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Abstract

In the thesis, the various theories of inhomogencous superconducti
on Gor’kov’s equations(Chapter 2) are reviewed ineluding de Gennes- Wertl
theory and Eilenberger cquations as well as their applications to study th
imity effect of a bilnyer system. McMilian’x tumelling model i abo introduced.
The ciaracteristics of the thickness depend of the I
in the thin filin limit from the above theories are disenssed and wil. ve compnnd
with the results from our caleulation.

The superconductivity of a supe ing of alternating supercondet
ing and normial layers has been inves gm‘d(c hapter 3) by meansof e Bogoliubor
equation. A relation, which determines the transition temperature 7., obiai
from the self-consistency equation of the order parameter. The & Al expres
sion of the dependence of the transition tempesature 7, on the thickness of
perconducting layer in the thin flm limit has heen obtained thvowgh n analysis of
the cquation and the comparison with the results from the other theories disenssed
in Chapter 2 has been done. A periodic energy-momentum relation reflecti
periodicity of the structure has heen obtained which gives rise fo (e by
further caleulation for the p of an external magnetic field or a finite order
parameter.

In Chapter 4, we applied the Werthamer theory to a quasi
with a fractional dmu-n ion ’D We build the reeurrence rela
in the lincar in terms of the self-si
whick provides a syﬂ'c'n.A method to deal with the complicated houndary con
tions. The dqwmll'nm of the Irmmlwn temperature on hoth Ll

ayer and fracti jon D has been obtai
argument in some liwiting cases. The scaling argument i
of the presence of a perpendicular magnetic field. The werieal
transition temperature as a function of the thickness is completed and shown
corresponding figures, We also calenlate certain values of T, corresponding to U
given parameters, such as dimension D, thickness dy and coherence length &(0),

el the

with the experimental values. The result of the comparison

satisfactory
discrepancics ramging from 2% — 10%, con

nt with the Werthamer theor
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Chapter 1

Introduction

growing attention has been paid to the proximi

in supereondueting s

ems. Most of the early studics of the proximity offect were

coneerned with the transition temperature for superconducting bilayer structure

and were based on the Ginzberg-Landan(GL) theory of inhomogencons supercon-

duetivity or on the lincarized Gor'kov equations! '] Tu particular de Gennesl 21

E31 derived s expression for the kernel in the linearized Gor'kov ruation based

on the solution of the diffusion equation together with the appropriate houndary

conditions.  Using this method he was able to obtain certain analytical results

in the limiting ease of thick and thin films. Werthamerl '] has also derived an

expression for the kernel. although in a somewhat more straightforward manner,

and obtained a result equivalem to that of One queney approach found in de

Gennes! * work for thick films, We will disenss the derivation and the application
of the de Gennes-Werthamer theory of the proximity effect in some detail in the

thesis. A substantial munber of theoretical studies have examined the generali

tion of the basie de Gennes-Werthamer theor

An extension of the application of the de Gennes

Woerthamer theory to the

more complicated geometry is straightforward provided the boundary conditions

e be properly handled, OF particular interes toms comprising alternating

of supereondueting and normal metal (SNS ... SNS) or more generally

tems comprising alternating layers of superconducting materials with different ma-

characteristies (88'S ... SS'S) and many length scales. Much of the interest




has concerned superlattice structures which is a relatively sinple system involving

only two length scales. Experimental studies on such superlattices have concerned

largely the dependence of the superconducting transition temperature on the vela-

tive thickness of the layers and the modulation length of the superlattic

171081 and the effects of applied magnetic field.L * 1L TOTTERTES T gyl wtud-

ies reveal a rich variety of phenomena associnted with the

omplex interaction of

competing mechanisms and, in the case of the eritical field measurements, the often

subtle interplay between the maguetic length scale and the inhomogeneity in the

uper i herence length associated with the superlatlice steaeturel 101

Since the de Gennes-Werthamer theory is concerned with the ealenlation of the ke

nel in the linea

zed Gor’kov equations, it is applicable only close to the transition

where the 1

order vamishes.

If one wishes to explore the superconducting properties of such

Lems away

from the transition temperature one would be involved in the complication of the

Gor

v equations due to the non-linear feature, A mueli simplified version of the
Gor'kov cquations, the Eilenberger equations! ' 1116 Iprovides the basis of study-

ing such propertics of the system. We will outline the hasis of the Eilenberger

lism. Close to the ition temy L it can be shown that. the Bilen-

Derger equations reduce to the de Gennes-Werthamer equations in the approps
limits and recent quantitative caleulations of the upper eritical field have been pre

f15][16]

sented hased on the Eilenberger theory U710 However, in general, the
caleulations are extremely difficult to handle. Henee, alternative approximation

schemes mst be employed.

Another approacl is ased on the Bogoliubov equations, which with a snitably
simple asswmption of the form of the pair potentinl ean be solved aud vazious prop-
erties of the system thereby obtained! 8101911201 E201 The pelation between

the transition temperature and the reduced thickness

i cusily obtained, however

2



any further ealeulation involving a finite superconducting order parameter A or the

presence of the

ol magnetic field will be involved in the complication of the

periodi

neture of the energy pectrum. Another pl logical

approach is the tunnelling model of MeMillan '8 1, where a potential barrier is as-
sumed Lo exist at the interface; tunnelling throngh the barrier then is treated by the

transfer Hamiltonian methodl 221123 1 While such theories have been extremely

suecesshul in providing a quantitative deseription of many of the observed phenom-
ena there are in the literature a number of data which are not consistent with the

predictions of the Werthamer theory of the proximity effectl 31161181 That such

theories fail in the ¢

‘e of thin layers

and for clean systems is not surprising given
the approximations involved in the derivation of the Werthamer formulal 2111251

26,

Other geometries whiel have heen studied include one dimensional quasiperi-

adie struetur

1 and self similar or fractal geometries! 2% 1. The interest in such

novel geometries stems in part from the hope that despite the relatively complex

nature of the geometries in question, it is nevertheless possible to understand many
qualitative aspeets of their heliaviour in terms of fuirly general argaments. In the
case of the self similar geometry the fact that the strueture repeats itself over many

length seales

g

s that one should be able to deseribe certain aspects of their

behaviour in terms of cortain scaling arguments. This has indeed proved to be

the cas

in o munber of recent studies o the closely related problems involving

supercondueting and normal frac

networksl 201 (30,

In this thesis, we caleulate dependence of the tr

ition temperature 7. on
the thickness of the superconducting layer for both the periodic and quasiperiodic
geometries of superlattice. The ontline of the thesis is as follows: Tn Chapter 2,

we review briefly the main microscopic theoric

tarting from the cffective BCS

3



Hamiltonian and discuss the de Gennes-Werthamer theory, the Eilenberger equa-
tions and the McMillan model. We change the notations in this chapter from time
to time in order to follow the notations in those original papers cited in the chapter
so that one can casily compare the results in the thesis with those in the papers. In
chapter 3, we apply the Bogoliubov equation to a periodic geometry with a simple
assumption of the form of the pair potential, and then caleulate the pair potential
self-consistently which allows us to obtain the relationship between the transition

temperature and the thickness of the single layer ebedded in the superlattice,

An energy-momentum spectrum has been obtained with the application of Bloch'’s
theorem. We compare and contrast the results obtained through this technique

with those obtained by the other approximation sehemes in various limiting situa-

tions. In Chapter 4, we caleulate the transition temperature of the quasiperiodie

geometry with i by the g ed Werthamer theory proposed

by Takahashi and Tachikil ' 1. A comparison of the theoret

| predictions with

the measured values! 2# 1 is presented and the agreement shown to be quite satis-

factory. In two limiting cases that the length seale of the whole fractal strueture
L >> £and L << € with £ being the coherence length, the analytical results of the
scaling law which reflects the thickness dy il of the

are obtained. In Chapter 5, we summarize the results of the work presented

offer some and di i ing them.




Chapter 2

The Inhomogeneous Microscopic
Theory of Superconductivity

In this chapter, we introduce the cffective BCS Hamiltonian that arises as a
resnlt, of the electron-phonon interaction! 32 1 together with the Gorkov’s equations
for the Green's functions.! ! 1 In order to apply Gor’kov equations to the inhomoge-
neous superconductor, some further theories with appropriate approximations have
to be introduced. Near the transition temperature T, one can linearize the Gor’kov
cquation since the order parameter is infinitesimally small. For a bilayer system
composed of the alternating superconducting and normal metal layers, de Gennes
assumed that the kernel in the linearized Gor’kov equation satisfies the diffusion
equation and introduced the houndary conditions at free surface and interfaces so

can he completely solved in various limiting cases.

that the fransition temperature
Werthamer derived the same result as that found in de Gennes’ theory in more
straightforward way rather than deal with the diffusion equation. Away from the

a caleulation scheme suitable for a finite order parameter

transition lemperatus
ed the Gor'kov equation through reducing the un-

is needed. Eilenberger simpli
known Green’s functions from four to two and the theory has been widely used to
study the effeet of the presence of a external magnetic field. Another approach is

d a trans-

the tannelling model Hamiltonian proposed by McMillan which i

fer Mamiltonian and treats the interface as an energy ba

cr, The various theories

wentioned above will be disenssed briefly below.

2-1 Gor’kov Equation

§2-1-1 The Electron-Phonon Interaction Hamiltonian

resentation, the model iltonian of the clec-

I the second quantization e

5%



tron-phonon system may be written as( 32 1
H=Ho+H, @11
wiicze Ho s the Hamiltonian for frec clectrons and free phionons,
Hy= Y hogalaz + Y egel ez, . (@12)
7 te

and Hj is the interaction Hamiltonian of the clectrons and the phonons,

Hi= Y (Dgogel, ez, + Djalel , cr). @19
Ko

The indices ¢ and ¥ denote the wave veetors of the phonons and the electrons

vespectively, e = Juis the energy of a single clectron iu the s

k relative
to the chemical potcntial i, hwg denotes the energy of a phonon in the state §, o
is the spin index of an clectron; D D) is the clectron-phonon conpling constun,
which depends ou the internction potential, andl al, (ag) md "If.., (e,) are the
creation (annihilation) operators of the phonons and clectrons, which s

algebra
(ehag) = afag —agal = bez . (214)
(4..,"&«-) = CLCP.-' + Ep,.rcz-_,, =bppba s (2:15)
respectively.

Starting from the Hamiltonian (2-1-1), Frohlichl * 1 derived the effective Hamil -

tonian by means of the eanonical transformation

H, He

(2-1-6)

where the operator § is chosen such that the transformed Humiltonian 1, has the

sume cigenvalue spectrum ns that of H.



Equation (2-1-6) may be expanded as
Hy =4 (1,84 35,8, 8]+
= Hy -+ (Hy + [Ho,S1) + 5[0 + [Ho,S1), ] (2-1-7)
+ US|+ 3+ LB, 81, 5] 4
We can eliminate the interaction to lowest order if we choose § to satisfy the

equation

Hy + [Hy,S] =0, (2-1-8)

so that there is no first order electron-phonon interaction and we obtain the fol-

lowing expression for Iy

1 1
H, =Hy + 5[H,, S|+ 5|H; +[H, S),5]+

2 (2-1-9)
~Hy + 5[H1, ).
I the operntor § s assuned to be of the form
5= Y (Agugel, . eq, + Biulel (2-1-10)
Fio:
thew using equition (2-1-8), we ean determine the coefficients Az and By
Ag=Dleg+luog - )"
(@-1-11)
By=Djle;
thus § is expressed as
el el gacte
L AN 2112

¥ g
To obtain the dlfective Hamiltonian which deserihes the scattering process of the
electrons through exchange of one phonon, we can take the expectation value of

thes term H,, with respect to the phonon vacuun state [0, which is defined as

az{0>=0, (2-1-13)

7



to give
Hepp=<OlH,0>

=L S{< Olfulng >< gl S0 > — <0fSlug ><nglHild >}
A

(2-1-14)
1 g
=5 D (<0 H |1y >< 18510 > - < 0| S[1y >< 14l,[0 >}
T 7
where we have used the completencss of the phonon cigenstates
Y Ing><ng (2-1-15)
ned
and the property of the operator §
<ngS0>=0 for  nyp#l;. (2-1-16)

Substituting (2-1-12) and (2-1-3) into (2-1-14) and completing the algebraie enlen-

lation, we obtain the cffective interaction Hamiltoninn

1 2hw, t t
Heyp=%> PPp—— L 4 c e (21417)
2 kEl‘:"oza‘: g ey — (hogP BT Boqar B

which describes the interaction between two clectrons throngh the one-phon
exchange process The other terms describing mmltiphonon processes can he omit-

ted due to the Migdal's theorem.! 33 1

§2-1-2 The Effective BCS Hamiltonian
The effective clectron-phonon interaction may be written as

i

1 oA
H‘”=§ ZZVW Tk g0 - (21-18)
o
where
2hwg
Ve o= D —————— . (2-1-19
ki = 1Pr (e— ezp 1) = (hiog? )




When both of the clectrons scattered by exchanging a phonon are very close to the
Fermi surface determined by chemical potential i, the difference of the energics

sutisfies the condition [ep — ez, < hwg % hewp (@n is the Debye froquency) so

ractive interaction. If the

it the coupling constant 1-"~w. <0, which yields an at

difference of the encrgi

is larger than hwp, the coupling constant V;j is positive

so that H,gy is o repulsive interaction whicly decr apidly with inercasing

energy difference,

In the superconducling state, only the clectrons ocenpying the states with
encrggy in the range of g hwp can be seattered to the new states throngh the
phonon-exchange process. Those oceupying states far helow the Fermi surface
e e treated as free clectrons which prohibit other electrons from occupying the
same states by the Pawli exelusion principle. Thus, in the application of (2-1-19)
to superconduetivity, Cooperl 1 took the appropriate assumption that for the
clectrons in the states ¢ < hwp the coupling induced by phonons is a constant
¥ > 0 and for those in the states e > hwpy the conpling vinishes. So the cffective

Hamiltonian becomes, in the BCS approximation,

(2-1-20)

The approsimation obtained here i

alid only for a “weak conpling” super-
concluctor, since the form of the Hepy implics two assumptions:

(i)n

g a coupling constant which is independent of the energy variables

ndl bz, we e noghoeted the effect of retardation.

(ii) All the processes of absorption and emission of phonons by creating and

mmihilating a pair of quasi-particles have been neglected so that the quasi-particles
are treated as these with infinite lifetime,
"To consider both of the *nfluences mentioned above, a strong conpling theory

should be built and we will dis

uss it in the last section of this chapter bricfly.

9



In applying the theory to the inhomogencous case, it is convenient to transform
the Heyy into the coordinate representation by means of the transformation,

Vol =3
{

kT
g T,

& (21-21)
o= Er}‘,r"“ .
3
which may be inverted to yicld
CRo
(21-22)

ok, = / T (F)d'r

where we have chosen the volume as unity. The operators d’-,,(.'F) and v/‘-.'.( ) enn e

shown to satisfy the anti-commutating algebra

(50 ®) LE)) = 87 = 9D .

