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Abstract

A steady state equation derived from the variation with respect to the order pa-
rameter M(#) of o Landau-Ginzburg free energy density of the form

f=fo=hM+ ‘;l—‘M’ + %\r' + %M" +VM-D-VM

iss considered, where i # 0, C > 0, D # 0 is a sccond rank tensor. This is a goner-
alization of prior work by Winternitz ef al. [T.Plys. C 21 4931-4953 (1988)], who

studied the case h = 0 and C = 0. Applied to a magnetic system, it deseribes the

behaviour of the magnetization of a critical system in the presence of an external

maguetic field I and near a structural phase transition. The Landan

A, B, and C are weakly temperature dependent, but are considered constant near
the transition temperature Ty, (the Curic point in magnetic systems), except for
A (T - Ty). The gradient term allows for spatial inhomogeneities due to ucar-
est neighbour interactions. Two cases are examined: € =0 (B > 0) aud C > 0
(B < 0) which correspond to second and first order phase transitions, respectively.
The symmetrics of the equation are exploited by the symmetry reduction method
to find exact solutions in terms of varied symmetry variables. These solutions are
in the form of kinks, bumps, singular, periodic, and doubly periodic solutions.
The physical interpretation of these results and other caleulations (e.g. encrgy,

susceptibility) based on these results is discussed.

il



Acknowledgements

I want to express my thanks to my supervisors; Dr. J. A. Tuszyiiski, now at the
University of Alberta, and Dr. A. M. Grundland, now at Université du Québee &
Trois Rividres, for all their help and suggostions. T want to give special thanks to
Dr. Jolin A. Whitchead, Dr. Bruce Camphell, Bojiong Yuan, and Macicj Skierski
for their time spent in valuable discussions. T want to thank my family and all my
friends who have been very nnderstanding about my absent-mindedness over the
past year, and Tan Hardman for his support during the last month of revisions.

T would also like to thank the Province of Newfoundland for the graduate
scholarship that helped support me through my Master’s program. Thanks, also,
to the Nuclear Research Center, University of Alberta, for the use of their computer

f:

ilities.
This document was prepared using IWTEX. This thesis contains intermediate
results that were obtained with the aid of MACSYMA™. MACSYMA is a trade-

mark of Symbolics, Inc.



Contents

1 INTRODUCTION

2 SYMMETRY REDUCTION

3 SOLUTIONS OF THE STEADY-STATE EQUATION

3.1 Exact solutions of TV equation . . . . ... .............
3.1.1 Constantsolutions . . ... ... L oL
3.1.2 Elementary solutions . . ... .o
3.1.3 Ellipticsolutions . . . ... ... ... o

3.2 Solutions of the Whequation . ... ... ... .. ...,
320 Constanbsoltions coose « v v o s s 6 % 5w w5 e e
3.2.2 Elementary solutions . . ... ...
823 Eliptcsohbions: ooxvn v o v wwmemn s v s 86w E G
3.24  Hyper-elliptic solutions .. . ... ...

w

DISCUSSION OF THE SOLUTIONS
41 Interpretation of the solutions . .« v v ot vt et

4.2 Calculations based on the solutions . . . .. .............

-~

B StabIY « o e e

5 CONCLUSIONS

13

20

26

36

v

81



List of Figures

5}

53

The role of 172(y) in determining the vegions of real solutions. 1V

may be integrated in the shaded regions. . .. . ... ... .. ... 22
W* ST Single and triple real roots, D >0, w =01 ... ..... 28
W+ ST Single and triple real roots, D < 0, w =01 . . ...... 29
W1 CD A complex conjugate pair and a real double root, D > 0,
P00, =1t 31
TW* 25D Two distinet single and a double real root, D > 0, § > 0,
wy=—0lwy=—03andw=02 .o oo cveinai i 34
W4 28D Two distinet single and a double real root, D < 0, 6 <0,
w =03 wy=-02mdw==005................. 35
W1 25D Two distinct single and a double real root, D > 0, § < 0,
wp =03 wy==02andw==005 ................. 37
W 28D Two distinct single and a double real root, D < 0, 6 > 0,
wy==01uwy=-03andw=02.............00... 38
W CQ Complex conjugate pair and a quadruple real root, D > 0,
g FLAEDT e a5 5 » 6 wemms 5 2 5 5 WEERIERIGH ¥ & 49
W SDT Single, double, triple real roots, D> 0, w =01 .. ... 51

W SDT Single, double, triple real roots, D < 0, w=0.1,n =0,~1 52

vi



13

14

15

16

17

18

19

20

W8 CDC Complex pair and a double complex pair of roots, D > 0,

p=0.1, =02 and n=0,1

178 C2D Complex pair and two double real roots, D > 0, r = 0.01,

1Y% 282D Two single and two double real roots, D > 0, r = 0.16,

w=03, pp=-1 ....

V% 282D Two single and two double real roots, D > 0, r = 0.48,

w=025, =01 .....

W¢ 252D Two single and two double real roots, D < 0, r = 0.16,

w=03,n=

V% 252D Two single and two double real roots, D < 0, r = 048,

w= 025

Graphical summary of W4 solutions . .. ... ... ...

Graphical sunmary of W8 (D > 0) solutions . . ... .. ... ..

Graphical sunmary of W8 (D < 0) solutions . . ... .......

List of Tables

)

The action of the one parameter symmetry group . .. . . . .. . .

Symmetry variables E(3) .

Symumetry variables M(2,1)

54

59

61

63



Sunmary of W4 solutions . . . .00 o e e R
Summary of 11 solutions . ... ... .. R § T B B

Expected elliptic and hyper-elliptic solutions . . ..o oo o0t

viii

69

70



1 INTRODUCTION

The study of magnetic phase transitions, and the behaviour of magnetic

cd matter

near a structural phase transition is a topic of major iuterest in couden

physics. Landan first pointed out the importance of symmetry in phase transitions

and suggested that second order phase transitions conld only occur between phases
of different symumetry (1], nswally involving a group-subgroup transformation

Phase transitions of the sccond kind have a continuous change of state across

1 phase is still characterized by different symmetries. In

the transition, but e

other words, u state where the seale of correlations is unbounded is continuously

approached. Tn field theory this is termed approaching a zero mass theory. At the

phase transition, the states of the two phases are the same, and there is no latent
heat associated witlt the transition}
At a second order phase transition the free encrgy (potential) and its derivative,

ontropy are contimous, but its second derivative (e.g. heat capacity), is discontin-

: Elirenfest classification, which applies to most phase transitions.
Mathematically, then, the phase transition point is a singularity of the frec en-
ergy, F. A quantity, called the order parameter (M), s defined to describe the

change in the structure of the body when it passes through a phase transition.

Hronically, the ¢ mple of a second order phase transition, the critical point. of the
gas-liquid transition, involves 1o symmetry change.

!Phase transitions of the first kind have a discontinuous transitisn between two phases of
different symumetry. transition, bodies in Lwo ditferent states are in equilibrium, and
there is a latent I and a finite change in volume associated with the transition.




The order parameter is defined such that it is zero! in the ‘symmetrical’ phase
(the phase with a higher symmetry, i.e. more disordered), and non-zero in the
‘unsymmetrical’ phase (the phase with lower symmetry, i.c. more ordered). The
symmetry group of cach phase must be different, and one is usually a sub-group of

the other. The more

ymmetrical phase usually corresponds to the higher temper-

ature, Some example order are: a ion diff of atoms in

a lattice, displac

cnt from an original site in a lattice, a macroscopic magnetic

tnoment per nit volume (k ), and a tic moment of the sub-lntti

(anti-ferromagnet).
In 1937 Landau combined several theories: the Van der Waals equation of state
(the gas-liquid transition), the Weiss theory (ferromagnets) and the Curie-Weiss

theory (anti-fc ) into a single 1 (or mean ficld) theory.

Each of these theories had assumed an interacting system could be replaced by

A system in an extel

1al ficld — if only that field is properly chosen 2], A non-

interacting system in an external field can be exactly solved; the field is then

determined by a variational calculation. It is equivalent to sclecting, out of all
possible configurations, the one that gives the lrgest contzibution to the partition
function. In field theory, this is called the classical or tree approximation. This
means that all luctuations are ignored. So, while this type of theory may be

The order parameter is only zero in the symmetrical phase when there is no external field.
The presence of an external field will be discussed later.

0



quantitatively wrong (because of the fluctuations near the transition point), it can
be a guide, and is & good starting point for more complicated theorics that take
these fluctuations into account [2] since scaling and scaling laws are still obeyed.t

Landaw’s phenomenological theory of phase transitions [4] is based on the

assumption that, 1

ccond order phase transition temperatures, (i.e. near a
structural phase transition or in particular, » magnetic phase transition), the free
cnorgy density f may be expanded in a power scries of the order parameter, which

is continuous and thus can take arbitrarily small values near the trausition point;
F(H, T, M) = fol I, T) + b (H, TYM + %A(H,T)M’ +bg(H, T)M + %B(h’, AL

where fy sets the energy scale, (i.e. it s the free energy density of the disordered
phasc). The argmients of the potential, external fild (H)} and temperature (T')

can be arbitrarily spocified, while only the particular values of the order parameter

(M) that correspond to an cquilibrium state (i.c. minimize the potential) are

allowed. (N.B. This cxpansion does not take account of the singularity at the

transition point; it will be shown later it is not necessary.) For magnetic phase
transitions, which will be the primary application in this thesis, M represents

the magnetization component along a given direction (i.e. the projection of the

inagnetization along the axis in the direction of the spontancous magnetization),

Hiypersealing relations do not apply here since the dimension is not four. At that marginal
dimension, another relation involving the critical index of the correlation length exists [3].

