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B ’ " - Abstraet - L

. - ) : o

The Superoperator formalism of non-equlibrium, Theriio' Field Dynamics is

extended to consider a system of electronu in contact -u.h a thermal reservoir in a Ilomo-

: , geneous crossed elecmc and maguetic field. eruc\llsr auennvn is paid to the mle ol‘

~
. gauge invariance. A bnef overyiew of the dévelopment of a nun-eqmllbnnm ﬁmu time,

umpmtun dependent field theory is included, as well as an onv.lm of the copstrll_cnon
of che ¢ formalism of ilibrium thermo fleld dynamics. The relation- . a!

ship: between the two point elcctron Gmns functiofs and the probability dmnhuuon

& function ing-in the i-classical B " equamn is blish .; %

As an |Ilusln low 'the transport coemuenu are found from the Bﬂlmnnnn )

equation. the case“of the Chamber s solution for the elecmcal conducuvny is cmmdered
The position dependence of the conductivity tensor in the presence of a domain wall is

evaligued gumerically, and the tiends are verified analytically.

: - Future extensions oPthe present work are discussed.
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¢ b Chapter I: Introduction *

B . Quantum field theory has evolved to become more suitable to deal with problems in

solid staté physics, in addition to those in the physics of elementary particles, for which’

it ‘was originally developed. The development of the ‘most to many-bod

ly
s & . . ° ’
P .

% theory is the use of a quantum space whose states are defined by the action of c’reMiu'n

sad adnibiistion operstond on ‘s vacoumstate.. The theory can then be discussed in
) y /" .
" terms of physicalor “infoming™ fields which correspond to the quasiparicles or physical

/
‘.‘gxfan}a that are conpécted to the onable phennmena of solid state physics, such as

- " 7 phonons and mag/nons The interaction between mhm quanta and macroséopic ob,em .

such as

that arises in body theory ca‘n be discussed in terms of a
Uself-consistent” potential that represents the object. This is whefe many quantum
effects are/manifest. "At zero temperature, quantum field theory gives exact sqlutions for

N~
Lheae s;mx of many-body problems.. The impdrtance of field theory in solid state physics
¢ hna/mcreascr} wnh its new develnpments zha«. extend n, to the treatment rf finite tem-

: : pgmu and non-equilibrium cffects.

The semi-classical approach to transport theory is concerned ‘with specifying the

distribution function of the particles. This is Fepresented by the function f y(x,!),
which represents the probability of a particle being in momentum state k, at position X, e,

i " at time {. The Boltzmann equation is a self-consistent equation for the clagsical single
\




3  particle distribution function. It describes the balance between the influcnce of an

uceleraun‘ external field, and the thermal diffusiop and unu.enn[ The effect of <xter-
nal Gelds s present through perturbations of the distribution ﬁeuon (Callaway, 1076;
Lliman, 1979), and bas been thoroughly studied for lngnetic fields (see for example,
. Bailyn, 1962; Stinchcombe, 1981, for bomogencous fields, or Moliner and Simons, 1957;
M.n:év. 1962; and Berger, 1084 for inbomogeneous fields), and electric fields (Sarker et

, "R
al, 1986). The full expression with electric and maguetic fields in the relaxation time

approximation is . e L5
-

» % g %,
- 0, [% ~ [E+XBl'wif « = 1/ @~/ /7 o
where / k denotes the equilibrium dnsmbuuon with no penurbmg external electric and

magnem ﬁelds at tempernture, T, and 7 denotes the relaxmon tine, ‘“’“‘& from inter-

particle collsions. - = .

The transport coefficients have been obtained by solving the Boltzmann equation,

wd their calculation forms the main link between the statistical mechagics and the vari-

wous quantum field theoretical treatments of transport theory. \
\

Kubo Formalism: Zero and Finite Temperature * N

An;othn approach to transport more deeply rooted in quantum mechanics is the |
so-called K“E,D fn::muli;: or linear respdnse theory for é;n}-hody systems (K.ubo, 1957;
-Kadanoff and Baym, 1962), which r:laus l.nn_sport properties w’corr:lation fubctions.
It is assumed that the response of a s’y‘stem is linearly proportional to the applied field.

The magnitfde of the response providés a measure of the corresponding transport

_coefficient. The Kubo formula was first derived for electric fields, wkare the inix}ed




. Yy g o
current ‘is proportional to the applied electric ﬁeld. It iu‘fbnld that the total current i

. was nude up of two terms, the ﬁBl proportional to_the ﬂeld nd the second, to ll:e

expectation nlne of the local eumm. nperalor vh:ch arises from v.h munchon belveen

the ﬁeld «and the sysum particles. This :xpe:uuon value is in fact d.ncv.ly related to

the eleetric feld by a time comelation fuaction called the Kubo lnmull 72 5" s
2 .

f< 1.(1) :, (0)'> dl + 76., u.n

The brackets represent the average of the expechuon value of the opem.nn :onlamed

over the cquifbrium sasembie. The i and j components of the-eurrent operatnr/nre lhe

denotcd by j;(0), at time l=o and jj Q}nn a Imr ume, l and ng_représents Lhc
equlllbn enslty of pnmclu ul mass'm .
)

= At zero temperature, the corrélation function iy just an expectation value with -

respect to the grotind state of the sys{em. It can be computed using such standard tech- .

niques of quantum feld theory as perturbatiSrTheory~mmd Feyaman diagram techaigues,

~ : .
through Wick's theorem, for time-ordered Green's functioss (Bogoliubov and Shirkov,
N D -

1980)., . . - ¥

Perturbation theory is established frpm the fact that most in\lemtin;,syslzn;: con-

i ;

sist of particles whose exact state is not precisely known. Working ia the interaction

$ rep{csznla(ioﬂ, the system is divided 4into two parts; an exactly solvable unperturbed
.

part, that is, the one whose eigenfunctions aid eigenenergies are known, and a part con-

taining the effect of the in
tem. o ¥ ' -

Wick’s thebrem is a nathematical construction which.allows the replacement of the

d as small perturbations of the firgt subsys-"
S :

in multi-opy jectation values by creation and amnibilation dperators.

R

~




The commutation relations between such operators must be known, so that by a series _
of commutations, the annihilaticn operators can be gathered to the right of the expegta-
RBI s

tion value, thereby annibilating the vacuum,qleaving simplér terms that arise from the - >

commutations. For example, the pairing of two creation and annihilagjon operators to

be used in the time-ordered ground stat€’expectation value is .z .

= v
<0| T [a(t) an(t] 10>

The cammuuucn relations between the l'o define the way a product of operators is

. contracted. The end resnll of thls sort of pairing is a sum of all posslble paired pro-
ducts, oran expnnslon in terms of unperl.urbed smgle»parutle Green's functions.

A tnmbinatinn of th:':'é ‘kc niques provides a yvell-deﬁned calculation procedure of i
»= °  thecorrelation function, at zero tohpertture, that arises from the Kubo formalism in.

relation to a particular transport coefficiént. %

- Finite temperature introduces 3 mean energy and a thermal average of observables.

l * .
The correlation function in equation (1.1) becomes a trace over a thermal distribution.
The solution can be found by the imaginary time technique of Matsubura (Matsubara,
1955). The complication of the thermal efect comes from the fact that the perturbing

- " part of the Haniltonian will appedr twice; once in the time exponential factor, e £#, ag

, ~—in the 6o Temperature situation, and again in the dénsity operator ¢ PH . This compli-

cates the problem a great deal, as the second term must be expanded perturbatively.
Because both terms are arguments of an exponential, the problem is resolved if the two

could be combined, so the Matsubara method treats § and ! as the real and imaginary
o 1

v  :ports of a complex temperature. The Matsubdra Gheen’s functions, then, contain an




imaginary time, 7.

" “The main problem with the Matsubara formalism is thet once an imaginary time
solution is achieved, an apalytic contination to the real time is required. The continua-
tion tends to be ‘nnwieldy,qand in the actual analysig of transport properties, approxima-
tion: procydiires st b asd whith a7% jasaticTastadly siimples This-was demonsieaied
in the analysis by Kadanoff and Baym (1982). The exiension to non-cquilibrium is not

obvious.

- N A
An approach that extends the Matsubura technique to consider both real time and

finite temperature is: the Path Ordering Technique (Mills, 1969), which will be discussed
% s

later. L ]

0 ’ 3 i . . ‘?‘_
Real Time Methods at F '

—— . ™

ite Temperature

1. Thermo field dynamics ) : .

In a‘field theory, dynamical observables are associated with an an operator average,

stnndpainé"such as using a Greens function approach to finding the expectation value of ~

the operator, or solving a density matrix that completely defines the system at any time.

in some specially defined space. This average can be evaluated from many different .

Thermo Field Dypamics (TFD) was founded on the attempt to compute this time depen-

i 2 . N
dent ensemble average without recourse to the inTgiusry time formalism of Matsubura.

The  procedure is based on replacing or expressing the trace thermal average of an |

observable b%iu expectation value in terms of some ‘‘thermal vacuum', or thermal

"
wavelunction.




5 § ‘<l A B> =Tr[ePHA] [ Tr[e?] . > (1.2) .
with ¢ ¥ is the equilibrium density operator. TFD had its origins in superconduc-
tivity, (Leplae el al, 1974), and was detailed by Takabashi and Umezawa (1975) where

the name was coined and the creption and annihilation opl_mvon for this thermal -

« ‘“vacuum' were constructed. . % ® :
. - .

The original construction of TFD began with introducing a mirror space having a

single particle operator @, obeying the same canonical commutatioh _relations ‘as the

" operators, a, of the normal Hilbert space.

P ; P
- - A -.
o el =lad=Fm - T (3)
* I The temperature dependent operator is defined as the linear combination of a, and @, .
5 ~ < . -4
] =g - 5,(8) = ca(8) Gy + dy (B)a! b * ¢
. . o . . (14
. . &, (8) = ¢,(8) a, - d, (),
o If it is required that thesé hiew operators,obey the canonical commiutation relations, .
S N ) 3 . A} N
lon (Bt (B)1] = (&0 (B (B)) = G (131)
then the mapping is the Bogoliubov transformatios. The constants must satisfy . :
. e, . . s B v
. G(BP+(BP=1 < (13)
henve may be written as Fi ¢ . N .
¢, = cosl, ' b -
. * (14)
L o o d, = sinf,), N e
The par 6, will be determined from the requi given in equation (1.2). The
.- . thermak vacuum or thermal wavefunction s defined 5o % the following relaionship

sigh s annibilition wperacsrs istrue. . .
2 olf)| B> = a(B)| 8> =0.
The requirement (1.2) is equivalent to ,

(16)

D
C<Bl alan B> =,
et +1




A

?__given that tand, Z=ef /% ‘The term on me-ﬁgn‘h—d—'aa

“{his Fermi-Dirac distribu-
* tioh for particies, ;.m the particles of the system which will be discussed are electrops,

“however if the operators were defined to obey anticommutation relations, the

corresponding expectation value would give the Bose-Einstein distribution. The Bogo-

liuboy tram: jon and the thermal wavef

\expnnsinn (1.4) into Telation (1.8) yields the thermal state condition that relates the mir-

. A} - . .
«+ ror or tilde space to /f,.e nt—tilde space, by defining the thermal bebavior of the system,

S \ S B> =Mt > S

. Equation (I.6) defines creation and corresponding aunihilation operators oheying

elations (1.3.1), in a space built from the thcrma] nveruncuon |ﬂ>

Zcomntutatie
) Havmg mh::) a Wick's theorem can be constructed. :

v

The doubling of the degreu of l’reednm of the system by the introduction of a mir-

d physically. At finite temp

. =g
ror-spice can be

, a-certain number of ther-

possible nm}her’of excited states, ;eaniqg that ‘the grougd state 'or the system includes
these “hole” thermal states. An excitation of the ;ystem may then be described as
either thg creation of an excited state or the annihilation of  hole state. The doul ling
of 1h\ystem space-accounts for this duality. The conditions that. ensure the

equivalence of the descriptions, are that the operators of the two spaces have a ome-to-

\ dence, and that the annihilation of particles

to the creation of

holes. * The latter is called the thermal state condition, and bas been derivéd ws-equation
(1.7)-

This type of construction has recently been. extended to dissipative TFD (see for
* . & i

; s : 4
mally. {x:ihed states will always exist. The thermal wavefunction represents the lowest

are now fully defined., Substituting

i




. oo .8
. examplé Umezawa ef; al , 1087).
= A 5
2. Superopesators
Another construction of a me;hod wherein the trace average can bz‘ replaced by an N
expectation value is Fano (1957) and Crawford's (1958) superoperator formalism where a \"\J ;

new ‘“double’ space is deﬁﬁed, that is called Lhe@grmal Liouville space. This was

shown o be an equivalent forfulation to TFD by Schmutz (1978):

r a

The Hilbert space of the system has a set of basis kets | n>. Define a new space

whose basis states are

& ) &n.,m >> = |‘{| "> <$)(l};>' (30 A

<nm j=]|nm >'—<<{|n><m|}| (182)

= If the inper product is defined in the following way,

i c<nim!| nm>> = <n'[n> <m [m'> )
and. the completeness éondition holds, . ‘\

s Dlmm>><<nm | =i

2 - 5

then the operawrs in this spa:: a]su\(onn a linear space This new space is referred to
as the Liouville space. The definition of the mwn of operators A in le apa:e {o}
“superoperators" 4o distinguish them from the operat'or states) is deﬁned in terms of the | '
. i Hilbert space operator A. . .
Ajam>> <> | An><m] >>,
Also, the following states can be.defined on the Liouville space.
1AS> =T mm>> <m [A |n>
= <

v




~<(

]

A <<A|—E<m[A|n><<nm| -

Then the expectation valne of any ‘operator With respect to state '| 1>> defined from §

the Hilbert space |dennly operator may. be written.as the trace of the operator.
5 <<1|A|1>>; {110} °
By the same igken, a new siate may be defined from the eqmllb ium density operator so -
)

T

that the expectation value is a trace thermal ayerage. poad
< <<1[Ap|‘r>> TrAp / c.
CK<L|A P> ETrAp &

v

.

The operator p is the density operator in an equilibrium system, or ¢ “##, which appears
{ . . - 7 .

in the thermal average, in equation (1.2). The thermal wavefunctions in the supmpem’-

tor formalismi are a Im,le different lrom zhusc of / TFD/hut. !,he therma) average haa been *

Rl N

rephced by an expectation value in a new space; 5 .
- 5

There are two more poinu'o[,.eqnivalenc between the Lw‘q methods. Tl:e duality o :
 this represenuuon is appmnn thmugh the fagt thﬂ'operatm a; and a, ‘may be
defined as the annibilation ur state |n> ar th orlgmal H:lbm space; or the creaunn
of state <m |.

a o

o

+ ) (
a; |em>> = a,~|n><m|}_>> f @
. = i § @
- :
B |ma>>=n"*1|{|n> <m |o.’}>> /

with p=Y)(m=n;), m; and . n; representing the pumber of electrons, =
i : <

. %> =0 ’ °
% 1pe>> =0




-10-
. .
are e ifthe operators are defined from the Hilbert spscé operators .as
» (112.1)
206+ ay) < 1.12.2)
from the canfBical commutation relations,

The ization factor 2 is

and is given by

YLy i
with (78l = (3 =6;

This establishes the correspondence between the superoperator formalism, TFD and -

5 - ’\
Green's functions techniques. \

. ” 3 »
The_ thernfal state condition for this formalism may be found by substituting -
? " i 3 i

(1.12.4) ingo (L11); i »

- T e

ol p>> = /; &.' 1>

Moy ¢-B. The time dcpendem thermal state conditlon is ufollows

" Thig formulation s a litle easier to use than the Bogoliubov tranformation con-

struction, aad the extension to non-equilibrium.systems is clearer.

