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Abstract

Several acoustic investigations were conducted with the near field radiated from
a vibrating cantilever beam.

The objective of the first i igation was to i 1 iine the spatial

distribution of acoustic intensity close to the beam. Difficulties that occur with acoustic
intensity measurements made this a non trivial task and led to the development of an
expertmental procedure for mapping the spatial distribution of acoustic intensity in the
near field. The mapping procedure combined the physics of a closed surface with
approximations from an analysis with Taylor’s series. The method was successfully tested
on the field radiated by the beam. It was then shown that the reliability of the spatial
distribution of intensity that resulted from this method could be statistically evaluated
from the measured data alone without making assumptions about the nature of the
acoustic field.

A second i 1 i igati the icality of

acoustic intensity with transfer functions. The expression for acoustic intensity, normally
formulated in terms of acoustic pressures, was expressed in terms of transfer functions
between pressures and the force exciting the cantilever beam.

In the third and last investigation, the source of the acoustic field, the cantilever
beam, was modelled with Euler-Bernoulli theory. Elements of modal analysis were used

to obtain the modal parameters of the beam and a value for Young’s Modulus for the



material of the beam. This vibration model was then used in an integral approximation

for the acoustic field close to the beam. The acoustic ncar field was calculated and

d with i The results were used to examine the
distribution of phase in the near field as it pertained to the measurement of acoustic

intensity.
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CHAPTER ONE
INTRODUCTION

Structural vibration radiates sound. Flexural vibration, the usual means by which
vibrational energy flows through a structure, produces the most efficient sound radiation
[Ross, 1976]. These circumstances make it possible to monitor those modal parameters
of a structure associated with the flexural resonances, from the radiated acoustic field. It
has been demonstrated that the flexural modes of vibration can be monitored with
measurements of the radiated acoustic pressure. Bissinger and Chowdhury [1990]
compared natural frequencies and damping values calculated from transfer functions of
pressure and force with those calculated from transfer finctions of acceleration and force
for both a cylindrical bar and a plate. They found good agreement in both cases.
Similarly, Okubo and Masuda [1990] used the transfer functions between near field
acoustic pressure and excitation force to experimentally obtain the natural frequencies,
damping values and mode shapes of T-plate joints.

In addition to acoustic pressure, acoustic intensity, the energy flux vector in the
acoustic field, can be measured. Acoustic intensity measurements have historically been
used to quantify the power of an acoustic source, the power propagating through a duct,
or to establish the attenuation of sound through a panel, [Fahy, 1989]. Near a solid surface
acoustic intensity has an advantage over acoustic' pressure. Acoustic intensity usually
indicates whether the surface is radiating sound (large values normal to the surface) or

reflecting sound (small values normal to surface). Unlike acoustic intensity, acoustic



pressure near the surface cannot be readily used to distinguish radiation from reflection
because it can be large in both cases.

The research for this thesis occurred within a program to develop acoustic methods
to monitor the mechanical behaviour of structures for indications of structural fatigue
[Guigné et al, 1992, Klein et al, 1995). Changes in acoustic intensity and pressure near
the surface of cantilever beams were being correlated with the state of fatigue. Estimates
of modal parameters were being made from pressure transfer functions. The pattern of
acoustic energy flow was being mapped in a horizontal plane parallel to the beam’s
surface,

Unexpectedly long measurement intervals were required to obtain reproducible
estimates of mean acoustic intensity. The search for an explanation led to an examination

of the i i of the It also became apparent that the

measurements of intensity in the near field were not always reliable. The desire to
quantify reliability provided the incentive to develop a method for mapping acoustic
_ intensity. Chapter 2 describes acoustic intensity, its measurement, and looks at the
measurement statistics of s‘mple acoustic waves. Chapter 3 describes a new procedure for
mapping aconstic intensity and the results of its experimental testing.
During the same program, acoustic pressure was being measured twice, once for
ncou‘s(ic intensity measurements, and then again to construct transfer functions between
acoustic pressure and force for modal parameter estimates. It was realized that the transfer

functions could be used to construct an acoustic intensity normalized with respect to



applied force, eliminating the need for two separate measurements of acoustic pressure.
The construction of normalized acoustic intensity is described i Chapter 4.

Several experiments had been conducted to measure transfer functions between
pressure and force close to the surface of a cantilever beam. Although the acoustic
environment did not lend itself to being easily modelled, there was still a desire to
formulate the near field of the cantilever in some approximate fashion and compare it
with experiment. Chapter 5 describes the modelling of a cantilever’s vibration response.
Chapter 6 describes the modelling of the cantilever’s near acoustic field from its vibration

response and compares the lated field with imental The

opportunity is taken to examine the spatial distribution of phase in the near field as it

pertains to the measurerent of acoustic intensity.



CHAPTER TWO
MEASURING ACOUSTIC INTENSITY
The purpose of !his_chapl:r is to provide a background on how the average flux
of energy in an acoustic field is measured in practice. For the reader unfamiliar with
acoustic intensity a definition is outlined in section 2.1. There are two methods of

obtaining a time averaged measurement, one expressed in the time domain and one

expressed in the frequency domain. The ! of the equati ing each
method are reviewed in sections 2.2 and 2.3. It may be of interest that the expression in
the frequency domain was derived without assuming the acoustic field to be stationary or
ergodic.

are always ied by errors. Section 2.4 discusses some of
the more likely sources of error and notes the work of several authors in this area. One
of the decisions faced by the experimentalist is the length of time interval to use to obtain
an average value. Section 2.5 examines how moving from the far field to the near field
affects this time interval,
2.1 Acoustic Intensity

Acoustic intensity is a vector quantity that comes from considering the change in
acoustic energy within a closed volume of fluid. For a fluid of density p, and
compressibility «, with p the acoustic pressure and U the fluid particle velocity, it can be

shown that (e.g. Morse and Ingard, 1968),



f, PT"":“';%L .;xp’¢;‘.auﬁl‘7dv (2.1)
where Yixp? is the acoustic potential energy per unit volume, and %p, |u|? is the acoustic
kinetic energy per unit volume. The product of acoustic pressure with fluid particle
velocity is called the acoustic intensity vector (‘¥) and represents a flow of energy
crossing a surface. ’

- - (2.2)
¥ =pu
Attempts to measure acoustic intensity met with limited success until the late
1970’s when the arrival of digital technology provided the accuracy and stability
necessary to make the measurement reliable. A history of development is given by Fahy
[1989].
2.2 Time Domain Formulation
An expression can be derived that shows time-averaged acoustic intensity can be

measured using the integral of time domain pressure p(t). Consider a time average starting

att,
Lo
T - J plt) ult!) at’ (2.3)
Expressing -u.(l) as a time integral,
F fauge)
T = 3 J’ p(C)L at’ dt (2.4)

Splitting the time integral,



wer = wor
rm--,‘, [ p(t)d:-La%(_:,'_’d:’&;J'p(!)

u(e’)
iflarae @5

The first term is just the time average of p(t) multiplying a value of particle velocity at
time 1. A long enough measurement interval T, will let the time average of p(t) approach
its mean value, zero. Then the first term will not contribute appreciably to the time

average leaving,

ot & %
N () g :
vreT Tlpml[_r,_a: e (2.6)
Using Euler’s relation,
e 2.1

we then substitut> for the time derivative in the second integrand to obtain,

cor
VLT - 7'1, [ ple) J’?pw) ae’ de (2.8)

For simplicity we focus on the x component of f(l). Consider two pressure transducers
designated p,(t) and py(t). The line joining the transducers (A to B) is in the X direction.
The transducers are separated by a distance d. At the midpoint between the two

transducers, the pressure gradient in the x direction is approximated as,

l%‘_”_ « PalE) - pu(e) (2.9)
ZZ -

It will be assumed that the value of d can be chosen for this approximation to hold over

[E



the frequency interval of interest. Similarly, the pressure at the midpoint is approximated
as,

ple) = M (2.10)
With these approximations we have an expression that can be used to measure time

averaged acoustic intensity using pressure in the time domain.
-2 3
I 4 [€Paterpate [ty -py(en1 @) @t (220

This equation is implemented in intensity measuring hardware.
It is also noted in passing that Pavic [1977] showed in the limit T—>co, that the

latter equation reduces to,
i 3 ¢
- 5 " 2.12
vTET mjp,(:) (Ip‘(:)dt’)dt (2.12)

2.3 Frequency Domain Formulation

An expression can be derived that shows time averaged acoustic intensity can be
measured using the frequency spectra of acoustic pressure, P(w). Using Euler’s relation
(Eq. (2.7)), particle velocity can be written in terms of pressure in the frequency domain,

ey = VPl
bl = I (2.13)

We shall consider the x component of W(t). The pressure and particle velocity are

replaced with their Fourrier representation to give,



¥,(8) = p(t) T (8)

S s L U TR
I.P(u) et g o G T 10

-l ffrml s
'xT,L[”'"’VWrPM"' © dwdd

Take the time average of ‘¥(t) over the interval [0,T].

T

e L
* 1p,T 4

[ [20) L L et e-tewe dodw ]ac (2.15)

It is assumed that p(t) and u(t) are both zero outside the interval [0,T]. Then the time
integration interval can be extended to [-x0,c0] without additional contribution to the time

average.

VT 2 u F(m)z}%l’(u‘) {L el d:] dode/ (2.16)
%

The quantity in square brackets is 2§(w+w’). Performing the integration over ©’ yiclds,

. 21 [ Plo) 3P(-w)
vrers 22 [ 2R w (2.17)
Since p(t) is real, P(-0)=P'(0).
vrere 128 I 2l 350l 4, (2.18)

The pressure difference between two pressure transducers is used to estimate the pressure

gradient, as was done in the time domain formulation (Eq.(2.9)).



9P(w) , Pplw) - B, () (2.19)
F i

‘The pressure at the midpoint is approximated as,

Plw) & ﬂ;ﬂ"l (2.20)

With these approximations,

T L) ] dw (2.22)

27 [ [Palw) + Bylw)] (Pilw) - B
o [

which reduces to,

[ ImiP,(w) P} ()] 7 7 |Blw) |2-| By (w) |2
J: = dnnm'[ 5 > dw (2.22)

The integrand of the second integral is odd with respect to @ and the second integral

vanishes.

vorers 227 jmu’.w) B tasag)

(3 w

The spectral contribution to \X_J,(t) between @ and o+do is identified as,

LA % Im [B,(w) P*y ()] do (2.24)
This cross spectral formulation for intensity was derived by Fahy [1977].

Now, pA(t) and P,(o) are related by,



Blw) = 2 J’p.(c) et ae (2.25)

Since p(t) is zero outside the interval [0.T],
-
B(w) = % Ip,(:) elvt dt (2.26)

“To convert to discrete measurcments, the integral is approximated by a summation over

N points, with T=NAt.
H :
Ip,(tl etdts 3 p,(aat) efvnetat (2.27)
/]
Bl

Choosing discrete values of o, o,=2am/T, m={0,1,..,N/2}, yields,

.
- T'n.zn FiaE (2.28)
E
T X, (m)

where X,(m) is the mth spectral coefficient in a DFT of py(t). Then, the spectral

contribution to '{7,(() between 0,-A0/2 and o, +Aw/2 (Aw=2n/T) is,

-1

Im [X, (m) X5 (m) ] (2.29)
This formulation for intensity was derived by Chung [1978]. Both Fahy and Chung
assumed stationarity and ergodicity to arrive at their results. The same result has been

derived here with a windowed process (p(t) and u(t) assumed to be zero outside the

measurement interval [0,T]). A windowed process is a realistic portrayal of a typical

10



measurement. A windowed process does not demand specific correlation properties like
those of a stationary process.
Writing the DFT coefficients in terms of their magnitudes and phases illustrates

an important aspect of the measurement.
v - ﬁ | X, (m) | | X tm) | 8in(6,(m) - 6,(m) ) (2.30)
There must be a measureable phase difference between the pressures at A and B for the

measured time averaged intensity to be non zero. In practice, if the hardware phase

is inad the will probably be unreliable.

2.4 Sources of Error

Both methods use two microphones with fixed spacing to approximate the pressure
gradient component along the line joining the microphones with their pressure difference.
Thompson and Tree [1981] examined the error introduced by this finite difference
approximation and showed that it depends not only on the ratio of microphone spacing
to wavelength (i.e. kd), but also on the ratio of the microphone spacing to the distance
separating the measurement position from the source location (i.e. d/r). They showed that
to maintain the same level of error, larger microphone spacings are required in the near
field than the far field.

Over and above the error i by the finite di imation itself,

equation 2.30 illustrates that measurement accuracy depends on accurately resolving the

difference between ©,(m) and ®y(m). The trend is for ©,(m)-Oy(m) to decrease as the



frequency decreases, for a fixed microphone spacing. Real pressure transducers have

phase response istics that vary with frequency. As the frequency drops,
there will come a point where the difference between transducer phase responses
(microphone ﬁhase mismatch) is no longer small compared to ©,(m)-©y(m). and a
significant bias error is then introduced. In general, the effects of microphone phase
mismatch (and similarly instrumentation channel phase mismatch) become problematic at
low frequencies and in highly reactive acoustic fields, presenting the greatest difficulty
in intensity measurement hardware design [Pascal and Carles, 1982]. This bias error can
be reduced by repeating each measurement with microphone positions reversed [Chung,
1978]. Alternatively, if the phase mismatch between the microphones is measured, the
intensity measurements can be corrected [Krishnappa, 1981].
Statistical error can be appreciable when for example a lot of reverberation exists.
This error has been examined by several authors. It is usually modelled by assuming that
there are two sound fields, one the object of measurement, the other extraneous. Seybert
[1981] related statistical error to the coherence between the two pressure signals used in
the measurement. Seybert used the assumption that the desired and undesired sound fields
were uncorrelated. Then Dyrlund [1983] related the coherence to the pressure intensity
index by assuming the extraneous sound field to be diffuse. Experimental measurements
have shown some agreement with these formulations of statistical error [Pepin 1984].
Asymptotic expressions for standard error in terms of a field factor were subsequently

developed by Pascal [1986].



