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S “, ABSTRACT

Theoretical estimiafes “of tered acoustic intensity: and attenuation ~

"cﬁeﬂicient are com]iued with all available data for aqueous snsi)ensions ol srlixd'~
’for both buhhc and monostatic systems This appears to be the first comparisori

of theorehcal and experimental nttenunmn coeﬂ'luents in suspenslons of mineral

grains at wavelengths compsnble to or less than the scatterer clreumference, and

’ lt Is shown that as fu as the existing daln are concerned, this’ compm:on |s eru- ' 5 P

ml Three !heoretlcal models are used in which the scatterer i B usumed to be

N 'eber elastic, or complelely ng\d ot both ngld and 1mmovable The rigid mov-

able.model with-a Gaussian size distribution provides the best fit to the dats:

The failure of the elastic model indicates l.hal }escnanc‘é excil‘liibn does not

oceur, probably betause natural sand grains are. irregalarly slnped and mhomo—

~77  geneoflis in composltlon ’I‘he rigid xmmovnble model Ms the dnu the least well

indicating that the inertia 4 the, partldes is important. ‘App oxi X i g “3'\

ha‘va been ed , based on ; - N

for the form factor and-

‘the so-cnlled high-pass model introduced by Johnson | [WI1] The hxgh-pm model

prov;des a fit to' the data which is as good as !he rigid movable case, Multiple -

scattzrm[ is ducussed brleﬂy. and approxin i of the ction for
multiple suﬂerm; are ‘made. ‘In addition, the ;eometry of scnmnng and

attenuation’in suspenslons for bistatic systems is Anllyzed for lhe narrow beam ..

case, and | expressions for the detected. volume and seat- g L —

tered intensity are obiained. o

4 ~
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CHAPTER 1 INTRODUCTION

4 The purpose ‘of ‘his thesis is to »ebmpn,r‘e the available experimental data on’

; . . , - . s
nl'l.enultionvnnd sc\uering,or;sound by sand: grains in water with different

- theoretical models ‘The objettive is w determine which model is the most swit-

al}}e, lnmder 16 sssist. in. mterpretmg the relnhonshlp between the scattered

.acouﬂ ic signal, and pnrhclo concentm(lon and size. It is of particular lnteresl to

- deterfhine whether resonance effects are likely to.be’ |mportant for nalural sand

grams ) ) =
The problem is part—of the more general one‘hss_ocilted with the advent in
recant years of ac;)llstic remote sensing techniques in' sediment trnhsport stu;iies

Dlrecl samplmg methods (tmps and pumps) to measure suspended sediment near

B the sea bed do noL meet, ZMqulrements since, they modify the flow field nnd

usunlly provide data only at single points Qpncal methods offer some lmpmve-

“ i e
_ment, but they cannot-be used at high i The greatest ad ge of
acousuc Lechmque over opuenl and other methods is that aco\utlc signals can

lruvel much farther in water. ’l‘hls prcmdes the opportunlty for qunnmnhve

16 ' fetecti lnd. herefore minimal disburt to the ﬂow field.,




-L1 Historical background

Using acoustic methods to oblain estimates of suspended sediment concen-
tration in the oce“ln was suggested by Dietz [1048]. Little was done for many .‘
years, but progress ha‘s been rapid in the past decade. Two types of system have
beén used: monostatic, in which the source and receiver are collocated and the
backscattered signal i detected; and bistatic systeins, in _which the transmitter
and receiver are spnliglly,separ:ted, and the delccied signal is due to scattering
out <;f t]xe'pnth of the tunsr;\i!.!.ed wave. ‘

Proni et al. [1975, 1976a] used an gcoustic sounding system ub;_rnting at 20
kHz to detect’ suspended pariit‘u?ﬁvg matter arising from dredgiy;g operations.
Proni et al. [1976b] used a modified acoustic echo sounder operating at 20 and
200 kHz to detect and map sewage"slu'dge dumped into the ocean. Orr 'nncrlless
(1978] used an ncgustic 'backscalfe.r system operhting at 20 and 200‘kllz to detect
a near-bottom iélrusion of'slope'w'sm-carrying high suspended particulate con-

centrations onto the continental shelf. Young et al. [1982] and Vincent et al.

1198 employed a bottom-mounted acoustic back system operating ot 3
MHz to ob‘taiuv spatially and temporally detailed émﬁlcs o&-,mveréenem_led
sﬁsp;nded sediment .in lile hotulrm hgundary Iayer on the continental shelf. Hay )
et al. .[1982] used an acoual‘ic sounder operating at 42.5, 107 lvgﬂ 200 kHz to
detect a surge-type iurbitjily current. Hay] [10§3] employed a 192 kHz acoustic

backscatter ‘system to measuré suspended sediment in a. negatively buoyant,

tailing disch plume in a sub channel. Jansen [1977] developed a

bistatic system operating at 8 MHz to profile suspended particles. Schaafsma and
der Kinderen [1085] used an acoustic bistatic scatterometer operating at 4.5 Milz

. ‘ . : 5

/.




to ‘measure vertical profiles of suspended ‘sand concentration in an estuary. All of

these studies have demonstrated the utility of acoustic remote sensing techniques

with respect to sediment transport problems. One of iemaining diﬂicultl?} in the

quantitative use of these techniques involves the choice of the most 1pproprmte

ncuu:uc model for the suspended particles.

There are two aspects to the mtenchon between sound and suspended pam- ;

cles: ing and nuation. A i mvolvesboth ing and absorp-

tion"6f energy. The historical developments with respect to these problems are

discussed below.

1.1.1  Scattering by a solid sphere.
In the theory of\sa\lnd scattering by a solid sphere, three cases have been
p i

‘treated. These are the elastic, the rigid movablf, and rigid immovable cases. By

elastic we mean that Lhe scatterer is bolh movable and deformnble Mcre pre-

cisely, the incident wave can induce displacements of the scatterer’s center of

mass, and shear and pression waves may propagate within the materinl. A

rigid scatterer is not deformable: no sound waves propagate within it. An immov-
able scatterer is infinitely dense. -

The scattering of sound by a sphere was first investigated msih’ematicnlly by
Rayleigh [1945, first published in 1896]. However, because of the complexity of
the mathematical solution, he only consid;.‘red the limitiﬁ’é case where thg,scntter-

. ers are small compared with the wavelength, the long _w?velength limit. Morse
[1048) obtained a conveénient form for the scni!ered wave for the case‘ in which



the seatterers are rigid, but not necessarily small compared (n.lm: waveléhgth.
Faran [1851] expanded the study’of Morse to obtsinsolutions for sound scatter-
ing by uniform cylinders and sphetes of solid elastic material. Faran appears to

_have been the first to show, both theoretically and experimentally, that ‘the back-

4 TP

P
is a minil at the resonant frequencies of elastic solid
scatterers. Using Faran's Appmach chklmg [1959] and Hickling and Wang [1965]
cnlculued the buckscnuered intensity !rum sohd spheres of different materials m'

water, including the rigid movable tase. \

‘The theory lns been verified experimentally by Nenbsuer et al. [1974] and

“~ Dragonette et al. [1974], who measured the acoustic pressure backscattered from -

“~aluminum ahd tungsten-carbide spheres over a wide range of frequencies and

obtained good agreement with theory, ihc]ud{ng resonance effects.

1.1.2 Attenuation in suspensions of solid particles

Thentheoretical study of sound attenuation in dilute suspensions was first
considered theoretically by Sewell [1910]. He considéred the long wavelength limit
for rigid infinitely dense (immovable) spliericnl particles. A modiﬁed exposition of
Sewell's method was gwen by Lamb [1945], who removed the restriction that the
pnrucles be 1mmovnble He obtained an exprmlon for the nbsorptlon by finding
the average rate at which work is done over a large spherical surface lurro\mding‘
the particle. Epstein and Carhart [1953] refined the theory to include't;ermnl and
viseous, losses a;:d all wnvele/ngths. but only for fluid spheres. Allegra and Hawley

[1072] extended the work of Epstein and Carhart to include clastic solid spheres.



* Allegra and Hawley's theory is quite general, reducing to the carlier results in the

appropriate limits. ”
For small particles, Lamb's theory has been verified experimentally by Urick
[1948], who measured the absorption of sound -in sand and kwi'nf;jus_pensions,

and by Stakutis et ll [1955), who d

of ul d in suspen-

sions of ﬂne quuu snnd Allegn lnd Hnwley 11072] also measured attenuation

in susp of small polystyrene spheres gmd,fonnd good ngreement
with their theory. | . \
1.2 Current si ion and of the probl

-provided seml—qulnmmve :greement wnh lhe data.

_ -Hay and Burling [1982] used the Allegra and Hawley thé;‘ry to extend
Paran’s solutions to include effects of thermal conductivity and viscosity at 10;15
wavelengths, Hay and Mercer: [1985] were able to in&{porale the viscosity alone
at medium and short wsve}e‘gths,-'and showed explicitly that viscous ‘effects on
the scattered wave m‘ny l)jigIored for mineral 'grains suspended in, water.

'hnsen'Ile] and Schaafsma and der Ki;deren'ﬂbss) reported lnbo}ntory
meisurel;xenls of ‘.scatteted intensity for suspensions of sand grains as a function /
of ssndvgnin size, bu} comﬂ‘nrisqns with theory were not given. Clarke et al. //
[1984]‘ reported mensuf;amenlg‘ of the acoustic intensity backscattered lron‘a E: d(‘

grains and compared the results with theory, but found that a fluid sﬁlm/ odel

+ TThe use of a fluid sphere.model for scattering by sohd particles is not very

Appenl‘ng, however, and a more complete comparison belwcen theory and dntn is



1.3 Approach-and thesis outline

~ Chapter 6.’ . '

,O) K

necessary. In particular, comparisons using all availablé experimental data and
N

ludi botll i tions and i ici are required.
This is undm.nken in !hu thesis and, as will be seen, the comparisons betwq

and

P are critically imp

In this

is: we follow the approach n;ed by Hay lnd Mercer [1985] and

of ing.and

make

by nppmxn-
mating the sand grain as a honige‘neous, spherical scatterer, and by using the
phase shift [oﬁndism in the partial wave expansion ome pressure.field. The
theoretical estimates are made for seatterers which are either elastic, rigid, or

rigid and i and ‘are then compared with the il 1 data to deter-
- \ 2

mine which model is most appropriate.

The organization of the thesis is as follows. In Chapter 2 a detailed analysis™

r sound ing from aqueous nsions in the bisllﬁic geometry.

is ma

It also includes a brief discussion of multiple scattering. In Ghapte: | 3-we discuss

" the theory for the amplitudeof the “wave scattered by a sphere, and in Chapter 4

.the attenuation coemeient. In addition to the different theoulicll els, approx-

imate exprmmns are presented. In Chapter 5 we.compare these results with

data, including the effects of siz

plg scnuering effects are also made. The conclusiois of the study are presented in

distributi A in i ofmulu-.




given hy the real pan of

CHAPTER 2 BASIC THEORY
| Rt

I lhis'chnpter we derive the basic equations for ‘lhe scattered wave in a.bis-
tmc system by beginning with dlscunsml( of the scnttered wave [rom a single
pnmcle Then by consldenng scuttenng from an ensemble of particles in the
detected volume, the factors of geometry and of size dmnbutlon are mc_l_uded.
Brief: consideration is also given to the concentration range in which the multiple *

scattering effects may be ignored.

. ! i

*2.1 Scattered pressure from a single particle .

Assume ‘that a.plane sound wave traveling Lhrloggh a fluid medium is
incident on an isotropic elastic sphere. Let the center of the particle coincide with
the origin of a spherical polar coordinate system, and the plane wave approach
the particle along the positive polar axis ('Z.-axis),(u shown in Fig. 1. Ignoring

uenuatmn for the moment, the mstantaneous pressure of the incident wave is

pi =p, expli(k.Z -wt ) B (2.1)



. AN ISOTROPIC ¢
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.

where p, 'u the pressure amplitude, w is the acoustic frequency and &, "the acous-

tie wnvenumber (= w/c ¢ being lhe acoustic phase speed ). . —

The scattered pressure at an arbitrary ﬁeld point P(r, ¢, 6) outside the parti-

cle is giverby -

SR "“‘“’mpmﬁ Wil L e

. where r is the radial coordinste, n is the radius of the particle, 6. is the scatter-

. mg |ngle (see Flg 1), nnd 1 wolfy a)is the far field form luwr, which is deter-

m}ned by the propertm of the scatterer and js discussed in Chapter 3.
" A
’

4 y \
22 d p from an

In the case of more than one particle, we usg the suhscrifn J to.refer to

different p.artiem, such that, from Eg. (22),_the scattered pressure at P(r;, ¢;,"

*8; ) from the jth particle is

,_[M] expli (k, r; -] gCE)

. where r; stands for the distance between the point"l’(r‘;‘, 87, 0;) and the center

/
of jth scatterer.
£ . X . .
The total scatterec pressure from all scatterers in the ensemble depends on

" B .
whether a pulsed or continuous wave detection system is used [e.g. Hay, 1983 |.
. .




Define p, as the rms pressure of the return signal. For a mnlinuous wave

detection system, hefnuse the relative posludns of the scatterers within the

detected vélnme change fandomly wuh time, the scatfered waves are incoherent,

sathat - o
; "L
5 AT L )
b = 2 Pij Pij (2.4)
o
|

- where N is. the number of particles per unit v\olumc, T is the total detected ~

vol\lme, and p,; is” the complex-conjugate of Pij

For typical pulsed. detection systems, however, the duration of the transmit-

ted pulse is much less than the time reqﬁired fz‘)r the ‘relative positions of the .

scatterers to change by an acoustic wavelength, ;o the scattered waves from a

single pulse are coherent. From pulse to pulse,- however, the scattered waves are

~incoherent This means that the signal amplitude .is R_};lel;gh-distribnled from

pulse to pulse, and it has been shown [Hay, msﬁ} that the pulsc-lo-puhe rms

prmsure is given by

N r NT ) .
B = = ¥ PjPij (25)
‘ 4 o PP,

We note that Eq. (2.5) differs from Eq.(2.4) by lgmltiplicative factor, %

Hence, in the coming discussion we only_consider continuous wave detection sys-

) tems,- The discussion for pulied systems could be managed in the samé manner.