3. Path orflering and other finite temperature meth:rds
1]

—A alizaticn of the Sub boique that includes real time is the Path

- Ordering Technique (Mills, ﬁm) The techuique replaces me timeordering of the
Matsubura lechmqne by a contour ordﬂ‘lng, by extending the mlegraufm along the ima-
A R »

ginary axis, running from O to { § to a contour starting at s8me time £, on the real axis

and following a path in the complex time plane to the point {o—i f, subject to the

k4

ailt) [pe>> =/ & 'UW‘.,>> (1.13)

o’




sy,

. constraint that }lmc.gnb’-r must increase monotonically in the imaginary time, and that

it have a real component. This gives a complex cuntour, monotonic nlong the imaginary

axis that can be pammemzed plecewue by a real parameter: If the real time Jmm.s are

axunded to mﬁnny, the parts of the contour along the imaginary axis can be shown to,

have a vanishing,

itself, because of the conditions on it. Thus a doubling of degrees of freedom/arises
% . . A i
naturally froni the attempt to calculate the real-time Green's function. |

The equivalence of these techniques has been fairly exiensively examined and diE-

cussed (Ojimp, 1981; Araki and Woods, 1963; Niemi and ‘Semenoff, 1984a; 1984b) and it

*has been established that other real time formulations are equivalent. The ¢ “-algebra

2pproach (Arxkn. 0d Wood, 1083), which was shown by Ojima (1981) to be equivalent
to the TFD methad Niemi and Semenoff(19843; 1034b) have shown. how TFD'can be

« expressed in-the Feynman path integral formulation, TFD allows us to exploit many of

the other properties of usual quantum field theory such as the Feynman diagram
- -

. N -
m8hod, and the operator formalism. For a detailed history of finite temperature field

theory, see the review by Landsman and van Wéert (1987).

N . & .

. ’

" 4. Non-Equilibrium Thermo Figld Dynamics s

The Kubo formalism technique of calculating transport ‘properties is limited by the
«fact that only the response of a system to an external perturbation may be treated.
. ‘

This restricts the type of non-equilibrium systems #at can be studied, since all systems

B 3
cannot be treated in this fashion. It is important, then, to look at the extension of these

real time of quantun':“ atistical hanics to consider the general class of

small ibuti The ining real contour doublq: back on -




[
i
i
1

1on-equilibrium Yituations.
Now-equilibrium, thermo §gld dynamics (NETED) examines the relaxation of a sys-

tem that is initially pen‘u.rbed in some way through zherml effects. ’ﬂ"; scattering

mechanism, and thermal effects serve to return the system to Lhcrmodynamic'zquili- .

brium. - °

ilibri can be constru, in" the

” The extension of TFD to

F
superoperator formalism. The thermal state. condition must be redefined to include a

more general “disribution kernel which evalves in time. The difference is that a non-
cqilibiimssysiam:cnn o8 Iohger berdescibed Ty an. sqiiibitm esseinbleol suives, so
“that the equilibrium density operator ;";’;'i; not snﬁ'ciem to describe the ayst.em
Tha::s, the tilde an non-tilde felds are no longer related by simple factor, but by a

distribution function that evolves in time for a spaually |nhom\gcneaus particle distribu*

- tion. -~

ai(t) 1 p>> = 5fi; (1) &J(9) | po>> (1.14)
i ’ B
The creation and annihilation operators of the ilibrium thermal fi are
defined so that v N
%(t)|[p>>=0 - .
\ <<1]4f(e) =0,
in termg of the electron operators, £
. %) =la;(¢) - 5/ ;D) &) .
& 4 ~

Ale) = Dl+7 OG0 + (0],
- ¥ s
As in the equilibrium situation, this meaps that th€ Wick's theoreént cap be used with

these creation and annihilation operators. The quasiparticle operators obey the




S

\.,‘

¥ \
canonical cohmutation relat‘ons . .

b)) = 6. M
From these relations, and the definitions of thé creation and aoail

latioh operators in

- .

terms of a;(t) and a;(t), the expectation value of the number operator, ;!(1)a; (t),

denoted by n;; (l), can be found usmg V\fxcks theorem w write all the annlhl]auon
4

operators to the right and all Lhe creation opeuton to the left.

nll(l)-—ﬂ/,,(!)[l+E’],,(l)]‘ T, (s
0l <<1| a;l(t) o (l)[p{tn)>>
milt) =y 2 Hl>> s

If the particle density is hnm%:‘geneous, i85, the exp:ctauon value of the

number operator indicates the number of particles that océupy a state . h would seem

that~there is some correspondence between this quantity which will be'called the density

function, and the distribution fusiction that, is described in the semi-classical Boltzmana

s

“equation. R ] ) .

In the next chapter, the application of this formalism to the evaluation of the con-"

"W

du:len.y unsor “of a system of electrons in cmss:d electric and magnetic fields will be

" diycussed, as an example of the type of calculzuon of transport propemes that is possi-

ble. A simple | form of relaxation of the system is being investigated, where the elecrons
are coupled to a thermal reservoir. Since only the mnsport _properties of the electrons
are of interest, thy/resérvoir degrees of freedom will be projected out by means of the
coarse graining procedure. This involves. the manipulation of the Schrédinger equation
wtion to give ‘s equgtion of motion for the new lectron s3iem state. The end resul
fare master exuation:For;fhe:wave: Fanclionof-he:clectrons lniveemis:aFal dective Ham:

iltonian that describes the dynamics of l.h.e electronic system. It should be noted that

T *\» (\

(115.2).




& : . 5 &

. \t?s projection procedure gives rise to a dissipative term that couples the tilde and non-

L y . i -4 . e .
|
|

tilde fields that bave been defined in the TFD formalism! _A detailed discussion of the

} coarse graining technique #ill ollow in chapter Il -

o et h o

~

The approach of quantum_ field thcoreuczl techniques to sus; l-ran!purt equ

bas been the subject \ 3 number of recenfyreports. (Arimitsu, 1987; Mahan,/,1987

Kreiger and lafrate, 1987) Arimitsu uses an’evolved form of the Bogoliuboy trapsforsfia- - ‘si
\- = °
t

tion construction to derive a quantyh transport equation, and Mahan follows /a derjiva-
q jn P i &
- g

tion using Green's functions, finding addition:

\ The importance and devilopment of a quantum field theoretical treayment of non-

equilibrium systems has been discussed. The simplicity and elegance of NETFD was'” .
N S i

3 scen in tife case of. the 4 | extegsion to y systemu, but will nm.,

bctame fully apparent unul it is seen m use. The purpose nf this investigation i8to see

* How a transport equation emerges from this general non-equilibrium field theoretical for-

mblation, and how transport p namely electrical conds Yy, can k;'e evaluated
from the solution of such andequation. The pardilels with the corresponding semi-  «
classical calculations will be drawn, once the transport equation has been found.

The connection to the gauge invariant Boltzmann equation is: not. ob¥ious because
» . : -

- “ of ihe inberent gauge dependence of s system with 3 magnetic field. There seems to be

% some connection uuuu;h the number operator expectation value, however. It should be

interesting to see how a Boltzmann-type ¥quation emerges, and what considerations the
B gauge invariance introduces. Finally, in order to see how the transport properlies-are

affected by a spatial discontinuity in the field, the semi-classical silution of the
o a - . ' : g
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Boltzmann equation will be used to study the electrical conductivity in the

domain wall. J = E
! [N
~
2 =
-
<
W\
- . u’“
o ;
4
b2 < /\
Y
5 /

e presence of a
-
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Chapﬁer' II: The Tralwort\gquntion
v v o

N ' . / . y 5 -
Introduction = \

. The problem under consideration is the derivation of a transport equation for . .
ramseqeiiriunsytlem influenced by both » magpetic and s electri fild, using-pagtor-

bation theory. The difficulty arises from the fact that the magnetic eld ihtroduces a-

e degeisdeiss, s Hesta 15 SHTHIE o rost. parbiEbaGWAIY. “Thé it O will b
“chosen to be the perturbation V= ¢, and the unperturbed Hamiltonian will be diago- ~ o
nal in 2 space which will be defiied in terms of a maximal set of cominuting observables

* of the system of electrons in a magnetic field. Again; a careful eye must be kept on the

gauge, in the choice of these operators. It is important that any measureable quantities

that arise from a theoretical calcul namely the ion values of the operators,
= Al . .
not depend on the gauge, which is a purely mathematical construct. ' ,

Treated as an initially p:r‘turbing efect, the ;leczric fleld will have excited the par-
ticles in_the magnetic field, that is., the equilibrium energy kel occupation will be dis- ¥
turbed, at tige t=0. The perturbation compdtes with '«he‘uauering process, and even-
tually a ste&dy state will be Sthieved. This restoration to equilibrium is the ‘f'relaxa_f.ion"
of the system, and as previously discnssﬁd. the simplest sort of. relaxation mechanism

(thermal) will be considered. L.

a <




. ".. t.
The first step in the calculation js to quantize the Bield, This éntails the choice of _
“ 4 i ' .
three operators, which is the numb required” by dimensionality to completely specify
but ot give too much-information sbout a the system. Geuge invasiance is an impor- -
tant consideration here, and -will be discussed in relation to the appropriste choice of the

quantum numbers. The quantization of the field together with the choice of interaction -’

. - . ”~
/ between the electrons and the reservoir leads immediately to a general definition of the

reservoir particle operators,”since the specific relaxation mechanism will be a cou
& between the ‘electrons and reservoir particles. While the resefvoir operators will be pro-
e - ‘ : o, PR Wb .
" - jected out, and hence it is not necessary to know their exact nature, it is required that

the coupling be gauge invariant, which is a non-trivial consideration. Once the gauge

invariant creation and annihilation operators are known, the coarse graining mt?( e,

“ following the method by Arimitsu and umegzv; {1985; 1987) can _be applied to project.

* the reservoir operators from the Schrodinger equation which will result in a master equa-

tion for the system. 3 E

T sk i 1 LAt e o A LG, SRSy Wi e Lhermal'
e () state <ondition to introduce the distribution kernel F(t ) Once the transport equation
bas been derived, the lectronic conductiviy Tor 5 bomogencous magaetic ed will be
e found from thé solution for the trans‘porl :'qnati?n.'This chapter is concluded with a

discussjon of the relation between the distribution kernel from the thermal state condi-.

: - .
] ‘ tion, and the distribution function of '.h: Boltzmann equation, the two of which would
ihtuitively be expected to correspond in some way.
. . LK \ N
. 1 " ¢
s 4 '
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Quantising the Field

The formulation of NETFD that will be used is expressed in the number operator

representation that specifies, by means of the iaté creation. and

. s h
operators, the nurtber of electrons in each energy state, or the occupation numbers of
the states. The electron and reservoir creation’ and annihilation operators need to be

defined, and the fields written in terms of those operators.

The Hamiltoniag of an electron in the presence-of the magnetic, B=¢ X A, and

electric, E=-74, fields is

n w
Tam TP

(2.1)

where TI=p <A is the kinematical momentum, related directly to the electron velo-
= :

city, 35 oppbsed to the canonical momenturs, §, dencipy the canonical commutation
relations with ke position operator. The unperturbed Hamiltonian has béen T
be Hy=I1%/2m , thus the bikis states will be determined by observables that commute
with Ho. The magnetic field is chosen to be in the # direction,

B=2Bé, (2.2)

so two obvious choices of labels for the- states of the system are the energy, E, and the

4 N < -
momentum in the direction of the field, p, . In general, ‘however, T and lbf II;'s do

o m

notccommute, for i =2z ,y, hence the problem isnon-trivial. The cigenstates of Hy are
- ? °

the Landau levels (Landau and Lifshitz, 190’5:) and these would seem to be the logical

basis states.

f\.




TN
" Now consider the équation of motion of the kinematical momentum operator,
1 %{rﬂ,n]. Then using the capnnical commutation relation [#;, p; |=i &;; , results

in the following equation for a constant magnetic field,

. n=

ZixB,
= ¥ ¢
which gives the following constants of motion

d e
W[l‘l = :xxB] =0.

The constants of motion in the x and y directions are gauge invariant operators that
» ® 3

. =" i '
each commute with the Hamiltonian.

[Ho,2o = [Ho.gol =

i n,
5 yo_——mwc +¥
I 1
P ]
muw,

-z
It will be seen that classically, these represent the centers of circular orbits.

If a specific choice of gauge is made, letting A=B [~y ,0,0}, then the maximal set
of commuting operators which define this space is (Ho, , , f, }, where, in order simplify-

the notation, the operator

% B
=1, + ==
Vo s+ me?

has been denoted in terms of the canonical momentum,

. »eB
b =1, +_e7y

and thus the solution for the Shridinger equation is given in appendix I, as '

T e N TC AV AN
€. .

The vector p denotes a two dimensional vector operator, p=p, +, (see appendix I for
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*
the details of the calculation). In fact, the form of the wavefunction will mot change

significantly if another gauge is chosen. ¥ kgl 5
. . LY

To illustrate the role of the gange trassfofmation, consider the three possible sym-

# "
metric gauges for this choice of magnetic field, where A, the vector potential has the fol-

lowing formsi» ) ,. ]
A= By (-4,0,0) A .
& A® = 5, (0, z,0) s 23 °
: A® = By/2(-y,z,0)

which the wave function -

In the gauge where the potential has the form A("), that s,
was caleulated in appendix I,

= . AL
o+L4, =

Transforming to the second gauge, (2.3b), the following changes occur.

AN o Alzl =Al 4+ VA
P g = 0 explE 4) .

Y= = oA

with YA = Byi +Bzj, and so we have A = Bzy. As p,!"is a constangof motion in

this gauge, call it simply p, . This gives us the following in the new gauge: E 4
: . B
] P . -
3 . ;
ieB &
w,"’(x.y,z.p)=,7" eilbiatasl g H, [ ﬂu-m].
’ A i ®
¢ P &
where =— " .
ere Yo : B . ) .
The wave function clm;u only by a simple phase factor. It can be shown that -
 although 5, changes in this gauge, its cigenvalue does not; the change of gauge does .
2 e 4
oot affect the actual eigenvalue spectra. & ==, S

ol . ..




~ * . E
~ LY N '
50 = 2y . A
bs 7 oz Y . Ve .
! (=[P,+—‘£y>—-‘y]w“” ’ r :
B8 = p, 9 " .

i ' b 1

In the third gauge, given by expression (2.3c), p, is still an eigenvalue of the

b pe ; p S

s (3] 5
transformed FACA . J . o ‘
U R C P ) ,,,,(ﬁ 25} .
S . o m L sm_ s B "
g R Y
’ . . . PE—
. : JRRPCI NYES W A _B |y = ) e .
- . PR, _—[(er‘rp,) 5 v| ¥ —p(r:b . )(
: In possible gangeniii rev:l.angular coordinatel 7 s an invariaat. of 1be noton, '
’ " and more lmportantly, p,l" is always its ugcnvalue All calculations ‘have the sime - .

mulv. mdependent of gange, so for simplicity, when an ‘exphm. vector pobenllal‘ is N ®

o o esPrrend, e o) gauge, given by gauation (2.33) will be chos:n 1t s beca shown ¢

“that specifying the gauge dogs not actually cb@nge m elgenval\le spectsa, and intro-
e Huces ouly a simple phase factor in the waw fungtiofi” The maximal set nr commuting .
. o oy MR g £7 N
¥ e »" " oberators has been }a/mn-in a gauge invariant way. The. note at the tad o‘me apper-, B

s » _ dix,on #genera:y, reflects the existence of many posmhle sels qf suitable opera!-nrs s &

o i =

P ; v o

% As indicated in appendix I, the Hatoiltonlan eigenvalues are the'snergies of ihe Lat
G “dau I've!s, 'Imued by the integet n. The complete set of basis states are labelled by
v.he lhré’& gauge mvannn!. Quantum numbers are n, p,, nnd p:- The posmon space

operator ﬁeld ‘P(x), that destroys an electron at posmon X, with momentum p, :nd




-2
energy ¢, can be expanded in these quanv.um_number: as follows;
\ ’ N . 2
Yy ¥(x) = L [d? a,(p) ¥ (Px). (24)
where the coefficients a, ®) che the single particle annihilation operator, and the
/

integration jd’ p, is over p, and p, The a;?entors q (p) eliminate a smgle electron

with momcnlum p and energy E, , and obey the following comfautation relation.

DR PRORE) B U (@5)
" \From thirelation, the commutation relation for the operator fields is .
. ‘ .
. ) . { W(x), ¥i(x) } = §x-x')

Thus the space has been defined by gauge ipvariant basis states which give rise to elec-

B tron creation and annihilation opérators. -~
. '

T e ‘ “ -
! . 2. Reservoir Operators
. R
Before exyandmg the fields in ferms ®f lheyelectron creation and annihilation opera-
tors, it would be appropriate to briefly diseuss the resersoir creation’and annihilation

1

operators, as they too appear in the full Hamiltonian.