The effective Hamiltonian in the BCS approximation way be written in terms

of the operators # and ! as

Hepy =¥ =3V Y [300) 3@ byt dutir s
8 (2-1-24)

==v [@dl @i i@ e,

where we have further simpli ideri

 the effective iltonian by g the Pauli

exclusion principle, which prohilits two clectrons from staying at the same s

ie.

@ dle =il e =h@ he = d b =o

For the Hamiltonian (2-1-2) of the free phonons aud clectrons, we omit the

the free phonon term since in superconductivity, the physical properties of  su-

perconducting state mainly depend on the hehavior of the electrons, and consider

10



the phonons only in a role which induces a new attractive interaction Hepy. The

free part of the Hamiltonian, fy may then be written as

1y =~ Ky

/ P PHET ha(),

with

Combining Eq. (2-1-24) and (2-1-25), we finally obtain the BCS Hamiltonian I
K=FKo+V, (2-1-26)

whicl is o well dofined theory ineluding the phonon-induced attractive interaction

among the electrons, Suelr a new mechanism enables people to caleulate various

| ters in superconductivity and esplain the experimental pl

42-1-3 Gor’kov Equation
The theory obtained in st subscction can be ensily generalized to inelude
the influences of both external magnetic field and the existence of non-magnetic
impurities. Following the method of A. L. Fetter and J. D. Waleckal 351, we obtain
R=FRo+ ¥,

o= /:1“.1- g %[—ihv () R NG

DY / SO @ b du(F)
o
where A(F) is the vector potential and U(F) is the impurity potential whicis is of
the form
U@ =Y u(F-7a), (2-128)
n

th

with &, beiug the position of ¢ impurity.

11




Gencrally, one can obtain a non-lincar ditferential equation de

bing the spa
tial and temporal evolution of the operator fields dhq (#) by means of the Hamilto-
nian (2-1-27). However, it is too complicated to be solved completely so n mean
field approximation has to be taken. Tn this approximation. one can decompose
the product of four field operators in the interaction term 1 into the following

¥ aViyy

v / i< d@dt@ > d@i +H @i < b

The reason for making such a decomposition is that an essential eharacteristic of
superconductivity is the formation of a Cooper pairs by two eleetrous with opposite
spins, which results in  the appearance of an order  parameter,  sinee

< i ># 0. The other terms comizg from the Har

ce-Fock decomposition sucl
as < &i(.r-).[v(,(r-) > and < ([vl(i):},,(.r-) > hawve been omitted sinee only the differ-
ence between superconducting state and normal states are of interest; nevertheless,

those Hartree-Fock terms are assumed to he the same in both of the s

and

they have no influence on the comp

rison between these two states,

With the mean field approximation, the cffective Hamiltonian now becomes

KnRogp=RKo+Visg.

2-1-30)

and the pair amplitude in the decomposition is defined as

(2-1:31)

with

A7 =knT

Eq. (2-1-31) provicles us witly a self-consi

ent, definition of the pair mnplitude whicl

depends on the cffective Hamiltonian inelnding the pair smplitude itsell,

12



To enlenlate the pair one needs to introduce the lized Heisen-
Lerg field operators dofined as

iy (£, 7) = otk g (3) o0k

7 (i Yo~ Nesrk |

i@ =
thjey (7,7) @139)

B (F, 1) = eRentk gy (8) e Renrk

1/'-1.‘(,,';‘, 7)= cNestk ,[,‘f(;-, eRessk |

where we may regard 7 as anthe imaginary time.

ablish the equation of motion for the field

With this definition, one can

operators from the effective Hamiltonian K,/ using the Heisenberg equation

By 5oom
hg=0n =10k Feeps] (2-1-33)

+ anbitrary operator defined by O = Nesr§Oc=FKerrf, By means

where O is
of the anti-eomumtating algebra (3-1-23) we obtain the equation of motion for the
field operators us follows
h%.ﬁ,\, = —|ﬁ(_mv + LA -+ U@y = < > il
/V%Jv}‘l - m‘"uhw SADR =+ VN =V < L >
(21:34)

Note that the pair amplitudes may be expressed in terms of the Heisenberg field
operators transformation, i.c.
sata it ol
S > =<l () (1) > (21:39)
< by > =< by (1) >
Sinee we are only interested in finding the solution of the pair amplitude,

whicl. gives the order parameter in a superconductor, rather than the detailed

representation of the quantized wave functions ¢ and ¢ themselves, we introduce
the Matsubara funetion given by

i

G(Fr F'7") = = < Teldi (Fr)i L (7)) > (2-1-36)
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together with anomalous Matsubara functions, which are closely related to the pair

amplitude, given by

(21-37)

{ Fl@r#7') = - < Tléwi(Enén (@ 7] >

Fn e == < Tk @nél @ s

The sclf-consi: ion of the order is defined ax

A = VFES 7y =V < fy(HF D> .

The time-order operator Ty which appears in the definition of those Matsubara
functions with respect to the imaginary time 7 i defined as

< T (A(n)B(") >

=6(r-1') < AnNB(") >

~6(r' 1) < B(r)A(r) >,

where A and B are any fermion operators and 8(r) i the step funetion

1, >0,
6(r)=
(r) {0v T <0

If we usc the Eq. (2-1-34) and take the derivative with respeet to imaginary

7 of these defined Matsubara functions, we esn have the Gor'kov equa

H;% - ﬁ(-il.v + g,i(;))’ + 1 = U(FG(ar,7'7') + AR Fl(#r, 77)
=7 -F),
(2-1-39)
[-/,03r = ﬁ(_mv + LA + = UA|F G 7'7) - MEIG T, i)

=0,
(21440)
[naﬁr - %m.v i gi(n?))“ +u—v@iF @) - atmgn, #7)
=0,
(21.41)

14



In the case that the Hamiltonian is independent of imaginary time 7, the
Matsubara functions only depend on the di Ference of the imaginary time (7 —7').

The Fourier transformation of these functions with respect to 7 yiclds

GEr ') = ()" D TG wn) |

#,wn),

Flrr i) = (a3 eientrrF

wherew, = (20 + r/ph andn = 0,41,%2,... and we have used the periodicity

of the Matsubara function! 31 given by
G(r<0) =5G(t+3>0),

where the signon theright sidedepends on whether the ficld operators constructing
the Matsubara funetion are fermions or hosons.! 35 1
The equitions of motion fr the Fourier components can be written ns

[ = (=i + %.-1(:-))‘1 11— U@ONG(F, Fun) + ADFT(E T, wn)

2m

= W87 — &),

[ ,_,%(mv + Ej(;-))'l + p= U(@FHE P wn) — M@ G wn)
=0.
(2-1-49)
The self-consislent. condition becornes
AF) =V < @ () (F) >
= VFE* ) (2-1-44)

= V(AN Y e E(E  w,)

The Tiorkov equations obtained above provide the basis for the self-consistent
ealeulation of the order paramcter. One can assume a simple form of A in Eq,(2-
1-43) and obtain the solution of . The Eq.(2-1-44) then gives a new form of &,

15



so that by substituting the obtained A into Eq.(2-1-43) again and repeatiug the
same procedure, one can finally obtain the sclf-consistent solution for A.
The theory obtained above covers most of the carly theories such as Ginzberg:

Landau theory and BCS theory. Gorkovl 3¢ | succeeded in deriving the G-L equa-

tion which is valid near the critical temperature Te from Gor'kov equations. The

derivation determines the phe: logical constants appearing in the CG-L the-

ory in terms of the mi i and the iate range for which the

G-L theory is applicable so that the G-L theory has tho firm hiwis of microscopic

theory and can be generalized to much more complicat

ems sueh s magnetic
superconductors ctc.

If one applics the Gor’kov equations to the bulk superconduetor which is spa-
tially homogeneous without the external maguetic field , one can rapidly find the
results as obtained from the BCSI™ 1 theory. As an example of the application of

the Gor’kov equations, we will show the d

civation briefly helow.

In a spatially homogenous superconductor, one can tike

so that the Eq(2-1-43) s of the form

[éhwn — q—f;(—i!:V)" + p]G(F M wn) + AFHE# wa) = ho(F =), (2-1-45)

ity - 21~n(iW)2 +uF (7, o) - AlG(E 7 wa) = 0. (2-1-46)
N
The translational invariance of the above Eqs. implics that,

G(#,# wn) = G(F = 7 wn) |

(2-1-47)
Ao =Fla-

swn)

16



and henee we may have the Fourier f ion of the I

with respeet, to spatial coordinates
(7 = #\wa) = (27)7 / Pk TG w,) (21-48)
FHE - & 00) = (20)° / P I FN w0 | (21-49)

Substituting the Eq.(2-1-48) and (2-1-49) into (2-1-45) and (2-1-46), we have the
cquations

[ilw, — eglG(Fywn) + AFT (Fywa) = b (21-50)
[—ilw, = eglFH(F,wa) = A*G(Fwn) = 0. (2-1-51)
where the order parameter A is of the form
A* =V(An)™! zc-"“'"“*ﬁ(i: 0,wn) (2-1-52)
:

The solutions of the Eqs.(2-1-50) and (2-1-51) are casy to obtain

o —h(ihwa + ;)
Fown)= o T0 2153
G(F,wa) A+ IAF ( )
B A
A Fwe g 9.1-54
(rion) W+ +IAP (21-54)
50 the self-consistent equation for the order parameter is written as
— Sk A Y
it Z/ @) ()2 4 B2 (@155}

with

3 +anE.

Eliminating the common factor A in (2-1-55) and completing the summation over
whe wo have

1= r@n)-? / @k (2E)™" taul(Eg/2) . (21-56)
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This equation can d ine the iti I and order A(T).
When T = T., the system goes to normal state so that A(T;) = 0. Eq. (2-1-56) ix
of the form
v de
1=VN(0) / = tanh(dee/2), (2-1-57)
o

This equation allows us to write down the expression for transition temperature 7).

in the bulk superconductor as
27
T. = == exp(~1/N(O)V) (2-1-58)

where v is Euler’s constant. This is the same resuil as that of BCS theory obtained
by means of variution method.! 31
Another interesting limiting case is the value of the order pavameter at. 7' = (.,

In this case, Eq.(2-1-56) hecomes

hop  de " 2wy -
1= VN(O)/“ ((”‘—AZ)% =1 N((l)In(T) . (2-1-59)
so that
A(0) = wpexp(-1/N(0)V) . (2-1-60)

The more general relation between the order paramcter and temperature weeds

numerical calerlation and we do not discuss it here.

We have di d the tl ical iption of n sup 1! based on
the Gor’kov equations which is quite general and ineludes the G-L theory and BCS
theory as the special cases. In addition we can apply this theory to a more com-
plicated case with the external magnetic field and impurity potential or, as we will
show, to consider inhomogencons structures. Nevertheless, the non-linear feature in
the Gor’kov equations makes it very difficult to solve the equations dircetly so that
further approximation methods have to he considered correspouding to different.

cases. We will discuss these methods briefly below.
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52-2 de Gennes-Werthamer Theory

§2-2-1 Linearized Gap Equation
To calenlate the transition temperature T, the integral solutions for both the

funetions G and F1 from equations (2-1-43) can be worked out as

. @21)
= [ o PraGE @G 1, A ()G )
A = [ a0,z —aal@)e @, e

= / By e (7,7, —0) AN @G @ B, —0)AED)F (F, 7 w0)
’ (2-2-2)
where we have introdneed the Green’s function which describes the behavior of a

single clectron in the normal state, G"(F, &', w,), satisfying
1 5
it = 5=V + SAE)? 4+ = V(@G (7 wa) = hS(E =), (2:2:3)

where w = w, = (20 + 1)7/Bh and n = 0,21,2,... as before. One can notice

that, near the eritical iti the order pa which describes

a superconducting phase is supposed to be small so that a linearization approxima-

tion for the order v can be consid Tience, the self: cquation
for the order parameter, A(F), is given by
Al =vinen Z/ &y QuE At (2-2-4)
w

where the coupling constant has been written as a function of & since in the appli-
cation to the inhomogencous superconductor, it takes different values for different

regimes and the kernel is

Qu(F, i) =g" —w)G"(F T w) s (2-2-5)
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where the bar means the average over the randomly distributed impurity confign-
rations and the order parameter has been assumed real without the magnetie field.
If one can have the solution for the kernel by any means, one ean calenlate the

transition temperature T, from the Eq. (2-2-4)

§2-2-2 de Gennes Theory in a Bilayer Structure

Perhaps the simplest geometry one can consider ix a hilayer structure with one
layer of superconductor labeled by A and another of normal metal labeled by B
Related to the corrclation function de Gennes {21 showed that the kernel Qu(#, i)

satisfies the diffusion equation. In one dimensional case, it is of the form

[2fw] ~ D(a' )I,I,,]QN(: a') = 2w N ()b — '), (2-2:6)

where D(z) is the diffusion constant and N(z) is the density of states nenr the
Fermi surface, both of the two constants take cortain vahies according as . is in
the superconductor region or normal metal region. From the Eq. (2-2:6) we have

the general solution

>0
Ol "le I [e~le=a'lVea 4 yo~letelEn) ;.,,{ :, 0"
(2-2-7)
Nu% | wxfeatsen >0
o(2,2') = e
Qulz,a') = olen’ forf W o

where €4 = (844, €0 = (£ and A and B are the labels defined above denoting
the different layers. The cocfficicnts g and A shonld be determined by the proper
boundary conditions.

The first boundary condition given by de Gennes! 21 i«

NG
iz

=0 at free surfuce, (22.8)
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This condition means that there is no clectron flow out of the free surface, which
yields
DEQ-.,(:F.F) =0 at free surface . (2-2-9)
G
Thii siscoii Goridition. carie from thic Eq, (2:2:6) Gireetly it one complotes the

integral with respect to 2’ in the Eq., the boundary condition is

rmgt

5 =0
D(2')==Qu(x,2") 0, (2-2-10)
[P gpautes]

which yields
5’7’1% contimious at interfaca. (2:211)

The last boundary condition given by de Gennes! 21, having considered the dirty

limit | « € with [ being the mean-free path, is that

NpQu(,0%) = NaQu(x,07) (2-2-12)
which yields
B it e, (2-2-13)
NV
From those houndary condi it is straightforward to solve the cocfficients j
and A
26pNa

"= Ny + €Al
_ Naér—Npép
T Naat+Npép '
If we nssume that the thickiess a, b of the slabs are much smaller than the respective

(2214

coherence lengths Ex(T), €s(T) so that the kemel @, in cach region can be treated
as constant, we can have the quite simple equations for those order parameters

given as

P 1
Bum ), !'"Tm mwﬁm" +NaNyad,) ,

(2-2-15)

L 1 P
P e i N v
}uj 1 ,TM Noi g Vg Vb 4 NuNaads) ,
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where a and b are the thicknesses of the superconducting and normal layer respee-

tively and a,b << €. The thickness dependence of the tra

ition temperature 7.

may be obtained

Te(a,b) = 1.1dwpe™" /7| (2:2-16)
with
N2V,a + N2v,b
o s 2917
P TN+ N (G221

being the “ecffective NV” in the BCS formula for T.. When the superlattice ix

composed of superconducting and pure normal metals(V;, = 0), we have

Te(a

b) ( Tee
Tea Lldwp

jile; (2-2:18)

The other interesting limiting case s that the thicknessés of the layers are
much larger than the coherence lengths. Tu this case, only the lowest frequency i
important since &, = (D/2Jw])¥ in the kernel Qur,a’) has the maxinmm €, =
(D/2rT)}. The details of the one-frequency approsiniation, which s valid for this

limit, can be found in de Gennes’ workl 21 and we only present here the vesultant,

equation determining T
gtan(ja) = K tanh(Kb)
where ) = DuNou/D,N, and g and I are the wave voctors of the clectrons in the

superconductor and normal metal respectively.