2.3 The bistatic case

Consider now the wave scattered from an ensemble of the scatterers in the
bistatic case as shown in Fig. 2. The transmitting and receiving transducers (f
,and R in Fig. 2) are assumed to be circvjlsr,'nnd to h;ve equal and narrow’
beamwidths. The detected volume is the area where the narrow " conical
transmitter belm pattern and the recéiving sohd angle intersect. The incident -

* path length is r;;, r,; is the scattered path length, r, is the distance from .
'tr;nsmin;r (or receiver) to the center of the detected volume, _u{d B, is the half
width of the main lol;e“o! The d}rectivity pattern (i.e. 28, is the angular separa-
~tion of the -3 dB points). . o

B s 3
In this case the incident pressure wave in Eq. (3.1) takes the form _

= (p, ro/riyexp(-ar;) D; zxy‘[i( kor-wt)) (2.6)
where r, is the distance along the{acousﬁ; axis to the point at which the sound
pressure level is p,, D; is the directivity of the transmitter, r; is t‘he distance
from the transmitter to the pamcle, and @ is the attenuation coeﬂlclent, which is
assumed to be uniform along the incident and scattered paths. (The overbn.r

= denotes the average qver the particle size distribution.) As_ wnll be seen, this
assumption is reasonable for the blstauc systems u‘ns:dered here because-of the »

smnll distance |nvolved The scnuered prmmre from the jth scatterer is glven by

Ps T
T DiiDoi o f ool 95)
i §

Poj =

iJ
" xexpl & (rij + o ) expli (K (rij +r)-wt )] @7)

1 .
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'

3 (0,m,,n,)

Z

Figure.z. The geometry for the bistatic case. T is the lrli‘llmillﬂ,-
R is the receiver. The remaining symbols are defined in the text.
. /
_ /
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* where D, is the dircctivity of the receiver. For a system in which the same trans-
ducer is used both to transmit and receive (the monostatic case), the received
pressure is called “the backseattered pressure. In this case D;; = D,;, and

r = t,71 50 Eq. (27) becomes

n(a) be the size speclral den ty For sphencﬂ pnrhcles, the mass concengm,xon

of suspended matter M is g)ven by

where p, is the grain density of each' scatterer. -Let dr be the volume element,
. then the summntmn in Eq. (2. 4) becomes an. mt’eg-ral over the detected volime.
For an arbitrary size dlstnbntmn, Eq. (2 4) can be rewnuen as
ot w ', o
. 32 = [[IN |[npnte)ia|ar = - o
‘ g 4y

Using Eqgs. (2.7) and (2.9) in the aboy; equation, we ;el
o

f"’l/w(ﬂa)l’ﬂ(n)dﬂ

',’ SMP' fjf Ar D, %expl-: 2a(r‘+r,)] =  Ydr (2.11)

2 e .f.a’n(a)da
. . e .

o 4
“ :+ M= Np, %x[u“n(a)dﬂ . (2.9) .
;8 :




We note from Fig: ‘2 that MIN(f;). = 6, -25, and MAX(0;) =10, + 2,.
“Typical -values of 3, considered here are 1.~2°. ,’l‘hr v“n‘ristion.in scattering
angle over the detected volume is therelbu small, and -we assime 'thil

1 folba)| 2= |10, o a)|% The vahdlly of this nsnmytmn is tested later,

If it is also assumed that n(a) does o0t vary wlth_m the deteclegl volume, then”

(212)
’v*{he;'e - § : s ’
fff =D D’exp' Ea(r +r, )]d‘r" e o(2.03)Y
4r r? E
and™ _;
‘ 2 _ _3MA? R .
E T 4np,B? @1 i
:v;he‘rej. p o ; ._ ] ¥
i g
| T 1S lbor 0)|%a?n(a)da - @15
. ° ®

and >

M lhrough the linear attenuntxon cpelﬂmnt a.

‘We' v,ns‘




llxpproximne analytic expreision for G? valid in the narrow beam case. It
appears however that this problem has not always been: treated properly in the
. literature. For this reason, and because a useful approximate solution is intto-

o . duced, the problem is considered in defail in the following Section.
) L L}

. 2.4 The deiected volume 7 and. G for bﬁthgle’ ;ls_z_em.

8 ki ln order to evnluste G’ (Eq. 2 13), we must first oblam' :pproxlmnze expres-

. ; > sions for each or the terms in the mIegrand for the narrow beam case. '

e 4 .“’,\ Suppose’ that thg‘trnn'smluer “and the_receiver an both on the Y-uis, and
that their, acoustic axes lie‘: in the ;YZ ~plane (see'Figﬂ)‘, Then the coordinates of
each transdnc?r are (0,-b,, 0) ;x;gi» (@5 .0);‘mpectively. and the direction
co:;inégf the m:l;n beam axes are (0, m;‘: n, ) for the transmitter and (0,—n‘l, )

h { ' for ti:e receiver. w: have. )

m, = cos7,, d, = sy, (217} .

Consider -the Mai.n lobes of the trnnsducer beam p;tle'rns'tt; ‘bé cones with

l,hexr ngex at: the center of each transducer Let f and ! be unit vectors along

the axes of the trnnsmmer and receiver cones, Tespeclwely That is'

i = mj 4nk (@218




and ( "o -
I, = -m,j+n,k . (219)

Let (X,Y,Z) be the coordinates of u}nrllcle which is Iomted in the detected”” 7
v?lume Then let 7; be the distance vectmymg on the straight line- cunneclmg
the apex of the transmitter cone and (X,Y,Z), and 7, s vector lying on® the

. straight-line connecting the apex of the receiver cone and (X,Y,Z) (see Fig. 2).
Then * i e ’ ) :

T =x.+(Y+o), +2zk - (220m)
Fo= X (Y-b,)] +Zk R " (220b)

B
We consider the directivity terms in'Eq. (2.13) first. For a circular trans-.
/ ducer of radius a, unil’om}ly sensitive over its surface, the directivity D takes
the form [ Clay and Medwin, 1977, p. 144] *

S

TN ) )
b= TR T e, e

where .4 is the angle with respect to the acoustic axis, J, is the order 1 Bessel -
function of the first kind, and € = k, o, 8. Eq. (2,21) holds in the far feld: that

is, for r,;, r,; > 7a,2/\ [ Clay and Medwih, 1977, p. 155].

We choose A, to be at the - 3 dB points ( D? = % J of the main lobe of the
beam ;;attern; that is, at §, = k, a,'ﬂ, A 18, We therefore consider the direc-
‘Aivity only in the‘ range 0 < € < §,. From Abramowitz .and Stegun [1968,

p.370], for -3.0 < € < 3.0, we can use
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# - |_,|.m|-§-'

The i error i duced by this. pp oecu;s at £=¢,, and is
about 5%. Therefore D in Eq. (2.21) takes the form B
. ) 2
~1- HIERE (UL
; D~ 1-1124 | 3 1 — (2.23)
- L ) . !
<(k, ¢ (
Ignoring terms of order iﬂ, we get H
64 3
— g “\
¢ . . )
ppF ~ 1- Xk o) o2 +.ﬂﬁl )
o ¥ >
From Egs. (2.18), (2.19) and (2.20), we have
i; r,‘_cos'ﬂ,- =m,(Y +b,)+n,2 . (2.25a)
b=

ycosf, =-m, (Y -b,)+n, 2" (2.25b)

and

»—][m,Z =g (Y b, )i 4, X5 < m, XE| (2.260)
| i,\x'n-, | =r, sing, = I[—m, Z'-n,(Y=b,) i +n,Xj +m, xil (2.26b)

§- ’ "y % :
where f; is the angle between §; and 7 and B, is the-angle between £, and 7,
(seeFig.2). . .
Making the following change of, variable

s =2<2¢ = Z-1,n, (2.27)

" Eq. (2.28) can be rewritten as



rsing, = |(...,( V) e, X i X il

r,sinf, = l(-m,(fn, ¥li+nX j+mX E| (2.285)
For the narrow beam case, cosf; = cosd, = 1, and from Eq.(2.25) we have

n -
b, o, |1+r'— {2:20)

* Since sin?8 & #*, squaring Eq. (21‘6) gives

(mos-m YE4L X | (mostn, Y4+ X?

2 2.
B} jﬂ.r = 3 o (2.30)
From Eq. (2.25a) we have . &
LY +n,9]°
= Im Y+ mr e +OR = 2 [n + ""r—""]
. ! ‘ 3
om Y ¢
or, since ———— <1,
o o - [me. Y +n.<)]
T
and
F 3t ,
1-=(m, Y +nq| - (2.31).
Similarly, i i -

: 2 ,.’[|+M]
e [



m

. and

L [x im0 (2.32)
X G,
t - )
Using Eqs. (2.31) and (2.32) in Eq. (2.30), we get*
- . R # ) : r\
I . prepr = 2 [xz +nlrte m};’] (233) .
Substituting the above equation into Eq.(23), we finally get y
. ! . 4 b .
L DD2 o 1- _(”; 3 ) [xz n2yie m,zf] (2.34)
. 3

The attenuation coefficient jn Eq. (2.13) can be separated into terms due to

the ambient fluid, a,, and due to the scatterers, @, (we ignore the attenuation
due to viscous damping and thermal conducli‘vity, which will be discussed in

Chapter 4‘)4 In freshwater a, can be written as [Clay and Med;vin, 1977, p. 98]

b e :
. : 163.44 12 (‘é“lr +ur) .
* R e - (2.35)
Pt .
where [ is the acoustic fréquency, s is the dynamic coefficient of shear viscosity '
for freshwater, and p;- is the dynamic coefficient of bulk viscosity for freshwater.
’ . The atfenuation coefficient &, is a complex function of size and frequency.

For frequencies such that the acoustic waveiength is much lesy than the scatter

.circumference, however, &, is given by (see Chapter 4 or Morse and Ingard, 1068,

p. 419), !




R

(2.38)

In the cases of interest here, the frequericy is in the range 0.5 MHz < < 10
MH:, th; con‘cenlntion of the su;terers less than 10 kg m™, and the average
‘radius of the scatterers is in the range of 30 pm <f < 300 pm. Suppose .
T =15°C, so'that ¢ =1468ms™, p, = 900.1kgm™, pr ~ 110 Nsm™
and pp ~330Nsm™2 In this situstion we have o, <2660 m™'~and

@, < 5.66m, such that . ? ) :
Gma, 45, < 83Wm T (24
Now, using Eq. (2.20), the exponential in Eq. (im] becomes .

. i
exp [— 4ar, - 4an, {]

Because -
1,8, § o =
e N o - (2:38)
we therefore have, using Eq. (2.33) ~ ) -
o L. . . s .
| Eng <drften, (o, + &) <SPt T (2.3f),

for r, = 0.15 m, which is typical of the systems: considered here.—"
For 7, < 75' and §, < 2°, therefore 2an, ¢ << 1, and Eq. (2.13) can be

written as

gro e ”j [.__(-.,. 1‘f+n.r)} {li%(m.t;"-i’] -

k.
X (1= (zl')’IX’+n’Y’+m’ﬂ (l-lan,;)ﬂr :
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:
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|
A
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where Eqs. (2.32) and (2.34) have b:on used.

Ignoring higher order terms as before, we have

¢ ~
(ke o, }X? 40}V 24m ) ‘
X 1-—”[ +45n,g+—+—§'f— drf (2.40)
3 o
] i
P -

<
2.;.1 Numerical evaluation of 7 and G?
e .

Booker.andy Beue‘ncollnt (1955 ] appear to have been the first to estimate the
value of 7, and detailed consideration of this problem was given by Sugai [1965):
We have not found nn;\sﬁé‘quem dériirx;iigns of 7 in the literature. Since there

are two errors in Sugai's derivation, the probiem is considered in detail below.

For the transmitter cone, let §; = 3, in Eq. (2.25a), we get

m(Y +8,) 40,2 = reosh, (241)
where

2 =’x'+(Y-4;b,)7+Z‘. Tot(2.49)

* which are equivalent to Eq. (1) in Sugai{1065].

Similarly for the receiver cone, with apex at (0, b,,0) and 8, = f,, we have

(Y -b,) 42 = rycosh, (2.43)



and

2

N W= XPe(Y b, 422 240

-
Following Sugai [1965], let Z, represent the lower half surface of the transmitter
, cone and Z, reprheng the upper half surface of ‘the receiver con). From Egs.

(2.41) land (2.43) we have

2, =G (Y +8)+ AVBATH 5, X0 (58)

W (Y =8,)

) =

4, BAY -5, F-X (2.45)
‘where' )

A, \J1-n%sec®8, ="1
B, = A, tanf, (2.48)
i . ’ C, = A’%m,n,sec?s, =

From Eq. (2.45) with Z, = Z, = 2, and X = 0, we get .

Zo = o, -m) am)

o —_—
where Zg is defined by the point of intersection of Z, with Z‘. (Fig. 2) in the
X=0 plane. The intersections of the transmitter and receiver cones with the

B Zc plane are ellipses which overlap exactly. We note that in general the
point (0; B, Z,) (Fig. 2) will not coincide with the intersection point of the acous- )

tic axes of the two transducers.

From any one of Eq. (2.45) with Z' = Z¢ and X = 0 we find



|
)

' parameter range 10c¢m < r, < 60cm, 10° < 4, < 80° and 0.5° < 8, < 3°,

(2.48)

For very narrow beamwidths (for example §, < 2°), we drop terms O (82)

5 e
refative to 1, and Eqgs. (2.47) and (2.48) can be approximated by

. 2o '~ r,n,
Y, ~ B, . (249)
e
. and the ellipses in the Z = Z¢ plane can be apprﬁximately expressed by
A : : .
2y2 .
n'Y? o x? .
—_— =1 2.50]
o E (230)

Since the detected volume is symmetric about the planes of Y =0 and X =0,
we have ’
.

J ° Z,
. T=4fady [ix [dz (2.5
- [ 24

—

where w is the width of the ellipsé in the X direction. From Eq. (2.50), w is

(2.52) .

Sugai [1985] mistakenly- took w to be a linear function of Y. Sugai's range of

integration in the Y direction is also incorrect.

* As shown in Appendix: A, after integrating with rmpect.d X, the

resultant integration with respect to Y must be carried out numerically. For the

the result is



2

r Sﬂ 3
= (5.1~5.2} u’n—" (2.53)

393
These results for 7 are to be compared with Sugai's result T = 4x- r., 5' , which is
sinf,

N

large, and Booker and Bettenourt's result 7 =
sinf,

, which is small.

The evaluation of G can proceed in the same manner. Let
£ .