[ The simplest interaction between the electrons and the thermal reservoir may be

represented by the following interagjion Hamiltonian.

oy
' - HJ.=, fdx {w(x)ﬁ'(x)+n(x)w'(x)} it " (28)
where Wxj-is the operator field for the electrons, R!(x) denotes the operator field Tor

oo the reservoir, which creates 3 reservair particle st X and g s a coupling cmmm Sub-

. (2.6), yeilds theresule . ,P

N\
stituting the expansion’ for ¥(x) in the Landau state bz\jxs equation, (2. 4),,mLo equation

A




g YR

= e [a% {ayBWaWIRYR) + 13 a.'(p)w%(m

If the gauge invariant creation and annihilation operators are defined

RM(p) = [d% ¥, (x.p) R(X)
7 Ry(p)= [ ¥, (xp) R(x)

then the interaction Hamiltonian can be expressed as a function of the single pnrt'“le
' \

operators.
E N

= o5 [1p {a.) RIBI+ RuI0SR)]. s
,n—l .

The reservoir is present to provide a relaxation mechanism for the system. It must

satisfy two requirements. The first is that the reservoir parficle creation and annihila--
) . ’
tion- operators be gauge invariant, which is achieved if the reservoir operator felds

transform as . 5

"R = Rix) = R(x]c%A. T et

. Second]y, the reservoir particles are built from the vacuum state in the same wny as the
-electrons; the commutation re]zhons between the tilde and non-tilde auperopamon and

** between the reservou- and syuem opemm fre as follows.

. A .
{R4(p), Rp(K)} = 0 ={a, (P),,R..(k))‘ (2.10)
It should also be noted that the thermal state conditions are similar o those of the sys-

tem siperoperaors, except that they are defined with respect to the reservoir bra vector.
<<Ig | R{p) = <<Ig | R;(p)
<< | Bp) = <<<1g | Halp)

Or, adding time dependence of the operators,

. <<lIg| Rpt) = <<Ig | Ry(pst)

% e 2.11
<<ip | Blpd) = 2<<1p | Rylpit). e
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As long as the thermal reservoir bas these properties, its exact nagure is othérwise

* " insignificant.
3. Expansion ~ X -
P " The unperturbed Hamiltonian, Hy can be expressed in terms of these single electron
" creation and annibilation operators g, (p) and a,/(p), as follows: % .
= [d%2¥(x) Hppy ¥ (x) 2 "
w © @ ;
-~ = a% [ d% HPE b (k) o, (p) (’ a2

n,n'=0

: 2
where H, P-'sf[{(n E)‘u, + %16, rb(p-x). ) : 9
To write the elctric field perturbation in this representation, consider the case for
- which the electric ﬁq{d is perpendl:u]ar to the magnetic field. The choice of gauge that §
i b anade give the field the form E<E &, but s does not repreent a serious

loss of generality, as it ¢an be shown that the sam® expansion in the creation and annihi-

-~ 2 - i N
lation operators occurs for the gauges given in (2.3). The scalar potential ¢ of the elec- o

. tric field in equagion (£21) can then be written in thd position representation.
2 T, - R R
# « ,¢=E-x =Ey - : .

8, Expanding this field in terms of thegingle particle operators, as in equatior (2:8), intro-

duces the matrix elements E,,‘j;,‘} . This integral is evaluated exactly, using the generat-
i «
/  ing function for the Hermite polynomials.

p

B = e B [drofi)y b,@) X
" = eEf dz ¢ilPoh)s fdz ¢ ilpb)e }'dy 2, By gy . ,
. - B
: S xum 1\/_ rvalitdn/ Lyl

_. .




Y
" = ¢E &p,-k,) Hp, -k [ dy ¢

el L—”Ml—v%h-r'ﬁ R

X y Hylymu, (yygHa.lyVmw (y-y'%)
And so the electric field part of the Hamiltonian, Fl,,,,. is given by integrating this

. -
expression,

© e - * g
Hoy=eEY [ 4% [ dy ol (p) ="‘"""""1H.'[\/mu.(y~yal]
ek . :
xH, [VAs -y

with the result that

0 _eE i
et = ama, sl

Cumblmn; equallons (2.12) and (2.13) yields a gauge invariant expression for the

.7 % o} (P)Vby 0r VI 16, ary e, (P).
00

complete second quantized Hamiltonian given in eqlm.lon (2. l), interms of the creation

and annihilation operators, d,!(p) and g, (p), of the Landau levels of the elecl.mns,

E
s =3 [d% [(n+~)u + = ]a.(p) a(p)
b0
2E%(n + 3 !
SNATES § AT
V2mw,
which, because it describes the system of electrons, will be called the system Hamil-
N 1
tonian, Hg. The Hamiltonian of the full finite temperature system includes the reservoir ‘

degrees of freedom Which are represented by the creation and annihilation operators

R, (p) and R,!(p) in the following expresbion. i

-5 ([(n+ o+ 2 a.*(p) o (p)
——‘1‘/;5—}_:—“1[4.'(»)‘:...(:»1“.“ 0] - ¢




+9 e, (PIR(P) + R, (pasl(p)

The Hamiltonian has a kinetic term, an ofi-diagonal term that arises from the .presence

of the perturi)in‘ electric field, an i ion term that the relaxation of the

system through a thermal reservoir, and a term describing the thermal reservoir. is
known gnly through its effect on the electron fy:um, and hence the last term of the
Hamiltonian Yifl be projected out. Knowing the relevent parts of the Hamilu;nian, then,
a masteréquation may now be derived for L*sutu of the finite temperature system.

q
: T

N . . -

e




The Master Equation N

The underlyi -p\lrpose to this i r igation is to find transport ml’leien; by
evaliatiig the trace average, or, in NETFD, the expectation_value, of the observables.
1t would seem important, then, to examine the average <<1] Ag | W(t)>> of some
system observable ;as, where .| W(£)>> is the state generated at any time by the
Hamiltonian acting on the thermal vacnum. W{¢) is the deasity operator: A definition

for a new systém thermal wlveluncciunruil‘( emerge.
i - .
The system Hamiltonian given in equation (2.14) ipcludes both the electron and the

reservoir degrees of freedom. The reservoir is only present to provide'a relaxation,

mechsnism for the clectronic system heace the detailed nature of the dynamics of the
nesolii sl T Tl S i i veilimmondl ik i it
sace s observd, a0d that the chaacteritc reuation e i shot enough 0 regard
the rservi to b i hormal il The afore-meationed coarse graining oy
sique (Avimit 10d Dmesuns, 10577 vl e e 1 S B s sl i deges
of rreedom are pm‘:ecwd o, and consaqusnl.ly, how the evolution of Lhe syav.em can be

described in terms of an effective Hamiltonian for the electrons/ Following the treatment

by Arimitsu and Umezawa, (1087), depend and dissipation will emerge

in a self-consistent way. ) .

The first step is to note that the ket <<1|, defined by equation (1.10),"can be

" deromposed, or that at £ =0, the system state is separable.

<<1|'='<<1g | X <<lg |

and hence any expectation value of operators nnvolvmg only the electronic -y:um Inays

T o,

I~
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*tion Hamiltonian then takes the following form. ~

- .28-

be written as /

[
\<<11A5 | W(t)>> = <<ls | As | Ws(t)>>
. where | Ws(t)>> = <<lg | f(t)>>. . (2.15)

The reservoir degrees of freedom are projected out in this way, and the ket defined
above may be cnllsid{red as an eflective time dependent wave- function involving only
the electronic degrees of{reedom.. N
aving defined | Ws (¢ )> 3 its governing equation can now be found. The mas-

ter eqlation for the system is derived by projecting out the reservoir n'pmm;{om the
Schrédinger equation for the system states. The Schrédinger equation for the fnterace
B I W) = -ig M WSS @)
ﬁ;.cenu’al operator on the right-hand side of zhg“eq-iajﬁon is just the Schrédinger

o e
representation operator, but all three can be'combined as Fy (¢); the Dirac interaction

p of the i b iltoni Also, the ket vector can be transformed
from the i ion to the Schradi using the same unitary operator.
- o . o o
[W(t)>>, = B0 wi)s s, ' (217)

The solution of equation (2:18) inyolves the time ordering operator T
[W()>>, = 2(t,tg) | Witg)>>
. (218)

N t
where Z(t,7)= T exp —l'yjds’ﬂ,(a)
L4 i3

Then the projecting out of the system vacuum staje using the expression for the

(stem state (2.45), and the solution of the Schrodinger equatip, equation (2.18), gives
. v =

theXlfowing relationship. o=
: . .
| Ws(t)>>) = <<1g | Texpl-igfds Hy(s)] | W(tg)>> (2,19)
N S e
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The equation of motion for the state | Ws(t)>>, or the master equation, can be

found from this result. The derivation is outlined in appendix II.

0 | Wslt)>> = -i[lls + K ()] ] Ws(t)>> .4
where K (¢) represents the effect of the reservoir on the electrons and which may be cal-

ol
_culated to lowest order in the coupling'constant to give

4 ¢ "B
t) = -g2[dt, <<lp | H(t)H;(t,-t+to) | Wg>>
wﬂ) 9{“:_ R | Hi(L)H (ty o‘)! r :\'

In order to use\the master equation (II.4) in an actual calculation, the form of

K (t) must be ‘madefworkable, and rcsc‘r‘-'eir operators must be defined.
___The first assuniption made about the system i:um the thefmalizihg effect of the
reseryoir i v quick. That is, the system is initially perturbed, but seitles back to
" - 2 =
thermal ¢quilibrium aluiost immediately. Thus K (£) can be simplified by expanding in
e long time limit. If the effect of the thérmal reservoir is tréated as & perturbation,

K (00) is just the first non-zero term of the expansion given below in (2.20).

. Kooy = lim_(-ig e~ et g )Pt -10

t N é -
=- lim 92fdty <<lp | Hy(to;(t,-t+t5) ) Wp>> (2.20)
g0 o .

- N ) N ) i
To restate the master equation in the long time limit, equation (I1.4) may be rewrit-

-
ten,

8 | Ws(t)>> =-i [Hs + iK (o0)] | Ws()>>
where K (00) is given by equalion (2.20)..

The interaction part of the master equation (IL.4) can now be written in terms of

the superoperaum % (P), Ra(p), and their adjoints. As the form of Hs bas been

d, we are now d with the i ion part gf (IL4). To ,begin with,

¢ 3 -

A




Vo

=80 : '

substitute (1.3) and (2.8) o (2.20). As 4, (p) and 4,}(p) bhave o eflect on the reser- -

voir vacuum states, they can be taken outside the bra and ket vectors, using the com-

mutatich relations (2.10). All terms which violate number conservation, i . .

<<Ip | Ry(pt') Ry(pit)| Wpg>> =0
have been dropped, aifét the time translation ¢ — -t —+=t has been made after sub-
3 -~ uny
v
.

stitting a, ({)=a, ¢'“". Then, * -

-~

K(oo) = g% [d% [d? [dt K{oo)Pk,

X where th¢ integrand is given by the r;um complicated expression L
o % . K ()P, ={a,‘(p)f{<1k_-| Ryl(p,t )Ry (k) | Wo >>g.d(K)’

; - +<<lp | Rf(p, )R I (K) | Wo >, (K)] -
; - & RIS <L | R (Bt )ay (k) | Wa >>RH(K)
+<<dp | By (p,6)RM(K) | Wp >>ap (K)] v
+ a,/(p) [<<1R | Ry (Bt )RA(K) | Wr >>a, (k)
+<<lp | Ry (Dt )R (k)| Wp >>i,
- iy @) [<<1p | RO | W 5> 0, (k)

o . +<<1g [RABOR, (k) | Wg >>a,]

.

\ E
. -
This can be simplified by using the thermal state conditions given in (2.11), together

with the Kubo-Martin-Schwinger correlation. -

<<Up | Ry(pt) RAK)T Wp S>=<<1p | RY(K) R, (p,0 +i ) | Wg >>
w8 : J (221)
This is where time apyezn‘i!l the formulation. . f
Th  vimg retarded | and  advanced ; cbrrelation  functions,
2
<<lg | Ry(p,t)Ry (k) | Wp>> and <<Ig | R, (K)R}M(p,t)]| Wg >>, may be
T

expressed in terms of a single function L,2¥ as follows. - -

|
i
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-

f"<<ln IR, '(pt)R (k) | We>>e™ !

g

Lyafau e L) et
T >

- A
[dt <<1g |Rn(K)RN(p,t) | Wp>>e™ "
o

t

l“‘ i o, - o
= :{ dt f du ™ LEKu) ePe et
=

(2.22)

(2.23)

(2.24)

, (225) -

Temperature has appeared in a natural way. In terms of this function, then, the full

expression for the dissipation is

k(w]=2j~d’pjd2k7du " =

P L.‘:.I (6(:_ -u)v""ﬂf.‘ -u)) (a(p)a,, (k)+i.'(|r)0.(k)) (5(t... N )+5(£.-\L)l

X (€7, (p)an (k)+i '(P)ﬂ ’(k)]+26... p-k)]}

f‘l

(2:26)

Equation (2.28) consists of an imaginary part that is just the renormalized electron

system Hamiltonian, sifd a real part that represents the thermally dissipative approach

5N

of the system to equilibrium. The real p;n of (226), which will be denoted by II, is just

\ Nieo) = g;az,m;a.. L) [a:,—u)e‘*-—m.—v)L[ '(p)a,(m-.'lp)a;

- [Hen-w148cs-0)] [=" 0 (p)en )+ (P)a )| 426, 8p-KT)

(1 27)

. One last assumption will ‘be made, now; and it is to let the correlation function be sym- .

metric. 5

. Lt =L, (¢ dp- k)bum -

X

Thls is the same as m mnmpmm that each mode is mutually mdzpengent LPé,) "

)
can be factored out. The d-stnbnuon “Tunction 3 defined as .
° -

BN




-32- \

nle,) = - [l + P ]'I. (2.28)

Having made these substitutions, we have the simple form for the real part-of the dissi-

- -~ 4
-

M(oo) = -5 d%p fdk Laley) (1% 1{[1-2rlen Wes (B)e (€14, (P)im (K]

= 2(1-alc Ny (P)ay (P) + 20(c, )6 (P10 () - 20(cs ) &%)

Let the function X ,, () be the prefactor. B .

Xa(P) = [14+¢ 7 |LF(e,)
The imaginary part is just the.relabeled Hamiltonian relating to the system, -i AH;.

Keoo)=~i Al +11 = ° W g
Adding the électric and magaetic parts of the Hanilionian, (2.13) and (2.12), to
(2.29), gives the second quantized Hamiltonian of the dependent electric and

magnetic felds,

= £ ] d% (calilipleo)-aplin (o)

t eE

' Vmu,

- i X () [1-2n(e, N a,!(P)a, (P)+d ()i (P)] .

[0,1(P)0y 11(P) + T4y (P)as (B) - 3, 1(P)ds 41(p) + G414, (P)dn (p)]

/ L
+ixa(p) [2[1—'1(1n )1, (p)a, (p) - 2n(e, )3, (P)a!(p) - 2n(e, )])
which is just the Hamiltonian in the master equalio‘n

4 L | Wes> =1 We>> (2.30)

The first term arising from the magnetic field is just the kinetic part of the Hamiltonian,

the electric field introduces some off-diagonal terms, and {he dissipative terms couple the

tilde and non-tilde operators through the distribution function g(e,, ).




The Distribution Function

N

The thermal réservoir variables have been pmjec’t‘c‘d‘ out of the Schrédiniger equa-
tion, giving the master equation (2.30), but it is possible to further simplify ft, by remov-
ing the tilde field. The relationship between the tilde and the non-tilde felds is defined
by the thermal state condition wh:ch was originally given in equation (1.13) in m non-
equilibrium case, relating single electron operators a, (p) and d,{p) through a dmnbu

tion kernel f ,,(pst ),

4 (Pf) | Ws >> = ):/,..'(PJ) it (p,‘)l Ws >> (1.13)
for an |nhcmcgeneous paﬂlcle dlsznbnuon The master equation bhas been written in the
Schrodinger representation with base states that evolve in time. The evolution of the
system may be described by the evolution of the system state, | W5 >>. The evolu- '
tion, | ws(t.)>>, is guu‘.bed by the distribution kernel £ ,,(t ), according o the fol-
lowi‘ng thermal state condition.

oy (P)] Ws(£)>> = Toult) &t (p) | Ws(t)>> tz.:u))

The time derivative of equation (2.31) is the expression

0,(p) B¢ | Ws (£)>> = [f ;) i} (p) +°£... {t) i":((é))l | Ws(t)>X2.32)
.into wh@ the master equation (2.30) can.be substituted. These 4wo equations, (2.32)

and (2.31), completely determine the distribution kernel, thus the substitution is made.