However the use of in error estimation has been it Chung

[1981] showed that ordinary coherence and the cross spectral method are not always well
related. Jacobsen and Neilsen [1987] noted that measured coherence can be a function of
spectral resolution. Watkinson [1986] pointed out that coherence estimates can be affected
by bias error, questioned the validity of assuming the desired and undesired componerits

in a sound field to be in all cases and :d returning to ions of

mean and standard deviation.

The bias errors that have been discussed to this point can be mitigated by

hardware limitations such as mi phase and the random

errors can be quantified with statistical analysis. There are other phenomena that may or
may not cause significant error. For example, each microphone disturbs the sound field,
and affects what the other microphone sees. Tichy [1981] demonstrated experimentally
the disturbance to one microphone caused by the presence of a second microphone, noting
that the disturbance increased with frequency and tended to affect measured phase more
than amplitude. (It would be very difficult to estimate the error caused by the presence
of both microphones.) As a second example, in mapping the flow of near field intensity
a phenomenon called a vortex can be encountered. It is not clear whether this feature is
an added complication to measurement. The vortex was first postulated as a closed loop
of en‘:rgy [Schultz et al, 1975), but in fact, instaritaneous energy flows through the vortex;
the vortex itself only applies to the net energy component of intensity [Mann et al, 1987].

The effort of many individuals to quantify errors and disturbances suggests one

13



would want to proceed cautiously in making measurements of acoustic intensity.
2.5 Effect of the Near Field on Measurement Interval

Whether in the time domain or the frequency domain, the calculated average
intensity is for the measurement interval [0,T]. The length of T required to obtain an
estimate that approaches the mean value of \¥(t) for T—, depends on the statistics of

(t). The effect of being in the near field on the measurement interval can be illustrated

with a i ic wave of ampli A,
plr,t) = .:L_cas (kr-wt)
(2.31)
= _a e
u(r, t) = 7eE {cos (kr-wt)
The instantaneous intensity ¥(t) is,
plr,t)-ulr,t) = %, 1+cos2 (kr-wt) - _EM,"‘_:;“LEL (2.32)
and the time average over [0,T],
z =
YTET = %.‘[F(r. £)sT(r, £) dt ) (2.33)
is,
VIET =,
Alf 1+ sin(2kr) - sin2(kr-wT) , cos(2kr) - cos 2 (kr-wT) | (2.34)
T ZaTkT | 2
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In the limit T—e0 (r20),

PTEr . A
P (2.35)

Then, from Eq.(2.34), to get an estimate of ¥(t) that approaches the value in Eq.(2.35)
requires,

WT»1
wrkr»1

(2.36)

The latter condition shows that in the near field (kr<1), as the point of measurement
‘moves closer to the source, the measurement interval will need to be increased. This result

isa of the of i intensity on (kr)” in the near field.

Consider the time averaged mean square,
4F
TYTET =9 {e 7? = (YTET-¥(t))? di 2.
€ B30 (£))? dt (2.37)

Inserting the forms of ¥(t) and ‘l_"(l), given in Eq.’s (2.32) and (2.34) respectively, yields,

2% (2.38)
,}[ﬁ] I(Pbﬂg‘:__”c)-casz m—.m))’dc
where,
p= Bin(2kr) —suinz(kr-m‘) . cos (2kr) —mcosz(kz—mﬂ (2.39)



Integration yields,

V(E) Vit 1=,
Al E PO STV WU SO 1 2540
2p,Ci 2 S BoTk'r: 2WIKT BWT
where,
F,=sind (kr-wT) -sin (4kr)
F,-MM—ZF(CGA (2kz) -cos 2 (kr-wT)) (2.41)
Fy=sin (4kr) -sin 4 (kr-oT) -m"‘(sin (2kr) -sin2 (kr-uT))
Assuming ©T>>1 and ©Tkr>>1 (and therefore F<<1), Eq.(2.40) reduces to,
2
=T . (A 2 L .
T ‘[z_y,'?:? 71’W) (2.42)

Eq.(2.42) shows that in the near field with kr<I, the variance increases as kr decreases.
In particular, if the instantancous intensity from a spherical wave were sampled
continuously, with oTkr >>1, then from Eq.’s (2.35) and (2.42), we would anticipate a

standard deviation to mean ratio of approximately,

1

1
‘/_z, Ix * %S (2.43)
which, for small values of kr, would exceed unity.
‘These two ions with a i ic wave suggest that in the near

field (kr<1), estimates of time averaged intensity will be more difficult to obtain, and

prone to larger statistical variation than in the far field (kr>>1).

16



The interaction between two frequency components in the acoustic field can also
make estimates of time averaged intensity more difficult to obtain (example given in
Appendix A). The effect of the interaction can be reduced by requiring AoT>>1, where
Ao is the separation between the frequencies.

2.6 Summary

Two methods of processing to obtain time averaged acoustic intensity, in the
frequency domain, and in the time domain, were reviewed. It was noted that the frequency
domain method was equivalent to a windowed process that assumes zero intensity outside
the measurement interval.

The measurement of acoustic intensity requires good phase resolution and suffers
from bias errors when the limits of phase resolution are exceeded. In general the demands
on phase resolution increase at lower frequercies.

In the near field, the time interval to obtain a good estimate of average intensity

may depend on position. An example with spherical waves showed that in the near field

the statistical distribution of i intensity t as the distance to the source
decreased. As a result, longer measurement intervals were shown to be necessary in the
near field to obtain good estimates of mean intensity than in the far field,

It could be anticipated that a series of measurements to establish the spatial
distribution of acoustic intensity in the near field of a source would contain a range of

errors. The challenge would be to decide whether the measurements portray the

distribution reasonably accurately.



CHAPTER THREE
MAPPING ACOUSTIC INTENSITY

This chapter is concerned with how to measure the spatial distribution of time
averaged acoustic intensity in the near 1 =Id. The main topic is a new procedure that was
developed for this purpose. This procedure provides a recipe for data collection, and also
a numerical means of assessing the quality of the collected data.

Section 3.1 begins with an overview of other methods for mapping acoustic
intensity and discusses the motivation to develop a new method. The theoretical side of
the new method is covered in section 3.2. The actual mapping procedure is described in
section 3.3. The experimental testing and validation of the procedure is described in
section 3.4. Then, a numerical measure of reliability is demonstrated for intensity maps
generated by this method in section 3.5. The selection of averaging time for data
collection is covered separately in section 3.6.

The contents of this chapter have been summarized in Klein and Guigne, [1995].
3.1 Mapping Procedures

Different procedures have been suggested for mapping the spatial distribution of
acoustic intensity near a vibrating surface. Pressure has been phase referenced to surface
acceleration using a cross spectrum between a surface mounted accelerometer and a
‘mobile microphone [Petterson, 1979]. The one microphone was used to make all acoustic
measurements required to construct the desired acoustic intensity vectors. This approach

should have eliminated phase mismatch error from calculated intensity.
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A large planar array of microphones was placed in close proximity to a surface in
order to perform near field acoustic holography [Williams and Maynard, 1981]. Several
acoustic products were constructed, including the vector distribution of acoustic intensity.

Probably the most common method of mapping acoustic intensity consists of
sampling the intensity vector on a grid of regularly spaced points in a plane using a
microphone pair with fixed spacing. Regardless of the method employed, the usual
objective is to determine the distribution of x,y and z components of intensity across a
plane.

We had experienced the effects of errors in attempting to map the spatial
distribution of acoustic intensity in the near field of a vibrating cantilever beam (e.g. pror

reproducibility). Our measurement capability at the time was limited to two real time

acoustic intensity analyzers and & few mi which with
an accelerometer, and likewise with a microphone array. This situation provided the

incentive to develop a procedure to meet our needs. The procedure described in the

»seclions to follow was with 3 i in mind (di: below).
During the mapping process the grid point spacing may be reduced to sample the
intensity distribution on a finer scale. A mapping procedure should indicate when
sufficient sampling has been achieved.
' Acoustic intensity describes energy flux crossing normal to a surface. Each
measurement should have a bounded normal surface area to which it applies. Let us

assume that the mapping plane lies in the x-y plane. For the z components normal to the
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mapping plane, the plane can be subdivided into equal areas centred on each measurement
location. The net flux crossing the plane can be then related to the z components and their
associated individual areas, However, the x and y intensity components all lie in the
plane. The sizes of the normal surface areas to which they apply is not so well defined.

A mapping procedure should delineate the boundaries of the normal surfaces

with all the intensity

Near field are very di

on the ing hardware’s phase

of several frequency bands with one fixed

spacing i the ibility that phase ion will be adequate for
some bands and inadequate for other bands. It is also difficult to anticipate the required
microphone spacing because the phase difference between microphone locations is
unlikely to be a simple function of acoustic wavelength and microphone spacing. With
the possibility of poor phase resolution, a mapping procedure should provide an
objective means of assessing whether the measured intensity distribution is a close

facsimile of the actual distribution.

3.2 Approximations Using a Closed Surface
Consider a box, formed by the intersection of surfaces normal to six intensity
measurements pointing away from (X, Yo, Zo) as shown in Fig. 3.1. This box will be

referred to as a "cell".
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Figure 3.1: The intensity measurements associated with a cell. (a) Six unit vectors point
away from the interior point (X,,¥2,). (b) The surfaces normal to the unit vectors define
acell.



The x component of intensity is measured at (x,-AX/2,y,,z,) and (X +AxX/2,y,z,). The y
‘component of intensity is measured at (x,y,Ay/2,z) and (X,y,+Ay/2.z,). The z
component of intensity is measured at (X,,Y2,-A2/2) and (X,Yoz,+Az/2). With this
arrangement we will show that as the cell dimensions (Ax,Ay,Az) are reduced,

i) the intensity component measured normal to the centre of each cell wall can be

related to the average intensity crossing that wall, and

ii) the six intensity components, each normal to one of the cell walls, can be

related to the components of the intensity vector at the centre of the cell.
Developing relationships between the intensity components, as described in i) and ii), will
allow us to use the "cell" as the basic building block for mapping intensity over an

extended surface.

Let ¥(x, y, 2) be the acoustic intensity vector.
Y(x,y,2) =¥ (x,y,2) 1+ y(xy,2) T+ ixy2 k (3.1)

Consider the integral of the x component of ¥’ across one of the faces of the cell

parallel to the y-z plane. For example,

P
| Y%+ 5y, 2) dydz (3.2)
o gl o
L Xy, 2 T
e



The integrand is replaced with its Taylor’s expansion about point (Xo, Yo, Z)-

[
G007, 2) & Y, ke Yor T + (xK) S+ (y-5) .%"(z-z,)%o e A3
Performing the integration produces a series that contains the Taylor’s expansion of
W, (x+AX/2,Y0,25) about (X, Yo Z) Wwith additional terms. The terms representing

W, (%5+AX/2,y,,%,) have been collected in Eq.(3.4), followed by the lowest order terms in

Ay and Az.
A S o, o,
Vo (r ZE v ) = v (ot B v 20) + (‘Y)27 %"AT’ it (3

From Eq.(3.4), approximating the average value of \¥,(x,+Ax/2,y,z) over the cell

wall at x=x,+Ax/2 by W,(x;+AX/2,y,,2;) neglects terms of which the lowest order are,

(3.5)

S——— 2 a9, 2 919,
V,(xo‘T.y.Z)-W.(xu'%.yurxn) = [-‘fv 1T (u) ]

The steps from Eq.’s (3.2) to (3.5) can be repeated to obtain the spatial average of the
intensity component normal to each of the other 5 cell walls (i.e. spatial averages for
W (%o-A%/2,y,2), ¥, (x,yoAy/2,2), and W (x,y,2+Az/2). In each case an equation similar

to Eq.(3.5) is obtained.
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Now the flux of ¥ leaving the cell, @y,

PR AT |

[RMEAS Tmz) - ¥ (x— _,y,z) ] dydz +

s
J’ U4y 8Y,2) - 40 y-4Y,2) ) dxdz v (3.6)
PR .
e
j L9, %,y 20 5F) - %% yiz-50) 1 dxdy
Ty

will be approximated as,

ooy = [ ayaz (¥, (er.y,.:.,) - ¥ (xu--—,y‘,.z.,) )+
sxaz ( ¥, (x, Yot Y, 2.} = ¥ (x5, Yo T,z,,) )+ (3.7)
axay ( v.(xu.y,.zu A5 -y zmAE) ) )

With the 6 equations of the form of Eq.(3.5) it can be shown that this approximation

neglects terms of order,

[ -2 xay sz ¥y +axayaz’ i/}
i Y x 0y° Y AT Sk
+ax AyAz..a?v_;;'Axnynx’ay_:';, (3.8)
> B
o ax Ay aZgrt ¢ axay szt "z) + i )
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The components of the vector ¥ at the centre of the cell will be approximated from,

V(X0 Yo z.l-% 19, (x,+

0 2]+ Y-S vy 200
w,(x..y.,x.)=,}u,lx..y.«.‘TY.x.) * ¥,y 3 2] (3.9)
(% Yo 2 =5 19, (%, Ve 24 B5) + ¥, (%, 70, 2,-350)

which, because of the anti symmetry in the expansions (Eq.(3.3)) neglects terms of order,

L _E_“Y”_a?""'r o oMM L G0

respectively. Eq.’s (3.7) and (3.9) are the basic approximations used to develop an
intensity mapping procedure based on a closed surface. Since the point of evaluation of
the derivatives remains constant, these approximations should improve as Ax, Ay, or Az
decrease (i.e., when cell dimensions are reduced).
3.3 Mapping With a Closed Surface

‘The mapping process begins by establishing an imaginary box which encloses the
mapping plane of interest. Assume the mapping surface to be a rectangle in the x-y plane.
This surface would be enclosed by a box like that shown in Fig. 3.2, with width and
length much greater than depth. The objective is to partition the box into individual cells,
make measurements of intensity normal to the cell walls and apply the approximations of
the ;;rcvious section to construct the intensity vector at the centre of each cell. In the
beginning there is no information to use to establish cell size. We begin by choosing an

arbitrary size.