1 4 k, a,)? o
G(X,Y.0) = (48, ¢+ = S ¢ ; "‘,) (X240,7Y24m22)| - (2.54)
T 5 s o R
; then Eq. (2.40) can be written as ‘
o= Trle™ [1-—”’],(x Y,f]dr] (2.55)
whgre
: - f
—HI;(X Y= 1 dyjd.\'j,(\ Y.g)ds (2.56)

P TV e

with ¢, = Z,-Z and ¢=2 Zc. o

. The numerical integration of the above equation is given in Appendix A for
the parameter range 20° <17, 550', 5 :m <r, £50em and
0.01° < B, < 3°. Some nu;erical'ruulls are shown in\hble 1




" Table 1. The pumerical vuluuof G’/r. and the comparison with
results of '.he pnrabolxe approximation.

fo T B, ieal paraboli discrep
cm_| degrees | degrees |- value approximation %
» 0.1 0.6119 0.5550 23 .

0.5 08121 05540 oo 03

15 30 10 0.8127 0.5544 9.5

2.0 0.8152 0.5524 95

30 0.6108 0.5490 114

- o.r 0.6119 0.5550 93.
; P . [ 06119 | - 0.5548 9.3
: 15 45 10; 08118 | 0.5540 9.4

20.. | 0616 0.5482 - 104

i 30 08114 | © 0.5460 107
- ; 0.1 06110 --0.5550 93
¥ ol 0.5 0.6116 0.5545 937
. ) 15 60 | 10 0.6108 0.5530" - 0.5,

. 2.0 0.6078 -0.5414 109

30 | 035855 0.5271 100

- - Ay
N

2.4.2 Parabolic V:ppro‘xlm-ﬁon for 7 and G2

We note that the cross-section of the common volume in the XZ -plane is
the intersectionof two ellipses of which the centers do not coincide except in the
Y = 0 plane (Fig. 3). We use two parabolae to approximate part of each ellipse
within the detected volume, We deﬁne this kind of approximation as the “para-

bolic lpproxlmsuon The de'.ected volume now beccmm

' r=4fd¥fdxjdz (257)

-Y; ‘o
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DETECTED VOLUME

-

Figure 3, Parabolic approximation of the cross-section in .\’Z-’;l_me. '
I'represents a plane parallel to ihe XZ-plane, and-the ellipses shown
: are in the IT plane.
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The parameters Z{ and Z in the sbove equation are the parabolic approxima-

" tions to the lower and upper surfaces of the left side of the detected volume and

are given by ) .
2
Z; =, +l,[l—x—2] > (2.58)
" -

- X

2; = nr, + 1,[%, 1] (259)

N w J .
a . i s - i

. where Iy and I, (refer to Fig. 3) are obtniljed from Egs. (2.45) with X = 0. That

E ; .

is, )

AR ELAN) ——y

7 Iy 2= Zp-ily o
A
and
-8, )Y %
P i By = DB PN T (@.61)
: m, )
Therefore we have - '

¢ 160, Y +1,8,) VIR

=]

KA 3m,

" with respect to Y and using 2n, m, =sin2q, =sin0,,-ﬁpally> we

sinf) (262) o
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This rault is wlthm 8% of our numenul _value given in Eq. (2.54).

We also introduce the “parabolic approximsti " to the lntegral, of Eq.

(2.586). ln the parabohc appmxlm‘non ;, snd ¢y m Eq. (2.56) take the forms’

=
I

- B

50 Tin J [f-l] f

where w,2{,2{, ll nnd I, have been given jn Eqs. (2.62), ({58] 1) (1 ﬂl]

s (z 04)

lnlagratmg Eq (2 56) with respect bo G we have

#1400 + ko ai s e, J‘Xﬂ(cm)] (29

]ntegraung the above equation with respect to X, we have’

o

= f II gdr ———18(k, a,n, [ w¥Y¥(2482 +43m%n2)dY
", -Y . i
", h V’L o . i d
+8r, [ wY?(28(k, 0, )6 + 2248076, 7; <
B A : N
- ) ! S
+ 5000, 0, PnPm 25, +224028,14Y .
C e g . 7 —

Zi-nyr, = "[“7%] e (2.

_”_fguy-lfay]—-[(k a,)’ ”(;, .

-

B

2h




el

+38 [ wY[i(k s, P, 0? +2245n, 1,352
A s

+ 24(k, a,)*m,?n, r 282 + 224n, r,282)dY"
“ T % L o
¢

+ 8k, )m/2r, B, I wl'lw +8r.’ﬁ’llY

5 .
“ . Integrating ‘lhe above equltiun wilh rapéet to. Y we get

o 010ﬂ’(nr, +1)
" cost,:

1 _[ [ j yar=oms(k s )’ﬂ* (286) .

Eq. (2.66) Is within 0% of lhg the numeriesl values of Eq.,(2.56) id the parsme-
ter nnge consldered before. The compmson is shown in Table 1.

Using Eq (206) in Bq (2 55), Gz takes the Ionn

%
2 —4ar,
6= r" : pmﬂf"“’ - 0.2168(k, o, %82 [. (2.67)
e, cos’ .

For the terms ‘enclosed by square brackets in Eq. (2.67), w; use the same parame-
ters s befoge and let the Tdiu of the transducer a, = 2.5 mm (this is typical of
the bistatic systems considered here), and & = 8.320m’. So that we have .

0
+ @r, = 1.248 and \;ilhf k. a,B, ~ 1.8, the terms in square brackets become
T ~

[l 40.01038 - o.ssso] ' . (2.88).
. N
We note that the second term in the above square bracket is small relﬁi(g to the -

-
—

LT T




first and last terms, so we have

Glrr? e‘xp|»4&r_]

G* = 2.69
) (2.69)
.
whiere G,2 =‘0.;4& Eq. (2.12) may therefore be rewritten in the form

= S?H}expl 45, 1,] 2 (2.70)

where - - : : !

- P2 T2 . ! ¢
SR S 52 = 21 G replaa, r,) (21)
. k ar, ¢ X 5

. . g
and where @, is the additional attenuation due to the particles, and a, has the

saime'definition as before.

C

2.6 Multiple scattering limit
s .
' In the previous discussion we considered low particle concentrations: that is,
3 ' ; %
we ignored\multiple scattering. In this section we shall estimate the concentration

; i
at which .multiple” ing becomes’ i t. For simplicity, " we initially

assume isotropic scane{ing (the form factor i v

is independent of scattering angle),
;and we consider the pafticles to be of uniform. size. !
‘ Choose two scatterers, Qhe Jth and ‘the kth scatterer, and suppose the seats
tered pregsure l‘r&m the jth pnrticle-wil'l be rucit‘te}cd by th:_kth seatterer,
Refe‘rring"!o Fig. 4, the distance from the jth pntiﬂe to the transmitter‘is LTI
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Figure 4. The haif-period zﬁlor the first order multiple scattered waves.
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and to the receiver is r,;, respectively, which are the same definitions as in Sec-
tion 2.1. The distance from the kth particle to jth particle is 5; and to the

receiver is py, respectively.

Following Waterman and Truell [1961), the Fresnel half-period zones are .

ellipsoids, and the interior of the nth half-period zofft is defined by

i +(n-l)% <bp+pm Srnjtn —;—. where n'is an integer and X\ is the

acoustic wavelength. In each zone all waves rescattered by particles which are _

. located in this zone have amplitudes of the sameﬂsign wheq they nrriv'le at.R. On
average the contributions from adjacent 20mes will be o(pposite in sign, and
because of the attenuation and 'radi:sl spreading of the scattered wave from the
jth particle,‘\we can say the total cbntributfon from several zones could not be
bigger than the contribution from the first zone. As-a result we only need to con-

- v
sider the multiple scattering from the first zone, the boundary of which is defined

by b4 +pp = r,; + % (see Fig. 4). The scattered and rescattered pressures are

3 . =
given by . A : . Y
aof .
P =%p; [2r = ] explik, r,;] +(2.720)
; 2 | g
' . of b. .
P = b 4[—25,: ] explik, 6 (2.72b)
N, t ¥ .
\ - 2,2 -
: by = b | L= el (6 + 04 (E120)
’ 49405 8 .

1 -~ .
where (p,l- and p,;' are the scattered pressure from the jth particle pt the dis-
]

’ 4

Yoy o

gl
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tances r,; and §;, mp'cctivi_ely, snd p,;"is the multiple scattered pressure (the
first order) at R.

Let P,; be the total multiple scattered pressure of the first order in the first
‘ Fresnel half-period zone, so that We have

Py = fo‘{ p,;-lr
: sone -

. (2.73)

“Substituting Eq. (2.72¢) into Eq. (2.73), we hive — ¥ »
e Pl"l i na?f*N[[[ [éexp[ik, 6+ p)]d; (2.74)
zong 1 « . X

where the subscripts on § and p have been dropped for convenience.

Following ‘Waterman and Truell [1961], we, choose bipolar coordinates p,

5,
and & (ihe azimuthal angle about the acoustic axis) for the integration. In the
&
first zone we have
-

ity 275)
and . ) ' (
. S g ' g
. Z A ¢ ;
AOSpSry+ o 2
’ 0< & <o (2.76)
i S «
The volume element is [Reed and Gunnins, 1073, pp.458-450]
) dr = 2 4pd5a0 “(2.77)
l"i .
so that -
" 5
£




Y
2w YT e
Py o= tnadf AN [do [ dp [ (Lyexplit i+ olds
. ° 0 DEIC =
After integration we get
* A
miof Nl +3) | ap ' .
Py = (= N e ——explik rj] (2.78)
e o g
which can be.yritten as - ;
Py 2miaf oNr,;

Pij k.

since -%‘ << r,;. For the narrow. beam case we have r,; ~ r,, and the above

1
equation becomes

-

Py _ 2miaf Nr, : ’
—_—=— - 2.79]
Py k. ! . 229
. <. .
P .
I Ip—l ' << 1, then multiple scattering can be ignored. This condition ho'lds if
3
) . N ke g 2.80)
% X s< 2ma el r - (2.80)
-
B 5
Since

& 3 - e

B




2k, a2
M« <

.. .- (2.81)
Py 3 Talr

Let us consider cases in which k., @ << 1, a ~50 pm, | [ o |-~ (k. a)*

(see Chapter 3, or Rayleigh 1945, p. 283) and r, = 0.1 m. We get

2 . o M
- = << sx10° (2.82)
: A e
For quartz particles, p, ~ 3% 10%kg/m?®, giving M << 15 kg/m®. .
| . The condition (2.81) is, however, too restrictive because the transducer direc- .
~
- 5 tivity has not been considered. From Fig. 4 we can show that §,,, the angle sub-
tended by hall the minor axis of the first zone, is given by sl
® :—/\ 4 -
. /2 = -
Toj A
=yt ~ .83) +
. - cosf,, = o (2.83)
and since r,; R r,,
; e B = [ = (2:84)

Consideﬂng a typical case where r, = 0.15:m, [ = 8 MHz, ﬂ: =1°, and the
é speed of the sound. ¢ = 1500 ms™, we get f,, ~2°Therefore
7 Bn & 25, - (2.:85) .

# : From Eq. (2.85) we note that most of the receiver cone is inside the first Fresnel

zone. Since the receiver is aensitive'primnily to the scattered waves from the par-
% ) s

>

- T a 8
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ticles which are located in the receiver cone, therefore the total multiple scattered

pressure calculated by Eq. (2.73) is bigger than that actually sensed i)y the

- receiver: In other words the actual value of maximum concentration for ignoring

the multiple scattering could be bigger than that estimated !mA (2. 81).
The results obtained sbove require that k, a should be small so that the

form factor is independent of scattering angle. For latge values k. a, the isotropic
. ' ™

.assumption does mot hold, and for *, a large enough |fwf| in.the forward -

direction (6 = 0) becomes véry large (see Chapter 3, or M

and Feshbach
1953, p..l§54). This permils us to consider multiple scattering only in this direc-
tion. The rescattered pressure in Eq. (2.72¢) now takes the form

o [l ] A
Pej = Pi [%—’] explik (6 +p)l (2.86)

s > '
Since 6 +pp = 1,5, so that the total multiple scattered pressure of the first

order in the forward direction P,; is given by ,

- o N

£: 8 o0/ of0) ST e =
e —H‘Jgfﬁ s,

Let A be the average interval between any two neighboring particles Clearly, A

1
is equal to 1/N 3. Then Eq: (2.87) becomes

We

-4

P O 0 1 dé ‘
e ;——4—‘"—-“!71"‘;'.;1 { T A (2.88)

[

Py;

After integrating Eq. (2.88), we get ' ’ R

<



a7
T ‘
. Pi= i i :“’)" piof w(’;:j“’f"‘f '-iI] [zlox% (2.89)
it
Py 3 5 . :
= N3[ o(0)alog|N ; il _(2.90)
I # << 1, multiple scattering cfn be i;n‘orAed, Coi;_sidzring a typical ‘case

with the uniform-sized scatterers of radius a = 300 ym and | f «(0) | = 10.

With r, = 0.15m, we get M << 2.0kg m. When the concentration is in this

range, muliple scatterinig.is negligible. It can be seen that when the amplitude of

‘the forward scattered. wave is‘hl"ge, the maximum coRéentration fﬁr'ignqring

A

multiple scattering will be smaller.
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CHAPTER 3 THE FORM FACTOR

The tl‘zeureticll computation of ll;e form factor | f .| is made by using the

partial wave phase shift formalism 1o obiain the scattered pressure field. In this

chapter, | f o, | is computed for the elastic sphere, the rigid-movable sphere and’

ngnd-nmmovable sphere The latter two are special cases of ‘the first. The ehpter
’ begins “with a bnef presentation of the phase shift formalism, ind numerical
results for | / & ] are gr!senled in Section 3.2. A smooth analyuc function which
approximates the average lor.m of | / wl iS5 introtiuced .in S;;:‘lion 3.3. The varia-

tion of | f o, | with scattering angle s discussed in Section 3.4.