Since fi(a, =1 2 Ws(01>20, ‘
.

o 10, Welt)>> = 1o, | Ws(1)>> =0,
thus [ ()~ 1 aud )i (0 ] [ Wolt)>> =F pudt) i | Wi1)> 1230
The equation for the distribution kernel, (2.33), can be writtén a3 » matrix equation.

o




3

tioos for a,, - _ T ’ =g
|
. (2.34)
Tk
. Rw=lw : :
X=xap) I \ ) (2:35)
n=rn()I - \ e gy "

“

1 7
Jom = 75.,,”1\/;—

Then Usiog the matrix notation, and multiplying by F~! from the left, we obtain

3 el — o Ly e E_ o _Jh N
9, F _.{i{z.F ]+\/,,,—[,FJJ J)]}

(2:36)

+ i{x(F-'+1) ~ (E'41)x + 2nx(F~'+1) + 2F"qx(F‘"+l)}
With a little more manipulation, (2.36)-may be written. as an equation _for
N(t)=[14+F-1]"", which, from the deﬁnition’% the quas particle creation and annihila®

tion operators (see (1.8)) is simply the expectation value

. _ .
mun (Pkt) = [<<1 alphon ) [Ws(t)>> ] [<<tl Ws(>5]™
=N . c " (2an)
The 2z, term corresponds to the factor z* from equation (1.8). We operate by o |

(14F ') from both sides of the equation, using these three relations;

A4, B) A = 47, B] T
AMA,B}YA'={A,B) © el (238)

4 (+F)19, (14F) (14F) = -9, (4P, . S




along with

[A.Bl=(1+A,B]
The final result is nhe transport equation;

aNu) + —{N(tl d={xNe-N(t)} +

where we have used

s : L F [Dllliﬂ'_ (H—F)If"] F

-1 1
(+F7 110, (1RE Y (1 F o b

|
\ .

=0, (1+F-1)7,

This is a purely quantum mechanical result, which is gauge invariant. The left

hand side of the equacion is the kinetic term, ariging just from the mnlion of the elec-

tron. ¥0n the right bhnd sidepghe X term represenis the thermsl dissipation of the sys

terff,.characterizing the return to- therm-l l:qruhhrnm The lastterm is the ol»d-agonal

‘
perturbation introduced by the presence of the crossed electric fild. ° *,
v L] . & " -
The transport equation for electrons in crossed magneti electric fields has been

-
obtained. The solution of the linearized equation can be readily o{wl.ained, *d as an .

example of the emergence of transport coeflicients from such a general expression, the |

% 4
conductivity will be evaluated from that solution.

[N, J- ,q(g, n




" situted fnto the expression for the tonductind. . 4 i

-

The Conductivity Tensor C 0,y anda,,

“The solution of r Qrt equatjon can be used to fiod the conductivity h::qy/
eleinénts in much the same way *3sjthe Chambers’ solution will be used to find th€ con- N\,
4 2 .
ductivity using the classical traj; ies.  The ductivity tensor % are found

by first livearizing the master equation, (59), in the energy, and thea solving it for

6N,,,, which is the addition to the stéady state (zero field) deasity function on the order
: .

o(E ) in the electric field . The expresgion for the current can then be found, and sub- ]
. »

The steady state d¥nsity is as follows.

Nom (p2) = N (py) ‘&
L 1 A
=6pm s " (uo)
where €, =(n -(»M)u, + pl2m. Then, neglecting lerms of bigher than linear order in
. ‘ /
energy, i
- Num =N +6N,, E7£0. (2.41)

‘Substituting back into the master equatian (2.39), the following equation results:

-
. —(E ~Ep 0N pp = (X3 +Xm )6N;m +-—

eE

Vo
(VA B S Vo m 4 VA FTREw iHE Vs 1 |

X : - "

\

where K(E J=[¢#£ +1]"". The solution of 6N, is found-to be;

battm n+l1 . eE
Ny = /._ - 42)
e Xe) v it \/T e

Samar Il
" TXa X)) +3 \/_[‘(E FelEs \ \/ . .

This is the small energy correction to the steady state dsnmy Iunumn, uh-iu- o(E)

{




in the field.

* The current deasity can be cakulated from the following expectation value.

J=<<1] -——vl\ﬁ'(X)w(X)l——Av'lx)vl’(x)l Ws>>
The Z -component of the current in the gauge A=[By,0,0] which is the gauge that has

| Qben used throughout this discussion, reduces to the expression
wr?
. J,=e2E [4 K(Eyp ) ————r 2.43
A IP'Z.:(")(1+M,)1 B € X )}

under« two assumptions, ‘At low temperature, T below the Fermi temperature, the

derivative of the distribution K(E) will be localized in- the region of encrgy £ close to;
the Fermi energy. The relaxation time can be approximated as
\ Xa +Xa 1™ 2x =21 -
Also, the infinite summation 6ver the energy has been shifted from n to n+1. The effect
should be very small considering not only the large oumber of states in the Fermi sur-

face, but also the insignificant number of oceupied states in the lowest Landau level.

The conductivity element o, is given by this expression. '

. e =Llumlfa, SHE i ﬂ, "
The term in square brackets is the sum over all states of the distribution function, hence
|
. o ) .
the number of all occupied Landau levels, and w, m is the degeneracy per unit volume

of each level (see appendix). The product of these terms yields the number of electrons ~

per unit volume, n,, and so . i

<

In the same manner, it can be shownthat .
8 -

2, T,
ne’r " (2.49)




R B ‘ 3

ne?r 1
i ik (2.45)
Lo m 1+ #w,’

Th‘ese are the expected compnnems;nf the conductivity tensor:

The master equation for' the system of electrons in crossed magnetic and electric
_ﬁclds was derived quantum mechanically, and solved directly for a physically measurable
quantity, the conductivity tensor element ¢,; and 0,,. In 2 further discussion of this

transport equation, it will be seen how the solution of the Boltzmann equation emerges

from the quantum hanical approach to c
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The Boltsmann Equation

-3

In order to establish the relationship between the Boltzmann equation and the
quantum transport equation (2.39), the latter must b¢ transformed into the position
repr‘ental/ion,. then shifted to the center of mass coordinates in suéh a way that gauge

invariance will be presepred. This will lead to a Fourier transformation into the momen-

tum space.

. Equation (2.39) can be rewrittén in component form.
v
: 1
Nam + (€0 ~¢n WNam = (Xa +Xm) (N Sam ~Nom )

i ~(2.46)
e TN /N 1) = (N et

First, bow does the spatial distribution function transform! N, may be
transformed to the position representation by multiplying from both sides by the Lan-

dau wave function (equation (4) of the appendix) and its complex conjugate, summing

over the energy states and i ing over, A position-d dent distribu-
. 1 ®

tion fuction is defined

N(xxit) = 5[ d2p ,(p;X) Nam ¥ (P.X').
an
=<<1| Pixt) vixt) | Ws>>
in effect, N(x,X';t) is the expectation value of the number operator in the ppsition

.
Since the distribution function is related to the expectation value of the

number operator, it should be gauge invariant, as well as translationally invariant. The

quantity N (x,x%¢ ) is not gauge invariant, but transforms as »

-

N(xx';t) = N'(xx';t ) = ezp [-'—:- (Ax

X)) [N (xx;t).
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The gauge dependence may bextracted if a new function Np is defined, which shall be

called the density function. .

N(xx ) = tzp[—\—-fA dx| Np(xx’l)

- (2.47)

Np (x.x'; _f( q exp[- Q(X-X')] Npla; =5~ B it) "

where the gauge jal factot is introduced to for the factor that arises
from the tragsformation. The path of i ion, P, is the path beginning at position X

£

. and ending at x'. In order to sec how tﬁf path should be definedy consider the kinetic

energy term of equation (2.46). _
The position representation of the energy term is as follows.

| 2o ([ el espitit Pl
(2t Imga (1) = gfd’p[[—«v,—;ﬁtx)] ~(vo2aw) ]:N(x,x';f)

Substituting (2.47) yields a very long and complex ferm.

e it N = [iy €757 \
P -
. -
et ((v+v')fdx'A(x)~(A(x)-A(x‘))]nzm
. P
-i [q+f((v~v’)£ dx-Arx)~(A(x)+A(x'm] : -
IR A P
. [(v -y '{dx A(x)- (v A(x)+v’A(X’))]nm
o .
” [(v I dx A (A(x)+A(x'))] 3
X [(v+v’) fdi-A(x)-(A(x)»A(x'))]nzm )
F
with nem =Np(q; ",:‘_';').,ni, on would simplify sigaificantly if a path is -
v =

Rl B




(v-9[dx - A) = Ax) + Alx). : (248)

chosen to sglilfy
#

This assumption limits the choice of gauges in which ;l is possible '.a apply the method
of calculation presented here, and may be more restrictive than desired, ideally, it should
be possible to define P 50 that the relationship is satisfied for a large number of possible
gauges. . l %

‘The choice of gauge .mlde for this calculation, A=[-§y ,0,0], satisfies this relation-
uhi|;. _If the path is parametrized by t, ) )

x(t) = (3=}t + %,
dx = (xg-x;)dt

where x)=x and X=X/, then
(v—v’){dx cAlx) = R
. L .
= ~(-VIB[ dt [y ~y ) +y)iz-1) , b
[} % % N

B . . . - :
% {(y,+y Nz )i -[Hya+yi)2 Hzp-z .U}} (2.49)
< v &
Y = A+ AX) ,
The path for which the condition o the gauge holds true was found in a very straight-
forward manner, o it can be seen that the simplification assumption is readily satisfied
in this gauge.

. Returning to the energy term in position space, the expression simplifies, leaving

only one term remaining.

" .
§ 3 ifke(x-x)4+ i{u-ux)] . !

(€46 )Ny =23 [(kXB) Ny e i (2.50)

k
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Consigerazion of the dissipation term also yields an inumti'ng physical insight to-

- the problem. An i diate path is introduced in the jon 10 the position

li

representation;

. .
SJd% DPX)Xa Nom ¥a )

1
= 5[ d% [ 9, 1px)Xa Vo (0. KW, (XN, vb,jp.x')
o .

= J'Xfx,x"* N(x"x!) dx"
The dissipation function is allowed to transform in a fashion similar to that of the den-

sity function. A {
r

S 4% BRX N #0 (') = [N (xix") xl'x) gt

s . "
Let P be the path from X to x”, and P'; be the path from X" to X', so that the main
ok P 1 s

Pﬂl’l\;P\
in the samhe way as the distribution Function.
| ' e
Lo A(x)ydx
JaX"X(x XN (xx) = [dxre <

is P\+P"). Again, x has an gauge dependence which may be d for,

XN (x7x),

i

N
where, x(x,xt) = exp [—TefA(x)'dx]x XX
: WP

The space rep! ion of the dissipation function, can be defined

o I3
Xoex) = )’zi“ Iq’:Alx(q;l Jda (2:51)
In order to establish a correspondence with the Boltzmann equation in. the relaxation
time approximation, it is assumed that the zur;elninns within the reservoir are of yery
short range. The. length scale associated with the interactions must be less that the
magnetic length scale, \/5%, with flux quantum ¢, or non-local effects will arise. '.l'his .

is an important point, in that any Guantum information is now lost in this approxima-




tion. The paths P, and P, are small, 50 that the sum of the paths approaches P.

The fival result is

o Ao %lMx)-h x+x' B 3
, (Xa+Xm ) Nom B ~Nam ) = 2¢ X(@) Np (@:=511).
The expression indicates that ¥ acts as a relaxation time. Let us call x 71, 80 that in
: ] _~
the momentum representation,
.b = & T
0 , "[k-(x-x’)t%(]’dx-A(x)-]lx-A(x))] a2
™ o (Xn +Xm N Nom Bam = Nam )=23¢ o ’ XkNk. (2582) -
- N k
_ This assumption of very short correlation lengths the extraction of classical B

information from the quantum systef. Long range interactions that arise in a purely-
quantum mechanical consideration are neglected.
2 4
The last term of"the component transport equation, (2.46), may be simplified using "' ©
: .

s} -
) the position-dependegt. ladder operators for the Hermite polynomials.

®, (&) = e 7 H,(€)
O (&) 516 - VR (&) - s
B8 = €+ veea ()

AnD example of the position-space transformation is as follows.

’ L% $i@xINy it (Bx) = T [d% v 41X+ V)Y 11 (X))

= [x' + V] N(x,x5t)
.

The position space term is
[+ )] £ [(x-7)-(x+T,)} = -2 (V4 - V'),
3o that the result, in center of mass and then in momentum space is
e s1.m N )~ (N Nzl = {ux X4 el ] N (@ 2550)
N

ik fx- x’)%--(fllA(x))]
I(N..u,m . m-H) (N 1= Nam 1= EVuNkc o (283)
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The full expressionf combining (2.51), (2.52), and (2.53), gives fthe momentum
& .

representation of (247). - ot

i N? - N,
9, Ny - [E+rxBY Ny = =t P (250

The corresponidence between the quantum transport and Boltzmann equations has been

. & e, i
blished, through the semi-classical electron- distribution function, and a quantum

mechanical density function. These functions are. dininﬂ‘ the information they con-

vey, indeed, N} does not necessarily have a positive definite value, and hence is not

1 8 V.-
strictly a probability as is the semi-ctz?sical distribution function. Since the form of the

Boltzm ann equation’has been achieved, it should be pessible to casily identify terms in
the full quantum trabsport equation that represent quantum transport effects. *The

Boltzmann equation has been solved to give theoretical estimates of physically measure-

able quantities such as electrical resistivity, aod so this dence with the quan-
tam tramport equition: connects a purcly Sild thearetically deived equation with aa
P S )

The condition that was made on the path, (2.49), i cousistent with a traosforma-
tion used by. Mabso (1987) who bas examined the transport equation by means of a
Greens' function method. .
Summary o

»
In summary, 3 master ‘equation for the distribution kernel N, (¢) has been

derived, and it has beeh eslﬂ)lisheLdAt the assocjated position representation num ber
operator N(!J';l)“) is explicitly gauge dependent. The correspondence with the

Boltzmann gquation for the distribution function has been established for a suitable




choice of path,’ with the introduction of a density function N (x,x’,t) which absorbed "

- the gauge dependence, and with the requi of short ion leogths associated

. . .-

with the reservoir modes. .,
1t has been seen hov; the-eonductivity of electrons in a homogeneous magnetic field

can be” found “directly from the quantum mechanical approach. The calculation can be

readily extended to slowly varying flds, but for  rapd varisions i the Geld such as,

those that occur at the walls separating magnetic domains, it is' not obvious how to

proceed, although it seems that quantum effects mmust arise for such a suddenly discons
2z Qe !
tinuous feld. However, it-has also been seen that the quantuin mechanical redult’ has

some parallels with the semi-classical Boltzmunn equation. Quantum merhanical effects . |
will not appear in a calculation of the conductivity from the Solution to the Boltzmann
cquation, but- once the system has been studied in this light, the correspondence between
<
the Boltzmann. equation and the quantum transport equation should readily allow the
v . " L I
quantum eflects of the domain wall to be studied. ¥
o ¢
~
S /»/ .
© . . N
»
s .
. g ‘
B ; . : .
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Chapter III: Electrical Conductivity Near a Bloch Wall

Introduction

In'the preceding chapter four things were accomplished F:imly, a master equation
was derived for a system of electrons'in a homogeneous electric and magnetic feld, in
which the electrons couple to a thermal reservoir at a given temperature, T. This was
doge within the framework of non-equilibrium thermo fild dynamics. The resultant
equation, (2.45), provides the basi3 for the study of a ;ul;tum mechanical description of
electron transport in the presence of a hcuogeneous magnetic field.

