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Abstract

The differential cross sections for the elastic and inelastic scattering of electron and

positron from hydrogen in the metastable 25 state (2-2s, 25-2p, 26-3s, and 2s-3p) are cal-

culated by using the Glauber and Wallace imations, at sevewal i diate ener-

gies (from 50 eV to 400 eV). For the correction term of the Wallace amplitude the three-
dimensional integral expression is adopted in the calculation. We also make some com-
parison between electron and positron scattering processes from the metastable 2s state
of hydrogen and processes from the ground state (1s-1s, 1s-2s, 1s-2p, 1s-3s, and 1s-3p),

revealing some significant difference in their relative behaviors.
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Chapter 1

Introduction

Study of the scattering of electrons by atoms in the excited states is of great importance,
Much new dynamics can be expected to come from the comparisons with electron and
positron scattering processes by atoms in the ground state; indeed excited atoms have
larger spatial extension and have closer coupling with other states, thus producing much
larger polarization effects. Also, these scattering processes play an important role in plasma
physics, astrophysics and various gaseous phenomens.

On the theoretical side some calculations have been carried out in the past decade,
most of the work being for the 2s-2s process. Joachain et al. 1] studied the elastic scat-
tering of electrons from the 2s state of hydrogen by using the eikonal-Born series (EBS)
approximation, together with the siatic and corrected static approximations. Ho and Chan
et al. [2] studied the e-H(2s) elastic scattering in the framework of the Glauber approx-
imation. Joachain et al. [3] also studied the e-H(2s) elastic scattering by means of the
sccond order optical potential method. Recently, they [4] calculated the e-H(2s) differ-

ential cross section in the third order optical potential model formalism. Pundir et al. [5]



studied electron scattering by hydrogen in the 2s state by using the Coulomb-projected

Born imation. Saxens ef al. [6] calculated the differential and integral cross sections

for 2s-ns (n = 3,4) of the hydrogen atom by positron impact in a similar Conlomb-projected
Born approximation formalism. Rao et al. [7] performed the calculation on e-H(2s) elastic
scattering by nsing the so-called high-energy high-order Born (HHOB) approximation of
Yates [8] which can be viewed as an approximate version of the EBS one. Tayal [9] nsed
an improved corrected static approximation to study the e-H(2s) elastic scattering. Das et
al. [10] did the work on e-H(2s) process by using Das’ calculation method which is similar to
the Schwinger variational principle. Chandra Prahba et al. [11] [12] used eikonal approach
to study e-H(2s) process.

On the experimental side only one experiment [13] has been carried out to measure the
electron-impact ionization cross section of hydrogen in the metastable 2s state. However,
more experimental results on electron scattering (elastic and inelastic) from metastable
hydrogen are expected to come in the near fature.

In this work, we have calculated the elastic and inelastic differential cross sections of
electron and positron scattering from metz .able hydrogen H(2s) (2s-2s, 25-2p, 2s-3s, and

25-3p) by using the Glauber and Wallace

at several i jate encrgies.

‘The many-body Glauber and Wallace amplitudes have some deficiencies which are rooted in

the frozen target imation used in the derivation of these for
scattering from 2s metastable state of hydrogen, the intermediate excitation energy effect is
less important compared to the scattering from the ground state of hydrogen, especially at

intermediate and high incident energies because in the case of scattering from 2s metastable

state, the excitation energies of the intermediate states are either much smaller or zero. In



other words the effect due to the distortion of the taxget wave function would be expected
to be of less significance. We have carried out some comparative studies between the
Wallace and Glauber approximations, tsying to see the effects due to the straight line and,
weak-coupling approximations which are inherent in the Glauber spproximation and are
improved in the Wallace one. We also have made the comparison between electron and
positron scattering processes from metastable 25 state of hydrogen and the processes from
the ground state (1s-1s, 1s-2s, 1s-2p, 1s-3s, and 1s-3p), trying to reveal some significant
difference in their relative behaviors. For the correction term of the Wallace amplitude,
the three-dimensional integral expressions have been employed in the calculation; and the
self-consistent check on the reduction procedures has Deen made by resorting to the four-

dimensional integral expressions.



Chapter 2

The Glauber and Wallace

approximations
2.1 The Glauber potential ing amplitude and its pr-
operties

2.11  The Glauber amplitude

In this thesis stomic units (a.n.) will be used. Before discussing the many-body eikonal
approximations, we shall discuss eikonal epproximations within the potential scattering
formalism. This is because potential scaitering is easier to deal with than the many-body
scattering; on the other hand, since at hiy .ergies, the large momentum transfer be-
haviors are dominated by the static potential which is central for atomic targets such as

hydrogen, helium ,efc. We first consider the Glauber amplitude [14]. We assume that the



short wavelength condition

k> 1 (@1
is satisfied, along with the high energy requirement:
el <1, (22)
E
where k = ||, the magnitude of incident momentum, a is the ‘range’ of the potential, £
is the incident energy, and Vg is a typical strength of the potential V(7). The Lippmann-

Schwinger equation is

[#9) = |&) + GG (), (23)

where |¥(+)) s the state vector of the collision system, and Gi’ is the free Green's function.

If we write eq. (2.3) in the coordinate representation, we have
YN 7) = exp(ifi - 7) + / GEPE MU (FED (yar, (24)

where U(7) = 2V(7) is the reduced potential, and the Green's fanction G5 s

ex
K — k2 -ieg

A= - tim, / a7 (25

If the short wavelength and high energy conditions (2.1) and (2.2) are applied to (25),

the Green’s fanction will reduce to

967 - explie- (- ) [

(26)

where @ = & — k;, and the denominator of the integrand of eq. (2.5) hss been linearized by

ignoring the @2 term. The integral can be performed by using the residual theorem, thus

)] "‘T")e,pm(, - )& E-F)o(z -4, (21)




where a cylindrical coordinsic system has been used in such s way that ¥ = B+ zE;, and |

# = B +:';; namely we have chosen the z axis along the incident momentum. The 6(z) is

the step function:

z) = 1ifz>0

= 0,if z <0, (28)

From eq. (2.7) one can sce that the linearized Green's fanction propsgstes the scattering
information along the forward direction. Such a propagator must have lost some scattering
information.  Putting eq. (27) back to eq. (24) leads to the so-called eikonal scattering
wave fanction:
W) = expli 7 - i I VG, i, 29)
where the integral is performed along the direction of k;.
We should stress that the eikonal wave function ¥§ does not have the correct asymp-
totic form appropriate for an incident wave plus a spherical outgoing wave, but only satisfies

the incoming boundary condition, that is,
WP *2P exp(i; - 7). (2.10)

Indeed, ¥ describes the motion only along the original incident direction. I is never-
theless still used to obtain an approximate scattering amplitude, the eikonal scatering one

(see 193 of ref. [15]):

o [ exati- AV espl

v (3,2)d="dF, (2.11)

where §'= F; — £}, the momentum transfer.



One can see that the eikonal approximation is actually a high energy semi-classical one.

The semi-classical wave function should be [16]
¥ ~ exp(iS(z)), (212)

which leads to the Hamilton-Jacobi equation for S(z) (S(z) is called the Hamilton's char-
acteristic function in classical mechanics):

(—sti +V=E. (213)
‘Thus, the actual phase of the scattering wave should be calculated along a curved trajectory
determined by the eq. (2.13). Needless to say, solving eq. (2.13) to determine the trajectory
would be a forbidding task in general. It is thus acceptable to make a compromise, by
which the z direction is rotated to a new position perpendicular to the momentam transfer
§, s proposed first by Glauber [14]. This compromise may perhaps improve the forward
scattering amplitude (eq. (2.11)). If we use this critical assumption of ¢+ 7= § - § (which
is valid near the forward direction; see Fig.9.2. of p194 of ref. [15]), the amplitude can be

reduced to a new form:

fo= g [ expli-Bloxe( o) - 11a%, @
where
xo@®=- [’ VG, (215)

The expression of fg is called the Glauber amplitude for potential scattering.

2.1.2 The properties of the Glauber potential scattering amplitude

Although the Glauber amplitnde is constructed from the scattering wave fanction which
lacks the correct asymptotic form (i.e., an incident wave plus a spherical outgoing wave), a

7



number of generally desirable properties are still contained in it.
The first intriguing virtue of the Glsuber amplitade is that it can yield an exact result

for scattering by 2 Conlomb potential. Glauber [14] has shown that if one uses the sequence

Q/r ifr<a
V(r) =
o ifr>a,
whete O is the charge of projectile, one can obtain the Glauber amplitude f5(6) 2s a

function of parameter a (the adoption of the cutoff is to avoid the divergence of the phase

Xo for the pure Coulomb potential). After taking the limit of @ — oo, f$(6) becomes

160 =~ ept-2i R ain §) - moll (- L mzka),  (210)

g

where

m:ugl‘(li»%

(217)
Except fot a constant phase factor exp(~2Z In(2ks)) which is independent of the scattering
asgle 8, the result is identical with the exact Coulomb scattering smplitude [17] at all
scattering angles. As wes known, the Coulomb force is the unique one that determines

atomic collsion dynamics. Although the interaction potential between incident particle

and atom is not purely C ic, the e*-nucleus i i which i= a pure Coulomb
one, dominates the scattering st large momentum transfer (high energies and large angles).
So long as the target wavefunction is not very eflective enough at screening the nucleus, the
Glauber amplitude can give rise to quite satisfactory results at large momentum transfers.
Since the property that the Glauber amplitude reproduces exactly the Coulomb scattering
amplitade is an ‘all angles® one, we should not judge the angular validity of the Glauber
amplitade simply from the semi-classical point of view. As a matter of fact, Glauber’s



proposal of makig the path integral along a special direction which is perpendicular to
the momentum transfer vector distorts the amplitude from s purely semi-classical one, thns
bringing about a considerably complicated situation.

Another important virtue of the Glsuber amplitude is that it is unitary at high ener-
gies [14], thus reflecting the conservation of the probability of scattering process.

1t is worth pointing out that the unitarity throngh the optical theorem can be satisfled

by any amplitade which has a structure of the Glauber form [14] (18]
E Y
= / exp(if- B)lexp(ix(, B)) - 1], (218)

regardless of the form of x(B, F), even if x(b, E) is complex, provided that the integral (2.18)
converges.

The third favorable virtue of the Glauber amplitude is that at sufficiently high incident
energy, the Glauber amplitude reduces to the first Born one for all interaction potentials
and all momentum transfere (see, for example, p241 of ref. [18]). Since the first Born term
dominates potential scattering processes at high energies and at all momentum transfers, it
is expected that the Glauber amplitude will work well at sufficiently high incident energies.

Furthermore, if we expand fg into a multiple scattering form in powers of the potential,

we obtain
fo= 3 ton (219)
‘where
Jon =2 (213 [ eptis-Dlxo®Ias. @)

It is well established that for a short-range potential which takes the form of a superposition



of the Yokawa type [19] [20]
V(iE)=Ve f »(n)“p(

the Glazber amplitude can be written as

@2)

C(c)

Iotkg) = faulo+i 204 S0

= fatfatfostor, (22)

where the coefficients B(g), C(g) also appear in the corresponding Born series:

A(ﬂ) B(q)

fhe) = C(") J,i’l] 4o

= for +fpa+ fost-e- (2.23)

at all momenium transfers provided that the semi-classical condition ks > 1, the high
energy condition [Vo|/k* € 1 as well as the weak coupling condition ([Vol/E?)(ks) < 1,
which goarantees the convergence of the Born series, are all satisfied. Thus the Glauber
approximation is one which just selects in esch term of the Born series the dominant con-
tribution (to order £~1) under the above conditions. This property makes it possible to
use the higher order Glauber terms to approximate {' : corresponding Born terms which
are extremely difficult to deal with. In addition, the Glauber terms are alternately real and

imaginary.



2.2 The Wallace potential scattering amplitude and its pr-
operties
2.2.1 The Wallace amplitude

The Glaubez amplitude is constiacted from the linearization of the Green’s function. Thus
it only chooses in each term of the Born series the dominant contribution to order E"‘_in
some cases. It is interesting to look for an improvement beyond the conventional Glauber
amplitude towards an understanding of the large angle corrections. This has been done
by Wallace [21] who obtained in a systematic way the leading correction to the Glauber
amplitude by using a technique originally adopted by Abarbanel and Itzykson [22]. Let us
discuss his work in some detail.

In potential scattering theory, what we should do is to calculate the 7" matrix:
T = (E7|V +VGVIE), (2.24)

where |E;) and [K7) are initial and final states of the incident particle respectively,

V is the potential, and G is the full Green’s function defined by:

2 2
6= 'i; - %— Ve Ut (2.25)

where P is the momentum operator.
Sugar and Blankenbecler [23] suggested that P? could be expanded abont a vector &,
in order to eikonalize the Green’s function:

B-P =k (P-E) -2k (P-F) - E. (2.26)

The eikonal approximation is achieved by dropping the quadratic term (P — K% If we

1



choose £ to be
E= %(i.— +5), (227)
then
-t L2 ? [ :
G™' & JHsin 5+k;m;k~(k—PJ—V+ltn (2.28)
where 0 is the angle between K; and £y. In the Abarbausl and Itzykson formalism, the first

term 1kZsin?{ is ignored and the resulting Green’s fanction is thus

o3} = bicos Tk (F= P) = V H i, (2.29)

whereas in the conventional Glauber approximation, the condition 0 = 0 is assumed and

the resulting Green’s function is taken as

(E-P)-V +ic. (2.30)

Thus either g4 or g approximate the exact Green’s fanction under the condition of small
scattering angles. In the work of Abarbanel and Itzykson, the exact Green’s fanction can
be recast into

Gl= ’;“ - N, (2.31)
whete g4y is the eikonal part, the remaining part N, is the correction cansed by momentum

deviations from both the initial and final directions, i.e.

