurate solution,

Discretizing (3.

3) by the nse of (3.14), (3.147) and (3.118), we have
Ay L+ AL) = A, L= AL = AALr AR (i ke 1] A}}
AL PR P{AY) = 20 A AP il AT = 00 (30)
Fornberg & Whitham [1978] then modified this equation to
Al L4 AL) = A, = AL) = AALr AP ik (A}
F2I M sin(kS s A F{AY) = 20LX AP B ik Y AYY = 00 (050)
The reason for this modification is that it is more acenrate for short wave components.
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Since k3 s AL = sin(k? s AL) + O(AL?), k2 s AL in the dispersive torm has been
veplaced by sin(k2 s AL). In onr long wave consideration the maximum wave number

srably smaller than one. The error introduced

ki = 2/ Aa involved is usnally consi
in s roplacement is an order of magnitnde smaller than the truncation orror already

introduced by the time di ization. This has important. si

ent difference approximation to (3.143) is accurate enough

indeed. In general, a consis

supposing it well satisfies the corresponding criteria), but it

for low wave numbe:

will lose aceuracy rapidly for increasing wave numbers, At high wave numbers, the

controlling seale | Jtin the nondi ional form (3.113) becomes large over e

and the dispersive term dominates, thus the above differential and difference equations

reduce to

(3.151)

Ay=$hppr =

Aty AL = Ay L= AL 4280 s FU{i K3F{A}} =0, (3.152)
respectively, and the modified form becomes

Al L AL = Ae, £ = AL + 207 i sin(k2 s AL)F{A}} = 0. (3.153)

The important difference between (3.152) and (3.153) is that the latter is not subject

to any dillerencing error. That is, any solution of the differential equation (3.151),

when ¢ ized with any Ar and Al, exactly satisfies the modified differencing
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equation (3.153) as well, but not (3.152). This can be readily shown, Snpposing one
solution of (3.151) is A = ¢*at=20 Discretizing it gives

Ay L Al) = A¢=inast]

Al L= Al) = Atk

Kyat

F{AY = 6k — ko)
F sin( s AB(k — ke 571 = Asin(k? s AL),
thus we immediately have (3.158). 6 here denotes a Dirac delta funetion. o, the
modified (3.153) is much better than (3.152) for high wave mmbers.
Now it is quite clear that the reason we prefoer the modified version (3.150) is

that it is much better for high wave numbers and is as good as the original (3.1:19)

for low wave numbers.

3.5.2 Stability.

of the nonlinear

ability considerations. |

The time step is determined via

stability, which s hard to deal with. we considor here the lincar stability problem
corresponding to a lincar model cquation

(18.151)




where 0, originally being co = 2rA = A? (cq is the lincar phase speed relative to
the fluid) in the mKdV equation (3.128), is now treated as a constant. This simply
asstimes that, during the integration of the mKdV equation, co — 2rA — AA? remains
under some limit, say 0. Therefore, the condition to be imposed on the time step
Al for the linear model (3.154) is also valid for the corresponding mKdV equation
(3.143).

(38.154) s discretized according to the above theory as

ALy L+ AL) = A, L= ALY +2i0 AL {ky F{A})

=20 7= sin(k2 s AL F{A}} = 0. (3.155)

We want. to find the condition under which a given wave does not grow with time.

Therefore, we substitnte a wave of the form
A1) = K™ ihnr = (B bur
into the (3.155), where m is the number of time steps. This gives

K =2 [(Alk,, 0)K = 1 (3.156)

where

T(AL ki, 0) = sin(= k2 s AL) = ky0AL (3.157)

m



The solutions of (3.156) are

(45%)

The solution associated with the positive sign is the ph mode and the other is

the computational mode. It is obvious that the scheme (3.155) is conditionally stable
iland only il f is real and less than one in magnitude. Therelore, we need to find the
largest Al so that

1[(AL K 0)] < 1 (3.154)
is true for all by, no= 0,1+, N, The most severe constraint on Al s for
kn = a/Axz which are the largest in magnitude.

We re

Lo [ as a function of b= —xALKY

b0

Tbsk,0) = sinfh) = — e

(

and note that [ is rapidly oscillating with b Since 0 and « always have e same sign,
J(b) = =f(=b). I [ = 0 the corresponding wave would be a stationary, constant
profile: as a result, of balancing between dispersion and advection, I can be expected
that there exists a value of by, corresponding o the first intersection betwoen [ and
cither —1 or 1, beyond which the condition |f] < I might he violated. Figure 3.5

shows the plot of [ for (—s) > 0 aud 0> 0. It can be seen that for any b= by (3.159)



SLabLi Ly er it b

eriterion

is guaranteed, where by is the first root of

as

(3.160)

In practice, Al is taken as abont a quarter of the value given by (3.150), Tosts show

this is adequate, The scheme will hecome unstable for Al approaching the criterion.
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3.5.3 Test.

A C program called KDV for solving KdV type cquations has bee

the

to the deseribed numerical method.  Beean:

frog scheme roquires
conditions on the first two time levels, we list use a forward time step to advance the
given initial wave. As for the well known weaknoss of the leapfrog scliome, ie.. the

possibility of separation of the solution hetween twa successive Lme levels, a conpling

Lechnique has been used. When we have ealeulated the solition wp o levels (= A1, 1

and £+ AL, we introduce hnlf Tovels al £ = AL and £+ SA7 as averages of a

levels, and caleulate one step up to level £4 FAL Then averaging (= 5N 14 -’_,Al

and £+ 3AL L+ JAL we go back Lo levels £ and 1+ Al and proceed the calenlation

from there. This process is repeated every 50 time steps.
Before the program KDV was nsed to solve our mKdV equation (.128), it was

tested against the situations wi

analytical solutions «

, such

solution, a dispersive solution and solitons.  Figure 3.6 shows that the numeri

solutions are indistinguishable from the analytical solutions for a single proj

soliton and for two colliding solitons.

80



Tests of the numerical solutions (with 512 grid points and i = 0.001)
against the analytic solitary solutions. (a). Numerical and analytical sol
KdV equation. Both evolve from the same initial wave a; !
after 18000 steps. (b). Numerical and analytical colliding soliton solutions of mKdV
cquation. The numerical wave profile is indistingnishable from the analytical soltion
after 400000 steps.




Chapter 4

Theory vs. Numerical Model

In chapter 2, the nmesical model which is used o study the generation and evolution

of TGWs was deseribed. Tn chapter 3, the theoretical analysis of long, weakly nonlinear

1GWs teapped in a horizontally imiform vertical extent was derived following Lee and
Beardsley, which indicates that the evolution of the waves is governed by a mKdV.
equation. 11 this theory is valid, it should be able to produce the same features of
1GWs as observed in the nmerical experinents, such as a steep frout, undular bore
at the rear of the front. nonlinear propagation speed, ete.