Next, in order %o establish the correspondence between this result and the semi- -
classical Baltzmann tqn;lion discussed in the Introduction, the master equation was
transformed to the position np,‘;umion and the, function Ng(x,t) was defined by

means of equation (2.47). Establishing the%interpretation of this function, it was shown

A
that provided the carreltion lenglh asociated with the reservoir derees of frcedom was

small, then the equation (2.54) describing the evolution of Ny(x), was given by the

Bolumann equation in the relaxallon time approximation. Thus the funcuun Nq(xJ,

which will_be called the density function, can be associated with the distribution func-

tion'J o(x,F) appearing in the semicglassidp Bol equation, ’

B —ln"lhii way the quantum mechanical axi’;ins of the Boltzmann equation can be

understood, as well as the role it's solution performs in-non-equilibrium statistical

aa - .— & :
- =4
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mechanics through the thermal state condition. Furthermore, it was shown how the

conductivity fora homogeneous external field could be obtained from the density func-

tion N( X).

In this chapter, the

of the ductivity for an inh feld will

be discussed. The solution of the Boltzmann equation will be used to compute the effect

of a Bloch type domain wall on the condnctivity tensor. The way in which an expres-

sion for the condumvny tensor may be obumd by means of the Boltzmann equation

will be discussed, and the :undard expression for the Hall resistance vull be briefly -

derived. It will then be shown how the introduction of a domain wall m'.md\n:es a new
class of classical trajectories into thc problem, and the mnanl the cnnducuvlty
tensor due to~these new trajectories will he calcuhted Finally, in the Inght of the
analysis presented in chapter 1, the shoricoming of the present semi-classical analysis

will be discussed, along with a brief discussion of how. the calculation could-be modified

Lo)indude quantum mechanical effects.

’

.

Chambers’ Solution
: ‘ . ot o
Belfamsnn's equation ean be solved mzi:clmacany by the Chambers' method (Cal-

laway, 1976). This comes from an intuitive proof but can be shown to be an gxact solu-

tion.

C st
The electrons in the system of interest are excited by an external feld, and undergo

a series of ‘collisions, ch

d by a ion time, 7, returning to the

equilibrium distribution. In a volume element of the conductor, conslder electrons wul:

wave vectors in phase space d3k at o which arrive with energy AE after pmmg'
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th:ough a eertain v.raj:cuu:y. The probability of an elccln;n Iuvin? fal!owed that pét!.
from a time ¢ previous to o, until time fg, is given by the Poisson distribution, and so

& ;
the dieribuFion funftion, if q(x,l) can beJound by adding the contributions from all
electrons scattered into that trajectory at time ¢ with energy E~AE’(I ],’whg\rf: Ag s

to

AE(I)_]F(I') v(th) ', ° o
the energy gained during that time permd F is the force due to the ﬁJl; acung on the
electron, that is the Lorentz fﬂr(e in ma;nenc field, and v'is its velocity. The trajec-
tories introduced by “this argument are clusml path:/v,be particles will fol]ow bence an

eflective path is given by the velacny of the particles intrgated over time, and w hud

by the probability mentioned earlier. -
. D . 0 - »
o A= [dt v(k,)exp[-[dt'l/r(k,") B
o ..

[The general Chambers' solution &f the Boltzmann equation in the relaxation time
. p
approximation may be obtaine! from thest considerations,

L Jereen :
f —m)—/ oE-AE) ej
but in order to obtain an expression for the cnnduc}xvny, a term hnea.r in the distribu- -

tion' function ‘s needed. The linearized Boltsmann equation in the relsxation- time

approximation has the form =

S Ry, =f o C
The soluuon of the linearized cquauon whlch also derives from the expansion to f first

order in the energy of the geneml Chambers' solution, is the following.

. J'l/'((-))
: I=le fFvu') L e




- 49- —
. The.Chambers' solution of the Boltzmann equation has been found in the same manner
as the solution of the transport equation (2.39), as discussed in the previous chapter.

In expression (3.2), the sum over all time. of .the velocity times the collisional
exponential term can be interpreted ‘as a trajectory. The electronscan be considered to
be following classical trajactories. The sum over all the possible electron trajectorics

should then give the effective path of the electron.

k3 4 .

“The solution of the Boltzmann equation has been extensively applied to {he calcula-
tion of various transport properties using a wide variety of gpproximations. As an
example of such a calculation, it will be shown how the electrical conductivity at zero

temperature is derived from the above solution, and how the Hall conductivity emerges!'

The conductivity may be found from the electric current density J which is given as *

_a function of the distribution function in the following manner.

: J=-e v S Oon) - 83)
" The distribution function must have a linear dependence on the field to use it in the cal-
culation of the condm:uvn.y. Integrating the first order expansion of theyChambers'
st AR sidimssn BT (0)/0E .
.

0 [
]==’fd’k%v(k)fE-v(k,l) e,

58Bitituting this result with the Lorentz force :
= . ,
-
=-¢ (E'+ vxB)

into the above expression gives the current density as &n.integral over phase space.
®
.

a;i ’fd’k Ly (k”‘.ﬂ v; (kl)zzp[ jdl’/r(k(l’))] (3.4)

are integrated from some

The effective path of the electrons if the classical trajecto
\
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time in the infinite past to time # =0, has the form

. ] ] 4
\ Aj = [dt vi(k,t)espl-fdt'r(k(t)]. . (35)
-0 [
Two assumptions are made to simplify the calculation. At zero temperature, alt the
Lencrgy states below the Fermi surface will be occupied, so the expression 8/ (0)/9E is

zero except at the Fermi surface. It becomes a delta-function of the energy,

[ - o
i = e2[d% §E-E; ) vi(k) [ dt v;(k,!) ezp {-fdz'f"ik(:');]
v .
and the states on the Fermi surface are projected out of the itftegration, and thus, since
the surface will be assumed to be spherical, the energy states can be labelled by phase
vectors expresed in spherieal polar coordinates, with a fixed radium of k; , the Fermi
Sy )
velocity. Thus the delta function of the energy becomes a delu function of the momen-
tum. The integral over phase space gt iiients, on, i Feriat surface can be rcplaced
by an integral over the Fermi surface. The final form of the expression for the cdnduc-
tivity clements is the following. {5

. 54, () (683
@ VT X :

The Chambers’ solution reduces to a familiar-résult in the limit as 7—0. The relax-
* ation time 7 is.taken to be very short, 7<<I, and hence\v:/an be taken out of the "

exponential for integrations over small times; A; =v; (k)7. Thus,

= e"rfd“k

vu,-
2

Ly
-

2.
= '—mcjdak [obiy =18 (37)
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"The conductivity tensor has been expressed -in terms of the semi-classical
Chambers' solution of the Boltzmann-equation. The expression, given by equation (3.8),
will be used in the semi-classical éalculation of the electrical cbnductivity correction due
to the presence of a Bloch type domain wall. It i;i;lslructive to first evaluate the con-

ductivity tensor for a homogeous maghetic field. This will establish both the method of

applic the Chambers' solution to the calculation of the conductivity, and the

correspondence between the solution of the Boltzmann equation that bas just been dis-
cussed, and that of the quantum mechanical transport equation, from the last chapter:

Also, this will be directly related to the problem involving the domain wall, which we

o

* wish to treat. RS

Conductlvity Tensor in a Homogeneous Magnetic Field
Electrons in the presence of a homogeneous magnetic field B=-B ¢, will traverse
| h ~

circular paths in the z—y\%lane, of cyclotron radius, r,2==c /eB, with cyclotron fre-

quency, w, =eB /mc¢ . The equation of motion for a single electron,

-£vxB (38)
m .

in the y >0 domain yields the relations

dv,
- . @ Ty, .
o , (394)
dt ST
T [
i
dv,
dt

= ey,
(392)

=W, Yy,
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If we rewrite the first of equations (3.9. l) as the time derivative :1 {v, -, ,} =0, then

the solutions to the equation (3.8) give the constants of motion which are simply the fol-

lowing.

y(t)-w y(t)=12"-wy,

v (t) +w z(t) =100 +w.zq. y>0 (3.10.1)
y(t) +w y(t) =10 +w.yo
o (1) Kpezlt)=-v  twczg y<o . (3102)

This gives the velocity and position of an electron at any time in terms of the “initial”

conditions. , ln“

the electron trajectories from some time in the infinite past, the position and momentum

ince the the effective path has been found from the integration of

at time £ =0 represent the final, rather than initial description of the electron, bt as a

matter of convention, Y and Vo will be called the initial conditions. . -

The calculation of the effective path

[ 0
= [dt v, (t)e'l A = [dt v (t) ') (@3.11)
= S
can now be done by inu;niing the electron’s orbit from the initial time, £ =0, tracing

its trajectory back ti§@igh time to ¢ —-0o0.

0
= [dt v,(t)et/

o

du,U)

oth - g




Combining these two results yields the effective path in terms of the initial conditions.

P A [ W

= 17eE [u, u,rv,]

(3.12)
y= L o

v 1-{-:«1"1‘2

The effective path in the z- du—ecuon is just Lhe usual mean free path and not affected by

+w, T v,“]

the presence of the domain wall, hence it need not be considered here.

Having the expressions for the components of the eflective path, the conductivity

can be derived using expression (3,12). Since the Fermi surface has been chosen to be
aphencz] the energy states on the phm space will be labelled by the angles 0 and ¢, the

polar angles nl the constant phase vector of length h/ The :lcmnm of phage space in

{

the conductivity component expression, (3.8) heccincs

dS =sin0 d0 dg; .

and the components of velocity. are given by N

v, = vy sinf cos$

v, = vy sinfsing

The resultant components with
.

1
T+ W) [T
This result is the same as was derived from the solution for the quantum transport equa-

tion for a homogeneous field.

2, 1 g
ne*r [ ‘“’l: '] (213)
N
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Conductivity Tensor for Bloch Ty’pe Dom:ln W;ll-
A good example-of a system that can be treated as a simple combination of homo-
geneous magnetic fields, yet is a very complex and interesting s‘ysum“is that of magnetic
domains separated by Bloch type domain walls. A Bloch type wall of zero thickness at

y =0 is placed between two-infinite domains. This ifapot unreasonable on a macros-

copic scale, neglecting boundary effects, although it represents a very sudden variation in- *

the field. In the domain y >0, the homogeneous magnetic field in a direction anfiparal-

lel to the z-direction, and ‘is Parallel in the homogeneous domain y <0. The wall will
3 . .
be treated as a disconti change in the mygnetic induction field, and its

eﬂect on the canducuvlLy will' be determined. . .
This particular example was chosen because of the existence of similar calculations

(Cabrera and Falicov, 1974a; 1974b; Zakharov and Man'kov, 1984) and the obvious

extension to a treatment as an inhomogeneous magnetic field. The papers by both

groups of authors use similar methods to find the electrical conductivity at the domain

wall, with the difference that Zakharov and Man'kov (1984) use a cylindrical Fermi sur-

face, as opposed to Cabrera and Falicov's (1974) spherical surface. The use of a cylindri- -

cal Surface makes the calculation more straightformand to use du to the symmetry of
the problem, but ‘the spherical Fermi surface will be used here, being a more realistic
approach. The present calculation encorporates parts of both treatments, ignoring
Zakharov and Man kov's rather drastic assumptions of the cylindrical Fermi surface, as
well as of an eqnnl number of particle and hole states, reducing the cross conducumy
mnmbuuon to zero, and exl!ndmg Cabrera and Falicov's study of conductivity whlrh

was limited to the region at the domain wall, that is, ¥ =0.

»
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« .The conductivity tensor has been derived for a homogeneous magnetic field. It will
be found that there exists a condition on the initial position of the electron that deter-
mines the range of effect of the domain wall. It will be assumed that the electrons follow
classical trajectories, neglecting scattering from the wall, and hence if the electrons are

outside its influence, their contribution to the cond

1k
¢ conductivity as derived previously. The contribution from the remaining electrons will

will be'just the h

be calculatgd, using the Chambers’ solution. Once the conductivity elements are known,

.
the exact corrections to the conductivity due to the Bloch wall will be found, and solved

lly. Finally, the ional results will b} verified analytically.

1. Effective Path |
The conductivity has been derived in the homogeneous feld se. It refins to be

seen how the calculation proceeds.for an inhomogeneous field, and that for electrons

with initial positions at y =0, our results agree with those of Cabrera and Falicov

(1974).
Consider a system of two homogeneous magnetic domains separated by an infinitely
thin domain wall at y=0. The feld in the y <O domain is B'= Bé,, and in the

y >0 domain, B ="-B¢,. Setting the problem up in the same way as in the homo-

geneous field case, the equations and constants of motion will change in the y <0 -

domain. Recall the constants of motion for y >0. %

wevy  y<0 . Yo

=wy, . y<0 1
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& . &
v(t)+w y(t) =0 +wu

v (t)-w z(t) =v0-w 2z,

(3.10)

The states in phase space are labelled in the same manner as before.

—

With respect to this single domain wall, there are two types of trajectoriés the elec-

tron may describe. It could simply orbit in a circle of cyclotron radius, r, . as in 7)..-:1-

form magnetic field, or it could cross and re-cross the domain wall in an open path, pro-
pagating in the positive x-direction (figure 1.1). In order to détermine the condition for

each possibility, consider the case when J.h(eleclran travels in circular orbit that comes

o just touch the wall at y=0 at time t, that is, y (¢ )==0. The velocity at that time is

given be equation (3.10). . ;

5 (1) =12"-w yo
ircular, at the moment the electron's path is Langenlih} to the
P

Because the trajectory i

wall, its m8ten ing

pletely in the z -direction, or in phase space,

v, ()= -v; sinf
ThYs gives the condition on the initial position of the electron.
P - \
vy sind = vy sinf cos¢- w, Fo. -
w, Yo = vy sinf |1+ cosp W (313)

So if Yo> T, the electron «trajectory will be a closed circular orbit of eyclotron
~
radius, r,, and does not encounter the domain wall, as shown in figure 1.1, and if

¥o<Tq. the path will be the open orbit shown in figure 1.1 that crosses and recrosses

(Yo -
the wall, as the direction of the electron's circular orbit’in each Romogeneous domain

changes at each time the clectron crosses the boundary.' The maximum value of ¥y can

be determined from the fact that the pl;a.se angles labelling the energy states have the

v




range \ ©

0<o<mand-r<é<m . . .
with (Fo)may = 2 vy /w,'= 2 r, . This implies an inherent liit of the phase space
available to an-electron influenced by the domain wall, since by condition (3.13),

~

sinf {1 + cosg] < 22
« T
In the case that y,< ¥y, the electrons describe closed orbits in the homogdncous

fields of each domain, and derived in the same way as above, the resultant expressions —

& o

. .
A= [nd-wrn?] ¢
* w22 LT

for the eflective path components are as follows.

y>0 (3.14.1)
- L 0 0 o
5 A'_l—m[u'i»w‘ru,]
e
.
A= e reerw].
. e %
¥ <0 14.2)
' A = [o ] -
¢

The calculation of the eflective path for open orbits is done using intuitive ;r.gu-
meats about the electron’s semi-classical trajectory. The equations of motion of the elec-
. :

tron are different in the two domaius and 50 the trajectory which crosses and re-crosses
the domain boundary must be treated separately in each homogéneous domain by seg-
menting the path. The path is divided up into characteristic time units ¢, and ©. The
time ¢, represents the time elapsed during the electron’s raveling fronm®the last collision

* with the wall at y=0, e position y =yga] time { =0. The second parameter © is

the time between successive collisions with the domain wall.

§ ~

.o
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Ry
0 -ty _‘
A)y={[dt + [ dt+ ---do(t)e) (3.15.1)
“h -t 5

Along thé y-direction, the electron encounters the wall. Ignoring the possibility of

reflection for 3 moment, the trajectory will be sectioned in the same manner.

o

Al = ]41+ jsa+-~ u,u)e'/"\’,__; (3.15.2)

Now, because the magnitude ol: the field does not change, © is constant for any point in
lhe phase space. Consequently, the terms of the sum may be wnu.en in a more general

I'orm, by Tabelling them as [,(*)(€;¢,).
o < lttaene] . 1o
[o(t)etlrat; ™M= [ o(t)eld,n>1  (3.10)
ity Hri+n®) ,
[ti#(n-1)8]

[ ylt)etldt, n>1
~(ti+n )

Thus the zomponqn{?ht effective path can be written in the following manner.
z

- L=

.. % 2
FO=Jo,(t)etla; =)
=

=19 Lot

. v

There are now just two different if order to express.the effective path in

" terms of voand ¥

L

~~=- First, using the same method as for the hdmogeneous field, let us solve 1) and
- e

Lo, e
)
j_ 1 . 1 .
L0 =-— u,(l) el S+ ot Lo
N ’ s 0= L R )
. wlt) e ™8 T I

.