¥, %(P — &) (P-E). (2.32)

The eq. (2.31) can easily be inverted into the form as

G=gu +9uN.G. (2.33)



Eq. (2.33) can be iterated and the T matrix expanded as a perturbation serics of N, as
T = (EV+VGVIE)
= (7IV +VaarV +VarNegarV + - |
= (IVIE) + 71V aarV IE) + (6 1V gar NegarVIE) + - (2.34)

It can be shown that the first two terms give a scattering amplitude similar to the Glauber

one, i.e. if we adopt two dimensional Fourier-like transform of the T matrix as

T(§) =

i / PFexp(ig- HT(E, D), (2.35)
then for the first two terms of eq. (2.34), the Fourier component of eq. (2.35) is
2 R )
Tar(b,q) = ~icos > {expliro(8)/ cos 5] - 1}, (2.36)

where
O q-Lgn
cos 3 =(1 “?) , (2.37)
and ro(B) is the conventional Glauber phase:
L1 e
()= —— / V. (2.38)
ki J-co
Compating eq. (2.36) to the Glauber approximation which has the form
T°(8) = —ifexp(io()) - 1), (2.39)

one can see that Ts(F, ) is not a true Fourier transform of the T matrix because Ta(5, )
depends on both b and §; whereas T°(5) depends only on the impact parameter 5. Of
coutse at small 6, these two forms make no difference. However Tos(5,4) is inferior to the
Glauber one at large angles. As an example, for Conlomb potential, Tas(F,§) will lead to
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an incorrect scattering phase. This led Wallace to choose the Glauber amplitude, rather
than the Abarbanel and Itzykson one, as the leading term of his eikonal approximation,-
the one that is the correct zeroth order high energy approximation for all scattering angles.

This can be achieved by simply linking g~ with g7}:

G+ Mg+ V), (2.40)

whe. the parameter A is defined as
Gy (241)
2
From eq. (2.31) and eq. (2.40) one arrives at
G = gt -N
N = Mg '+V)+N,. (242)
Inverting eq. (2.42) for G, an expression for G is obtained as

G=9+gNG=g+GNyg. (243)

By resorting to the iteration method, we obtain a perturbation expansion in powers of N

(not in powers of potential V1):
G=g+(gN)g+(gN)g+--. (244)

Substituting the eq. (2.44) into eq. (2.24), we obtain the T matrix as a perturbation series

in powers of N:

T = (KI(V+VV)+VeNgV + V(gNY gV +V(gN)*gV +---[)

= T+ +T* 47 4. (2.45)




The first term T° is the Glauber approximation, and the term T" is the nth-order correction
to T? due to the inclusion of momentum transfer effect. It can be shown that the complete

eikonal series (2.45) can be written as a Fourier-like transform integral [21]:

T() = -k [ Pexplig- HTe i), (246)
where
Te(5i¢%) = f:(l — AT ) (247)
=

with A = 1 - cos /2. Since T"(; A) are very complicated, we do not want to write them
explicitly.

Wallace first investigated T(g) in the forward scattering situation; this is because the
results obtained in this situation may be extended to the general case; on the other hand,
the forward scattering is directly related to the total cross section via the optical theorem.

‘Thus by setting g = 0 into eq. (2.47), one gets
5
Te(50)= Y T°(%;0), (248)
-
where the leading terms in the sum are summarized by

TO(5;0) = —ifexp(ino(8)) — 1]

T'(%0) = ~iexp(in(®))im(b)]
T(50) = —iexp(in(®){in(B)*/2! +ira(b) — wa(B)}

T(1:0) = ~iexplin@B){En@)/3! +in@)in®) - wa®)] + ilrs(®) + $s()] - ws(4)}



TM(b0) = —iexp(in(®){[in@)]"/nt+ [n@]"ira®)/(n - 2+ -}, (2.49)

where some quantities are listed below:

(2.50)
10 =55 [ 69X Vs @)
and )
Vxa(d) = -tl.- /_' v, (2.52)
VxR = " /' “ 49V (F). (2:53)

These equations demonstrate the exponential feature of the eikonal series. If we only keep

70(8) and 7,(8) and ignore all the others, we obtain a phase corrected eikonal amplitude:

T'0)

—ifelln®n®] - g}, (2.54)

Since the Glauber phase is proportional to 7!, whereas the phase correction term is pro-
portional 1o k7*, then 7;(5) corrects the Glauber phase to the relative order of ki2.

The new phase can be written explicily as
00 2 d )
o(3)+ () = ki /o d{-2T(r) - 41 + 4500, (2.55)
whete V(r) = VoU(s), and € = Vo/&7. On the other hand, the WKB phase s [24]

XVEB() = i /o * 4a[~26U(r) - ETr) — EV(r) - %s‘l/‘(r)+ L (ase)



Comparing these {wo phases, one can see that the phase in Wallace approximation contains
the WKB correction up to ¢ together with a new type of correction involving & trans-
verse derivative b which comes from corrections to either the linearization of the Green's
fanction which has been adopted in deriving the Glaber amplitude, or equivalently, the
straight line path which has been inherent in the WKB phase (2.56). In addition, it is
worth mentioning that 7y(b) is zero for a Coulomb potential.
Now let us turn to discuss large momentum transfer behaviors. In this ease T is not
only a function of 5 but also & function of ¢? through the parameter A:
A=l-cond=1- (- Loy, (257)
2 17
Wallace developed T into a power series of k™ and ¢?, namely,
=
Te(bia) = Y k() ¢* tin-a(b)]. (258)
n=0 =0
The leading terms in eq. (2.58) were found throngh &7 by Wallace [21}:
1 : T°%;0)
K T(%0)
E? 2 T(8;0) +il(V? + ¢?)/8E{[1 - ino(B)] exp(imo(8))}
K 2 T80 = (V7 + °)/8RT{[2 + imo(®)]ima(b) exp(im(8))}. (2:59)
The higher order terms were not displayed by Wallace because they are too complicated to
be calculated. From the above sequence, we can see that (2.59) contains the sequence (2.49)
for the forward scattering together with the terms having the structure of (V2 + ¢%)f(b).
In fact V2 + ¢? is a null operator under the Fourier transform, that is:
[ @exstid- B9 + ) =0 (50)
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It is this very important feature that leads Wallace to propose the following conjecture for

scattering by spherically symmetric potentials:
Te(b¢?) L5 T() + f:((v’ +¢?)/E (). (2.61)
I=1

‘That is: the dependence on ¢? of Ts(b;¢%) due to the parameter A could be systematically
canceled by terms involving V? + ¢?. Thus the formula (2.54) derived for the forward
scattering case is conjectured to correct the Glauber phase function to the relative order
of k77 at any momentum transfer. An example of the conjectured cancellation is given
by Wallace for all orders in ¢? based on the known result for Yukawa potential scattering
through the second Born approximation.

In conclusion, we write out the explicit form of the Wallace amplitude corresponding to

TI(b) 2s
£ [ explis - BY{expliCh xol®) + 73 (B0 - 114, (262)
where
- 1 [=
)= /__(vmxvx.)n (263)
ad
xa(b,5)=— /_ " VG, (2.64)
x5 = [TV T e
xo(B)=— /_ : V(E,2)dz (2.66)

We should note that xo(3) is the first order in V whereas x;(F), the second order.



2.2.2 The properties of the Wallace potential scattering amplitude

The Wallace amplitude possesses the properties of the Glauber one. For :x-mi;le, the
Wallace amplitude will reproduce the correct form of the Rutherford type for s Conlomb
potential since the correctivn term x; is zero for such a potential. The Wallace amplitude
is unitary at high energy [25]; this is because this amplitude has a structare of the Glauber

type. Also the Wallace amplitude has the correct high enetgy behavior, namely,

Sw"% o (2.67)

for any scattering angle, where k = |£|. Furthermore, in order to study perturbation
features of the Wallace amplitude, we can make the following expansion in powers of the
interaction potential:

fw= fjllw, (269)

where

Swa= (=t [ PP exnlid DGO - nto - DG +--). (269)

One can see that fiy, are complex when n > 2 in contrast to the term fg, which are
elternately purely real and purely imaginary. Thus fiv, has a tendency to reproduce the
corresponding Born term fp,. It should be recalled that in the derivation of the Wallace
amplitude, the first step is to expand the T matrix as a perturbation series of N which
directly includes the corrections to the straight line path, see eq. (2.45); the second step is
to sum all leading contributions from each term of the perturbation series, see eq. (2.49).
It is thus expected that when we expand the Wallace amplitude as a perturbation series

in potential ¥, each term should be closer to its exact one: the corresponding Born term,
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althongh the justification strongly depends on the possible cancellation of parameter A.
The case studies on the Wallace amplitade have been made by Byron ef al. for various
types of central potentials, and in particalar for the Yakawa-type potential which takes the
form [26]:
V=V / o)== g, (210)
ao r
where Vg is 2 atrength of the potential. For such a potential the Born term fgq(n > 2) can

be written as

Soultg) = v Aoald) | Bonlo)

+0(k™'™) (2m)

for all momentum transfers. Based on the work of Wallace [21] and of Byron et al. [26] it is
strongly suggested that for the Yakawa-type potential of the form (2.70), the corresponding

Glauber terms and Wallace terms could be expressed as

Son(k,q) = “W‘Aﬁ,"_(,”),(n >2) (212)

and

Aa.(fl) Ban(u)

Swalk,g) =V (SEEE +i=500), (n 2 2) (2713)

for all momestum transfers, although a rigorous proof is still lacking. From the expressions
we can see that the Wallace amplitude presents in each order of perturbation of potential
V not only the leading contribution but also the next one of the corresponding Born term.

In contrast to the Glauber case only the leading terms exist.



2.3 The many-body generalization

2.3.1 The frozen target approximation

Compared with pure potential scattering, many-body scattering is much more difficult to
deal with. This is because there are extra degrees of freedom associated with target, Thus

some imatior should be used ing the target coordi The most commonly

adopted method is the so-called frozen target approximation in which the aggregate of all
degrees of freedom of the target are fixed during & collision process, thus possible virtual
transitions of the target being not permitted. The frozen target approximation, however,
should be expected to work well for high incident energy scattering. There are many
methods to realize this approximation, one of them being proposed by Chase [27] which
clearly embodies the physical picture. We would like to introduce Chase’s method here.

As we know, the general formula for calculating the scattering amplitude is given by
(see p263 of ref. [18])

I 5) = =l V(S ) @19

where GG*) is the free Green’s function defined by

G = (E-Ho+ie)™,

Ho = Ha+Ko. (215)

In these i H, is the target iltonian, Ko is the kinetic energy operator of the

projectile, ¥o and ¥, are the initial and final target energy eigenstates respectively, and

ko and Ky are the initial and final of the projectile ively. If we take the

coordinate representation {|7,X)}, here o is the coordinate of the incident particle and
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X stands for the aggregate of the coordinates of the target, then it is well-known [28] that

6§ X4, 2=~ 3 S Blly w00,
where
kn = [k~ 2(en - co)]'/2, @)
and
Ha¥n(X) = en¥n(X). (2.78)

It is understood that the summation over n runs over the complete set of target energy
eigenstates (i.e. the discrete states and the continuum), which is a difficult task. There is,
however, a simple way to avoid this difficulty. If we look at the expression for kn, we can
see that for sufficiently high energy ko, the energy difference between the initial state and
intermediate states could be approximated by a single average excitation energy é. Thus
kn becomes £, or

knm k= (B2 - 26)', (2.19)
which is independent of n. Therefore the summation in eq. (2.76) can now be trivially
performed by using the closure relation of the target:

8 Ko7, Ky - A=)

or 5(X - X"). (2.80)
In eq. (2.80), the existence of the delta fanction §(X — X') reflects the fact that the target
coordinates have been frozen. Furthermore if the average excitation energy ¢ is chosen to be
zeto (i.e., if the target states are assumed to be frozen during the collision), then eq. (2.80)
can be reduced to

GE(Fo, X; 7%, X') 2 GEV(7o, 7)6(X — X), (281)
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whete G5*)(7%,7) is simply the free Green's function which can be used to describe a

scattering process between the incident particle with the momentum Eo and the potential

V. When we substitate eq. (2.81) into eq. (2.74), the many-body scattering amplitude is

reduced to a potential scattering one averaged by target states, i.e.

Trolkp Fo) = (Y111 (Ko, )| ¥a),

(282)

where f(ko, 6) is the potential scattering amplitude. In this way, if we treat the scattering by

V/(7o,X) by using the Glauber approximation, we obtain the many-body Glauber amplitude:

1) = B [ P6aX expliT EIEGOOM - expoxalB XX,
with
Xo(00,X) = — /_ : V(0,30 20: X)dzo.
In the similer way, we can obtain the many-body Wallace amplitude as
R = B [ haX elid DL OO0 - explilExetle, X)
+éx.(ﬁ.x»1mm.
with

X3 =3 [ (Foxs)Tox-zo,

x+(80,20: X) = —/_: V20,30, 26; X}z,

x-(boy20: X) = —/.. V(zo,v0, 2; X )dzb.

(2.83)

(2.84)

(2.85)

(2.86)
(287)

(2.88)

Tt should be pointed out that in fff and fJ{, the frozen target approximation has been nsed

in which not only the target coordinates ate fixed but also the average excitation energy €

is taken to be zero during a collision. It is therefore expected that both ff and fJ} will

suffer from some deficiencies in general.



2.3.2 The properties of the Glauber many-body amplitude

In order 1o study high energy behaviors of the Glauber many-body amplitude, it is more

instructive to expand the Glanber amplitude into a perturbation series in potential V,

namely,
=X I (2.89)
where
1= L [explid )X xolbo, NI X)PhdX, (250)
X366, %) = = [ Vo, 0,20 X, @)

The term " is of course nth order in V. The series (2.89) is called the many-body

Glauber series. The corresponding Born series is

fo=X If (2.92)
b=
where
1. ;s

e = =32V GGV owa). (283)
By ing that the transfer 7is cular to the z-direction, one has
§bo=-fo. (2.94)

‘This results the following identity
=1 (2.95)

at all incident energies and all momentum transfers. Thus for elastic scattering, the flrst

Glauber term contains the first-order treatment of the static potential of the state ¥o.