)

b)

Figure 3.2: (a) A rectangular box comprised of multiple cells. (b) An enlarged view of
one cell. Intensity measurements are made initially only on cell walls common to the
exterior of the box.
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Intensity measurements are made at regularly spaced intervals normal to the
surface of the box. In Fig. 3.2 the measurements form a 5 by 3 grid pattern in the
horizontal plane. The measurement spacing acts to partition the box into 15 cells. The
boundary of one of the cells is shown in the figure. The intensity measurements normal
to the box surface are used to estimate the net acoustic energy leaving the box. Then,
keeping the overall box dimensions constant, the number of cells are increased, by adding
additional measurement locations at regular intervals on the exterior of the box. This
reduces cell size.

Each time the number of cells is increased, the apparent net flux leaving the box,
@, nuo is calculated using the approximation in the previous section, where N is the

number of exterior cell surfaces.
x
LD ML PR § (3,11

A, equals the area of the ith cell face on the surface of the box, and (¥ ..¢..); equals the
intensity measured normal to A;. In addition, the sum of apparent absolute flux, @, ..

is calculated.
u
Canaatuce = 3 | Vivurrace) s * Adl (3.12)
it

A lossless fluid medium is assumed with no sources enclosed by the box. The net
flux of acoustic intensity out of the box should be zero. In the absence of measurement

errors, the decision that an small cell size ion has been achieved is based
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on the expgclation that the apparent net flux tends to zero with decreasing cell size while

" the total absolute flux tends to a constant value. This is taken to indicate that sufficient
sampling of the flux crossing the surfaces has been achieved.

The effect of positioning errors and measurement errors require that the decision

making process also include,
I 5.
1Y Wunurraced s * Ay | < Y000 A (3:13)
- =

where o; is the measured standard deviation of (¥ ,qe);. Once cell size is established,
measurements of the components normal to the interior cell walls are made to construct
the intensity vector at the centre of each cell.
3.4 Experimental Validation

The described mapping procedure was tested near the surface of a vibrating
cantilever beam in a room with finished walls and ceiling, and a concrete floor. The
experimental setup is shown in Fig. 3.3 including cantilever dimensions and reference
coordinate axcs. The cantilever was excited at its third beam bending mode frequency of
315.0 Hz. Measurements of acoustic intensity were made with a Britel and Kjer Sound
Intensity Analyzer System Type 3360 using a matched pair of type 4181 microphones and
a 50 mm spacer. Two data sets were collected. The first set was the acoustic intensity
measured according to the described procedure (construction of intensity vector
components at the centre of each cell from measurements made normal to the cell walls).

This data set is identified using the subscript CSIM (Closed Surface Intensity Mapping).
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Figure 3.3: The expcnmcmal setup. (a) Cmtllever rhmcnsmns (in mm) and coordinate
axes. (b) Ph h of typical Two microph (A) were
separated by a 50 mm spacer (B). The line joining the microphones defined the direction
of measurement (C) above the cantilever beam.
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The second data set consisted of direct measurements of the three intensity components
at the centre of each cell. A comparison was then made between the acoustic intensity
vector that the mapping procedure constructed at each cell centre (CSIM) and the vector
actually measured at cell centre. For both data sets, time averaged acoustic intensity was
collected in third octave bn_nds by the intensity analyzing system using a 16 second
averaging time constant. Ten samples of time averaged intensity in the 315 Hz third
octave band, collected 16 seconds apart were used to calculate a mean and standard
deviation for each intensity measurement. Alignment of acoustic probe position and
orientation was done manually. The data sets were collected over a period of 7 days.
Measurements were repeated when excessive external noise or floor vibration occurred,
or excessive variation occurred in cantilever vibration amplitude. Variability occurred in
cantilever vibration levels due to slight sagging of the exciter support. Average cantilever
acceleration amplitude varied no more than about + 7 % for the accepted intensity
measurements.

The mapping plane was located 65 mm above the surface of the cantilever, This
was the lowest altitude above the cantilever that could be achieved with the acoustic probe
spacing while allowing for z direction measurements. A box height of 10 mm was used.
The bottom of the box was located at z=60 mm and the top of the box at z=70 mm. The
x-y coordinates of the corners of the box were (98,41), (98,163), (551,41), and (551,163)
mm. The CSIM (Closed Surface Intensity Map) was initially begun with a coarse grid of

N=3 ( 3 cells in the x direction) by N;=3 ( 3 cells in the y direction). After all the
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intensity components normal to the box were measured, the grid was divided in the x
direction increasing N, to 5 and the missing normal intensity components measured. The
gind was again divided in the x direction increasing N, to 9 and the missing normal
intensity components measured. Table 3.1 lists the parameters that were calculated at the

of ing the intensity normal to the box surface for each

grid.

From Table 3.1, the sum of absolute flux out of the box stabilised once the
number of grid points reached N,=9. The net flux leaving the box remained close to zero
for all 3 grids and always remained below the flux calculated with standard deviations.
N, was not increased because it had been observed in a previous test that increasing N,
to 5 did not have a significant effect on the decision parameters (minimal variation of ‘¥
in y direction).

With the final grid established, the missing intensity components defining the

‘Table 3.1 Surface component information versus grid size.

Grid I (YiwwdA  Z(0A)  Z| (WiundAil

N, N, HWatts uWatts pWatts
3.3 0.039 0.057 2.70
33 0.004 0.089 3.36
9 3 -0.025 0.092 3.57
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individual cell walls were then measured. The components of the intensity vector at the
centre of each cell were calculated using Eq.(3.9).

Direct measurement of intensity components at the centre of each cell took place
in parallel with CSIM measurements. Consequently, both data sets were collected over
approximately the same time frame. Several statistical tests (¢.g. linear regression, paired
difference) were applied to the collected data to evaluate how well the CSIM method had
estimated the intensity vector measured at cell centre. The linear regression results will
be presented here. The results of the other tests were satisfactory. (Appendix B tabulates
and compares the two data sets, and shows the results of a paired difference test.)

Linear regression was used to obtain a linear relation of the form, ¥ e by csm

= a¥eues + b. The X, yand z were analyzed with N = 27

pairs for each component. The linear regression results are given in the Table 3.2 (r is the

). Fig. 3.4 i the paired data for each vector component and
the line of best fit.

Table 3.2 Linear regression results

Component a b F
X 1.0523 1.2406 0.989
y 0.8426 0.0519 0.965
z 0.9746 -1.1837 0.999
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The i i for all three lie within 3.5 % of unity

: (worst case) indicating the i ips are i linear. The i ips for
the x and z components both show near unity gain and a small bias. The relation for the
y component shows negligible bias but a gain below unity. The clustering of much of the
y component data near zero, between -5 and 5 pW/m’ limited the usefulness of estimates
with linear regression. A larger spread in magnitude, like the x or z components would
have been preferable.

Nonetheless, the statistical analyses indicated the method was producing reasonably
good estimates of the vector intensity distribution. Fig. 3.5 (upper graph) shows the
intensity vector distribution estimated by CSIM on a linear scale. The arrows extending
from each cell centre indicate the magnitude of each component. From symmetry
considerations, it was expected that the intensity vector distribution should be symmetric
about the centre line of the cantilever. This quality is indeed present in Fig. 3.5. The

standard deviation iated with each is similarly il on the same

scale (lower graph). They appear as dots indicating relatively small variations were

observed during data collection.
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Figure 3.5: The acoustic intensity distribution calculated by CSIM (single frequency
excitation, 50 mm microphone spacing). The acoustic intensity distribution (upper graph)
and corresponding standard deviations (lower graph) are both presentnd on the same linear
scale with arrow length it to li Coordi are in mm,
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3.5 A Numerical Measure of Reliability

A measure of reliability of the estimated vector distribution is obtained by
rccognizing that each cell in the box forms a closed surface. The apparent net flux out of
each cell should ideally be zero but the approximations introduce errors. The sum of the

apparent flux @, leaving the jth cell is given in Eq.(3.14).
.
(8o, = ¥yt Ay (.24
=

A, is the area of the ith wall of the jth cell. ¥ is the intensity measured normal to A
If the approximations used by the method are good at the final cell dimensions,
then the typical net flux leaving each cell should be small compared to the level of flux

entering and leaving the box. This ratio, denoted «, is formalized in Eq.(3.15).

(Beara) s = Feon )
Ml t1 T

XA

&)

DA

The physical significance of a is interpreted to be the typical rms acoustic intensity

(3.15)

from a fictitious source enclosed by a cell, normalized to the sum of absolute intensity
entering or leaving the box. The fictitious source is introduced by the effect of

approximations and errors in and by the ion of stati ity which

ignores net changes in the acoustic field that actually occur over the time frame for

completing all the measurements.
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As an indication of reliability, a should be small. Being dimensionless, it can be
thought of as the percentage ertor in the data used to construct the intensity map. A
nominal acceptance value for o would be 0.1 if discrepancies of 10% could be tolerated.
Several examples follow to illustrate the use of a.

Two mappings similar to that of Fig. 3.5 were done using the same distribution
of gridpoints, similar l:orcc excitation, and similar data collection parameters. Table 3.3

lists the data collecti for these

Table 3.3 Summary of data collection parameters

Figure # 35 3.6 37
Excitation frequency (Hz) 3150 3140 315.0
Microphone spacing (mm) 50 12 12
Averaging time constant (sec) 16 2 16
Length of time series (points) 10 10 10
Box height (mm) 10 10 10
Mapping plane height (mm) 65 35 35
Alpha () 0.040 0.055 0.147

The main difference to note for Fig.’s 3.6 and 3.7 is that the microphone pair spacing was
only 12 mm for these mappings, and the height of the mapping plane was 35 mm.

Hardware phase resolution was not always adequate to resolve the phase difference
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over 12 mm. When phase resolution was inadequate, measurcments appeared stable for
minutes, even hours and then reversed sign. The change in sign identified the problem to
be related to the phase resolution. (Separate measurements showed the phase difference
over 12 mm was only 0.2 degrees in a typical case.)

Fig.’s 3.6 and 3.7 illustrate the results of the two mappings with 12 mm
microphone spacing. Again the errors were small relative to the magnitude of the

The ratio o

d from each case is given in Table 3.3. Fig.
3.5, with its quality established from the earlier data comparison exhibits good symmetry
about the cantilever centreline and has an & of 0.040. Examination of Fig.’s 3.6 and 3.7
will show that Fig. 3.6 is more symmetric about the cantilever centre line than Fig, 3.7
(particularly in the y components). This difference in symmetry is indicated in the value
of o, 0.055 for Fig. 3.6 versus 0.147 for Fig. 3.7. With a maximum acceptance value of
0.1 for a, the mappings that generated Fig.’s 3.5 and 3.6 would be accepted but not the

mapping that generated Fig. 3.7.
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Figure 3.6: An acoustic intensity distribution calculated by CSIM (single frequency
excitation, 12mm microphone spacing).
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Figure 3.7: A second acoustic intensity distribution calculated by CSIM (single frequency
excitation, 12 mm microphone spacing).
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Inleqsity ‘mappings (Fig.’s 3.8 and 3.9) in the 125 Hz frequency band were made
" for two similar size cantilever specimens. A smooth cantilever provided the data for all
figures but Fig. 3.8. A cantilever with a fine notch across its width was used for Fig. 3.8.
The effect of the notch was minor, shifting the natural frequencies by less than 2%. The
data collection parameters were the same for both mappings and are listed in Table 3.4,
These mappings used a coarser grid of points (N,=5) and involved smaller intensity
magnitudes (typically by an order of magnitude) than the previous examples. Like the
mappings of the 315 Hz band with 12 mm microphone spacing, phase resolution was

sometimes marginal in the 125 Hz band using a 50 mm microphone spacing.

Table 3.4 'y of data collecti
Excitation frequency (Hz) 60 to 720 to 60 continuous
Microphone spacing (mm) 50
Averaging time constant (sec) 32
Length of time series (points) 20
Box height (mm) 10

The relative size of the standard errors (not shown) was small (typically less than 5%) for

both Fig.’s 3.8 and 3.9.
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Figure 3.8: An acoustic intensity distribution calculated by CSIM (multiple frequency
excitation, 50 mm microphone spacing).
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Figure 3.9: An acoustic intensity distribution calculated by CSIM (multiple frequency
excitation, 50 mm microphone spacing).
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Table 3.5 lists the different fluxes calculated during the mappings for Fig.’s 3.8 and 3.9,

Table 3.5 Values of the different fluxes calculated during the mappings

Fig Band Grid S¥puicdAi ZOA)  Z| (¥ i |
- Hz N, N, uw Ny Y

# x 'y

38 125 3 3 -0.004 0.028 0432
5 3 -0.016 0.022 0399

39 125 3 3 -0.049 0.015 0.156
5 3 -0.019 0.014 0.149

3.10 250 3 3 0.001 0.001 0.013
5 3 0.001 0.001 0.015

For Fig. 3.8, |2 (¥iuncdiAi] < Z (GA) << Z |(¥isume)iAi| and o was calculated to
be 0.099. The mapping of Fig. 3.8 is mostly symmetric about the cantilever centre line.
The symmetry of Fig. 3.8 is reflected in an o« value at the limit of acceptability. By
comparison Figure 3.9 is far from symmetric. For Fig. 3.9, |Z (¥ i % Z(0/A) <<
= |(¥1sumeo)iAi| and o was calculated to be 0.240, well outside the limit of acceptability.

Lastly, Fig. 3.10 illustrates the intensity in the 250 Hz band collected
simultaneously with that of Fig. 3.9. The intensity magnitudes in this mapping may be an
order of magnitude smaller than in the 125 Hz mapping but this mapping is reasonably
symmetric (one lack of symmetry in the y component at (108,153)). For this mapping,
from Table 3.5, |Z (W LumediAi] = Z (61A) << Z |(¥ 1sunc)iAi| and o was calculated to
be 0.056, inside the limit of acceptability. These examples suggest that the value of « is

insensitive to the scale of component magnitudes in a mapping and is capable of
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discriminating between good and poor intensity mappings.