Comb‘ining,

W= {00 O, (-t -t e “’[ iz

"I,m): l+::frz {[v,(°‘+w, 2,00t ]Hu,}&,ﬂ-u‘ v, (-t ,)]e“‘/'} (347.2)

Trave v, (~t77 as a function of the ¢onstant of motion, use the equation (3.9), and the

“fact that y (~t;)=0. {
P
’ v (-0) = v - weyo (3.18)
The dependence on 20 may be removed by using the following conditon .
() + v‘z,z(t) = ,%(t) + v/sin®0. o (8a9)

When treating the remaining terms £,®) and I,(*), it must be regembered-that
thcse‘of odd and even n indices comspon;i to the electron mveung in the y <0 nn;l‘the
y >0 domains, resvpectively, if, at { =0, the electron is in the y >0 domain. We see
that by substituting (3.9) in the same way as before, and ix;tegrating by pahs, we have

<t #(n-1)8)

L) = Lo [lu,m—( D 0) ] 00

; : ,¢{a-0e)
161ty = #ﬁ['"ﬂ” a7 (1) ]
2 )

From this result, together with equation (3.17.1) and (3.17.2), the summation can be per-

formed to give the final expression for the effective path for yo< Jo.
— 7 L A

A () =

CL ‘o
m{u,(tl) + w, v, (t) [H-colh-;] ]
Similarly, * : '
4
A, (l) =5

v

'272{v (ty) - w, 1o, (¢ ) [H-tnuh—] = L(321)

These are the x and y componeats of "the ‘eflective pay a tingle elbctron which
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.
‘describes an open orbit in the influence of a single, inGaitely thin domain boundary.
C.omparing these resuts to the equation (3.12), it ¢an be seen that equations (3.20) and
(3:21) consist of two paris; the hokogencous fed clective path, aud a y-dependent

correction. &

< 7 v (t
AA ()= i-l—"'z(—!l [ucoth%} -t/r (3.22.1)
w 7 5, (ty) o], '
AA(y) = _th‘T,J'L [mmF et (3.22.2)

It can be seen that the eﬂe}c\é{ the domain wall is manifested by an additional term

which depedds on the time — complete a partial circular orbit in one domain, ©,
. P -

and the time elapsed since the electron’s last contact with the wall, ;. The correction is

usually'Tairly small for short relaxation times. It remains to be seen what the cxact form

of the time parameters is, in'terms of the initial conditions.

If y <O, the derivation of the effective path contribution follows the.same prb:

cedure, giving the results, § N
‘ w, ™ uy (1) °
AA, () = =L [ 1hcoth—= [ ™V" 3.231
AN =S | e 28]
L w Pt 1 ¥
AL () LT it 1+tanh2§ . (3.232)
1+w/ T
2. Time Parameters . . e

The expression for the effective path-will be complet‘nce it js known how the
time parameters {| and © are fou;d for a given state on the Fermi surface, character-
fzed by the spherical polar angles § and ¢, and for a given position yo. The previous

analysis lends itsell quite casil‘y o a geometric interpretation which can be used as a
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¢
check on the results. This is particularly apparent when we come to finding the yo and

0,9 dependence of the time . <
J* The equations of motion, (3.8), have the following solutions

i {v,(!) = A cosw, (1-t") + Bsinw, ({-1")

v,(t) = Beosw, (t-t') = Asinw, (t-t'). ‘a24)

[
which can be used to find the expressions for the time parameiers in terms of the initial

conditions, as outlined.in appendix Il ~

> [ .
> |
The solutions fhz equations of motioh (3.8) can, on the other hand, be describle

a circle of ram

vy sind/w, , and center

v{,,“,,y:_ cos(gut) (S - -
a(e) -2 =rsin(g, t)
or L 8T : 1
.
[5(t)-y T+ [2 ()P =r2 ) (3.25)
whete z'and y’are defined as - -~

Thus " the electron starts o{t from a point y=y,, a8 in figure 1.2, at an angle ¢ from

the positive x-direction, and travels ¢ tlockwise in the y>0 domain (clockwise in
; o @
the other domain),lin a circle with cen(er r, cosg away from ygor. .

Ly = y’..—:: Yo- T €OS 4.
Note that these cooridinates for the center of the orbit are'th classical analogs of the

¢ kineinagical momentum operator equation of

&
operators i and o that emerged from th
. - .

~
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motion in the previous chapter. Tracing the path backwards in time, the electron Tast

intercepted the wall at a distance y'from the center of the orbit, and thyg at an angle

¢ = % + sin"[f—’l = cos”! (3.26)

from the positive x-direction. As can be seen in the diagram (Ggure 1.2), the time w, f,
corresponds to thetangular distance between tlie initial position on the circle surrounding )

y', and the point at which the wall (y=0) intercepts the circle. This corresponds to the

angle between velocities vy and V(-!,), which are tangential to the orbit at the thase

. points, respectively.,We then have .
— wely -9
¥ or. 5 (3.27)
w, Yo ‘
| (R _ »
. w, )= cos { l vy sind casqi] ] ?,

which agrees exactly with the-derivation givenin appendix 11l
. Equation (3.27) has some interesting consequerices. Consider three situations;
¥0=0, ¥0=0.5 r; and y,=2r,. In the first case, a plot of {; as a function of the
angle ¢ for a fixed §, f==1/2, (figure 1.3.J) shows that t,is ur; ir th; particle starts oul;
with , <0, and inereases monotonically, otherise. *Thisis what would intuitively been
expected, since if $<0, the electron's path cpnnot be traced backward in time withou
{ﬁ * ciossing, the domsin boundsry, that i, 5o vime bas passed sigee the m'c. encounter with
the wall? whereas if 6>0, some finite time will have clapsed from the last contact. In
fact, as ¢.decre>aes, the center of the orbit moves in the positive )Z»direction, thereby

increasing the-length of the path to be traversed back t0 y =0. 3\ N

In the second situation, a plot of £ versus ¢, (Bgure 1.3.2) again | with #=/2 indi-

cates that f) gets cut off at extreme values of ¢. As the electron moves farther away

—_— -




from the wall, the pos.il;le paths that will take it to that point diminish. This
corresponds to the loss of phase space wherein the electron does cross the wall (yo< ¥q).
Finally at yg=i2r, , the only non-zero value ¢, can take is #/w, , at $=0. In fact, the
domain of the # parameter is also cut of 3T both ends for the same reasons, since sinf is
small near the limits of 0<0<x, and the condition from (3-13) that
vy sinf [1 + cosg| > w, yo

must be satisfied. o )

Following the same method in deriving , equation (3.25) can be used to find ©,

with the following result.
-

w8 = 2 cos”! | cosg - el (3.28.1)
L vy.5in0 e
This means that © corresponds to angle subtended between v(~!,) and v(-{-6), or, in
terms of the angle ¢' defined in equation (3.26),
w, ©=2¢ ) (3.28.2)
The effective path has now been characterized for points on-tfe Fermi surface, It is
expressed 31 a function of the characteristic times {; and ©, which bave beew deter-

mined in terms of the initial position yq for a given state on the Fermi surface, with t

and © given by

Wy ’
w,l,:cm"lmé—m -¢ (3.27)
w8 = 2 cos™! [cos¢ - %4‘ (3.28.1)
/S

The calculation of effective path in the y <O domain proceeds 1y a completely analogous
manner, the only difference being that-in order to accol;nl for the fact that the angles ¢

and 0 are defined in the negative sense to thosg in the y >0 domain, so that to
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determine the time parameters, ye have,

\ u\z) oo ’ ,
= [v,(r)]='° [W]
The results are as follows: ’
] el
s ‘“’s ¢ % sind (3.29)
Th=¢+¢ g (3.30)
Tw6=2¢ (3.31)

The expression for the effective path contribution that arises from the presence of a
magnetic domain wall-has been reduced to an integral over a spherical phase space

= parametrized by the angles ¢ and 6. The positional dependence of the effective path will

remain, giving a domain Wall correction-that depends upon the distance from the wall.

3. Reflection at the Domain Wall -
Thus far, only the effect of the Lorentz fm::e on the electron has been considered in
the analysis of the domain wall efibct on the conductivity temsor. Introducing the

exchange force will produce an eflective potential at the wall, and the possibility of

reflection arises. § ) ’ A
Adding the possibility of reflection to the problem results in an additional multipli-
cative factor in the eflective path, following the previ:zlu treatment -of the problem by
Cabrera and Falicov (1974a; 1974b). The reflection considered here will be specular

# "+ reflection so that the electron will be perfectly reflected and mot scattered into an arbi-

trary state. Reflection will'mgt aflect. the effective pn:h in the x-direction, A, , but the

possibility of the electron tracing out a mirror image of its unreflected orbit will certanly

change A, . s - .
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If the electron is relected with probability R along a path P, or transmitted with

probability 1-R along a path Py, then each term in the division of the trajectory can

et
. be fairly simply expressed in the following way. , J
/ “ty-{n-1)8 “ti-(n -1)8
RP(1-R)P, = R j vetMAH(1-R) [ (-v,)e'lrdt
“tyn 1,-n® .
.l.(n~l)9 /
=(R-1) [ v, ¢‘/'d¢. =
Y
Writing out Ihe segmentation and multiplying out the factors, the expansion yields
terms that increase in powers of (2R -1) and exp(-8/1), so in the same fashion pa_
N 72 .
abave, the summation ia the y-direction yields the following, .

14e®/r
1-(2R -1)®/
which, if the possibility of reflection is neglected, reduces to equation (3:21).

A= Eﬁ;{ [0, 7] - @R -1, (1) [x+

At the wall y =0.-The cxpresionsfor th lime parameters,(3.27) and (6.2 s
s plify in the positive domain, giving ' -
{=6=2¢/u,.
If w, 7is defined as x=w, 7, and the above case is combined with equations (3.20) and
“(3.21) then the x and y components of the effective path have the form;——"
vy_sinfr
() (1-e )
< (2R-1)v; sinfr
! (Lh?(1-e /%)

These are just equations (A13) and (A14) of Cabrera and Falicov (1974b), neglecting the -

N -
A, (64) = {e‘“/’((xsiw—cow] + cosp + xsin?}

{e'“/"[xcos¢~sin¢] + sing - xcow}‘

reflection coeflicient R’ The results of this method of ealculation reduce to a known

expression. .

Fd




4. Conductivity

"\ In summary, the x and y components of the eflective path are

| o] i .
o) = 1+::3r'{ [v,tm ru,ﬂ] w70, (1) [l+colh;]z ‘J} (520)
A(t) = —27? [u,°+-w< m,"]—w, o, (1) l+tanh?—f:|z"'/'}, (321)

where ~+ and +- indicate the sign varying between the y >0 and the y <0 domains,
respectively. The Fomogeneous field paths with y-dependent corrections due to the pres-
ence of a domain boundary is

T e P y(ty) o ey '
A, (y) = o [Hcoth;]e ,; (3.22)

 P(2R-1) v, (¢ : s
AA,(ﬂ:-ﬁ-”—‘m;?"ﬂ [1+mh%]e 2% (@23)

3
where the time parameters © and'#; given by equations (3.28) and (3.27), respectively.
The conductivity matrix elements can now be found according to equation (3.8), know-
ing that the velocity components can be written in terms of ¢ and 0, the spherical polar
angels, as fqllows:

v, = v sinf cos¢

vy sinfsing (3.32)
)

v, ‘=, cosf.

From the.definition of v, (~¢,) given in equation (3.18), and the definition of ¢', (3.28),
for y >0, and from (3.10) and (3.29) for y %0, the velocities v; (~£}) can be expressed in
terms of the characteristic angle ¢'. .

v, = v sinf cosg’
{U, = %v; sinfsing' - (3.:?3}

Thus the domain wall corrections to the terms of the electronic conductivity, scaled by




T

¥

e

the homogehieous Beld conductivity, defining x=w, 7, are the following.

A

. .
= +-[sin®0 d 8 d g[coss sino’"l+co(h%|z("’”‘ (3.34)
° -

Ao,

%

S A - . L
\ 0 ¢ [sin0 d6fdglsing cosO'][H»nnh-;i]c('—n/' (335)
0 -

v Ao, 330)
o

. .
= [sin% d 6 dglsing siné'][l+colh%):("ﬂ/l )
o -r £

Ao, e & s ¢ <

e —+{sm ] dﬂ{dqﬁ[ctsé fos¢'|[l+tlnh-;[e(""’h (3.37)
“Thisieiet pressions for thie’ conductivity emior ohemeiits are coriplicated bicatise

of the explicit dependence:of times {; and © on # and ¢, in which the path i

p’ar\mctriud Hence the y-dependent contributions of the terms o ;, with i==.}_\

and =gy canngleealculuted, exsitly. in;onder o dabermins e Kiaviar of S

the contribution to the conductivity due to the presence of the domain wall

was calculated numerically 35 a function of position and plotted. The behavior of the

was verified , from examinitg the limiting bebavior of the conduc-

tivity both at the wall, and just at the edge of the range of the wall's effect.

Numerical results are given in figures 1.4 to 1.7, which are plots of the y-

depend: of the conductivit ions due to the wall, in units'of w, 7. The calcula-

tion of the cond elements was performed on the Vax 11-70 computer, run by

Newfoundland and Labr:dor Com puter Services, using the pre-defined integrali:m sub-
routines DML‘IN and DBLIN in the IMSL subroutine library. The values assigned to the
numerical factors favatved; namely w, ‘sud 7, were;chosen to give:an order of maguitude
rather than the exact values particular to an actual system. A:cording'lo Kittel (1053),

range from approximately 500 to

typical for
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2600 gauss, and values of the Fermi velocity and the relaxation -!5 are on the order of
1X 108 cm/sec and 1X 107 sec and upward, respectively. Based on these values, w,
was assigned a valug of w, =1 10", and the 7 parameter was varied in the computa-
tion of the contribution to the conductivity elements.
It was found that Ac skowed interesting bebavior ouly in the cleas limit of very
loog inter-collisional lifetimes, that is, for high values of 7. For short relaxation times,

the contribution to the conductivity was found to be relatively constant. It can be

argued intuitively that if the i llisional lifetime is short, the wall's effect will be
very localized since any information about the wall carried by the electrons will be lost
in a very short time. An electron at an arbitrary position, then, will not recognize the
presence of the wall, so that in the dirty limit, the ouly contribution to the conductivity

will be some constant term, independent of on. The graphs given and discussed

here were calculated using y=w, 7=1, with the conductivity being scaled by a factor of

ne’r/2, and the position given in units of 1/r,.

An i ing aspect of the itudinal ductivi ion plots is that a
maimum (or misinum) appears before and aher y =0, rather than at y =0, as would
be expected intuitively. This can be verified analytically by determining the slope of the
curve at y=0, agd just on cither side. Bocause of the complexity of the expression for
A, the best possible way 1o verify {be computational resuts analytically s to examine

its behaviour in the limitiog cases |y | —0 and |y |=+r,. In fact, it is possible to

solve the ion for the conductivity tensor

aty=0.
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4.1 The Tensor Component Ad,, (y) 2 ) =
The longitudinal ivi ibution due to the pregence of the domaia wall
. '

is given in equation (3.34). From the previous discussion of the trajectories in the limit

y—2r, , the additional conductivity disappears as this distance from the domain wall is

approached. Appendix IV discusses the limit as y —0 in some detail. The result is that
» n

at the wall, thie expression for Ad,, simplifies a great deal.

Ag ax ., sin2g
lim —22 = X fgq SIN20 3.38
¥ 1‘1“0 L) 31‘:. ¢l—¢'“/" a38)
. = Ac,, (y >0—y=0).
~
Thus the sign of the change in ductivity due to the y-di d does not vary as

the electron crosses the wall, and Ao, tends toward the sames value whether the wall.
is approached from the y>0 domain, or the y<0 domain. The valué that is

approached is positive, and the numerical integratiop yeilds 3 value

.
"

4 sin2dg

3_['———“‘“»! =143

that ag’recs with that found in calculating the points on the curve in figure 1.4. The

* contribution to the conductivity has been shown to be continuous across and symmetric

about the domain wall for x=1.