§2-2-3 Werthamer’s Kernel and the Transition Temperature

Instead of relating the kernel in the linearized self-consistent, Eq. (2-2-4) to the
diffusion cquation, Werthamer! 4 1 dealt with the kemel in a more straightforwird

22



way and obtained the explicit expression as follows

114,,

3 Qulé, i) = NO)lin( )(E =) = X(& =),

X (7 =) = (2m) /ruz-a-nmz ) &%, (2-219)
2.3 1
X(2) =#(5+ 53 - %(3),
where (=) is a digamma function and N(0) is the density of states for one spin
projection at Fermi-surface, The kemel obtained above is quite similar to that
worked out. by ¢~ Gennesl 21 through the one-frequency approximation. Indeed,

we will see helow that both of the kemels yield exactly the same implicit equations

which determine the tra

i e T o o Diliyes Syati.
The substitntion of cquation (2-2-19) into the lincarized sclf-consistent gap
el
8@ =v@ [ S ousn an 'y, (2220)
it Uil equation 1t bhie diffesdatinl Tovia

c(f')

A[=EVEAD) = In(=5—)A®@) , (2-2:21)

where
&= 5_7’:;),% = % s (2-2-22)
VOV =), (2223

The houndary conditions, based on the conservation of the current when the elec-

trons cross the interface, are

«Iz:\,(.:r) =0 at free surfaces,
_1 we e (2-2-24)
A continuous at interface .

It worth noting that the second boundary condition adopted here without the

diffusion coefficient D and the density of states at the Fermi surface N is slightly
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different from that of de Gennes. An implicit assumption has heen made that the
densities of the states at Fermi surface are the same in both of the regions and
the diffusion constants only influence the coherence lengths in cach region. The
detailed discussion on the effects of introducing the diffusion constants and the
densities of the states at interfaces can be found in the works by S. Takahashi and
M. Tachikil 1,
If one considers the solutions of the order parameter in hoth regions to be of
the following form
A(z)=err . 0<e<D,,
—cthr _D,>r<0, (2-2:25)

one can casily find the following cquations with the boundary conditions

e = (),

=€) = (52, (2220)
"
Katan(k,a) = ko tanh ko) .

which are sufficient to determine T.. As mentioned above, the last equation of

the above, if one included diffusion constants and densitics of the

tates al the the
interface, would be the same as that obtained in previous subsection by de Gennes
theory under the one-frequency approximation. It is in that sense that we consider
the Werthamer theory valid for thick flms.
In this thick filins case, one can consider the limit € € k) & dyy 5o that the
function x(z) can be replaced by
{mu F(Z2), forzz0,
x(z)= 4
Zl(l+z), forz<0.
Choosing the transition temperature Tey = 0 for the normal metal, the transition

(2-2:27)

temperature for the bilayer systen is obtained

T(ab)
Toy




‘The results obtained from de Gennes-Werthamer theory will be discussed further

i next chapter with the comparison to our calculation.

42-3 Eilenberger’s Equation and Its Dirty Limit Version

42-3-1 Eilenberger’s Equation

Sinee de Gennes-Werthamer theory is based on linearized self-consistent cqua-

tion (2-2-4), it is valid only when the temperature s very close to the transition

temperature Tr. To study the bebavios of the inhomogencous system with the cx-

ternal magnetic field, one has to consider the finite order parameter so that a more

general theory, but simpler than solving the Gor'kov equations is needed. Such a

theory was established by Eilenberger! 1911161, We will only outline the results

of Eilenbergers theory beluw. A somewhat more detailed discussion can be found

in Appendix A or from Eilenberger’s works! 1511161,

Eilenberger introduced the gauge-invariant Green functions
Galt, 7,7) = —i < T(ha(@ OFL(F,0)) > e~ HEF) |
GhL,#,#) = i < TELE, ha(F,0) > 1) |
and the anomalous Green’s functions
Fit, .8 = =i < T() (8, 1) (F,0)) > 17
{ Pl 7 = i < 76 @ 0], 0) > emitee)
where

<o =TTy ) = s @it

and

(231
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To coincide the notations used in previous section with those in Eilenberger's works,

we have i duced the ion from Schrodinger field to Heisenbery; field

(2-3-3) in which the time ¢ is real rather than imaginary as before and chosen i = 1.

The operator I yy is defined by (2-1-30) and we rewrite it below

Regp= / BB Fa(F)ha(®) - M@ @V (0) - AT @R (W (D), 23-5)

with
o 1 . €= g -
Ko = (=i = 2 A(@)* =+ U . (2:3-6)

The phase factor I introduced in the definition of the Green’s functions above

removes the influence of gauge transfor

ation on the Green®s functions Gy (1,

and Gh(t,7,#) but the FI(t, 7, #) and F(t, 7 #) are remained gauge dependent.
The Fourier transformations of the Green functions G(2,#, i) are defined as

i
G.A.r‘,:?'):%/u G, 7 7) e dt
;

i i1

(2:3-7)

For the Green functions including the phase fuctors, the Gor'kov equitions
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can be easily written as

[iw + 1 — 2%(—iv - %E(i) + ) - U(@)Gu(# &) + A@)F(F,7)
=6(F-7),

— Ry —v@iclE ) - al@raa)

!
it i (=

=§F-7),

fiw + e — %(-iv - SA(@) - R - U@IFE, ) + A@GH#, )

(i = 5=(=iV + SA(@) + B ~ V@R )~

(2-3-8)
where

R = AP (9)el(RE) | (2-3-9)

In order to solve the above Eqs. (2-3-8), Eilenberger considers a more gencral

exprossion for the Green's function G,(7y; 7,3') which satisfics

3 e n pin X
( k= g =iV = i07,)2 U@ Ald) )G..(.Fu,.r‘,f)
—ahF)  —iw g -t (=i - i85, - U@ (2-3-10)
= f§(z - &),
where dz, is the Eilenberger’s gauge-invariant
—iV = 22.(F) when working on A(#) ,
Dz, = { —iV+224(%) when working on A(7)
—iv wheu working on some function of |A(#)[? .
(2-3-11)
and G(Fy is the matrix form of the Green’s functicns
_ ( Gul@y; &,3) Fw(T:O;-Fv ') ) (2:3.19)
)
Obwiously we have
GulF,d) = lim_Gu(¥0; &, &) (2-3-13)
Fo—7F
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Eilenberger then assumes that the average of the Green's function over the ran-
domly distributed impurities restores the spatial translational invariance so that

the averaged Green's function G..(7o; 7, #) can be expressed as

Gulfe; 2,7) = G“(:};-;')
= f ey

Further, Eilenberger changes the variables from F to (£, ¢) with ¢ being the energy
variable ¢ = ((|k - kr|) so that

(2-3-14)

(2-3-15)
and defines the simplificd Green functions as
o) =i § 358G,
f,Fr, ) = f L B¢ ) s (2:3-16)

Make,d) = § SPGB

where, on the right side, the argument ¢ denotes complex energy variable which
should be integrated over along the coutour cireling the poles of e Green furietions,
parameter # is the replacement for 7.

Starting from the Gor'kov equations (2-3-8) and following a tedions deriva-

tion, Eilenb obtained ions for those simplified Green fi i We only
present the final results here and leave the detailed disenssion in Appendix A,
= 20 o e
{w+Tp (V= l?A(Z))f(W‘kﬁ‘vm)
Bp 7 [ (2:317)
=20(Z)gw, kp @)+ | —EW(ke — qr) 2
e
A{glw, kp, ) f(w, fir, F) = f(w, kp, D)g(w,Gr, #)} |
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2

{20 = i (9 +i= M@, Fr,2)

& o
= aal@yton o)+ [ GIEWE - (2318)
Al B, )7 w0, 7, 8) = FHw, Rr, D)9, 0, ))
and
gl K, @) = (1= flw, Fr, &)@, Br @)t (2-3-19)
The system of i is leted by the self- i
A@) =V < dy(@)hi(5) >, (2-3-20)

whete V is the coupling constant and may be replaced by the standard cutoff
procedure
1 T  7r1
e s () o . (2-3-21
VN(0) (Z)* 5 2“,: ! ;
The explicit expression of A(F) in terms of the simplificd Green’s functions is given

by

)+ 2y 40 - [ LB ) = (23.92)

where Sp denotes the Fermi surface. The same procedure gives rise to the equation

for the current density j()

Lo (B - B+ Trg(w,Fp, &) =0. (23-23)

dm ©

21N(0) zm,,
5 2/,

where By is the magnetic field induced by the motion of the charged particles in a
superconductor. Compared with the original Gor’kov’s equation, the Eilenberger’s

equations are much casier to handle since the number of the variables is reduced

to two from four. In the procedure of obtaining the equations, no jon of

small order parameter has been made so that Eilenberger's equations are suitable

for discussing, he effect of the magnetic field.
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§2-3-2 Eilenberger’s Equation in Dirty Limit

Usadell %7 | studied Eilenberger's equations for a dirty superconductor in which
the mean-free path is very short so that the motion of the clectrons is nearly
isotropic with respect to Fermi velocity o = kp/m. One thus can expand the
simplified Green function f(w, 7, ¥) as

J@27) =F@. 9+ - Fo,d, (2:3:21)
and assume
|F| >> |7 F|

From the Eq.(2-3-19), one has

o

9, E,5) = G, @) + = - G, ), (2:3:26)
where G(w, %) is defined by
Glw,#) = [1- [P, M) (2-3-26)

and G(w, %), by

1 F(w,5)F*(w,) ~ F*(w,7)F(w,7)
2

Glw,3) = Gw.5)

(2-3-27)

Substituting Eqs.(2-3-24) and (2-3-25) into the Eilenberger's equations given i

last subsection and cempleting some basic calenlation! 371, one has Eilenberger’s

equations in the dirty limit version

%F(w, ) — DO{G(w, £)OF(w,2) + &
AF)
m

L9\ F(w,#)[] = 2A(F)Cw, ) ,

A(F) 1n(%) +21rT§[ —Fw,#) =0,
J(3) = 2ieN(0)7TD Y (FH(w, )0F(w,7) - Flw, 7)Y 0F(w, 7))
e (2-3-28)



where § = V + 2icA(#) and D = 4vplis the diffusion constant which can be used

d

in studying the effect of the ic field in inl dirty sup

Biagil '™ 1 and co-workers applied the equation to the SN multilayers case with

the boundary couditions

s=Fn,
oF  oFy ot SNinterfaces. (2-3-20)
5 =1

where 5 = o, /0, with ¢ standing for conductivity of normal metal. For the

perpendicular upper critical field, the result may be summarized! ') to

its) = #(3) ~ g + X2y
1. = y(tn)

nft) = $3) ~ iz + K2

§ =2nTy(ts)/hDs ,

Ky = =2=Ty(tn)/hDn (2-3-30)

qs tan(gsds/2) = nqn tanh(gndy /2) |
2w Hy
Dy o
2 He
D

ok =k +

where t; (i = 8, N) is the reduced temperature and y(t) is the function of the

redueed temperature determined by the cigenvalue ks and ky. Given the needed
values of 15,1y, Dg. Dy and y, one obtains the relation hetween the magnetic field
and temperature

Tytts)/hDs]'* tan([27Ty(t5)/hDs) 72 ds/2)

=n[25Tylty)/hDy)""* tauh([2Ty(tx)/hDx]"* d/2)
(2-3:31)

1 of the superconducting and normal metal

where ds and dy ave the thi

layers respectively, At the eritical transition temperature of the superlattice, the
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upper critical field vanishes, the Eq. (2-3-31) reduces to the result of de Gennes,

Werthamer and co-workers for a dirty SN proximity system.

ks tan(ksds/2) = nky tanh(kxdx/2) .

§2-4 Tunnelling Model in Superconductivity

In this section, we will mainly discuss the tunneling model Hamiltoninu and

the i ion for the ition temperature obtained by MeMillan,

Rather than starting from the Gor'kov equation, MeMillan studied the pros-
imity effect of a sandwich by means of the tunnelling nodel Hamiltouian given
as

H=Hs+Hy+Hrp, (2-4-1)

where Hs and Hy denote the contribution to the Hamiltonian from the electionie
states in the superconducting and normal layers respectively and Hy: deseribes the
process whereby the clectrons tunnel from one layer to the other. In terms of the

Nambu doublets,

o= S 48007+ Tolar+ 3
z 7

Eiks
it
+ 3 Vg A
kg
(24-2)
with the Nambu doublet being defined as
% R
By = ( i ) ’ "—E|) i (2-4-13)
-k

where cf and ¢, are the creation and anuililtion aperators for clectrons in

ingle-particle ci @ of the suy luctor, the spin and the polarization
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1 and af(a) creates(annihilates) bare phonons with energy

, Vi is the bare Coulom interaction, -’/E. = is the clectron-phonon coupling

& _ i is the energy spectrum of the free clectron in

in superconductor,
superconductor.
Similatly, Hy is of the form

Hy= Ze,;‘l',m‘ll,. + Zw-nq DD MACA AL R R

+ Z Vg MO, ).
Fuiad
(2-4-4)

I fct, one can obtaiu the Hy from Hs by replacing F with 7 and the index §
with N.
The tunueling Hailtonian Hy. is of the form
Hy= Y Topleh ep + eheg )+ he.. (2:4-5)
T

where: the tenn ch ez, indicates a process of ereating an clectron in a state T

i superconduetor and annibilating one in a state @5 in normal metal. The prob-

ion of such a process is denoted by Tjz. A further

ability amplitude for real;
simplification will be made by treating the tunneling matrix clemeats T £ of equal
magnitude T hetween every state @z and every state Bz,
Usiug the Hailtowian Hg and Hy and completing the transformation (2-1-
32), one can define the Nambu Green’s function in superconductivity as
Gl = - < (b0 >
_ (<r (q (e O > < Tueg, (Me_g, () > (2-4-6)
= i

<rel g ek o> <met; (e o >

where < -+ > denotes the average over the Grand Canonical Ensemble. In a

an clefine the Nambu Green’s function in the normal metal as
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Gn(Fr) = - < Te(b()E}0) >
_ ( < Tolepa(eh (@) > < Tulepp(rle—pa(0) > ) (247
T \<nid e o> < empion >
The Green’s functions §s, v defined here are, in fact, the spatial Fourier components
of the Green's functions appearing in (2-1-36) and (2-1-37).
I onc only considers the eloctron-phonon interaction in Hsy and lots Iy

g0 to zero, the Fourier components of the Green’s function ¢

~ with respect to
imaginary time 7 may be expressed, in terms of Dyson equation, as
{ 05" (F0) = 65" (ko) - B (F0)
(2:4-8)
03 e) = G (e = SR (o)

where G5 (,e) = (e — efa)™" dencles the Green's function for a free clectron
in normal metal and £5'(fi¢) denotes the matrix self-cnergy coming from the
electron-phonon interaction shown in Fig.1 Dgn denote the Green's functions of
the phonon in the respective regions.