Let s go on to consider the second order Glauber term f§? :

" ] exp(i - 50)¥5(X)xo(B, X)P¥a(X)d?BdX (2.96)

s
" 4xko
It is well-known that the real part of the second Born term contains the dipole polarization

effect of the target, that is for s-s transition we have [29]
ko I all 1
fp 0T o 5 12120 (a2 ¥0) X

{1 (2.97)

_ kng )
[E3¢% + 4(co - ea)(es — e 2"
where Z denotes the sum of the 2-coordinates of the atomic electrons. It is obviously that

if we use the frozen target approxima*ion and set €, = ¢o for all n, we have

gy o lrgeg amall _—

Thus the leading polarization effect is missing from the Glauber amplitude. In fact [ is
purely imaginary for s-s scattering. The disappearance of the real part of Iﬁ,’ is caused by
the adoption of the straight line approximation or the linearization of the Green’s fanction.
In fact if some correction is made to the straight line approximation, the real part of the
second order term can be reinstated, as in the case of the Wallace approximation. However,

it does not mean that the polarization effect is recovered. For example, although the real

part of the second Wallace term exists and behaves like k3, it does not have the correct
asymptotic form (2.97) which has the k;* decay law. Thus the polarization effect is still
missing from the Wallace amplitude.

As for the imaginary part of f{, it can be shown that [30] [31]
@ g (2.99)
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for e®-1l or e*-He s-8 scattering. On the other hand [31],

£fi1a —ns) = ing (2.100)
Sf1s —np) =2 1/q (2.101)

for e*-H scattering. Thes* angular behaviors lie outside the physical region for inelastic

scatteting. For elastic scaltering, however, especially for 1s-1s case, the divergence is really

disast The direct of this di: is that the optical theorem
ke
(@ = 0) = 320w (2.102)
which reflects the ion of the ility of the quantum cal process, will

1o longer exist (here oot denotes the total cross section). The breakdown of the unitarity
could be traced back to the divergence of the imaginary part of the second Glauber term,
see (2.99). Furthermore, the divergence of $/§? comes directly from the adoption of the
frozen target approximation. As a matter of fact, it can be shown that [32] [33] [34] if the
frozen target approximation is used in the calculation of f&32, SfB? behaves likes Ing, the
same type of divergence as I f&?. It is therefore not surprising to find that the divergence
in £§ is associated with, and only with, £&?

In brief, in the Glauber amplitude there are two serious deficiencies, one is the disappear-
ance of the polarization eflect, the other is the spurious behavior of the absorption effect.
These two deficiencies are rooted in the second Glauber term. It is also worth noticing that
the Glauber amplitude gives the same predictions between the electron and the positron
differential cross sections,

However, the Glauber amplitude still contains some favourable features. It is conjectured
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that for s-s processes,
ffe = RfJPitnis odd
~ iff7if n is even. (2.103)

In fact these relations were first brought 1o light in a study of scattering by Yukswa type
potential [19] [20] [26] [35] where it was shown that these relations are exact for all ¢
at as;mptotically large ko Thus the Glauber amplitude seems to give fairly accurate
information on half of the Born series,

2.3.3 The properties of the Wallace many-body amplitude

Parallel to the discussion of the mary-body Glauber amplitude, let us first expand the

Wallace amplitude (2.85) into a pertutbation series in potential V:
w=x (2.104)
nst
where the first Wallace term f{§! is identical to the first Born term f74,ie.
=1, (2.105)

and forn > 2,

I = e [ xRN (KB, X) = e = 1R X, X)

4+ terms containing higher powers of y if n > 4)¥o(X)d*6dX. (2.106)
From eq. (2.105) one can see that for elastic scattering the first Wallace term contains the
first-order treatment of the static potential of the state ¥o. For the higher order terms, the
existence of the extra phase x4 makes them no longer purely real and imaginary. Let us
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now consider these higher order terms. For simplicity we assume that both ¥o and ¥; are

s-states and therefore they are real. It is easy to see that:
Sffe = 9ffF (2.107)
RIS =R (2.108)

By recalling that f§? has the Ing divergence for small g, the Wallace amplitude f}} thus
has the same kind of divergence which comes from the imaginary part of the second order
term. This divergence is diagnosed to be associated with the adoption of the frozen target
approximation in which the sverage excitation energy is set to be zero. Therefore the optical

theorem, which isa of the ion of the ility, will be broken down.

As for the real part of the second Wallace term,
R/ = i [ el NGOG F(XPRAX. (@2109)

From eq. (2.109) we can see that the long-range dipole dynamic polarization effects have

been omitted by fJ}%; this is because RfJ§? varies as k;? whereas the correct dipole polar-
ization effects should have the k5! decay law as expressed in (2.97). In other words, R[§?
falls off more rapidly with increasing energy, at small g, than it ought to. The lack of the
polarization effects in the Wallace amplitude also comes from the adoption of the frozen
target approximation with average excitation energy set to be zero. The Wallace amplitude
still suffers the same kinds of deficiencies as the Glauber amplitude.

On the other hand, unlike the Glauber amplitude, R/f§2 and S 4> are 1o longer missing
from the amplitude. In fact, Byron et al. [36] have studied the large momentum transfer

behaviors of the first threc Wallace terms. As expected, the terms ff!, 9/}¢? and RfJ5°
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duplicate the large ¢ behavirs of the corresponding Glauber terms. The large g behavior of
Rf}%? which is missing from the Glauber series agrees precisely with the la:ge g expression
for real part of the second Born term calculated in the frozen target approximation with
the zero average excitation energy. As for /43, which is also missing from the Glauber
series, it does not, however, seem to contain exactly the same component as the imaginary
part of the third Born term calculated by unitarity-by-order relation. In short, the Wallace
terms at most up to the third only do seem to better represent the asymptotic behaviors of
the corresponding Born terms than those of the Glauber amplitude.

Going to the higher orders of the Wallace expansion, one can show that the Wallace
terms /,‘K"(n > 4) are all divergent [36]. This means that the perturbation expansion of the
Wallace amplitude does not exist at all; in other words, the attempt to analyse the Wallace
amplitude perturbatively would perhaps be meaningless. However, the Wallace amplitude
itself converges; this is because the correction term ) appeats to be in a phase factor.
Finally we want to point out that because of the existence of the extra phase xy in the
amplitude which does not change sign when the negative charge is replaced by a positive
one, the Wallace amplitude is able to predict the desired difference between positron and
electron differential cross sections [37).

The Wallace amplitude was first used to e*-hydrogen scattering process by Unnikrishnan
et al. [38] who succeeded in reducing the scattering amplitude to a triple integral form which
can be evaluated numerically. Subsequently, Franco et al. [37] also independently applied
the Wallace amplitude to study e*-H elastic scattering and with a similar procedare of
reduction they also put the scattering amplitude into a triple integral form. In addition

Byron et al. [36} /39] also performed the calculations in the Wallace approximation for e*-H
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elastic and inelastic ing. Ci i with il on electron scattering from

hydrogen in its gronnd state have been made which suggest that the Wallace amplitude is

an improvement over the Glauber one (see ref. [36] [37] [38] [39] for details).

2.3.4 The other related approximation methods (EBS, MGA and UEBS)

Based on the systematic study made by Byron et al., it is seen that in order to construct in

a consistent way a jon expansion of: d

up to k3?, it is necessary
to include not only ff and ffZ, but also R/f5". In view of the relationships belwe‘en the
Glauber terms and the Born terms {40}, it is probably reasonable to replace ?x]ﬁ,’ by /ﬁ,’
which is much easier to calculate than R/, Byron et al. [41] thus have suggested the

following practical approximation which is correct to the order of k3?:
IS =g + I+ S5 (2.110)

This formula is called the eikonal-Born series (EBS).

On the other hand, it was Gien [42] who considered to improve the conventional Glauber
amplitude from another point of view. As Gien proposed, since the Glauber amplitude has
many features which are quite attractive for the application to atomic collision, this am-
plitude could be retained as & good approximation for e* scattering off atomic targets at
intermediate energies provided that the serious deficiencies of the scattering amplitude due
to its eikonalization are corrected properly. The most serious deficiencies of the conven-
tional Glanber amplitude are identified to be with its second order perturbation term. The
conventional Glauber amplitude could, therefore, be improved very much by simply cor-

recting its second order term with its counterpart prior to eikonalization, i.e. the second
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Born term. The modified Glauber amplitude is then established as (see ref. [43) for detail)

= ff- 152 +IR (2.111)
It is clear that the modified Glauber amplitude of electron-atom scattering is no longer
divergent in the forward direction and thus the unitarity is recovered. Besides, the polar-

ization effect of the atomic target which is missing from the conventional Glauber amplitude

is teinstated. Furthermore the modificd Glauber amplitude S} can be recast ss
IRE= I+ I+ 1 +Z (2.112)

by bearing in mind that the first Glauber term is identical to the first Born term. Com-

paring with the sccond Born imation and the EBS imation, one can sce that

the modified Glauber imation i the ibution from the higher order

perturbation terms which are nothing else but the eikonalized Born terms, i.e. the Glauber
terms. The adoption of these terms to approximate the high order Bomn terms might not
be 0o bad at all since the possible mutual cancellation among these higher order scattering
terms of an infinite series may make the value of the sum of these terms become not very
far apart from that of the Born terms, as pointed out by Gien (see p145 of ref. [42)). Tt is
well known that the e*-nucleus interaction could slow the convergence of the perturbation
series at large momentum transfer due to the singularity behavior of the Coulomb interac-
tion. Thus the inclusion of the higher order terms in the perturbation series is of critical
importance. In this connection, the modified Glauber approximation has taken these terms
in an ingenious way.

The third related approximation is the so called unitarized eikonal-Born series (VEBS)
one. It is known that the Wallace amplitude is designed to relax the stezight-line assump-
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tion of the Glauber approximation. However, it still retains the zero excitation energy

in its body i Thus the Wallace approximation still suffers

serious deficiencies which are believed to be associated with the poor behavior of the second
Wallace term fJ§2. In order to avoid these deficiencies, while keeping the advantages of
1%, Byron et al. [44] have constructed a modified Wallsce amplitude, called the unitarized
cikonal-Bom series (VEBS), by simply replacing ff§? by its exact counterpart; ie. the

second Born term, namely:
SREBS = fR (R - 1. (2.113)

The adjective ‘unitarized’ 72 appeared in eq. (2.113) should be discussed a little bit (see
P62 of ref. [34]). We can say that f}{ is unitary in such a sense that since the interaction

potential V occurs in & phase, the litude can not grow indefinitely in size as th h

of V becomes large. As for the EBS amplitude, since the potential V does not appear in
any phase factor, this amplitude is definitely not unitary any more. On the other hand,
when the [ and [} are sdded 1o the Wallace amplitude fJ§, the unitarity of i1 47
disturbed. The degtee to which the unitarity is lost depends on the balance between S5
and f}47. Since both £7? and f}§? have real and imaginary parts, the f£? and f}§? could
be partially balanced and the unitatity in £J} could not be destroyed very much. Compared
to the EBS amplitude which is of no unitarity, the modified Wallace amplitude contains

mach more unitarity.



Chapter 3

The study of et-scattering off the
metastable 2s state of hydrogen in
the Glauber and Wallace

approximations

3.1 The scattering plitudes in the Glauber approxima-
tion
The many-body Glauber amplitude is given by [31]

1o(k g, Ro)= !,:—: / @*BodX exp(ig- Fo) Z3(X)1 —exp(ixo(iu,xnlwam. (3.1)
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where
x6(0, X) = = [ V(zo, 30,201 ). (32)
For electron or positron scattering off hydrogen, the Glauber smplitude can be reduced

into a closed form in terms of a generating function [31]. For 1s-ns processes, we have the

formula:
1518 = ney @) = zibnn"”:z:::aj(n)(—l)i" :::. To(%;)la=141/ns (3.3)
where
aim =iy, )
o =T, ()

and Io(X;g) is the generating fanction defined by
Io(X;) = —4inD(1 + in)D(1 — in)A~2~Fg~2+3a p(1 — i, 1 — in; l;-§)~ (3.6)

In eq. (3.6), the parameter 7= ~Q/%(Q = + for positron and electron respectively), the
function F is the usual hypergeometric one.

For 1s-np processes, we have

SO npaif) = expliog S it (B D pra

(n-2)!
n-2 j-
S Sk s 61
where @, is the polar angle of §,
pim = St 2y, )
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and I3(A;q) is the another generating function defined by

N(g)= - 4D(1+in)(2 - in)gh 2" 27g™ [ P2~ in,1 - in; 1 ——)

s
A +in)F@—in1—in% -:—,)1. (3.9

From eq. (3.3) and eq. (3.7), it is @ straightforward matter to obtain the following

scattering amplitudes

(18 = 18;q) = ~8kon

)
“24ain
v e LT @10

e 259) = 2’““0'1 h = ¢""'"(-+ ‘W)""('\)[*"/” (3.11)

7918 = 2p4; @) = exp(Figq)2ikon(1 - in)

in 0
'“""ﬁnx(f\)lxﬂ/z. (3.12)

lmh )
8 ™M 28%
G T | T Pty 242 2 4 2
S8 — 38i0) = —phon o - + "( A3 s 79w )ﬂn(»\)lx_qa. [CBE))

Foe= 3D = expwis) kontt - in) g x
(ﬁ + EW)HX(A”X:I[!' (3.14)
where
; »
Mo(A) = A2-%7F(1 = in,1 - in; 15 —q—,). (3.15)
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and
" » a
M) =A"2"M-F(2 -ip,1 — im;-—’—,)+ (1+in)F(2 — i, 1~ iv;z;—F)]. (3.16)

As for transitions from the 2s state of hydrogen, since

()= %exp(-r}, (3.7
(1) = == Pexn(-rf2), (318)

we have
() = P @19)

where the differential operator D is given by
8. _ 1. .19
(5= 750+ 35,0 (3.20)
therefore the scattering amplitudes for transitions from 2s state can be expressed as
G, o aps 5 3, o+t
16(25 - ns; §) = 2ikon™ 3 a,»(.)(—1y*‘v(ﬁ)3;ﬁlu(l;c)l,\..mx,.. (3.21)
i=0
and
1

fs = mud) = erp(#“.)%(%)"’iko;l

e

n-2 Fl 4 o"#l

Z:o P(ﬁ)ﬂi(")(—l)'“ Fve L(0h=1201/m-  (3.22)
B

In particular, we have

xn

1928 = 25) = —kon =

a0 O 100
G+ g3t 1 oMW h=ts (323)

e 2pa3d) = explFige) Zoiton(1 - in) A g > x
oo K.t ROV 20)



“ 3= — E_-av3in( 8 Ll
1= 3030)= !\/— .mlm, N oxtsom
ne

+ gty m.)“o(‘)h—u/c. (3.25)

1o =3y = explsit) Likon(s - in) ﬁn’;"“r"*"" x

&+ 22+ L2 hes @29)
where the functions Ilg(A) and II;(A) are defined by eq. (3.15) and eq. (3.16), and their
derivatives are presented in Appendix.