. 3.1 Phase shift formalism

L ‘ .
Referring to Faran [1951], Hickling [1962] and Hay and Mercer [1985), the

wave scattered by a solid elastic sphere is expressed as a sum of partial scattered -

‘waves in the form g il

3 P = Bo explik, 1) 5 (2n-+1)isinn, 7 P, (cost) k. ¢ @1

where the exp(~i wt ) dependence has been dropped for convenience, and 7, is the
" phase shift of the n th partial wave, which is given by
% , . .

o~

a
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—

_ " ltanay(z) + tand, (2, #)] ve
- R S e o
, where
- - pos? { tana, (z') nitn
™ | tana, (Z )+ (n2+n-1)-8? ,
. 2p, | tane, (7 )+l (a2+n-1)-s /2+tu.nu,(l’] @) :
n24n-¢2/24%na, (¢) - (n?+n)tana, (¢)+1) - ,
tana, (7)+1 - (n4n'-1)-¢2/2+tana, (¢) ’
. 4 . ; '
i ¥ i xs
" with .
~ ) '
- v and, () = - S22 (3.42)
-~ . ) n, (2) -
tana, () =~ Z‘((:))A \v(344b‘) .
o . tanf, (2) =~ ’,:”(‘:)’ (3.49)

L]
\ where j;(z) and n, (z). are the spherical Bessel functions of the first and the

secfa}d kinds, respectively. The pri the Bessel functions denote the deriva-

tive with r‘upec‘p to the argument. Otherwise p_rimes.deuoté propertiés of the ) i N
. scatterer. Thé di;tndce from the sphere to an a;bitrary field i)oint P(rg0)isr, ¢
p: is the dex;sity» of the pnw'd:, P, is the density of the fluid, z =k, a,
2= I:,"a , and o = k/a. Here k.’ and k,’ are respectively the wavenumbers of
the compression and shear waves in the scdfterer, which can be written as

b

k' =ufe,, k' =w/e, W

v - . ' .
c" and :,' being the compregsion and-shear wave phase speeds in the scatterer,

5 s




* respectively, given by

67 = (N + %, o = ulo
where&\' and u' are the Lame constants of the scatterer. N
Bq. (3.1) can be written as [Morse and Feshbach, 1953, p.1573],
a-| % ‘
yr= "—[1 i(zn+1)(—-'A.)P.(coao)]expl-'( k)
2r | 2.2,
5 P, 0 . .
=g 6 0 expli( k)] . (3.8)
where the form factor is given by 5 _ N .
\ 2 & i
[ (8, 8) = - — 3¥(2n +1}iA, P, (cosf) (3.8)
e N k: Gpmpy -
and -
o . tang, 3.7
A, = Sm'l.fveXP[*"Inl = T, 3.7)

L, o

‘The form factor dépends t;n the dimensionless parameter &, a, which is the
ratio of the partic‘le circumferenc‘e to the wavelength of the incident wave, This
dependence can’be divided into three regions: the Rayleigh or long-wavelength
region ( k. @ << 1 ); the Mie or diﬂractiohegion ( k.a=1); and the
geometric or short wavelength region ( k, a >> 1). The form’ factor depends on

the propertie€ of the scatterer through the tan®, . In addition to the elastic case,

special cases considered in this chapter are the rigid movable case and the rigid



s
immovable case. .

Por the #igid movable kuiit; §~ 00; 102", & = 0jsnd ting the;seymp-
totic forms of j, and n, for small argument, we have [/ Faran, 1951; Hay and
Mercer, 1085] - s

4

tand, — 0, n#O; tand; — {2 (3.8)
[ 4 “= Using Eq. (3.8) in Eq. (3.2), we get * s g
k! 3 . . \
" B AC)) . (s, /p2)i{(2) - juz)-
- tang, = - ——, 3 - ———e——————  (39),
s 7 M e e TP A AT E
i . ‘ A )
i L 4 For the rigid immovable case y' —» 00, and p: /p, — oo, tand, also van- . ’
ishes (Eq. 3.8), and we have :
§ = ’ =
. ’ tony, = - 3205 (3.10)
. n,(z) . 2 .
- -
forall n. .
4
, .

3.2 Numerical results
" We evaluated the form fnc;orvlt intervals of 0.01 in z [m+| the phase shifts
| -
7, using the above expressions. The computations were made on a VAX 11/785
- ¥ R -~

P in double precisi using‘lhe I jonal Math ics and

. [l




Library to evaluste the Bessel functions. The range of , a chosen for the com-.
putations was 0.01 to 30.0. This spans most of the operating I‘reiuency range of

' .
interest (0.1 to 10.0 MHz) for the sand size range (30 gm to 2 mm radius)

The values of the l‘orm factor for four cases at § = 120* for quartz in water
at 15°C are presented in Flg 5. These are the eh.mc case (Fig. 5a), the ng:d
movable case. (Fig. sb). the rigid immovable case (F|g 5c), and the so-called
“high-pass” model (Fig,;5d). The latter is discussed in a later section. TI;: pb)_'si-

.
cal properties used for quartz and water are given in Table 2. V4 s

From Fig. 5 we note that the form I'acmi- in the Rayleigh regi&n (z’ << 1)in °
the first three cases are similar. In the Mie re;ion O2<z < 3), the shapes of

| / o | in*both the elastic case ard the riéid movable case are nearly the same.

However, values in the rigid immovable case are larger. In the geometric. region”
|f o | in the elastic case exhibits irregular variations. These variations are asso-

cinged with resonances, and have been disc\usmi elsewhere [Hay and Mercer,

1985, Flax et al, 1081] However | / o | in both the rigid movable and,the"rigid ~
»
immovable case oscillates reg\ll:rly as z mcreaszs, and | f | —1 at very

large z. Smce u Pt in these cases, resonance exc)htmn does not oceur.

The ﬁrst and the second Tesonances are locnted n‘ 2 =57 and z =71

[Hay and Mercer, 1985 Table 0]. From Flgx 5a and 5b we note that the
ehavior of | f 5| for 2 <5 in both the nd ngnd movable ¢ cases is J

nearly the same. Thu means the scatterer is in ri dy motion for vslues of z

below about five, nnd, the elastic vibrations are confined to the geometnc range | :

Hickling, 1962 = . N % ) (




Table' 2. Elastic propérties of the sediments used in calculation’

&

\ "
Quartz b
Density p.;, 2.65 )(ll)8 kgm
Comprumnnl ‘wave speed X, - 5100m sl

3Shear wave speed ¢,- 3200ms!

i T dnaizic Gheisse?

. Density o, 2.64 X103 kgm
Compressmnal wave speed " 4011 ms™!
- Shear wave speed 2020,m s~!
5 R RS A pocacy
Granite - h)
L . Density ¥ oot 2.683 X10° kg m"
* Compressional wave speed "¢, , 4192ms’!
‘Shear wave speed ¢ 201ms! .
. Sandstone Q\m‘tziue il ab
Density py,  2.685'X10% kg m
Compmsmnsl Wwave- speed g, S19lm st A 1
. _ Shear wave speed, ¢, 3498ms!
3 ¥ 0
Water’” :
« . Demsity, ¥ £ gy 0.998 X108 kgm®
Speed of sound ¢ 1468ms! -
- £ smic
* » » .
N . .

* All the dah ccome from ‘Handbook .of  Physical. Constants (Clarke, 1968], and
we use the' average value if thire are :evenl values nvmlable for the same materi-

ll, . X $ ) ’

"4+ The'sound speed ‘in the water is “calculated using the formula given by Clay
N ;nd Medwin [1077 p. 88]. T ig the tempemture, which is chosen u 1‘ =15°C
A\ here, . s
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Elastic case
a /~ © Cp=5100, Ca=3200, Cx1466, Aho'=2. 65
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b - C = 1466, Rho' = 2,65
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d Cp=5100, C=3200, C=1466, Aho '=2. 65
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Form Factor

Pngure 5 Cllcuhled valuesof | / ,,,I at scattering angle § = 120° ~
for four theoretical models. (a) elastic case; (b) rigid movable case;
(c) ngld lmmonble case; (d) Hi;il -pass model.
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“the bulk compressibility of the solid. For quartzlike materials in the water, using.

3.3 Analytic expressions for | f . |

In general, sand grains are irregularly shaped and inhomogeneous in compo-

sition. Under these c_ond_itinns resonance excitation is unlikely, and f o, for the
2, -

rigid movable case should be more suitable. If in*addition the $ize distribution is

.
suﬂ'mlemly broad, the oscillatory behavior of /., would be averaged out. We

therefare seek a smooth analytic function wlnch Approxlmatu the aveuge form ’
of [ o ’l‘hls kind of concept was mtroduced by John;on [1977] for fluid sphera;

in the, bsckscattering case. Tn this section wé present the equivalent fesult for’

solid spheres and arbitrary scattering angle. . . v

In the Rayleigh region ( z, 2, 8' << I), the form factor in'Eq. (3.6) reduces. .

to the well knawn result [Rayleigh 1945, p.283)

‘a

[l a) = %U& a)%( 7, + 7, cosf) T ka1 (311)
@
with
4
4
YW = (3.12)
- \ ’ b
and ' ™~
3o, - p,) ; y
= iefel i 3.13
"= o we, )

where:n is the. adiabatic compressibility of the fluid, and &, = l/()" +24/3) is

.




the parameter values in Table 2, we have 7, ~ - 0.9 and 7, ~ 0.8.

o the geometric rekion .(:,z'.a' — o), we consider the rigid movable cue..
Substituting Eq. (3.9) in Eq. (3.8), we have ‘
hil)iile) - gie)hits)  —

6,a) = ; 0
Lolho) = Tl e i ]

’ . . )°:°; (2n +1)P, (cost) 22 2L ": : @is)

where hy (z) = ja(z) +-in, (z).

Following Hickling and Wang {1965}, the above equation can be written as

fol0) = C@Fjo) L @)

where G (f) and f(ﬂ) represent the correﬁpondiné terms in Eq. (3.14), and j(ﬂ)
is ‘the form factor for the rigid immovable case. In the limit k. a =, fo)is

given by [ Morse and Feshbach, 1953, p. 1554]

s [awsn( )] o]

The first term on the right hand side in the above equation. is an isotropically

1+cosf
zsinf

]J,(xsino)]‘ (z -o0) (3.18)

scattered wave, the second term is the shadow-forming wave. Comparing this .
term with the transducer directivity ( Eq. 2.21), we see that it is shn}ply peaked

in the forward direction for large I: a. Since we are mtemled\}n» he bistatic and f ¢

monostme systems for which 0 is large, and since J,(z) ~ l/\/_ for—hrge z, we

have
i




* Y 7
‘ 'S Y

t ‘i(o)’zexﬂ-zmin(%}] T (r=wx) @

- Using the ssymp_lptic forms of the Bessel functions for large argument, G (9) can

" be shown to reduce to -

Iy : ' 1
v Y G ¢~ 005 (2 Z) (3.18)
4 . ‘ ¢ ==
- This result is similar to lhnt given by Hickling and Wang [1965] except for' a

\

. difference’in the algn of a(a), and the additional factor o ¢ P Compiring Eqs‘“"a

(3:18) and (3.17), we see that G (6), which results from the molnhty of a scatterer ".’ .
) .of finite mass, is ummportapt at lnrgeAz , and.so for £ 0 ™~

1ol =1 (z=00) (3.19)

. N -
i . °
r . ]
. ° 1t'i5 now possible to mnstgyrqn expression for | f ,,| which possesses the
. 5, S
sppn:?i‘te asymptotic behavior in both the Rayleigh and the geometric regions.
: 1
. FollovAng Johnson (1077] we write « ©
. . — -«
4 % .
K, z?
! 5
6, a —_— 0 < < 00,05#0), 3.20;
el m b’ 0gs #0. (320
: YA
where 5 - )
% - - o
K = 3|+ aeom]| (3:21)
\ %

- . §
For quartz in water and a scattering angle of 120°, using the estimates of ~, and

7, calculated previously, we get K; = 0.9. s




B n
. .

Eq. (3:21) is plotted in Fig. 5d for 6= 120° sad K, = 0884, Since. its
shape is similar to the gain of a high-pass- filter, it is called the “high-pass"
model. Comparing Fig. 5d with Figs. 5a, 5b and S¢, we note that the form factor
in the\high-pm model approaches that in the rigid movable case with the oscilla-

tions averaged out,

¢ o

3.4 The dependence of | /., | on scattering angle_ * 8

§ . . g P
The form factor given in (Eq. 3.6)-is a function of scattering angle. In

Chapter 2 we stated that this dependence would be discussed in two contexts.

One had to do with the integral of scattered pressure over the detected volume

(Eq. 2.11), the other with qultiple scattering and the forward scattered waves.
\ We discuss the latter case first. i i
”}‘y The form factor in the forward direet_ion for a quartz sphere i water, calcu-
lated using ‘the elastic model, is plotted in Fig. 6. We note that on w_erag‘e
| /e;]' increases linearly ;vith z. Tl‘lisr is readily shown in t‘he rigid case, Eq.

- (3.16), which reduces to

-

070 2 \ (2= 00) A (3.23)

‘The amplitude of the fo‘rwsﬁd wh\red waVve therefore becomes very large as z

increases, and it is for this reason that % was given separate consideration in the

- discussion of multiple scattering in Chapter 2. S
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Figure 6. The form factor in the forward direction for quartz in water.

In Chapter 2 we also sssumed that | f oo(8) |2 = | f (6, )|? throughout
i’ the detected volume for narrow beam patterns. In the following dlscussmn we
test. the validity of this mumptmn Consider a typical system in which
—8, = 120° and f, = 1°. In this case f,,,, = 122° and Omin = 118°. Let
b i r '\ .

DELL= [/, - | fuuis)] /@20

and

DBL2= |/ o(207)] - /g2 (ees)

‘The numerical results for Eqs. (3.24) and (3.25) in the elastic case are shown in

Fig. 7. From this diagram and Fig. 5 we note that most of .thé difference values

\\lre much less than | £ . |. As a result, | f oo(6; .' a;) | in Eq. (28) could be a




DELL (f)

DEL2 (f)

e

50

expressed asa linear function of the Cartesian coordinates X' and Z on which 6,

depends. We also note from ‘Fig. 7, however, that DELI ~ - DEL2. Therefore,
since the detected volume is symmetric in X', and for narrow beam systems is

nearly symmetric in Z, the variatins in | f o | tend to cancel.

©

= " L s L s o

Eam =

o

=)

& L

o

=]

&1 L
-

L} -

< . ———— y ——
0. 00 5.00 10.00 15.00 20. 00 25.00 0.

kxa »

Figure 7. The difference of | f o, | in the narrow beam pattern.

.




CHAPTER 4 THE ATTENUATION COEFFICIENT

The theoretical putation of the fficient due to

loss a, -is made in this chapter for the elastic sphere, fnd for the figid-movable,
sphere Ansl the rigid-immovable sphere as well. A smooth analytio function which‘
approximates the average a, is introduced in Section 4.2.

