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ABSTRACT

Presented here are the results of an experimental study of the flow of a viscous
fluid sheet down a dry inclined plane. The three-phase contact line at the front of the
flow is initially straight but becomes unstable to a roughly periodic variation in its
downslope position when the sheet becomes thin enough. From measurements of the
contact line position as a function of time for angles a in the range 0° < a < 55°, the
flow is analyzed both before and after the instability occurs, and the development of
the finger pattern is parameterized. These results are compared with those found in

previous experiments and those predicted by theory.
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Chapter 1 Introduction

1.1 Introduction

The flow of a viscous fluid sheet down a dry inclined surface displays a common
yet interesting instability. It is seen in paint flowing down a wall and rain running

down a window pane. This instability is neither well understood theoretically nor

i ized ; 1

Consider a volume of fluid uniformly distributed behind a gate at the upper
end of a dry inclined surface. As the gate is opened, the fluid begins to flow down
the slope with the contact line at the front of the flow being initially straight, as
illustrated in Fig. 1-1. When the sheet thins to a certain fluid-dependent thickness,
the contact line becomes unstable to a roughly periodic cross slope variation in its
downslope position.! For certain fluid-solid combinations,!' such as glycerin on a
plexiglass surface, this variation grows into a series of rivulets or fingers of fairly
uniform width (parallel sided fingers). These fingers continue to flow downhill while
the upslope troughs between the fingers stop shortly after the instability develops.
Thus the surface between the fingers remains dry and this pattern, shown in Fig.1-2,

does not, completely wet the surface.

For other fluid-solid combinations,! such as silicone oil on glass, the variation
grows into a fairly periodic pattern of triangular shaped fingers (sawtooth pattern).
In this case both the fingers and the troughs continue to flow downhill after the
instability develops, although at different rates. This flow, shown in Fig. 1-3, will
wet the entire surface.

4

These ph are i to many i ial processes where wetting by

a thin film of fluid is required. Two examples are the spin coating of a magnetic



Fig. 1-1. A volume of fluid flowing down a dry, solid surface inclined
at an angle a to the horizontal. Initially the contact line is straight as
shown, but eventually it becomes unstable, developing fingers.



Ty

Fig. 1-2. Rivulet (parallel sided finger) pattern.

Fig. 1-3. Sawtooth pattern.



storage disk by a fluid initially placed at its axis of rotation and the lubricant coating
on engine bearings. If the fluids used in these examples did not completely wet the
surface undesirable ‘dry patches’ could form. For the above cases this would result in
poor quality disks and engines which need frequent bearing replacement. In addition
wetting phenomena and the physics behind them are of long standing interest both
experimentally and theoretically5 and have been well studied in both areas since the

pioneering work of Young (1805)0, Reynolds (1886)7 and Rayleigh (1890).8 Even with

aver one hundred years of study these ph are still not th hly und, d

1.2 Previous Work

The fingering instability of a moving contact line has been studied experimentally
by Huppert! and Silvi and Dussan V.2 A related instability, the fingering instability
in the spreading of a rotating liquid drop, has been studied by Melo et al.3

Huppert studied this instability using a perspex surface and three fluids, namely
glycerin and two silicone oils. He observed the rivulet pattern with glycerin, and the
sawtooth pattern with both oils. He derived an expression for the position, zp, of the

stable contact line, neglecting surface tension, and found
zn = (941 2g sin o /4p) /341/3, (1-1)
where A is the initial cross sectional area, p is the viscosity and ¢ is the time after

release of the fluid. He also derived, including surface tension, an expression for the

wavelength of the instability,
Ao (A2 pgsin a) 113, (1-2)
where o is the surface tension and p is the fluid density. He found that both Eqs.

(1-1) and (1-2) agreed well with his experimental observations.