In other systems, Landau cocfficients will be functions of the pressure, and not of the external
feld.




H represents the external magnetic field, and T, is the Curie temperature.
Two conditions must be met for the potential to be a minumum at particular

values of M:

== by + AM + 30 M? + BM* =0

ﬂ—A+GI M +3BM* >0
oz~ AR

in both the symmetric phase (M = 0) and the unsymmetric phase (M # 0). The

first implics the coefficient b, must be identically zero for all pressures and temper-
atures. The second implics immediately that in the sy ic phiase, A(H,T) > 0.
For the unsy i phase, combining the two conditions gives the inequali

~24 > =3 M

which is satisfied, regardiess of the sign of byM, if A(H,T) < 0. Thus at the
transition point A, = 0. For au absolute minimum (not just a relative minimum)
to exist, the cocfficient By (H, T) must be positive. Then the first condition must
be satisfied for M = 0, requiring by » = 0. (N.D. the subscript tr refers to the
transition point.) If by(H,T) = 0, then there is a line of sccond order phase
transition points in the HT plane. If by ¢ = 0 and A;; = 0 only at the transition
point, there are isolated (sceond order) transition points in the HT plane. Only
lines of second order phase transitions are considered here; by(H,T) = 0. Now
By, is positive, thus B(H,T) must be positive in the vicinity of the transition

temperature (T};) and is assumed to be slowly changing, so it is sufficient to



use B(H,T;,). The cocfficient A can be written as a(H)(T — Tir(H)), assuming

a(H) > 0}

For ic pliase transitions, it is necossary that under time reversal (i.e.
M — —M) the potential be invariant, so all odd order terms must be identically
wero. (N.B. This is another reason for uo linear term when discussing magnotic
phase transitions in the absence of an external field.)

At the critical point [4] (the point where a line of second order phase transitions
becomes a line of first order phase transitions) it is necessary to have A.(H,T) =0
and B, (H,T) = 0, since a curve of second order transitions requires B > 0. Thus
for the state of the body to be stable, another order is added to the expansion of

the free energy density;
Lo+ loar s o
SUHLT,M) = fot 5AM + 3BM" 4 -CM

where Cer(H,T) > 0. By the same reasoning C is positive in the vicinity of
the critical temperature T, and it can be assumed it is always positive, and
approximately constant near T,,. It sccms reasonable that B < 0 is the line of
first order phasc transitions (C' > 0). At a phase transition of the first kind, f = fo
and 9f /@M = 0 must be satisfied together. This means that A =0, or M? =
-3B/(4C) > 0, so B < 0 for a linc of first order phase transitions. Substituting

this back into either equation gives the equation of that line, 16AC = 3B%. This

V'This is true for most, but not all, transitions.



in turn gives the new transition temperature for a first order transition, in terms

of the second order transition temperature:

Ty =Teun + 17— 5 1GaC

Lifshitz and Pitacvskii [4] show that the curve of transitions of the first kind passes
continuously into the curve of phase transitions of the second kind at the critical
point (.. dT/dH is continuous), and that the two curves are discontimious in the
sceond derivative at the critical point (i.e. d*T/dH? is discontinuous),

The difference botween the two polynomials for cach kind of phase transition
can be understood intuitively by considlering the graph of frec cnergy density

vs, the magneti:

tion. The fourth order polynomial, which is quadratic in M?,
las a single well (ahove T,,) that contimously splits into a double well as the
temperature is lowered throught the transition point. The appearance of a pair
of degenerate gronnd states is continwous. The sixth order polynomial, which is
cubic in M?, has a single well (and may have local minima) ahove the transition
point, and as the temperature is lowered, local minima form and drop down to the

ground state. The appearance of three degenerate gronnd stales is discontinuous.

Up to this point, the treatment has been purely mean field, but the order

parameter can be considered to be slowly varying in space; to include effects due

to nearest neighbour interactions. This iden is due to Ginzburg (hence Landau-



Ginzburg theory) and was first applied to superconductors [5] ! For long wavelength
fluctuations, consicler derivatives of the lowest order. The terms M/ VM and VA

e

will contribute only to surf: and can be neglected, but terms propor tional

to (VM)? will contribute to bulk volume effects:
J(M(Z),VM,H,T)= fo+ %A}\IH }BM‘ + %CMH— VM-D-VM. (L1)
The free energy is now a functional:
F(M);HT) = /f(l’lﬂl,VM, H, T}V . (12)

In the most gencral case, the constant of proportionality D will be a real second
rank tensor, which can be diagonalized. The three diagonal cements D;, (i =
1,2,3) represent the principal axes of the lattice. If D; is positive, the lattice is
ferromagnetic along the z; axis; if D; is negative, the lattice is anti-ferromagnetic
along the z; axis. Thus, anisotropy cffects duc to nearest neighbour interactions
can also be incorporated. It is useful to scale 7; with respect to the cocfficients
D;, sothat the gradicnt term can be written as a scalar times the gradient of the

order parameter.
D; all positive
(D (@AM +@M) + (@ M) = DVAE (13)
D; all negative

Dimixed signature: D [@M)? ~ (0,M) - (8, Mf] = D(VA2  (1.4)

*An English translation is given in [t], and a revicw is given by [1)



where D is a real non-zero scalar and & = 9/dy. (Here, the g's are the new,
scaled axes.) The gradient term is now in one of the two above forms; the first
being Euclidean space E(3), and the sccond a Minkowski space M(2,1) with a
pseudo-time variable.

The external ficld may be explicitly included in the free energy density by
adding a lincar term (~hAZ) (4], where h is proportional to the external field
H. The symmetry of the more symmetric phase is then reduced, since the order
parameter is non-zero everywhere. The phase transition point is nolonger discrete
at Hy, and Ty, but smoothed out, In particular, the specific heat no longer has a
sharp disconitinuity; it is smeared out. The final free encrgy density to be used in

this thesis is then:
FQME), VMH,T) = fy— hM+ %AM’ % iuu‘ + %czuﬁ +D(VMRE. (1.5)
where
A=aH)(T -Tp(h)),hoxc H.
For a sccond order trausition
C(H,T,) =0, B(H,T,)>0,
and for a first order transition
C(H,T,) >0, B(H,T,) < 0.

The Ginzburg cri

rion [4] gives the temperature range, outside of which the

Landau theory is valid. So this theory is useful close, but not too close, to the



transition temperature. Inside this fluctuation range, the fluctuations resulting
from the singular nature of the free cnergy near the phase transition are domi-

nant, Near the transiti lorge seale correlations appear. This is

manifested, for example, by critical opalescence at the gas-liquid critical point
when regions the size of microns fluctuate coherently [2,8]. In a magnet, diver-
gence of the susceptibility indicates the approach of the transition temperature.
The conditions for validity of this theory can be more easily satisfied as the eritical
point is approached.

There are other theories that model critical phenowena: e.p. Ising (2 and 3

di ions), Heisenberg, and spherical models. Of these, the 2-dimensional Ising
model is exactly solvable, and produces remarkable results at phase transition
temperatures. A mechanism is needed to compare the results of these various the-
orics. The method used is to look at how physical quantities (e.g. heat capacity,
susceptibility, corrclation length, the correlation function, and the magnetization)
change as the transition point is approached. This is written as the power of the
reduced temperature (¢ = (T — T,,)/T,) near the transition point. These pow-
ers arce collectively called the critical indices. They are experimentally verifiable
and provide a straightforward way to compare the results of the various models.
Unfortunately, heeause Landau-Ginzburg theory doesn’t apply in the Auctuation
range, critical exponents caleulated using it are not very reliable.

The next step is to find the function A that minimizes the free energy. The



stationary points of F' with respect to A/ can be found by solving this equation:

AM
§F= / dV[-h + AM + BM'+ CM*-2D 6M =0, (1.6)
oM

where
A=8} +0+ 83 (1.7)
0= -8-93 (1.8)
which results in a non-lincar partial diffrentinl equation (PDE):

AM(E)
2D ==l +AM +BM® 4 CM°. (1.9)
OM(@E)
Itisimportant to note that it will benecessary to check which functions A actually
minimize F, and thus are stable solutions.

In the context of quantum field theory Burt [9] studied a class of non-lincar

field equations (in Minkowski space) of the form:
(0,0 + mPp+ ap™ + A" =0 (1.10)

where p#0,-1/2,-1; and ot € (0,1,2,3). He found solitary wave solutions of a
class of field equations for systems with polynomial self-interactions which reduce
to plane wave solutions when the coupling constants & and A are set to zero, He
postulated a plane wave variable y = k2", with kA* = m? and developed a
general solution. For p = 1/2, his solution is exactly the form of a case presented

later (25D; see cqus. (3.13), (3.14); §/ D < 0). However, he set the first integration

10



constant tozero, and considered only the case when k,k# = m? > 0, thus he missed
the other bounded solutions detailed in the 25D case, and did not get the singular

solutions.