If one treats the ling Hamiltonian Hy: to s l-orde

if-consistent.

perturbation theory, the matrix sclf-cncrgy is modificd dingrammatically as shown
in Fig.2 which gives risc to the matrix self-energy of the form
ENE) =B +T*Y G (B),
o
4 < (2:1-9)
E5(E)= ' + 1) Gn,p(E),
o
where T denotes the transition matrix clement and the matrix self-energy SEy is
assumed to be E independent. In general, the 2 x 2 matrix self-cnergy Sgn may
be exparded as the linear combination of the matrix set {1, 7} with 7 being the

Pauli matrices and I being the unit matrix,

En(B) = (1~ ZN(E)EL + X(EYes + Bn(B)iy + ((B)#s . (2:4-10)
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Fig. 1.

Self-Energy
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—‘
X

Fig. 2.® Self-Energy of the superconductor is the sum of the second-order
phonon and tunnelling contributions. The Green's functions are determined self-

consistently from the self-energies.
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Onc ean simplify the expression by properly choosing the gange and renor-
malizing the encrgy spectruml 1 so that the components of 72 and 73 can be

diminated. The sef-cnergy may be expressed as
ENE) = (1- ZN(E)ET + dy(E)F . (24-11)

The function Z y(E) and #(E) should be determined self-consistently. The Green’s

function for a free clectron is given by
Goa (B) = Bl — ety (24-12)
Substituting (2-4-11) into the Dyson’s cquation gives rise to
GRl (B) = ZN(B)EL - ey 7 - Wn (B, (24-13)

or

GNup = (24-14)
Performing the sum over states, we have
L‘“ / oy Z0(BIEL + gy + S By
New = (o ZX(E)E® — &, + TX(E)
(24-15)
= h,W()NN(())w

B2 — Aj (B

where Qy = Ady is the volo -+ for N slab,4 and dy denote the area and the
thickness of the normal metal, N(0) is the density of the states at Fermi surface
and Ay is the renormalized order parameter defined by

&n(E)
In(E) "

Substituting (2-4-15) into (2-4-9) and taking S5 = AZ'F [ 38 ] we obtain the

Ay(E) = (24-16)
sell-cnergy oquations;

A E
Zn(E) = 1+thsm,

- v inTds(E)
Ax(E) = Z5\(B) A - ﬁ
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where Ty = T2 AdsN's(0) and T's = T?Adx Nn(0) .
The sclf-consistency gap equation for the BCS potentiall * | is

szt =y [ Eoven
|

1 (2-4-18)
= Vv Ny(0) [ dE Re{ —""—"—

_ANn(E) ¥
[E? - A%)E
where the Viy is the BCS coupling constant. An factor tnnh(%/iE) can be inserted
into the integral of (2-4-18) at finite temperature. For the S slab , there are a set of

cquations identical to those given above with the subscripts N and S inte

ngged
expressed as

. E
Za(B) =1 +inTurm—rr

' b ml‘sAN(El (410
Ag(E) = 25" (E)[AY' - A7 “]
a2 =vs [“ Eoqens
& A-,rE) (2-4-20)
=VsNs(0) /o .lsn.([E o i<

The transition temperature may be obtained by :-vnlunlmg e gap equation
at the limit Ag,y — 0. For the SN sandwich, we take Viy = 0. The self-consisteney

cquation for AL at T, is

As(E; E
2h — VsNs(0)Re [’ sé ) tanly( ) IE (2421
The rclation between AZL' and Ag is obtained from (2-4-19) as

A"" 1—ixln/E

As(B)= AT

e
a
g
&

where T'= T'g +T'y. By substituting (2-4-22) iuto (2-4-21) and completing the

contour integration, we have

+ %T’) = v/:(—%)] . (2-4-23)



where 1) is the digamma function and Ts is the transition temperature of the bulk
superconcluetor which satisfies

1 e E (B
Ve =), ) F

(e 4
_]“(2T5c)+1n( T )

(2-4-24)

Tn the limit of laxge T one can make use of the asymptotic form 1(z) % In(z) for

large = and findl 18]

;;7 “(Lﬁ‘)“”’“ /Tse >>1 (2-4.25)
ol

where
r
[=Cn(l+5)
¥ . (2-4-26)
= dsTANs(0)(1 + =2)
Tn
One can notice from (2-4-25) that the transition temperature T, vanishes with the
thickness dg going to zero. This is a different result from that found in de Gennes-
Werthamer heory and we will compare this it with the result from our ealculation

in Chapter 3.
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Chapter 3

A Calculation of the Critical Temperature
in Metallic Superlattices

In this chapter of the thesis, wel 30 1 apply the Bogoliubov equations to the

metallic lattice with a step-functi

for the pair amplitude, the
height of which is then determined by minimization of the free energy of the system,
We shall find, using this method for a caleulation of the eritical tenperature of
a superlattice, that our results agree most closely with the bilayer approneh of
the McMillan model, the thin film limit providing the clearest separntion of the
various approaches. Further calculation with finite pair amplitude will involve the
complication of the periodic structure and the subsequent, implications of Bloch's

theoreml 1011111,

§3-1 Bogoliubov Equation

To apply the cffective BCS Hamiltonian to inhomogencons geometries, we freat.
it in the mean field approximation as! 3 1
et @ @@ ~<tl@il@ > b @i
+il@il@ < b@d @ > (311

— <l @ilE >< iy @@ >

—_ 1/3‘(..1)) :
b= " . (312
K (rﬂl-"r) )

The Hamiltonian in a superlattice may be written as

In terms of Nambu doublet.

H:jdﬂz\i1(f)s(—ivmliuf)—v /,1='.LF(;z)-iﬂ(;?ﬁ.\ir(f), (3-1-3)
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where the parabolic band model has been assumed so that
. -2
-V =5- -, (3-1-4)
and the pair amplitude F(Z) is defined as
Fi) = FH#) = - < @h1(8) >= = < 5@ 8@ 512 . (315)

Tor further simplification, we assume that the chemical potential and the effective

mass of the quasi-particle in each region are the same, i.c.

=gy =iy m=my=my. —_
Completing the transformation from Schrodinger(S) field to Heisenberg(H) ficld
defined as
O (# 1) = e0g(F)eit!

with O4(0y) being any fild operator, 1 or 1, in S(H) picture and using the
Heisenberg equation

i20uED = 0u@ 1) B,
the equation of motion for the ficld operators can be written as

[,-% — =iV A HEE) =0 for—a<e<O,

2 (3-1-7)
(im = e(=iV)y + A U(F) =0  for0<a<b,
where A is the order parameter in the region
A#F) = V(HF@E)  (i=1,2). (3-1-8)

Expanding the field operator $(F) as the sum of the positive and negative en-

x component and completing the Fourier transformation with respect to the

coordinates y and = yields
e JE/ &*l )
DB x)eE-EDy(E, 1
[ Sl HE e (B 1) "
+ 8(=E L) E-Tt e )

(L 1)
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where I'= (ky, k), 7' = (3,) and wp(h = 1) is the Debye frequency .
The equation of motion (3-1-7) becomes

{ L+ (= B + AR (L) =0,
(~E+ g+ (1 — 25V + A JU(=E, L) =0 .

(3-1-10)

Note that once we obtain the solution B(E,l, ) with positive ctergy, the negative
energy solution ®(—E, I,z) may be written down immediately by the replacement
E — —Ein the solution ®(E, 1, ), 50 we only concentrate on obtaining the solution
©(E, 1,z).

The further approximation is made by taking
B(E,Lz) = u(B, )%, (3-1-11)

where u(E, I, &) is assunied a smoothly varying function so that. the second deriva-
tive term of u(B,a) with respect to @ can be dropped off and Q is assumed to
be

MmQ2 =2mp— It =

D (3-1-12)
where kp is the Fermi wave vector.

The equations of motion (3-1-10) now hecome

(E+ 1(11‘—.1% +A@Rus(B,r)=0 S,
O (3-1-13)
0o N.

m e T
{E+ =Qv- + Dl Jun( B, s

We now assume that the localized order parameter Ai(F) is simply the bulk value

Ay and Ag in cach region, and also introduce the step-function approximation for

the pair potential

< nd

il 2
Am:{A, or nd — @ < sty

Ay fornd<a<nd4b,
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where n is any integer and d = @ + b is the lattice period. The parameters Ay
and Ay appenring in (3-1-14) are next determined by the minimization of the free

energy of the system, which can be expressed as

o O
<m>_0_<0A§>’ (3-1-15)

and results in the set of coupled equations

Bi= 1/" de Vi(2)F(a),
S (3-1-16)
M=+ [ deVa)F(z)
2 b\/n g 201 & .

To derive the explicit form of these equations,ve require the solutions of (3-1-13).

These are readily found to be

.
us(E,v) = A, (1‘;‘7' ) ¢nE 4By (1 ilm) eint  pd-a<z<nd,

unlByr) = As (1;272)&"“ 4B, (1 i’_ﬂ) emint nd<z <nd4b,
(8-1-17)
where, for i = 1(S), 2(N)

v m=4[1-8}, pi=vmE/Q.

43-2 The Periodic Solution and the Energy-Spectrum

Since we are considering the superlattice structure, the Bloch theorem requires

that "
W(E, &) = (B, x)cit"
(3-21)
(B, x) = W(E\a+d)
which yiclds
u(Eyx + d) = u(E,2)c14 . (3-2:2)
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Then the boundary conditions may be written as
{us(E,z =0")=un(E,r=0%),

) (3-23)
us(E,—a) = un(Ebc=9 .
For the nontrivial solutions the following condition is then necessary:
cos(dg) = cos(apy) cos(bps) — [m]sin(np.).\in(hm] 5 (3-2-4)

N2
which generally gives rise to gaps in the energy momentum spectram (401 L4101
The final condition on the normalization of the sohtions

/ B (B ) de =4I E-E), (3-25)

allows one then to completely determine the ients, which is shown in Appen-
dix B.

With the solution at hand, the pair amplitnde () may be written down

Flz) = - < ¥@# (@) >0

o . (3-26
= / dE df g [W(E, @)t (B, )]s muh(@). )
0 &
The gap cquations
Ay 1P
s /_ e ) )
v dE dP HE (20
= g F@mns),
with
Fa=1 f d= [us(E, 2)us(E, )]
= i (3-28)
= a1+ 7 NIAR + 1B+ Sosin(apm)AB" <21 4 )
The corresponding cxpressions for region N are
b
by, L / dx Fz)
- dE _dP BE —
" o
e Gy FBa ()

44



with

:
F(Ay) A d [un(Es xun(Es o)1z

b

= by(1+ 1)(ICP + D) + Pi sin(bpa)CD* P41 4+ 72) .
2

(3-2-10)

li d. However, to find

The full expression of the cocffici is quite

the eritical temperature we let the gap parameters Ay and Ay approach zero, in

dml"

which case (3-24) gives cos(dy) = cos(#3E).In this limit the gap equations also

simplify to

1 “r (B 5 dQ
Nm) A / i D )
wn 4E ,lo sin(ak) sin(bk)
\’N(U) [ / B L E Do ]'““h(“)’
(3-2-11)

where N(0) = %55 is the density of states at Fermi surface for one spin projection

43-3 Transition Temperature

Completing the ealeulation (Appendix C) of (3-2-11), we obtain the equation

for determining the transition temperature Te(a, b):

b

1|,1;L_)|,\ = n.(%)mm —Jrr Yl—.)l +1n(#)[l(r) — J(r,1)]

= () = I Eer) = Jor, 1) (3-3-1)

+ () = KNI er, 2y - K6,

where
T(a ) b
=il or=-,
a
-3-2°
s AL TR (52
¢ 7hr Tne



Here Tsc and Ty, are the respective bulk critical temperatures, and

r

n? = cotl=(1 + )] Incosh(3) . (3-3-3)
:

S, 1 4 o

in(2: ;
I#) = Srrm2 = e ¥

0 dz
J(r.y)::/ﬂ =3
% gs

K(x)= %r‘[, =

a. and b, are signatures of the Debye cutoff wpy. These length seales also arise in

n(2:) In md.(:;) :

the casc of a single superconducting film earbedded in a normal metal 121 where

ac is the eritical thickness at which the transition temperature vanishes, This ean

be scen by considering the case ¥y = 0, wherehy (3-3-1) hecomes

Iu(afac) = I(r) = J(r.r) .

For infinite b, the function J(7,r) vanishes, and an analysis of the other terms

yiclds the solution Te(ae) = 0. We also see from this that J(r,r) then represents

colierence effects the other layers introduce to the single film geome

In Fig.3 we show some results for the transition temperature determined by
(3-3-4) in this simpler ease of ¥ = 0. Here we plot the redueed eritieal tomper
ature Te(a. b)/Tey as a function of a/a, for varions values of bfa,. We s that

for about b > ac, the critical temperature corresponds closely to that of a single

film embedded in an infinite normal metal, signifieant. devi

fon occurring o

around @ < a,. Also, we find for finite b that To(a,h) = 0 ouly fora = 0, i

an absence of a eritical thickness as happens for infinite b,

Fig4 and Fig.5 show results in the more general ease of Va £ 0. Tn Fig A the
ratio Tep/Tey is chosen as 0.1, ind we plot the redueed eritieal temperature as
function of a/d for various values of d/a,., where d is the modulation length o - b

In Fig.5 we show the dependence of the redueed transition temperature on the

modulation length d/a, for varions values of T,y/T,y in the partien b
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Fig. 3. The dependence of the reduced transition temperature Te(a, b)/Te; on
the thickness a/ac. (a) b/a, = 0.01, (b) b/a. = 0.1, (c) b/ac =1.0 (d) infinite b.
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Fig. 4% The dependence of the reduced transition temperature Te(a, b)/T:y on
the thickness a/d for Tea/Tey =0.1. (a)d/a. = 0.05, (b)d/a. = 2.0, (c)d/a. = 7.0,
and (d) d/a; = 50.0.
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Fig. 5. The dependence of the reduced transition temperature T,(a, b)/Ter
on the thickness d/ac for a = b (a)Tep/Tey = 0.1, (b)T./Ty = 0.0, and
(€)Tc2/Tex = 0. The corresponding results of the McMillan model are shown by
the dotted line.




Note on this graph that for Tea/Te1 = 0 (curve ¢) Ti(a, b) vanishes in the limit
d tends to zero.