Intensity (pH/mn2) Fcentre: 258 File:BchrpS
Max value (pH/m~2):3.@E+@5 Rel. Scale:3.51E+04
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Figure 3.10: An acoustic intensity distribution calculated by CSIM (multiple frequency
excitation, 50 mm microphone spacing).

One additional comment is required to complete the discussion of the CSIM
mapping procedure. It may not have been immediately apparent during the discussion of
intensity mappings with a 50 mm microphone spacing, that the 10 mm depth of the
imaginary box was small relative to the microphone spacing. A small box depth was a
compromise to place the mapping plane as close to the beam’s surface as possible. A
vertical cell height much less than the microphone spacing made the tacit assumption that
the z intensity component varied almost linearly in the z direction over the height of a
cell, which seems to have been borne out experimentally. It also introduced more relative
uncertainty in the spatial positions of the top and bottom cell walls for the mappings with
a5s0 mm microphone spacing than for the mappings with the smaller 12 mm microphone

spacing.
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3.6 Averaging Time

To determine the averaging time to use in practice, the microphone pair was
placed at a point in the mapping plane oriented to measure intensity normal to the
vibrating surface. Using a small time constant value, between 10 and 20 samples of time
averaged intensity (spaced one averaging time constant apart) were collected for each
frequency band of interest. The mean and standard deviations were calculated, the time
constant value doubled and data collection repeated. It was expected that a mappable
frequency band would exhibit a mean value that stabilized with increasing time constant
and a standard deviation that decreased with increasing time constant. A mean to standard
deviation ratio greater than 10 was taken to indicate that an adequate minimum value for
the averaging time constant had been reached. This process was then repeated at two other
points in the plane. With the number of samples in the timeseries and the averaging time
constant established, the described mapping methodology could then be carried out.

Table 3.6 Observed intensity statistics versus measurement interval

Total Time Position 1 Position 2 Position 3
Interval  Constant PW/m? pW/m? pW/m?
(sec) (sec) Mean StdDev  Mean Std Dev Mean Std Dev
80 4 -3.39 0.80 -4.40 0.65 0.308 0.073
160 8 -3.36 0.56 -4.49 0.21 0.355 0.052
320 16 -3.13 0.38 -4.49 0.28 0.340 0.033
640 32 -3.49 0.27 -4.40 0.18 0333 0.015
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Table 3.6 shows the observed statistics that determined the measurement time
interval for the mapping shown in Fig. 3.8. The time series consisted of 20 samples of
exponentially averaged inle'rui!y using a 4, 8, 16 or 32 second time constant. In this case
the mean value at each position was consistent with an 8 second time constant, but a 32
second time constant was required to achieve a mean to standard deviation ratio greater

than 10 in all 3 positions.

3.7 Summary

The method presented in this chapter was developed as a recipe for mapping the
spatial distribution of time averaged acoustic intensity. It used the physics of a closed
surface to assess the accuracy of the experimental data by examining how well the data
satisfied Gauss’s law. The method was designed to indicate when sufficient measurements
have been collected, ensure that the surface areas associated with each intensity
measurement were well defined, and provide a quantitative means of assessing whether
the calculated spatial distribution of intensity was an accurate representation of the
acoustic field. It was applied to the near field of a cantilever beam and experimentally
validated. Several examples demonstrated an ability to accept good intensity mappings and

reject poor ones.
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CHAPTER FOUR
ACOUSTIC INTENSITY FROM PRESSURE TRANSFER FUNCTIONS

During the program to develop acoustic methods to monitor the mechanical

of of acoustic pressure were effectively being

perhaps ily. Two mi and a sound intensity analyzer were
used to map the spatial distribution of intensity in 1/3 octave bands above a cantilever
beam. Then with a dual channel signal analyzer, one of the microphones and a force
transducer (measuring excitation to the beam) were used to construct PTF’s (pressure
transfer functions) for estimating the beam’s modal parameters. On paper it seemed
possible to construct acoustic intensity from the same PTF’s used for modal parameter
estimates (see section 4.1) and eliminate the need for separate sound intensity
measurements. An experiment was devised to compare acoustic intensity measured with
the sound intensity analyzer and that calculated with PTF’s (section 4.2). The

testing identi imitati iated with ion (section

4.3) and phase resolution (section 4.4). Afier the recipe for acoustic intensity from PTF’s
was established, it became apparent that the intensity calculated from PTF’s and that
measured with the sound intensity analyzer emphasized different regions of the frequency
spectrum (section 4.5).
4.1 Relating Acoustic Intensity To Pressure Transfer Functions

It was shown in chapter 2 that the spectral contribution to time averaged acoustic

intensity at angular frequency ®,, was,
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AT & ﬁ'pl Im[ X, (m) X3 (m) ] (a.1)
where X,(m) is the mth spectral coefficient of a DFT of p,(t) corresponding to frequency

. If both sides of our expression are divided by some real nunber, say R, then,

v, -1 o X, (m) X3 (m) : (4.2)
BRI ) N

It will be assumed that there is one point force f(t), which causes a mechanical system to
radiate the acoustic field p(t). We choose R = | F(m) | %, where F(m) is the mth spectral

coefficient of the DFT of f(t). Then we have,

e e
o X ()
Using | F(m) | * = F'(m)F(m), we can write,
—vmr— -1 Im[x,(m) [x (m)]] (4.4)
F{m) 2 o, na

We recognize X,,(m)/F(m), Xg(m)/F(m) as the transfer functions between acoustic pressure
and the applied force, corresponding to points A and B respectively.

Eq.(4.4) assumes a causal relation bctween force and pressure. It may happen in
practice that the sound field is composed of two pressure fields, one the result of force
applied to a mechanical system, the other a result of some unrelated process. We can
coherently average with respect to the applied force to minimize the contribution to the

transfer function by the extraneous sound component using one of the standard processing
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functions available on a dual channel signal analyzer,

M u
(X‘m)) A X Fitm X, (m N 3 (Septon)

(4.5)
T, T ———— T ——
m PECTIUIES N

which is the average of N cross spectra between force and pressure, G;,(,,), divided by

the average of N autospectra of force G;(®,,). Then we have,

. .
Y- (Gep(0a), Y (g, () ),
P £

AL a%xm (4.6)
Fm T~ Gpy L
g PR Guetons 3 (Grto,

Eq.(4.6) assumes ‘¥(m) represents the component of intensity caused by f(t). It will be

assumed that the ical system and ling acoustic envi do not change.
Then the pressure transfer function estimates should be time invariant and
Y(m)/ | F(m) | > should have some characteristic value at each ©,,.

4.2 i G ison With Intensity

Acoustic intensity measured directly with a microphone pair was compared with
acoustic intensity reconstructed from PTF’s and the applied force spectrum. The smooth
cantilever beam described in chapter 3 was driven by a point force to generate the sound
field. The surroundings were fixed, keeping the acoustic environment static. It was
therefore assumed that the PTF’s were time independent.

The ison was facilitated by iplying equation (4.6) by | F(m) | ? to

obtain,
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The left hand- side is the net acoustic intensity at frequency ®,, measured with p,(t) and

o ~IF(m |2 (4.7)
haron Gpd Im

py(t). The right hand side is the spectral product at frequency ©,, of, the PTF between
force and p,(t), the PTF between force and py(t), and the squared magnitude of force.
Clearly ¥(m) and F(m) must be measured over the same interval [0,T].

The experimental setup is shown in Fig. 4.1. A microphone pair was suspended
above the cantilever. The microphone signals were available to a Bruel and Kjaer 3360
Sound Intensity Analyzer and to a Bruel and Kjaer 2032 Dual Channel Signal Analyzer.
The force signal was fed to the Dual Channel Signal Analyzer. With this setup the transfer
functions between pressure and force were measured by the Dual Channel Signal
Analyzer. Then at some later time, acoustic intensity was time averaged by the Sound
Intensity Analyzer while the spectrum of applied force was collected by one channel of
the Dual Channel Signal Analyzer. For this latter measurement, both systems were
manually triggered to record over the same time interval. A comparison was then made
between the intensity measured by the sound intensity analyzer and that calculated with
equation (4.7) using the measured PTF’s, and the measured force spectrum.

4.3 Frequency ion C:

Early tests measured PTF’s with 2 Hz frequency resolution over a frequency

interval that included the fourth beam bending mode at 801 Hz.
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Figure 4.1: Experimental setup for measuring pressure transfer functions and radiated
acoustic intensity.
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Figure 4.2: Comparison of calculated and measured intensity near (+) and
off (o) resonance.
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Then single frequency excitation was used to excite the beam near the fourth mode for
simultaneous measurements of time averaged acoustic intensity and the spectrum of
applied force. )

Six separate PTF data sets had been collected for the same location and intensity
direction. Intensity and force measurements occurred twice, once with excitation at 796
Hz (off resonance) and once at 800 Hz (near resonance). The ratio in dB
(10-L0g(¥ e/ ¥ness)) i plotted in Fig. 4.2 for cach PTF data set and both excitation
frequencies. Fig. 4.2 shows that ¥, underestimated ‘¥',..,, by 4 to 10 dB near resonance

but estimated ¥, within 2 dB off resonance.

were inued (single itation) to

compare calculated and measured intensity with proximity to the fourth mode natural
frequency. The same ratio (10°Log(‘¥u/Wnes)) is plotted in Fig. 4.3 to show the variation
with frequency between directly measured intensity and that reconstructed from the
instantaneous force spectra and the PTF’s (still 2 Hz frequency resolution). Fig. 4.3 also

shows the force level as a function of frequency. The amount of disagreement seemed

lated to the ion between the excitati equency and (801 Hertz)

and possibly the force level. A small i at fixed excitati q

(810 Hz) examined the effect of force level. The ratio in dB (10°Log(W¥ /¥ pne)) is
plotted in Fig. 4.4 versus the force level in dB (10-Log(Force/IN)). The results suggested
force level wasn’t a major contributor to the previous descrepancy. Attention was

therefore directed to the effects of frequency resolution.
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Figure 4.3: Variation with proximity to natural frequency. (0) Ratio = Wy /¥ peust
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_Figure 4.4: Ratio of calculated to measured acoustic intensity versus force level.
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In the development of the cross spectral formulation for intensity (chapter 2) the
continuous Fourier spectrum was approximated by a discrete Fourier series. In a natural
frequency region, the frequency resolution of the discrete series needs to be small enough
to replicate the rapid amplitude change with frequency of the continous spectrum. The
data in Fig. 4.3 suggested an examination of the ability of the 2 Hz frequency resolution
PTF to replicate spectrum shape near resonance.

New PTF’s were collected (same location) with 0.25 Hz frequency resolution.

Fig. 4.5 Ip i at common ies for 2 Hz and 0.25 Hz resolution

PTF’s. While the spectral coefficients at the two resolutions were similar to either side
of resonance, between 798 and 802 Hz the coarser 2 Hz resolution spectrum had
smoothed out the peak. This result suggested that insufficient PTF frequency resolution
prevented proper replication in the natural frequency region causing measured and
calculated intensities to differ.

4.4 Phase Resolution Considerations

To further improve PTF frequency resolution, PTF’s were collected at 0.125 Hz

resolution (in addition to the 0.25 Hz PTF’s). The ison of calculated and
intensity was repeated. Table 4.1 lists the results.

The acoustic intensity constructed from PTF’s with 0.25 Hz resolution showed
improved agreement with measured intensity, but not that constructed using 0.125 Hz
resolution PTFs. Finer frequency resolution had only mitigated the amount of

disagreement some of the time.
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Figure 4.5: Effect of frequency resolution on pressure transfer function amplitude near
resonance. (0) 0.25 Hz; (+) 2 Hz.
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Figure 4.6: The correlation of phase difference with the ratio between calculated and
measured acoustic intensity. (0) Z = W/ ¥mess (+) Z = sin(phase difference).
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Table 4.1 Acoustic intensity constructed from pressure transfer functions with finer
frequency resolution

Freq 10*L0g;o(¥ eate/Wimeas)
Hz Af=0.25 Hz Af=0.125 Hz
796 1.7 1.4
798 02 -2.0
800 -0.3 -2.0
802 0.4 0.5
804 -0.6 -4.9

It was then noted that the amount of error correlated with the phase difference between
PTF’s. Fig. 4.6 illustrates the correlation of lO‘Log(‘Pm‘J‘{‘m)vwilh the sine of the phase
difference between PTF’s for yet another set of 0.125 Hz resolution PTF’s,

It was unknown whether potential differences between thz two hardware systems
could produce an error correlated with phase. Therefore a comparison was made between
cross spectral acoustic intensity measured with the Dual Channel Signal Analyzer and
acoustic intensity measured with the Sound Intensity Analyzer. Both systems were

to the same mil pair and cali Both systems were triggered

manually to measure intensity over the same 8 second time interval to within
approximately a third of a second. The cantilever was excited for most measurements at
a single frequency. For one comparison a broad band excitation was used. The results are
given in Table 4.2. The agreement removed any doubts about differences between
hardware, showing the two measurement methods to be equivalent. The data also provided

insight into the source of the error.
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Table 4.2 Comparison of acoustic intensity measurement methods

Freq. (Hz) 10 Log(¥signm e/ @W/M?)) 10 LOG(Y ncrsy rayaed (PW/m?))

795. 776 71.6
796. 76.8 77.0
791. 75.9 76.1
798. 74.2 744
799. 73.5 73.7
800. 73.6 73.7
801. 722 72.3
802, 70.7 71.0
803. 68.6 68.7
804. 67.9 68.1
805, 684 68.5
780-820( =P 724 - 723

The phase difference between microphones taken from the cross spectrum of the
dual signal channel analyzer varied smoothly with frequency across the region of natural
frequency whereas the phase difference calculated from PTF’s did not. The two sets of
phase difference should have been in agreement. Since the acoustic pressures would reach

their peak values near the lack of the force signal during

PTF measurements was too small in the region of natural frequency to reliably establish
the force-pressure phase difference.