The differential cross sections are given by

%(m - ms;f) = %I/a(nl — ms; )2, (3.27)
G
—:ﬁ(u — mpif) = ZZ-IIG(M —mp I, (3.28)
where
—-L-Lyn
b =-(G-20" (3.29)

3.2 The scattering amplitudes in the Wallace approxima-
tion
The many-body Wallsce amplitude is given by [36]
PR = B [ Phax el g0 x
(- expliExoli X) + gatho, XNEa(),  (30)
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where

Yo(Bo, X) = —/_:V(lo-n.to:z\')‘so, (3.31)
xi(bo, X) = % /_ :(Vun)(v..x-)d:n, (3.32)
x00, 2010 = = [ Vezoupo, 53 X)ish, [CEOR
x-(Bo, 203 X) = —/: V(zo, %0, 25; X)dzp. (3.34)

Since the Glauber amplitnde can be put into a clozed form for e*-H scattering, it is advan-

tageous for numerical work to split the Wallace amplitude into two parts:
I (Ey, ko) = £(Ey, ko) + W(Ey, ko), (3.35)
where /€ is the Giauber amplitude and W(Ey, ko) is defined by
Wipk) = 52 [ hdX expif B0 explxo (e X)) x
11 = exp(gsxa G X 2a(X). (3.3)

The derivations of the Wallace amplitades for the processes listed in the preceding
section are shown in the Appendix. Before wiiting down these formulas we need to define

some quantities,

X = X(a,8,9) =o(y/82 +¢2 - 6)'/3, (3.37)
Y = Y(a,6,9) =a(/2 +¢2+6)'/%, (3.38)
= aa- Ko )), (3.39)
o= 56—_[1.():)1{.(}')], (3.40)
M=+ <22, (341)
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a=V2M. (3.42)

In eq. (3.41), Jy and Iy are further defined by

h = 2gK(v), (3.43)
L=2g"'E(v), (3.44)
where

(3.45)
(3.46)
A=[P+(1+a)], (3.47)
B=[r+(1-a)% (3.48)

and K(v) and E(v) are the complete elliptic integrals of the first and second kinds:
K@)= /'I’ g (3.49)

Jo -’z
E@)= ./,, etz (3.50)

Tn all these expressions, the variables a, 7 and ¢ will be considered to be the variables of
integrals in the formalas below.

For transitions from the ground state of hydrogen, we have:

i T e L
Wto =160 =522 [“daats [“ay [Tap(r+20hes, ()

ey = o ]” L42in /‘" i
Wits =250 = 2 [“deatsai [ .i-,/n ¢ x
@P - §m +469+ 266 e, (3.52)
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Wits = 1pai0) = exp(io-32) [ daat+ [" a1 ["ag x

(1+acong)(Es — 268" a=sn, (3.53)

4iko /“’ 1420 j“’ /" 1 1, (0)
W(ls— 389) = d " [ d d g —
(18 — 38;) o7 A $( Py 7 Ps+“5 Ps + 2y
1
+660 + ﬁﬁzcgu))llrllh (3.54)
s _Bkoy % 4 o142in / - /'
W(ls — 3ps;d) = exp(Fide) m /ﬂ dact¥n [ dy [* 401+ acon g) x

1 1
(Bs - 58Es = 26§ - 2661 Nrcys. (3.55)
For transitions from the 25 hydrogen, we have:

W(2s— 20 = "‘“/ “'”"'/ d1/;d¢x

(4P, —46P; + 8 Ps + 8C") + 85C + 262C{M)sey,  (3.56)

Wostpard) = exp(qc.‘.p,)(-"‘#) /:,;,.,,nn:n /o“’d, ]n'.x¢(1+.,cn,¢)x

1
(Bs~ 38Es - 20" - 6CNaat, (3.57)

2iko
3v/6r

mo’nnc‘“’ Bico, 8 6’c"”+mﬁc‘”)],ﬁ,,.(sse)

W(2s — 359) /"’ daa+%n f dy /' as(P- Ton o+ Ben
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) the e i [T
W2 = 3pa;d) = exp(;.m)(_ﬁ) / daat*¥n [] ay /ﬂ d4(1+ acos $) x
8 6
(Bs- —55. +55 s’s, 26 - 2604 - 820\ Nacsje. (359)

From eq. (3.52) o eq. (3.59), the quantities §, P; and E; are defined as follows:

5= X1+a®+7% +2acos $)'/2, (3.60)
Ro= - s+ Bt s61)
B = gl - 1(4,1—’6,)+ T’(q,‘% ! (@52)
Po=@raymnl - 2T(F+ )t %(#) ()
o= - %q,”,n T‘;m‘:’ “BL e
B = ot - Yt + St + 7 (59
B = Gragmli- ’(WH ; rs ,,)*1, )
E = q,’fi‘,’)’,,,{ q, . 6,)+ (q, = ) (3.67)
The differential ctoss sections are given by
L (vs = mei) = EifOns = m) 4 Wins = moidls (350)
and
i k

g (s = mpid) = ﬁfllﬁ(m — mp; )+ W(ns — mp; )" - (3.69)

3.3 The numerical results and discussion
Namerical calcalations for the differential cross sections in the Wallace approximation are

carried out by using the three-dimensional integral expressions for the Wallace correction
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terms in which the functions C and C") are obtained analytically. The computer pro-
grams for these expressions are checked numerically by resorting to the corresponding four-
dimensional integral expressions. The Gaussian Legendre and Chebyshev quadratures are
adopted in the numerical evaluations. The convergence of numerical integrals is tested
properly by increasing the number of quadrature points stepwise. The scattering processes

investigated are listed below:

e* + H(1s) — e* + H(ls), (3.70)
e* + H(1s) — e* + H(2s), (3.11)
e* + H(1s) — e* + H(2p), (3.72)
e* +H(1s) — e* + H(3s), (3.73)
e* 4+ H(1s) — e* + H(3p), (3.74)
and
e* + H(28) — e* + H(2s), (3.15)
e* 4 H(2s) — e* + H(2p), (3.76)
e* +H(2s) — e* +H(3s), 3.77)
et 4+ H(2s) — e* + H(3p). (3.78)

The incident energies of projectiles(electron and positron) are 50 eV, 100 eV, 200 eV, 300
eV, and 400 eV. Our results for the differential cross sections in the Wallace and Glauber
aroroximations for both electron and positron scattering are summarized from tables 3.1

t03.27.
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From figures 3.1 10 3.8, we show our Wallace and Glauber electron and positron 2s-2s, 2s-
2p, 25-3s and 2s-3p results at 50 eV, 200 eV and 400 eV. Through comparison some general
fertures can been scen. At small angles, for both electron and positron impacts, the Glauber
results are in close accord with the Wallace ones. For s-8 processes, the difference(on log
scale) between the Glauber and Wallace approximations becomes small at large angles as the
incident energy increases. For s-p transitions, however, the situation is completely different.
The difference between the Glauber and Wallace results is very striking and becomes larger
in the large angular region. Furthermore, this difference seems to be enhanced at higher

energies. This means that the effect due to the straight line approximation which is inherent

in the Glauber imation is quite signi in the large transfer region

for s-p excitations. Therefore, inelastic scattering processes involving states which are not

y ic are much more if d than those with only symmetric states.
Similar behaviors can also be observed for electron and positron scattering oft’ 1s staie of
hydrogen, see figures 3.9-3.12.

In figures 3.13-3.24, we show the Wallace electron and positron scattering results, to-

gether with the Glauber imation which makes no diffe for cross sections between

electron and positron impacts, at 50 eV, 200 eV and 400 eV respectively. It is seen that
for 5-8 processes the difference among the Wallace electron, Wallace positron and Glauber
results, which is pronounced at lower energies, tends to be smaller throughout the entire
angular region at higher energies. In other words, the Wallace correction terms are not
essential, under these circumstances. Now let us consider s-p excitations. The Wallace elec-
tron, Wallace positron and Glauber resulta ate very close to each other at small angles; this

may be explained by the fact that for a transition which changes target parity, there is
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pole at ¢ = Oin the first Born term (see for example p7 of ref. [34]), and the exact scattering
amplitnde also has e pole at ¢ = 0 which is identical with that in the first Born term. Thus
for scattering at small g, the pole term dominates the scattering amplitude, masking the
difference among the Wallace electron, Wallace positron and Glauber scattering amplitudes.
At lower energies, as angle increases, the Wallace electron and positron results first depart
and then begin to converge with each other in the intermediate and large angular regions
where the interaction between the projectile and the target nucleus dominates the scattering
dynamics, thus making the sign of the projectile less important. As energy increases, this
phenomenon becomes less pronounced and the difference between the Wallace electron and
positron results is almost negligibly small st 400 eV in the whole angalar region as seen in
58 cases; this can be understood by noting that the sign of projectile charge is contained
only in the parameter 7 = —@/ko which goes to zeio as ko goes to be infinity, thus making
the Wallace electron and positron scattering amplitudes identical at any scattering angle.
In addition, in contrast with the &5 proccsses mentioned above, the Glauber amplitude,
however, departs monotonically from the Wallace ones and never returns back.

Let us discuss some relative behaviors of scattering from both 1s ground state and 28
metastable state of hydrogen, in the Wallace approximation. The results are shown in fignres
3.25 t0 3.36. The energies we used are also 50 eV, 200 eV and 400 eV. For &8 processes, the
differential cross sections for the scattering from the 2s state are much larger than those from
the corresponding 1s state(except for 1s-1s process), in both electron and positron impacts.
In addition, the difference between the electron and positron inelastic scattering from the 1s
state is much more striking than those from the 2s state at 50 eV; and as energy increases

this phenomenon soon becomes less noticeable and at 400 eV the curves for electron and
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positron scattering coincide with each other. In figures 3.25-3.27, we &lso show the results
for 1s-1s electron and positron scattering. The differences between 1s-1s and 2s-28 results
are larger at small angles than those at large angles. As the energy increases, both ls-1s
and 2s-2s results for electron and positron scattering approach each other at intermediate
and large angles. This is because for elastic scattering, at large momentum transfer, the
scattering dynamics is dominated by the interaction between projectile and nucleus, that is,
the static potential. In the case of transitions to the 2p state the differential cross sections
for 25-2p are also rather larger than those for 1s-2p in the small and large angular regions.
The difference between the electron and positron scatiering from the 1s state is also more
striking than those from the 2s state even ut 400 eV. As for the transitions to the 3p state,
at very small angles, the curves for 2s-3p stay higher in comparison with curves for 1s-3p.
On the other hand, at large angles all these curves tend to converge with one another s

energy becomes higher.
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G(deg) [ 50eV___[100eV_[200eV_[300eV_ [400eV
1[1.43+03|7.00+02]381+022.91+02)250+02
5| 2.84+02 | 1.56 +02 | 928 +01 | 6.57 401 | 4.88+01

10 | 7.90+01 | 3.99 +01 | 162 +01 | 815400 | 472400
15 | 258401 | 1.11 401 | 351400 | 1.61400 | 9.05 01
20| 1.01401 | 3.94 400 | 1.13+00 | 5.09 - 01 | 2.89 - 01
30| 2.65+00 | 8.62 -01 | 228~ 01 [ 1.04 - 01 | 5.96 - 02
40 [ 9.70-01 | 2.79 —01 | 7.43 - 02 | 3.43 - 02 | 1.97 - 02
60 | 2.01-01 | 5.75-02 161 -02 | 7.49-03 | 4.32-03
80 | 6.68-02 202 -02 | 58203 | 2.73-03 | 1.58-03
100 | 3.11-02 [ 9.77 -03 [ 286 — 03 | 1.34-03 | 7.78 — 04
120 | 1.83-02 | 5.87 03 [ 173 - 03 | 8.18 ~04 | 474~ 04
140 | 1.29-02 | 419 -03 | 124 - 03 | 5.88 - 04 | 3.41-04
160 | 1.06-02 | 3.45 —03 | 103 - 03 | 4.86 - 04 | 2.82 - 04
180 | 9.95-03 | 3.24 —03 | 9.64 — 04 | 4.57 - 04 [ 26504

‘Table 3.1: Differential cross sections in atomic units for electron-hydrogen 2s-2s process in
the Wallace approximation. Three significant figures are given. Powers of ten are located
after third significant figure.

6(deg) | 50 eV 100 eV 200 eV 300 eV. 400 eV
1[1.37403 | 6.65+02 | 3.62+02 | 2.78 +02 | 240+ 02
51243+02|1.35+02 | 847 +01 | 6.18+01 | 467401
10 | 6.05+01 | 3.37 401 | 1.50 + 01 | 7.79 + 00 | 4.58 + 00
15 | 1.86+01 [ 943 +00 | 3.28 +00 | 1.54 +00 | 8.79-01
20| 6.94+00 | 3.34 +00 | 1.06 +00 | 4.88 - 01 | 2.80 - 01
30 | 1.74400 | 7.37 —01 | 2.14 — 01 | 9.94 - 02 | 5.76 — 02
40 | 6.48~01 | 242 —-01 | 6.95~02 | 3.27-02 | 1.90 - 02
60| 1.45-01 | 5.06 —02 [ 1.50 — 02 | 7.14 - 03 | 4.16 — 03
80 | 5.02-02 | 1.78 —02 | 542 — 03 | 2.60 —03 | 1.52 - 03
100 | 2.39 - 02 | 8.60 — 03 | 2.66 —- 03 | 1.28 —03 | 7.49 - 04
120 | 1.43-02 | 517 —03 | 1.61 —03 | 7.78 — 04 | 4.57 - 04
140  1.02-02 | 3.69 —03 | 1.16 -- 03 | 5.59 —04 | 3.28 — 04
160 | 8.39 ~03 | 3.04 —03 | 9.55 — 04 | 4.62 - 04 | 2.72 - 04
180 | 7.89 —03 | 2.86 — 03 | 8.97 — 04 | 4.35 —04 | 2.55 vﬂ‘

Table 3.2: Differential cross sections in atomic units for positron-hydrogen 2s-2s process in
the Wallace approximation.