We mentioned in the introduction of chapler 3 that the theory was developed

by Long (1956, 1965, 1972] and Benjamin [1966), and extended by Benney [1966]

and Lee & Beardsley [1974). Benney derived a KdV equation for IGWs.  Lee and
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Beardsley obtained a mKdV equation which is a it different from onrs in that they

inchided non-Bonssinesq effects

introducing a third parameter. By comparing this

theory with laborate

¥ experiments and obser

fon in Massachusetts Bay, Lee and

s ol IGW's

Beardsley showed that the theory produces the main featur

develuped from
a front. Since there was o observations of an initial wave profile their comparison
was only qualitative, Gear & Grimshaw [1983] studied the second-order theory of

solitons in shallow fluids and derived the second-order corr

tions to the wave profile

and phase speed predicted by the lirst-order theory, The second-order correction

should improve the first-order theory, but this was not verified by comparisons with

observations, experimental or numerical results in their paper,

No one has conducted fully nonlinear numerical modelling of the probleny nsing

BEuler’s equations and quantitatively compared the model re

silts with the theory. In

this

chapter sich comparisons are carried ont. We want, to see whether there is good

quantitative agreement with the model results and determine when, and how mueh,

the second-order nonlinearity improves the first-order KAV theory. For this purpose,
we first extract a temporal and horizontal variation (L) = A(L)/eq (which we

refer Lo as the wave profile) from the

model output. (1) is determined by an

infinite s and henee

can not be computed exactly. Inst

profile is calenlated. The approximation used to find 13 varies with z. 'Thus, strictly
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meter 2y where 2z s the value of = at which

speaking, 18 is a fnetion of a

this approimation is made. The validity of the approximation is indicated by small

variations of 3 with zp. The extraction of 13 also involves the selection of o' in

semi-infinite

(3. 0:01), whieh was left nnsolved in chapter 3. 1t is shown that only

is done in secton L1, i section 1.2, an

pange of valies of o' are possible. T

elficient resolution of the model s selected based on test runs. Then in section 4.3

the derived theory is compared with the model vesnlts for different background st.
and disenssion Tollows.

In the following, the wave profiles are nsnally denoted by two numbers, c.g.

1330210, cte, The first number (., 330) indicates the height 24 at which the wave

i mensured, and the second (i.e., 10) s the ontpnt wumber indicating the time of
evalution (actnal time being 16008 multiplied by this number). Other subseripts may

be attached when neee

4.1 Extraction of wave profile

“The model 1GWsim stores the pressure gradient field, the density field and the velocity
lield. A wave profile must be extracted from the model output for comparison. This

can be done by using perturbation expansions (3.126) and (3.127). Dividing (3.126)
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by the propagation speed relative to the fluid (¢o = ¢ — ) and substituting (3.137)

1o (31410 for D™ in (3.127). we define g and g, via

.
W= = Bt Bread™ 4 Bd®™ 4 1

(1)
Cn
e = ’\’,’;’ = B+ By [,,u-" 3

s [0+

+8% ['/r’ +

LSV

ZH' dJ
= B+ BEY 4 B B 4 BB (1.2)
where B(l.x) = A/ey has a length dimension and is governed by

By + e By = 2rc0 BBy — 5Bpps = NGB 1B, = 0, (1.3)

which is the mKdV equation. Relations (4.1) and (1.2) are exaet. Fhe g and g on

the left hand side can be viewed, to first order only, as the ver

al displacement of
streamlines and isopyenals respectively, whiel reach lovel = when disturbed.
Expressions (1.1) and (4.2) say that the perturhations can he expressed in
terms of a depth independent, wave profile B(4,) and the vertical modes i, 1t
shonld be also pointed ont that, the theoretical derivation assumes that only a single
mode is present. Nonlinear interaction hetween modes has heen ignored. T general,
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nonlinearity will result in the generation of higher mode waves from a mode-one wave.

ons £2"(z) which are in general linear

"I'his is Laken partially into acconnt, by the func

cal mode

combinations of all the vertical linear modes. We do not call B(l, ) the vert
amplitide sinee, becanse of the nonlinear Lerms in (1.2), B is not a direct measure

s of it

of the amplitnde, As will be shown, ¢'° is not unique and different. choi

give different, Bs. Yel the wave amplitude is unchanged, as 1 by the actual

isopyenal displacements.
In the Tollowing, we will obtain /3 from the density perturbation rather than
from the stream fanction perturbation. The reason is that the model output makes it

 to determine py. The stream function perturbation would e harder to caleulate,

4.1.1 About the wave profile B(t

3 that the vertical modes ¢ have the form

We have shown in chaptes

P = T 4 aiig, (4.4)

where ¢#* are particular solutions of inhomogencons equations determined by ¢7*(0) =

(0) = 0 and o™ are arbit tants multiplying the | solution ¢.

The involvement of o in £ indicates that different o®4 define different B. To see




this, let us take o' for example and assume other o™ fixed.

o= B+ B |¢M + (a0 4+ b BB o BB

o

= (B a" B+ Bkt

B 8+ B (1.5)

where EY0% is Y with o' = 0. 1T By is the solution for o' = 0 and 3, is the

solution for a non-zero o', it is quite

lear that By # B, and
Bom By + a1 (.65)

to the first order (%, £, ele are also changed which would introduce higher order
corrections Lo (4.6)). The non-dimensional magnitude of My and 13, are O(c), there-
fore, the difference o'B2 has a magnitude of only O(c2) nnless o' i Targe, Indlecd,
the expansion theory is valid only if B¢ 3> B2EM, which is not. truc if o' is too
large. Varying the other o will also modify 13 in a similar way.

Theoretically, B could be fonnd for any arbitrarily chosen o provided that
the magnitude of the terms in (1.2) descends with order. This would involve solving
an infinite series in B (and By, ete) for B. However, for a fixed z = z;, it appears
that the o can be chosen Lo make £54(zy) = 0 so that 13 is obtainable from the

first one or two terms of the expansion. To show this clearly, we plot £19, 5% and
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Figure 4.1: Continue.

B with different o™ in fignre 4.1, for the stratification N3(z) given by

10

scen that M0, £

and 520 have roots. Generally, the nmber of roots which

and 729 have depends npon the stratification N2(z) and o' a3, B has only one

as a o™ and o

tool. For a given N3(z), the roots vary change (note that for

certain o' range 21 may have no oot at all). Thas, for a lixed o' any depth,

say 21, conld he a common root of E% and B2 with properly selectod 0% and o2

(21 could be a common root of E'" as well). Similar discussion can be expected for

higher order 249 and o™, Therefore, at zy, higher order terms in the expansion can
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e made o vanish, and

= B(z) + BE(z) (1.7)

a(k

0 4 ool of %) defines the 13 profile for this particular a®

Bz il

(or 14

This procedure may he repeated at any other depth, say z,. but the resulting

13 ad zy will be different from that measured at z,. This is becanse, althongh o' is

lixed, other a®i have Lo he adjusted to make 2, a common roob of £4, These different

s s give a different, 3. Tn short, 13 profiles computed at any depth using (4.7)

ular af s

he viewed a s for pard

L profil

From another point of view, il we keep o unchanged and assume that 5,

B profiles approximated at

meastred al some depth 2 s the profile for this o

mations

ather depths nsing the first two terms of (-1.2) may then be r

Lo By, sinee now the neglected higher order £ are non-zero,

Sinee onr analysis ed ont up Lo the second order in ¢, the resulting mKdV

equation (1.3) depends only on ! (A is a fanction of o', honce

an approximale

evolution equation of the wave profile 3. This approximation s independent of other

i, Becanse the ovolution equation is an approsimate one it is senseloss to worry

about ol

aining 13 exactly. Thus no conclusion can be made concerning at which

depth (or with which o/ set) a measured B should be best described by the theory.
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The only r

ric

ion is that the o™ should not he too large (so that the asymptotic
expansion holds). Naturally, dilferences hetween the theory and the wodel results are
expected in comparison.