To compare these results with those of a bils

er approximation we have ealeu-
lated the the corresponding curves from the MeMillan model [ 1 In this model
a frec parameter cxists which we have chosen so that the valne of a, coincides
with ours. In all cases good qualitative agreement is obtained, as Fig indicates,

although quantitatively differences up to 30% are present in sonse sections of he

curves. Nevertheless, it is significant that even qualitative agreement is obtained,
given the different geometrics considered and the fact that we are nssuming clenn

with ideal interfaces while the illan wodel assumes divly materinls

with a tunncling interface. In a sense it may then be possible to inelude dirt and

reflecting interfaces in this approach by a simple reinterpretation of the parameter
e, as has been suggested by good agreement of the step-funetion approximation
with more realistic pair potentials in the context of the quasiclassical approximation
[43]

A useful contrast between our approach and the various bilayer approximations

arises in the Cooper liuit of thin films, since it is in this limit that the effects of
the coupling between layers is most provounced. 1L is also known in this it

that the common approaches of de Gennes and Werthamer! 21 1 D are wnable 1o

completely account for the observed behaviour of the tr

wsition temperature, 1

(4411241 The differences among the various approaches are most readily seen in

the case of Vo = 0. In the thin film limit, Werthamer's result ' Vis, as expres

in (2-2:28),
Tab) 1
T, 14 bwtbfa’

whereas the de Gennes resultl 2 1, in terms of (2-2

-18). reduces to that of Cooper! 11

Te(ah) Tn

T Lldwn

2z
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Althongh quantitatively different, both of these expressions predict that, for a fived

ratio b/a, the eritical temperature approaches some finite constant as the thickness
a tends to zero, On the other hand, an analysis of (3-3-4) for small thicknesses

yields the result

To(a,b) @ g0 .
N i (3:35)

which, agaiu for fixed b/a, approaches zero as  vanishes. This approach to zero is

of the same form as that found in the MeMillan modell '8 ) expressed in (2-4-25).

A similar difference a n the case of two different superconductors. Taking

the thir film limit of (3-3-1) results in

Tea ujtasny 3.
T, ) ) (3-3-6)

valid for a/u, and b/be It not for Tep/Tey small. This is the same result as
in the MeMillan model, but again differs with the approaches of de Gennes and

Werthamer.,



Chapter 4

The Transition Temperature of
a Self-Similar Multilamellar Superconductor

rod

In this chapter we examine the transition temperature of a self similar lny

system similr to that described by Matijasevié and Beasloyl 2 1 by means of the

Werthamer theory of the proximity effect. The outline of the chapter is as follows.
In the next scction we bricfly outline the Werthamer theory of the proximity effeet
and show how it can be applied to consider the case of layered structures. Tn the
third section we deseribe the self similar geometry we wish to consider in some
detail. By means of the Werthamer theory of the proximity effeet we obtain a ve-

lation between the logarithmic derivative of the order parameter ou the bounding

surface of a cell, consisting of several layers, in terms of the logarithmie derivative
of the other bounding surface of the cell. This relation together with the self similar
natur » of the geometry allows us to compute by means of o relatively straightfor-

ward recurrence relation an expression for the logarithmice derivative of the order

parameter on one side of the sample in terms of the logarithmie derivative on the

opposite side, and hence determine the transition temperature of the composite

system, The results of ical caleulations are pres 1 for a particular choice

of parameters and a compaison of the caleulated transition temperature and the
measured valuesl 2 1 is made and the agreement is shown to e satisfaetory. In

section four we dis

s & number of limiting cases from which we ean obtain certain

scaling relations describing the dependence of the v on the

ition temp

layer thickness and the size of the sample. Finally, we ex

end the arguments pre-

sented here to consider the transition in the pr

nee of o perpendicnlar magnetie

ficld. The extension of this analysis

to the more diffienlt, yet more interesting

of the parallel eritical field is currently in progress and will e presented in s future
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bli ermitting a ison with the pk ) d

1 theory
by Matijas

i¢ and Beasleyl 281, based on the assumption of Josephson coupling

hetween the layes
44-1 Formulation

{4-1-1 de Gennes-Werthamer Theory

In this subscotion, we sumnmarize the de Gennes-Werthamer theory in order
to colleet the needed formulac being used in this chapter.

When the phase transition at Heg is of %c second order,the superconducting

order parameter A(#) is governed by the lincarized integral equation! 11
A@F) = 1’(-17)/0(.!’, 7) A@) &y, (4-1-1)
where the kernel Q(#, §) is defined as
Q) =Y 9oy Vg, ) - (4-1-2)
=
The one-clectron Green’s function gu(#, 7) in Eq. (4-1-2) is given by

¢

3 1 . 2 — - _
{iw = 5[~V = <A + ; w(@ = 75) + plou(@ 1) = 8- 7),  (4-1-3)
where u(# = ;) denotes the scattering potential due to an impurity at position ;.

Within the framework of the semi-classical phase integral approximation we

can write the kernel @ in the form{ 16 ]
QUF, ) & FieAD =Dz ), (4-1-4)

where the reduced kernel (7, j7) may be evaluated in the single mode approxima-
tion asl *]

K = 1N OISRy - ) - X(E - ), (4-15)
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with
X(@ - §) = (20)° /a’“f-ﬂ V(ERE) Pk (41-6)

and

o '/'(%) , (4-1-7)
where (z) is the digamma function, N(0) is the density of states for one spin
projection at the Fermi surface and € denotes the temperature dependent coherence
length, which is defined as

hD

SakT (4-1-8)

§4-1-2 Ei ion and dary Conditi:

The above approximations allow us to recast the integral equation B, (4-1-1)

for the order parameter in differential form,a
x(-e*[v-"”A(r)] )A(:)—-hl(w)A(rJ, (4-1-0)

where $ denotes the flux quantum and T, denotes the transition lemperatnre of

the bulk superconductor, which may be expressed as

1 14Hu

INOV]™" = In i (4-1-10)

where 65 denotes the Debye temperature and constant V denotes the BCS conpling
constant. In addition to the differential equation, Eq. (4-1-0), we also roquire

that the order parameter satisfy ce

ain houndary conditions at the surface of the

superconductor. The boundary condition for a free surface S is given by

(4-1-11)




where 7t denotes the unit vector normal to the bonding surface. Eq. (4-1-9) together

with the boundary conditions given by Eq. (4-1-11) define an eigenvalue problem

ves to de

whicls s tmine the transition temperature of the metal as a function of
the applied field H. In order to solve the cigenvalue problem, we define a lincar
operator L(V)

©(v)=—[v - ?T":.I(;)]z , (4112)

and introduce cigenfunctions A"(F) together with the corresponding cigenvalues

" which s:

fy

Lw)An(E) = ' A"() (4-113)
together with the boundary conditions given by Eq. (4-1-11). The transition tem-
perature T is then determined from the lowest cigenvalue of the set {€"}, which we

simply denote as €, from the requirement that

X(€%) = lu(%) § (4-1-14)

By means of the above system of equations one can caleulate the dependence of

the supercondueting transition on the applied ficld and the geometry
of the sample.

The above procedure is casily generalized to an inhomogencous system com-
prising several different metals. Specifically let us consider a layered structure con-
sisting of several different superconductors chiaracterised by their bulk transition
temperatures. which we denote by Te, together with the corresponding diffusion

lengths, which we denote by Dy. We assume that the plancs separating the differ-

ent regions are aligned normal to the is and we denote the interface separating

layer A from the adjacent layer A+ 1 as x5, The order parameter A may then be
written as

A(F) = faT) for wa_g<ar<ay,



where f(#) satisfics the cquation

i T.
X8IV - A VA = (A (4-1-15)
in layer A, together with the boundary conditions

D d 2mi
B[ - AN = PR~ oA At |y (110

at the interface separating the layers A and A+ 1 and

d 2
H[JT‘%““ S |y =05 (@-117)

1.d 2
o - ”ﬂ' @ |, =0 (4-1-18)

at the free surface bounding the system. The parameters Toy and €y are given by

the generalisation of Eqs. (4-1-8) and (4-1-10)

hDy
2= 2 4-1-19
A SrkgT (4-1-19)
and
NV = e “ﬁ”) (4-1-20)
respectively.

In order to determine the transition temperature for such a system we mnst

determine first the cigenvalues, ex, defined by the set of differentinl equations
LV)fa(@) = eafal@) for iy <o <aeagr (11-21)

togother with the bowndary conditions imposed by Eq. (4-1-16) aud (4-1-17). The

s is ined by the requi Lthat
w€en) = (), (1-122)
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In general the above system of equations will yield a sct of solutions which we

way write {A}} together with the corresponding coefficients {¢}}, each solution
corresponding to a distinct transition temperature 77, The observed trunsition
temperature is simply given by the highest member of the set {77}

As discussed earlier, despite the complexity of the above equations it is possi-

ble to obtain solutions for certain simple geometries 21 {11, For example solutions
liave been presented for the case of a bilayer structure in the presence of a homoge-
neons magnetic Aeld. This solution can also be applied to the case of a superlattice
structure consisting of two different superconducting materials and the upper crit-

ieal field enlenlated for such a geometry. M1 (3111251

44-2 Application to a Fractal Geometry

i4-2-1 Bigenfunctions

We wish to apply the above analysis to consider a multilamellar superconduc-
tor of length L with a sclf similar structure consisting of alternating layers of two

supercondueting metals

The geometry of the system is determined by subdivid-

ing the system into three cells, a central cell of length oL’ and two outer cells of

length L', with L = (2 4+ ¢)L'. The two outer cells arc then further subdivided
into three cells, a central cell of length o L and two outer cells of width L, with

L' = (2+a)L". This process of subdivision is repeated M times until we obtain a

system of N layers with N = 24! — 1 Alternating layers consist of metals a and

b. respeetively, such that

T.. forAodd,
Ty = 9.
4 { Ty for Aeven, (421
and
D, forAodd,
Dy= 2.2
* {D, for A even . (4-22)

o
<4



where A = 1,...,N. Such a geometry is shown schematically in Fig.6. Denoting

by ¢ the thickness of layer A we obtaiu for the odd numbered layers the result that
th=d for A=2n-1 with 1<n<2V, (4-2-3)

where d = L/(2+0)™. The thickness of the even layers, on the other hand, is not
constant but is dependent upon the particular value of A, For the even numbered
layers we obtain the result that

do, for A=2(2n-1) with 1<n<2M-!
do(2+0), for A=4(2n—1) with 1<n<2M-2
do(2+0)?, for A=8§(2n-1) with
wanebes

ty=

The general result may be expressed as
ta=do(2+0)""  for A=2"(2n-1) with 1<n<2M="  (42.)

where m =1,...,M.

If we consider such a geometry in the imit M — oo and d — 0 such that the
product N(M)d = L remains finite, then our structure deseribes a frnetall 471 with
fractal dimension D defined as

In2

“hie)’ 4

In this sec’ ion we wish to apply the analysis described in the pree

cdlinng seetion

to study the transition temperature of the fractal geometry deseribed above, In

order to keep the discussion relatively simple we our considerations to the

zero field case, (H = 0). In a subsequent section we will generalize the arguments
developed to the case of a perpendicular magnetic feld. Tn the zero field limit

Eq. (4-1-21) reduces to the form

=V A(E)

{ efa(@), for X odd i425)

efa(@), for A even



b od

|
b (?*a‘)ad

b (2+0)od

Fig. 6.  Geometrical configuration of a fractal structure.
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where €, and € are determined from Eq. (4-1-22) by

NISSENER

NCOENEOR

respectively. If we assume that bulk transition temperatures Tr, and Ty, ave chosen

such that

Tea > T s (1-2:0)
then, we would expeet the iti it o T, of the composite system to he

bounded, nawely Tey > T > Ty, Equation (4-1-22) together with the assmuption

given by Eq. (4-2-9) yields the result that
>0,
(4-2-10)
6@<0

From Eq. (4-2:6) we olitain the following expression for &

{f,\[,l‘)=('m(’.',,:r+n,\) for A = 1.3.5,-+- 0]
Salr) = cosh(mpr +Bx)  for A = 24,6, . el
where k, and x; are defined as

Ei=Fas (4-212)

w=v=a. (4-2-13)

From this we obtain the following expressions for (] ¢ logarithumie Jerivatives

ﬂ(—({;ﬂﬂ =~y tnlhrEan) Bed= 1300 (421
%ﬂ swtiiles ) PP SA6ET . W2

where ay and 3y denote constants to be determined by the Lo concitions,

given by Eqs. (4-1-16) amd (41-17). We can use these cquations 10 relate the

G0



side of a layer in terms of the logarithmic derivative

logarithmie derivative on on
on the other side of the layer. In particular let us consider the (N + 1)/2 layers
of width d with A = 2u such that 25,y < = < 72,. We denote the logarithmic

derivative on the bounding surfaces of the layer as

. dlnA(a
oy =t BCD (#2-10)
a0y = LS % —— (42-17)

§4-2-2 Recurrence Relation
For the particular ease D, = Dy we ean use the above equation together with
the hondary equations in Eq. (4-1-16) to obtain the following fractional linear

transformation relating the logarithmic derivatives on cither side of the layer

AL (4-2-18)
This we ean write in the following form as
L P
o0 = L0 (0) + A0) (1-2-19)

0) + 1(0)

#(0)gy;

where we have defined

a(0) JH0)) _ 1 tan(k,d,)
(mm "l"))_(—lﬂu(k,al,,) 1 ) (4-2-20)

The expressions given by Eq. (4:2-14) and (4-2-15) for the logarithmic derivative
together with the bonndary conditions given in Eq. (4-1-16) allow us te. generalize

the above argument and express the logarithmie derivative on one side of trilayer in

the (N1 1)/ ik

s af the logarithmie devivative on the other

ide, T partienlan let s consior

s comprising two layers of width d. and composed of the metal

of type i separated by o layer of width ad composed of the metal of type b, In
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analogy with the terms g(0) and g#(0). defined in Eq. (4-2-16) and (4-2-17). lot
us define gk(1) and gf(1) for the trilayer as

dln A(r) |
dr

gk(1) = lim

=gt

dlnA(r)

de Lemagines

< of the u”

amnd r = ry, denote the left and right houndas
trilayer respectively. From Eq. (4:2-14) and (4-2-13) together with the boundary
conditions given in Eq. (4-1-16) we obtain the following result

a(L)gr(1) + A1)

I, Ll
oD = S i)

(1228
where the coofficionts a (1) #(1) (1) aud #(1) are given s

a(l) A1) _ (a(0) A0) -7 anhimdi) (o(0) H(u))
1) v(1) ) T\ p(0) w(0) ) \tanh(wudy) - noy )

&

with 7 = m/k.
The self similar nature of the geometry under consideration allows s to gen
eralize the above procedure to higher order. T partienlar let ws consider Ui

(N +1)/2m+ cells cach of width D), where D'™) is given by

D™ = d24 o)™ .