0(deg) [50eV__ [100eV_[200eV [ 3006V [400eV
1312404 | 1.54 +04 | 7.56 4+ 03 | 4.94 + 03 | 3.62 + 03
5| 7.61402|3.00+4029.09+01 | 3.67+01|1.67+01
10 | 5.53+01 | 1.10+01 | 9.97 — 01 | 2.06 — 01 | 8.89 - 02
15 [ 4.21 400 | 6.08 —01 | 1.30 - 01 | 4.49-02 | 1.78 — 02
20 | 7.47—012.38 -01 | 3.87-02 | 9.53-03 | 3.20 - 03
30 1221—01)4.01-02|450-03 | 1.16-03 {443 -04
40 | 5.95-02 | 1.19-02 | 1.62~03 | 4.73 - 04 | 1.97 — 04
60 | 2.56 — 02 | 4.73 ~ 03 | 6.60 ~ 04 | 2.00 — 04 | 8.54 — 05
80 | 1.76 —02 | 2.84 —03 | 3.92-04 | 1.20 - 04 | 5.13 - 05
100 | 1.26 - 02 | 1.97 - 03 | 2.74 04 | 8.39 - 05 [ 3.60 - 05
120 | 9.66 — 03 | 1.52 —03 | 2.13 - 04 | 6.54 — 05 | 2.81 — 05
140 | 8.01 ~03 | 1.28 ~03 | 1.80 ~ 04 | 5.54 — 05 | 2.38 — 05
160 | 7.16 —03 | 5.15—-03 | 1.63—04 | 5.04 — 05 [ 2.17 - 05
180 | 6.90 03 |1.11-03 | 15804 | 4.88-05 [2.10-05

Table 3.3: Differential cross sections in atomic units for electron-hydrogen 2s-2p process in
the Wallace approximation.

G(deg) [ 506V [100eV_ [ 200eV_ [ 300eV_ [ 400 eV
1[3.13404 |1.55+04 | 7.58 403 | 4.95+ 03 | 3.63 + 03

5 [8.07+02|3.22402 | 9.91+01 | 4.04 +01 | 1.86 + 01
10 | 743401 [ 1.65+01 | 1.76 400 | 3.54—01 [ 1.20 - 01
15 [ 9.96 +00 | 1.56 4 00 | 1.90 — 01 | 4.98 — 02 | 1.70 ~ 02
20| 253400 | 4.85~-01|520~-02 | 1.03 - 02 | 2.97 - 03
30| 7.22—-01[9.45~02 | 6.51~03 | 1.31 - 03 | 4.50 ~ 04
40 | 2.67—01 | 2.70-02 | 2.11 - 03 | 5.25— 04 | 2.08 - 04
60 | 6.17 — 02 [ 6.75 —03 | 7.37 —~ 04 | 2.13 — 04 | 8.91 - 05
80 | 2.59 —02 [3.34—-03 | 4.16 ~04 | 1.24 — 04 | 5.27 — 05
100 | 1.50 — 02 [ 2.16 — 03 | 2.84 — 04 | 8.60 — 05 | 3.67 — 05
120 [ 1.04 —02 | 1.60 —03 | 2.18 — 04 | 6.66 — 05 | 2.85 - 05
140 [ 8.22-03 | 1.32-03 | 183~ 04 | 5.62 - 05 | 241 -05
160 | 7.17—-03 | 1.18 —03 | 1.66 — 04 | 5.10 - 05 | 2.19 - 05
180 | 6.86 —03 | 1.14 —03 | 1.61 — 04 | 4.94—05 | 2.12 - 05

Table 3.4: Differentisl cross sections in atomic units for positron-hydrogen 2s-2p process in
the Wallace approximation.
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G(deg) [50eV__ [100eV_[200eV_ [300eV_ [400eV
0377402 | 3.35+02 | 2.71+02 | 2.36 + 02 | 2.14 +02
5378401 2.16+01 | 847+00 | 3.39+00 | 1.42+00
10 | 2.60 400 [ 1.06 400 | 4.00-01 | 1.64 — 01 | 6.88 - 02
15 | 107400 | 5.74 - 01 [ 927-02 | 21702 | 7.76 - 03
20 9.00-01 | 2.04 01 | 2.03-02 | 535 —03 | 2.32-03
30 | 2.27-01 | 2.94 -02 | 3.69-03 | 1.23 - 03 | 5.69 - 04
40 [ 6.86 - 02 | 8.95 —03 | 1.35 - 03 | 4.50 — 04 | 2.02 - 04
60 | 1.30 =02 | 203 -03 | 3.21-04 | 1.04 —04 | 4.56 - 05
80 4.29-03 | 74804 | 11804 | 3.80— 05 | 1.67 - 05
100 [ 2.00 - 03 | 3.67-04 | 5.82—05 | 1.87 —05 820~ 06
120 | 1.19 - 03 | 2.22 - 04 | 353 - 05 | 1.14 — 05 | 4.99 - 06
140 | 8.39—04 | 1.59 - 04 [ 2.53-05 | 8.15—06 | 3.58 — 06
160 | 6.89 — 04 | 1.31 — 04 | 2.09 - 05 | 6.73 — 06 | 2.96 — 06
180 | 646 — 04 | 1.23 04 | 1.96 - 05 | 6.32 — 06 [ 2.78 - 06

Table 3.5: Differential cross sections in atomic units for electron-hydrogen 2s-3s process in
the Wallace approximation.

G(deg) [50eV__ [ 100V [200eV_ [300eV_[400eV.

0]3.65+02|3.27+02 | 266 +02 | 2.33+02 | 2.11 + 02
5| 341401207401 853400349400 (147400
10| 246400 | 1.014+00 | 3.74 - 01 | 1.59 — 01 | 6.84 - 02
15| 61801 | 4.89-01 | 9.21-02 [ 2.22-02 | 7.96 - 03
20 |590—01191-01|208-02|544—03|233-03
30 [1.79—01 | 29102 | 3.64-03 | 1.21-03 | 5.59 - 04
40 | 5.64-02 | 87203 [ 130-03 | 4.39 - 04 | 1.99 - 04
60 [ 1.8 -02 | 1.94-03 [ 3.11-04 | 10204 | 4.54 - 05
80 [4.15-03 | 7.6 —04 [ 11604 | 3.78 — 05 | 1.67 - 05
100 | 2.00 - 03 | 3.54 — 04 | 5.75—05 | 1.87 — 05 [ 8.28 — 06
120 [ 1.20 - 03 | 2.16 - 04 | 3.51 - 05 | 1.14 - 05 | 5.05 — 06
140 | 8.62 — 04 | 1.55 - 04 | 253 - 05 | 8.23 — 06 | 3.64 — 06
160 | 7.13 — 04 | 1.29 —04 | 2.09 - 05 | 6.81 - 06 | 3.01 — 06
180 | 6.70 - 04 | 1.21 - 04 | 1.96 - 05 | 6.40 — 06 [ 2.83 —06

Table 3.6: Differential cross sections in atomic units for positron-hydrogen 2s-3s process in
the Wallace approximation.



6(deg) [50eV___[100eV_ [ 200eV_[300eV_ [ 400 eV

0833403 | 1.80404 | 3.73+ 04 | 5.64 + 04 | 7.55 + 04
5899401 [1.83+01 [9.08—01 | 9.95-01 | 1.29+00
10 (207400 | 217400 | 49501 | 7.89- 02 [ 11302
15221400 | 3.44-01 | 1.06—-02 | 2.34 - 03 | 1.03--03
20 |4.73-01 [ 3.40-02 | 3.38-03 | 6.59 — 04 | 1.61 - 04
30 [5.95-02 [8.15-03 | 4.09-04 | 6.19-05 | 1.89 35
40 (2.73-02 | 2.15-03 | 1.20—04 | 2.74 - 05 [ 1.08 - 05
60 | 6.07-03 | 4.79-04 | 4.53 - 05 | 1.28 - 05 | 5.36 - 06
80 | 2.56 - 03 [ 2.42-04 | 2.70 - 05 | 7.85 — 06 | 3.29 — 06
100 | 1,50 — 03 | 1.60 — 04 | 1.89 - 05 | 5.54 - 06 | 2.32 - 06
120 | 1.05 - 03 | 1.21 - 04 | 14705 | 4.33 - 06 | 1.82 - 06
140 | 8.37 ~ 04 | 1.01 - 04 | 1.24 - 05 | 3.67 - 06 | 1.54 — 06
160 | 7.33 - 04 | 9.08 — 05 | 1.13 - 05 | 3.33 — 06 | 1.40 - 06
180 | 7.02 - 04 | 8.78 — 05 | 1.09 ~ 05 | 3.23 — 06 | 1.36 — 06

Table 3.7: Differential cross sections in atomic units for electron-hydrogen 2s-3p process in
the Wallace approximation.

50 eV 100 eV. 200 eV 300 eV 400 eV
8.37+03 | 1.81+04 | 3.73+04 | 5.64 +04 | 7.55 +04
1.05+02 | 2.28+01 | 1.27+00 | 8.80 - 01 | 1.17 +00
2.51+00|2.09+00 | 505—017.93-029.61-03
2.70+00 [ 4.61—-01 | 6.88—03 | 4.71 - 04 | 6.33 - 04
9.55-01)|3.98—-02 |299—-04 | 27204 | 1.40-04
8.04-02)|7.73-04 | 6.27--05 | 453 - 05 | 2.35-05
40| 1.75-02 ( 1.99-04 | 6.80—05 | 2.76 - 05 | 1.25 - 05
60| 3.82-03 | 2.68—04 | 4.28~05 | 1.34 - 05 | 5.67 - 06
80 20103 | 2.01 —04 | 2.69 - 05 | 8.05—06 | 3.39 - 06
100 | 1.36 - 03 | 1.49 — 04 | 1.90 - 05 | 5.63 — 06 | 2.37 — 06
120 | 1.04 ~03 | 1.18 - 04 | 1.48 — 05 | 4.39 — 06 | 1.84 - 06
140 | 8.58 ~ 04 | 1.00 - 04 | 1.2F-- 05 | 3.71 — 06 [ 1.56 - 06
160 | 7.68 ~ 04 | 9.09 —05 | 1.14 — 05 | 3.37 — 06 [ 1.42 - 06
180 | 7.40 - 04 | 8.80 — 05 | 1.10 - 05 | 3.27 — 06 | 1.37 - 06

Table 3.8: Differential cross sections in atomic units for positron-hydrogen 2s-3p process in
the Wallace approximation.
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9(deg) [50eV___|100eV_[200eV_ [ 300eV_ [400eV
0171400 | 2.01+00 | 1.80+00 | 1.77+ 00 | 1.67 + 00
5125400 |1.09+00 [ 7.84-01 | 6.39—01 | 5.43—01
10 | 6.76 — 01 | 4.80—01 | 2.79-01 | 1.76 - 01 | 1.15— 01
1533801 [ 1.99 01 [ 7.98-02 [ 3.62-02 | 1.82—02
20| 1.62-01 [7.59-02 | 2.13-02 | 7.862-03 | 3.51 - 03
30 [3.48—-02 |1.24-02 | 3.07-03 | 1.18 - 03 | 5.69 — 04
40 | 1.12-02 [ 476 —03 | 1.22—-03 | 4.49 — 04 | 2.08 — 04
60 | 6.08 —03 | 1.86 —03 | 3.40-04 | 1.11 — 04 | 4.82 — 05
80 [ 3.63—-03 | 8.18 —04 | 1.20 - 04 | 4.05 — 05 | 1.74 — 05
100 | 2.14 ~ 03 [ 4.23 — 04 | 6.35-05 | 1.97 — 05 | 8.48 — 06
120 | 1.39 ~03 | 2.59 —04 | 3.83-05 | 1.19 - 05 | 5.12 — 06
140 | 1.02 - 03 | 1.85 — 04 | 2.72-05 | 8.47 — 06 | 3.66 — 06
160 | 8.50 — 04 | 1.52 — 04 | 2.24 - 05 | 6.97 — 06 | 3.01 — 06
180 | 8.00 — 04 |1.43 —04 | 2.10-05 | 6.54 — 06 | 2.83 — 06

Table 3.9: Differential cross sections in atomic units for electron-hydrogen 1s-2s process in
the Wallace spproximation.

G(deg) |50V [100eV_[200eV | 300eV [400eV
0| 1.42 400 | 1.80 + 00 1.68 4+ 00 | 1.61 +00
599501 921-01|702-01|591-01|513-01
10 | 49401 | 39201 |2.55-01 | 1.69~01 | 1.13-01
1523101 |1.67-01| 7.79-02 | 3.74 - 02 | 1.92 - 02
20| 10701 |6.78 —02 | 2.25—02 | 8.61-03 | 3.89—03
30| 22402 11702 |3.08-03 [ 1.18-03 | 5.65 —04
40| 48103 |3.29-03 | 1.03-03 | 4.07-04 | 1.95 - 04
60| 1.06-03 | 9.92-04 | 2.75-04 | 9.95 05 | 4.54 - 05
80 | 8.04 —04 | 4.57 —04 | 1.08 — 04 | 3.73 — 05 | 1.68 — 05
100 | 6.02 —04 | 2.51 —04 | 5.43-05 | 1.85 — 05 | 8.28 — 06
120 | 463 -04 | 1.62 ~04 | 3.34-05 | 1.13 - 05 | 5.05 — 06
140 | 3.80 ~ 04 | 1.20 — 04 | 2.41-05 | 8.15 ~ 06 | 3.63 — 06
160 | 3.37 -~ 04 | 1.01 —~04 | 2.00-05 | 6.75 — 06 | 3.01 — 06
180 | 3.24 — 04 | 9.51 05 | 1.88—05 | 6.34 — 06 | 2.83 — 06

Table 3.10: Differential cross sections in atomic units for positron-hydrogen 1s-2s process
in the Wallace approximation.