Khan [10] studied maguetic phase transitions as a basis for understanding
critieal phenomena, He analysed a one dinensional version of equation (1.9) with

no external field, and no sixth order term (h,C' =0). Because he worked on the

one-dimensional case (i.e. the equation is equivalent to the ordinary differential
cquation analysed here), the methods of integration are the same as used in this
thesis. Thus, his solutions correspond to the elliptic solutions presented here for
the C = 0 case. All of Lis solutions are periodic, but some are discontinuous.
He states that the discontinuous solutions are physically unrcalistic and perhaps
these discontinuitics may he eliminated by the inclusion of higher order terms in
the free energy expression,

In a more general context of the kinetics of a first order phase transition with
the inclusion of dissipation, Gordon [11] considered a time dependent Landau-
Ginzburgequation (one spatial dimension) for the evolution of the order parameter
¢ as given by:

21‘0'"—3 + vdi = T(ap — b+ cp%) (1.11)

ds? ds
where & = 2 — vt represents a plane wave that takes the original PDE into a solv-
able oclinary differential equation (ODE), T'is the Landau-Khalatnikov damping

cocfficient, a,b, ¢ > 0 are the Landau cocfficients, and D is the coefficient of the

11



inhomogeneity term. Assuming kink-like boundary conditions lims—4c0 ¢'(s) =0,
limy—ep = @y, and lims_o ¢ = @2, where ¢y,p, are the minimum and maxi-
mum, respectively, of the free energy, he gets a kink solution. One example profile
shows the interface between the ferroclectric phase ¢; > 0 and a para-clectric
phase g3 = 0 where v is the propagation rate of the interface. Comparing his
results with experimental values of the Landau coefficients, he found satisfactory
agreement between theory and experiment.

Winternitz el al. [12] investigated equation (1.9) for second order phase tran-
sitions (C = 0, B > 0) in the absence of an external magnetic field. This work
is a three dimensional analogue of the calculations by Khan [10] discussed above,
They found a large class of symmetry variables, and corresponding solutions. The
solutions presented here will be similar in many ways, but generally more re-
stricted since the presence of the external maguetic field lowers the symmetry of
the problem.

The aim of this thesis is to analysc a more general situation where the space

of the independent variables is th 1, and external fields play an im-

portant role, but no time is involved. Chapter 2 will be a short outline on the
symmetry reduction method as it applies to this equation, and the benefits of

will be , with some discussion, in

using such a method. The
Chapter 3. A more general discussion of the solutions and the calculations then

possible, is presented in Chapter 4.



2 SYMMETRY REDUCTION

This is a bricf foray into symmetry reduction as a method for finding solutions to

(systems of ) partial differential equations. The equation of interest is:

AM 1

3p{~h+AM+ BAP+CMY) = V(AD) (2.1)

oM
(N.B. V' has been used here because the polynomial above is proportional to the
derivative of the polynomial in the free energy density equation (1.5).) It is an

example of the non-linear Klein-Gordon cquation, which has the gencral form:
OM = H(M,(VM))

where the functional H(M,(VM)?) can be sinAf (the sinc-Gordon cquation),
sin A +sin 2/ (double sine-Gordon equation) or, as in this case, a polynomial in
M. Symmetry reduction uses the propertics of a Lie group of continuous symme-
tries of an equation to introduce new, independent symmetry variables and reduce
the dimensionality of the system. The method is very general and can be used
with a system of multi-dimensional PDEs of k* order. It is well documented by
Olver [13], and this chapter will only attempt to give as much of an overview of
the method as is needed for this particular example. The equation is solved in
Euclidean space E(3) and in Minkowski space M(2,1), depending on each partic-
ular D (cqns. (1.3), (1.4)). In this example the symmetry variables used reduce

the PDE to an ODE. The basic procedure follows:

13



a) Calculate and solve the system of d ini i The calculati

is algebraic and tedious when done by hand, but ideally suited to computer op-
crations. Recently, symbolic computer programs (e.g. in MACSYMA™[14] and

REDUCE [15]) have been developed to imp! the algorithms for finding the

7

system of determining equations. However, solving the system of determining
equations is quite strnightforward. The result is the Lie algebra g which is defined
by differential operators g; called generators. In this case, generators of equation

(2.1) in Euclidean space E(3) are:

P; =8, L; = -€jex;Py, (2.2)
where 7,5,k € (1,2,3), and € is the anti-symmetric Levi-Civita tensor. These
are the vector fields of translation and rotation. The generators of equation (2.1)
in Minkowski space M(2,1) are:

P=08;, Ly=zP—nh,

P=d, K;=-1oPj-1;P, (2.3)
where j € (1,2). The new clements are pseudo-time translation and the Lorentz

boost. The Lic algebrn, defined by the Lic ( jon) bracket and

(2.2) and (2.3), is:

[Py Po) = [Po, P2} = [P, P} = [P, Li) = 0,

[Po, i) = =Py [Py Lj] = €iu Py, [P K} = =50,
[Li, Ly} = [Ki, K] = €L, [Lio K) = €Ki (2.4)

14



Table 1: The action of the one parameter symmietry group

Generators g; (2 Th, T4 75) = e 8°(0, 21,22, 72)
Po=0 (20 + p, 1,72, 23)
P=a (20,21 +p,%2,73)
P=0 (20, %1, 72+ p, 73)
Py=0 (70, %1, 22,73 + p)
Li=23P -2, (x0,21,72 cosp— Z3sinp, T3 cosp + zysinp)
Ly=z,Py-131 (xg,7; cos p + 23 5in p, 23, T3 cosp — T sinp)
Ly=z,P -1, (70, cos p — 72 sin p, 7, €08 p + T Sin p,73)
Iy =—2oP — 2, P | (o coshp+ x; sinh p, 7 cosh p + zgsinh p, 75, 73)
I, = —2oPy =23 || (x0 coshp + x4 sinh p, 21,24 cosh p + zg sinhp, z3)
K3 =—xoPy -2, Ps || (v coshp+ x3sinh p, 21,22, 23 cosh p + agsinh p)

where 7, j,k € (1,2,3) and §; is the Kronecker delta, N.B. The commutation rela-
tion implics the operators are acting on an arbitrary function of the independant
variables. Each generator g; € g hasa first integral that is the one-parameter sym-
metry group G; or the local group of point transformations that takes one solution

into a new solution. The action of this group is:
GGl -
(7}, 79, 73) = €7¥(x0, 21,72, T3)

where p is the paramcter of the group. That is, given a solution in terms of z,,
v € (0,1,2,3), a new solution can be found using . The action of the one-

parameter group for the two spaces are shown together in Table 1.

b) Find all possible (closed) sub-algebras and choose a representative of each

conjugacy class. This is equivalent to finding the optimal system of subalgebras.
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Table 2: Symmetry variables E(3)

¢ ODE: (V€)3 Wy + AW, = VI(W(E))
z Wy = V(W)
(23 +23)'2 Wee + W = V(W)
(@} + 2} +23)" Wee +§We = V/(W)

Methods for finding the subalgebras are described by [16]. The results used in this

thesis are taken from [16,17,18].

) Integrate cach lincar system of first order PDEs corresponding to the subal-
gebra, using the method of characteristics [19]. This results in a function £(z;)
(the symmetry variable) which is an invariant of the group. The dependent vari-
able, (M), is then expressed in terms of this known function, and a new unknown
function (1V):

M(@) = W(E(E).

Substituting this cxpression for M in the PDE will generate ODEs of W in €.
The symmetry variables used in this thesis were taken from results for an implicit,
general, and non-linear Klein-Gordon cquation. Grundland ct al. [20] solved the
problem H(Du, (Vu)?, 1) = 0 for (n + 1)-dimensional Minkowski space M(n, 1),
where H is an arbitrary function. The results for this example are given in Tables

2 and 3 (W; = dW/df and v is an arbitrary function).
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Table 3: Symmetry variables M(2,1)

¢ ODE: (V§)2 Wee +0€W, = V/(IV(€))
o Wee = V'(W)
z Wee = V(W)
Totm 0=V(W)
z2+v(za+ 1) Wee = V(W)
(a2 +23)'2 Wee + 1We = —V'(IV)
(3 =} Wee + §We = V(W)
(x2 — a2 —ad)'? Wee + W, = V(W)

The symmetry variables for Euclidean space are

and

invariant, respectively. The lationally invariant variable can

be thought of as a plane wave - 7 where ¥ is the wave vector.

The symmetry variables for Minkowski space are hiat more i

The first and sccond are translationally invariant with respect to pscudo-time and

space, respectively. The third is lationally invariant on a plane perpendicular

to the z; = Fay line, respectively. The fourth describes a sheet, the projection of
which on the 73, 29 = #; planc is an arbitrary function of 2¢ + z,. The fifth is
cylindrically invariant. The sixth describes a hyperboloid sheet, and the seventh
a hyperboloid. The first three variables can be thought of as plane waves; with zo
representing a light-like vector (k% = 1), z; representing a space-like vector (A? =
—1) and 7 &z, representing vectors on the light cone. While the translationally

invariant variables may be an obvious choice to make, the others, are much less
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obvious. This is the power of the symmetry reduction method — to calculate, in
a methodical manner, symmetry variables that apply to an equation or system of
equations. In the cases calculated earlier [12], no external field meant that there
was a much richer ficld of symmetry variables, and of interesting ODEs. This was

due to the presence of scaling symmetries (dilations) which are valid when the

pol. ial lincarity is b (i.e. for some function P(Aé) = AP(4)).
The solations presented in the following chapter are for the cquations of the

form:
Wee = £V(W) (2.5)

to the lationall;

invariant and degenerate symmetry variables.
Note this equation also has two discrete symmetries: £ — —€ and £ — i€. (N.D.
In the following chapters, the * (eqn. (2.5)) is absorbed into the cocfficient D.)
When C = 0, the cquation is of Painlevé type, but the general equation C > 0
(and & # 0) is not. An ODE has the Painlevé property if its general solution has
no essential singularitics, other than poles, which depend on the initial conditions
[19,21). X all the critical points are fixed and £ is not a critical point, the critical
points are independent of the initial conditions [20], the solution is unique, and
completely determined by the initial points Wy = W (£) and Wy = Wle=, [19).
(N.B. Choosing a houndary condition restricts the symmetry of the solution to a
smaller symmetry than that of the cquation itself.) The Painlevé property is a

necessary but not sufficient condition for solutions without moving essential sin-
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gularities. An cquation with the Painlevé property will most likely be integrabie

in terms of cl Yy al or Painlevé dental i A

method of testing for the Painlevé property is given by [22] and a MACSYMA™
program bascd on those results given by [23]. Thus, the equation (2.5) will have
analytic solutions for C' = 0, and probably solutions with moving cssential singu-
larities for C' > 0. Thus, the following chapter presents solutions to a less tractable

equation. The equations of the form:
v, k 7 5
e+ E"Vg =V(W) (2.6)

ricall hericall

ding to the cyli and hyperbolically invariant sym-
32 P!

metry variables) asymptotically have the same solutions as (2.5), but also are
not of Painlevé type. It is expected the solutions of (2.6) will also have movable

algebraic branch points and may or may not have analytic solutions.