In (4

and (1.6), we have shown how different o' deline ditferent 3. An

example of this is shoen in figure L2 By and Bygay have been ealealated at the same

depth using (1.7) and plotted. Also plotted i Boa + 0008 1. Since the depth

used is also a root of B (for o™ = 0). (1.6) i e up Lo at e the thivd

order in e In the ligure By and B,

s 0.003 By are indistinguishable,

While different o extra

 different. B3, the wave propagation in the model

HlLs s of con

independent of o', Ther

goud appre i

e theory should

also be approximal

independent of o' in predieting the propagation. This will

he tested later. Here, we just want to point out a erucial point. abont the theory

in advance, The theory says that the total nonline:

r propagation speed up o the

second order (as in the mKdV equation) is eo(1 = rf8 = Aeyl?), and Loth 13 and

A depend on o™, B and A change with o' in such o way that the net chimge in
{ 8¢

ol =188 = Ae3?) is very small. On the other land, the total nonlinear specd p

to the first order (as in the KAV equation, obtained by setting A = 0 in the mKdV
equation) is o1 = B), which is obviously sensitive to o' since only 17 depends

on o', Therefore, it is anticipated that the mKdV theory may better deseribe the
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Figure 4.2: Comparison of B’s measured at the same depth for diffcrent a'®, @ =
0.0m/s,c0 = 0.965m/s. (a). E'(z) with N2(z) for a'® = 0 and ol = 0.003. (b).
Boy Boosa andd Bucw = Booos + 0.003320, ab the same depth = = 333.848m and
ontput 4. Note that By and By, waves almost overlay each other. (c). Same as in
(), exeept for ontput 10,



evolution of wave 13 becanse it is potentially loss sensitive to the change of o', This

will be shown to be the case,

4.1.2 Depth independence of the wave profile

1t would be desirable to show that for fixed o™, the asymptotic expansions (15) and
(4.6) are valid by showing that the same 3 is obtained for each = when the infinite

series (4.6) is solved. Unfortunately, there is no way to solve Chis infinite seric

that at Teast we ean approsimate 18 by

discussion in the previous section sugg

using the first bwo terms.

The fi tion to the whole expan

st Lwo Lerms are a good approxin

the associated truncation error is small

B+ BEY 0 B 2™+ U (1.8)
is true, Actually, the terms in ¢ are descending, Lo, B e BEENW o 158122, Bt
B 3 B,y 2 is true only if ¢ 3> g, as for long waves, When waves are extremely

short (g, a steep front or undular hore, ete) it is possible for B, 5% 10 be larger

than B2EYY, Phus the approximation is valid for all z only for waves which are

ntly long.

Assuming that (4.8) is true for onr waves so that the first two terms in (4.2) is

93



a good approximation to the full ion, we have

BN 4 Bh—qa=0, (4.9)

which gives solutions

it ST
TR = o T L] (4.10)

26

OF the two roots, only By (with the positive sign) is acceptable. By using T+ ¢ =

L/2 4 24+ -+, the rools are

o 2R
s BTt (1.11)
n 2PEN

R GTTR

(1.12)
Obvionsly, when M= 0, 13, goes Lo infinity, while By recovers the solution B = /¢
of (19). Thus we seleel, 15 given by

—¢+ VFFTU LS ;
B= T (1.13)
Exuation (4.13) includes the undetermined o, For real B, o must satisfy

wo | S b _ P

(V)¢ <
. -+2¢-.,N? for 7q . 0 (d.14)

throngh the entire depth. This is valid only if 7, has the same sign throughout, the
entire depth, which is gnaranteed since we are considering mode one waves (Note that,
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for higher mode waves, hoth 4 and ¢ would change sign). In onr case, gy < 0 50 we
take the upper case.

ariable for different lows, Fven

Condition (4.14) depends on il 2) which is

for the same flow, because of its time-space variation, one o™ which works for carly
outputs may not work for later outputs. Thercfore, it is desirable to flind a eritical

o that any ' < a1 ensures veal B, 0! i

a0 which is independent of (L 2

determined by

max E'9(z;al0) =0, (1.15)
thus the condition for a!? is
o' < alh (1.16)

Obviously, such a o' ensures the solvability of veal 2. Note that (4.15) and (4.14)

LI N¥(z) goes Lo 0 below some depth 2, wo will

arc ouly valid for non-zero N?

require that they hold in a region where N%(z) > & for some small & sinee Gk

hecomes infinite in general.  Althogh 52 remains finite for the case considered
& Bl T

here computational problems arise when N3(z) is too small.

Condition (4.16) may he oo strong for individual flows with small [ya(t; i, z)],

i.c., it may not be necessary Lo require o' < ol in order Lo obtain B, I some of

the examples given later, for convenience, o' is not restricled to this condition.



It shonld be also noted that not all o' < al are nsable. If o' goes Lo —oo,
the asymptotic expansion wonld be no longer valid sinee higher order terms would
become large. I is impossible to find a lower limit for o' becanse of the inherent,

safc Lo choose a value of o' which

arbitrariness of the expansion process. Thus, it

ies condition (4.16) and has small magnitude. Tests with different o' will he

given later in section 4.
Inorder to show that the approximate B obtained using (4.13) is approximately
independent of the valie of = used in (1.13), we seb " to ol which is —0.00774

for the smooth N}(z), and plot in fignre 4.3 B’s obtained at different depths (see

) lignre 4.9, figare 4.12, figure 4.15, figure 4.18 and figure 4.20, cte.) within the

stratificd upper layer, before and after the undular bore appears. The magnitude of
the discrepancy between s obtained using (1.13) at different depths depends on the
associated Lrineation error. When the truncation error goes Lo zero, these B's should

cems that even at the undular

converge to the ey B profile, and vice versa. It s

bore stage the truncation error is small, i.e. B2E" > B, E'. 1t can be seen that
B is roughly independent. of z, especially at the wave front. The discrepancy there
is due to the teuneation error. At the wave tail, the Bs from different depths are

different. This is either because the wave tail is over the bank edge (around z < 0)

where the depth is non-uniform and the analysis does not apply, or because waves of
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270m, 300m, 330m. at ontpnt 4. (b). Same as in (a) exeept ab ontput 10,
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other modes are present. Sinee the other modes propagate more slowly than the first

mode, the contamination at the tail has no effect on the evolution of the wave front.

Now we wonld like to summarize what. we did in the above. We first suggested
that for a fixed o' B calenlated at any depth using the first two terms of the

expansion may be regarded as an exact wave profile for a particular a sel or, as

an approximation Lo the wave profile at other depths. However, hecanse the mKdV

equation is only an approximate evolation equation for 3, it is not critical to have
an exact 3. Next, a condition was fonnd for o which eusures the solvability of real
Bs from (4.13). Finally, we showed that B is approximately depth independent for a
fixed o™ set.

The wave profile 3 is measured from the output of IGWsim by a C-code PERT.

After B3(15,.) is obtained at cach ontput time (i = s the output number), we chioose a

smooth B(lg, ) at some initial stage as an initial condition Biyiar(Z, ) and solve the

Then

time dependent KdV/mKdV equation (4.3) for the theoretical Buory(Liy).
a comparison is made between 8 and Byerys both of which have evolved from the
same initial Biuiiar.