To examine the influence of force level, PTF’s were collected at 0.125 Hz
resolution with a similar force level to that previously used. Then the measurement was
repeated with an approximately 15 dB larger force level. Lastly, the cross spectrum of the

pressures was at several ies under single itation to provide

an estimate of the true phase difference. The phase differences from both sets of PTF’s
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Figure 4.7: Phase difference; cross spectrum versus pressure transfer functions.
(solid) cross spectrum; (dash-dot) low force PTF’s; (dashed) raised force PTF’s.

and the pressure cross spectrum are plotted versus frequency in Fig. 4.7. At 798,800, 803
and 804 Hz, the PTF’s collected with the lower force level showed smaller phase
differences than the pressure cross spectrum, by at least 50 %. The phase difference from
the PTF’s collected at the raised force level agreed reasonably well with that of the
pressure cross spectrum everywhere except at 800 Hz. It was concluded that the previous
lack of agreement was a result of insufficient force signal during PTF measurements. The
remedy was simply to raise the force level to obtain a better estimate of phase difference.
The comparison of measured and calculated intensity was repeated. PTF’s were collected
at the higher force level. As before, the instantaneous force spectrum was collected during

the intensity measurement. In most cases a continous sine sweep was used to generate a
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force signal with frequency content spanning the 1/3 octave band of interest of the Sound
Intensity Analyzer. Measurements of the PTF’s and acoustic intensity were made in the
800 Hz band at two positions above the cantilever beam. Additional measurements of the
PTF’s and acoustic intensity were made in the 315 Hz band at one position above the
cantilever beam. The 315 Hz band encompassed the third beam bending mode natural
frequency. Table 4.3 tabulates the results of the comparison. The agreement between
calculated and measured intensity was now satisfactory, typically within 0.5 dB (12 %).
‘This agreement occurred with some PTF’s that had been measured 3 to 6 days before the
intensity and force spectra were measured.

Table 4.3 Acoustic intensity calculated from pressure transfer functions versus
measurement

Freq. Range 10 Log(¥,u/(pW/m?) 10 Log(¥ pead (pPW/m?)
780-820 @ 0.33 Hz 73 72.6
780-820@ 1 Hz 732 73.1
770840 @ 1 Hz 70.6 70.4
780-820 @ 0.5 Hz 7.5 72.1
780-820 @ 0.5 Hz 79.7 80.0
770-830 @ 0.7 Hz 78.4 79.0
805 Hz 742 74.9
375-425 @ 0.8 Hz 65.3 65.9
375-425 @ 0.5 Hz 64.6 64.9

4.5 The Normalization of Acoustic Intensity From Pressure Transfer Functions
In Eq.(4.6), the spectral intensity is normalized to the square magnitude of applied

force. This normalization emphasizes the natural frequency region, where a little force can
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generate substantial acoustic energy. This emphasis is illustrated in Fig. 4.8 which shows
a 30 Hz wide window of mean acoustic intensity (solid line) calculated from PTF’s
measured above another cantilever beam. The calculated intensity reaches a maxima at the
cantilever’s 5th beam bending mode located at 1323 Hz.

The dotted curves plot the upper and lower error bounds on the mean value. The
PTF spectra were collected as a time series to obtain the statistics of the real and
imaginary parts of each PTF as a function of frequency. The bounds were calculated by

the possible ions i by changing the real or imaginary parts

of the PTF’s by their corresponding standard deviation.

19.
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Figure 4.8: Acoustic intensity constructed from pressure transfer functions in the region

of the fifth bending mode.
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One aspect that was not fully appreciated at the onset of tests, was the different
emphasis with frequency, between acoustic intensity from PTF’s versus acoustic intensity
measured directly using random noise excitation with a flat amplitude spectrum. In the
first case, the use of PTF’s produced an intensity calculated for a flat force spectrum of
unit amplitude. In the second case the signal to the amplifier driving the exciter had equal
spectral energy at all frequencies and the hardware was expected to generate an
approximately flat force spectrum.

Fig. 4.9 shows the intensity measured directly using a Dual Channel Signal
Analyzer with the same microphone positions as Fig. 4.8 and a flat random noise
spectrum to the exciter amplifier. The spectrum in Fig. 4.9 peaked at 1305 Hz, 18 Hz
below the natural frequency and the spectral peak in Fig. 4.8.

Acoustic intensity from PTFs peaks at the natural frequency because the PTF's
peak at the natural frequency. Any hardware limitations in applying a uniform force have
been eliminated by the normalization. Fig. 4.10 shows the amplitude of one of the PTFs
collected above the beam peaking at the 5th mode natural frequency, 1323 Hz.

Without the normalization, the applied force spectrum was sufficiently uneven
(even with a flat noise spectrum to the exciter amplifier) to shift the region of maximum
intensity measured directly, away from the natural frequency. Figure 4.11 shows the
applied force spectrum on both linear and logarithmic scales. The force spectrum had a
maxima at 1300 Hz and a minima at 1323 Hz. (This force spectrum shape was typical for

other natural frequency regions t0o.)
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Figure 4.9: Acoustic intensity from pressure cross spectrum in the region of the fifth
bending mode. In units of nW/m?2.
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Figure 4.10: Pressure transfer function in the region of the fifth bending mode. In units
of Pa/N.
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graph) and logarithmic (lower graph) scale. In units of mN? and dB re 1 N°,

The cantilever was a very lightly damped system. Approaching resonance

frequency the beam’s apparent stiffness decreased rapidly reaching a minima at resonance.

Beyond the stiffness d with . The exciter amplifier and
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mechanical exciter were supposed to generate an approximately flat force spectrum, but
apparently could not adjust to the varied stiffness around the resonance region. Physically,
near resonance, the beam would yield without substantial resistance. The exciter could not
generate much force by pushing something that yielded almost completely without
pushing back. Consequently the region of maximum intensity occurred where the product
of the force and PTF spectra peaked, at a frequency below the beam’s natural frequency.
4.6 Summary

Overail, the construction of acoustic intensity from PTF’s was successful. The
PTF’s had to be measured with a frequency resolution fine enough to provide a good
estimate of the true spectral shape in the natural frequency regions. Equally important, the
phase of the PTF’s had to be accurate. At the natural frequencies, although the pressure
signal levels might be adequate, the force signal could be small. This resulted in poor
estimates of the phase difference between pressure and force. The cure was simply to raise
the force level.

Acoustic intensity constructed from PTF’s was normalized with respect to applied
force. This normalization emphasized the natural frequency regions where a little force
generated substantial power. Without this normalization, measured acoustic intensity

became the product of both the mechanical response of the system and the shape of the

force spectrum. In the case of the i beam, i imitations produced
uneven force spectra causing the peaks in the acoustic intensity spectra to lie below the

true natural frequencies.
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CHAPTER FIVE
MODELLING THE CANTILEVER BEAM

The same cantilever beam had been used to generate the acoustic field for testing
the closed surface intensity mapping method (chapter 3) and then for testing the
construction of acoustic intensity from pressure transfer functions (chapter 4). None of the
analytical work, however, had described the actual generation of the acoustic field. It
seemed that a worthwhile next step would be the characterization of the acoustic field
from the beam. This required a description of the vibration response of the beam.

In this chapter, a model is developed to describe the observed vibration of a fixed-
free beam. Section 5.1 begins with a review of Euler-Bernoulli beam theory. Structural
damping is introduced into the differential equation of motion by letting Young's modulus
become complex. Additional damping is introduced with an equivalent viscous damping

term. It is shown that the damped vibration response can be expressed in terms of rcal

and complex ei ies. The limitations of Euler-Bi 1li theory are
then reviewed in section 5.2. Experimental measurements of the beam’s vibration response

had to be analyzed to obtain values for the eigenfrequencies. The method of analysis is

described in section 5.3. of the beam’s i vibration response arc

d, the Euler-B 1li modes identified and the modal damping ratios obtained
in section 5.4. Young’s modulus for the beam is established from the observed

eigenfrequencies in section 5.5, completing the model of the beam for the lower modes.

haviour is then d with observed vibration response in section 5.6.
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5.1 Damped Based On Eul Beam Theory

We are interested in the vibration response of a flat homogeneous beam with
rectangular cross-section. At equilibrium, one can imagine a surface that bisects the beam
into equal upper and lower halves, referred to as the neutral plane. The motion of the
beam is described by small displacemeats normal to nis neutral plane. At a distance 'x
along the beam, the beam displacement W(x,t) obeys the following differential equation
(Morse and Ingurd, 1968, p. 175 ff),

BWx ), _p BWXE o (5.1
xR er

where p is the density of the beam, Q is Young’s modulus and K is the radius of gyration
of the cross section of the beam.

This equation of motion for a beam (flexible bar) is derived by treating the beam
as a series of infinitesimal parallel filaments. The derivation considers rotational moments
due to bending on cither end of an element of the beam, shear forces in the beam element
and the inertial forces acting on the element due to displacement. Inertial forces due to
rotation of the element and the effects of shear deformation of the element are ignored.

For harmonic motion,

Wix,t) = ¥(x) e (5.2)



the equation of motion reduces to,

a'¥(x) _ =
BHD _ aempevin = o0 (5.3)
where p=(pv*/(4n’QK3)". Y(x) has solutions of the form,
£(x) = Acosh(2mux) + Bsinh(2mux) + Ccos(2mux) + Dsin(2mux) (5-4)

The boundary conditions for a beam fixed at x=0 and frec at x=| correspond to zero
displacement and rotation at x=0 and zero bending and shearing moments at x=I. Formally

these conditions are,

E(X) | = 0
LD
O’E(xll =

(5.5)

°

PEx
e

Satisfaction of the boundary conditions requires,

C=-A

D=-B

B - | cosh(2mul) + cos (2mul) (561
SIRRUZTR I+ BTn (2T,

cosh(2nul) cos (2mpl) = -1

The last equation is the ei| equation which ines the istic values of

. The eigenfunctions, &(x), have the form,

- - _[ cosh (2mul) +cos (2mul)
£(x) = (cosh(2mpx) -cos (2mpx) ) [! 2 o2

(sinh (2mux) -sin (2mux) )
(5.7)

It can be shown using Sturme-Liouville procedure that the eigenfunctions satisfy the
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orthogonality relation,
2
(u;-u;)l'e,(xu,,(xxdx= 0 (5.8)

where £,(x) corresponds to the form given by Eq.(5.7) with p=p,, the nth eigenvalue for

p. It follows that the eigenfunctions form a complete set.

The driven response of the beam due to a point force at x=x, with frequency v,

(5.9)

DY) gnyy(x) & SIXHD
ax 2

X's

where S is the cross sectional area of the beam, can then be expressed in terms of the

eigenfunctions & (x),

1y balx)
= b 5.10
) Tyt (5.10)

where v,=2nKp*(Q/p)*. The eigenfrequencies v, are pure real. In this case, Eq.(5.10)
assumes undamped response. The response approaches infinity as v approaches any of the
eigenfrequencies.

Finite response at a natural frequency requires damping. We can argue that the
beam is not perfectly elastic and some of the vibrational energy will be dissipated within
the beam as it deforms. In a single degree of freedom system, structural damping can be
introduced by assuming hysteretic damping and taking the spring constant to be complex

(MyKklestad, 1952). In our case we let Young’s Modulus, Q, become complex,
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Q=0 +i0, ||« <0 (5.11)

Assume the beam to be lightly damped (damping effects small except at resonance) so
that non viscous damping effects can be modelled in terms of equivalent viscous dampers
(Norton, 1994). An equivalent viscous damping term (coefficient R(v)) is introduced into
the differential equation to account in some fashion for the encrgy lost to the surrounding

fluid.

MW(x, t) , R(v) IW(x, ) p_DWix, t)
R e 0 (5.12)

For harmonic motion we obtain,

HY(x) _ 1 fyan,0, 3 27R(V) ] " 5.13
L dt] W[n‘pvoi._s_ r(x) =0 (5.13)

If we choose our eigenvalues to be real, in particular,

1 [am2py? 2mR() ] o s
W[d'n‘pv “T’] 167t (5.14)

we recover the same differential equation as before. Now the eigenfrequencies become

complex. The nth mode eigenfrequency v,=v, +iv,,, is given by,

. —— e
O T D |

(5.15)
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where v, (the nth mode undamped natural frequency (Q,;=0, R(v)=0)), and a and n are

given’by,
ekt B
Ven "K“'IT
o= % (5.16)
g
n=

The result is that the damped response is given by equation (5.10), using the complex
eigenfrequencies v, defined in equation (5.15).

The advantage of this formulation is that it is only necessary to know the real and

imaginary parts of the natural ies to ize response. The di ge of
this formulation is that the contributions to damping from different processes are not
distinguishable.
5.2 Limitations of Euler-Bernoulli Beam Theory

The Euler-Bernoulli formulation assumes two dimensional bending along the
length of the beam without flexure across the width of the beam. The relative shape of
the £,(x) for n=I to 5, (i.e. the first five mode shapes) is shown in Fig. 5.1. Effects
associated with Poissun’s ratio (the curling up of the beam edges in the width direction
as the beam bends in the length direction) are ignored. Modes that involve bending in the
directions of both length and width are also excluded from consideration (eg. torsional

modes involve a twisting rotation about the centreline of the beam).
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Figure 5.1: Eigenfunction shapes of the first five beam bending modes.

Inclusion of these effects requires the more general theory of plate vibration which
accomodates bending in both directions. The main difference between beam and plate
theory is that the 8%8x' operator in the differential equation is replaced with the V*

operator (see Morse and Ingard, 1968, p.214).
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For an infinite plate, travelling wave solutions to the Euler-Bernoulli differential

equation have a group velocity that is inversely i to the flexural
(Junger and Feit, 1986). The group velocity tends to infinity as the wavelength approaches
zero. This physically unrealistic result is because Euler-Bernoulli theory ignores both the
rotational inertia in the beam and deformation caused by shear within the beam. Inclusion
of these effects (Timoshenko, 1921) adds two more differential operators, 3*/ax*dt* and
8'/6t* into the differential equation. Travelling wave solutions to the Timoshenko Beam
Equation have the proper limiting phase velocity (Junger and Feit, 1986).