3 SOLUTIONS OF THE STEADY-STATE
EQUATION

The equation that will be concentrated on is
W(e) = %(—h + AW + BW? + CW®), C >0, (3.1)

where 17 = d?1W/d¢?. Equation (3.1) can immediately be integrated to

1

W3E) = =(s0— hW + éw’ + %v‘ + %W“) (3.2)

where so is a real integration constant defined by the boundary surface £(%) = €o.
The inital conditions are determined by the boundary surface of the ODE:
Wy 1= W(ko), Wo i= W(E)lemto -
Thus s is defined as follows:
s0= DWWy’ + kg — éw; - gw,: - %Wf. (3.3)

The analysis of (3.2) is divided into two cases: second order phase transitions
C =0 (B > 0) and first order phase transitions C > 0 (B < 0). Recall A is
positive above the transition temperature, and negative below. Real solutions
exist when W2(€) 2 0. The former has a complete set of analytic solutions, and
the latter whenever a multiple root occurs in the polynomial. For simplicity, a
scaled variable 7 = k€ is chosen, such that the cocfficient of the highest power
(with the exception of the sign) is unity. The new equations to be solved are:

Wi Wi n) = e(A+alV + AW+ W), e=+1 (34)
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where

o eB 4 A
C=0: 5t = {5 (hanf)= Floo . 5)
and
WS W) = A+ alW + AW? +4W* + WS), e=%1 (3.5)
where

C>0:x2= %, M B,7) = %(sm—h.%vg)»

Solutions are analysed on the basis of the root structure of the polynomial on
the right hand side of the TW* (1V°) equation. Throughout this chapter 7 is real,
thus the valuc of € is chosen to keep eD positive. For cach case, D > 0 denotes
W2(n) bounded below, and D < 0 denotes 2(y) bounded above. (N.B. The free

cnergy density cquation (1.5) is proportional to equation (3.2);
[ = fo+s0=2DW?,

but for physical reasons discussed later, it is not a problem that some of the graphs
are unbounded from below.) The shaded arcas shown in Fig. 1 are the regions
that can be integrated to find real solutions. The vertical axes are the polynomial
function W2(y), and the horizontal axis is the dependent function 1.

For the remaining graphs, the usual pair of axes is the graph (i(n) vs. the
solution W((:), and the extra (righthand) axis gives the graph W2(y) vs. W((:).
The two graphs are placed together to emphasize the connection between the real

roots of W? and the limits of the solutions W. The roots w;,r,p;, ¢i, and other
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constants (c.g. aj,k;) arc understood to be local to each particular solution. The
arguments i, and functions R;(1V) have been numbered. Each ) = 1. Each
¢; is understood to have + ussociated with it. This merely gives the mirror image
solution and is equivalent to W — —¥. This sign is thus dropped. W is graphed
from —1 to 1 because derivations from microscopic Hamiltonian densities require
this bound for the serics expansion [5,12]. Each multiple root has a constant
solution associated with it; these are graphed, but not explicitly included in the
solutions. Sections 3.1 and 3.2 detail the exact solutions and their particular

graphs. Chapter 4 discusses these solnutions,

The following terms will be used to describe the solutions in the remainder of
this chapter. Their definitions are given here for clarity. There are two kinds of
solitary waves: bumps and kinks. Each is a localized travelling wave. A bump

is characterized by the same asymptotic value, and a kink by different asymp-

totic values. They are related in that a kink is the derivative of a bump. It has
not been shown whether these solitary waves are in fact solitons, which have the
special property of retaining their shape and velocity upon collision with other

solitary waves [24]. Periodic bounded solutions will be called spin waves [20] to

emphasize the periodic change in the magnetic lattice of the spin vector orienta-

tions. The term ‘layers’ is used to describe solutions that, except for singularities,
are essentially constant hetween real roots of 172 When these constant values are

different in various regions, the term ‘gap’ is used to describe the inbetween region
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that may be inaccessible (corresponding to negative portions of 2), or may have
other bounded real solutions. A nucleation center refers to a localized region of

magnetic order, i.e. a bump.



3.1 Exact solutions of W* equation
The solutions of sccond order phase transitions arc found by analysing the root
structure of the fourth-order polynomial:
W) = €A+ aW + IV + W)
= (W —w)(W = w)(W = wg)(W = wy);  (36)
e=£1, 9 =0r'€; Ko = ,(Anﬂ) ﬁy, h‘a) B>0.
The absence of a cubic term (1W?) gives one condition on the four roots (real or
complex):
Wy + wy +wy+wy =0.

Using this to determine wy, the coefficients can be written

A = sweler R,

a = (w +we)(wz + ws)(ws +wr) 0,

B = wpwg + watg + wywy — (w1 +wy + ws)?, 3.7)
where ) is non-zero to maintain the generality of the solutions. Note a o h and
non-zero, requires cach root {w;} to be different from the negative of any other

i # j,w; # —w;. Any complex roots must occur in conjugate pairs since each

flicient is real. This elimi; a number of simpler cases. There are seven

cases which can he divided as follows: onc constant, three clementary and three

clliptic solutions.



3.1.1 Constant solutions

The solutions correspond to the three roots of equation (3.1) (C = 0), and are:

—H1£V3)e + &(1F V3P
W)= (3.8)
o= e

where the constant ¢y is given by:
T
€= G\fﬁ ; h? + 2’-;7"
and the integration constant so can be found by substituting the above solutions
into (3.2) with 1, = 0. (N.B. W € ®, but this depends on the actual values of
the constants.) When h — 0, W(€) =0, :!:i\/A_/E. This solution also corresponds
to the symmetry variable on the light cone £ = xo + z,. The magnetization is

piccewise continuons in this case.

3.1.2 Elementary solutions

Each case in this scction has at least one multiple root. The solutions will be
bumps, singular and periodic solutions. There will be no kink solutions in the W*
case because of the external field. All of the integrals used for solutions in this

section can be found in [25].

Single and triple real roots (ST)

The roots are:

w=wy=wy=w, wy=-3w; 0FweR,
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with the conditions sy = —~3w'B/4 < 0, 4 = =3w’B < 0 (i.e. below the transition

temperature.) and the field is h = ~20°B. The solution is (Figs. 2, 3):

W(G) = w(l - —), (39

1-¢

where

B
@ =w'5E-6)

a) When D > 0 this solution (cqn. (3.9), Fig. 2) is singular at (€ ~ &) = +3/F
and could be interpreted as representing a magnetic ‘tri-layer’. The magnetization
is constant at w o« =A% when (€ = &)? > D/(w?B) and abruptly switches to
—3w when (€ - &)* < D/(w?B). Increasing the field will increase the difference
(4w) in the rclative magnetizations of the ‘tri-layer’ structure. Maximum and
minimum cutoffs are imposed (as a result of finiteness of spin magnitude) near
the singularities as the gradient changes rapidly. What happens between these
cutoffs is not reveuled through this theory, since the continuum approximation

used apparently breaks down in this regime.

b) When D < 0 this solution (eqn. (3.9), Fig. 3) is a bump with height 4w and

limit w as (€ — &) — +oo. The mini ization is —3w. It a

nucleation center of magnetic order separate from the constant magnetization w
throughout the rest of the sample. Increasing the field h will increase the height

of this bump.

)
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Figure 2: W' ST Single and triple real roots, D > 0, w = 0.1
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A complex conjugate pair and a real double root (CD)

The roots are:
wy=wy=—p, wy=w;=p(-1+ir);0#preR,

requiring so = p(1 +1%)B/4 > 0, A = p*(r? - 2)B/2, and the ficld k = r’p*B/2.
The only real solution oceurs when D > 0:

P44

W(G) =p(1+ TG =2 (3.10)

where
D
G=?% r=+4\/;(5—en), D>o0.
This solution (Fig. 4) is singular at sinh ¢y = —2/r. The limg_s. W = p. So the
magnetization (p) is constant over most of the sample, but near the singularity

the ization changes y and fips to the opposite sign, returning

to the constant magnetization (p). This, once cutoffs are imposed, appears to

be ially a l field, with an inl ity near the singularil

Increasing the field will drive the constant ficld away from the zero field.