The sketeh in figure 4.4 is a briel overview showing the procedures nsed and

their relations. C-codes BIG, KDV, PERT and COMP are integrated as a whole

thus form an analysis model which is referred to as IGWana (Internal Gravity Wave
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ameters from the

Kgeonnd |

Analysis) hereafter. 1GWana takes the domain and

Vsim and caleulates the vertical modes up to the second order in

startup file of 1G

ured al

¢ and the associated nonlinear/dispersive coellicients. 8 profiles are e

is chosen.

selocted depths from 1GWsim density field ontputs and an initial wa
Then, theoretical KAV/mKdV waves evolving from the initial wave are compute.

is made by COMP.

Finally, detailed compariso
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Figure 4.4: The sketch of IGWana model working flow.
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4.2 Resolution test

We first run the model for different space/time resolutions to see how sensitive the
model results are to the resolution. An effective resolution will he selected based on
these runs.

The resolution of the model can be written as (A, Az, dl). In onr runs, Ar =

L/1 is uniform and

A

Az = (I = h{r) ——
o '('))1+.‘§A,,A”

(1.17)

ble (recall Ay = 1.0). j is the index of vertical grid. This vertical courdinate

. Recall that the

transformation gives a higher resolution in the upper stratificd lay

model is based wpon the projection method deseribed in chapter 2. The projection
matrixis a [1(J=D)]x[1(J= )] matrix. Projecting a given flow field to a divergent-froe

vector field involves O(1.J2) operations, and this is the main part of the caleulation

at cach time step. Memory requirements are O(1.J) for e LU decomposition of the

block tridiagonal projection matrix. When [ and J are large it conld take too long to

rin the model for fixed di and 7', Note that doubling ./ will increase the calenlating
|

operation by a factor of four if dl is 1 and quadsnple memory requi
for the projection matrix. Thus the compntational expense is very sensitive to /.

Theoretically, the higher the resolution (i.c., the smaller Awx, Az and di), the hetter
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the mmmerical results, We wonld like to choose a resolution which is high cnongl for
anr problem, and at the sane time, does not take to long to finish a 7' = 16000s
van. Sume results for different resolutions are given helow in fignres 4.5-4.7. The
density stratilication used for these test runs is the stepwise N2(2) given by (2.38),
the sealed amplitude of the generated waves is about ¢ = 0.04 (corresponding to that

of the moderate forcing case) and the terminal background flow is @@ = 0.194 m/s.

It is found that the model is fairly insensitive to Az resolution when .J > 40,

copta small phase shifting (fignre 4.5). This is good news sinee we do not. have
to take a large J which would significantly increase the amount of caleulation. The
model i more sensitive to A resolution (figure 4.6), and with a low resolution the
model certainly can not captare most of the wave features. However, when Aw < 40m

nitial

(or 1 2 2000), this sensitivity decreases a great deal. It is also noted that the i

lests.  Some of the

waves al ontpnt 4 are slightly different for both Az and Aw
dilference at ontput 10 could be w result of this initial difference, although figure 4.5
() and figure 4.6 (a) suggest that, this effect is small. As for d, all runs had the same
time stop dl = 255 until output 4 so that the initial state for the Losts is exactly the

same (figure 7). The time step for the run with di = 8s actually varies around 8s

Decanse 8s is near the tme step restriction (2.35). The actual time steps for other

s are as indicated by the attached labels. As can be scen, although the model is
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subject to the variation of di. the results convergence quic

1 the limit df — 0.

Based on the above tests, a resolution corresponding to (1 =2

S = 0dl =

has been selected for all the following runs. The above fest runs suggest that at
this resolution the amplitudes of the waves in the undular bore are quite aceurate,
This implies that any differences in amplitude seen between the madel resnlts and

the KAV /mKdV solutions later on are due to the approximations made in e weakly

nonlincar theories and not to numerical dissipation, W

th this resolution, the model

results are near what, would he obtained when 1,7 — oo and di - 0.
Resolution tests were also done for larger waves with ¢ ~ 0.07 (corresponding

to the strong forcing case). Similar results were ol

wd batare not shown b

which indicate that the above concl

ion is still trne for waves with « ~ 0.07.
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Pigure 4.7: Comparison hetween model results for different dt while 1 is fixed to 1024
and J is fixed to 40. The stratification is the stepwise N2(z), and a'® = —0.005.
i = 0.833m/s,c0 = 2.508m/s. The compared waves are measured ab = = 340m.
Bach model run wses the same time step di = 255 until output 4. (a). The initial
don at ontput 4. (b). B's at ontput 10,
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4.3 Results and discussion

Now we are ready to compare the weakly nonlinear theory with the model reslis,
This will be done for three categories of tests. The first two are for different strati

fications and wave amplitndes. For the thind, two runs were done to test ratational

effects and Lo determine the validity of the theory in a rotating system. In the follow
ing B(t, ) represents the density perturbation wave measnred from 1GWain while
Butulty i) and Buugau(Ly ) denote the theoretical wave given by the KdY and mKdV
equations. Tn order to see how different the nonlinear theory is from the finear the

ory, linear waves evolving from the same i

jal conditions are also included in the

comparison and are represented by Bu(L, ).

The two stratifications NVZ(z) and N3(z) given in chapter 2 have heen sed for
detailed comparisons of the model and theoretical results. With NF(z), two walues of

qare considered (sce fignre 2.4). For each N?(z), the model is ini

alized with dilferent.

forcings, .. weak forcing, moderate forcing and strong foreing, for the

rpose of

testing the dependence of validity range of the theory on the largeness of the

The amplitudes of waves for the three forcings are approximately 7, 1w and 25 m,
respectively. The scaled amplitude for the forcings are therofore ¢ & 0.02,0.04 and

0.07. Finally, the model is run with rotation included and the resnlt is compared with
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Table 4.1z The Tist of runs, the associated parameters and coofficients. Notations
wf,mf,sf stand for weak forcing, moderate forcing and strong forcing, rospectively.
NIt means no run for that. case. For N2(z), the initial depression is specified for each
forcing, thus no need o wse a background flow.

=

the non-rotating case. Rotation makes long waves dispersive, so it is expected that

rotation will affeet the evolution of long waves. The importance of rotation should

b greatly reduced at the wave front after it gets sufliciently steep and develops an

les are involved. 1t is interes

undnlar bore, since then short length s ting to know il

onr non-rotating theory is applicable to a rotating flow at such a stage. Therefor

the theory xo compared with the rotating result.

Table 1.1 is the Tist of all runs and the ass I rs and e

The following are the results of comparisons for cach group of runs.




4.3.1

For this stratification, as mentioned in section 2.3, strong overturning at the bank cdge

made it difficult to generate a satisfactory initial depression which wonld develop into

an undular hore within the 16000s evolution time. Therefore, the model is initialized

with a smooth mode-one lincar wave using the first order perturhation. In tiis case

no background flow is needed and it is set 1o zero (These vuns were in fact the last
done, otherwise all model runs wonld have been done this way).