The Euler-Bernoulli description assumes a beam thickness that is small relative to

both beam length, and to the isti that would at the

frequency of interest (Junger and Feit, 1986). Bending in the direction of beam width is

ignored altogether.

5.3 Experimental Analysis Using the Single Degree of Freedom Assumption
Experimental data analysis assumed the vibration response near a natural frequency

approximated that of a single degree of freedom system (see Ewins, 1986). Consider the

case where the driving frequency v is close to one of the natural frequencies v,,. We write

the response (Eq.(5.10)) as,

Ca [ e T
Y = s oo e LR T e
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Provided the natural frequencies are well separated the second term will vary
slowly with v compared to the first term. For v close to v, the second term is treated as

constant,

P | (%)
), b s TS 6 (s.18)

Single degree of freedom analysis provided a means of establishing natural
frequency and mode shape while limiting the nurber of unknowns. Curve fitting the
region of peak response to Eq.(5.18) was used to solve for Re(v,,), Im(v,), &, (X,)&(X)
and G. Since x, was fixed £ (x,) was a constant. Plotting &, (x,)&,(x) versus position
identified the shape of &(x).

5.4 The Experimental Cantilever Beam

The same beam described in chapter 3 was used. The beam measured 649 mm
long, 204 mm wide and approximately 9.5 mm thick (see Fig. 3.3). The experimental
setup is shown in Fig. 5.2. Force was applied on the centreline of the beam at the free end
for all measurements. This location favoured exciting beam bending modes over torsional
modes because the centreline was a nodal line for torsional modes. The FRF’s (frequency
response functions) were measured as thé ratio of acceleration to applied force in the

frequency domain.
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Figure 5.2: Photograph of the cantilever beam held in the fixed-free condition
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Fig.»SJ shows an FRF in the 0 to 800 Hz range measured at the free end of the
" beam on the centreline. The four peaks in Fig. 5.3 correspond to the first four beam
bending modes (18, 112, 313 and 613 Hz). By comparison an FRF measured with the
accelerometer in the corner of the free end of the beam Fig. 5.4 shows the same four
peaks associated with beam bending modes with three new peaks associated with torsional
modes. Fig. 5.5 shows the acceleration FRF in the 800 to 1600 Hz region at the frec end
on the centreline. Of the five peaks, two are beam bending modes. The first two peaks
at 1015 and 1030 Hz belong to the same fifth beam bending mode. The split may have
been due to imperfect boundary conditions. The sixth beam bending mode occurred at
1534 Hz. The three other peaks corresponded to other mode types. Table 5.1 lists the
observed natural frequencies and damping ratios for the first eight Euler-Bernoulli beam
bending modes.

Table 5.1: Observed natural frequencies and damping ratios

Euler-Bernoulli Frequency Damping Ratio

Beam Bending Mode Hz Vool Vin
1 17.99 8.06 x 10
2 111.5 720 x 10
3 313.0 537 x 10%
4 612.7 1.62 x 10
5 1014.5 633 x 10*
6 1533.5 832 x 10%
7 2123 9.69 x 10*
8 2836. 9.51 x 10*

* Split peak.
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Figure 5.3: Cantilever beam FRF at the free end on the centreline of the beam, 0 to 800
Hz.
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Figure 5.4: Cantilever beam FRF at the free end on the corner of the beam, 0 to 800 Hz.
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Figure 5.5: Cantilever beam FRF at the free end on the corner of the beam, 800 to 1600

Hz.
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The damping ratios were of the order of 10” indicating the cantilever was indeed lightly
damped. In general the natural frequencies were well separated as required for the single
degree of freedom assumption.
5.5 Parameter Values and Approximations

‘While the observed damping ratios were used to establish the ratio of Vi 10 Vi
the model was used to calculate the values of v,,. Assuming a lightly damped system the
model used the approximation that v, =v,, (i.e. & << v,, and n << 1 in Eq.(5.15)). In
practice this ;neant calculating v,,.

- ZwKu:J % (5.19)

Calculation of v,, required values for K, Q,, p, and p,. For a beam with rectangular cross
section and thickness h, K = 0.289:h. The density of mild steel was taken to be 7,860
Kg/m® [Science Data Book, 1971]. Values for p, were obtained by numerically solving
the eigenvalue equation (Eq.(5.6)). Only the value of Q, remained to be specified.

A value for Q, first required an estimate of 7. Following the travelling wave
method [Physical Acoustics, 1964] an approximate value of 8 x 10™ for n,., was
calculated using tabulated values for longitudinal waves in tool steel (velocity in thin
bars=5116 m/s, bulk wave velocity=5874 ny/s, attenuation=4.94 nepers/m [Kaye and Laby,
1973]). With |n| << I, the value of Q, was approximated with the tabulated value of

Young’s modulus for mild steel, 2.119 x 10" Pa [Kaye and Laby, 1973].
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Table 5.2 shows the values that were then calculated for v,, The natural

were uni ly i d by 510 6 %.

Table 5.2: Natural frequencies calculated with Q,=2.119 x 10" Pa.

Mode 2mp,l Calculated Measured Calculated/Measured
n Frequency Frequency

1 1.875 18.9 18.0 1.05

2 4.694 1184 1115 1.06

3 7.855 331.6 313.0 1.06

4 10.996 649.7 612.7 1.06

3 14.137 1073.9 10145 1.06

6 17.279 1604.4 1533.5 1.05

7 20.420 2240.7 2123, 1.06

8 23.562 2983.3 28%6. 1.05

with a mi (9.5 mm was obtained using calipers)

showed the beam thickness was 9.33 £ 0.17 mm. Measurements of beam mass and
volume showed the beam density to be within 1 % of the assumed value. The errors in
thickness and density were insufficient to account for the observed bias. If the Euler-
Bernoulli theory was biased towards overestimating natural frequency one would have
expected the percentage error to increase with frequency. The percentage error appeared
to be independent of frequency. It was possible that the value used for Young’s modulus
was incorrect. Eq.(5.19) was rearranged to provide an independent estimate of Young’s

modulus at each observed natural frequuacy.

2P (5.20)
1T Irem :



Table 5.3 lists the values of Young’s modulus calculated with Eq.(5.20).

Table 5.3: Values of Young’s modulus calculated from natural frequencies

Euler-Bernoulli Frequency Calculated
Beam Mode (Hz) Young’s Modulus

No. (Pa)
1 17.99 1.987 x 10"
2 LS 1.943 x 10"
3 313.0 1953 x 10"
4 612.7 1.949 x 10"
5 1014.5 1.955 x 10"
6 1533.5 2,002 x 10"
& 2123. 1.967 x 10"
8 2836. 1.980 x 10"

The average of the calculated values was 1,967 + 0.021 x 10" Pa, about 7 % below the
tabulated value originally used for Q,. The method employed here to estimate Young’s
modulus was quite similar to that described by Spinner and Tefft [1961], where laboratory
specimens in the freely suspended condition, were excited into resonance. The leading
term in the formula given by Spinner and Tefft to determine Young’s Modulus from the

" fundamental flexural frequency for prismatic bars is exactly that obtained from Euler-
Bernoulli theory for a free-free beam.

It could be argued that the the difference in the values for Young’s modulus was

related to the specific method loyed. However, etal [1989]
conducted an interlaboratory testing prograin which compared measurements of Young’s

modulus for metals by different methods including the resonance method described by



Spinner and Tefft. All the methods obtained the same value of Young’s modulus to within
1.6 % of each other. The different methods spanned a frequency range from 780 Hz to
15 Mhz. The measurement at the lowest frequency came from the suspended free-free
beam resonance method.

Under the cil it was deemed to use the value of

Young's modulus, 1.967 x 10" Pa, for Q,. The 0 to 800 Hz region containing the lowest
four beam modes was modelled. The beam’s vibration response was calculated in terms
of acceleration, -©*Y(x), using Eq.’s (5.10) and (5.19), with the damping ratios in Table
5.1. Calculated response summed the contributions from the first 8 beam modes, 4 modes
above the highest mode of interest.

5.6 C ison With i I

The calculated vibration response was compared with the beam’s measured FRF’s.
Overall agreement was examined using measured FRF’s with a frequency resolution of
1 Hz that spanned the entire region of interest, 0 to 800 Hz. These FRF’s were

appropriate to examine the extended regions between natural frequencies, but not the sharp

response near where their ion caused distortion. Agreement close
to the natural frequencies was examined separately using measured FRF’s with higher
frequency resolution.

We begin by examining several cases of overall agreement. Fig. 5.6 compares
measured response (solid line) with calculated response (dotted line) near the free end of

the beam. Calculated response magnitude had the same basic shape and features as
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measured response with the exception that the local minima of the calculated response
were sometimes shifted in frequency from the observed local minima. When the calculated
and observed minima were offset in frequency, so were the large phase transitions Jat

accompanied those features.

measured (solid) calculated (dotted)
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Figure 5.6: Comparison of calculated and measured response in the region between
natural frequencies at 90 % span of the beam (x=576 mm). The frequency span of 800

Hz required coarse frequency resolution causing the observed response at the natural
frequencies to be underestimated. Electrical interference caused the spike at 60 Hz.

Fig. 5.7 compares measured response with calculated response in between midspan
and the free end of the beam (x=384 mm). Again overall shape is good but clearly

affected by the di between the ies of d and measured minima.
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Plotted phase had a discontinuity at + 180° although the two angles were equivalent.
" Small changes in measured phase at those angles were responsible for transitions in the

plot as the phase jumped from 180° to -180° and vice versa.
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Figure 5.7: Comparison of calculated and measured response in the region between
natural frequencies at 60 % span of the beam (x=384 mm).

Fig. 5.8 compares measured response with calculated response in between the
midspan and fixed end of the beam (x=256 mm). Fig. 5.9 compares measured response
with calculated response close to the fixed end of the beam (x=128 mm). Similar

comments apply to both figures. Overall the agreement was favourable.
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measured (solid) calculated (dotted)
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Figure 5.8: Comparison of calculated and measured resporse in the region between

natural frequencies at 40 % span of the beam (x=256 mm).
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Figure 5.9: Comparison of calculated and measured response in the region between
natural frequencies at 20 % span of the beam (x=128 mm).
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Now we turn our attention to the response close to the natural frequencies. Fig.

5.10 shows the typical agreement between calculated and measured response in the region
of the first beam mode. The measured FRF had a frequency resolution of 0.00391 Hz in
order to properly replicate the shape of peak response. The measured response contains
at 18.0 Hz that di iate it from the assumed smooth response. The fine

frequency scale shows the small offset (0.09 Hz) between the observed and calculated
natural frequencies. With this resolution we can see that the magnitude of peak response

‘was slightly underestimated by | dB. Overall the agreement was reasonable.
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Figure 5.10: Comparison of calculated and measured response at the first beam mode at
70 % span of the beam (x=448 mm).
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Similar agreement was observed in the region of the second beam mode at three
positions on the beam corresponding to 40, 70 and 100 % span from the fixed end. Fig.
5.11 shows this typical agreement at 70 % span (x=448 mm). The fine frequency
resolution highlights the small offset (0.7 Hz) between observed and calculated natural
frequency. Calculated and measured peak response were within 1 dB in magnitude. The
least agreement (Fig. 5.12) occurred close to the fixed end (10 % of span). Peak response
at that position was underestimated by 2.5 dB and the curve shapes differed.

There was reasonably good agreement in the region of the third beam mode at five
of six positions (corresponding to 20, 40, 70, 80 and 100 % of span), Fig. 5.13 shows this
typical agreement close to the fixed end (x=128 mm). Calculated and measured peak
response were within 1 dB in magnitude. The least agreement occurred at mid span
(x=320 mm) (Fig. 5.14) which was a node for the third beam mode. Measured and
calculated response differed by almost 10 dB at this position, but remained small
compared to the other positions.

Lastly reasonable agreement was observed in the region of the fourth beam mode
at ten positions spaced every 64 mm along the beam. Fig. 5.15 shows the typical
agreement between measured and calculated response towards the fixed end at 30 % span
(x=192 mm). Here the calculated peak value overestimated the response by 1 dB. One
position closer to the fixed end (x=128 mm) showed almost perfect agreement apart from
the frequency shift (Fig. 5.16). Over the ten positions the cases of under and over

estimetion were roughly equal. There did not appear to be a net bias.
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Figure 5.11: Comparison of calculated and measured response at the second beam mode

at 70 % span of the beam (x=448 mm).

measured (solid) calculated (dotted)

&

5

Bl

5

= ondis’
5

F

g

97.5 10z2.5 1 5 117.5 122.5

G7.5 112.
Frequency (Hz)
Figure 5.12: Comparison of calculated and measured response at the second beam mode

close to the fixed end at 10 % span of the beam (x=64 mm).
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Figure 5.13: Comparison of calculated and measured response at the third beam mode
close to the fixed end at 20 % span of the beam (x=128 mm).
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Figure 5.14: Comparison of calculated and measured response at the third beam mode,
close to a node (x=320 mm).
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Figure 5.15: Comparison of calculated and measured response at the fourth beam mode,
near the fixed end (x=192 mm).
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Figure 5.16: Comparison of calculated and measured response at the fourth beam mode,
near the fixed end (x=128 mm).
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5.7 Summary
The modelled response was typically within 2 to 3 dB of the observed response
everywhere except in the regions of local minima. There, the frequencies where the

calculated minima occurred were imes offset from the ies of the observed

minima. This may have been due to the truncated series (8 rriodcs) used to calculate
response, or the limitations of Euler-Bernoulli beam theory.

In the natural frequency regions, which were the main areas of interest, the model
replicated the observed response quite well, usually within +1 dB in magnitude. On a fine
frequency scale, the calculated and observed response typically differed by less than 0.7
% in frequency. This typical close alignment in frequency of calculated and observed peak
response was attributed to having obtained a good estimate of Young’s modulus for the
beam. The next step was to incorporate the model of vibration response into a model for

the radiated acoustic field.