G(deg) [50eV__[100eV_[200eV_[300eV__[400eV
0362401 950 +01 | 2.02+ 02 | 3.20+02 | 445 + 02
5(202+01|213+01 [ 124401 | 7.64+00 | 5.13+00
10 | 6.88 400 | 3.92+00 | 1.34 + 00 | 5.75 - 01 | 2.83 - 01
15| 2.22+00 | 8.27~01 | 1.69~ 01 | 4.95-02 | 1.79 — 02
20 | 7.06 =01 [ 1.76 ~ 01 | 2.18 — 02 | 4.72 — 03 | 1.44 - 03
30| 6.09 02 | 7.18-03 | 7.35— 04 | 2.39 - 04 | 1.11 - 04
40 | 3.20-03 | 9.00 ~04 | 29204 | 1.13 - 04 | 5.32 ~ 05
60 | 1.58 —03 | 7.39 - 04 | 1.56 — 04 | 5.32 — 05 | 2.39 ~ 05
80| 207-03 57304 | 1.01-04 [ 3.32-05 | 14705
100 | 1.96 03 [ 4.51 —04 | 7.40- 05 | 2.38 - 05 | 1.05 - 05
120 | 1.77-03 [ 3.72 - 04 | 5.90 - 05 | 1.89 - 05 | 8.26 - 06
140 | 1.61-03 323 -04 | 5.05—05 | 1.61-05 [ 7.04 - 06
160 | 1.51 03 [ 2.98 — 04 | 4.62- 05 | 1.47 — 05 | 6.42 ~ 06
180 | 148 03 | 2.89 — 04 | 44805 [ 1.43 - 05 [6.23 - 08

Table 3.11: Differential cross sections in atomic units for electron-hydrogen 1s-2p process
in the Wallace approximation.

O(deg) | 50 eV 100 eV 200eV__| 300 eV 400 eV
0377401 |9.61+01 [ 2.13+02 | 3.29 +02 | 445+ 02
5|216-+01(2.22401 | 1.28+401 | 7.94 +00 | 5.34 4+ 00
10 | 7.99 400 | 4.53 400 | 1.57+00 | 6.86 — 01 | 3.42-01
15| 3.00+00 | 1.17 +00 | 2.58 - 01 | 8.08 — 02 | 3.12 - 02
20 | 1.21+00 | 3.46—01 | 532—-02 | 1.36 - 02 | .71~ 03
30 | 24601 | 4.84 —02 | 5.64—03 | 1.37-03 | 4.84 ~ 04
40 | 7.21-02 | 1.32-02 | 1.53-03 | 3.82-04 | 1.40-04
60 | 1.63 - 02 | 3.00—03 | 3.58 — 04 | 9.59 — 05 | 3.76 ~ 05
80 | 6.98—-03|1.28—-03|1.63—04|4.64-05|190-05
100 | 3.96 —03 | 7.46 —04 | 1.00 - 04 | 2.96 — 05 | 1.24 ~ 05
120 | 2.67—03 | 5.21 —04 | 7.32 - 05 | 2.20 — 05 | 9.33 ~ 06
140 | 2.06 —03 | 4.14 —04 | 5.98 — 05 | 1.82 — 05 | 7.77 ~ 06
160 | 1.77 —03 | 3.64 —04 | 5.33 — 05 | 1.64 — 05 | 7.00 - 06
180 | 1.69 —03 | 3.49 —04 | 5.14 — 05 | 1.58 — 05 | 6.77 - 06

Table 3.12: Differential cross sections in atomic units for positron-hydrogen 1s-2p process
in the Wallace approximation.
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8(deg) [ 50 eV 100 eV 200 eV 300 eV 400 eV

0| 241-01|283~-01|2.65~-01|246-01 | 231-01
5|193-01|1.78-01133-01|1.11-01 ] 9.84~-02
10 | 1.20 - 01 | 9.22-02 | 5.92-02 | 4.07 -2 | 2.83 - 02
15 | 6.84 — 02 | 446 -02 | 2.04 —02 | 9.90 - 03 | 5.12 - 03
20 |3.67~02[1.93-02592~-03)2.19—-03 |9.69—-04
309.25-03 [3.32-03 | 7.71-04 | 2.88 —04 | 1.37 - 04
40 | 2.72 - 03 | 1.11~03 | 2.88 — 04 | 1.07 — 04 | 4.95-05
60133 -03 |4.38-04 | 8.15-05 | 2.64 —05 | 1.15-05
80 (8.59 —04 | 1.98-04 | 3.11-05 | 9.67~06 | 4.15-06
100 [ 5.27 —04 | 1.03-04 | 1.53 - 05 | 4.71 — 06 | 2.02 - 06
120 | 3.48 — 04 | 6.34 - 05 | 9.20— 06 | 2.83 — 06 | 1.22 - 06
140 | 2.58 — 04 | 4.54 ~ 05 | 6.55 — 06 | 2.02 — 06 | 8.68 — 07
160 | 2.15 - 04 | 3.73-05 | 5.38 — 06 | 1.66 — 06 | 7.15 — 07
180 | 2.03 - 04 | 3.50 - 05 | 5.05 — 06 | 1.56 — 06 | 6.71 — 07

Table 3.13: Differential cross sections in atomic units for electron-hydrogen 1s-3s process in
the Wallace approximation.

6(deg) | 50 eV 100eV_ [200eV_ [ 300eV_ [ 400eV
019301 | 2.49-01 | 24601 | 23201 | 2.21-01
514901 149-01|1.17-01|1.02-01 | 9.19-02
10 | 8.60 - 02 [ 7.35-02 | 5.30 - 02 | 3.84 — 02 | 2.76 - 02
15 |4.53 - 02 | 3.60-02 [ 19502 | 1.01-02 | 5.37-03
20 | 2.32-02 | 1.66-02 | 61703 | 2.41 - 03 | 1.08-03
30 (5.80~03 | 3.21-03 | 8.08—04 | 2.96--04 | 1.39-04
40 | 1.36 - 03 | 8.36 - 04 | 249~ 04 | 9.76 — 05 | 4.66 05
60 | 1.96 — 04 | 2.28 04 | 6.51 - 05 | 2.36 — 05 | 1.08 - 05
80 | 1.52 — 04 | 1.06 - 04 | 2.56 — 05 | 8.87 — 06 | 3.98 — 06
100 | 1.24 — 04 | 5.88-05 [ 1.29 — 05 | 4.41 - 06 | 1.97 - 06
120 | 9.95 — 05 | 3.80-05 | 7.96 - 06 | 2.69— 06 | 1.20 - 06
140 | 8.38 — 05 | 2.83-05 | 5.75— 06 | 1.94 — 06 | 8.62-07
160 | 7.54 — 05 | 2.38 - 05 | 4.76 — 06 | 1.60 — 06 | 7.13 - 07
180 [ 7.27 — 05 | 2.25 - 05 | 4.48 — 06 | 1.51 - 06 | 6.70 - 07

Tuble 3.14: Differential cross sections in stomic units for positron-hydrogen 1s-3s process
in the Wallace approximation.
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O(deg) | 50 eV 100 eV 200 eV 300 eV 400 eV
0[4.13+00 | 1.09+01 | 243+ 01 | 3.76 + 01 | 5.09 + 01
52.75+00 | 3.43 400 | 2.27+00 | 1.51 400 | 1.07 + 00
10 [ 1.19+00 | 8.19-01 | 3.31 01 | 1.58 — 01 | 8.31 — 02
15| 4.73-01 | 2.15-01 | 5.22-02 | 1.65 — 02 | 6.23 — 03
20180—01 54402 [ 7.72—03 | 1.72 03 | 5.22 — 04
30 (215—02 [2.84-03 | 24304 | 6.81 - 05 | 2.97 - 05
40 [ 1.67 — 03 | 2.57 — 04 | 7.30 — 05 | 2.80 — 05 | 1.30 — 05
60 (294 —04 | 1.72—-04 | 3.67—05 | 1.24 — 05 | 5.56 — 06
80| 447 —04 | 1.33 -04 | 2.34 — 05 | 7.64 — 06 | 3.37 — 06
100 | 440 — 04 | 1.05-04 | 1.70 — 05 | 5.46 ~ 06 | 2.39 — 06
120 | 4.03 - 04 | 8.63 ~05 | 1.36 — 05 | 4.31 - 06 | 1.88 — 06
140 [ 3.70 — 04 | 7.51 —05 | 1.16 — 05 | 3.68 — 06 | 1.60 — 06
160 | 3.49 — 04 | 6.91 —05 | 1.06 — 05 | 3.36 — 06 | 1.46 — 06
180 | 3.41 — 04 | 6.72 — 05 | 1.03 — 05 | 3.26 — 06 | 1.42 — 06

Table 3.15: Differential cross sections in atomic uaits for electron-hydrogen 1s-3p process
in the Wallace approximation.

6(deg) [50eV__ [ 100V [200eV_[300eV_ [400eV
0] 433+00 | 1.10+01 | 2.44+01 | 3.76 + 01 | 5.09 + 01
5|2.93+00 (355400 | 2.34+00 | 1.56+00 [ 1.11+00
10 [ 136400 | 9.21-01 | 3.77—01  1.82 - 01 | 9.69 — 02
15 | 6.05 - 01 | 2.83-01 [ 7.36 — 02 | 247 — 02 | 9.85 — 03
20 {27701 | 943 -02 | 1.61-02 | 420~ 03 | 1.44 - 03
30 | 6.57—02 | 1.39-02 | 1.60— 03 | 3.80 — 04 | 1.31 ~ 04
40  1.98 ~ 02 | 3.60 - 03 | 4.03 - 04 | 9.86 — 05 | 3.54 — 05
60| 4.24 03 | 7.64-04 | 8.81-05 | 2.31-05 | 8.96 — 06
80 {1.76 —03 | 3.17—04 | 3.89 — 05 | 1.09 — 05 | 4.41 — 06
100 | 9.89 — 04 | 1.81 —04 | 2.36 — 05 | 6.87 — 06 | 2.85 — 06
120 | 6.64 —04 | 1.25 - 04 | 125~ 05 | 5.09 - 06 | 2.14 - 06
140 | 5.10 ~ 04 | 9.89 — 05 | 1.39— 05 | 4.20 — 06 | 1.78 - 06
160 | 439 — 04 | 8.66 — 05 | 1.24 — 05 | 3.76 — 06 | 1.60 — 06
160 | 4.18 — 04 | 8.30 — 05 | 1.19 — 05 | 3.63 — 65 | 1.5 — 06

Table 3.16: Differential cross sections in atomic units for positron-hydrogen 1s-3p process
in the Wallace approximation.
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(deg) [50 eV [ 100eV_ [200eV_[300eV 400 eV
1]1.61401 | 7.62+00 | 3.13 + 00 | 2,65 +00 | 2.13 +00
5| 5.98+00 | 2.94+00 | 1.634 00 [ 1.26 +00 | 1.08 +00
10324400 | 1.66400 | 9.64- 01 | 7.33 —01 | 6.03 - 01
15 [ 2.05 400 | 1.07+400 | 596 — 01 | 4.19 — 01 | 3.18 - 01
20 | 1.38 400 | 7.14-01 | 3.67 - 01 | 2.35 — 01 | 1.65 01
30 | 6.84 01 | 3.32-01 | 142~ 01 | 7.86 — 02 | 4.97 —02
40(3.61-01|1.63-01 | 6.03—-02 |3.08 -0z [ 1.85-02
60| 1.19 -01 | 4.87-02 | 1.57~ 02 | 7.50 — 03 [ 4.36 — 03
80|4.93-02|1.95-02 | 597—03 |2.81—03|1.62-03
100 | 2.53 -02 | 9.94-03 | 2.99 - 03 | 1.40 — 03 | 8.04 — 04
120 | 1.56 ~02 | 6.12~03 | 1.83 — 03 | 8.55 — 04 [ 4.91 —04
140 1.13 ~02 | 4.42-03 | 1.32 - 03 | 6.16 — 04 | 3.54 — 04
160 | 9.36 ~03 | 3.66 -03 | 1.09 - 03 | 5.10 — 04 | 2.93 — 04
180 [8.80 03 [ 3.44-03 | 10203 | 479 — 04 , 275 — 04

Table 3.17: Differential cross sections in atomic units for electron-hydrogen Is-1s process in
the Wallace approximation.