In this gronp of runs, extra experiments are done with the moderate foreing vase

for different, values of ™Y, The purposes of these runs are, first, to verily that the

sensitive to oM than the KAV result and henee hetter deseribes

mKdV result is les

the evolution of waves. Second, we want Lo see what will happen when o] is g

105

Therefore, o' is set to o1, al® — 0.02 and o

— 2.0, respeetively, and comparisons
0

are made al the three depths. Figure 4.8 shows £19(z) for the three o, Fignres 1.9-

A1, 412414 and 415417 show the approsimate depth independenee of 13 profiles

and the comparisons of the model results with the theoretical results at the depths
of 330m, 300 m and 270 m for the three different o' values,
It is scen in fignre 4.9 and 4.12 that /3 profiles measured at depths above 180 m

quite depth independent, the small diserepency is only duc to the truneation
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Figure 4.9: B's measured
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B'sal z = 120m to = = 330m with an interval of 30m and at ontput 2. ().
as in (a) except at ontput 10.
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e Torcing. o', it,co and A are the same as for Figure 4.9. (a). Original
30m. (b). Comparison of By Bidy and Buuga

and mode
and reconstructed initial wave at z =
with 13 at 3300 and at output 10.

12



a5
Tooun, Tram Taonn T T i

3 Y
4 W 1
A
@ s it 1
-0
-4
Yooon, o o T T

s Asin 10 (a). bt for (a). = =270m. (b). z = 300m.




W o0 oy s ouo

"
Vi 2o 3000 Teoon, o0 0000
»

Figure 1.1z
forcing. o'
Bsatz
as in (a) o

red at different depths for the run with N3(z) and moderate
u = 0.0m/s, o = 0.965m/s and A = —4.884 x 1075, (a).
120m Lo = = 330m with an interval of 30m and at output 2. (b). Same
cept at output 10,
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Figure 4.15: Bs measured at different depths for the run with N2(z) and moderate
forcing. (a). 120m Lo = = 330m with an interval of 30 and at output 2.
(b). Same as in (‘.) excepl at output 10,
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error. But at lower depths (120m and 150m) B’s are different. This is probably
hecanse of computational error, since at lower depths N?(z) is extremely small (see
fignre 2.4). Any small computational error like those involved in interpolation, ete.,
which is quite likely to ocenr and conld be comparable to N*(z) itsell, conld cause
unrealistic perturbations, Thus B measured at a depth in the lower layer conld be
quite different from what, it should be. Therefore, it is suggested that Bs should be
obtained only at depths within the significantly stratificd upper layer Thus, only Bs
al 270m, 300 m and 330m are used for comparisons.

I'he amplitude of the B profile changes with o' as anticipated. When o'
changes from —(0.00867 Lo —2.00867, 3 changes from 14 to 2.5, decreasing hy about
afactor of 5 (lignre 4.9, ligure 4.12 and figure 4.15). 1t is found in these runs that,
compared with the KdV results, the mKdV results are better in that they are more
stable to the changing oY, and match the model better in an overall sense, while the

KdV results vary with o', showing uncertainty to the extraction of B.



For a'® = —0.00867 and —0.02867, as can be seen, the main features of the

ol

model results are reproduced by the mRdV theory. For instance, the steepr

the wave front, the mumber of signilicant ripples evolving at the rear of the front, the

phase and the amplitude of the first fow

ppl

ndl the nonlinear propagation specd,
ete, all agree well with the model, except, that, the theoretical wave has a longer wave

length resulting in a phase shifl. in the tail of the hore. 1t is also noted that the

relative difference in amplitude is large for tion 1.2

maller ripples. As noted i s

this is believed to be due to the approximations made in deriving the KdV and mKdv

equations and not. due to mimerical dissipation. The KdV theory, though not as good

as the mKdV theory in that it is much more sensitive to o', is reasonably good in

producing results in qualitative agreement, with the model for o' = 000867 and

—0.02867. For o' = —2.00867 it is scen from figure 4,16 and fignre LT that the

KdV theory completely fails. Although the mKdV theory seems still Lo hold, the

relative difference of the amplitude, the phase and the steepness of the front from the

model increases as o™ decreases. This indicates the heginning of e failure of the

asymptotic theory duc to the fact that with a large "] the two terms are no longer

a good approximation to the system. 1t is then coneluded that, the mKdV theory is

good for o' close to o, Apart from this eriterion it does not matter which o' is
chosen.
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270m, 300m and 330m are compared with the

For each ol B8 measured a

theory. Exeept for some minor differences, the agreement, is equally good for each
depthi. This is what we expeet, since the mKdV theory equally approximates the
evolution of a wave obtained at any depth, as diseussed in section 4.1.1. Thercfore,
there seems 1o need Lo do the comparison at several depths, one depth is enongh.

According to the above conclusion regarding the selections of a1 and depth,

in the lollowing comparison, we will stick Lo one a'® value and one depth only, i.c.

and = = 330m. Bs measured at 270m and 300m are only used together

o show the depth independence of B,

1 for the weak forcing case, while

Fignres 418 and .19 show the compa

Obviously, both KdV and

rong forcing

figure 120 and fignre 4.21 are for the

mRdV results are in much hetter agreement, with the model for the weak forcing case

than for the moderate forcing case, though the mKdV result is even better. This
is not surprising, since the asymptotic expansion used is more accurate for small
waves. For waves with small amplitude the second order nonlinearity is no longer

s aceurate enough Lo describe such waves,

very important, thus the KdV theory i

the strong forcing, the mKdV matches the model result reasonably well

anly at the front and the first ripple. At the tail the mKdV waves go out of phase
and have considerably larger amplitude. The KdV solution significantly lags the
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igure . 19: Comparison hetween the model and the analysis for the run with N3(z)
and weak foreing. o', @, o and A are the same as for Figure 4.18. (a). Original and
reconstructed initial wave at = = 330m. (h). Compatison of Biu, Briy and Buga

with 3 at = = 330m and at output 10,
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Figure 4.20:
forcing. a'®

10.

= —0.00867,7 = 0.0m/s, &g =
B’s al z = 270im,300mm,330m and at output 2. (b). Same as in (a) except at output,

o

1200 Tauon

B's measured at dilferent dey

pths for the run with NZ(z
0.965m/s and A = =16

() and strong
72 1070, (a).
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Fignre 4.21: Comparison between the model and the analysis for the run with N3(z)
and strong forcing. a'®,i,cy and A are the sunc as for Figure 4.20. (a). Original
and reconstrneted initial wave at z = 330m. (b). Comparison of B, By and By

with /3 at 330m and at output 10,
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model result. The trailing waves are again much larger than those in the model. As
mentioned hefore, the differences in amplitudes of the trailing waves are not hecanse of

numerical error (a rosolution test was done for waves of this amplitude) but e

s
of the approximations made in the theory, This failure of the KAV and mKdV
equations are due to the invalidity of the asymptotic theory since with large amplitude
neglecting higher order terms is not appropriate. The theory would be improved hy

adding additional terms to it. The failure could also he due to the genevation of

a mode-twe wave due to nonlinear interactions. This phenomenon does not appear
to be significant in this case becanse the small variations of 1 with depth do not

correspond with the lincar mode-two vertical mode funetion.

ave propagation speeds and wavelengths are prosented in figire 4.22:4.21,
The compared quantities are plotted vs. the outpnt mmber, ereore the propaga-

tion speeds can be regarded as averaged over an output interval of 1600s. Figure 4.22

() shows the wavelengths of the first two ripples in the model result, while figure 4,22

(b) is the speed of the model wave front. The wavelength is measured as the dis

between two successive troughs, and the speed of the front is measured as tl

age speed at which the first trough has traveled during an ontput interval, Then e
difference in wavelength between the theory and the model (KAV/mKdV wavelength
minns model wavelength) is plotted in figire 423 for the morderate and strong fore-
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Pigure 4.22: Model rosult for the run with N2(z). (). Model wavelength of the first
Lo ripples for ench foreing, (h). Model propagation s.,«-d of the wave front, for each
forcing, Note that linear propagation speed is =
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Fignre 4.21: ‘e propagation speed difference (KAV /mKdV speed - model speed) for
the runs with N2(2). (a). For the KAV solutions. (h). For the mKdV solutions.
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ings. The dillc in speed (KdV/mRdAV speed minus model speed) is shown in

figure 4.24. Note that the « resolution is A &2 10 m. Therefore, the measuring error
involved is 40m for wavelength and 0.025m/s for propagation speed.