4



Silvi and Dussan V? studied the same instability using glycerin on both glass and
plexiglass surfaces. They observed the rivulet pattern for glycerin on plexiglass, as
did Huppert, but found the sawtooth pattern for glycerin on glass. They measured
the advancing contact angle to be 70° and 18° on plexiglass and glass respectively.
Thus they concluded that the size of the advancing contact angle is an important
factor in determining whether the rivulet or the sawtooth pattern will emerge for a
given liquid-solid combination. They also found that their experimental observations

were in agreement with Eq. (1-2) derived by Huppert.

Melo et al.% placed a drop of silicone oil at the axis of rotation of a silicon wafer.
The liquid wetted the substrate, i.e., the liquid-solid contact angle was zero. As
the wafer was rotated, the drop spread out with an initially circular contact line.
When the thickness of the fluid was small enough the contact line became unstable
and fingers formed. While in this case the contact line was driven by centrifugal
rather than gravitational force, the basic phenomena observed were similar to Lthose

described in the previous section.

In addition to the theoretical work of Huppert! mentioned briefly above, theoret-
ical work on this instability has been carried out by Schwartz,? Hocking,!? Goodwin

and Homsy!? and Troian et al.13

Schwartz® carried out

using ions derived in the lu-

brication approximation and including surface tension. The advancing contact angle

was taken to be zero, corresponding to a liquid which strongly wet the surface, and

a no-slip boundary condition was applied at the edge of the flow corresponding to

the experimental constraint of a wall. He found that the no-slip condition caused the

contact line to be retarded at the edge of the flow. This perturbation initiated finger-
5



ing and the disturbance propagated inward along the contact line. He found that the
longest finger is wedge shaped which is in agreement with experimental observations

of wetting flows.

From scaling and di he found that the wave-
length should go like

A~ (sina)~1/4 (1-3)

in contrast to the experimental and theoretical findings of Huppert! and the experi-

mental results of Silvi and Dussan V2 that A ~ (sina)~1/3.

Without the no-slip boundary condition, small periodic perturbations imposed

on the straight front eventually grew into fingers.

Neglecting surface tension caused the fingering phenomenon to disappear, both
with and without the no-slip boundary condition. This seems to confirm Huppert’s

suggestion! that surface tension provides the destabilizing force.

Hocking!® performed a linear stability analysis of a fluid ridge as opposed to
a fluid sheet. One reason for selecting a fluid ridge comes from the experimental
observation®!! of a bulge in the free surface of the fluid near the contact line when the
fluid sheet is sufficiently elongated and the suggestion that the observed instability
of the contact line is a result of the dynamics in this ridge. Another reason is, of
course, to simplify the fluid sheet problem. Thus in studying a fluid ridge, Hocking
hoped to simplify the problem while retaining the important dynamical processes. He
found the ridge to be linearly unstable but not to fingers. Rather, the fluid tended to
collect to one side of the channel and flow down the plane there. That is, he found
the length scale of the instability to be dependent on the channel width in contrast

to experimental observations.!'2



Hocking also considered the nonlinear development of the instability and pre-
sented preliminary numerical results that suggest the formation of a finger of fluid
moving down the plane with a width that is independent of the channel width. He
found no indication of the sawtooth pattern observed with some fluid-solid combina-
tions and proposed that the sawtooth pattern is only a transient phenomenon which
would eventually evolve into the rivulet pattern if the surface was long enough.

Goodwin and Homsy!? have recently investigated the base state which develops

Bl Peo

prior to the i

using a of analysis and ical solution. They
showed that it is not possible to model the flow near the contact line in the lubrica-
tion approximation if a non-zero contact angle is imposed as a boundary condition,
without requiring infinite velocities at the contact line. They derived and solved nu-
merically Stokes flow equations for the region near the contact line with a contact
angle boundary condition. They found the presence of a hump or bulge in the fluids

free surface near the contact line as observed experimentally.3!! The magnitude of

this bulge increased for increasing contact angle, i angle and de-
creasing capillary number. The capillary number Ca = pU/o expresses the relative
magnitude of viscous and surface tension forces; U is a characteristic velocity. They
also observed a secondary bulge at large angles of inclination. They demonstrated
that the bulge near the contact line arises from kinematic considerations and not from
the contact line singularity. From their results they concluded that, except possibly
at very small contact angles and small Ca, the lubrication approximations are not
valid near the contact line.