6(deg) | 50 eV 100eV_ [200eV_ [300eV | 400 eV
1[1.51+01 [6.95+00 | 3.14+ 00 | 239 + 00 [ 1.93 + 00
5(5.11400(2.36400 | 1.32+00 | 1.04 400 | 9.23 - 01
10248 +00 | 1.18 400 | 7.21 - 0% | 5.85 — 01 | 5.05 — 01
15| 1.42+00 | 6.88-01 | 431-01 | 3.31 — 01 | 2.65 — 01
20 (8.74 -01 | 4.31-01 | 26201 | 1.86 — 01 | 1.38 — 01
30 |3.77 -01 | 1.87~01 | 1.01 - 01 | 6.25 — 02 | 4.19 — 02
40 | 1.83 —01 | 8.96 - 02 | 4.31 — 02 | 2.47 — 02 | 1.57 — 02
60 [ 5.69 —02 | 2.67-02 | 1.13 - 02 | 6.06 — 03 | 3.72 - 03
80|2.39-02 | 1.09~02 | 435—03 | 2.28 — 03 | 1.39 — 03
100 | 1.27 -02 | 5.63-03 | 21903 | 1.14 — 03 | 6.90 — 04
120 {8.09 —03 | 3.52-03 | 1.35—-03 { 6.98 — 04 | 4.22 — 04
140 | 5.99 —03 | 2.57-03 | 9.73 — 04 | 5.03 — 04 | 3.04 — 04
160 | 5.04 —03 | 2.15-03 | 8.07 — 04 | 4.17 — 04 | 2.52 — 04
180 [4.76 —03 [ 2.02-03 | 7.59 — 04 | 3.92 — 04 | 2.37 — 04

3

Table 3.18: Differential cross sections in atomic units for positron-hydrogen 1s-1s process
in the Wallace approximation.
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[0(deg) [50eV [100eV [200eV_ [300eV_ [400eV
1[140+03 [ 6.81+02 | 3.71+02 | 2.84 + 02 | 2.45 + 02
50262402 | 1.45+02 | 8.87+01 | 637 +01 | 4.77 401

10 | 6.94 +01 [ 3.69+01 | 1.56 + 01 | 7.98 + 00 | 4.65 +00
15| 2.23+01 | 1.04+01 | 3.41+00 | 158 +00 [ 8.93 — 01
20| 8.66 +00 [ 3.69+00 | 1.10+ 00 | 5.00 — 01 | 2.85 - 01
30| 2.30 +00 | 8.20~01 | 2.23~01 | 1.02 — 01 | 5.89 — 02
40875 01 | 2.71-01 | 7.32~ 02 | 3.38 — 02 | 1.95 - 02
60(2.00 01 (5.81-02 [ - "1-02 |746-03|430-03
8071902 [ 2.11-02 | 59003 | 274 — 03 | 1.58 — 03
100 | 3.51 —02 | 1.04 02 | 2.93— 03 | 1.36 — 03 | 7.83 ~ 04
120 | 213 - 02 | 6.37-03 | 1.79 — 03 | 8.34 — 04 | 4.80 — 04
140 | 1,53 —02 | 4.60-03 | 1.30— 03 | 6.02 — 04 | 3.46 — 04
160 | 1.27 —02 | 3.81~03 | 1.07— 03 | 4.99 — 04 | 2.87 - 04
180 | 1.19 02 | 3.59 03 | 1.01 — us | 4.69 — 04 | 2.70 — 04

Table 3.19: Differential cross sections in atomic units for electron or positron-hydrogen 2s-2s
process in the Glauber approximation.

8(deg) [50 eV [100eV_|200eV_ [300eV 400 eV

1[312404 [1.55+04 | 7.57+ 03 | 494 +03 | 3.63+03

5(7.86 402 | 3.11 402 | 9.50+ 01 | 3.85+ 01 | 1.76 + 01
10 [ 6.51 401 | 1.37+01 | 1.36+ 00 | 2.71 — 01 [ 1.01 - 01
15 (7.02 400 | 1.03+00 | 1.49 - 01 | 439 — 02 | 1.60 - 02
20| 1.54 +00 [ 3.25-01 | 3.93-02 | 8.10-03 | 2.33 - 03
30410 —01 [ 4.87-02 | 2.86— 03 | 4.54 — 04 | 1.20 — 04
40|1.09 —01 8.20-03 | 3.89—04 | 623 —05 | 1.73 - 05
60112 —02 [ 6.26 - 04 | 2.97 - 05 | 5.15 — 06 | 1.52 ~ 06
80|2.28 —03 [ 1.20~ 04 | 6.00 - 06 | 1.08 — 06 | 3.27 — 07
100 | 7.55 —04 | 3.93-05 | 2.02-06 | 3.71 - 07 | 113 - 07
120 351 —04 | 1.82-05 | 9.55— 07 | 177 — 07 | 5.40 - 08
140 | 2.11 —04 | 1.10 - 05 | 5.81— 07 | 1.08 — 07 | 3.31 - 08
160 | 1.58 —04 | 8.22 - 06 | 4.37— 07 | 813 — 08 | 249 — 08
180 | 143 —04 | 7.48 - 06 | 3.98 - 07 | 7.41—08 [2.28 — 08

Table 3.20: Diferential cross sections in atomic units for electron or positron-hydrogen
25-2p process in the Glauber approximation.
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9(deg) | 50 eV 100eV_ [ 200eV [ 300eV [ 400 eV

0371402 (331402 |268+02|234+02 (213402
5|3.614012.12+01 | 8.51+00|3.44+00 | 1.45+00
10 | 2.56 +00 | 1.04 + 00 | 3.88 — 01 | 1.62 — 01 | 6.87 — 02
15| 8.54-01|5.37~01 | 9.28-02 | 2.20-02 | 7.88 — 03
20| 7.68-01)2.01-01|207~02]|542-03|233-03
30 | 2.18-01|3.02-02|3.72-03 | 1.23 03 | 5.67-04
40 6.91-02 [9.24 —03 | 1.36 — 03 | 4.51 — 04 | 2.02 - 04
60]1.45-02)2.14—-03 | 3.28—04 | 1.05 - 04 | 4.62 - 05
80]5.18-03 81604 |1.23~04|391-05]|171-05
100 { 2.55 03 | 4.13-04 | 6.18 — 05 | 1.95 - 05 [ 8.47 - 06
120 | 1.56 — 03 | 2.55 — 04 | 3.80 — 05 | 1.19 - 05 [ 5.19 - 06
140 | 1.12-03 | 1.85-04 | 2.74 — 05 | 8.62 — 06 | 3.74 — 06
160 | 9.32~04 | 1.54 — 04 | 2.28 — 05 | 7.15 — 06 | 3.10 — 06
180 | 8.77 - 04 | 1.45 - 04 | 2.14 — 05 | 6.72 - 06 | 2.92 ~ 06

Table 3.21: Differential cross sections in atomic units for electron or positron-hydrogen 2s-3s
process in the Glauber approximation.

6(deg) [S0eV___[100eV__[200eV_ [ 300eV_ | 400 eV

0 835+03 | 1.81+04 | 3.73+ 04 | 5.64 +04 | 7.55 + 04
5|9.73401 [ 2.00 +01 | 1.08+00 | 9.33-01 | 1.23 +00
10 2.22400 | 2.12+00 | 4.99 - 01 | 7.86 02 | 1.03 - 02
15| 2.46400 [ 3.95-01 | 7.74 - 03 | 1.20 - 03 | 7.60 — 04
20 [ 6.90-01 | 3.03-02 | 14203 | 3.68-04 | 1.09 04
30 | 4.44-02 | 2.57 - 03 | 8.32 — 05 | 7.68 — 06 | 1.26 — 06
40| 1.08-02 [ 3.43-04 | 3.93 06 | 1.77 - 07 | 2.55 — 08
60| 8.41-04 | 1.05-05 | 1.60 — 08 | 1.88 — 09 | 2.38 — 09
80| 1.20-04 | 1.01-06 | 8.3 - 10| 1.19-09 | 7.48 - 10
100 | 3.10-05 | 2.28 - 07 | 8.43 — 10 | 5.59 — 10 | 2.91 — 10
120 | 1.24 - 05 [ 8.79-08 | 6.11 - 10 | 3.01 - 10 | 1.45 - 10
140 | 6.86 06 | 4.86 — 08 | 4.50 - 10 | 1.95 - 10 | 9.08 - 11
160 | 4.90 - 06 | 3.50 — 08 | 3.70 — 10 | 1.51 —10 | 6.91 — 11
180 | 4.40-06 {3.15-08 [ 346~ 10 [1.39-10 | 6.32 - 11

Table 3.22: Differential cross sections in atomic units for electron or positron-hydrogen
28-3p process in the Glauber approximation.



(deg) [50eV__[100eV_[200eV_ [300eV_ [ 400 eV
0[1.56+00 | 1.90+00 | 1.84 400 | 1.73 +00 | 1.64 + 00
5112400 | 1.00400 | 7.43-01 | 6.15 - 01 | 5.28 - 01
10| 5.87-01|4.38-01 | 2.67-01|1.72-01 | 114 - 01
15)2.90~01 | 1.85 ~01 | 7.96 — 02 | 3.70 — 02 | 1.88 — 02
20| 1.41-01|7.43-02 | 22302 | 8.30-03 | 3.73 - 03
30 (3.32-02 1.31-02 [ 3.18-03 | 1.20-03 | 5.72 - 04
40 1.03-02 | 4.51-03 | 1.17- 03 | 4.37 — 04 | 2.04 - 04
60 (4.31-03 | 1.62—-03 | 3.24 - 04 | 1.08 — 04 | 4.76 — 05
80/2.72-03 | 746 -04 | 1.27 - 04 | 4.04 - 05 | 1.75 - 05
100 | 1.75- 03 [ 4.05 - 04 | 6.39 — 05 | 2.00 - 05 | 8.64 - 06
120 [ 1.22-03 | 2.57 - 04 | 3.93 - 05 | 1.22-05 | 5.27 - 06
140 | 54304 | 1.89 - 04 | 2.84 — 05 | 8.81 — 06 | 3.79 - 06
160 | 8.08 - 04 | 1.58 — 04 [ 2.35—05 | 7.29 —06 | 3.13 - 06
180 | 7.68 - 04 | 1.49 - 04 [ 2.21 - 05 | 6.85 — 06 | 2.95 - 06

Table 3.23: Differential cross sections in atomic units for electron or positron-hydrogen 1-2s
process in the Glauber approximation.

6(deg) | 50 eV 100eV_ |200eV [ 300 eV
03.71401 | 9.56 + 01 [ 2.13+ 02 | 3.29 + 02

512.10401 | 2.18+01 | 1.26 4 01 | 7.80 + 00 | 5.24 + 00
10 | 7.51+00 | 4.24+00 | 1.46+ 00 | 6.31-01 | 3.12- 01
15 [ 2.66+00 | 1.00+00 | 2.13—01 | 6.45-02 | 2.42 - 02
20 | 9.79-01 | 2.60—01 | 3.63-02 | 8.66 - 03 | 2.83 - 03
30| 1.54-01249-02 | 246 —03 | 5.58 — 04 | 1.89 ~ 04
40| 3.38-02 | 4.8, -03 | 4.78 - 04 | 1.09-04 | 3.66 - 05
60 (5.35-03 | 6.79~04 | 5.70 - 05 | 1.20 - 05 | 3.88 - 06

80 (1.73-03 | 1.78 — 04 | 1.32~ 05 | 2.68 — 06 | 8.55 - 07
100 | 7.37 - 04 | 6.63 — 05 | 4.64 — 06 | 9.34 — 07 | 2.96 - 07
120 | 3.91-04 | 3.26 — 05 | 2.22 - 06 | 4.45 - 07 | 1.41 - 07
140 | 2.53 ~ 04 | 2.03 - 05 | 1.36 - 06 | 2.72 - 07 | 8.62 - 08
160 | 1.96 — 04 | 1.54 — 05 | 1.03 — 06 | 2.05 - 07 | 6.49 — 08
180 | 1.80-04 | 1.40—05 | 9.36 — 07 | 1.87 — 07 | 5.92 - 08

Table 3.24: Differential cross sections in atomic units for electron or positron-hydrogen
15-2p process in the Glauber approximation.
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6(deg) [ 50eV__|100eV [200eV | 300eV _[400eV

0216 -01 | 26501 | 2.55— 01 | 239 — 01 | 2.26— 01
5|1.71-01 [ 16301 [125—01 10701 |[9.51-02
10 1.03-01 | 83102 | 5.63—02 | 3.96 —02 | 2.80-02
15 | 5.76 02 | 408 —02 | 2.01 — 02 | 1.00 02 | 5.27-03
20 [ 3.12-02 | 1.85-02 [6.15—-03 [ 233 - 03 | 1.03-03
30 [ 8.62-03 {35403 [8.17—04 [ 2.97 —04 | 1.39-04
40 [ 2.64-03 [1.10-03 [2.860— 04 | 1.04 — 04 | 4.86-05
60 [9.39-04 [380-04 [7.73-05 [ 257 —05 | 1.13-05
80| 6.21-04 | 1.78 - 04 [ 3.03 - 05 [ 9.63 — 06 | 4.16 - 06
100 | 4.15-04 | 9.76— 05 | 1.53 — 05 | 4.77 — 06 | 2.05 - 06
120 | 2.95 - 04 | 6.24 05 | 9.41 — 06 | 2.91 — 06 | 1.25- 06
140 | 2.30 - 04 | 4.59 - 05 | 6.79 — 06 | 2.10 — 06 | 8.99 — 07
160 | 1.98 - 04 | 3.84 - 05 | 5.63 — 06 | 1.73 — 06 | 7.4 —07
180 | 1.88 - 04 | 3.62 05 | 5.30 — 06 | 1.63 — 06 | 6.99 — 07

Table 3.25: Differential cross sections in atomic units for electron or positron-hydrogen 1s-3s
the Glauber approximation.

B(deg) [50eV__ [100eV [200eV_[300eV 400V
0] 425400 | 1.10+01 | 243+ 01 | 3.76 + 01 | 5.09+01
5286400 3.49+00 231+ 00| 1.53+00 | 1.09+00
10| 1.29 400 [ 87401 [ 3.55— 01 [ 1.70 — 01 | 8.99 - 02
15| 5.49-01 [ 25101 [ 62902 [ 2.05 - 02 | 7.96 - 03
20 | 2.34-01 | 747-02 | 117 - 02 | 2.85 - 03 | 9.27-04
30 447 -02 | 7.85-03 | 7.57 — 04 | 1.66 — 04 | 55105
40| 1.03-02 [ 144-03 | 1.38 — 04 | 3.12 05 [ 1.04 - 05
60 | 1.53 -03 | 1.95- 04 | 1.63 — 05 | 3.42 — 06 | 1.10-06
80 | 5.00 - 04 | 515~ 05 | 3.77 - 06 | 7.62 ~ 07 | 2.42-07
100 | 2.17-04 | 1.93—-05 | 1.33 — 06 | 2.65 — 07 | 8.37 - 08
120 | 11704 | 9.51-06 | 6.35 — 07 | 1.26 — 07 | 3.98 - 08
140 | 7.59 - 05 | 5.90 - 06 | 3.80 — 07  7.70 — 08 | 2.43- 08
160 | 5.89 05 | 4.48 - 06 | 2.93 — 07 [ 5.80 — 08 | 1.83 - 08
180 | 5.42 - 05 | 4.09 - 06 | 2.67 — 07 | 5.29 — 08 | 1.67 - 08

Table 3.26: Differential cross sections in atomic units for electron or positron-hydrogen
1s-3p process in the Glauber approximation.