The model wavelengths vary between 750m and L00m.  They decrease as

the front amplitude increases and inerease with time, The amplitudes of the ripples

increase with both the front amplitnde and time. The decreasing wavelength with

the front amplitude i result of strong nonfinearity. The

ger the front, the

larger the steepening, and the shorter the dispersed waves. AL the same time, a larger

front. contains more cnergy thus dispersing lager ripples. The growing amplitudes

of the ripples with time indicates that these ripples are not solitons

this stage of
their evolution.

The theory predicts the same wavelength variation trend, bul the wavelength
is systematically longer than that of the model wave. In partienlar, the mKdV waves
are about 1 — 3 Ax longer while the KdV waves are 2 — 5Ar longer. The mKdV
waves are in hetter agreement, with Uie model waves,

The propag;

tion speed of the model front, is rather constant, for cach forcing o

(only a slight increase with time in the strong forcing case), bt of course inercases

with frontal amplitude. The nonlinear propagation specd s about. 25— 3%, 7 — 10%

and 22 — 25% larger than the linear speed in the weak, moderate and strong foreing
B it ) s
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s are in very good agreement

s, respectively. The theoretical propagation sy

hin the meas

with the model (wi ring error), except for the KAV wave in the strong

foreing, casc,

It is now eloar that for waves with up to moderate amplitnde, the difforence
i wavelengtl, rather than propagation specd, between the mKdV and the model

is responsibie for the phase shift at the bore tail.  Also, the theory is not quite

appropriate for waves with a scaled amplitude larger than ¢ = 0.07.
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4.3.2 Runs with smooth N7(z)

For the smooth N2(2) (¢ = 0.07), a2 = ~0.00771, The associs

in fignre 4,25, The significantly stratified laye

0 ——r
002 - E
g |
(-1yo¥
-0.06 - smooth (¢ = 0. (h) —_ %
stopwise (¢ = 10.0)
008 B L L A L L
0 50 100 150 200 U0 B0 60
Z (m)
Figure 4.25: E'9(=) with o' = al® for (a). the smooth N3(2) (slope g = 0.07). ().
v |

the stepwise N2(z) (slope ¢ = 10.0).

In this group of comparisons we take 0™ = o, “Vhe measuring depths are the

same, i

. 270w, 300 m and 330w within the stratificd fayer, It the compari

are
anly made at 330m. The sullicioncy of choosing only one o' and ane deptl has heen

justified in the previons section. The foreings are the same as hefore, Vi results

are presented in figures 4.26-4.31. Fignres 4.32-4.34 give detailed comparisons of the
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wavelength and speed.

1t s found that, most of the abscrvations and comments made for the rns with
N3(z) hold for these runs, too. For instance, for the moderate forcing, the steepness of
Uhes Tront, the number of significant ripples, the phase and amplitudes of these ripples

and propagation speed, ete,, are predicted quite well by the theory, The mKdV result

the KdV result. The better agreement between the KdV and

is again hetter

the model in fignre 4.29 is coincidental. The KdV solution is very sensitive to o'

while the sensitivity of the mKdV is much less. The value of o' used here happens

Lo make the KdV solution very accurate.

Phe disagreoment, is again in the phase shift and larger amplitde of the small
waves al the bore tail. For the weak forcing both the mKdV and K4V waves match
the model very well. The mKdV and KdV waves are almost identical, indicating the
umimportance of the second-order nonlinearity. For the strong forcing, even mKdV.

theory begins to fail. Tt is noted in the strong forcing case that the KdV/inKdV bore

5 Lill up. This is because the initial depression was quite narrow so that the tail

of the undular hore overlaps with the rising isopyenals at the back of the depression.

Investigating the detailed comparison figures 4.32-4.34 we find the same varia-

tion of the model wavelength, i.e. decre

sing with forcing and increasing with time,
within a range of 1050 — 1370 m. One difference is that since the sccond-order non-
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ity A is very small for NZ(z), the mKdV and KdV waves are hoth | — 3Ax

line

shorter than the model wave, As for the propagation speed, the same observation

has been found. e.g. rather constant speeds of the model wave front. for cach forcing,

nd

peed dilferences between the theor

the speed increasing with the forcing. The

L3

the model (except the KAV wave for the strong forcing) are within the mea;

shil

error. 1t is inferred that, the observed phase shifl at smaller ripples also i a result

- speed s

of the diserepency in wavelength. The ratio of nonlinear specd to line:

io is about 20% for the moderate foreing, and 30 - 32%

larger. For instance, the

L the nonlinear f

for the strong forcing. This indicates tha t for Lhe smooth NVji(z)

are of the same size,

in hoth ¢

is stronger than for N2(2), since the wave
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Figare 1.26: 13 measured at different depths for the run with smooth N3(z) and weak
forcing. o™ = —0.00774.1 = 0.190m/s, o = 2.49995m/s and A = —2.982 x 1075,
(a). Bs at z = 270m.300m 3300 and at output 4. (b). Same as in (a) except at

output 10,
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Figure 4.27: Comparison between the model and the analysis for the run with smooth
NZ(z) and weak forcing, o, i, co and A are the same as for Figure .26, (a). Original
and reconstructed initial wave at z = 330 (h). Comparison of Ba, Bus attd B
with B al z = 330m and at output 10,
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Figre .28 s measured at different depths for the run with smooth N2(z)
and moderate forcing. o' = —~0.00774,@ = 0.194m/s, co = 2.49995m/s and
A= 2082 x 1075 (a). B's at = = 270m,300m,330m and at output 4. (b).
Same as in (a) excopt at output 10,
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Figure 4.29: Comparison between the model and the analysis for the run with smonth
N(z) and moderate forcing. o, , ¢y and A are the same as for Fignre 428, (1),

Original and reconstructed initial wave at z = 330m. (b). Comparison of B, B
and Bugay with B al z = 330m and al, output 10.
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270m,300m, 330m and at ontput 4. (b). Same as in (a) except
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Figure 4.31: Comparison between the model and the analysi
Ni(z) and strong forcing. o' it,cy and A are the same
Original and reconstructed initial wave at = = 330m. (h). Compar
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Figure ¢

2: Model resull for the run with smooth N2(z). (a). Model wavelengths of

the first two ripples for cach forcing. (b). Model propagation speed of the wave front

for vach foreing, Note that lincar propagation specd

s co = 2.5m/s.
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Figure 4.33: The wavelength difference (KAV/mKdV wavelongth - model wavelength)
for the runs with smooth N2(z). (x). Wavelength dillerence in the modorate forcing
case. (b). Wavelength difference in the strong forcing casc.
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4.3.3 With a stepwise N{(z)

E'9(2) for this stepwise N3(:

shown together with that of the smooth N

figure 4.25. With a large 4, N2(=) approxin

ates a discontinuons stepwise funets

Therefore, expansion (1.2) is only valid above =, where NF(2) is non-zero. For conve:

" 2, .
nience, the $N212.62 term (heing zero away from =, w

Ni(z) is constant) is removed

from £'9(z).