CHAPTER SIX

MODELLING THE NEAR FIELD OF THE CANTILEVER BEAM

An integral expression for the acoustic field from a planar source in free space was
used to model the near field of the beam. The motion of the planar source was described
by the model developed in chapter 5. The modelled field was compared with the observed
field of the beam in its reverberant environment. Both the modelled and measured ficlds
were then used to examine the spatial variation of phase in the near ficld of the beam, and
the consequent impact on the measurement of acoustic intensity.

Section 6.1 reviews the development of integral expressions for pressure. Section
6.2 discusses the conditions under which an integral expression was assumed to provide
a reasonable approximation of the near acoustic field above the beam. Section 6.3
compares examples of the acoustic field calculated from the integral expression with
measurement. Section 6.4 examines the spatial variation of phase in the near field above
the beam and the consequences to near field acoustic intensity measurements.
6.1 Integral Expression for an Acoustic Field

The acoustic near field above the cantilever beam was approximated using an
integral expression for pressure. The development of such an integral expression for an
acoustic field is briefly reviewed below and can be found in several texts (e.g. Morse and
Ingard, 1968, p. 320 ff).

Consider an acoustic source S(x) contained in a volume V bounded by a surface

A. The acoustic differential equation is,
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a5y ok PDIXIE) L
Vip(x;t) S S(x;t) (6.1)
With harmonic (¢™) time dependence, the differential equation reduces to,
vip (%) + Yip () =5(x) (6.2)
E
We will make use of a Green’s function G(,X") that satisfies,
)+ P oG ) b (s
viG(x,x) + 5600, ) =6 (x-X) (6.3)
For the moment, the form of G(x,X") remains unspecified. G(X,x’) and p(;(.) are then
subsituted into Green's second identity,

Is(i,:‘d)v’p(}) -p(x) ¥2G(x,X') dv=

P _ _ o 6.4)
ch(x,mvmx) -p(%) VG (%, X') 1 eda
Further subsitution of Eq.’s (6.2) and (6.3) into (6.4) leads to,
p(;()s‘[S(;c)G(},;.d)dV‘I[p(;:)va(;:,;(’)—G(;tJt’)Vpl;r)]DdA (6.5)

This is the integral equation of interest. To make use of this equation, we need the form
of G(X,x”) which depends on the boundary conditions of the problem.

First, consider the case of a localised source in free space with no boundaries. The
boundary condition on p(x”) is that it vanish as X” tends to infinity. The Green’s function

which satisfies this condition is,
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GG";”:TW?-?T' (free space) (6.6)
The volume V enclosing the source can be extended to infinity and surface integral in
Eq.(6.4) can be shown to vanish leaving,

P = [sG) BB
4m

av, (free space) (6.7
Secondly, consider the case of an infinite rigid baffle below the source. For
convenience the baffle is chosen to lie in the x-y plane. The boundary condition at the
baffle surface is that the normal component of fluid particle velocity must vanish.
Therefore the norinal derivative of pressure must vanish. The Green’s function which

satisfies this condition (see Morse and Ingard, 1968, p. 369) is,

= 2y . eEFI e i aecs
G(x,x') mom. (baffle in x-y plane) (6.8)

where ;=(x,y,z) and X'= ,¥,-Z). Again the surface integral in Eq.(6.4) vanishes, leaving,

35| x|
e o

p(x‘)-[s(x) U Ty O (baftle) (6.9)

‘When the source is planar and lies in the plane of the baffle (z=0), the Green's
function in Eq.(6.8) reduces to the free space Green’s function in Eq.(6.6) multiplied by
a factor of two (Pierce, 1991 p. 214.).

6.2 Obtaining an Estimate of the Near Field
The beam was treated as a planar source lying in the x-y plane. The volume

integral in Eq.(6.7) reduced to the following integral over the surface of the beam,
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T3 da, [(free space) (6.10)

)= Pt ¥ (X)

bean durtac:

The use of this expression was restricted to the centreline of the beam, close to the beam’s
surface, where the radiated sound could be attributed mainly to the vibration of the upper
beam surface.

In reality, the acoustic field surrounding the beam consisted of the field radiated
by the beam plus that which had been scattered by the walls and other objects in the
room. The use of this equation assumed that as the measurement point approached the
surface of the beam, the radiated component would eventually dominate over the scattered
component (i.c. provided the measurement point remained close to the surface of the
beam, the scattered field could be ignored). Comparison of experimental and calculated
pressure would show how appropriate this assumption was in practice.

If the beam had been suspended in free space, the acoustic field in the upper half
planc above the beam would have been symmetric in magnitude but 180° out of phase
with that in the lower half plane. A consequence of this antisymmetry was that the
pressure would vanish in the surrounding x-y plane. Clearly the contributions to the
acoustic field from both the be :m’s upper and lower surfaces are required to obtain the
correct model of the acoustic field. However, close to the beam’s surface and away from
the edges of the beam, the near side of the beam was expected to be the main contributor
to the radiated acoustic field.

From the setup shown in Fig. 5.2, looking down from above the beam, the

92



clamped end was effectively baffled by the I-beam support, while the free end was

’ suspended in relatively free space. The beam itself also acted as a baffle. Therefore it was

anticipated that the radiated field close to the beam’s surface would lie between the values

associated with the baffled and free space conditions (i.c. between the value calculated
from Eq.(6.10) and twice that value.).

Eq.(6.10) used the expression for Y(x) developed in chapter 5. The double integral

over the surface of the beam was numerically evaluated in both x and y directions with

an extended Simpson’s Rule algorithm (Press et al, 1990).

6.3 C ison With i 1

PTF (pressure transfer function) measurements used the same sctup as previously
described in chapter 4 (see Fig. 4.1). The excitation point was still the centre of the free
end of the beam. Comparisoz between the measured and calculated (Fq.(6.10)) PTF’s took
place in the same manner as for FRF’s in chapter 5. Coarse resolution PTF’s were used
to examine the agreement in the regions between natural frequencies, and fine resolution
PTF’s were used to examine the agreement in the vicinity of the natural frequencics.

Coarse resolution PTF’s were collected at x = 128, 256, 384 and 512 mm from
the fixed edge of the beam at altitudes of 35 and 85 mm. Fig. 6.1 compares calculated
and measured PTF’s close to the free end of the beam at 80 % span (x=512 mm) at an

altitude of 35 mm.
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Figure 6.1: Comparison of calculated and measured PTF’s for the regions between the
natural frequencies at 80 % span of the beam (x=512 mm) with an altitude of 35 mm.
Underestimation by the measured response at the natural frequencies was due to the coarse
frequency resolution required to span the 0 to 800 Hz region.

Overall, the calculated and measured PTF's magnitudes and phases were quite
similar. In places, the calculated PTF tended to underestimate the measured PTF
magnitude by up to 6 dB (factor of 2) (e.g. between 400 and 560 Hz). The roughness of
the measured PTF was attributed to a combination of signal noise in regions of small

acoustic response and interference from the scattered field.
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Fig, 6.2 makes the same comparison as Fig. 6.1 but with an altitude of 85 mm.
Again, the calculated and measured magnitudes and phases were in reasonably good
agreement. The calculated PTF still tended to underestimate the measured PTF magnitude,
by up to 6 dB in places. It was observed that at each of the four positions the agreement

was quite similar at both altitudes. Hence we will continue with just the comparisons at

35 mm.
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Figure 6.2: Comparison of calculated and measured PTF’s for the regions between the
natural frequencies at 80 % span of the beam (x=512 mm) with an altitude of 85 mm.
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Fig. 6.3 compares calculated and measured PTF’s at 60 % beam span (x=384 mm). The
agreement was similar to the two previous examples. Again the calculated PTF had a
tendency to underestimate the measured PTF magnitude. Fig.’s 6.4 and 6.5 continue the
comparisons at 40% (x=256 mm) and 20 % (x=128 mm) of beam span respectively. The
underestimation of the measured PTF magnitudes by the calculated PTF’s was apparent
in both cases. In these last two cases the underestimation appeared to increase somewhat
with frequency. These results suggested that the underestimation was linked to the effects
of baffling. The calculated pressure, based on a free space calculation, was generally
within -6 db of the observed pressure, (i.e. the factor of 2 increase in magnitude that

would be introduced by a baffle in the plane of the source). The baffling effects would

have increased with i gth (i.e. i i ).

Fine resolution PTF’s were also collected at altitudes of 35 and 85 mm above the
beam. Six spectra were collected for each of the second, third and fourth modes.
Unfortunately, a fine resolution spectrum for the first mode was not obtained. With the
excitation point at the free end, the limit of the exciter’s mechanical travel was reached
before the acoustic signal strength was adequate for a reliable PTF measurement.

For the second mode, PTF’s were measured at a height of 35 mm for x=256 and
576 mm and at heights of 35 and 85 mm for x=128 and 384 mm. In all 6 cases the
calcu’lated pressure overestimated the peak response by approximately 3 1/2 dB (~33 %).
Fig. 6.6 compares the measured and calculated PTF’s for the second mode at 60 % beam

span (x=384 mm) and 35 mm altitude.
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Figure 6.3: Comparison of calculated and measured PTF’s for the regions between the

natural frequencies at 60 % span of the beam (x=384 mm) with an altitude of 35 mm.
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Figure 6.4: Comparison of calculated and measured PTF’s for the regions between the
natural frequencies at 40 % span of the beam (x=256 mm) with an altitude of 35 mm.
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Figure 6.5: Comparison of calculated and measured PTF’s for the regions between the
natural frequencies at 20 % span of the beam (x=128 mm) with an altitude of 35 mm.
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Figure 6.6: Comparison of calculated and measured PTF’s for the second mode at 60 %
beam span (x=384 mm) at a height of 35 mm.

For the third and fourth modes, PTF’s were measured at a height of 35 mm for
x=256 and 512 mm and at heignts of 35 and 85 mm for x=128 and 384 mm. For the third
mode four of the calculated PTF’s underestimated peak response (-3 1/2 dB at x=128, 256
and 384 mm (lower altitude only)). Fig. 6.7 illustrates the typical difference between
measured and calculated PTF’s for the third mode at 20 % beam span (x=128 mm) and

85 mm altitude.
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Figure 6.7: Comparison of calculated and measured PTF’s for the third mode at 20 %

beam span (x=128 mm) at a height of 85 mm.

There were only two cases where the calculated PTF overestimated the measured
PTF. In one case, at x= 512 mm, (Fig. 6.8) the calculated PTF overestimated peak
response by 1 1/2 dB (15 %). In the other case, at x=384 mm at a height of 85 mm, the
least response for all 3rd mode PTF’s was observed. There the calculated PTF
overestimated peak response by about 5 dB (45 %). This may have been a minimum in

the field.
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Figure 6.8: Comparison of calculated and measured PTF’s for the third mode at 80 %
beam span (x=512 mm) at a height of 85 mm.

The PTF’s calculated for the fourth mode typically underestimated peak response
by 7 dB (55 %). This is illustrated in Fig.’s 6.9 and 6.10 which compare measured and
calculated PTF’s at x=128 and 384 mm respectively for an altitude of 85 mm. In an
isolated case, at the free end of the beam (x=512mm), peak response was underestimated
by just 3 1/2 dB.

From these results, it was concluded that the model could be used with some

caution to indicate the general trend with position of amplitude and phase.
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Figure 6.9: Comparison of calculated and measured PTF’s for the fourth mode at 20 %
beam span (x=128 mun) at a height of 85 mm.
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Figure 6.10: Comparison of calculated and measured PTF’s for the fourth mode at 60 %
beam span (x=384 mm) at a height of 85 mm.
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6.4 C;s and Phase

A measurement of time averaged a~oustic intensity (see chapter 2) is very much
a measurement of the pha;e difference between two pressures. With this in mind a
comparison of the spatial variation of phase was made between the modelled field above
the beam, the field measured above the beam and a field consisting of plane waves.

A microphone spacing of 50 mm was used, corresponding to altitudes of 35 and
85 mm above the centreline of the beam. This orientation would be used for measuring
the z component of acoustic intensity. The comparison concentrated in the natural
frequency regions where the PTF phase underwent a change of 180°. Two comparisons
were made for the second mode at 40 (x=256 mm) and 60 % (x=384 mm) of beam span.
Fig. 6.11 plots the measured and observed phases in the region of the second mode for
60 % of beam span. The modelled PTFs showed a uniform phase difference of -4.3°. The
observed phase difference was only -1.3° on average and was not uniform. Similar results
were observed at 40% span.

Four phase difference comparisons were made for the third mode at spans of 20,
40, 60 and 80 % beam span. At 20 % span (Fig. 6.12) the modelled PTF showed a
constant phase difference of -9.3° while the observed PTF had a negligible average phase
difference of -0.2°. As the observation point moved towards the free end, however, the
observed phase difference increased relative to the modelled phase difference. At 80 %
span (Fig. 6.13) the situation had reversed. Modelled pressure showed a constant phase

difference of only 3° while the measured pressure had an average phase difference of 5.7°.
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Figure 6.11: Comparison of calculated and measured phase difference between z=85 and
z=35 mm at 60 % beam span (x=384 mm) in the region of the second mode.
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Figure 6.12: Comparison of calculated and measured phase difference between z=85 and
z=35 mm at 20 % beam span (x=128 mm) in the region of the third mode.
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Measured: X=512 mm Z=85 mm (solid) Z=35 mm (dotted)
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Figure 6.13: Comparison of calculated and measured phase difference between z=85 and
=35 mm at 80 % beam span (x=512 mm) in the region of the third mode.
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Figure 6.14: Comparison of calculated and measured phase difference between z=85 and
2=35 mm at 20 % beam span (x=128 mm) in the region of the fourth mode.
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Two phase difference comparisons were made for the fourth mode at 20 and 60%

of beam span. At 20 % span (Fig. 6.14) modelled and measured phase differences were

both uniform and almost equal, -18.9 and -19.6° respectively. The modelled and measured

phase differences at 60 % span were also uniform. However the modelled phase difference

was -9.3° while the measured difference was only -2.1°.