The shape of the graph cannot be examined analytically, without knowing the slope

of its equation. The general expression for the slope of the domain wall conductivity
1 3

contribution curve has been be found to be (appendix V)

A 5,
: d:" (y>/<0) = £x00f [d0 d6 sin0 cosg e~ #-/+4l/x
. [15cotb Efeotgr-Ly - —L
\ X, x xlinh’%

= 8
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" The posmon-dep!ndenl cunmhnnun

’ T R
for electrons in the y >/< domain. The behaviour of these derivatives is not obvious,
20 the limiting case of interest - y—0 - should be considered. At the ‘wall, using the

same sort of method as outlined in appendix IV, the slope reduces to this expression.

Ady,

(y>/<0)=2

Aon;: 2coty  1+eix

=

3 e~ 2)(sinh’i
X

cospd 4~(3.39)
N

Under the transformation ¢—-¢ in either domain, the value to which the slope is tend-
ing changes sign, and so the derivative is discontinuous as can been seen in figure 1.4.
The value of the expression in (3.39.1) which the slope is approaching is not obvious,
indeed, at the w{ll, the slope would seem to have an infinite value, but from numerical

integration it is found that the slope has a positive value just on the y >0 side of y =0.

£ 26 7 -
do|-cote _ _1+e™ | 556550
= . { ‘[1-:-“ 2xsinh%p

. While-approaching the same value 3t y ==0 from the y <O domain, the slope chaoges in

sign, indicating a symmetric bebavior. Since it has been determined that Acr, >0, the

curve of the correction to the :ohh:livil.y 0,, decreases to some finite value at y=0 in

the y <0 domain, and incresses away bor the wall in the y >0 domain. Togetber
with the knowledge of its behavior far from the wall, it has been shov‘n that the conduc-
tivity contribution curve “dips" at the wall.

T suminay, the Ag componcot beboves a5 bas beeo.delermined: mumerically.

I vanish away from the wall, and is continuous
across the domain boundary. The curve rises to 8 maximum just before y =0 in both
9.<0 and y >0 domains, and drops to  sharp dip that is tangentially discontinuous

that is, the first. desivative is discontinuous at the wall X
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4.2 The Tensor Component Ag,,(y)

.
“The behavior of the correctibn to the transverse conductivity in the other direction,

\
Tyys is quite similar to that of 0,,. In the same way as was discussed in the previous
case, the lollowing can be derived.
i dé 3
R LY PN WO (. [sin2ds 4
= (y>0—y=0) = fl“_z,,x (3.40)
5
: ;_?'_(y <0—y=0)
¢l
* =036 x ‘
The transverse additional conductivity is symmetric about the domain wall, as was true
for the longitudinal conductivity. The first derivative with respect to y also bebaves in
. =N
the 5ame manner as for Ac,, at the wall.
” - =
‘ Ao, . t
¥ () 50-y=0) = [Leoss tanb £ + 4 (3.41)
d; X X

=348x0

dAc
—'ltv <0y =0)

Again, this is the same result as the calculation indicated by Gigure 1.5, the curve

increases from zero to a maximum before y=0, then behaves symmetrically in the

>0 domain.
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-a
4.3 Cross-Conductivity 5
- o
The comrections for the cross conductivity 7, and ,, are found in the same way
as the longitudinal contributions. The results are P <
Ao 8 r.sin% d )
el 2 oy =) = SX [Sindds
% (y>0-y=0)= 3 {l > (342.1)
=419
Av,,
=- (y <0—y=0) . (342.2)
a, % B
Ao, © 80X T cos?
n cos’d dé -
fomer: 0=y =0)= -~—n [—= 2 & 43.1)
5 (y >0-y =0) & _j,-,l+e4‘/x (343.1)
. =419 0,
Aa,, o -
==y 20y =) (343.2)
0

And the first derivatives are

dAc C axoyt :
'T"—(y >0) = - x o] cos¢ coth 2~ lsin¢ coth? d¢ (344.1)
Y 0 X . X X
= soxo
dAo,, o s
=% (v <0) : (344.2)
d Ao, dx0o T 24(1-¢ 28/
5> = ot cordlle T ) l4pe @)
- | Ite 2xcosh2; sing’
=10y .,
= %
_ dAo,, 0
=—g W< (3.45.2)
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The asymmetric nature of the curvés in figures 1.5 and 10 is apparent from the

limiting case of the analytic expressionssfor the additional conductivity given by equa-

tions (3.36)-and (3.37), #hd their deriyatives with respect to y. The additional cross

ivity reflects the d of the h field conductivity on the direc-

tion of the field (expression (2.13)).

v

The remaining terms of the y-dependent contributions to thé conductivity majrix

. b
are zero. A, has no correction due to the y-dependence, so

Ao,, = Aoy, = Ao,, =0. (3.45)

’
the z-direction is v, = v, cosf, the rest of

It also happens that since the velocity i
» R

the terms disappear. . -

x
E Ao,, = [sin®cosf dO] - - ]| =10
°

e

Oy =0y =0 (3.46)
N >
We have, then, determined the general dependence of the electronic conductivity on
- - B
the distance of the electron from the domain wall. Exact solutions for the correction are

only possible right at y=0. Combining equations (3.38), (3.40), (3.42), and (3.43), the -

iom to the conductivity matrix due to y-d dence is; . .
oo & ope3: - .

5 sin2¢ d ¢ ;” c0s%¢ d ¢ % <«

poly) axoy | Ip1-e 2/ 4L 14e¥ix

o\y) = —— %

3 ﬂ} sin?g d¢ }sinw ¢

1-e~2¢ L lye2h -
o N 4 %
for the region y >0/y<0. U

The semi-cléssical calculation of the contribution to the electrieal donductivity due




-

Qa

" :\'u - " .
to the presence of a 180° domain wall has been calculated using the Chambers' solution
for the classical Boltzmann equation. It bas been shown that the additional conductivity
is arger i chse proximily o the domais wal than further away, and ctentually dies
away at n/‘isluce wice the cyclotron radius. Also this contribution is.xaled by a
N 2

factog of , and hence is significant only in the clean limit, where the calculated correc.

tions in this investigation were as high as Ao, /0,5 =24. For the smaller values of X,

that are characteristic of real materials, the itude of the additional conductivi
o L S Y .. @

introduced by the new set of apen trajectories,is quite small in magnitude, on the order
of 116 times smaller. '

Similar quantitative results were found by Cabrera‘and Falicov (1974a; 1973b) for

conductivity at the domain wall, and similar qualitative results arose from the treatm

of the classical trajectories by Zakbaroy and Man’kov (1984). The latter invuﬁgﬂi$

showed that for  single domain wall, the conductivity inereased- near the wall as was
scen here, a phenomenon which was attributed to the increase in the number of electrons
‘following the new open oribit across-the domain.wall. Tb\l::n-monqwnie bebavior on
the additional tonductivity seen in that analysis ws also observed here. The order of
the cfect of these mew trajectories again a;ree well -itl.; the present mu!u. The open

orbits may increase the conductivity near the domaib wall by. as much as four times the

homogeneous field value for very clean.samples.

The domain wall effect calculated here can be experimentally measured if the dis-
cussion is’ e‘xylnded to include bulk :o@hctivilﬁe current, j;, is related to Lin: ‘con-

duetivity through the relation

) E;(x) :



.

A o 4.‘75.

where i,j =5z ,y,2 in bulk materials of large enough dimension so the inbomogexities
that arise in the conductiviy are negligible. Depending on whether a voltage drop is [}
applied in a direction parallel or perpendicular to the domain wall, the current reduces

to an average over y of either the resistivity or the conductivity. The resistivity tensor
’

has elements
+

bij % . -

and, based on the expressions found here for the elemdnts of the conductivity tensor, the

\ 5
““Fesistivity does not have a simple form unless the restrictive assumption of equal conce-

tration of electrons q;d holes is made, as in the igwstigation by Zakharov and Man'kov.

, ThiMsumption ignores the voltage perpendicular to the applied voltage, since over the

present treatment.

~ If the separation between domains exceeds 4r, , then the average becomes the sum

of homogeneous domain contributions to the conductivity. For narrower domains, new

_classes of electron trajectories arise as the electron crosses in and out of more domains,
~

é h
in much the same way 4s for two domains. In the two domain wall case, for example,

there arises an additiona] third group of closed classical trajectories crossing both walls.
The application of an external field creates domain wall movement, and 50 an experimen-
tal measurement should involve both flcts. As the walls move closer together, more
trajectories arise that cfoss both walls until domains collapse, in which case the dlectrons ¢ /
describe their homogericous field closed orbits. Measurement of the resisyivity should -
‘indicate this bebaviour, and glve an upper limiton the size of the eflect, which is a -

imum when the domaios have » width'of 47, .
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Previous experimental investigations (Isin and Coleman, 1968; Taylor, Isin and

1
Coleman, foou; Shnmﬂefolman and Fivaz, 1970) bave seen that the scattering of

ele:ln:}: from the domain wall, as well as the formation’ of domains is insufficient to

completely account for negative magnetoresistance which is strongest in the clean limit

of targe x. i in this limit that the clasial trsectoris re important.

The calculation has been faily lengtbly, and au equal amount of effort, if not more,
was required to interpret-the results. It remains to be seen how the quantum mechanical
calculation is done, and what extra considerations arise. Although the quantum mechan-
ieal corrections will not, be discussed"in-this repot, for completencas, the ey levatyof
the domain wall systein will be fovbd. Once having this solution, all the steps i the

derivation of the transport equation and its solution will have been established.

The Eneigy Levels of an Electron in thePresence of a Domain Wall of Bloch
. N

Type

It was demonstrated how a quantup mechanical master equation could be derived
Ty
using the TFD fofmalism in the previous chapter. Following this derivation, it was
: 2 i o=
shown bow an explicit expression for the conduétivity um«‘ould be calculated to lead-

ing order in the electric field. The relationship between the master equation and the
g ’

semi‘classical Boltzmana equation' was then established. In this chaptet, the Chambed’

solution to the Boltzmann equation was used to compute the conductivity tensor for a %

bomogeneous field, and also for the field including a Bloch type domain wall. This inves-
| .

tig\ulinn will be concluded :itlﬂ a discussion of the quantum mechanical approach to the

Bloch wall problem, This would emplete the steps needed to look at the quantum

W\ ¥




effects ‘of this type of rapid variation of the magaetic field, since these energy levels may

then be used instead of the Landau levels in the it of Bm’dn/u;izy discussed in

chapter II. Py

The problem is to find the energy levels of an -electron in the presence of an

infinitely thin 180° domain wall of Blogh wall at position y =0, by umi;; the system
. s two homogeneoiis magnetic’ felds. The energy levels -.u be found by matching the

elecylromc wavefunchons at y=0. The potential in sueh a case will be of the form of & |

I
double o;c.nmr potential, and the solution for the energy will followthe treatment of i
e 5 /* .

Merzbacher (1970).

D

Théfield will be homogeneous in the y >0 and the y <O=lomains,
. .

. -B=-sy BE - ‘ (3.48)°
and the choice of gauge will be the 5ame a9 has been used throughout this investigation.

«

. A=-Byé © 7 (asy)

The Shrédinger equation is b
» c A ; . L

—(p —A)w E ¢ (B

The wavefunction solutions will be the same 2s those given by (L5) for the Landsu (:v~ 4
LY =

els, but matcbing the boundary conditionaa the wall y=0 will give risg,to 3 ne’w

energy spectrum. The Shriginger equation can be written in the same form as (1.4)

) : =
& (\‘ —x = {V{y)+E}x—0 G N (3.50)
: 2
T _Jle’B? Pa P, ws ¥
with V(y).—ﬂi—ﬂ ‘[y 5 (:_5.50.1)

Equation (3.50.1) is the potential for, liie double tfarmonic 07“-9:4 and mdy be solved
* i : v

" from Merzbacher's (1970) solution, using the substitution ° .
) -

V]
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the solution for the wavefunction is in terms of the parabolic cylinder function

(DUE- &) E>0
; W= 1o e+ &) €<o0 @351
and the en‘ergi.u are given ‘)
’ E—-—(v+-—)+ ) (3.52)

. I

I f d ined f,
The even values of v are etermine rnm‘ . .

D) =D/ —gm) =0 - e

IS
. and the odd,’from the condition

D

These are the energy levels and wavefunctions for an electron in the presence of a

domain wall.

— Explicit forms-of v.he nm;y may be obtained only for the limiting values of ¥, that_
is, for enerms very near or mn:h .greater than Lhal. or the lowest energy state. Since at
hlgh euergle, l.he double harmonic oscillator, potential tends tovu:d the sifigle, simple
barmonic oscillator, the energy levels ;m.xpprouh the landau level: Only the low

. ener:y?pectrnm will differ ulgmﬁcanlly For a given value of py. ro— energy level

. may be,obtained as

= & » 2
B . . gl P “lper)b T
/ y ¢ E Vrr.m L i3 2m +ﬁm(\-'

"“The energy levels very near the groundstate have been derived for an electron in v

. the presence of an infinitely thin Bloch wall. These may be used as the base, unper-
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turbed states }04 a system including a perturbing electric field, and the conductivity may

be found from the solution of the resulting transport equation. If any additional effects

A /
are ta be investigated that can be absorbed as part of the potential, this is the point in
the treatment where they should be introduced.
For example, if th)t effects or,ﬁniw domain wall thickness are to be examined, the

\

\ general form of the magnetic induction for a domain wall of wiSth'B shoild_be used

| instead of the discontinuous feld defined by (3.48).
B=B,¢ +B,j + B, ’ -

B, . B
. cosh(4)

where |B, =0

B, =-B tanh(-;—).

‘The choice of gauge is made to retain only a y-dependence.

v ~ T == - " % ™% . -
. {A, =B Jln[cosh(—%)]Av =04, = B §tan” [smh(-%)] -

3 ) y
The method of solution used by Mints (1990) may be used to find the energy levels of

electrons is this feld. The result, for small domain wall thickness, at low eneggy, is

§ 2 0 2
© LI P prtsinzfry  Te G2 (r /5, 48 W02/ ), Po
. E - = \—/Fz R 5 o v HAIE m

(o 2|7 Vrrtm

\

The purposes of this chapter bave been completed. By way of completing the

corresp&dence between the quantum li'lnspnn equation and the Boltzmann equation,
A .
the Chambers solution and sub

orche".1 d

tensor in a homo-

geneous magnetic field have been discuue‘"d.‘ The conductivity was then found in the




‘A

5 v : e
3 s .

presence of a 180° Bloch type domain wall using classical electron trajectories in an

-

“attempt to establish the treatment of this problem from a quantum mechanical
approach, through the Boltzmann equation. The energy spectrum for tl v agnetic field
including the domain wall was found, and hence using these instead of the Landau levels

.
in the -procedure of chapter II, the steps of the quantum mechanical evaluation of the

conductivity have been completely outlined. .
X 4 ! ) X h
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Chagter IV: Conclusions

The preceding extension of the.work by Arimitsu and -Umezawa (1085; 1987).and

f-a-transport_equa

by Whitehead ( Jradi d-the-steps-involved.in_the-d

tion for electrons, in crossed magnetic and electric felds, within the framework of .