In addition to ;bsoiplion in the fluid, the attenuation of sound waves in

absorbed

suspensions arises from the energy scattered to infinity and the enen)
within and in the neighborhood of the scatterer. The total linear attenwgtion

" coeflicient can be expressed in the form

‘a=oa,+e,=0,+a, +a,+a, (41)
" where a, is the allenuation coefficient in the ambient fluid, and the additional
attenuation @, due to the presence of the scatterers is the sum of: ay, the ther-
. %o H
mal attenuation; a,, the viscous absorption; and a, , the scattering loss.
i =

For aqueous. suspensions of mineral grains, Hay and Burling [1082] have
shown that thermal attenuation is small. Hay and Mercer [1985] have shown that

viscous attenuation can be ignored outside the Rayleigh range. Therefore we

-have.

i ' amoa,ta, - ‘(&2)




In dilute suspensions, for which the”effect of the individual particles is additive,

the atteduation due to scattering can be written as [ Allegra and Hawley, 1072]

k& .
@, = ——= Y (2n+1)]A, |? C (43
3 2‘:‘,“,.&(" ) Al | - (4.3)
i

where € is the ‘folnrne concentration of scatterers, which is defined as

M

g
o

(4.4)

>

where M is the mass concentration of suspended particles.
Because we have ignored viscosity and heat conduction, tann, is real, so
S g .

* that using Eq. (3.f), Eq. (4.3) can be written as
<

tan?y, %
a, = —5 Y (2n+1 4.5
; £ et s
_ The form factor in Eq. (3.6) for § = 0'in this case can can be written as .
a5 .
. ) 2 & tang, (1-1 tanp,) .
i 0) = - — 2n +1}———m——— 4.8
. o =g B ) e
\ -
Therefore a, in-Eq. (4.5) becomes
- ao, 3 lm!/ ,,(on K ' ’
T STz (‘4;‘)
‘ or "
. )
v ?
Po % . 0
= .7b.
R M . L)
e .
e - o W




% % o ]
“~The difference between Eq. (4.78) and Eq. (4.7b) is that the left-hand side of Eq.

(4.7a) depends on concentration and the radius of the pmitle. whereas the left-
hand side of Eq. (4 7b) depends on concentration and frequency. The lstter form

is useful when we comlder the effect of size dulnbllhons

4.1 Numerical results

[y

™ The attenuation ‘coefficient a, for quartz.in water cglculated at iltervals of
0.01 in z is.plotted in Fig. 8 (ngmnliujﬂaudin; to Eq. 4.7a) and Fig. 9 (nor-
malized according to Eq. 4.7b) for the elastic (Fi;s: 8a and 9a), rigifl movable
‘c_ne (Figs. 8b and 9b), and rigid immovable case (Figs. 8c and 8¢c). Also shown is
the high-pass model (Figs. 8d and 9d), which is discussed later.
From these Figures w; note that it the Rayleigh region aa, /e for all four
,_ﬂua are equivalent. In the Mie region (0.2 < =]< 3), aa, /e in brth the ‘elastic

and the rigid movable cases are nearly the.same, but in the rigid immovable case

( the for s larger. In the me! ic region all models are similar, except for

I.Ee oscillations in the elastic case, which are associated with resonances [Hay and
* Mercer, 1985]. Comparing Fig. 5a with Fig. 8a, t:ha attenuation coefficient is a
Y much smoother function of z than is the form factor.
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4.2 Analytic exprulltn: fora,’ ° F

N i Referring to Hay and Burling [1982], in the Rayleigh range (z, 7, ¢ << 1 )..
‘In. | €< 1, so that the coefficients tann, rapidly become negligible as n
increases. We therelore consider only the first two coeflicients !mq, lnd tann,.

The expruslon for a, in thls case is given by [ Adlegra and Hawley, 10721

aa,

I»:.+— (ha<c)) - (48

s ] . E
Now consider the geomebnc region (z — oo) and the rigid immovable case,

From Eq, (3.16) we have

-
s mi©)~z . )
L™ i
T Substituting the sbove equation into Eq. (4.7), we finally get .
. 5 -
s ; N
! J 280 L3 (rue)  10)
\\ - s € 4 ST
N . E
This_ result has alrendy been used’in Chapter 2 (Eq. 2.36).
» As with the hngh pass model for. the form factor (Eq. 3 20), we can wnstmct
)
a sgmlnr sifnple exprmlon for the suenuahon coeflicient. Based on Egs. (4.8) lnd
*(4.10), we write the att}uguon coemclent as follows .
| o g R Ki‘.)’*; o
| ; 200 af ; . (411
| € 1F (/3K ’ -
' : where ao . ™,
% Y ° ' -~ -




- A\ . € 5 ‘ . §
—. : . K, = ; [‘h + 13'- )
2 ]
Forqnl:(zinwnlerntT:lS'C K'Nln =
.
Comparing thn rxpressnon with the results ror the other cue:, we find th-l
% Tt pmv:?u 8 reasonable B\ for 9ery small z md very large z,-but not in the Mie \f\
. region. We therefort introduce the following formula
P et s i : i R . N, 2 T e .
i S IR Koz' . T
W EE Co T T TrupK g e S
# RPN
PR LR Ko2? e (1136)
o e o kM L+ (4/3)K g2t + 2° - %

" o,
The effect of the 22 terms is'to reduce the magnithde of a, ‘near z ~ 1. Again”
= i - N
wen.llitl" h-pass'” model. R S -

-From ’np 8°and 9 it is seen that the high-pass model provides a better 6t

to the elastic and hgxd movtble cases than the rigid immovable model in the
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’ "TCHAPTER &5 COMPARISON WITH DATA | =
13

- - . Thg h ical results for atte ib flicient and mean squnu scnn.ered
prasure presented 'in ‘the previous .chapters are compared wuth data .in thu
chnpter ‘The multiple scatlenn(pmblem is also dxscused briefly. The “effects of *

different size distril on and

mlenslty nre

“included.
A s

5.1 Thé data " L
Jansen [1977) used ;a'bistatic system open:sing at 8 MHz to measurg' the
mean square sigaal voltage V.7, which is proportional to the seattered intensity,
from suspended sand grains. The sysfém parameters are summarized in ‘Table 3.
Four size lucti’ons' were tested: 45 to 62.5 pm; 105 to 125 ym; 175°to 210 pm and
250 to 300 pm radius. The ‘sediment concentrations werein the range 0.1 < Ml

Y <30 kg/l"n 3.4n 1979 Jansen reﬁexlc& .his experiments using the same size frw

ke tlon: The second set of results were ngt pubhshed but are used here. In both
expanmenls the sand graips were nol dmnbuud thmughoul, the test elnmber,
but were mstead allowed to free fall through a 3em wide rectangular penpex

lube cnnxml wn.h the detected volume. 4 h "

«

3 &



Jansen's measuremeats of mean square signal voltage as a function of sand

? concentration are reproduced i m Fig. 10. It can be seen that the slgnnl depends

. = linearly on sediment concentration for M < 1 )(g/m= In the range M >1

kg/m®, the effects of attenuation become important. The mean square voltnge‘
exhibits sig‘niﬂcl‘nt vlri‘nli‘on /with grain size.

. Table 3.  The parameters of the acoustic systems.
Data sources: (al) Jansen, [1977]; (a2)Jansen, [1970]; (b1) 1-D
d (b2) 2-D from Schaafsma_and ‘der Kmdenn, (1085] and (c)

& . s
. Clarke et al., [1984]. NS represents "not specified”.
\‘ e
- - = 2 2
* > o | g Frequency T k g
5= Source of Data (em) B | 8 (MHz) ol 19‘ (‘ri\")
() 15 |10 |a2e | 80 NS 343
\ - (a®) 15 1° 1200 [ 80 -15 34,
, (b1) ¢ ]” 15~ | 2° | 120° 45 15 [ 198
(b2) 15,75 [ 2° | 120°” 4.5 15 ‘1.95
“@-T [ ns [ns|is0e 30 | 20 | a2
*
-, . = ( P
. 3 : ST SN
% ) : \
I's . ' . l
. - ¢
- < . '3
e
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Figure 10.! The mean square scnl(ere& signal as a-fu)
sand cyncentulion for various grain radii (from Japsen [1077)).
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Schaafsma and der Kinderen [1985] used two types of bistatic system of

ing‘n 4.5 MH:. OneD system is called oné-dimensional (I-D), the other two-
dimensional (2-D). Both systems congist of a transmitting transducer and two
receiving lrln.ld’ucen‘ The difference between them is that in the one-dimensional
system one o!' the receiving transducers is used, to detect the transmitted signal,’
the other to detect the scattered signal. In the two-dimeujonnl.mkm, however,

both receiving transducers are used t> detect scattered signals, but at different

* vlues of r, . This difference is not imyortmt here, but the distinction is retained

to diferentiate between the data sets. The other system parameters are summar-

.ized in Table 3. Sehnh’hn and der Kinderen used Illh.lrll ‘sand distributions in

the siz&range of 38 to dem; 55 to 108 pm; and 65 to 125 pm radius in the
om.-din-;ensional l}stem. dnd 34 to 70 Il'm; 53 to 120 um; and 75°to 160 pm
rudiu in. the two-dimensional system. These ranges are halfl the D". and (Dgy
'll.ll‘lB, where D5 and Dg, mean that 186% and 84% of the grains are smaller

than the-dismeter D . The sediment concentration range was 0 < M < 5 kg/m>.

Unlike Jansen's experiments, sand grains were _Uistributed throughout the test

chamber. B 5 = ]

The signals from the two-dimensional system are reproduced in Fig. 11,
where r, = 7.5-cm for receiver 1 and r, = 15 cm for receiver 2. Note that both
scales are linear, unlike Fig. 10 in which both are io[ui!hmie. From Fig. 11 it %
can be scen that the linear dependence of “the mesn-square 'voltng_e on M holds

for M < 0.5 kg/m®. Forylarger values of M the efects of attenuatioh are-inipor-

" tant, It is also seen that at lower. concentrations, the signals do mot depend

:i[hiﬂc-htly on grain size. Note thiat Schaafsma and der Kinderen used.a much
4 - :

/
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smaller range of grain sizes than Jansen. ‘For larger concentrations, however, the

" mesn ‘square voltage exhibits significant variation with grain size.
~

Clarke et al. [1084] bave reported the mu:\iremenu of scattered intensity
for three, size fractions of sand in a monostatic system operating at 3 MHz. The |
other system parameters are summarized in Table 3. While this thesis relam
mainly to bistatic ‘ystems, the discussions in Clnpter 2 also hold for the monoa-
tatic case, and these data can therefore be included. Clarke et al. nsed size frac-
tions of 37 to 55 pm 70.to 90 pm and 153 to 227 pm radius. Unlike Jansen’s and )
‘§ .

hafsm and der Kind

lq which the size frhctions were sim-
p}y separated by sieving, ihe size disuibntigns in this case were determined b‘y
measuring the major and minor axes o‘f individual grains’ usin_g an optical micro-~
scope, The vilues given here are the minor radii at which the probability densi-:

ties of the size distribution are half the peak values. The concentration range.was

0< M < 0. kg/m?. #
' ~ . X o
[ .
52 M ed and theoretical i el
‘ R c
5.2.1 Estimating a, from the : .’\
. . B \
Firom Eq. (2.70), we have
loglo'[ﬁ,z/M] = constant - 4 @, 1, logjg¢ (5.1

", Relerring to'Eq. (‘J), @, is linearly hroporlional to M and it tan therefore be

seen from Eq. (5.1) that log;olp,/M] is a linear Tunction of M. It should be men-

tioned here that this linear dependence will not hold when multiple scatteripg _



becomes important.

The measured u_luu of logyolp,’/M] s s function of senc;:qtrntion for
Jansen's data are shown in Fig. 12. The plotted points were calculated vfrom the
measured values as determined grnphiclll& from Fig. 10. The solid.lines represent
the visual best fit. The linear dependence of log,olp,2/M] on M is satisfied for
0.5.< M <10 kg/m®. A ion is not i

S for ions less than

“tos kg/m". The data 3]50 indicate that. for M signiﬁcm!l); greaier than 10

kg/m®, the sttenuation coeffigjent is no longer linesr (Fig. 12b).” The discussion

will return to this point. The measured values of logylp,2/M) as 8 function of

concentration from Schaafsma and der Kinderen's results are shown in Fig. 13,

Again the solid lines represent the visual best fit to the data.\It is'scen that the

‘linear"dependence of- logyol,”/M{-on M is nearly perfect in this concentration
S A

‘range (M < § kg/m). . 3

- S

6.2.2 Comparison assuming uniform particle sizse
. L ;& S

Values of 7@, /¢ were compl‘:tgﬂ from the slopes of the lines in Figs. 12 and

13, when)e T is mean radius in eacli size 'fmction, taken to be the average of the

i - 5
‘size range representing each fraction. For comparisan, theoretical estimates were -

obtained from the calculated values in Fig. 8, assuming uniform size equal to the
~ )

mean radius. The.calculated and-measured values of Ta, /¢ are given in Table 4.

The measured vafue of 7, /e for a = 280 ym in hly’é [1977] data has been

dropped, since the data points are dllat low concentrations and it is' therefore

djfficuls to estimate ;he slope aécurately 'ig. 12a).

5
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The d and th ical values are d in Fig. 14 (Jansen's data)

and Fig. 15 (Schaafsma and der Kinderen's data). Agreement between theory and

experiment is generally reasonable. For comparison of the different theorefYeal
cases, we consider mainly Fig. 15, since attenuation coeflicients 5tim|te;f from
~ Schaafsma |;1d der Kinderen's data u}pmbsbly more reliable, given the higher
density of measured points (dee Figs. 12 and 13). Although the size\range is lim-
—— -ited, it can be seen that the 'l.'llgretiul curves for the elastic, tigid-‘mouble and
high pass cases fit the data quite well The theoretical estimates in the rigid-
* immovable case, howe\fer. are high.
. % ‘ ‘ . b * 3 . i
Table 4. Calculated and .;nmured values of &, /¢ assuming unifgrm par-
ticle size. Data sources: (a) Jansen, [1977) and [1979); fb1) 1-D. <~
and (b2) 2-D from Schaafsma and der Kinderen, [1085]. “Mov-

able” and "Immovable” refer to the rigid movable case and rigid
immovable case, mpechvdy

’

&5 B Sand Ta, /e 5 aa, Je

.

: Source (ulr-n) k@ || Elastic | Movable | Immovable | High-pass || Measured

. 5 s | 184 || 0262 | 0263 0212 0280 [ 0.2560.178

. () | us | 3%} o3 | o455 0444~ | 058 | 05660.531
103 -| 660 [[ 0448 | 0539 0536 0683 || 0.708,0.522 |

ors | 943 | o731 | o382 0582 0716 || ——o0.855
b " : 50 | o9s’f[ 00e8 | 0071 | om0 0.072 0.067 |

. 4 (b1) | &b Lot || oasz | otor | -0z 02 o 0.6

100 0288 | 0.288 0284 0.300 0.235

:

= . 50 | 096 || ‘0066 | o071 o110- -| 0072 0.075

(2) | 75 | 14| oxe2 | oam1 0219 0.192 0.176

“ 1100 | 193 |[ 0288 | o286 0284 0.310 0.242

o B .
) S
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The alculated and medkured ; fents are ploteed i Fig, 16

& N 4
for the foug models.'The abscissa is the measured value, the ordinate the theoret-

, ¢ ical estimate. R,, |s the cross-correlation coefficient [e.g. Beynr‘ 1981, p.510].