Two distinct single and a double real root (25D)

The roots are:

Wy, 1wy, Wy = 1wy = —(wy + w2)/2

wy,wz € R, w! # wl.
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p=01r=1



The field is h = —Bu(w; — w,)?/8; the other cocfficients are sp = wywyw? BJ4,
and A = (wjw, — 3w?)B/2. Choose w, < w;, and introduce the parameter

&= (3w; + wy)(wy + 3wy). (3.11)
When 6 = 0 the solution becomes (ST eqn. (2.9)). When 6 > 0 the polynomial
lias a double root on the right or left, (one is the mirror image of the other, so
assume the double root is on the right, w) < w). Solutions with double roots on
the left can he obtained by reflecting ¢ across zero. When § < 0 the double root is
between the two single roots, wy < w < wy. The analysis of this section is divided

by the sign of § as well as by the sign of D, The common argument to each is:

e }m/l_%_[«e —&). (@19

The first general solution is, for §/D > 0:

8/2

W) = vt e oG F A=’

(3.13)
such that when
D>0: =1 W<w or w<W singular
=1, w < W <w bump
D<0: =1 w, <W<w bump
m==1, w< W <w bump
and where

6=~ lu(u; — wy).
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a) Whea D >0 and 6> 0, the solution (cqn. (3.13)) is shown in (Fig. 5). For

i = 1, this solution is singular at (3 = In(4w + \/5) and, having removed the

T a ic ‘tri-layer’. The lim¢y—s00 W((s) = w. When
= —1, the solution is a bump, with an extremum at (3 = In(w; — w;) and is
a magnetic order nucleation center. This solution is cquivalent to the one in [9].
The maximum height of this bump is w — w,. There are no real solutions between
wy and wy. Increasing the magnetic ficld increases the ‘gap’ between w; and wy,

and moves the constant magnetization up the graph. The width of the portion

between the two singulmities is A = In [%|

b) When D < 0 and § < 0, the solution (eqn. (3.13)) is shown in (Fig. G).

These are two bumnps with extremums at (3 = In(w; — w,) and respective heights

Wy —w, w— 1wy, limg,_4,W(G) = w. The magnetization is limited to values

between w; and wy, and has nucl

centers of icorder at the same point

but of different itude and ori ion. I ing the external field further

distorts the bumps from the symmetric position they take with no external field,
and moves the limitiug values farther away from the zero position.

The second general solution, for §/D < 0, is:

/2

7(C0) = e ety ———
W) e G —as

(3.14)
such that when

D>0: =1, W<wyorw <1V periodic, singular
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D<O0: =1, w, W< w periodic

€) When D> 0 and § < 0, the solution (cqn. (3.14)) is shown in (Fig. 7). This

solution is periodically singular at ¢ = arcsin

W s relative g
-, and has relative minimums

at w; and maxinnuns at w,. It represents a periodic arrangement of magnetic
double layens’ once the singulaities have been 1emoved, The width of the lover
‘layer', hetween singulaitics is 7 — 2aresin[4w/(1; — )] and of the upper ‘layer’
is w4 2arcsinfdw/(w)—w2)] . Either of these going to zero is equivalent to § — 0.

As the field incrcases, the ‘layers’ move apart, and away from IV = 0.

d) When D < 0 and & > 0, the solution («qn. (3.14)) is shown in (Fig. 8).
This solution oscillates between the values wy and w, with a period of 27 and
is non-singular. It represents a spin wave (changing between virious stable and

metastable phases). Increasing the field increases the amplitnde of these waves.

3.1.3 Elliptic solutions

The remaining integrals (the most general cases) are elliptic, and thus contain only
periodic (and singular) solutions. Each integral, all from [26], has cither an upper
or lower integration limit; this does not mean a boundary condition has been lost.

The solutions aire expressed in terms of the Jacobian elliptic fmctions t(¢, k),
en((,k) and sn(¢, k). (N.B. (¢, k) = sn((,k)/en(¢,k).) The paraucter, &, is

called the modulus; the complementary modulus is &' = V1 —#. Generally 0 <
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k<1, if not, a transformation is employed to make it so. Here, this inequality
is true by definition. These functions are one valued functions of ¢, and are
doubly periodic, laving one real period and one complex period. The periods
are, respectively, (2K, 42K7), (4K, 2K 4 2iK') and (4K, 2:K"). (N.B. The function
sn’((, &) has period (2K, 2ik").) The periodic function is defined by the complete

elliptic integral (of the first kind):
H A s -
A e ==K (@.15)

and K() = K.

The graphs have not been drawn in this section hecause it would require three
dimensional graphing, and because of some technical problems. The two basic

elliptic functions su(¢, &) and en(¢, k) have as limiting functions:
su((,0) =siu¢, sn((,1) =tanh(,
en((,0) = cos¢, en((,1) =sech¢;
and limiting values:
—1<a(C, k<1, ~1<en((k) S 1,
—o0 < tn(¢,k) < oo,

These arcall periodic functions, so the graphsare expected to be either periodically

singular (as in 28D (D > 0,6 < 0) Fig. 7), but with modulations on the curve;
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or periodic and hounded (as in 28D (D < 0, > 0) Fig. 8), and again with
modulations on the curve. There are no nultiple roots in this section, so there
will be no constant solutions and no bumps. Essentially, it is not necessary to
see the details of these solutions as it is possible to deduce the general shape and

nature of each graph from the work done carlier.

Two distinct complex conjugate pairs of roots (2C)
The roots arc:
wy = =pigy, o= wi=—p+in,
naa €R; ponm #0, 4} # 63
The fieldis & = pi(q3 - ¢})B/2 and s = (P* +¢})(P* +¢3)B/4 > 0, and A =
(g2 + g3~ 2p*) B/2. These solutions are in terms of tn(¢;) with the real period 2K.

The only real solution is obtained when D > 0:

) =pt I 1o —0i+1
W(G) =p+ p [1 n.tu((la,k,)+1] i (3.16)
where the argument is
=8B g, (@17)

and

A= 4 (0 + @)y B =40+ (0 - a2),

2 _ g —(A-B)?

3 = AL M= A D)
H=gip<l, o “A+Br—1q"
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It is periodically singular at tn(¢s, k1) = —1/a;. These solutions represent a
periodic arrangement of magnetic double ‘layers’ of differently magnetized regions.
These solutions can reduce to the CD case. The graph will be similar to (Fig. 7),
but without the ‘gap’ between ‘layers’ because there are no real roots to create an

inaccessible regio.

A complex conjugate pair and two distinct real roots (C2S)

The roots are:
" . 1
wy >y, wy = w) = piq, p= -y —ws);

W, 10,0 € R w0y, 100, 0,9 # 0, wi # wh.

The field is h = =Bp(p* + ¢*)/2, and sp = waey(p® + ¢*)B/4 > 0 and 4 =
(8% oy — ) B 2. Thitss solivtions dvein boimsoben(ty) whiich i Feal

period 4K. The nrgument is:

6= V2B [P g, (318)

with these defined constants:

o 1
A =R bl B = (S0

k= [(A+B)2 = (o — )], k=1
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a) When D > 0, two periodically singular solutions, valid for W((;) > w;, and

wy > W((s + 2K(k2)), are found:

gy = ME A (1w, —w)) AB
T TATB T (A48 en(G ) - A+ B

(3.19)

The graph will be similar to (Fig. 7) including the ‘gap’ of width w, — wa.

b) When D < 0, two bounded periodic solutions, valid for w, > W(Cs) > wa

and wy > W(Gs + 2K(k})) 2 w3, are obtained:

L B wyd 2wy - ws) AB
W) ="3-2 * A brat iy + F=B

(3.20)

These solutions oscillate between w, and w,.  There are two solutions for one
region in this case because of the integration limit mentioned earlier. The graph
will be similar in nature to Fig, 8. They will reduce o the simpler cases (CD) and

(28D).

Four distinct real roots (4S)

The roots arc:
wy > uy > wy > uy €R,

and distinct from cach other and their negatives, wy > 0 > wy. The field is the

general case:

_ C (oo wg)(1wy + 0g) (g + 104w + 100) 10+ )

h G (wy + w0y + wy +uy)

a2



These solutions ar all in terms of the clliptic function sn2( (g, k§?) with real period

2K(ks). The argument is:

(o= 1o = w0 B 6, @)

with the modulus given by:

0<;,.7=M'__"’“).M <1, 0<ii=1-K <1.
27 (w1 —wy) (wa - wy) . N
The srgument ¢ it be real or imaginacy, since an’(ic, §) = ~tn?((¥). All of

these solutions can be found from any other, by the appropriate choice of argument;

e.g. (3.23) can be generated by using (s + K + A in (3.22).

a) When D > 0, there are four regions, two of which produce singular periodic
salutions, and two of which produce bounded periodic solutions.

For the regions w, < 1((s) and W(¢s +K) < w, the solution is:
= (wy — wy)
IG) =ty ) 22
W) = wrt 7 pe ot (322)

1<,.;=Ew;-w.%;

w; -
and it is singular at su?((e,k3) = a3° < 1. The graphis sinilar to Fig. 7.

For the regions wy < W((s) < wy and wy < W((; + K) < wy, the solution is:

- () — wy)
WG == ;= 5= (o)’ (3.23)

(10 —0y)
0<aj=——=<1.
s ("‘I _"'3)
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These solutions are non-singular and oscillate between w; and ws. The graph is

similar to Fig. 8.

b) When D < 0, all the solutions are periodic, non-singular and oscillate between
their respective bounds. The graphs are similar to Fig, 8.

For the regions wg < W(¢s) < w; and w, < W({e+K’) < w, the solution is:

(wy = w3)

W) = wst 7= 2 o W)

(3.24)

2 _ (w1 —ws)

U< o= )

<
For the regions wy < W((s) < ws and wy < W(¢s+K') < wy, the solution is:

W(G) = w1 ~ (3.25)

Tor

7o =)
5= Tr — )

All of these solutions reduce appropriately to the solutions given for simplor

cases in (25D).