Defining

o - dluA() o
gnm) = lim =——=, j (42:26)

S

. (1227

5 dinA(e)
m) = lim ———
gifm) = i ===,
where & = rymain=qy~1 mnd & = g, denote the left and right boundaies of

th

the n' cell. we obtain the following relation

alm)ghtm) + flm)

It .
O e Y S atm),

(42.25)
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The coefficients appear in the Eq. (4-2-28) may be obtained through the recurrence
relation

alm) ) _(aln=1) Am-1)Y)
plm)  vlm) p(rm—1) p(m—1)

-r
(muh(»—mD‘ =1y @25

a(m—1) Alm-1)
pln=1) w(m-1) )"

2 umlu(me""'”)) «
-7

The solution to the recurrence relation given in Eq (4-2-29) may be written as

am) fm)\ _ _ 1 —7A4(m)
(,l(m) ,l(m)) =) ( —A-(m)/r 1 @
where ®(m), Ay () and A—(m) satisfy the following recurrence relation

W(m) = =D = 1)

(1 + tanh (e D = YA_ (i = 1) + Aglm — 1)) + A_(m = DAy(m — 1)),
(4-2-30)

Ag(m) =
2040 — 1) + tanh (ke D=1 )1+ Ay (m = 1)?)

U+ tanh (wpa DO =D N_(m — 1) + Ag(mr — 1)) + A_(m — DAg(m — 1)

(4-231)

A(m) =

2\_(112 —1) + tanh (k30 D=V ) (14 A_(m - 1)?)
1 tanh (ga DU =0Y N (m = 1) + Ay — 1) + A_(m — D)Ay(m —1)
(4-2-32)

They

of. whielt procecds Dy induetion. is presented in Appendis D. The particular

values Ay (0) and A-(0), may be obtained from Eq. (4-2-20) and are given by

L
T

A—(0) =7 tank,d . (4-2:34)

t

Ap(0)=— wl

(4-2-33)
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respectively.

There are two points worth noting with regard to the above relation for the
variables A(m) and A_(m) namely

i) The recurrence relation involves only A_(m — 1) and Ay(m — 1)

i) The ratio 7 does not appear ezplicitly in the reeurrence relation

Both of the above features will play an important role in our subsequent anal-
ysis.

Since the houndary conditions on cither side of the sample may he expressed

as
gh(A) =0
gny =0,

then Eq. (4-2:28) will yield the following result

M) =0= Ay(A) =0. (4-235)

Eq. (4-2-35) will only have a soltion for partienlar vadies of 7= 54/k,. The lowest

value of 7 satisfying Eq. (4-2-35) together with Eqs. (4-2-7) and (4-2.8) yields the

transition temperature for the composite

In Fig.7 the caleulated transition temperature is plotted as a fun

jon of

d = d/&, for severl values of M for the partienlar ease Ty = 0 and @ 1.

For this particular choice of parameters we have, from Eegs. (4-1-22) an (4 2-13),

that s = €' and that the fractal dimension D = In2/ln 3. Two separate v

of behaviour may be clearly identified in each of the envves, For L€, - | the

transition temperature is obso

ved 1o be relatively independent of the layer thick

ness with a limiting value that depends ou the ovder of the fractal us defined by
the variable M. For L)€y 3 1 the caleulated transition terperntnre is abserved 1o
Decome indepenclent of M and the various enrves menge to form @ single enrve, In

the next seetion we will dlisenss this hehavionr in some detail and show e
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T/ Tes

00 20 40 60 80 100

Fig. 7. The dependence of the reduced transition temperature Te/Tes on the
thickness d == ds/€o for Tey = 0and D = In(2)/In(3) with order of the fractal M.
(8) M=1,(b)M =2,(c) M =3,(d) M=4,and (e) M = 5.
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how the self similari

of the geometry can be exploited to obtain the various

limiting forms for the transition temperature in cach of these regin

§4-2-3 Comparison with the Measured Values

In order to obtain a comparison with the measured values of the transition

temperature [ 221 of a sample consis

ing of amorphions Moy _, Gee, with two different

compositions, & & 20%, with bulk T & 7.5K, for the superconducting layers and

a & 60%, with bulk T, < 11, for the “norma!

ayers. we have also computed the

transition temperature for the parameters presented in Table L We have considered
the dirty limit case €%,(0) = e with € = et and have chosen T, N

envandne

and Ty = 1K, which is consistent with the experimental valnes. For a g

of M we obtain the relationship between T and sy from the solution of Eq, (4-2 3

with Ap(A1), caleulated by means of the reenrrence relation given by Eq. (42 31)

and (4-2-32), and from this we obtain the transition tenp

wre by means of (42

7) and (4-2-8). The transition temperature is comy 1 for inereasing values of A,

until the successive values agree to within 4 signifieant figures. Inerensing the value

of M beyond this docs not affect the final result. Tu this way we can obtain an

accurate estimate of the tran: ten in the limit A -~

on temperature of the

The resultant temperature are presented in Table I together with the corr

poncding

n

ured valies, The agreement is seen to he satisfactory,

§4-3 Scaling Laws

In the previous section we examined the strueture of the progimity equations

for the case of a self-similar geometry and presented nmmeric

I results for o par

ticular chioice of variables. Despite the complexity of the above equation it is
nevertheless possible to exploit the self similar nature of the geometry and obtain

analytical resnlts in certain Hmiting eases. We consider two sucl limiting eases in

this section.

GG



‘Table I. Thetk lical and i al values of the d

temperatures of the geometries with different fractal dimensions.

Dinension | Layer Spacing (A) | 7. (K)(exp) | 72 (K(theory) | €4/00A) | dfto
073 50 372 333 58 0525
083 220 5.61 574 58 2.579
0.57 80 2.80 2.56 58 0.642
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§4-3-1 Thin Film Limit
In the regime L < € we can assume that xpL < 1 and henee that
ked €1,

moD™ &1 forl<m <AL

This suggests that we need only consider the terms linear in wya D™, in the

recurrence relation for the coefficients A_(m) and Ag(m). Retaining only the

lowest order terms in the reenrrence relations Eq. (4-2-31) and (4-2-32), we obtain

Ag(m) = 204(m = 1) + spo D" | (4-3-1)

A_(m)=2A_(m —1) + wya D" 1 | (4-32)

while from Eq. (4-2-33) and (4-2-33) A_(0) = syd and A4.(0) = —rpd/r%. These
may be solved to give the following expression for Ay(m) and A_(m)

2+a.m 1
A+(,..)=2"'((T)”-(1+3))..~,,’/, (1-3 3)

A—(m) = (24 0)"sud . (4-3-4)

From the requirement that A4(M) = 0 we therefore chtain the result that

-1, (4-35)
and hence we obtain the following expression

2
fi (%’5)’" : (436)

Aun alternate form for the above expression which demonstrates the vole of the
fractal dimension is obtained by noting that L = d(2+ o)™ and henee

1< (L)

“z+o)’ (4-37)
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whieh allows s to write

oo by, (+39)

where D denotes the fractal dimension defined by Eq. (4-2-5). Equation (4-3-6)
then reduees to the form

_ (ﬁ)mm ) (+-3.9)

The result contained in Eq. (4-3-9) together with expressions for ¢, and &, given
by Eq. (4-2:7) and (4-2-8) yields three equations for the three unknown quantities
Cus e imd the transition temperature 7. Tn general the above cquations can only
he solved mumerically. However if we consider the particular case discussed in the

previons section, namely Ty = 0 then Eq. (4-2-8) may be solved explicitly to give

and henee the Eq. (4-2-T) may be written as
€a
=)= —nt, (4-3-10)
@

where we have defined the reduced travsition temperature ¢t = T/Te,. Thus we

abtain the following expression for the reduced transition temperature
Lig-p,
t=ex (=x((3) '-1)). (4-3-11)
If we consider the case in which Z/d 3 1, we may use the asymptotic limit of

the funetion \(2)

mluz+y+In2+0(1/2), (4-3-12)

where 4 denotes the Ender constant, From this we obtain the result that
e dyi-p
() (4-3-13)
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A more general result may be obtained by means of the approximate expression
for x

M) = In(14 (4-3-14)

which is valid for all = >00* ], yiclding the result that
72 Lya-m -1 .
t=(1+ 1 ((") -1))7. (-3-15)

In the Jimit L/d — co the result obtained above agrees with that given by By, (4
3-13) up to a simple numerica’ factor. The results obtained agree reasonably well
with the numerical results presented in Fig8. Tt is worth noting that. this resull
corresponds to the gencralisation, to a self similar geometry, of the result ohtained

by Werthamer for the ease of a simple bilayer! * ), namely

(1-3-16)

where, dy and ds are the thicknesses of the normal and supercondueting lyers
respectively. Indeed we may recover this result as a special cnse of the above

analysis by setting M = 1 and identifying ds = d nnd dy = ad /2.

§4-3-2 Decoupling of the Structure

As we demonstrated in the previous section in the limit L 3 € the relation-
ship between the transition temperature T anel the veduced thickness d/€ hecomes
independent of the particular value of M. Tn order to wnderstand this result we
should note that the linear fractional transfornmtion given by Eq. (4-2-28) allows
us to relate the logarithmic derivative gh(m) to the logarithmic derivative g% (o)
if and ouly if the cocfficients cr(m) satisfy the condition

a(m) fn)

det| n)  lin)

#0. (43-17)
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If this condition is not satisfied then the expression given by Eq. (4-2-28) reduces

to> the form

(4-3-18)

and hence the boundary condition on the right hand side of the cell is independent
of the bowndary condition on the left hand side of the cell. In essence the two
sntfaces hounding the cell are independent.

From Eq. (4-2-20) we obtain that

oty pomy| _ o |am=1) Bom -1

‘“I,/(m) wm) | =9 jem=1) s(m —1)
- 7 tanh( x,0 DM 1)

tanh(so D) —r .

det

Now for the ease that #,0 D™D > 1 we have the result that

2 tanh(s o D=1 o D(m=1)
- ) %U(C po D ) s

det ’

-r
tunli(wyo DOm=1)

and henee that

i ‘ a(m) B(m)

T
m) | = O

Thus from Eq. (4-3-18) the logarithmic derivative gR(in) is given as

gl (m) ———ﬁs:"z F O

(4-319)

The physies ehind thiis st result s relatively straight forvard. If we consider
the specific exnmple consiclered in the previous section with T = 0 then the above
vesult simply reflocts the fact that i the “normal® layers separating the multilamel-

T colls i much greater than the coherence longth of the order paramcter then the

cells on either side of the “normal” layer decouple and the logarithmic derivatives

al(m) and g®(m) are essentially (e to order & O(c®P™)) independent. In

oreer to understand how this gives rise to the fact that the sition temperature
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becomes independent of M we note that for all m such that xpa D™ 31, we can

obtain the result that

(:“EZ:; 687“1;) =~ r(a(m = 1)+ p(m = 1) = A = 1)/ = v(m = 1)7)
a(m=1) fm—1)
wOm=1) =1 *
(4-3-20)

Iterating this expression we obtain, for auy 2 > m, the result that

a(m') f(m") a@m) ()
(/L(m') ./(m'))"‘ (,,(m) ,/(m)) £

Let us now consider two similar geometrics one L= Ly = d(24a0)" and [ = L

d(2 +0)M2, with M, < M, and ko Ly > ko Ly 3> 1. From the above angnmonts
we sce that for the case L = Ly we obtain the result, that

B(L)

o) = T

) .
) (4-3-21)

Thus we sce that the same value of 7 which satis e boundary condition for

the case L = Ly, namely that gR(Mz) = 0, also satisfies the houndary conditions

for the case L= Ly, gR(M;) = 0, and hence the resultant transition: temperature

T calculated will be the same for both cases.

§4-3-3 Scaling Law

While iti becomes independent of the length L when [ <
€ it is only possible to obtain analytical results for the limiting eases d < € and
d > € We vill limit our discussion to the sitnation d € €, since this represents

the more interesting limit.



The form of the reenrrence relation given by Eqs. (4-2-31) and (4-2-32) allows

us to write Agp(A) and A_()M) in the following manner

Ap(M) = Ffy_ o (Mg (), A—(m). spD'™) | (4-3-22)
A=(M) = Fyp_p (As(m), A_(mn), spD'™) | (4-3-23)

for 1 < M. The fanctions F+ and F~ are as yet undetermined functions which
are iudependent of 7 and depend only on M and i through the difference A7 = m.
If we consider the limit M — oo, then setting A4 (o) = 0 and choosing a value of

m snely that 1, D) & 1 we can write

FE (Ag(m), 5, D e, D' (4-3-24)
FZ(A4On). D™ iy D™ (4-3-25)

This suggests that for #,D"™ & 1 the solution of the boundary value prcblem

provides a unique and unambiguous relation between Ay (m) and #;, DU which we
write as follows.

Ag(m) = w D™ G, D) (4-3-26)

Taking the limit 2 — 0 and noting the result contained in Eq. (4-3-3). we obtain

=G(kud) .

I order to determine the explicit form of the function ¢ we substitute in the
expression for A (i) from Eq. (4-3-26) which vields the following expression

3 m
LT (14 57) = 24 o) D).

2

Using the above expression ™ ¢ = we may rearrange this to give

G D)~ 1 ‘Z+n)m -
L‘(e.,,:IJAl
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Eliminating the explicit m dependence by meaus of Eq (4-3-8) we obtain

(4-321)

from which we can conclude that

G(siD)

(

%

where A denotes some undetermined constant which is independent of v, Setting
m = 0 we therefore obtain the result that

[ S
2 (md)=T"

For the particular case Ty = 0 we have that

m=£",

and hence

This

ields the following expression
=0
1 =«x,,(-\(.4(’§,) ~1)).

Since we are cousidering the limit i whicl £/d 3 1 we may use the asymplotic
expansion for the y function, given by Eq. (4-3-12), to yield the following expression
for the transition temperature in terms of the temperature dependent colierenee

length €

d-p 4
3 (2) ) (4-3.30)
Comparing this with (4-3-13), one can see that only the length seale L s veplaced
by the coherence length €. Eq. (4-3-30) together with the expression for £ -

hD/2zkpT allows ns to write an explicit form for the tranusition tewpera

5
2 o0 (4331




whiere €y s defined by the expression

. _hD.
2kpyT.. '

and the cocflicient A = (Ac7/2)37

54-4 The Infl

of the Perpendicular Magnetic Field

In this seetion we wish to extend the analysis of the previous section to evalnate

the tramsition temperature of the multilamellar system, deseribed in Section 2, in
the presenee of o magnetic field B = ~HE,.

#4-4-1 Eigenfunctions in the Presence of Perpendicular Magnetic Field

We represent. the magnetic field B by the vector potential A as

A@t) = (0, H=,0) .

Eq. (4-1-21) then reduces to the form

|

(4-4-1)

The order parameter then has the form

—izzu

AF) =R @),

where fy(r) satisfies the diffeeential equation

Ehr) _ [ (o= FL) fale) for Aodd
At (e 22l fy(«) for Aeven,

]



where ¢, and € satisfy

(%) = 1:.(%) 5 (4-1-2)
€)= In( TT‘ ) (4-4:3)

and the functions f and fyg1 are required to have  continous logarithuie deriva-
tive at the interface separating the two layers, The funetion fy() is therefore given

by

) = cos(kar+ax)  for A=1,3.5 -,
A= coshimir 4+ fa) for A=2.4.6, o,
where the varinbles K, and 4 are defined as
2xH
B - S 44
B=e-T, (4-4-4)
2x11
H=—at ;—u : (1-1-5)

If we restrict our attention to the case with Tiy, = 0 then from Eq. (4

) we obtain

that .
Eg=-1,
22 _ 2rH
= =14 5 gt (4-1-G)
h
=147,
where we have defined h = {ﬁ, where Hy = 325 aud denotes the zero temper-
/8

ature critical ficld of the bulk metal of type a. The transil

on temperature of the
composite systen may therefore be expressed in terms of the ratio ¥ = k4/k, from
Eq. (4-4-3) as
Int = x(%a)
= x(€th + ",’,’4)
x((= LLS ) (4-0-7)

b
=x((1+71/7 +21

II

=x(r*+ !1"“ +77%).