From Fig. 16 it can be seen that the linear relationship between the th coretical

and the red vnlu= of m l“ (ollr cases is

ol 5
Jvery good. Some reduenon in tho degreé of scatter is to ‘e expeﬂ.ed “if size distri-

butions o! finite width are used in tb;'wnp\nlllons. since thu would cﬂeeuvely

cauge additional hin g of lbe h ical i i Thu is con-
| ..

sidered later.

5.2.3 Multlple scattering ) -

¥ ' "f( i . -

We now -turn to the obszrvnlmn that the Auenunuon eoeﬂ'mznl ‘at,

) Iu;h i %‘;comu a li lunctw} ofeM (Flg, 12b).
‘This. was observed only u"lblcenlntmns well above 10 kg/m® ,’-nd measure-
rnenls were made at !Ilth concentrations only for two sand sizes: 54 ym and llsv

/um mul) radius, correspondln; to values of z of 1.84 and 3.06‘ respectively.

Using Eq. (3.6) the form factor | / o | has bn‘n calculated for three scattering

«~ angles: 0°, 120° and 180°. For'z’ = 1.84, the v_nluu are 0.77, 0.71 and 0.68

N ectively. Thﬁae ne'nu‘rly the same, and the isotropic scattering m;dcl is
Cmed'in this case. For z = 3,06, the values are 3.62, 0.78 and 1.26 respec-' '
tively. 1t is clear that. forward scattering dominates at this valué &f z. The ten-

‘d.ency for the rate of increase of if, ‘with increasing' M to dei;eue at high con- -

i centrations is well known, and is the result -of _multiple scattering Ie.(. Uriek,

1048; Macet al., 1984].



:"F‘f[ure 16. Calculated and measured valuesiof &, /¢ for usiform psrticle size.
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' For z = 1.84, the total multiple scattered pressure can be m(imnlrd\sl:
e Eq. (2.74). Since the sand grains in Jansen's experiments were confined in 8 3 )
B
\ wide rectangular tube, the ranges of §+p and & in lh'u case are “Ir—slmf as in ~
. )
o\

o Eqs. (2.75) and (2.76), but thé raoge of pis limited to 1* <p < 1,7 | § M4, where
‘ i r ‘;is the distance from the cylﬁder to the receiver (see Fig. 17). It can be seen
| /’ that r° changks with B. For sipplicity, éouiduin; the lli;b'{ beam eue.-_we
assume r: is cois‘lint. and eqn’:LE em in lmu’:l'\s\exg!:imenu. The multiple
scattered pressure then takes the form - ’ -

g e Pij 2 3L aMlry 1) 2 ¢
= J s & Poj 2!:,‘:: Py
. . 55) . ¢ Y
For M = 255 kg/m’, p, =265X10° kg/m®, and |/ | = 07, we get

i . - |Pyj/p,; | =30, For s single particle in the detected volume, the total scat-

tered pressure ‘at the receiving transducer’ is P.j + P;j. Ignoring- phase

v ow _differences between the scattered and rescattered waves, the total scattered pres- *e
. su‘b:comu - : g .
N . & & Wy
5 P, % i
7 - [ﬁ- — ] P
- Pj : i .

which at this concenlnhun is about 4.0 5, , when P, is the mean scattered pru- %
sure without multiple acntenng From Fig. 12b, we ﬁnd guphlcnlly that lllc

| g b  actual scattered pressure a .ll?u con:l.-ntrllion is l.ﬂ Py Thfe apprfximate

! 5 ‘ i '.‘;wedicted cqrrection'is thfrel re wilh;n 8 hc‘wr! of two of lh'lt p)ueryed,
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Flg\m 17, The geometry in Jansen's experi The 3 em wide !
- perspex tube thmugh which the sand grains were allowed to fall is shown (n
3 the center of the sketch.
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For z = 3.96, we onsider forward multi‘ple scaltering only. In this ¢ase the

lhultiplé ssau‘e‘red pressure can be utimuld usinﬁ Eq. (2.88), but with r* for the

upper limit fof 5. Working out the algebra, ‘'we get ‘& =
- {
Ve @ & . L
. ) af LON?
N = -%—-ln

where N is the number of puuclu )ﬂr unit volume. For umlormly sized scatter- - *

ers, N =3M [(4mp,a%): . " .

For M, = 205 k;/:;n’,.v; = 2.6% X10° kg/m?, and " | f (0) | = 3.62, we

- get | Pyj/p,; |'~08. Again;-the scattered pressure at the receiving transducer

due to a single pnl.icle is py; + Pli" but in this case it is possible to‘include the*

eﬂect: of tl:e phase differcuce between_the incident scattered wave and the’}or-

ward nsclll .‘ed wave. From Eq. (3.16) we see that the yhlse difference belween

" theforward geattered wave and th&incident wave is 1/2. The total scattered

pressure is therefore given approximately by

I

v . < s
From Fig. 12b the actual scattered pressyre at this *centnlion is seen\to be

§
P .
p_”. ] 5 = V1+0.8%5, = 135,
i

\.2;‘:,. The agreement betweep the p}edicted and lcilll‘ total scattered pressures

=

is very | good. .

Nﬁw comlder ‘ho 8PS lu abseficé of multiple suuenng eﬂ'eeu in

Schaafsma and @r Kindereh's results (Fig. 13). Since t!:e maximum values of z .

in Schaafsma and der Kinderen's experimeim'l}s less than 2.0, the isotropic

»



‘ —_

)
senllcnng usumpuou is'made. The mull.xple scnuered pressure can be estimated /
using Eq (210), wlu h‘ is |Pyj/p; | = (1.5~45) for r, =_ 15 em and
|P1’/p", | =~ (0 8~2. 2] ’for r, =75.cmat M =5 kg/m®. Again ngnonng

phua. Eerences dup to acnuenng. th: ‘total scattered pressute is abouts
. Tig (2 5~5.5) p, p, “for r, 15 em and (1. &~3 2) P forr, = 17.5 cm. The predicted

4 < * values are obvmusly too large. Thn failure of the theory is apparently due-to the

effects of ignoring phue differences between the scattered and reftattered waves,

the du directivity, and the scat! d pressure lrom particles in the second
anel‘zone All of these would tend to reduce the estimate of total seattered
pmsure. The angular ‘dependence ol the phise difference, and of the transducer

dlruclmty in the near field, however, aré not easily included.

i /From the above discussion it can be seen that the nonlinear dependence ot

. the attenuation coefficient on M at high concentrations could be due to miltiple

 sud the ¢ i ec ioh for cases.in which forward scattering
dominates (z >> 1)4s in remn;ble.awwm.nﬁt\smumr values e d
.. B of z consulency with experiment ‘is possible only if the scauerem are restricted
to lhe trnnsdncer far field, and even then the pred(cted effects are too large. A

“more complete appmlch is needed in this case. <~ .~




8.2.4 Sise distributions
R
\ g = il .

We have n.considend the effects of size distributions on attenustion and
sc:tlenn; In thu section we will ¢ compare 5 measured values and- th«mtlul em\
mates obmned by considering of the eﬂ'ecu of two simulated size dlstnbnhonl
the Gaussian and the Rayleigh gitnbut!am.

_The Gaussian distribution-is given by
; N—\ " . . )
NG % 1. a- -
¢ = - 0) i B 5
nle) = e 2R 0>0) -6

where @ and o are the mennbvalue and the standard deviation, respectively. Let

; . %
a5 ago and agy represent the radii at which (1/N)fn(q) da is equal to 018,
. .
B 3

b 6.50 and-0.84; respectively (see Fig. 18). We have

. = (5a),
o= * (5.:5b)
The Ganssnn distribution in k, a-space can be cxprustd hy ’ LE

T Vamg

0, F =k T Aﬁdq:-lr,y.

e o) Wexpl-lill @>0 - 6.

:whare z =

.. The expression for A? in Eq. (2.15) takes the form - o

v S h s 3 B o
K4t = {%%Lgpl.lﬁf;tlax L e




=
which will be used later, and the attenuation coefficient G,/(Eq, 4.7) takes the

form % : .
. © . - i
P8, 3mlfOf 1 - (-7 .
: M = J"—-‘;;— exp|- o ].h o (58)
. i P <
where &, rep! the average fici

In many cases (ago-a ) - (lu;a“) 7 0, which means the natural size dis-

. .trjb;ltion is not symmetric. As an example of an asymmetric distﬁbﬁﬁon, v;e use
the Rayleigh di:lribul.ionv for whjch this difference is negative. The general expres-

] : ) .sion I;wr.the Rayleigh distribution i\Qﬂm by ‘[Bendlt‘lﬁse, Pp. 134-138] Soer

ma?,
. S~ on(e)= exp[ \_—z] ! (5.9)
X ? 13, )
where &, is the mean value of sand. For uiir‘)lning size H;ﬁiﬁb)lliou, we u;e a
: _ modif ied licyleiih distribution (see Fi lg 18):

- \.‘« . . nfe)=

. _ a<l 2
ga expl ﬂ—)—x (5.10),

o

when n( 0 fora <I.In Eq (S.IO) @, determines the shape of the distri- .

s ; . buuon The mean size 7 is glun by (3. +1).

il We. ,es'.lmlte the’ plumelep of-the Rnyleuh disenbuhon ] nnd I !rom the
dill-ﬁmg - o
- « " y .
, ' (6.d1a) - -

g fe )

~ " . .
. “ v . A
1 2 B i E L
i, ” B ],~ f .




X0
which can be obtained from Eq, (5.10) by referring to Fig. 18b.
The Rlyleigﬁ distribution in k, a-space can be ‘writlen as
3 ) L) w5 0t
niz) = 24l - mzob) o macb) (5.12)
R [X ! T, 4w
i A % . ) P .
wherez =k, a,%, = ka% and L = k,I. ' R . .

. £
- Functions A2 in Eq: (2.!5) and &, in Eq, (4.7) take the forms

. '*K’A"=fﬂ“_il;,”°° ﬁ(i;lﬂ’)z}dz . b1y - ¥

z,
and * . e
- '

=" . 2,8, 3lmll (0)] ﬁ(z-L) mz-L), f

—— - dz *(5.14

kM T I 422 2z} et Pral ' )

/ e —

* Tl;e Gaussian dblribution has two infinite tails, and the Rayleigh distribu-

i tion has one mﬁmte tail. Cutuﬂ' sizes had to be'chosen pnur to numerical mtegr\v

. tion. The?sxzes were based on the l‘ollowmg formula:
L s @ & 7
- . © [ n(a)da+ [ n(a)ds < 0Q5 (5.15a)
. R oot ;o
a . ’
for'the Gaussian distribution, and ¥ / N
" ’_‘ 3 w0, . N -
- : i i J n(a < 002 W (5.15b)
J . . -, Seatel] ) - i o
- for ihh Riyleigh distribu”p. ; -
i (¢ ot L . Ry ;'—' i
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6.3.5 Eatimating sand size distrib 0 D

Jansen gave only the nominal mesh openings for the sieves used to obtain

G . s
each size fraction. In order to-specify the size distribution parameters, it is
assumed hexe that the Iuwer nmf)pper mev!?&-r-espond to a4 and agy fespec:

tively. For the Gaussian distribution the above jon is equivalent to

assuming that the sieve boundari rrespond to the Iil}l‘ litude points of the

size spectral density n(a). The values of ¢ in the two cases differ by a factor of

"“only 1.2. Schaafsma and der Kinderen gave the values of 4y, 5p 8nd ag,. P}“

the data of Clarke et al., 616 and|ag, were esti d from the size distributions--

given in their paper. The size distfibution parameters for each data set are given

in Table 5. .
. -
Table 5. The size distribution parameters. Laadd
. \ g
4 k- Size Rnnge Gaussian Rayleigh
Source 1o (m’l)‘ () < 3 ——’-’—5—!
Jansen ) 45-83 031 | 1.3 (f0.60 | 1.87
(a) 3.43 105-12 035 | 3.94 |1 0.60 | 3.99
L~ : 175-21 061 | 6.60 [} 1.21 | 6.68
{ 1 - 250-300 [ 0.88 | 9.43 || 1.81 [ 9.51
. Schaafsma & 33-80 0.22 1098 |[ 045 | 1.00
. der Kinderen 1.95 © 55-108 052 | 154 |} 0.09, | 1.60
: (b1) » 85-125 0.50 | 1.93 || 1.27 | 2.01
Schaafsma & 34-70 0.38 | 0.98 |1 0.67 | 1.00°
der Kinderen(b2) 195 53-120 0.66 | 1.45 |} 1.08 | 1.52
3 (b2] | ¥ - 75-160 0.84.-| 1.93 1.12_0 2.00
Clarke et al. =~ |- 5000 [['o26 | osoeflo51 ] 002
(c1) . 1.27 90-150 0.38 | 1.52' 11 0.78 | 1,57 |
'200-288 0.58 | 3.10 || 1.14 | 3.7
Y N 37-55 0.12 | 059 || 0.24 | 0.80 | *
Lo (b2 1.27 70-90, |l 0.14 | 1.03 || 0'27 | 105
Tl < 153-227 0.48 | 242 ]{ 0.95 | 3.43
;ﬁyf T
WY
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were evaluated usm; the pnrnmeten glven ‘in lele 5. The theoretlcgl and meas-

T‘b]a 6b for the B.l lelgh dxsniblmon. ‘These rgulh mly be complred with

thme for umform siz m Table 4. The chu:gu are umall so thlt the diagrams,
corresponding to Flg 18 show r{n;tle change, and are not pmenud
- In order to A{etermme whlch of tha theoretical mode]s' ls moat conmmxt with

. -~
the’ dnﬂ the nit mean square (rms) error was cnlcuhted from the dxﬂ'erencu

between' the me: ured and predicted valnn of aa, [e. These are listed in Table.

7a. The genenl tendency is that the rms error is smaller when the size distribu-
& e -
tion is included. The rms error for the Raylejgh distribution in' Table 7a, how-

ever, has the same value as thal for uniform ‘particle size..’l‘_his result is in’ con-

ured values: of 15 /( are ;wen in Tlhle 6‘5 l‘or the Gn\mlnn dlstuhlmon and in"

tradiction with what we expected. r,T’Ii: rms error of Schaalsma and der
D . A P .