0(deg) [50eV__ [100eV_ [ 200eV_ [300eV_[400 eV
1149401 )7.09+00 | 3.55+ 00 | 2.50 + 00 | 2.02 + 00
5 (512400254400 | 1.45+ 00 | 1.14 + 00 | 9.97 - 01
10 | 2.58 +00 | 1.35+ 00 | 8.29 — 01 | 6.55 — 01 | 5.52 ~ 01
15| 154 400 | 8.35-01 | 5.07—-01 | 3.74 — 01 | 2.91 —01
20 9.91~-01|546-01 [ 3.11-01 [ 200~ 01 [ 1.51-01
30 [ 4.66 —01 | 2.52-01 | 1.21-01 | 7.08 — 02 | 4.59 - 02
40 (244 —-01 | 1.25-01 | 5.22—-02 | 2.80 — 02 | 1.72 - 02
60 | 8.49 —02 | 3.90-02 | 1.39 - 02 | 6.90 — 03 | 4.09 - 03
80 (3.81-02)1.63-02 | 5.39-03 | 261 —03 | 1.53-03
100 [ 2.10 - 02 | 8.57-03 | 2.74- 03 | 1.31 — 03 | 7.66 - 04
120 | 1.36 — 02 | 5.41-03 | 1.70- 03 | 809 — 04 | 4.71 - 04
140 | 1.02 ~02 [ 3.97-03 | 1.23 - 03 | 5.86 — 04 | 3.40 - 04
160 [ 8.60 — 03 | 3.32-03 | 1.03- 03 | 4.86 — 04 | 2.82 04
180 | 8.14 ~03 | 3.13-03 | 9.65— 04 | 4.58 — 04 | 2.66 — 04

Table 3.27: Differential cross sections in atomic units for electron ot positron-hydzogen 1s-1s
process in the Glauber approximation.
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Figure 3.1: ¢~-H 2525 process at 50 eV, 200 eV, and 400 €V in the Wallace approxima-
tion(WA) 12d Glauber approximation(GL).



ELECTRN-H 25-2P PROCESS
AT SOEV, 200EV AND 400EV

L

0.0

LOG DIFFERENTIAL CROSS SECTIONGRU.)

-10.0

-15.0 ~ =

Figure 3.2: ¢l 25-2p process at 50 eV, 200 eV, and 400 eV in the Wallace approxima-
tion(WA) and Glaaber spproximation(GL).
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Figure 3.3: ~-H 2s-3s process at 50 €V, 200 eV, and 400 eV in the Whllace approxima-

tion(WA) and Glauber approximation(GL).
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Figure 3.4: ¢=-H 25-3p process at 50 eV, 200 eV, and 400 eV in the Wallace approxima-
tion(WA) 2nd Glauber approximation(GL).
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Figute 3.5: ¢*-H 2526 process at 50 eV, 200 eV, and 400 eV in the Wallace approxima-
tion(WA) and Glauber approximation(GL).
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Figure 3.6: e*-H 25-2p process at 50 eV, 200 eV, and 400 eV in the Wallace approxima-
tion(WA) and Glauber approximation(GL).

65



POSITRON-H 25-35 PROCESS
AT SOEV, 200EV AXD 400EV

10.01

0
o

L0G DIFFERENTIAL CROSS SECTION(A. U.)
=
==
=

i
5
o
7
A
2

E ~
%] \\ ~————
\\“\
-5 T T T T T T B
0 5 % ] 100 15 150 175
SCATTERING ANGLE DEG)

Figure 3.7: e*.H 25-3s process at 50 eV, 200 eV, and 400 eV in the Wallace spproxima-

tion(WA) and Glaober approximation(GL).
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Figure 3.8: ¢*-H 2s-3p process at 50 eV, 200 eV, and 400 eV in the Wallace approxima-
tion(WA) and Glanber approximation(GL).
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Figure 3.9: ¢™-H 1s-2p process at 50 eV, 200 eV, and 400 eV in the Wallace approxima-
tion(WA) and Glauber approximation(GL).
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Figure 3.10: e™-H 1s-3p process at 50 eV, 200 eV, and 400 eV in the Wallace approxime-
tion(WA) and Glaube approximation(GL).
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Figure 3.11: e*-H 1s-2p process at 50 eV, 200 eV, and 400 eV in the Wallace approxima-
tion(WA) and Gleaber approximation(GL).
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Figure 3.12: e*-H 1s-3p process at 50 eV, 200 eV, and 400 eV in the Wallace approxima-
tion(WA) and Glauber spproximation(GL).
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Figure 3.13: ¢=-H and e*-H 25-2s processes at 50 eV in the Wallace approximation(WA)
and the Glauber approximation(GL).
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Figure 3.14: e~-H and e*-H 25-2s processes at 200 eV in the Wallace approximation(WA)
and the Glauber approximation(GL).
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Figare 3.15: ¢=-H and e*-H 25-2s processes at 400 eV in the Wallace approximation(WA)
and the Glauber approximation(GL).
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Figure 3.16: ¢™-H and e*-H 2s-2p processes at 50 eV in the Wallace approximation(WA)
and the Glauber approximation(GL).
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Figare 3.17: ¢™-H and e*-H 2s-2p processes at 200 eV in the Wallace approximation(WA)
and the Glauber approximation(GL).
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Figure 3.18: ¢=-H and e*-H 2s-2p processes at 400 eV in the Wallace approximation(WA)
end the Glauber approximation(GL).



ELECTRON-H A\D POSITRIN-H
25-35 PROCESSES AT S0 EV

weye  mmmmeses

WA
WA POST

; a

H

g 50

#

]

E 0.0

8

Figure 3.19: ¢™-H and e*-H 2s-3s processes at 50 eV in the Wallace approximation(WA)
and the Glauber approximation(GL).
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Figure 3.20: ¢™-H and e*-H 25-3s provesses at 200 eV in the Wallace approximation(WA)
and the Glauber approximation(GL).
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Figure 3.21: ¢=-H and ¢*-H 2s-3s processes at 400 eV in the Wallace approximation(WA)
and the Glauber approximation(GL).
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Figare 3.22: ¢™-H and e*-H 2s-3p processes at 50 eV in the Wallace approximation(WA)
and the Glauber approximation(GL).
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Figure 3.23: e~-H and e*-H 25-3p processes at 200 eV in the Wallace approximation(WA)
and the Glauber approximation(GL).
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Figure 3.24: ¢~-H and e*-H 2s-3p processes at 400 eV in the Wallace approximation(WA)
and the Glauber approximation(GL).
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Figure 3.25: ¢=-H and e*-H 1s-Is, 1s-2s, and 25-2s processes at 50 eV in the Wallace
approximation(WA).
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Figure 3.26: ¢~-H and ¢*-H 1s-1s, 1s-2s, and 2s-2s processes at 200 eV in the Wallace
approximation(WA).
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Figure 3.27: ¢~-H and e*-H 1s-1s, 1s-2s, and 2s-2s processes at 400 eV in the Wallace
approximation(WA).
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Figore 3.28: e=-H and e*-H 15-2p, and 25-2p processes at 50 eV in the Wallace approxima-
tion(WA).
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Figure 3.29: ¢~-H and e*-H 15-2p, and 2s-2p processes at 200 eV in the Wallace approxi-
mation(WA).
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Figure 3.30: ¢™-H and e*-H 1s-2p, and 25-2p processes at 400 eV in the Wallace approxi-
mation(WA).
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Figure 3.31: ¢~-H and e*-H 1s-3s, and 2s-3s processes at 50 eV in the Wallace approxima-
tion(WA).



ELECTRON-H AND POSITRON- AND 25-35

-4 15-35
PROCESSES AT 200 EV

w¢  TEm==ees
W 15-35 ELEC

WA 15-35 PosT

5.0 W53 AL
\ R 535 PsT

L0G DIFFERENTIAL CRISS SECTINR L)
e

-10.0-

Figure 3.32: ¢~-H and e*-H 1s-3s, and 2s-3s processes at 200 eV in the Wallace approxi-
mation(WA).
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Figure 3.33: e=-H and e*-H 15-35, and 2s-3s processes at 400 eV in the Wallace approxi-
mation(WA).



ELECTRON-H AND POSITRON-H 1S-3 AND 25-3

PROCESSES AT 50 EV
w0 eseeses
8159 QI
R 159 RS
=t WP A
2 | R
g =M EESY. 4
g |l
£ ||
%)
E 0.0 \\\\
!
N
W
50
-1 T T T T T T o)

Figure 3.34: ¢=-H and e*-H 15-3p, and 25-3p processes at 50 eV in the Wallace approxima-
tion(WA).
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Figure 3.35: ¢~-H and e*-H 1s-3p, and 2s-3p processes at 200 eV in the Wallace approxi-
mation(WA).
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Figure 3.36: ¢~-H and ¢*-H 15-3p, and 2s-3p processes at 400 eV in the Wallace approxi-
mation(WA).
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Chapter 4

Conclusions

In this thesis, the Glauber and Wallace approximations have been wsed to calculate the
clastic and inelastic differential cross sections of electron aad positror scattering from the
metastable hydroger H(2s) (2s-2s, 25-2p, 2s-3s, and 2s-3p), as well as from the ground state
hydrogen H(1s) (1s-1s,1s-2s, 1s-2p,1s-3s, and 1s-3p), at several intermediate incidert ener-
gies (from 50 eV to 400 eV). Some general features have been obtaized. 1) The Wallace
approximation corrects the Glauber one; the corrections are very significant for s-p excita-
tions at large scattering angles. 2) The Wallace approximation predicts different differential
cross sections between electron and positron scattering; the difference becomes smeller as
the energy becomes higher. 3) The difference between the electron aad positron inelastic
scattering from H(1s) is more striking than that of the corresponding scattering from H(2s).
4) At small angles, the differential cross sections for the scattering from H(2s) are much
larger than those from the corresponding H(ls).

‘We hope our results will be confirmed experimentally in the near fature; although the

experimental differential cross seci.ons for electron-H scattering are limited to the 1s-1s



elastic scattering and to the 1s-2s and 1s-2p excitation processes, and as for positron-H

acattering there are no i results for the di ial cross sections so far [45).
We should point out that the fature of the application of the Wallace approximation to
scattering by atomic targets beyond hydrogen lies on whether the Wallace amplitude can
further be reduced to an integral form with the dimension lower than three or even to a

closed form.
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Appendix A

Some expressions in the Glauber

amplitudes

The derivatives of the Ilo(A) and I1;(A) defined by eq. (3.15) and eq. (3.16) can be obtained

by using the formula [46]:
Z iz = LR+ 1,5+ 12+ 17).
7 295 25 z , ; 37)-

We list the final expressions below.
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21 +in)(2 - in)*(1 - in)(3 — in)(1 +2in)g ™A FUF(4—in, 3 - in4; —"\—:)
F+in)1 = )2 - (0 - in (4 g~

F(5—in4 --'q;s;—"‘—: N (A8)



Appendix B

Derivations of the Wallace

amplitudes for *-H scattering

If we use a eylindrical coordinate system in which the : direction is perpendicular to §, the
coordinates of the incident particle with respect to the atomic nucleus is 7o = b + %o, and
the coordinate of the target electron is 7 = & + 1. The phase correction term x; for the

potential

V=QG- =m0 ®1)

|70 -7l

has been put into s closed form by Byron ef al. [36] and subsequens., by Unnikrishnan et

ol. [38]:
xi= it 3Egh), ®2)
where
- bi-bo
A G (BY)
L = 24K(v), (B4)
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L = 27'E(), (B.5)

s = g (B5)
v = T:ﬁ‘/ﬁ‘ (B.7)
A = [yt +ap, (B.8)
B = [y +(-ap, (B.9)
v = nu/b. (B.10)

“The functions K (v) and E(v) ste the complete elliptic integrals of the first and second kind

respectively:
o g
Kb = / ——m (B.11)
) = / - v2sin (8.12)

Let us derive W (Ey, o) for 2s-2s case. The wavefunctions of hydrogen are
Fo(r) = ¥5(r1) = 7= (2 = r)esp(-rs ). (8.13)
The Glauber phase fanction xo is
xolbo, B1) = —201-(]5,’7“[). (B.14)

Substituting eq. (B.2), eq. (B.13) and eq. (B.14) into eq. (3.36), we obtain

WEnR) = 8 fa-np exsor Bl - enighor+ 22
x exp(iq - bo)d*Bodbrdzy, (B.15)
where
1==Q/k. ®16)
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Since

Bi-b = bad, (B.17)
P (8.18)

then

Wk ) = 6#4‘:—, J12-b0 + 20005 ) P el + 20c0s 60 1o x
{1-exploi=(Fy + 22 1)) explighocos gy x
T a

bidbod @y, adsdgady, (B19)

‘where

t = 14+d477,

$ab = Sa — i,
bbg = Sbe — b (B20)
By changing the variable:
b = 4,
dd = dg, (B21)

the integral over $a, can be performed by using the formuls (see p360 of ref. [46])
[ expstoces #346 = xJalgh. (822)

that s,

o B 1% avais % I s
W(Ey, ) = '“/n m“’-"_/o u»,.[, aoL dbox

Jo{gbo) exp(~bo8)(2 - bo8)?[1 - exp(~M/bo)}85, (B23)
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§=(1+6%+ 97 +2acos¢)'/3, (B.24)

M=t ol (B.25)
By using the standard formulas [47), the integral of by can be carried out and thus the

W(Ey, Ko) can be put into the following form [38):

- = i oo " oo o
W(ks,Fo) = %L daa™* /n d'y/n d4(4P, - 48P, + 8Py +8C"

486 + 26°C{Y), (B.26)
where
p=lithpitr it o, )
A = Z KL ®)
The quantities X and Y are defined by
X =V +g -, (B29)
Y = VaM(y/& + g7 + 1. (B.30)

The quantities P, can further be evaluated by using the formula (see ps59 of ref. [46]):

Fw8im2)=(0-2)"Fv,y - Fimi ;5.

) 3 (B.31)

us listed from eq. (3.61) to eq. (3.64). In a similar way, we can also obtain the Wallace

amplitudes for other cases.
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