Troian et al.1% studied the lubrication equations with surface tension. They de-
rived a form for the flow profile prior to the instability. This profile is a combination
of an “outer” region, given by Hupperts’ solution, Eq. 1-1, which ends abruptly at

7



T = zn, and an “inner” region near the contact line which has a bulge, and which is
smoothed by surface tension. Using scaling arguments, the inner and outer regions
are matched, resulting in a flow profile similar to that observed experimentally. Then
they matched this solution to a thin precursor wetting film. This was done to re-
move the contact line singularity, discussed further in chapter 2. A linear stability
analysis was then performed on the resulting profile. They analysed the growth of
imposed periodic perturbations over a range of wavenumbers and found the front to
be unstable to wavenumbers ¢ < .91 with a maximum growth rate for a wavelength of
A = 14l. Here, | = H/(3Ca)!/3 is the characteristic length over which surface tension

competes with gravity and H is the film thickness.

1.3 Purpose and Scope

In this thesis I present measurements of the behaviour of the contact line both
before and after the instability. The position of the contact line as a function of time
was measured for three fluids on two surfaces with inclination angles in the range
0° < @ < 55°. The flow was then analysed in terms of empirical fitting functions.
The average wavelength of the instability and the width of the fingers were also
studied.

This work was carried out in order to add to the experimental knowledge of the
moving contact line. Measurements were made so as to characterize the motion of
the contact line and the length scale of the instability which developed. My results,
for the most part, confirm some theoretical predictions of the motion of the contact
line and the length scale of the instability, while at the same time supplying new

information about the finger width for which [ have seen no experimental results or

h ‘ol 1 1

Most of my observations agree with those of



others while one, the pattern produced by glycerin on glass, does not.

In Chapter 2 I will discuss some of the basic theory and terminology relevant to
the study of dynamic contact lines, including wetting, contact angles, contact angle
hysteresis, the contact line singularity, precursor films and the lubrication approxi-
mations. I will also discuss some of the previous theoretical treatments of the contact
line instability in more detail. Chapter 3 will contain descriptions of the experimen-
tal apparatus used, the fluids and their relevent physical properties, the experimental
procedure and the data gathering procedure. In Chapter 4 the experimental obser-
vations and results of fits of the data to empirical equations will be presented, while
in Chapter 5 these results will be discussed and some theoretical explanations for
the experimental observations will be presented. Chapter 6 will include the conclu-
sions, and some possibilities for future experiments using the same apparatus will be

presented.



Chapter 2 Theory

2.1 Introduction

The dynamics of moving contact lines are poorly understood. The usual theo-
retical approximations of fluid mechanics used to describe fluid How break down at
a contact line. It has been shown!? that for a Newtonian, incompresible fluid with
a no-slip boundary condition, unbounded forces result at the contact line. In the
remainder of this thesis I will refer to the unbounded forces at the contact line as the
“contact line singularity.” Another problem involves the contact angle the fluid makes
with the surface of the solid. It has been shown theoretically’ and experimentally'®
that the observed or apparent contact angle may not be equal to the actual contact
angle. The apparent contact angle may have a range of values for which the contact
line does not move (contact angle hysteresis). A thin precursor film may preceed the
macroscopically observable contact line resulting in the observable flow moving over
a precoated, as opposed to dry, surface. The precursor film also causes confusion as

to the positioning of the contact line in theoretical calculations.