Kinderen's experiments alone, (Table 7b), ;howevé;, are smailer for both the Gausy

~sian and the Rlyleigh distributions, as expectzd The reason thnt‘ this is ‘not_ ;

always truv when all of the data are included appears to be thnt Jansen's sund
fractions ate narrower, so that the chnnges in rms error due to including elther
¥ dlstnhnhnn are small for this case (Table 7a). Overall the. ngnd movable model
with a Gaussian dm.nbuhon provldu the best fit t.o the dntn,*nnd when size tis-
tributions txe included, thuigld immovable and ELEE: models provide the wonl

ﬂtn Tl\! hixh-pul model lbpex._w be a usefdl npproxnmmon ¥ \
. .

oy .2, ) R o PR
The numerical valués of 7, /e for the 'Gnminn .;nd"Rnyldgh distributions
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+ TableBa. Calculated and measured values of &G, Je for the Gaussian size ]
P distribution. Data‘sources: (a)Jansen; 1077, 1979; (b1) i-D and
- -~ _~{b2) 2D from Schasfsma and der Kinderen, 1085. #Movable"

and “Immovable” represent the rigid movable case and the rigid
immovable case, fespectively. A 5 1

_Sand .. < c s o Ta,Je e
: | source | (- k7 || Elastis” | Movable | Imniovable | High-pass || "Méssired
1 d : ¥ L oy
M "| 54 | 184 | 0262 | o261 |--0275 | \oass ‘o\:::,onn E
(s1) | 115 | 394 || 0.488 | - 0.465 0.452. 0502 || 0.568,0.531 |
103 [ 6.60. || 0.448 Y- 0.543 0.540° 0692 [l 0.708,0522 |, -
e .4 275 | 9.43 || 0733 0.588 0.588 4 | 0.724 ----,0.855
. =} 50 | ogs-ll 0.085 | 0070 0,105 0.072 o 0067|
H (b1) 8 | 154 |' 0170 || o0.182, 023 * [ + 0107 0.168 |-+
% T[T [0 | res|lor2| omes™ | o278 , 0.288 . 0e35| .
50 | 096 || olos3 | ooss | oose | “gomt’ Bors
®2) | 75 | 145 || 0.154. | /0158 | 0.182 168 Joam |
100. | 1.03 [[0.254 |7 0.248 0257 >~| 028l o249 )],
* . . LN A -
Table 6b. - Calculatéd~and measured: values S
i distribution. | - T . " 5
. A 179 5 % e
# Saad - S L ¢
= % s 7 - I —
Source | % \ |k @ || Elastic | Movable | Immovable | High-pass i
- i (p#m) N 5 »
LI 4 55 | 187 |[-0260 | 0250 | -.027m1 | o283
- (a) . | 116 | 3.00 | 0.460 " 0441 0578 . O
. | 105, | 887 || 0.448 0520 0.678 * |(%.706,0.
277 | 951 || 0710 0.577 0711 ||%—0. ;
- 52 | 100 || 0.088 * | o018 T
(b1) 83 [ 160 || 0.188 0204,
| 104 .| 20| 0,274 F 0200 || 3
| Car g | ose 0.087: 0.076 -
o (b2) 7| ‘70 0.185 0.18) . .
| » - 104 0.271 ' 0288
& ¥y W.oo & “ e
. ‘ L2 s * . . N "
i _ 4 3 - o . . &
= _— : . -
- § * . ) - ¥ N 1 o . 3
3 frg ! it b ”




» Table 7a.

Table 7b.

val te!

w

1

4 Case Uniform | Gaussian | Rayleigh
Elastic 0088 | o008 0.088
Rigid Movable || 0.070 0.085 0.070
Rigi’d Immovable 0.078 0,072 B 0.078
_High-Pass || 0067 [ 005 | oost

s .

S

N

N

mean square dnﬂ'erence between computed and meuuted
of nttenumon coefficient &, /¢.

Root. nﬁm square difference hetwev.n computed and_measured
values of attenuation coefficient T@, /e (consldenng ‘Schaafsma
and der Kinderen's experiments only)

a
Case Uu?form Gaussian | Rayleigh
Elastic 0030 | 0.010 0022
Rigid Movable 0.029 0.016 0.019
MRigid Immovable ||\ 0.047 .| .0.032 ' 0.039
“High-Pass ‘0043 | 0027 | 0033
7
: -




N {
53 M d and th lcal scattering coeffici

For suspensions which are sufficiently dilute that 4a,r, << 1, the exponen-

tial factor in_Eq, (2.70) is nearly unity, and
B}~ 52 (5.16)
where S% s given in Eq. (2.%1), and is determined by the geometsy of the system.

From Eq. (2.14) it can be seen that when the frequency is fixed H,Zis a func-

tion of sand size and concentration. The relationship between H? and M in Eq. \\

<(2.14) is linesr, so that H,2/M is a function of ‘sand size only. The theoretical._

results for H,2/M as a'function of dimensionless radius k, a_for the four theoreti-

.cal models are shown in Fig. 19 for a bistatic system with f = 8 MHz and . -

0= 120 ‘and for quartz in water, assuming uniform size. For uniform'size Eq. ’
(2.14) becomes 3

M| fal?

H? 7
4mp,a

(s.07) -

It can be seen that y,*/M increases with scatterer radits in the Ra):leigh region
(s ;,] ~(ka)?), and is inYelsely proportionaF'to the radius in the geometric
region (| f | ~ 1) , and the maximum amplitude of H,2/M: can be obtaiped
when the mean particle circumference is approximately equ;l to the sound
wavelength (or when z is in the Mie range), which can been seen from Fig. 19. It

is also seen that H,'[M for the high-pass model represents a smoother version of
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Figure 10 Theoretical estimates of H,2/M vs z for uniform size.
(a) elastic case; (b) rigid movable case; (¢) rigid immovable case) (d) high-pass model.,
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the rigid mofsble cu:i in the rigid immovable case HA /M _hu a very sharp peak

in the Mie region v;hile in the el;;tic case it exhibits additional Ijuctlntip’g
- beluvnour, which is dne to resonances.

The meuured ‘values of the mean square scattered signal V, V.7 at low concen-
trations were-obtained graphically from the results given by Jansen [1071],
Schaafsma and der Ki;:deien [foss] and Clarke et al. [1984] and are listed in
Table 8. The values of W in Table 8 for Jansen's experiments are the'values at
M =02 kg/m’, for Schaafsma snd der Kinderen's experiments are the r;a]ntive
slopes of V with respect to'M' at low concentntms as repm-ted by thém, and
for Clarke et al.'s experiments are the values'at M = 001 kg/ma The theoreti-
cal v:nlues of H2 for uniform size were obtained from Egs. (5.17) and (3.8) and
are also listed _in Table 8, ‘where we set M =1 kg/m? for simplicity. It should :

be noted that we used | f (120°) | in the caleulation of H.2 for Jansen's and

Schaafsma and der Kinderen's sand fractions, while'we used | f ,,(180°) | for

the Clarke et al. sand-fractions.

Measurements of absolute scattered intensi_ty (or méan sciuéred scattered(

R

pressure) l;sve not b‘een made. Instead, the i to date have
the mean square voltage output from the rﬂp;iver. Such measurements are ;ro-
portional to the scattered inben'sity and the propor&;nn.lity consturlt will be
different for different data sources. These constants will be r‘e_mo%ed, however, if

we normalize the mean square voltage by its average value for each data set. For

the th ical esti of H,? were also normalized by the-average

values taken over all fractions. The normalized vu‘\tu of H,2 and V2 are shown '
. £dival
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Table8. Calculated. values' of H,? assuming uniform particle sjze - and
" measured values of mean square scattered signal V,°.. Data’
— sources: (a) Jansen, (1677]; (b1) I-D and (b2) 2-D from Schaafsma
and der Kinderen, [1085]; (cl) ml{'gr axis and (c2) minor axis
from Clarke et al., [1984]. “Movable” and “Ig@ovable™ TFefer to
the rigid movable case and rigid immovable cdse, respectively.
- Sand } H2 (M = 1 kg/m®)
e - —T | %
Source (um) k@ || Elastic | Movable | Immovable. | High-pass
i 54 1.84 0.852 0835 (T 127 10.044 3650
(8)- |.115 | 396 || 0414 | 0.484 | 0510 0.680 || 5200
o 193 6.60 ||, 0.503 0.484 0.481 *» 0.440 4260
275 0.43 -|| 0.248" 0322 | 032 . -0.319= |f 2600
“| 50 | 096 || 0s0s | osse [ 1o | -0sss || 100
+ (b1) 80 | 1.54 L112 1.037 1708 - 0.922 1.02
100 | 1.03 || 0757 0.768 1.108 0.942 1.02
- "50 | 096 || 0905 | o964 | ‘1673 ..0.658 1.00
(b2) 75 145 | L1153 L127 1914 -| 0904 1.05
100 193 || 0.757 0.766 1108 0.942 0.8'0
~ | 70| o0 [[ 0sss | ro0s | 2508 | _,ZF{&, 13|
(c1) 120 152 || 0.374 0311 | 1.260 | 007 3.63
244 3.10 1222 0.647 0.503 0. 8:'58 2.80
46 | 050 || 0513 |, 0.560 1.226 0.427 113
(e2) 4| 81 | 108 || 0982 |" 1007 2736 | o004 | 363
190 | 242 )| 2.508 0.842 1414 0.968 2.60 |.
=
- N Al
N ’ L
i .
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in Fig. 20. (gump:nng this with the nuenn-lwn coefficients in Flg m igis seen
" that there is much gnnler scatter. This scatter u'upected to be ndm:ed when
size dlstnbulwns are included, and to a greater extent. than occurred in the case

s of l.he attenuation coel'klenﬁ (compm Fig. 19 with Flp 21 snd 22). (

. The theoretical. estimates of H,}/M asia funchon ‘of dimensionless udm:
k @ are shown ‘in Fig. 21 !ur lhecunsn.n distribution vuth ¢ = 0.5 and.in Fig.
22 for the Rlylelgh dns!nbunon w:th I = 0‘8 for different lheorcuul models m-
L a butnuc system _vhth f = 8 MHz and 0=120°. These values of g and %, are - i+
lypica} of the éyperimenh (Table 5): Figs. 19, 21 and 22 illustrate lh; s_mo&.h‘ihg : )
' which - occurs at mnitlpt [frequency, fot distributions u} c'on'stnnt width. The
N

B degree of smoothing is sibstantial, even for the nnrt&w disliihnliong provided by
2

sieving. '+ - P . g

The CI!:\IlMtd values of H,2 are gwen in Table 9a for the Gnusmn distribu-

tion lnd T;b15 9b for the Ihyl-gh dul.rlblllmn, together wuh tife measured

eSS **‘v‘dmt—v"_md‘m plotted in normalized form in Figs. 23 and 24, respectively. -

- Ccmpqmg these Figures wllh Fig. 20 indicates that although the d-:grte ol <
scatter is substantially reduced, it is still much worse than for the_attenuation

coefficients (Fig. 18).
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Table 9a. _ Calculated values of H,? for ‘the Gaussian size dislpb |o
. measured values of mean square scattered signal V, Dah
sources: (a) Jansen, [1977]; (b1) 1-D and (b2) 2-D from Sellnlsm:
and der Kinderen, [1985]; (c1) major axis and (c2) minor axis
from . Clarke et sl., [1084] “Movsble” and “Immovable”
represent the rigid, movable case nnd npd immovable tase,
« respectively.':: -
8 i -
g T H2 (M =1kg/md) ] !
and LA .( g/m’) ‘ 7
Solifce a k @ || Elastic | Movable | Immovable | High-pass
(pm) .
54 1.84 || 0740 0.793, 1.116 0.928 3650
(a1) 115 | 306 || 0.495 0.556 0.584 0.673 5200
- 103 | 6.60 0.362 0.420 0.425 0.439 4260
275 | 9.43 || 0.156 0.304 0.307 0.315 . 2600
-+ 50 | 0.96 0.973 1011 + 1751 0.710 1.00
(b1} 80 | 1.54 || 0.796 0.844 1219 0.907 || 102
100 193 0.718 0.821- | 0.054 0.804 1.02
.50 0.96 1.023 1.036 L1776 0.781 1.00
(b1) 75 | 145 || 0760 | - 0.834 “1.130 0.897 1.05
T 100 | 193 || 0761 0.845 0.930 0.852 0.80
70 | 0.80°|| 0.830 0.842 2.360 0.882 l.is
(c1) | 120 | 152 || 0952 | 0820 | 1193 .| 1043 || 383
244 | 310 1.509 0.909 © 0818 0.801 2.60
4 | 050 [ osos | oest | i 0404 |N113.
(c2) 81 1.03 0.805 0.919 2.583 - 0.916 383
190 242 1708 0.820 0.087 0.924 2.60




Table 9b.

Calculated, values of H,? for the Rayleigh sizg distribution and
measured- values of mean square scattered signal V,. Data
- sources: (a) Jansen, (1977); (b1) 1-D and (b2)-2-D from Schaafsma
and der Kinderen, 1085&; (c1) major axis and (c2) minor axis

from Clarke et al,

[1084]. “Movable” and “Immovable”
represent the ;rigid .movable case and rigid immovable case,”

respectively.
Sand H2(M = 1kg/m}) —
- | V2
Sricie @ k,-‘a‘ | Elastic | Movable | Immovable | High-pass || -
(um) . ‘ -
¥ 55 | 1.88 || 0741 '| o707 1107, 0925 || 3650
« (a) 116 | 3.8 || 0.408 | 0.558 0585 0660 || 5200
195 | 6567 || 0343 | 0.410 0.424 0438 - | 4260
277 | 0.50 || 0.120 | 0.243 0245 | 0250 |f 2690 |-
52 | 099 || 1007 | 1029 ‘1778 0.739 1.00
(b1) 83 | 160 || 0775 | 0.845 1.186 0.901 1.02
104 | 301 || 0.762 .| o0.848 - 0.950 0.865 1.02
- 54 | 101 [ 1.013" | 1L010 1734 0.704 1.00
(b2) 79 [ 151°|[ 0777 | o0.848 1.167 0.895 1.05
104 | 2.01 || 0.763 |. 0.848 0.059 0863 || 0.8e
72 | 092 || 0775 | o783 2.253 o0z || 113
(c1) | 124 | 157 || 1151 | 0962 1.235 1038 || 3.63
250 | 317 || 1.527 | 0.01 0.798 0787 || 2.60
47 | 060 || 0.655. | 0.687 1577 0.522 113
(c2) 83 | 1.05 || 0.87T| 0887 2.543 0933 || 363
260 | 3.43 || 1454 | 0804 0.752 0750 || 2.60
- .
2
R
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9 : . The.rms differences between the normalized values of H,2 and V% are listed

- .
“Table 10. It is obvious that ag between lhe leulated and d

* . ﬁlues is lmproved by mcludmg the size d\stnhntmns The rigid wioyabis sid

. —
b hlgh pass models give the best ag with i t. Thé-rigid i ovabl

model provides a poor, fit to the data. The rms error for the high-pass model does

not _change uiﬁiﬂgn}ly when the size distributiéns are included, as expected.