3.2 Soluti of the W eq

The clementary solutions of the equation (3.5):

W 10%(n) = A+ alV +BW2 W44 %)
= €IV —w)(W —wg)(IV = wg) X
(W = ) (W — wg)(W — wg) (3.20)

- ey g 60 _6 A B
e=dly=nTG w7= 55 (e = glamh ),

which corresponds to first order phase transitions, are found when at least a double
root exists. There are fiftcen cases, which can be divided into four categories:
constant, five clementary, five clliptic and four hyper-clliptic solutions. The elliptic
and hyper-clliptic solutions are not included here. The Landan cocfficient B,
in all but one case (CDC), is shown to be explicitly negative in the clementary
solutions. All solutions are expressed as ¢ = ((I), since it is no longer possible

to invert them. This means it is necessary to he very carcful about any + signs

associated with radicals and iodicity (1 | of fi i in the implicit

solution. The hasic solution is 1-1 and will give only one portion of the solution.
Proper consideration of the + sign and na will give the complete solution, This
is particularly important for bumps and periodic solutions. The roots can be
real or complex, but any complex roots must occur in conjugate pairs, since the

cocfficients arc real. No other assumptions are made concerning the roots. Since
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there is no quintic term (W?®) the roots must satisfy:
wy 4wy wy + w4 ws +wg=0.

There is also no cubic term (), thus two roots can be written:

i (wy + m;: Wy + W) £ Q

@ = [...3 — (4 + wy +1w03)t0? — () + Wy + ws) oy + w)
—(10y + wp)w] — (wy + )y + w — wyiey(wz +wy) + wf]

J(wy 4 w0y + w3 +wy)

((wy + wa + wy + wy) # 0 is equivalent to wy # —wy, and preserves a non-zero
field). Using this condition, the coefficients can be written:

A = M [+ w2+ wg + 100 = Q7

.- (lm+w~)(u‘. ) + sl + sl + e )
N (wy + w2 + wy + wy)

1
B = gl +ud+ud 4w -+ 4y 4 10)

+(} + w3 + ud + w}) = 2w + 0 +wl + w}) (3.27)
Q

2y

+(w? = ) (10103 4 wgieg + gy + (w0 = iy + wqiny + wywg)

¢ .
(008 = L)+ gy 4 )+ (0t = L+ gy wgm,)] ,
Y= wgny + w(wy + wg) + gy 4wy + )

3 2
-l b+ w) — %

46



with A generally non-zero. Note, again, a « h being non-zero generally requires
cach root {w;} to be different from the negative of any ather i # j, w; # —w;.
The field can be expressed in terms of the roots:

1+ 0,) (g + wa)(wy + wy) (wg 4 wa){w, + wy) (ws + wy)
Gy + wy + wy + wy)

p=cl® £0. (3.28)

3.2.1 Constant solutions

The five constant solutions are given by the roots of (3.1) and the integration
constant so can then be found by substituting those solutions in (3.2). Naturally,
the roots must all be real, since a real solution is sought. These represent homo-

-wise

gencous fields. Again, the symmetry variable on the light cone, gives pic
continuous solutions.
3.2.2 Elementary solutions
A complex conjugate pair and a quadruple real root (CQ)
The roots are:
W =wy = wy=wy =w, wy=wg =w(2+i);0£weR,

The coefficients associated with WS require sy = 5Cu®/6, A = 5Cw" > 0 (above
the transition temperature), while B = ~10Cu?/3 < 0 and the ficld is h =

~8Cw®/3. The ouly real solution oceurs when D > 0, (Fig. 9). The argument is:

= 10(117\/0%(5 ~ &)
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(W - 2w)? + w? 3 . [Tw—3W]

= T wWre 'R [Wrwlr G2
such that
—w<W: p=-1
WE—w: p=1.
This solution is singular at 1V = —w. Truncating the singularitics leaves a homo-

gencous magnetic field, proportional to the external field.

Single, double and triple real roots (SDT)

The roots arc:

wy = 5w, wy=wy=—dw, wy=ws=wg=w; 0£weR.

The cocfficients of W require so = 40Cw®/3, A = 55Cw* > 0 (above the transi-
tion temperature), while B = —20Cw? < 0 and the field is h = 36Cw® > 0, since

w is chosen to be positive. The common argument is:

s =5u® (3.30)
a) When D > 0, the solution, (Fig. 10), is:
G = l..ln,+4“ (17u,--7||'+,,3\/5 (w-sm)(w_..,))l
./l.ln ==1; (3.31)
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G W2(n)

5.0 0.0001
-20.0
-15.0 0.0000
-10.0
5.0 -0.0001
0.0
5.0 -0.0002
10.0
15.0 -0. 0003
2.0
% — - - - 0.0004
-1.0 0.0 LOW(C:)

Figure 9: 1'% CQ Complex conjugate pair and a quadrple real root, D > 0,
p=%1,w=01



where cach region is given by:

W< —dw: =1

—dw<W<uw: =1

SwSW:  gu=-1,

and g = £1 gives the two halves of cach solution. There are three arcas of
solutions; the two outside which are singular and the middle region —4w < W < w

which has kinks. The height of the kinks incre as the ficld increa

b) When D <0, the only real solution (Fig. 11) is:

G = Lol 8
* T AT T AW dw)
nm 5

3v6

ot (3.32)

where n is an integer. The two halves of the solution are u(n = 0) and —(y(n =
1), he solid and ddtiod Tnes; renpesfively inFig, 11 1t fs-wfidits the region
.S TP < v sl desieion & iiprsiols Liightidin. TG ropronstibn s aivelontion

site of maguetic order,

A complex pair and a double complex pair of roots (CDC)

The roots are:

w+iyp+

W=y = = w) = p i, wy=w
3 1
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G W)
3.0 0.002

0.001

0. 000

-0.001

-0.002

-0.003

-0.004

2.0

-0.007

3 . — 0.008
-1.0 0.0 1.0

()

Figure 10: 1 SDT Single, donble, triple real roots, D > 0. w = 0.1



s
-5.0

0.0

W(n)
0.002

0.001

0.000

-0.001

~0.002

~0.003

-0. 005

-0. 006

-0.007

W(Gs)

Figure 11: 1% SDT Single, double, triple real roots, D < 0, w = 0.1, n = 0. -1



0#pgeR.
The cocfficients of W* require s = C(p? +4%)%(¢* +5p%)/6 > 0, and A = C(3¢* +
2p%¢* + 15p')/3 > 0 (above the transition temperature), B = 2C(3¢* — 5p*)/3
and the ficld is h = SCp*(q® + p?)/3. (N.B. Here it is not clear whether B is

negative.) The only real solution (Fig. 12), necessarily singular, occurs for D > 0.

= o [P, D>0
1 4(M2 + N
= 2\/: = &pln V=Pt e
——(  (N(IV - p)+ Mg
—Jr+5p (.u’chm (—M(“'—n)—t\'« +ax ). (3.33)

(3.39)

The argument is:

o

where n is an integer, and

ro= \/2p2+9¢2>5p >0,
M= p(3W +7p) + ¢ +\plr +5p)RI(W),
N = q(W+2p)+/plr - sp)R(IV),

Ry = (W4+2p) 4"+,
This solution is periodically singular at

G o= %,/,- —opln |4[(3p + o PP+ (ol — 5,,))’][

— ( ( 1+ /plr - 5p) )
—yr+35p |arctan | ——F=————=| —-nr|.
3p+/p(r +5p)
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G W)
8.0 0. 002
0.001
0. 000
-4.0
0. 002
-0.003
0.0 -0.04
-0.005
------------- ) TS 10,008
-
4.0 S
N
N 0. 008
\
-0.009
8, " v e 0.010
-1.0 0.0 1.0
W(é)

Figure 12: 11 CDC Complex pair and o double comples pair of roots, D > 0,

r=01,¢=02aundn=0,1



Removing the singularities, this solution represents a periodically inhomogencous

(lumpy) maguetic field.

A complex pair and two distinct double roots (C2D)

The roots are:

e, ws = wy = —w(l+7 +iVF),

Wy =Wy =, Wy = Wy =

0#rweRr>0,w0>rw.

The coefficicuts of 1® require so = Cr2wf(r? +3r 4 1)/6 > 0, A = Cu'(r' 430 4+

Tr?4+3r+1)/3 > 0 (above the transition temperature), B = =2Cw?*(2r24r42)/3 <

0 and the field is k = Cru’(1+7)?/3 > 0, since w is chosen to be positive. The

only real solution (Fig. 13) occurs for D > 0:

Go = W= WVIFT (e - )

" (24 w(lEnE A+
Vil ( VY =) )
L) o (1420 w(l47)(14+4r)
CVAr+ 1 ( Jr V(W =71w0) )

which is valid in these regions:

W<rw: =1, p=-1

reSWew: =1 =1

w<W: ==, =1

o
&

(3.35)



There is a kink between rw and w, and singular solutions outside that region. The

Kink represents two stable magnetic regions, one at w and the other at —rw.

Two single and two double real roots (252D)

The roots are:

Wy =Wy = W, Wy = Wy = —Tw,

ws =w(r =14+ 1) > we=w(r-1-r);

with thecnditions:
.
O<ruwe® rt i,l,(si‘,,\/;),d,

The excluded values of r are simpler cases already dealt with (r = 1/d,4 =
SDT), more restricted solutions (r = (3 + V/5)/2 = s = 0) or values not allowed
because it implics no field (r = 0,1,00 = h = 0). The Landau cocfficients

are so = r2u((r = 1)2 = 1)C/6, A = wh((r = 1) + r(r + 12 = 13)C/3, B =

203(r =2(1412))C/3 < 0 nd the field b = ruo(r —1)*C/G. The analysis is divided
by regions of r; 1 € (0,1/4) and r € (1/4,1), the solutions for the remaining two

regions r € (4,00) and » € (1,4) (topologically equivalent, respeetively to the first

two) can be found by reflecting the ¢

cis. The common argument is:

=0 (1+n)VI-r 'c|

(3.36)



o W)

3.0 0.0001

2.0

/\ -

0.0

1.0 -0.0001

2.0

3.0 -0.002

4.0

5.0 -0.0003

6.0

7.0 —_ —_— 0.0004

-1.0 0.0 1.0

W(Go)

Figure 13: 1 €2D Complex pair snd two double real roots, D > 0. r = 0.01,

w =025



a) When D >0 and r € (0,1/4), the solution (Fig. 14) is:

Cu = J-’—‘_‘m e (wlr = 1) =1)

2= )W = )+ g — )~ I)RZ(W));

2

+——,_—1ﬁ4, |IV+1( (w(dr =1)(r-1)

L= 20)W o rw) + iy fldr — 1) — 1)R,(W))] ,

ity = 1

where

Re(W) = (W = ws)(W = wg),

and the regions are:

W Lwgws SW L —rwyw W=

-t SW<w: p=-1.