2.2 Wetting Phenomenon

Young's equation,5 which expresses the balance of horizontal forces at the static

three-phase contact line of a solid-liquid-gas system, as shown in Fig. 2-1, states that
7080 + V51 = Vagy 2-1)

where v = 7, is the interfacial tension between the liquid and gas, 7,/ between the
liquid and solid and 7,9 between the solid and gas, and &, is the liquid-solid contact
angle. The spreading parameter S is defined in the following way: an area of solid-
gas interface has a surface free energy of 7sy while the same area covered by a thick

10



coating of liquid has a surface free energy of vy + 4. S is just the difference between

these two surface free energies. S is written
S=vsg =1 =7 (2-2)
= 7(cos b, - 1). (2-3)
When S <0, i.e., 759 < 7+, the liquid does not spread; this corresponds to partial

wetting. If S > 0 there is no balance of horizontal forces and complete wetting occurs.

S =0 corresponds to 8, = 0.

liquid

77 /7///// ///Y//////

contact line

sohd

Fig. 2-1. Three phase contact line showing interfacial tensions v, v,/
and 7,9 and static contact angle fe.

In equilibrium vertical forces must also balance; these vertical forces can arise due
to, for example, capillary forces and fluid weight.
2.3 Contact Angle Hysteresis

Figure 2-2 is a graph of contact angle versus contact line velocity for a typical

fluid-solid system.



Fig. 2-2. The general form of the contact line angle 4 at the solid-
liquid contact line, as a function of contact line velocity.

For contact angles O < 8 < 64 the contact line does not move, while it advances
for § > 04 and recedes for § < 0p . This phenomenon, whereby the contact line
does not move even though the contact angle is varied from its equilibrium static
value is known as contact angle hysteresis, and is very common. One experimentally

verified cause of b is is the mi i gh of the solid surface.'%!7 By

coating a smooth solid surface with an organic monolayer, Zisman! found it unusual

for 64 and Op to differ whereas Dettre and Johnson,!7 using surfaces of increasing

roughness, found that 84 # 0, Fig. 23, for all surfaces.

Other possible causes of contact angle is are chemical i or
inhotnogeneities in the solid surface and solutes in the liquid which may deposit a film

on the surface. The surface dition plays an i role in wetting

as it can affect the size of the liquid-solid contact augle,)%!7 and in the case of my

12



CONTACT ANOLE, doprons
H

o % & 1T ¢35 &« 31 1 0
SURFACE ROUGHNESS ———s

Fig. 2-3. Advancing and receding contact angles, 8, and g, as a
function of surface roughness from reference 17,

experiments can thereby affect the pattern which develops from the instability.?

2.4 Contact Line Singularity

If a fluid moving along a solid surface is assumed to be Newtonian, incompressible
and to obey the no-slip boundary condition, then unbounded forces will be produced
at the contact line.! This singularity shows up in the lubrication approximations,
to be discussed in section 2.6, by requiring a 90° contact angle between the liquid
and solid. Since the lubrication approximations are used primarily for the spreading
of thin films where the velocity vector is approximately parallel to the solid surface,
obtaining a 90° contact angle implies that the lubrication approximations are not
valid near the contact line. The singularity can be ignored if it is known Lhat the
fluid near the contact line does not affect the dynamics of the flow in the region of the

13



contact line and it can be removed by relaxing the no-slip boundary condition. The
no-slip boundary condition is used simply because it removes the singularity but does

not come from any physical understanding of the fluid flow near the contact line.!8

2.5 Precursor Film

A fluid may advance on a dry substrate in two ways: 1] By a rolling motion, as
shown in Fig. 2-4(a). 2 By means of a thin precursor wetting film which advances
ahead of the observable contact lineas shown in Fig. 2-4(b). In the first case, the
observable contact line is between the fluid and the dry surface, while in the second

case it is between the observable fluid and an already wetted surface.

(2)

777 T7 77777 7777/77777777 77777777777 7777
soli solid

(b

gas
— liquid

precursor film

Fig. 24, Twolsossible methods of advance of a fluid film. Rolling
motion (a) and advance over a precursor film (b).