One of the purposes of considering this stratification is Lo see i the flow ¢

pricnces some abrupt change when NV (z) hecomes discontinnons, i.e., when ¢ = oo,

The model results show that there is no s

i change in the low pattem for the

stepwise N2(2). The model was also run with innons stepwise N2(z). There

is no distinguishable difference in the flow pattern in comparison with the present
N{(z). The flow is rather insensitive Lo the slope parameter, at least for the range of
q > 0.07, as can be seen in figure 4.37.

Since the results are quite similar to those of the smooth Nf(z) case we present.

only the result for the moderate forcing in figures 4.35- 4.36.
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Figure .35 1 measured at different depths for the run with stepwise N2(z)
and moderate forcing. o' = —0.00796,@ = 0.194m/s, cg = 2.50789m/s and
A = =907 x 107", (a). B at = = 270m,300m,330m and at output 4. (b).
Same as in (a) except. at outpnt 10,
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Figure 1.36: Comparison hetween the model and the analysis for the v with stepwise
N3(2) and moderate forcing, o' u, eq and A are the same as for Figure .35,
Original and reconstructed initial wave al z = 330m. (). Comparison of By, B
and Buggo with B ab z = 330m and at output, 10.

7



D010t 0,07

™0Zio B 6%
a0
000 000 T0on o000 52000
«

Fignre 4.37:
the other wi




4.3.4 Effects of rotation

It is of interest to e; mlinear theories, which

amine the validity of applying weakly

do not take rotation into account, to oceanic sit where rotational effects are

present. Rotation affects the evolution of waves longer than or comparahle to the
internal Rosshy radius, but does not alfect short waves. Howghton [1969] investigated
rotational effects on the formation of hydraulic jumps using an approximation o a
13 layer model. His resnlt snggests that hydranlic jumps would be less intense and

Lake longer to form, owing to rotation.

In order to study rotational effects we initialized the model with a depres-

having a frontal length scale of 15km. The Coriolis parameter is take

I =107,

, and the non-rotating lincar propagation speed of mode-one w

o = 0.965m/s as before. Thus, the

gth of the front is larger than the Rosshy

radins B = co/f = 9.65km and rotational effects will he important. To cnsure an
undular bore appearing within the 16000 evalution time, we have sperificd a large
initial amplitude, corresponding Lo the strong forcing case, for a stronger nonlinear

steepening.

The comparison of the model resnlts for rotating and non-rotating cases is

shown in fignre 4.38, It is seen that the amplitude of the front in the rot
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the front is

decrenses during propagation, and the wave tail tilts up. AL later ontpu

nol as steep as in the non-rotating case, and the nndular bore is less intense. This can

ined using a linear theory. Under rotation, the dispersion relation becomes

e expl

A, (1.18)

where w is the frequeney. k is the wave nimber. Thus, the linear gronp velocity is

siven by

1
e (4.19)

o =co(l + 575

Therefore, Tong waves are dispersive and very short wave components are non-dispersive

and are wnallected by rotation. Since long components are left belind. the amplitude

of the front. diminishes. henee the nonlinear steepening is greatly reduced. Thus, the

fuitial effect of rotation is to reduce the amplitnde of the front, resulting in a delayed

ol the indular hore, The undular bore is also smaller in amplitude. Onee

appearar

the front gets sulliciently steep its evolution is no longer significantly modified by

rotational ellects

The rising tail is due to the trailing jong waves (sce fignre 4.38).

Our theory is derived for non-rotating systems. However, after long wave com-

ponents have heen dispersed and the wave front has hecome sufficiently short, it is

possible that the theory may he valid at the wave [ront where the rotation effect is

uo longer significant. Figure 139 shows the rosult of applying the theory to the wave
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front nuder the rotation. The agreement between the mRKdV the

and the model

irly good for the front and the fir

ipple. bt ot for others, The disagrecnent
comes partly from the fact that the model front s still dispersing ont. longer com

ponents and its amplitude is diminishing. This indica

( the per

ence, although

not. large, of the rotation effect. Betler agreement o

s e expected i the compar

ison starts at some later ontput. Another reason for the dis

agrecment may he Chat

the theory itsell hegins to fail due to the large amplitude of this strong, forcin

Fignre .40 shows a case with moderate foreing, the comparison is hetter,
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4.4 Discussion

Along with the comparisons, we have already made some comments and diser

. T this sion will he given,

cetion, a more general dis

some of the result:

The observed evolution of the front into an nndular bore in both the model

results and in the weakly noulincar theories is a consequence of nonlinear steepening

followed by the dispersion of short waves. When the front is sufliciently steep, short

waves are generated which, having a smaller propagation speed than that, of the

wave front, are loft behind.  Any given wave grows in wavelongth and amplitude

e wawves have larger

with time and propagates at almost a constant speed. §

propagation speeds, the waves travel in a group with amplitude ranked in order.

, smaller waves ively appear at the bore tail becanse of dispersion,

ran e viewed

ilting in the continual lengthening of the undular bore, This proce

as waves embedded in a wave packet whose envelope is continually lengthening.

In onr weakly nonlinear cases, the linearized KAV and mKdV equations give

the same dispersion relation with

O = et+skt (4.20)

C o= c+dak? (1.21)

 and group velocitios, respectively, and g and s

where C, G are lincar d



are as in the mKdV equation. Sinces < 0 for the cases studied here, the group velocity

‘ is less than the phase velocity €. (4.20) and (4.21) apply to the undular bore tail
where small oscillations are nearly lincar. The front of the wave envelope moves with

the bore front, while the trailing envelope edge moves at speed € which is slower than

the phase speed ¢ of the waves. Thus, in a reference frame moving with the front,

one wonld see energy leaking at the bore ail, i.c., smaller waves successively appear

and propagate in the negative direction (Fornberg & Whitham [1978] discussed the
phenomena using a modulation approach.). By steepening the wave front nonlinearity

transfors energy from long wave to short wave This energy

or results in the continuous growth of the dispersed waves. The growing waves
are then subject to the nonlinearity which results in the larger waves travelling faster,

henee the largest. leads the packet and the distance between two successive waves (the

wavelength) inereases with time.

Phese waves are nol solitons at, their present stage of evolution. The question
i whether they will develop into solitons. Tn order Lo answer this, the mKdV equa-
tion was solved for a long evolution time of 100000s starting from a very localized
initial depression. The result is shown in fignre 22 When the first crest, which is

continnously growing, reaches the undisturbed height, the first depression appears to

ion

separate from the rest of the waves, forming a soliton. Eventually, the depre:
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will evolve into a finite number of solitons followed by n This is known

to happen for a finite depression of sufliciently small volume

wduer el al. [1967]).

It is clear now that the re

is that the

11 for solitons not appearing in our results

time needed for solitons to evolve from our initial conditions is very large. W

not afford such long runs with the primiti

Ve ecquation madel,

The derived mKdV theory descrihes the observed evolution quite well, at lea

for waves with a scaled amplitude up to ¢ = 0.04. There is good quant

ive agre

ment between the mKdV theory and the model. The mKdV equation is mueh better

than the KAV equation which is anly good for waves up to « = 0.02 and is »

isitive
to ', The agreement hetween the KdV and the model for waves with « = 0.02
indicates that the second order nonlinearity is not. crucial for small waves.