706



It remains only to compnte the value of 7 for the particular system of interest,
by solving the cigenvalue problem posed by Eq. (4-4-1) together with the corre-
sponding bonndary conditions. However one readily notes that this aspect of the
problem is identical to the problem discussed in the previous section for the zero

field ease and henee the vesults obtained may be applied to the problem of the

perpendienlar eritieal field, We disenss the two limiting cases € > L and § < L

separately,

$§4-4-2 Limiting Cases

Case 1: L <€

In this limit we have the result from Eq. (4-3-29)

Lia-m
1— )
&
I0we consider the case for which L3> d then 7 — 0 and we may use the asymptotic

form of the \ function to obtain the result that

=

d,(1-D)
=)

(4-4-8)
where fy denotes the reduced trausition temperature at zero field, given by Eq. (4
3-13).

Case 2: L3> ¢

Iu this limit we have the result from Eq. (4-3-29)

A
(s =D

g




From Eq. (4-4-6) we have that

=14 s (14 9)

Substituting this into Eq. (4-4-7) yields the following relationship hetween the mag-
netic field, the trausition tempernture and the temperature dependant coherence

length & :

Gy g Iy g (4-1-10)
a T
Waiting € = £/ we obtain
=PV )t =g, (4-4-11)

which yields the following expression for the transition temperatire

(4-4-12)

§4-5 Discussion

In summary we have applied the Werthammer theory of the proximity of-
fect to the study the transition temperature of a self similar multilamellar system

isting of all ing i

ers of sups lueting aud normal metal. The com-

parison with the limited amount of experimental data suggest that Uie deseription
is reasonable.

In the limit d/€ < 1 the dependence of the tramsition temperatire on the

dimensions of the sample may be expressed in terms of certain sealing laws in

certain limiting cases. For Ty, = 0 we obtain

8



1::(%)’ for L<E,
,m({g)u.‘:s for L€
)

Not surprisingly the exponents obtained are simply expressed in terms of the

fractal dimension :

seiated with the geometry. We have also extended the analysis

to consider the effect of a perpendicular maguetice field on the transition temper-

ature and have shown how, in certain limiting cases, we can again derive certain

simple sealing laws to deseribe the upper eritical field. The much more difficult

and should

ension of this work to the case of parallel eritical field is in progros

provide an interesting comparisou with th

results obtained from phenomenological

]

theories! The results of such a caleulation would provide an extremely valu-

able test of the Werthamer theory of the proximity effect, and its application to

the s, as it would it would involve

upercondueting properties of lnyered s

o system with many length seales. We regard the present work and the rosults

obtained s an essentinl first step in this caleulation.
To what extent the sealing liws we obtain in the present caleulation are ex-
perimentally aceessible is not addressed and is perhaps o question best left to

experimentalists. Perhaps a more pertinent criticism concerning the scaling laws

presented inseetions -F and 5 is the validity of the Werthamer theory of the prox-

et in the appropriate limit, since contrary to the statements made in the
literature the theory is not exact and one might expeet nonlocal offects, for exam-
ple, to play an important role. Suffice to say however that we have presented the

theoretical predictions of a theory which enjoys a wide acceptance and has heen

extensively and suecessfully applied to a vatiety problems of layered media,



Chapter 5

Conclusions

The conclusions presented in previous chapters can be summarized as follows,

In Chapter 3, we applied the Bogoliubov equation to a superlattice composed of
alternating superconductor and normal metal layers, The periodic energy spectrim
has been obtained relating to the periodic strueture for finite supercondueting order
parameter A.

cou(di) = evalapyyeontiy )y — L= 41
T2

\(apy) sin(bps) .

This relation allows one to completely caleulate, in principle, the normaliz

tion
constant of the wave functions g and uy. However, the ealenlation will he ox-
tremely difficult in the finite order parameter case due to the periodie strueture,

The transition temperature is caleulated in the Timit A — 0 and it is plotted in
Fig.3 as a function of the reduced thickness. The analytical result of the transition
temperature in the thin films limit can be exprossed s

Tolah) g
22 o (Lypla

el .
It is scen that the transition temperature, for a fixed ratio hfa, goes Lo zero when
the thickness of the superconducting layer a vanishes.

A useful contrast between our approach and the various hilayer approgimations

arises in this Cooper limit of thin films, since the effect of the coupling between

layers is most prowounced in such a limit. As i

comparison, we present tie results

of the other theories below. Werthamer’s result ' 1 s

Lifa,b) 1

W 14 intha
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mes resultl 21 is

and de Ge

Te(a.b) Ta
Ta Llwp'

Althongh quantitatively different, both of these expressions predict that, for a
fixed ratio bfa, the eritical temperature approaches some finite constant and is

independent of the thickness of the superconducting layer a. The reason for the

ence of sucl a difference is known in that the common approaches of de Geunes

X
and Werthamer are unable to completely acconnt for the observed behavior of the

we in this limit, since the One-Frequency approximation taken

fon L

in their theories is only valid for thick films. On the other hand, our result agrees
most closely with that of MeMillan’s tunnelling modell '8 1, whick, in the same

Tt is exprossed as

a. The curves from the numerical caleulations for both our and McMillan’s model

are shown in Fig.5 and a good qualitative ag is obtained. Nevertheless, it is
significant that even qualitative agreement is obtained since we are assuming clean
materials with ideal interfaces while the McMillan model assumes dirty materials
with a tnunelling interface. Tn a sense it may then be possible to include dirt and

Aectinge interd:

13 in this |

by reinter ion of the ac, s

h

<heen sugggested by the good age of the step-functi imation with

more stic pair potentinls in the context of the quasiclassical approximationl 171,
In Chapter 4, we applicd the Werthamer theory to a geometry with fractional

dimes

sion.  Ineach of the superconducting and normal layers, we assume the
Werthamer squations

% 1:.(%)‘

V€ =),
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to be valid and then we construct a lincar fractional transformation

o) = n(m)_q,:,-(m)+ Alm) )

pn)gh(m) 4 v(m)
where g®(m) and gk(m) are boundary values on right and left side of a supereel]
of order m. In order to determine the transition temperature T, by means of the

above equation, the cocfficients a(m), #n ), p(m) and v(m) need to he known,

Hence, we extract the recurrence relation of these coofficients, through an analysis

to the self-similar geometry, given as

am) Bom)\ _ (alm=1) Alm-1)
am) w(m) ) = \pm=1) wm-1)) %
—r 2 tanh(o D)
tanh(wyo D =1) -7 x

((\(n: —1) plm - 1))

wm=1) vim=1))"

which provides a basis of the numerical ealeulation and the detailed analysis in some
limiting cascs for the transition temperature T To compare with the experimen-
tally measured values! 281, we input the same parameters as those in the paperl #*1
and use the technique of the recurrence relation togethier with the Werthamer's
equation. We obtain the theoretical values of the transition temperature which
are shown in Table L The discrepancics are 10%,8.6% and 2% corresponding to

the reduced thickne:

s 0.525,0.642 and 2.579 respectively. The deereasing of the

discrepancy with increasing reduced thickness is consistent with the Werthamer
theory for the thick films case as we mentioned above. A numerical ealenlation
has also been done for the transition temperature as a funetion of the redueed

thickness d and the result i< shown in Fig.7. This part of the calenlation reveals

that the various cur

corre

ponding to the different order of the fractal m merge
to form a single curve at some values of the d and henee, we conelude thit only
those length scales comparable with the colierence length € dominate the helinvior

of the system.



Tl alytical results for the d ! of the siti on the

dimensions of the smple are obtained in the limiting cascs L << € and L >> &

throngh the sealing argnment and expressed as follows

ta

('Z')"" for <€,

i~ (é)—ﬁ‘"-'?" for L>E.

The exponents obtained are simply expressed in terms of the fractal dimension

tal dimension D relates to the manner

ted with the geometry. Sinee the fra

of inerensing the portion of the superconductor in the whole fractal structure while
enlargging the whole structure, the limit D — 1 is equivalent to working on a bulk
superconductor in onr geometry. The fact that the reduced transition temperature
1 for a system of length L has a finite value independent of the reduced thickness

remains the feature of the Werthamer’s theory, while in a fractal structure with

infinite layers, ¢ vanishes as d goes to zero.

We have also extended the analysis to consider the cffect of a perpendica
magnetic field on the transition temperature and derived certain simple scaling

laws to deseribe the upper eritical field. The scaling laws are expressed as

e

l+h_tT(»'E)“ B pee,

l+h=(£—’)7"+_; L>>¢.
)

T botlof the eases, the dependence of the critical magnetic field on the tempera-

ture £ is lincar as found in other theorics,



Appendix A:

Eilenberger’s Equation
Based on the linearized sclf-consistent equation (2-2-1) for the order parame-
ter, the de Gennes-Weithamer theory is valid only when the temperature is very

close to the critical transition temperature T,. To study the effect of the external

field on the iul system, o more general theo

but simpler
than solving the Gor'kov equations, is nceded. Such n well known theory was ex
tablished by Eilenbergerl 151 1161 We will discuss the theory briefly by mainly

*s works.

following Eil 1 the gange-invariant. Creen

functious

=i < T(a(E 0 (#,0)) > =75 |

{G,,(r,i’,n-‘)

(A-1)
Gl 7,#) =i < TOHL(F, )ha(#,0)) > 1O |
and the anomalous Green's functions
Ft,,&) = ~i <T( (70 (#,0) > /107 |
s il - (a2
Fle,2,8) =i <T@ 0FE0) > =107
where
<oe>=TfeMey, &) = Mot F)e MR (A-3)
and
e [f o
1(;,.?):;’/_ AF) i 7))

To malke the notations nsed in previous seetion coineide with those in Eilenbergers
works, we have adopted the definition of the transformation from Seliidinger field
to Heisenberg ficld (A-3) i which the time £is real rather than imaginary s also
I =1. The operator K,y is defined by (2-1-30).
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The phiase factors are introduced to reduce the influence of gauge transforma-

tion. H is the offective BCS hamiltonian in the form of the sccond quantization,
1= [ Pl - MA@ - AlOB @@, (A

with
Ho= 5 (=¥ = SH@F - p+ V(). (a9)
P
Here we have chosen h = 1 and U(Z) is the impurity potential. It is obvious that

a g transformation

SAl#) +9x(@), (A-6)

results in
H(F) = NDG(E) L (A7)

Henee, the normal Green’s functions defined above will not be affected by the

e i ion but the ones will be multiplied by factors ¢2(9
B

and =2 rogpectively.

The Gor'kov cquation may be written as

( iwtp— g (—iV - tAD ERP - UE)  AG) )G @)
—at(®) vt p - (V4 LA@ R -U(F)
=I§(7-7),
(A-)
where
R = iEF(jv)eil e8| (4-9)
and Gu(F.#) is the Fourier transformation of the Nambu matrix,
G(t,7#)  F(t
Gty = (Fh:.f-,..-*) I @-10)
[NES (A-11)




The sign in front of /¢ depends on whether it operates on the fivst or second colunn
of G. Since the solutions of G depend on the order parameter A and At we ean
separate the influence of the spatial variation of the order parnmeter from the

Green'’s function by considering the following equation

( iw+p = gl iv-;éya)"—U(F) A(F) )C"mr
Yuliay

—AN@) =i p= g (—iV = iBg,)E - U (A-17)
=INF-#),
where 8, is Eilenberger's gauge-invariant
—iV —22A4(%) when working on A() ,
Oz = { —iV +25A(#%) when working on Af(#) (A-13)
—iv when working on some function of JA(F,
The Fourier transformation of spatial coordinates yiclds
ki D Ve E)-
—al@), e
~/(q J1U(A — NGF G F) — 2y sk - i) (A-14)

E &, 10, v
(m R EOg [N TR

where U(q) is the Fourier component of the imputity potential. Assiming that. the
order parameter varics slowly in space enables us to neglect the term (% )2 Phen
the final version of Gor’kov’s equations with all the standard approsimation becone

E i
e
—A'(I), —iwp- g -k

(A-15)

/ s Uk — G G F) = Fer)*s(F - 1) .

The standard average procedurel 1% 1 o

mpurity potential results in

(3 KL = (20 6(F - )G (7, F)

= (2m)8(F - ) {Gu(w

+Gilw, 7 F) + Gylw,i

8G



where the indices 0,1,2, - - denote the power of (Jz/i) contained in the correspond-

ing Green’s functions. The first term Gy satisfies Dyson’s equation or

@20 = 6B =n [ L - PG, 7.0

=G (w, & F) = S(w,7,F)

(A-17)

where 7 is the impurity density and Gig (w0, & F) is the solution of equation (A-14)

in the case U = 0. From the Dyson cquation, the solution for Gy may be written

as

Golw, & F) =Goolw, 7, F)+

e B e B . (A-18)
+ Guoleo, & P / T (F = DR Gat, 7,0, )
The weit known solution is
Fe vtz ( o _é(”)
Gl B B NN W) (A-19)
)= AR + )+ :
with
@
C=p— i
“m 1 (A-20)

1w, ) =14 —

ERY g

where  depends on the impurity density 1, Fermi velocity v and s

integral over |u(k—q)|2. Since we arconly interested in the seattering effects of those
electrons at Fermi surface on the impurity atoms, the momentim viviation of the
clectrons is limited in a range near the Fermi surface. Thus, another approximation

is made that
Ju(k = ) =~ |u(ky - qie)[*

1

Y — ; (A-21)
~ = 2N (O / %pm —q)E
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where N(0) = js the density of states at Fermi surface for one spin projection

. Tterating cquation (A-15) gives the higher order terms of G :

Gybr -

where corr, means the vertices correction. Now we define the operator Hy as

: ) =
Iy = e L T (A-23)
—A@)  —iw-C -t
and we have
HoGoolw, &) =1 . (A-24)

We only cousider the lowest order term of G , then the Gor’kov equation under the

lowest. order approximation of (%) may be written as

8@\ _gorg zimla ai=1
{( s _,_w_g_*vﬂr_%l>—3"”(w,d, p)}ca’"(w,c,.:,k)ff,

where

SOP (G 7 ) = &g 7 2E0P( = o
8w gy = [ S E — DG w7, 1)

= 27N (O /

PR c o
=[Sy - § 607w, 07 ),

ER g [ op,
IR -l f peC wcdr)  (A20)

with

(ke = @) = 20N (O)nfu(Fr — ) . (a-2m)
Note that the functions G and £ have been replaced by operators since Ho is a
function of (&),
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Completing the tedious derivation of the operator algebral 1 1 we may have

the cquation of motion for simplified Green's function defined by
9w, Frp, @) ifg(:(u,c.r-,-.;).
S == e R0C ), (A29)
k= f%i‘iw-i.ﬂr.ﬂ .
The equations are
{20 47 (V= 2 4@ (o, )
= 28@uwnFr)+ [ SEWE i) (A-2)
- S -
Aglw, ki, & (w, @, ) = flw, ke g, qie, H))

{20~ (V4 i%.&(i))ﬂ(u, (%)

2,
=oab@g(w, ie )+ / ‘[—ﬂi"’(zr —qr) (A 30)
sp A7
Ao, Fr, ) 1,3, 7) = FH 0, Be, B0, )
and
9w, @k 8) = (1~ f, B, D) ., ) (A-31)
The system of ions is leted by the self-consis 'y condition

A@) = A < hy(@W() >, (A-412)

where ) is the Gor'kov coupling constant and may e replaced by the standard
cutoff procedure
-1——olu(z)+lzl (A
N(0) TR il
The explicit expression of AGZ) in terms of the simplified Green's funetions is given
by .
R

flw,kp,7)=0. (A-34)
(o A

T
T.