Experiments indicate! that a drop of honey moving down an inclined glass sur-
face tends to roll and not slide. The rolling motion was studied by placing a drop of
dye on the surface of the honey and following the dye’s motion as the honey moved.
In my experiments the fluid also appeared to roll down the slope.

14




Experiments by Hardy!? with drops of acetic acid on a horizontal glass surface
(it was important that the air be dry) indicated that a precursor film was present
beyond the observable contact line, even though the drops did not undergo any visible
change in shape. He detected the film’s presence by measuring a significant decrease
in the value of the static friction of the surface. Drops of castor oi} and paraffin on

the same surface did not emit any measurable precursor film.®

Experiments were performed by Bascom et al.2 using nonpolar fluids on clean,
smooth metal surfaces in the presence of both saturated and unsaturated air. All
the liquids used were chosen because they a macroscopically observable contact angle
of zero degrees. They found that a precursor film was always present regardless
of whether or not the air was saturated, the surfacc roughened or the liquids ultra
purified, although these variables did affect the speed of advance of the film and
whether or not the macroscopically observable body of fluid would spread over the
precursor film. For example, squalane on stainless steel exhibited a precursor film
approximately 20 Ain thickness as measured with an ellipsometer, and a leading edge

which moved with speeds in the range 0.03 to 1.0 pm/s.

The precursor film may cause some confusion as to which leading edge, precur-
sor or macroscopically observed, the contact line should be associated with.5 If one
chooses the precursor's leading edge, then the problem of the contact line singular-
ity will be encountered and calculations involve a detailed analysis of a fluid with
an uuknown, anisotropic stress tensor. (The anisotropy is due entirely to the fluid’s
motion. A fiuid at rest has an isotropic stress tensor.) An alternative choice would
be to place the contact line at its observed position and model the precursor film as

part of the surface.



2.6 Lubrication Approximations

In many theoretical treatments of the contact line instability, the fluid sheet

can be modelled as a thin film and the lubrication approximations are used. These

allow a iderable simplification of the Navier-Stok

This di: ion of the icati imations follows that of Ref. (21).

The Navier-Stokes momentum equation for an incompressible Newtonian fluid in

which the velocity is a continuous function of spatial coordinates is?!

D7 _ 25

Pp; =~V VT, (2-4)
where

Dy 95, . .

y e Rl AL -8

the material derivative, accounts for spatial as well as time partial derivatives, p is
the fluid density, p is the total pressure, j is the shear viscosity and 7 = fu + ju + kw
is the velocity. The pressure, p, could, as in the system studied in this thesis, include

hydrostatic terms. We take the fluid sheet to lie in the a-y plane.

The Reynolds number, Re = pUL/p, expresses the relative magnitude of inertial

and viscous forces. Here U is the surface velocity and L is the film breadth. For

small Re, the time (or ) are small d with the viscous
terms involving V27, and similarly for small R2e the inertial terms p(5 - V)5 are also
negligible compared to the viscous terms. Applying the above simplifications to Eq.

(2-4) gives the Stokes flow equations
Vp =pVis. (2-6)
Further simplification of Eq. (2-6) can be made after putting it into dimensionless

form by normalizing in-plane film velocities with respect to surface velocity U, vertical
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velocity by U h/L, z and y distances with respect to film breadth L, = distances with
respect 1o film thickness h and pressure with respect to pU2. w, the velocity in the =
direction, is of order k/L smaller than u and v and can be neglected.?! The normalized
i, j and ¥ components of Eq. (2-6) then become

2 = oy (B + 2 o) oty (2 -

1o 0%\ 1 L2 /0%
=m(m*ﬁ)+m(m)'