/ . NETFD. Gouge invariance was o primary consideration throughout the procedure, and
= Shis wa$ initially manifested by the choice of the electric feld as the percurbing feld in

oo the i i jon. The ization of the magnetic fleld was carefully

" !\reated, again because of the inherent gauge dependence of calculations involving mag-
“— - "= - metic fields. Onee the creation and: annihilation operators had been-deBned, the Feservoir

operators were introduced through the choice of-the simple coupling of the-electron sys-

) prdcess. The'fechaisms of NETFD wére then used to derive s master equationfor a
.
cthal electron wavelunction.
The master equation was linearized, then solved, aad the usual reault for the homo-
= 7 gencous field conductivity was shown to emerge!
o . * H
The master equntion was then shown to mmspnnd to the scmi~chssic=l Bnlumann

transforming from the Landau level: baszd space Lo momentum :pace, with

an intermediary transformation to posluon space. A pll;e dependence) arese, reqmrlng

3 the definition of a density function to produce a gauge invariant equation. The majc or’

tefn to the thérmal reservoir, which was used {o describe the solely thermal relaxation®
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assumption that arose from this consideration was that the ion length between

thie thermal states are very-small, thus particles only undergo very short range interac-

tions. This amounts essentially to the ‘“classical” assumption, and having made it, the
o B s 3o ; ]

Boltzmani equation associated with the derived transport equation was found. -

The solution of the transport equation associated with the Boltzrann equation, and

its application to the derivation of the electrical oy sVt etmarvely
***** studied: ~The-standard Hall conductivities weré briefly derived, to establish the method
for the more interesting case of an abruptly discontinuous magaetic field. The presence
of the discontinuity introduced a new class of classical trajectories, and their effects on
the conductivity were investigated. . &

The conductivity was found to increase by a siguificant amoiffit only in the limit. of
Jong relaxation timss, or the “clean’ limit. This i in agreement with a very ‘similar
study done by Zakbarov and Man'kov (1984), where the increasing negative mague-
toresistance was rel;ted to the increase of magnetic domains in response to an external
“field. The order of this effect is roughly comparable tp the paramagnetic effects on the
conductivity as found by Cabrera and Falicov (1974a), tending to be smaller.

i -

' The study concluded with finding the energy of the system of the inhomogerfEous

field, quantum mechanically, in order t6 furnish, together with the discussion of chapter

11, all the steps in the procedure of the quantum mechanirai‘calmlnlion .of the conduc-

ity tensor. Using the ne‘w energy states to replace the Landau levels in the derivation
of 3 master equation as outlined in chapter II, the equation can be lincarized; and the

solution to lowest ordering in the energy found, and hence the conductivity can be calcu-

Jlated. The purely qnant‘nm hanical calculation of the ductivity tensor in ‘the
A 4 : REd
. &

R % i S N ‘
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pres&nce of a Bloch type domain wall has been outlined.
.

Further Investigations

. The firat, immediate extension of this work s the actual quantum mechsnical calcu
lation of the conductivity tensor, now.that. the ground work has béen set. The resis-

tivity is calcilated according to the method discussed in chapter II, using the energy

state derived in chapter I1I.\Although this approach is limited to two :nery n;umes, it

will still indicate what effects\a spaually inhomogeneous magnetic field vmuld have on .

, the electron transport. The only difficulty will arise in the treatment of the gnuge

dependence, since the complexity of the potential indicates a signiﬁcant dependence on

the form of the vector potential.

. One of the shortcomings of this analysis is the neglect of nther relaxation mechan-
ism, especxally :catlenng Closely connected with this was the auumpnon of very short

eorrelanan lengths, thus if scattering were included in lh: interaction Hamlltonlan, finite

coherence lengths would also have to be considered. This problem of realistic scattering

techniques in the derivation of quantum transport e%uaunns has been very recently

addressed by Arimitsu (U. of Tsukuba pre-pnnt), howeyer not for a magnetic field. It
' 7 . .
would be interesting to see what correctiSiis the introduction of scattering would pro-

duce.

The other major point that was not treated was the fact that rapid variations in
the magnetic field such as the discontinuity discussed here, will surely give rise to quan-

t

has L““ neglected in this worlxi Eut for such a rapid change in the potential, shquld

\
to the conductivity. The ing of electrons from the domain wall
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really be considered. The approach that was investigated for homogeneous felds can
.
readily be extended to slowly varying fields with a little more general distribution kernel,
.

but an extensive adjustment is required to account for rapid variations of the fields.

The same ‘can be said for the determination of the energ levels. Inclusion of finite

domain wall thickness in the quantum mechanical calculatio’ o( the energy levels 'ould

involve-at least higher order expansions than those used;in the last section of chapter II, —

. and would not be in the context of the ;)receding work: Quite a bit of work is required

to give a more complete analysis of the the Bloch wall effect on the electron conduc-

tivity. ' ]
The derivation of quantum transport equations from the usual field theory (Maban,

1987; Kreiger and Iafrate, 1987), aud using Thermo Field Dynamics (Arimitsu, 1987) has

been the subject of some recent- work. A detailed comparison of r.lx;u techniques

remains to be carried out. This should establish an equivalence, or at least some sort of
correspondence between the transport equations that emerge from a Green's function

approach, and two different formulations of NETFD.

There still remain some considerations open to investigation in ishing the
derivation of a traosport equation including maguetic and electric felds within the

framework of quantum field theory. Solutions of such a transport equation will provide

. & decper insight into transport properies such s elecricalcondutiviy. ‘However, hay- ‘-~
; P i
o : ing found the connectidn between a quanulm me:hnmully derived U.ranspon equation
\ F . ond the classical Bolizmann equation i this work, the superoperator formalism of :
J NETFD- which 'is inhereitly a more physically insightful theory than the traditional 2
Gr;ens‘ lun:tion-haleti 6eld theory, has been established u‘a vi:bk‘fnmewer‘k for ul:n- &
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Electron describes a closed circular
orbit, unallected by the wall.

Electron describes an open orbit
along the positive x-direction.
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Figurs 1.2
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. Appendix It "The Landau Levels an%’l’heir Degeneracy |
R Sy e g B 8
5 99 2 - \ 5 o \/

Landau (1985) quantized; a system of interaciing-particles in a constat uifordh

magaétic field:with-vector potential'A- Assuming the particles have no spin, the, Hamil-
. ® ’ N

tonian has the forni . » i - .

s direction, and the gauge if chosen 5o that *

The Schrodinger equation, Hy=E y), using this potential, and assuming the form of ¥

Tooks liké L hLE W

. ve op [-(P.z +ml] x(s), ey

> becomesthe following diferenial equion ; :

¥ x'+'2m{E—.-;m_a?(y—yu)’}'x=0. Lo

- R N . ¢ $ o .
T
s . . . )

3

B’
rauom, Landsu and Lifshitz (1905).  Thisiis zhz\eqmm for simple barmonic el

.

w§fw whichthe upluhons are the wave llln:uon:

J—eu(!-‘;o“ +o (1)



|: limited w a lnrge but ﬁmbe vol\lme L,L

i “any onc dlrectmn’xs L. Ap .- In the x—y phme, fora xwen p‘
J L *

then A p;,

~ So, if baund in.all three dxmemmns, from equauon (L. e) there are
bl :

S . . . eBL, 1,
. L, Ap,
R ] - ¢ y
—" energy levels possible for dge n.
i s . e
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v : R
» @
i R o= .




" The details of the derivation. of the master equation are contained in the paper by.

Arimitsu and Umezawa (1987), and can be smmuiud’in the following way.
. L% ;
~ i, THe reservoir expectation value' of eiiation (z 19) may be expanded aqcmun; to

Lheorem V‘ K\lbo (muz), as fnllaws y
U << |T u,,[..-gf.a il )| | Wp>> = L : .
b 2] toa S e
oD ) (1.1)

LobiTy . Y. . .
E (‘ig)'.rdflf'"ﬁ' I 'ﬂn-.l‘<<lﬂ lHl(‘)Hl(‘l) T e Hl(‘,..l’)l Wp>>- (/Q; -l
o d .

me the deﬂmtmn of opmtur A it the expressoh o the state in he iteraction

repmenmwn glven by cquauon (217), sl from'the fact that H,( t) had noellect on e o
i e N
s <<1R | and |WR>>, N N ._ . - . ) _ B
. . . - t x5 % . . . 4
lni<ly |zu DI We>> = <<‘1R{ T f-‘@_M Hyfs) [ [ Wg>>. - )

Thé bra and ket vectors dan be taken inside the mtegrauan as Lhey are mdependent of

time, so, subsmuung this into (n 1), we hzve

-
= <<lR]Texp[—lgfda H,(s)”WR>>_ " o )
i, . .

—\12(~w)‘ ‘[<<1R | 2(t, t,.)] Wi >> [ﬂjﬁ | In Z(ll,fu)| A >>]
> . :
: [<<1n lh"Z(‘--z:_nHWR>>] ' X

i s E= E fd. a, Th<<lg | Z(s, zo)| w,, >> i 2
¥ '

*Note that upan taking T inside the integral, it becasie 5, T. Now suming over the

index , the exponential is regained. Define



(£) =9, T|ln <<lp | 2(t,t)) | Wa(te)>>
. so that we may’write (2.19) } I :

x BN
. L s - 7 3
d | Wslt)>> =T eap(fds Ky(3)]| Ws(to)>> (12)
to N .
- s e |
o+ {7 -Finally, the master equation for | Ws(t)>> is achieved by snbuimti‘; (n2) -

O lnio e time derivaive o the relation betnéen Scbridinger and intepoction staies®
D W >>,. L )
ifig(t-t) [ S s

IWs()>> =
B, | We(t)>>'= B | We(t)>> + ¢ S, e
. aT éanlf < <UL 2{L o) | W] o Bt 80 s )55,
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Appendix I+ The Time Parameters

v ~ . ; .
. The analytic solution for the time parameters {.and.© from the'solutions for the

equations of motion . ) L ¥ .
S a - . . .
- p e s {u,(l) = A cosw, (t-t") + Bsinw, (t-t1) B
§ - . ) 384
1 9, (1) = Beosw, (t-t1 - Asinu, (t-) g
agree with the more intuitive geometrically argued solutions. T

If £'==0 is chosen, theh at time ¢ =0, we have A =%, and B=v,’. .Since we

| X

will eventually be'i mtegralmg over acircular pha.se space, the spherical polar coordinates
. le -

are introduced. . i e . i

= vy sinf cosp
0= v sinfsing : ' &

> ‘ i . .
*. Substituting this back into Aol\mex\ (3.26) at time t = " the resulting equations

'{v, (-t)) = v sinﬂ[cosécgs('—w, t) + singsin(zw, t))] = v, sihﬁ;:os(¢+w, ty)
vy (~t1) = vy sinflsingeos(-w, ¢,) + cosgsin(-w, t,)] = vy sinfsin(p+w, ¢,)

may be solved to give an expression for the time ¢ in térms of.the initial conditions, by

.~ dividing them and using the trigononfétricsidentity. -~

 The resultant expression is the.following. k .
: . .9

: vy vy sing

. w, ty = cos™! [cos §om sl ] PR ' (f1.1)

™~
“This expression is the same as um gwcn in (3. 27)

AN
\Enﬂawmg the same method as for denvmg ll, equations (3.24) c\n be used to find ,

,(n-lle and snrvmg the equauons for time, lt\llmc' o



t=ting. ' S &

.

0y (-t -1 ©) = v sinfleospcosi~w, ©) + sinsia(-w, ¢ )] = vy sinfecs(tw, £) - -
{u, (-tyn®) =1y sinf[singcod(—w, ©) + cosgsin(~w, ¢,)] = v, sinOs{n'("‘}—J‘lq‘ﬂ)_
Now t3™veduce the (£,+n ©) dependence of the velocity in these <xpr ;

ions to just - =
_ © dependence,.consider the actnal motion of the particle. The slectron gacounters-the - -

wall at times (¢ +n ©), . B . g c . N
yeltne) =, . T

and from the équation (1.10) giving the constants of motion, . %
N 5 Fa % :_..7 ks
g el = v, B = b () :
Intuitively, because the eléctron crosses’ the domain wall, and ré-cropses in the.opposite ., . .~
ction| it s also trué that TS T RO M
I3 . ; it . £ ol * Faow &
e, oy ([t (n -1)8)) = vy ([t +n O] (=ty) T () -
From the expréssions for v; (~f ;-n ©) where j=z y, {IIL3) and (IlL.4), comes the
5 %" A Sl : R -
: relation / > B S T
; / v, (-t 71 ©) =10,%4, yo = v; sind cosT _ )
. . where ['=¢os™![cos$-w, yo/v; sinbh. Making ise of the inverie trigonometric identitits
> with this definition.of T, this means that *a = \
. g vy (~t~n ©) = vy sinf sinl., € '

e result from substituting the abové into (II1.2), dividing the equations and equating

{ the arguments of the'tangents (or cotangents)ls's X Ve i
) > : oy

. . amd A B
w, © =2 cos”! [e.ow- - ‘;0] o (i)

which agrees with the expression (3.28). T o, § 7 iE




Appendix IV: Additional Longitudinal Con ut_:tiviltyv
at the Domain Wall o
The numerically derived.curve shown in fgure 1.4 represents the bebaviour of the
contribiaton Voribe soaductiity ok, e v AMe prasscEdiat the infiitely thin
" sl sell, 7he dopsadense an. skt o e will esabe 366 b beraon:
fonotonic. The behaviour may be justified aaalytically by considering the limiting case

of y—0, where' the jon for the longitudinal i ibution given in

equation (3:34) greatly simplifies. .

*According to-the deinition of ¢/ given in equation (3.26), at y==0, ¢'=| ¢ | . This ~

& [ &
means that the ranges -7 <$<0 and 0K P< 7 must be looked at separalely, since for

$<0, | #|=-9, and | 4| =4 for positive values. Dividing the integration over ¢
£ s )

~agpropriately, 3od ing the integration over f, equation (3.34) may be rewritten.
9 " . L
. X (v —'0*] = ——(fsm¢ [l+coth ) ] Y i
. ay = .
) + [e'('“)l"sin(-w) [1+cem-’ﬂ)cos¢ 46
Rl L9
i Aoy, 2 z‘/" X
i)} Ly S
b g = ” T
% . oix 17
S e f‘“’"—f,;‘_—x)cosé sing s
s %, .
s 7 (!/—-0*) = ’ffe—‘/-x—_‘/xsm 2¢“d¢
/ . ,,0” (y—0%) = 4x jsm 22;{/3 s ‘“vl”

‘The igtegrand will alwayy be positive. The.numerical result is the following;




which matches the result at y=0 found from the numerical integration of the full

I AL -100-

Pt -

expremon [ . . 5 B
In the “other domun, ] <0 b«nuse the uglu are defined in the op,posiu - i
those in the v >0 domain, the tsaasformation ¢—-g will Bae to be made’ bdor: the

 results may be compmd -19 equation (IV.1). Thz maib :Dnseqne:e of this dzﬁmnon
& 3
of the ngle in the second domain is that. e . b
. o .o - s B J .- M
BN J‘Iy<0. =18ly>0 - ave

Hence the integral over ¢ in. the expredsioi for the domain wall coriductivity contribi

tion'in the y <0 domain ¢an be divided fn'a similat fasblon .;‘tll.i in the positive 3
. o s 1 - . .

S . domain. . Y, :
S - ‘ |

- : 6
é:i[y =07) = -—(_"e'“/x(—smdl [l-o-colh—l 5 N
" %
. - + [ [-smw)] [l+colh ])m ié :
h £——(sv —07) = ‘X f""“ “ ’ (IvV.3)
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Under the transformation ¢—-9, it can-be seen that these two expressions are the
Y . . LW ~ B

- same, : Lt & 3 [
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Equation (3.34), the ibution to the lobgitudinal conductivi y due to the pres-

: Y
exce of au infnitly thin domain wal, b thyée ydependnt terms. Onee S8 i

known»lthe slope of the curve cang be determined using ‘the product rule for

diflcentiation. In thé positive y domain, if the ‘Senter of curvature of the electron tra-

: {fetor moves away Trom th domaln wall, the anguls dstanet measused from ihe posé

e i, which the-elctron must cover 1 seach the wall,will ncreste, This xplaias
-

the result found from (3.26) that s _
el .

.. %
! a4 w, 7
e . =gt y>0
. ! . . dy vy sinfsing’ e
- . In the negative y domain, movement of the center of curvature in the positive: y~

| direction will decrease the angular distance the electron travels to the wall. “Again this

s S geometric argument holds true when the derivative of equation (3.30)'is taken.
' dg'’ “u,
I . G0
. -y = oy emtmg U< ,
The three y-dependent terms can now be, diferentiated. giving the following results

in the y >0/y <0 domains. - . *

. d, . _ w, cotg!
d_y.[ism ¢ = vy sinf f
- x : <
~ gy = Y O h
dy xvy sinfsing’

we

. ' di[l + cothi] =-+ =
v X sinﬂsiwsinh’% .

Finally, combining terms, the general expression for the slope of the domain wall contri-

bution to the conductivity curve is as follows.
s 3 .

% N ¥

Ai.)pex;dix V: Slope of Longitudinal Conductivity Contribution
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