The sume procedure gives rise to the equation for the current density J(7)

1 S 2ic2nN(0) &I, 5 .
=9« (B3 - By + 220 Z/S E Gyl B, #) = 0. (4-39)

Compared with the original Gor’kov equation, the Eilenberger's jons are
el easier Lo liandle sinee the number of the variables is reduced to two from four,
For small order parameter A(#), Eilenberger equation reduces to the Boltzmann
transport-like equation introduced by Liiders 491 which, in the dirty limit, is very

elose Lo de Genes’s diffusion equation coming from the lincarized gap equation.

Eilenberger’s Equation the in Dirty Limit

equation, Usadel [37]

Instead of considering the dirty limit in a linear
considered the dirty Timit form of the Eileuberger equations which may be written
as

1F(w,d)

16 IF DI = 286w, ),

2wF(w, 7) = DOGw. MIF(w, ¥) + 5
A(F) In( %) + '_’NT;[%'F) — F(w,)] =0,

ieN()xTD 3 [Flw, #)8F(w, #) ~ Flw, #)(0F (w0, @)1

w0

(A-30)
where § = ¥ 4 2ic 4(#) and D = Jvpl, These equations are valid for arbitrary A

provided that the dirty limit holds,i.c.

G>>0me. F>>2A,  |F]>> |§-F‘ . (4-37)
:

These eonditions were used in deriving (A-36) when expanding f(w, 7, 7):

2 = P+ L B,
(A-38)

. 0) = Gl ) + 5

where fand g are the Green's functions in Eil
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Application of Eilenberger’s Equation to Superlattice
The dirty-limit version of the Eilenberger theory is particularly useful in study-
ing the upper critical field Hey(T') of an inhomogencous superconducting structure.

Biagi | 7] and co-workers aiplicd the equation to the SN mmltilay se with (he

boundary conditions:

Fs=Fy,
oFs  OFy bt SNinterfaces. (A-30)
% g

For the perpendicular upper critical ficld, the result may be summiaized to
a1 %3 '
Ints) = () — (5 + !/(‘).))v
kg = 2xTy(ts)/hDs ,

kY = —2nTy(tn)/hDn |

(A-10)
as tan(gsds/2) = n1x tanh(gyda /2)
2 Hoy
@y '
o H,
ay =K+ ———’;Dq -

s

where t; = 75, (i = §,N) is the reduced temperature and y(1) is e fanetion of

the reduced determined by the cigenvalue ks and iy,

This set of equations completely deseribos the g 1 (T). Tn general, ey st
be solved numerically. But at the eritical temperature of the superlattice, the npper

critical field vanis|

he equations reduce to the resnlt, of de Gennes, Werthamer

and co-workers for a dirty SN proximity system.

kstan(ksids/2) = yly tanh(kpdn /2) . (A1)
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Appendix B:
Relations among the Coefficients
Define:
=68 yi=1+4n).
The boundary conditions yiekd the following equations

Ay + Bay = Cyy + Dy,

Ary+ Byr = Cez + Dy,

. . ) (B-1)
AP g Byt = (Cac 4 Lipyem )it |
eI Dy (g Dygem ity
(B=1=1)ry (B =1= 2. (B=1=1ppa = (B —1=2ra....
Alyrr =rvyz) + Blryey = yrye) = Dy —y3) |
A(yr1y2 = rrea) + Blriys = yur) = Clyg —3)
. ) , a e (B2
Al =0 ig)e™ P 4 Blaray = yiya)d™ ™™ = D(e§ — yf)e =i,
Ay = 01 2)eT 4 Blaygs — 1) = C(y3 — )P
Now we define:
u= (e =) v=—(nea—aga), 5= —ah) =2,
we have
Av+ Bu=Dzy,
Au+t Br=Cxy,
(B-3)

Ave™ 4 Bucith = Dzyemithratad) |
Auc 4 Bueteh = Cayeithr—ad) |
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Eliminating C and D from (B-3) yiclds

{ Algrrz — ziya)le™ P — =] = By — gy )P i

Apiyr = ryrp)e™i o = P = Bryyp — gy )0 m0 _ lom)

(B-1)
so the cocfficients A and B can be solved as
|A|=[2i'"' S ci(hrﬁqdl][n—inm "o ril"r:—ml)}
=|BP[cior — cilbratad)cion _ onipa=ad))
or
|4 [cos(bp2) = cos(dq — ap)] = | B*[cos(bpz) — cos{dy + ap)] | (13-5)
and
AB[c'r — cilbrrtadlj(cinpy _ ilhpa=qd)) 2
= D.__l[c—i-,-, _ Ei(b,-,-}-.i)"(:—i-m _ ,.(ﬁp,-m]": N
or

A* Bl o2 {cos(dg) — cos(bpy — apy)] = B* Ae=" a2 {cos(dy) — cos(bpy 4 aly)] .
(13-6)

We may also climinate cocfficient B from (B-3) to obtain th

fions mnong A,

Cand D
A(v? —u?) = 5(Do - Cu),
(B-7)
A(v? — wP)e P = 2y D= Cuetti)
Using the relation
we find that
(13-8)




Energy-Momentum Spectrum

The nontrivial solution condition from (B-4) requires that

(yyrs = wrga)[e™ P = TPy gy — gy e O o]

= (rvry — g )le ™M — P I0(yyy — yg )femOTD _ iem] = . =
Using
(g —rie) = (g2 — i)’ = dnm(+ 1)1+ 52),
(= rrr) 4 (e — el =41+ 1)1+ 22)[1 - 685]
the energy-momentum spectrum may expressed as
contalg) = contpe) contapn) = =2 i i (B-10)

Normalization

~ b
/ w*(E',r)u(E,r)dr =2x6(E—E')/ u*(E'\x)u(E.x)ds Y cila=imd

b
=2n(£-1~:’)/ w*(E'.r)u(E.xr)dr N6,

b
=2xh(E—E')/ u*(E'.x)u(E.x)dr N -
=28(E - E’)-/ w*(E'.x)u(E,r)dr
T
=17g!
(B-11)

where @ = d = a4-his the volume for one cell. The nornalization may he completed
by using (B-10). T the limit of &y and Ay — 0, the cnergy-momentum spr=(rum
i simplificd to

cos(dy) = cos(ap, + bp) = cos( ”':’ (B-12)
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Substituting (B-12) into (B-11) and using the relations of the cocfficients, we obtain

1 fm
Mi=3/5 >0

1 fm (B1a)
1Bl=35 <0



Appendix C:

Calculation of F(7)

F#) = - < WD >0, (€1
e St dEdE'_dP__dI?
<t >= /2_15”—(2—*?(27_’,‘
< (ME.10) TPl E 1) + ¥(—E.1 )AL D)
(B 1. )= TPt (B 1) 4 @ (=B I.0) = TPYE 1)) >
_ [dEJE' dP_dI*
= /E?(zx)"(zzp
{B(E. 1) (E' I r) TV < a(Eat (B 1) >

4+ (=B 1) (=E 0 o)~ 0F < Y E WE ') >}
_/@ dar
= J 2 (27)?

{D(E L )P (E.Lr)

+ ®(=E. 1) (=E.l.r)

1 T oIF T+c dl~ s
(C-2)
where the thermal aversges of the operators . according to Fermi-Dirne statistics,

are expressed as
=O(E - E')2=)(T =1,

1+ 7 2 (©3)
F278(E — E"2m P8l - 1) .

<a(E.Nal(E' 1) > =

<WEDE . > =

1
1+e¢

From the anti-commutator relation of the Nambu doublet

[RIERUE B, (c-4)
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we may have

- dEdJE' JPF  dI?
(@, ¥y = f T % T

[®(E.L )& (E' I ) DV a( E, ).l (B, 1Y)

+ B(=E, L0 (—E' 1 o)~ Dt ey L )
o IE dP
1.0 = [

The vanishing of the 1-2 | of the anti

(B, TP =0,
yields
[#(E.L,r)2*(E L r)i2 = —[¥(—E.1, r)¥* (—E. L)z .
Thus

dE dP*

o it
<qr(;)wi(?)>.z=/ BB LW (Lt ’—2'-)4

The Gap Equation
Now we can caleulate the order parameter self-consistently
A _1
e E/n dr F(F)
1. e
=5 | dr <w@HItF) >0
o

=_T1/.15 ar ,,mmfg,/'.u['m:.:.,m»'r&l.nl.-..
7)),

3= (27

The integral over x ean be completed by using the results in Appendix 1

b
/'l,r[rl)(E.I,r)d:'(E,l.r)]”

0

! b
=/ dr [l B, L2y (Es Loz

o
=b8y(1+32)[ICI* + [DI*] + ;:—-sin(hm)(C‘D'r""’zll + )} -
2
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{P(E.Lo)P*(E L)+ (—E L) (-E 1)) .

(C-5)

(C-6)

(<]

(C-8)

(C-9)



Substituting [C|%, | DI, and CD*e?* into (C-8) and taking the limit Ay, Ay — 0

results in

4 " by (82~ 8)sin(ak)sin(bk)
L dr[B(E, Lz )8 (E,L7) = 56[67 = Wl . (C-10)
The gap equation, which d s the can be 1
1 ndE BE [ dQ. Ay sin(ak)sin(bk)
G :/“ Frn) [ RS-0 e

where a factor 1/4 is dropped off sinee we have four independent sohtions corre-
sponding to £Q and £¢. It is obvious that when A, = Ay the result reduces to
thie standard BCS formmla.

The further ealenlation will be completed numerically, but it is worth making

some simplification
1 _ [™dE @ ':IQ _ sin(2bk)
N 7[' — tanh( )/ o ——}
o -k
[ ?.,.,.;.( )/""3““"’“ —Izlml(hl)m!(vll)+ L cos(bi)}
_ [ dE [** dQ mu("bl)
—l E l/l: it
~ ’(lQ sin(2bk)
i J/ _[.....n(—) 11/ -
ot -k,
f ?lnuh( /" i? b(:“[l——:]rm(dk)
el sE, ** tlem(" Y
+A umh( )[ 2wk A
(C-12)
Define
1 [<r JE [*r sin(2bk) )
)= -EAA.. .l()[l-m—]. (C-13)
we may have
“n
[ E g / (1 - 2R,
h (C-14)
=I(wp) - ; 41..'!(@)[('1».\'1:(7)]"‘ .
2k 2

98



The function I(w) may be caleulated to give

I(w) = I(AQ)

where

and

I(z) =7 +In(z) + %{"'

= S},

(C-15)

(€-16)

where Ci(z) and Si(x) denoting the cositic and sine intzgrals, with 7 being Eulor’s

constant.One can show that I(x) has the following limits.
" 1
lim =7 +ln(z) +0(=) ,
o .r

so we have
1
TN — ¥+ In(AQ) .

The equation (C-12) may be written as

n(he) = ] Lreanin(22) 1) / Wy - 2,
B, [t d 113
+ / —tx\uh(p—) / -Q h;_ )(ll_A_l]“”"(”“

ki
4B oniPE) ts :10 i
+ /0 ) tanh(

=h+hL+1I;,
where
o gz
I =/ LI “"‘(“’][—1..(04,(—)-1],
)
00 2
12=/ L 5‘11 tmeosh(Z) 2 corf1 4 1),

/ b 7 Incosh(~ L )sm(""

(C-17)

(C-18)



where
bEm a 2mb
s=dk=gt r=f  m=gp,
and then

A x % dz  sin(2z) 2
=)= 2 —_—1 - ———=] 2
ln(A) 21|h|..+r]/u z,[l = JInfl+e ]

=1
4n [

b2 Jo

= dz & Zooed

+/ 1= 847, Incosh(Z) sin? = cot{(1 +7)2]
o 5 B

”—, In cnsh(%)m'n(?z) .

Define

.],

I(r) = Zaln2~z

(I
Ty y) = ‘r/ ',—,
b %

K()=% A m% lncnsh(i)siu('z:) ¢

sin(2z)
- —2:—) nfl+e

mush(%)siu’: cot((1+y)z],

we ean have
b A A
() = I(m) = [1 = Z21(rr) = TR ().
Another equation abont Ay can be obtained by replacement

b—a a-=b V-V,

e i )
() = Enme o [T S SOy

ml msl.(ri)sin’ = cot[(1+1/r)2]
2
In rm‘h(i)sin(Z:) .
Te2
E)
A,
=Irn)-[1— i—fw(m, 1) = REHCm).

In( 7::" = m(;—:) +In(r) + In(

One finds

A I(rm,1/r) = K(rmy)
Xo 7 (E) + () + () = I6rm) + T 1)

(C19)

(¢-20)

(C-21)

(C-23)

(C-24)

Substituting this result into the equation (C-21), we have the result of (3-3-1).
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Appendix D:

We express the matrix defined by cocfficients appearing in Eq. (1-2-28) as

_(alm) fm)
T("’)*(,L(m) .,(m)>' -0

and the matrix corresponding to the mapping of the structure from order m o

m+1as
P(m) = (=7)[T - tank (540 D'™) (1‘/’r (’))] ; (-2)

Then the recurrence relation given by Eq. (4-2-20)may be written ns
T(m + 1) = T(m) - P(m) - T(m) . (D-3)
If we assume T(112) to be of the form

T(m):r@(m)(l\_‘(f") ”‘j‘;"’) ; (D-4)

then from the above expression it is straightforward to show that the matrix 7'(an -

1) is also of this form with (m + 1), Ay(m + 1) and A_(m -+ 1) given by

B(m +1) = 728(m)? {1+ Ay (m)A—(m) + tanh (s D) [Ay(m) + A_(m)] }
(D-5)
B(m+1)As(m + 1) = 728(m)? {2 4(m)+tanh (ko D)1+ Ay (m)?) )}, (D-G)

B(m+1)A-(m + 1) = 72@(m)? {24~ (m)+ tanh (ke D) (1+A-(m)*)} , (D-7)

to complete the proof we note that T(0) may be writte

as

1(0) = r#(0) (Aj(l(,) ’A_*‘l(”)) ; (0:8)

with $(0) = —1/r, A4(0) = —tan(kad)/7 and A_(0) = 7 tar!f,d,).

which allow us to obtain the Eq.(4-2-31) and (4-
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