(3.97)

The values 1 and gy give the halves of two different solutions when matched

properly. Fig. 14 shows solutions obtained with g, = —1. The second solutions

are found using stz = 1. Each half (c.g. G ju = 1, pra = —1) is paired with the

negative of it's other half (e.g. —Cyyyn = =1, jig =1). There is a kink between

—rw and w, and a bump between —rw and ws. The kink is the houndary between

two stable regions of constant magnetization, and the bump is a nucleation site of

magnetic order.
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-10.07

0.0

S.0

10.0

W)
0. 0002

0. 0001
0. 0000
-0. 0001
-0. 0892
-0. 0003
-0. 0004
-0. 0005
-0. 0006

~0. 0007

Figure 14: 11"

=03, e

59

0. 0008

10
Wi¢n)

52D Two single and two double real vats, D > 0, r = 0.16,



When D > 0 and » € (1/4,1), the solution (Fig. 15) s
” " 1

[ T—"

o= =

2= ) = ) 4 =)L = y-)lMW))

" (w(1=41)(1=1)
+—~——,-——-—‘h aresin ‘ -—‘/_(” ) )

w - ({4 = r)(1 = 7)

9

(3.38)

(3.39)
where
W< m=-1
wsW<w: =1
w<We  =1.

The value g = £1 gives the two halves of the solution in the following pair

Gy pt= 1, 0= 0 with =y, p = =1, n = 1. The bump between wy and w

represents a mucleation site of magnetic order.,

b) When D <0 and r € (0,1/4), the solution (Fig. 16) is:

w(d = r)(1=r)

)

w(l = dr)(1=r)
A 4 1)

1
= -1,-} , (3.40)

7

(3.41)



G 1W2(n)
-10.0 0. 0002

0. 0001
0.0000
-0. 0001
-0.0002

-0.0003

-0.0004

0.0

-0.0005

-0.0006

-0.0007

5. — ——— 0.0008

1.0
W(¢n)

2D Two single and two double veal roots. D > 0, r = 048,




the periodic solutions are constructed as follows: =Cig, 72 = 15 Gy n = 0; =Cuy,
n= =1 and Gy n = —2 respectively, the dashed, solid, solid, dashed lines of
Fig. 16, reading from negative to positive Gy,

When D < 0 and r € (1/4, 1), the solution (Fig. 17) is:

1 fud=r)i=r)
G = T ein =)

+F h.|”,+,w ({1 = 4r)(1 = r)

(2 =)W 4 r0) + /(T —dr) (1 — l')l?:;(”"))‘ L (342)

(3.43)

where
Ry = (ws = WY = wg),

and i = £1 gives the two lalves of the solution. The solutions by region are:

wg W <—rw: (Guypu=ln=0with = p=—1,n=-1

€W <Sws:  Guyp=1n=1vwith ~¢y, p=—1,n=0.

The graph (Fig. 17) shows two buups.

3.2.3 Elliptic solutions

There are five distinct

s of clliptie solutions cach with one nultiple root. This
mulptiple root may have a bump solution, and will always have a constant solution

associated with it.
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Figure 16:
w =03, n=-2-101

1" 282D Two single smd two donble real roots, D < 0, r = 0.16,
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o A complex pair, renl single and a triple oot (CST): This case will have
solutions very similar to the ST case (see Figs. 2,3). The complex conjugate

pair will only change the specific natture of the grph, but not the general

shape and houndaries. So for D > 0, there will be singular solutions, and

for D < 0 there will be a bump.

Three distinet single and a triple oot (38T): This case will have periodic
solutions between two single toots, bump solutions betwoeen a single and a
triple root, and singular sohitions outsicle the real roots. The graphs will look

very similar to the 25D case, since the multiplicity of the root will not change

the general shape, So, with the triple root on the outside (D > 0), there
will be a periodic dlliptic sohation and a sigular periodie dliptic solution,
When the triple root is between two single roots (D > 0), there will be a
bump, and corresponcling singular solutions as in Figs. 5,15, For D < 0,

both situations will hawve a similar grapl, that of a bump and a hounded

periodic elliptic soution,

e will have o

Two dlistinet comples pairs and a double oot (2CD): T1

solution very similarto the CD case (see Fig. 4); the extra complex conjugate

pair of roots will not change the general shape of the graph. As in the CD

case there is only a solution for D > 0. This solution is similar to CQ

(sce Fig. 0).



o A comples pair, two distinct single and a double root, (C2SD): This case
will have solutions very similar to the 28D case (sce Figs. 5-8); again the

ge the

complex conjugate pair of roots will not ¢l ence of the graph and

solutions.

® Four distinct single and a double root (48D): This case has three situations
cach for D> 0 and D < 0. For D > 0: with the double root on the outside,
there will be a bump and corresponding singnlar solution, a periodic elliptic
solution and corresponding singular (probably periodic) solution; with three
single roots on one side of the double root, there will be one periodic elliptic
solution and two singular periodic solutions on the ontside; with the double
root in the middle there will be a pair of bumps, and the corresponding
singular solutions on the outside. For D < 0: with the double root in
the middle or on the outside, there will be two bonnded periodic elliptis
solutions; with the double oot btween three single roots and one single
root, there will he a pair of bump solutions and a bounded periodic elliptic

solution.

The integrals and solutions of each can be found in detail in Byrd and Friedman

[26]. The integ

re of the form:

== il .
(W = w7 = gV = wa)(IV = wa)(W = )
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3.2.4 Hyper-elliptic solutions

The remaining cases are the most general, but as in the 174 case, do not have any

interesting solitary waves or constant solutions, only periodic solutions. Between

two real roots there will be bounded periodic elliptic solutions, and outside the

real roots there will be singular periodic elliptic solutions.

o Three complex conjugate pairs (3C): This case will have solutions very sim-
ilar to CDC (sce Fig. 12) and will have ouly a solution for D > 0. It is also

similar to the (not graphed) 2C case,

Two complex conjugate pairs and two distinet real roots (2025): This case

will have solutions similar to the (not graphed) case C2S.

One complex conjugate pair and four distinet real roots (C4S): This case

will Liave solutions similar to the (not graphed) case 4S.

Six distinet real roots (6S): This case will have solutions similar to 4S, but

more general in that there are more hounded ). *odic solutions.

These integrals belong to the class of hyperelliptic integrals, and are of the form:

_ / dw
VW =) (W = w21 = wa)(W — )1V = wes)(1V — wo)

(0= 10)

and where no two roots are the same.



4 DISCUSSION OF THE SOLUTIONS

In the previous chapter, exact solutions of the equation (3.2) were presented.
Some discussion of the effects of changing the parameter h were also discussed.
The general interpretation follows, Tables 4,5 sunmarise these solutions and their
interpretations. Table 6 postulates the kinds of solutious of the Inst two scctions
of TV, elliptic and hyper-elliptic solutions.  Figures 18, 19, and 20 swnmarise

graphically the solutions in Chapter 3. Moving the horizontal 4

is up and down
corresponds to changing the integration constant s, this shows how the solutions
hetween regions connect.

The role of the field lins been disenssed with respect to cach solution. Note
that the presence of tie field has broken the symmetry of the solutions. Consider
the simple case of no external field and o gradient term, The polynomial is cubic
or quadratic in A2 This rosults in single, double or tiple wells.  Adding the

external field skews thos

wells, and allows for single and multiple roots. It is

the varicty of roots that gives rise to the different kinds of solutions. Adding the

gradient term gave rise to a differential equation, whereas previously there had
been a simple algehrnic relationslip between the temperature, external field and

the order parameter.