The phase difference assuming plane waves and the average values of the

calculated and measured phase differences are summarized in table 6.1. For plane waves,

a 50 mm spacing corresponded to phase differences of 5.9, 16.4 and 32.2° for modes 2,

3 and 4 respectively.

Table 6.1 Comparison or phase difference between 2z=85 and z=35 mm

Mode Freq Position
No (Hz) X (mm)

2 112 256
384

3 313 128
256
384
512

4 613 128
384

Average Phase Difference

Plane Wave  Modelled Measured

(Deg) (Deg) (Deg)
5.9 32 -1.3
5.9 43 -1.2
-16.4 9.3 -0.2
-16.4 -12.0 33
16.4 109 6.1
16.4 30 5.7
322 -18.9 -19.6
-32.2 93 -2.1

The results indicate that in the near field of a distributed source, expectations for

a phase difference based on a plane wave calculation (using microphone spacing and
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wavelength) would be overly optimistic. If the modelled phase difference accurately
portrays free space conditions then no more than sbout half the planc wave phase
difference might be observed in the near field. Even expectations for half the plane wave
phase difference in the near field could be optimisti ing on the

posicion. Finally phase differences smaller than half the plane wave phase difference
would be expected in a reverberant environment.
6.5 Summary

Signal noise in regions of small acoustic response, the scattered field, and the
effects of baffling were assumed to be responsible for most of the differences between the
modelled and measured phase distributions. However, it is also possible that the
calculation of the free space phase distribution close to the beam needed the rigour of a
boundary value series solution. An answer to this question required either the boundary
value solution itself or measurements in an anechoic chamber, both beyond the scope of
this work.

Nonetheless, for this case (beam in a semi-reverberant enclosure), phase
differences were observed in the near field, that were typically one half to one quarter of
that modelled for free space, and that were an even smaller fraction of the phase
difference that would be expected from plane waves. The implication is that larger
micr‘ophone spacings are required for near field acoustic intensity measurements than those

spacings that would be antici from simple ions using just mi pacing

and wavelength,
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FINAL SUMMARY
The research for this thesis occurred within a program to develop acoustic methods

for itoril hanical behaviour of for indications of fatigue, and focussed

on the acoustic field close to a vibrating surface. This work examined acoustic intensity
and its measurement in the near field. Both the time domain and frequency domain
methods of measurement were reviewed. The cross spectral formulation was shown to be

equivalent to a windowed process that relies on the discrete Fourier transforms of two

pressures closely replicating their i i Fourier spectra

The measurement clearly depends on the ability to resolve the phase difference between
two pressures. The ability to resolve phase difference is perhaps the most demanding
aspect of the measurement. An example was given to show that the statistical distribution

of intensity can broaden in moving from the far field to the near field. Moving to the near

field has the adverse effect of ing the interval to retain
accuracy.

From the single measurement, the focus shifted to obtaining an estimate of the
spatial distribution of acoustic intensity in the near field. A method for mapping the
spatial distribution was described that combined the physics of a closed surface with
approximations from a Taylor’s series analysis. The method was successfully tested on
the near field of a cantilever beam. Several examples were used to show that this method
provided a quantitative assessment of whether the calculated spatial distribution of

intensity was a reasonable representation of the acoustic field.
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The focus then returned to the single measurement of intensity, for the case where
an applied force caused a mechanical system to radiate sound. It was shown that a form
of normalized acoustic intensity could be constructed from transfer functions of pressure
and force. Acoustic intensity constructed from pressure transfer functions was successfully
tested in the near field of a cantilever beam. The testing process again emphasized the
need for the discrete Fourier spectra to closely replicate their continuous Fourier spectra
counterparts, with particular attention to obtaining good estimates of the phase difference
between pressure and force. It was noted that the normalized acoustic intensity
emphasized the natural frequency regions where the ratio of radiated power to applied
force was large.

After using a cantilever on two occasions as a sound source, attention was directed
to modelling the acoustic field of the beam. First, the damped vibration response of the
beam was modelled using Euler-Bernoulli beam theory. Modal analysis was applied to the
the beam’s measured response to obtain the beam’s complex eigenfrequencies. The main
area of interest was the natural frequency regions. There, the modelled response replicated
observed response quite well, both in frequency and amplitude. The agreement was duc
in part to an accurate estimate of Young’s modulus from the data. Overall the agreement

was good everywhere except in regions of local minima. The frequencies of calculated

and observed local minima were imes separated ibuted to either limitations of
theory or a truncated series solution).

The vibration model of the beam was then used in an integral expression that
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treated the beam as a planar source. This formulation for the acoustic field was an
approximation that ignored the sound radiated by the far side of the beam. Its use was
restricted to interior points close to the beam’s surface. While the modelled field agreed
in general terms with the observed field there were noticeable differences. The model had
a tendency to underestimate the observed acoustic field by up to 6 dB (attributed to the
baffling effect of the beam and its support). The observed field also vxhibited a certain

amount of spectral i toa ination of small signal response and

the presence of a scattered field).

With the assumption that the model would indicate the general trend with position
of the acoustic field, the model was used to examine the spatial distribution of phase in
the near field of the beam. It was found that over a typical microphone spacing of 50 mm,
that the observed phase differences in the natural frequency regions were typically one
half to a quarter of that predicted by the model (free space). The model in turn predicted
typically half the phase difference that would be expected from plane waves. This
suggested that larger microphone spacings are required for near field acoustic intensity
measurements than those spacings that would be obtained from simple calculations using,

just microphone spacing and wavelength.
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Appendix A
Statistics of Intensity For Waves at Two Frequencies

Averaging over an infinite time frame would remove all interaction between

adjacent frequency I but real time frames are finite.

Consequently, interaction can occur betweer, adjacent frequency components that affects
the reproducibility of the measurement of time averaged acoustic intensity.

Consider a pressure with two frequency components,

pix;t) = £,(x) cos (k,x-0t) + £, (x) cos(k, x- (w+aw) t) (A.1)

‘where f,.,(;) are real functions of position coordinate x. Using Euler’s relation the particle

velocity is,
aie) = L (I5E i kx-wt) + BEX cog e x-wty
Po @ O
+ B 4 U (wea0) £) (a.2)
G

. %cas Ueyx- (@raw) &) ]

Then ‘F(t) is given by,
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e = ﬁ(f, V£ sin(kx-wt) cos (kx-ut) + k, £cos? (kx-wt)
+ £,V£ sin(k x-wt)cos (k,x- (w+Aw) t)
+ ky £,£,c08 (k, X -0 t) cos (k,x~ (w+Aw) t)]

+ [£,V£,c08 (k,X-wt) sin (kX - (w+80) t) *.3)

FwsEaT
+ k, £, £,c08 (k, x-wt) cos (kx~ (0+8w) £)
+ £,9£,8in (KX~ (w+80) £) co8 (k, X~ (w+Aw) £)
+ k£l cos? (k,x- (w+Aw) £) ]

which reduces to,

e = 25 5 k£
¥(e) = 2 [tein2Uox-ut) +

L7 cos? (i, x-0t)

AL NEAL
[z T

bt ]smuk,-k,)x.w:)

hlk, wf;w](cosuk,-k,)x»mn +co8 ((ky+ky) x- (20+a0) £)) (B-4)

"
M
i

. [f,:,f‘ . GV

W]sin( Ui+ k) x- (20+80) £)

3
E952 o in (kx- (wrbo) &) + 2D
avio

g, 2
TG

cos? (k- (w+aw) £) ]

The time average of \F(t) is now taken over the interval [t,, t,+T].

Gt
e 9
vIIr = 4 Jw(:) de (a.5)

P ing the i ion and ituting for k,=0/c, k,=(0+Ao)/c yields,
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72 g ein (@D sin2($,-o(E+5))

vTET =
£,v5,
* Sroporr oin (W80 T 8in2 (4, - (wsa0) (e+ 1))
L H £
‘et

£,VE, £ AT, T
L) m]sin(_r)aln(a, $+ou(eed))

2f £,

. Au‘c'sin(A”T) cos (¢, - ¢,»Au(m§>) .

£,VE, £,VE,
* [@zeTsert * Tovmer ZavaeTT,
.u;éh%?lsin((a+f;) T) cos (6,4, - (26+w) (£+.T))

&
. W‘T‘_’ain(ul‘)cosz(d,—w(t~§))

sin((w+52) 1) sin (g, +4,~ (20+00) ( £

£ 2
+ msin((u«nu) T)cos2 (¢,~ (w+aw) (E+))] i g
where,
= fox (A.7)
¢ = kyx

Six of the ten terms contain either a (T)" or (@’T)" dependence. The contribution of

these terms will decrease as T increases. It will be assumed that T is sufficiently large to

ignore these terms. The remaining terms are,

£, #
26,6 Zp,C
(a.8)

1[£9E £,VE, BWT, - ¢

+ _p_[ TTaTagTD | SR () Bin (4, -4+ su(er D))
2£, 5 AwT, o T

+ oo 10 (25T cos(d,-g, 00 6+ 2))

The first two terms arc just the time averaged acoustic intensity associated with
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frequencies o and o+Aow respectively as T—»o. The third and fourth terms are of interest

for the case when AwT<<1. In that case sin(AwT)—>AoT leaving,
£ £
25,6 Zp.c

N EAZE AL T (2.9)
+ z_p,[_‘u_ R CEr sin (¢, ¢,*Am(:f_2.))

£, £,
* F:; cos(¢,-¢,~m(:~§))

The last two terms are si i with Ao. Each time the

measurement is repeated with interval T, there will be a different contribution from these

terms. This would be an i i to obtaining il of average

intensity. Larger values of AoT would then be required to mitigate this effect.

18



Appendix B

The two data sets plotted in Fig. 3.4 are compared by common component in Tables B.1,
B.2 and B.3. The value estimated by CSIM is compared with the value measured at cell

centre.
Table B.1 Comparison of data sets: X component at cell centre

Calculated ~ Measured at
Coord (mm) by CSIM _ Cell Centre
X ¥ PW/m? pW/m?

108 51 231107 -21.0+08
108 102 319+12 -363%1.0
108 153 220+08 -18.1% 1.0
162 51 -105£04 -11.0£02
162 102 [21412 -l44 %11
162 153 -94£07 -120£03
216 51 16+05 -11+04
216 102 4112 -10£02
216 153 34407 -19%05
270 51 10526 87+25
270 102 150£16 11.1+04
270 153 113£08 9208
324 51 136+30 141%04
324 102 19016 181+06
324 153 122+09 120+06
378 51 108210 96+02
378 102 142+16 112302
378 153 76+10 51%02
432 51 0604 -12+03
432 102 1406  09%0.1
432 153 -21£06 -22+01
48 51 142105 -13.0:02
486 102 -157+03 -15.6+02
486 153 -133+04 -11.7£03
541 51 21606 -19.7+03
541 102 258+08 -24.5+04
541 153 20823 -19.5+0.7
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Table B.2 Comparison of data sets: Y Component at cell centre

Calculated ~ Measured at

Coord (mm) by CSIM Cell Centre
X Y pW/m? PW/m?
108 51 6.1+0.7 11.0+0.2
108 102 ~L1£06 -07+03
108 153 -96+08 -141%1.1
162 51 163+£06 18.1+04
162 102 -25%03 31205
162 153 -162+08 -146%06
216 51 122+08 14105
216 102 -07+10 -02+04
216 153 -166+32 -183+03
270 51 67+04 9.0+0.2
270 102 0.1+04 04102
270 153 -61£06 -78%0.1
324 51 1L1£0.1 13104
324 102 -02£01 -02+04
324 153 -20+£03 -26%0.1
378 51 0603 0.0+04
378 102 0902 00£0.2
378 153 09+0.2 13£02
432 51 42+£07 13+0.6
432 102 20+0.6 08+02
432 153 13206 -11x0.1
486 51 54105 6.9 £ 0.1
486 102 12+03 -08+04
486 153 -28+03 -39106
541 51 38+04 39%0.1
541 102 01+£02 -23%02
541 153 -37+£08 -46104
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Table B.3 Comparison of data sets: Z component at cell centre

Calculated ~ Measured at

Coord (mm) by CSIM Cell Centre
X Y PWW/m? WW/m?

108 51 61.8+25 63.6+12
108 102 73315 71808
108 153 646119 64911

162 51 479+17 539108
162 102 669+27 70.8+08
162 153 461 £1.1 542+08
216 51 385+26 420+07
216 102 47.7+£33 511105
216 153 374+ 14  403%10
270 51 23.1+06 252+03
270 102 294%15 308%03
270 153 251+14 249+02
324 51 43£02 4701

324 102 44+£0.1 48 +0.1

324 153 51£02 54101

378 51 <158+ 1.8 -159+02
378 102 219016 -183+0.6
378 153 -l41£12 -149%02
432 51 262+ 1.1 -246%06
432 102 31612 -295+07
432 153 -21.8£22 -21.0+0.1
486 51 <306+ 1.7 -292%1.0
486 102 =340+ 14 -345+08
486 153 -293+£3.0 -28.0%07
541 51 -120£ 13 -11.9£07
541 102 -163£ 1.1 -155+07
541 . 153 -125+23 11804
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The paired-di test (see [1971]) was applied to the data set for

’ each intensity component (i.e. the set of differences d; = (¥ pncaswot)i = (Petcutaed by cs)d-
The Student’s t distribution was used to place 95 % confidence limits on the differences.
The results are tabulated in Table B.4.

Table B.4 Paired Difference analysis by component in pWatts/m*

Comp Average Variance Confidence Interval (95 %)

x 200 233 -1.00 £ 0.92
y 005 222 10,05 + 0.88
z 152 209 1.52 £ 0.83

The variances of the distribution of differences were very similar for all three
components. This suggests that apart from any non zero bias, the distribution of errors
was independent of which component was measured. Bias’s did exist for both x and z
components but were relatively small compared to the range of intensity values observed

for those components.
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