When ¢ = 0.07, the KdV equation completely fails, while the mKdV is still

good for predicting the wave front and the first ripple. Tlis s due to the fact, that for
large waves, higher order Lerms in the asymplotic expansion become more important.
Adding extra terms to onr theory should improve the comparison.

The disagreement hetween the mKdV and the model is most apparen

trailing edge of the nndular hore where the mKdV waves go ont. of phase with the

model waves and have larger amplitudes. This is most evident when ¢ = 0.07, The

detailed comparison suggests that Uhis is not, due to Uhes difference in propagation spec
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than the measuring ervor, It seems that the difference in wavelength is

maost responsible for the discropency. The wavelength difference from the model may
be a result of inappropriate nonlinear-dispersive halancing, leading to difercuces in

the group velocities of the theoretical and model way 1 cans o Cheoretical

wave Lo start dispersing longer/shorter waves ab an carlier/later time than Ue model,

As for the larger amplitudes al the hore Lail, this could also be due to the nonlinear-

dispersive balancing.

Koop & Butler [1981] experimentally tested the existing theories of linite ampli-

tude internal solitary waves in terms of wave shape and amplitude-wavelongth scale

tem. “Their resnlts show that the KAV equation prediets

relationship in a two {luid sy:

the right shape and amplitud gl seale relati up to = 0083, white
the mKdV extends the range to ¢ = 0.13 (Their amplituce ¢ is actually sealed hy

the stratified depth £, which is now 1

sformed to that sealed by the total depth

11.). Segur & Hammack [1982] also investigated the KdV theory tirongh experiments

in a two fluid system, with foens on the solitary solution of the theory, Their find-

ing is again that the KdV predicts the right shape and amplitude-wavelength seale
relationship up to ¢ = 0.02,
These investigations were conducted only for the steady solitary waves and in

terms of the shape and amplitude-wavelength relation, while our comparisons are




for time dependent solutions of the mKdV theory. The question is whether the
confirmed validity range of the theory for the steady solution is also applicable to the
time evolution.

Our wave [3(L,x), with a typical initial front length of over 10km and wave-
length in the undular hore about 1 km, confined in a vertical extent of 360m, cer-
tainly falls within the categary of the shallow water confignration, within which the
mRAV/KdV theory is derived. The amplitudes considered are ¢ & 0.02,0.04 and
0.07. The confirmed KdV/mKdV validity range is 0.02/0.04, but the actual range is

expected Lo extend to somewhere hetween (0.02,0.04)/ (0.04,0.07). Obviously, our

KdV validity range is almost. thy

me as those confirmed by the above anthors, while

the mKdV validity range appears Lo be smaller than that given by Koop & Butler
[1981].

When rotation i

aken into account, the ecarlier evolution of the wave front

is significantly allected hecanse long wave dispersion reduces the amplitude of the

front. The front

¢ smoother and dispersion begins later than in nonrotating cases.
Rotational effects will hecome unimportant at the later evolution stage of the front
alter it hecomes sufliciently steep. Therefore, onr non-rotating theory can be applied
to the front during its later evolution, and the result is in good agreement, with the
model.
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Chapter 5

Summary and Conclusion

The purpose of this work is Lo compare the evolution of an

sopyenal depros
sion obtained from a fully nonlincar numerical model with the prediction of weakly

nonlinear theory. The physi

I situation in mind is vertically trapped 1GW packets

ocenrring in the occan.  Idealized ocean conditions are sidered,

L @ constant

depth, an inviscid, incompressible Boussinesq luid, vertically uniform mean flows

and simple stratifications. These

nable us Lo concentrate on onr goal.
In such an environment, the evolution of IGWs from the state of rest is simn-

lated by Lamb’s fully nonlincar numerical model. Undular bores are obtained, which

are sin

ar to those observed in the ocean by many anthors. For the same govern-
ing equations, by the method of asymptotic expansion, a mKdV theory s derived
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following Lee & Beardsley [1974].

In the weakly nonlinear theory, the temporal and horizontal variation of the
wave is deseribed by a wave profile B(t, ). B(t,x) is determined by a set of parame-
ters o4 which are the multipliers appearing in vertical mode functions. In this thesis
we have chosen to estimate B(L,2) from the first two terms (first and second order in
amplitude) of the asymplotic expansion (4.2) for the density perturbation. Thus B

s with o' and with depth, since the coefficients of B and B* in (4.13) depend

vari

on depth. The KdV and mKdV equations arc approximate evolution equations for

this approximate wave profile 8. The evolution of the wave predicted by the KdV

equation is quite iive 10 o' since B depends on o' and the nonlincar term

depends on B, The mKdV equation on the other hand is much less dependent on
at, The variation of the mKdV equation with changes i ! partially compensates
for the changes in B. Because of this the evolution predicted hy the mKdV equation

is much less so

sitive to o', Ilence, the mKdV equation is more accurate than the
KdV equation.

T previous rescarch involving comparisons of IGW evolution (e.g., Lee & Beard-
sley [1974) . Lin ef al. [1985), etc.), the second-order-acenrate mKdV equation has

been used, but the compared way e usually only first-order-accurate in ¢, i.e., Bis

obtained from yy = B¢, The crror involved could be large since B approximated from
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Nla = B could be much less accurate than that obtained by using gy = 13-+ 32 1219,

In this work, the extracted wave B(L i) used for the comparisons is second-

order aceurate in ¢, To ensure such a wave, a sen

nfinite

nge of o™ s found,

with a critical vale a1 4

an upper houid. 1t has been shown that any o'

whi

not too large and around o2 can be selocted. 1t

is diflicult to find a

lower hound
for a'®.

Comparisous are made between the model results and the mKAV/KAV theo
retical wave patterns by specilying a common initial state. The main results of the

comparisons ar:

i. The theory reproduces the nonlinear evolution of IGWs from an in

Lial state, with

most of the features in good quantitative agreement with the model resulls, .., the

cepness of the front, the number of significant ripples in the hore, the phase and
amplitude of the first few ripples and the nonlinear propagation speed, ole,

i, The KdV equation adequately describes the evoltion of a wave for ¢ up Lo about
0.02.

iii. The mKdV equation significantly improves on the KdV cquation, ospecially for
large waves. The validity range of the mKdV equation can be extended up to some-
where with ¢ between 0.04 ~ 0,07,

iv. The theoretical waves can have louger or shorter wavelengths than the model
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waves, This accounts for the waves heing ont of phase at. the tail of the undular bore
in comparisons. Another problem is larger theoretical amplitudes at the bore tail.

ive halancing of the theory.

Both could he a result of inappropriate

+ A localized depression of small size will develop into a finite mmber of solitons

Tollowed by an oscillating wave Lrain after a long time evolution.

ntin the carly stage of the wave evolution becanse long wave

vi. Rotation is impo

the size of the wave front. Al later stages when the front, is steep,

dispersion redue
Uhiis effect. on the front disappears. Long waves trail the front.
vii. The mKdV equation is applicable in the rolating case near the wave front after

ntly steep, at least. for the time scale considered here (after a

the wave front. is sull

very long time, more long waves will disperse out and this will rin the agreement).

Wihen a hyperbolie stratification approaches a stepwise one, there is no sudden
change in flow patters.

Apparently, in order to further improve the mKdV theory for larger waves,
higher order terms should be included in the theory. Tn the present study, the terms

which are most needed have not heen identified.
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