It is now possible to make several general statements about the types of solu-

tions that cau be expected from considering the shape of the potential V(IV)+sg =

[



Table 4: Summary of TV* solutions

Casc

Solution Type and Comments

Constant

constant, homogencous ficld

ST

D>0 singular, ‘tri-layer’,
two defect planes

D<0 bump, nucleation center of

magnetic order

D>0 singular, mostly homogencous ficld

one defoct pline

D>0 6> 0] singulr, mostly homogencous

field, ‘tri-layer’, two defect planes

bump, micleation center

6 < 0 | periodically singular

periodic defeet planes

D<0 &>0 [ periodic, spin waves

6<0 [ two bumps, (opposing)

nucleation centers

D>0 periodically singular

brancles s

nilar to 178 CDC

D>0 periodically singular

similar to 1V 28D 6D <0

D<O periodic, spin waves
similur to V1 6D < 0

48

D>0 periodically singular
similur to 171 6D < 0

periodic, spin waves
similar to W4 6D < 0

D<0 periodic, spin waves
similur to V16D < 0

G9



Table 5: Swmmary of W solutions

Casc Solution Type | Comments
Constant constant homogencous field
cQ D>0 singular one defect planc
SDT D>0 singular unphysical?
kink Bloch domain wall
D<O bump mcleation center
CDC  D>0 periodically | inhomogeneous field (?)
singulur periodic defect planes
Cc2D D>0 singular unphysical?
kink Bloch domain wall
253D D>0 r€(0,1/4) | singular
kink Bloch domain wall
r € (1/4,1) | singular unphysical?
hump uncleation conter
D<0 re(0,1/4)]| periodic spin waves
r€(1/4,1) | bumps nucleation center

Tuble 6: Expected alliptic and hyper-clliptic solutions

Casc | Solution Types Similar Cases

CST | singular, bump wisT

3ST | singular, periodic, hump W1 25D

2CD | singular W1 CD, W CQ

C2SD | singular, bump(s), constant | 174 28D
periodically singular, periodic

4SD | singular, periodic, bump(s) | W 28D

3€ singular W4 2C, V% CDC

2C2S | singular, periodic W C28

C4S | singular, periodic W1 48

GS singular, periodic W48
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Figure 18: Graphical sumnauary of W solutions



Figure 19: Graphical snmmary of 1% (D > 0) solutions
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Figure 20: Graphical samuary of W% (D < 0) solutions



DV(€). Where the potential ¢

s the real axis there i

» boundary or root of
the solution. Between two single real roots, there are periodic solutions. These
may be simply trigonometric, or clliptic. Between a single real root and a multiple
real root there is a bump. Between two real multiple roots there is a kink. Between
plus/minns nfinity and a boundary, there must be singular solutions. The nature
of the singularity is determined by the other houndaries (roots) of the potential.
A periodic solution ‘next door” between bwo other real roots mirrors its periodicity
in the singular solution. A bump between a single root and a multiple root, is also

mirtored by the singular solutions nest to it. Similarly, kiuks have con

ponding
singular solutions.  Complex rools play no part in determining the bounds of a
solution, but do affeet the exact shape. These statements apply to any potential

that satisfies the differential equation given.

In particular, the presence of the external field in the W ease prevents any kink
solutions. Thus the only solutions possible, and found, are bumps and periodic
solutions, together with their corresponding singnlar solutions. Physically, this

means that near a second order phase transition, in the presence of an external

field, there canmot Le mmltiply degenerate ground states, This

se, the

tem now s a prof

tial ground state. Allowing the field to go to zero does
not recover the solutions possible with o field hecause that symumetry has heen
lost. Adiabatically switching off the field does not leave the systew with nultiply

degenerate ground states. In the W case there are kink solutions, and again this

™



is characteristic of a first order phase transition. Near that transition, with an

external field it is possible to have two different ground states.

There are two physical considerations to he made. Free energies with absolute

winima are casily dealt with; the system has 2 natoral mode. But in this thesis,

negatively mbounded free energy densities ocenr when D < 0. To deal with this,

it is nece to introduce the lattice size o, and roquire a mininm w

celongth

of a periodic solntion Ay, = 2a. This is a Ligh frequency entoff. The singular

solutions also present o problem. Physically, the magaetization camnot increase

without hound. From one lattice site to the next the most a spin veetor can change

ed

is from spin up (+5) to spin down (=S), or vice versa. This can he expre

a5 a maximum gradient of the magn

tization [VAf] € 29S/a, where y is the

gyromagneti

o, This problem occurs hecause continuity assumes the change

i spin from site to site will stay constant as the distan e between the sites gocs to

sero. This is wnpliysical, so a singular solution is trancated, and the equation giv

10 useful information about how the solutions belaves closer to the singularity.

4.1 Interpretation of the solutions
Constant solutions

These correspond to homogencons magnetic fields. Tt is the trivial solution for W4

and W cases. There is one symmetry variable zo a1 corresponding to a mixed

=1

=



spatial signature whose only solutions nre constant. The symmetry varinble is a
plane, and since 1V can take ouly one of five values, it is a picce-wise continuous

solution.

Singular solutions

Singular solutions aceur outside all the real roots and nnder complex roots and

only when D > 0. The singularity is removed by truneating the solution at the
masimum value of the geadient, and farther away from the singular points, the
solutions can be interpreted as maguetic layers, Periodieally singular solutions can
be interpreted as a serios of periodically spaced double layers. The singularities
can be considered as 3

sorios of defeet planes i the sawple, Connecting the

solutions before the cutoff would give sonetbing like a spin wave, but it may not

be justifiable.

Periodic solutions

Spin waves are hounded periodie solutions that oscillate hetween a stable and a

metastable state. It is the most common type of solution. The fow examples that

were graphed give a good idea of type of solution to be found in the W elliptic

cases, and the 1V* hyper-clliptic cases, though not in much detail. The more exotic

solutions come from particular combinations of roots.
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Bump solutions

Bump solutions refleet a nucleation center of magnetic order in an otherwise ho-
mogencous field. Burt [9] found bumyp type solutions in his caleulations. In the
W® case it is necessary to carcfully consider each piece of a solution to obtain
the expected bump. In an actual maguetic system, it may be possible to pin to-
gether bumps. The local portion of the bump need only be far enough away on a

microscopic scale not (o notice or be aware of other bumps in the region.

Kink solutions

Kink solutic ¢ domain walls with two homogencous phas The localized

interface separates the neighbouriug cquilibrinm phas

Gordon [11] found kink

type solutions, with the interface hetween a ferro-clectric phase and a para-clectric

phase. Kink type soiutions only oceur iu the clementary 1% cases. The height

of the kink solution is directly proportional to the external ficld, and thus these

Kinks will disappear when the field goes to zero,

4.2 Calculations based on the solutions

4.3 Stability

The first caleulation that needs to be done is that of stability. The condition to

be satisfied is given by the sccond variation of the free energy with respect to the



order parameter. The only term that survives in bulk is:
&#F 2 45 1 a7
s / [4+3Bar +5cAr) a7 > 0 (1)

It must be positive to gunarantee the solutions found minimse the free cnergy. Each
of the solutions need 1o be tested to see which are stable, and where the stability

condition is satisficd.

Energy

It is not immediately apparent which of the regional solutions graphed will appear

in a magnetic system. In the TV ease, the singular solutions on cither side match

up asymptotically, but they may not be accessible as a ‘double’ or ‘triple” layer with

one or two defect planes

the singularities. 1t is shown below that the energy of

a solution is proportional to the area under the curve of 112, Thi

s casily scen to

be iufinite in the areas that have singular solutions, thus any non-singular solution

must have a lower energy and be more attainable,

Having found a large o

of exact solutions, it is now possible to do several

caleulutions. First, it is interesting to consider the total free encrgy of the solution,
F= L S, [VM(E))dV. (42

The solutions are all in terms of a symmetry varinble £, so it makes sense to

consider a sample in the shape of a right solid witk arbitrary base arca S, and

It



height ¢ parallel to £ The free energy then becomes:
bo+t "
Fsy [T 10V, I )de. (43)
€0

The free energy donsity

an be exprossed as:
I=fo—hW+ éw’ + guf"" + %w“ + DV, (4.4)
Using cquation (3.2) the free encrgy density can be expressed as follows:
I = fo—so+2D1E). (4.5)
Now the free encrgy integral becomes:
fott
F=8 (/.,—.e,,)f+'ZD/ W2e)des. (4.6)
ko

For periodie solutions, use ¢ = TAg, where T is the period, and Ag is an integer.

In principle, this caleulation can now be performed, though it is difficult.
An example energy calenlation for the simplest case in 17 (ST D < 0) gives

this result:

& 4 (3+:9)(32-1)
F=5 {(jU — o)l = Sw' B W + arctan = (4.7)
where
22=—w'D* > 0.
Susceptibility

Another caleulation it is possible to make is that of susceptibility:

= AM(x)

ah 8)

X

9



which becomes, with tl

yimetry variable,

av(E)

h (49)

It is necessary to integrate the susceptibility found over space to give an overall

susceptibil

. This cam be difficult to caleulate, The expressions for & are generally

in terms of more than one root. In principle, though this caleulation is now

possible. This kind of ealeulation would give experimentally verifiable results.



5 CONCLUSIONS

This thesis models a three dimensional magnetic system near second and first

order phase trausitions in the presence of an external field, while including nearest

neighbour interactions using a Landau-Ginzburg free energy density of the form:
Beone Bceri Brocoy
f=fo—=hAl + ZAN? + IBM + EC:\IW-V.'\I- D-VAI.

A variational calenlation yields a steady state PDE:

AM )
=—h+ AM+ BAP 4 CM°.
mhYe
This equation is a generalization of previous work done in the absence of an ex-

ternal field. Sophisticated group theory is used to find the symmetries of the

cquation, and reduce it to an ODE:

. so— BV 4+ AW 4 2BV 4 CTpe
DI*(§) =
%U— Jo+ 5]

which could be related back to the free energy density. The symmetry variables

found show more than the usual lational and ioanl spatial invari

The ODE is solved by considering the root structure of the polynomial. Partic-
ularly interesting solutions are the bumps and kinks. The most common type of
solution are periodic and bounded, cither trigonmetric or clliptic spin waves. Two

physical cutoffs were imposed: a high frequency cutoff and a maximum change
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in magnetization per lattice spacing, to deal with negatively unbounded free en-
crgics and singular solutions, respectively. In addition, exact snlutions liave been
found to an equation that does not have the Painlevé property. It is obvious from

the presentation in the previous chapters that, in spite of having caleulated some

exact solutions, this i

s an ongoing project and there is much more to caleulate
before n complete picture is available. The solutions ealeulated correspond to the

stationary points of the free energy density ry to show whiich of these

minimise the froe energy density and thus will be stable solutions. It is now pos-
sible to caleulate the energies and susceptibilities. An obvious extension would

be to consider how this system changes with time, The equation of motion for

M(t,), derived using (he Onsager relation (5], is:

M+ DVM = (h + AM + BM® + CALP).

@
<
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