® Comparing Table 7 and Table 10 it is clear that the effects of size distriby-
tiod on @@, /e are;smaller than on H2, nltlzough when the Schaafsma and der ’
- ‘_ Kinderen's data are considered alon¢ the effects of size distributions on the
x = . x nu.enuat‘n coefficient are séen to be impo:a'nl (Table 7b).’It is also clesr that
- g " the rm‘s .;iiﬂ‘efeni:e betwetn theory and experiment is n;uch larger for the scat-
Lt te}ed Intensities t}:;an for the tenuati?n coefficient.
- N 7 - '
B TableJ0. Root meag square d:ﬂ‘erences betwéen normahzed values of H,?
ey & and normaliged values of V,2 C
L .|, Case Uniform | Gaussian | Rayleigh
' h Elastic "o40 | 038 035
‘Rigid Mavable || - 043 | 020 028 .
Rigid Immovable || 0.51 050 051
Lot . ‘ High-Pass o3t | om 028
W ik
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5.4 Dltgubln‘n ' . ’ -

In this chapter we tt’ompnrqd the calculated values of both @&, /c and H,?
with data. It is found that the theoretical results fit the data reasonably well.
. The more specific conclusions to be drawn from this comparison are the follow-

ing:

{1] At this time the experi | i flicieny- data provide & better

basis for discriminating -nmong the models than scattered inten;ity, since
’ .

» absolute ents of fici

can easily be v.;bl.nined from
the mean squ;;re scattered output .signal, and the rms differences between
x.neasured and theoretical scattered ‘intensities are much too large.
[2] There are three theoretical models whicl conl.ai;] n;xy physics: thllse are t‘he
- elastic, rigid movable ‘and rigia .immovnble cases. On the b;li! of the
ujﬂ;mﬁon data, the rigid mov;ble model provides the bes{ ‘ﬁ’&. This implies
that resonance 'ejaifn"tir)n,d,ow not occur in natural sand grains; which is not-
unexpected. For a spherical scatterer, surface trapped waves are excited

which around the ¢

of the sphere in a time which at
resonance reprsents an integral number of incident wave pencds [Flnx et al.
1978] In the presence of megulantlu in particle shnpe and composluon,
these surface waves wnll be scattered by the 1rrpgulanhes, and the circuit
time will depend on the path aroupd the particle. It appears ‘that I‘or
» natural sand grmns, these meg\llantm are snﬂ'cnenﬁy Iarge that well- deﬂned
" resonant modu do no'. exist. anlly, compnnn; the rigid movable and

3 * immovable cases, the rms differences—between experimenla] and predicted



. = o -

attenuation coefficients are larger in the immovable~ case for the
frequency/size range of the measurements, which is primarily in the Mie
region.” This result implies that the density difference between the sand

grains and water is important near k. a = 1.

[3] The high-pass models for both form factor and attenuation coefficient appear
to be useful approximations for real iform sand grains.
The large rms diff e bew‘reeu h ical and experi 1 d

intensities represents a problem. We suggest that there are a number of contri-
buting factors. One of these is the error introduced by tl.ie normalization pro-
cedure, which would not confribute if absolute measurements had been made. A .
s_ec;md is that it»is diﬂicult_ to nlimnté ii'e relative amplitudes of the scattered
si‘gnnls st different radii at constant concentration from the data of Clgrk'e et al.
(1984]. Examination of their.Fig. 3 shows that these estimates cannot be made
nn.mbignousl_y, either beelﬁse of scatter in the data or because 4_)[ non-linear
changes with concentration, (evén though M < 0.1 kg/m® so that attenuation
should not be important). Thirdly, itis possible that in Jansen's experiments the
particles adopted a preferred orientation because they were allowed to free fall
through the detected volume. In addition, the'deflection of acoustic waves by the
rectangular tube in Jansen's experiments may have led to Additionn_l errors in the
measured ;llus of intensity. Ho{vever. the agreement bNth;oreticd and -
measured attenuation coefficients using Jansen's data is reasonably bgood (Fig.

“and it is difficult to explain how tube effects could cause liln;ef errors in the

14),

normalized scattered intensities.

Thtr? is another possibility, and that is that although a spherical shape is a



suitable model f,ur the attenuation coeflicient even though the particles are irregu-

lar,.as the comparisons with the data indicate, it may not be for the intensity

scattered in a given direction. Clarke et al. (1984] have suggested, on the basis of

the bistatic theorem, that for randomly oriented irregular particles, it is more
appropriate to estimate the backscattered intensity for a single particle from the
total scattered power for & single particle. In effect this implies !h;t the random
orientations of the sand grains result, on average, in isotropic scattering. Further-
more, since the total power scattered by a single particle is proportionsl to a,,
- this argument suggests that the eflects of random orientation of irregularly
shaped grains be accounted for by n‘suming that | f ol 2 at constant concentra-
tion is proportional to-a, at cnnslzn(-mncenlrn(ion. Eq. (4.7b). In fact, the
geometric similarity: between the curves for aa, /k M in Fig. 9 and those for

H2/M in Fig. 19 (applying additional visual bing in the latter case) indi-*

cates that this might be reasonable. This comparison has been made for the euL
of uniform size, l‘nd the results  are plotted in Fig. 25. The rms errors are
presented in Table 11. Comparing these results with Fig. 20 and T;b]e 10, it is
__clear that there s considerable improvement in both the rms errors and the

correlation coeffici ing that this h may be quite useful. The

degree of scatter is still too great, however, and the data too few, to discriminate
among the models.

Table 11.  Root mean square differences betwegnf normalized™ values' of
2

pla, /K. M and normalized values of V

Case rms Difference
Elastic
Rigid Movable
. | Rigid Immovable |
High-pass

>

v
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CHAPTER 8 C?NCLUSIONS

&

considerations iated with scattering and ion in

bistatic s#’tems bave been analyzed for the narrow beam case, In order to obtain
annlyti; expressions for the detected volume and scattered ihtensity, we intro-
" duced the parabolic approximation, which w’i{compnred with exact numerical
results for the pnrsmeler‘ range of ‘inleresL The comparison shows that thc errors

due to this approximation are within 10% in this parameter range. . -

We compared the theoretical esti ‘of scattered intensity and attenua-

tion coefficient in three models with the data presently available. The theoretical

_ i were made by imating the sand grain as a homogeneous, spheri-

cal scatterer, and by using the partial wave phasesshift formalism to obtain the
scattered_pressure field. The thrée mo;ie]s are: elnsyic, rigid movable and rigid
immovable. We have shown that the rigid movable model/with a Gaussian size

istribution provides the best fit to the data. The fact that the elastic model dpes

not fit the data as well indicates that resonance excitatio doG’n‘at occur, sup- |

. - - porting 4 similar conclusion made by Clarke et al. [1984]; probably because

natural sand grains are irregularly shaped and inhomogeneous in composition.

The rigid immovable model fits the data the least well, jndicating that the inertia

of the pariicles is important, and that grain density is gn important parameter.

r
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It has also been found that while the calculated values of the attenuation

»
coeflicient and the data are in ag the

and experime_nu] values of scattered intensity exhibit large rms differences.
Several fll"t;n which may contribute to these differences have been di:’cussed.
but lone are conclusive. More extensive dm are requmd
Approximate exprasmns for the form factor and nmanuon coefficient have
been constructed, bued on the so-called high-pm model introduced by Johnson
) [1977). In] Chnpter 53t was seen that the hlglrplss model provides a fit to the
dnn whneh is as good as the rigid movable case. Its value is that it prowdes a
simple nnnlytlc expression for evaluation of the size and concentration depen-
dence of the scattered signal. Therefore we can use the following formula . to

express roughly sound scattering in aqueous suspensions of sand:

Kz

1/l = Tz

for the l‘orm’l'nmr, and

. aa, Koz'

s g B

€ 1+(4/3)K 2"+ 2?
for the attenuation coefficient, where K, y and K, are constants which depend on
the physical properties of the par‘ticlu and of water, and, in the case of KI , the
scattering angle.”
Multiple scattering has been discussed briefly in this thesis. -Approximate °

o BN 3
estimates for the:first ordér correction for multiple scattering were made. It was

shown that the 1i d d \:l)t/ io flicient on

¢ )
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tion at large M is due to multiple scattering and that the approximate estimate
for the case in which forward scattering dominates (z >> lv) is in reasonable
agreement with the data. The predicted effects are too large, however, for = ~ 1,
due to ignoring the phase shift of the scattered waves and the directivity of the
narrow beam transducers is the nn’r—ﬁzlt

This is the first instance in which comparisons have been made between

and in ions of sand in the

medium and short wavelength regions. Because the data yield an-absolute meas-

ure of the i flicient, the

P an impor-

tant lﬁ@&,éf the lheory.‘ The goo;i agreement b(‘!twee'n theory and experiment

confirms the validity of the spherical model at least with regard to the.angular

X inte.grﬂ of ted intensity. The principal ining problem is to explain the

high degresof scatter in the ison between the th ical and d

scattered: inte‘nsitia‘ This requires further experimental work, in which the scat-

tered intensity should be\mgeasured over a wide frequency range at narrow inter-

vals.
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. APPENDIXA The derlvations for T and G’
-

. B .
Integrating Eq. (2.51) with respect to Z, we have

Pk [ avf [A, VBAY +5, X2
-n g .
— + A, /BHY5, )X + 2C, Y]l.\’ AN

Integrating Eq. (A.1) with respect to X, we get P om

| ) .

A B
i . f=ml,’_-‘y-‘ {ﬂf(}'+m,r,)’sruin [WMT_]
I

mr, )

B (Y -m,1,)

DAY - my v, Yorcsin [~,~__"‘___]
+m, /{8, +mn )Y + 2m,r, A2V
i L tmo B Em T Y BTV

+4m/n, Yw} ay . (A2)

where w is given in Eq. (2.52).
- .
"The integral was evaluated numerically for 10 em <r, <,)_0 cm,
10° ;__' 7, $80°, and 05° < B, < 3°. Over this parameter range, the

. -
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detected volume is

' - W

1o

- ) 5:‘

(A.3)

&

(“~ 52) slnﬂ

Integrating Eq. (2.56) with respect to Z and X, then

lj”g(x,y,zm':

- 5_57{3(" . )’ﬁ’(ﬁ.’HM.’n.’)f (ornww -
. m,

L+ 8(k, q, )ﬁ;ﬁ,*n,‘(aﬁ5+4m,ﬂn}) fwysdy
> + 12(k, o, 'm, v, B2 [(f+o JuY2ay
= 3

+18m, n%r, f2(2ar, +(k, o, )Pm 242 [(s+s,) Y3dY

+ (k, a,)%m, (ﬂf+l2m,’n,z)fwiw,+w2) Y2dy

+ 18(k, a, )°m,?r,

H(ooa,) Y?dY

+ 12m,%n,2r, (851, +(k, a, J'm,2+8) [(22-2,)Y2dY

+2m,?r, [(k. o, )28 2+24Gn 2r, +24n,’}fw(w, w,)YdY *

+24m,n, r,’2(83r, +(k, oFPm2+8] fwydy a

+12m2 33k, o, 83 +4n,HGr +1)] (50 ) YaY
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Hka, P2 [uw +wote+r 233 dY

¥ ok, a, o, e 8 f oo ey

where

The integral in Eq. (A.4) is very tedious, only numerical values have been

-~

0 m, v
=l )

0 m, v
=S e

2
wy= /FF+ min )V e2m, 1, Br¥

= BF mI Y 2mr BY

ni

(A4)

. (A5)

<,

(A.8)

(A7)

(A.8)

obtained for 20° < 7, £ 70°, 5 ém <r, < _50 em snd 001° <Bh L3

The results are given in Table 1.

s




RGN

‘e
Appendis B . - : e
o ! - .

APPENDIX B. The variationof |/ .| and a, with
- C

elastic constants

In Llns appendix the effects of elastic constants on | f | 8nd o, are con-

sid ered

‘B Tile variation of | / o | . with elastic constants

'

In order to see the variation of | f | wnh e' and ¢, four different sedi-

ments were chosen They are sandstone quartzite, mineral qu&rtz, granite and

granite gneiss, of which the physical ‘properties are given in Table 2. The theoret-
ical values of theform factor for these sand materials have been computed, and

are-shown in Fig. 26.
k., s .

It can’ be seen tBat the shapes of |/ | in all materials are equivalent in

" both the Riylelgb lnd Mle regmns In the géomemc regxon the fluctuations of

|’)‘ wl is hrger and’ rmnant posmnns are ,mure closed by spaced for the materi-

als with smaller c’ lnd’c,. Rel‘emng' to Hay and Mercér [1985], we calculated’

the non-dimensional eigenfrequencies z‘z" and zy, for the first and .the second

. n:sonu‘ﬁces, which are listed in Table 12. It can be seen that 29, 80d z, 5 become
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smaller as r,‘ and ¢, decrease. For z < MIN{z,,) = 3.65, no resonance exists
for any of these materials, and the shapes of | f | are similar.
Table 12. The non-dimensional eigenrrwencies
of the first and the second resonandes
__Sedirhggt 2oy | 7
Granitic gneiss 3.85 | 4.5
Granite ~"| 408 | 5.88
Mineral quartz 874 | 111 =

Sandstone quartzite | 8.23 | 7.24

B.2 The variation of a, with elastic constants

- . ¥
t * The theoretical results of a,, for the same four materials -are plotted in Fig:’
271.‘ It can be seen that the.shape of &, for all materials in the Rayleigh and Mie
reéions p":ve' little diﬂergﬁce: In thg geometric region they are very different, but
- all of them tend to the same limiting value for larger z.. The different behavior of
a, at the same z fmf‘(,he four m;l.ériah is due to the shift in the posi'tion; of the

resomances.
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Figure 26.  The variation of|f { in four kinds of sand material.
(a) granitic gneiss, (b) granite, (c) mineral quartz, (d) sandstone quartzite
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Figure 27. The variation of a, in four kinds of sand material.
= (a) granitic goeiss, (b) granite, (c) mineral quartz, (d) sandstone quartzite
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