5;,’ (w/pUL) (a;, + ﬂy”) +(uL/pURY) (2-7)
I HECH
and
%‘; =0, 2-1)

where primes indicate normalized quantitics. Since h « L and terms 92/dz'%,
52/6!4’2 and 62/61’2 are of the same order, then terms involving 6’/9:’2 and 92/ ay"™
in Eqs. (2-7) are much smaller than terms involving 82/82'2. Applying these sim-
plifications to Egs. (2-7) and redimensionalizing results in the equations used in the
lubrication approximation, namely

25

Ip =g, (2~ 8a)

or, writing each component of Eq. (2-8a) explicitly,

(2—8b)

for the i direction and

(2—8)



for the j direction with p = p(z,y), v = u(z,y,z) and v = v(z,y, 2).
2.7 Theoretical work of Reference 1

Huppert! used the lubrication approximations to analyze the flow of a thin, vis-
cous fluid film before the contact line instability occured. In this section I rederive
s results. 1t should be noted here that the lubrication approximation is valid only
in the region away from the contact line since near the contact line film thickness

and other ities vary signil over dist: & h. Thus the approximations

made in the last section are not valid near the contact line.

Assuming the free surface to be flat so that surface tension effects are negligible,
and ignoring contact line effects, the pressure at a distance z down the slope due to
the fluid in the flm lying upslope of z is p = —pgz sin a. Thus dp/dz = —pg sinc
where « is the inclination angle and g is the acceleration due to gravity. Using the

lubrication approximation, Eq. (2-8a), and the above expression for 8p/dz, we find

that the y-ind de dy lop equation is
: u
0= pgsinat sy (2-9)
Here, z is d lo di yis lop di and z is the di

normal to the surface. Following Huppert, the contact line effects can be neglected if
the effect of surface tension is small compared to gravity effects, or more specifically,
if the Bond number B = pgL?/o > 1, where o is the surface tension and L is a
characteristic length scale of the current. In the region where the free surface is not

strongly curved, i.e., away from the contact line, the contribution to the pressure in

the fluid due to surface tension is negligibl d to the hydi
However, near the contact line the surface is significantly curved and the surface
tension contribution is no longer negligible.
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Using Eq. (2-9) and the boundary conditions u = 0 at = = 0 (the no-slip
condition) and du/dz = 0 at z = h (tangential stress at the free surface must be

zero), the fluid velocity as a function of height = in the fluid sheet is
u=(pgsinc/p) (h—%):, (2~ 10)
The height averaged fluid velocity (u) is given by
n2
(")=(P95'"ﬂ/#)7- (2-11)

The equation of continuity, 8p/8t + V- (p5) = 0, when averaged over the height of
the fluid sheet, becomes
oh 2 ’
a Fag(h =0 (2-12)
for a fluid sheet of height h(z, ). Substituting Eq. (2-11) into Eq. (2-12) gives the

partial differential equation for the unknown free surface h(z,1) to be
oh ) 40k ’
a8 2% ) -1
G+ (pgsina/uh? 52 =0 (2-13)

From Eq. (2-13) we see that h is constant along characteristics given by

‘;_f gt AT, (2=14)

If we let h = f(z), for example, integration of Eq. (2-14) produces an cquation for

the characteristics
= =2q + (pgsina/p)fX(zo)t, (2-15)
where zq is the initial value of the characteristic. Therefore the solution of Eq. (2-13)

at long times is
h = [p(z - z0)/pgsina /2= 1/2 (2 - 16a)
~ (u/pgsina) P22 o5z, (2 - 166)
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where h in Eq. (2-16b) is independent of initial conditions. The equation expressing
conservation of mass is
20(t)

/u R gz, @-17)
where 2y is the value of  at the front of the current and A is the initial cross-sectional
area. From Eqs. (2-16b) and (2-17) we find that some time after the release of the
fluid

0< z < an = (9A%gsina/ap) /33, (2-18)
Thus Huppert predicts that the length of the film grows like 2, ~ t'/3. By substitution
of Tn from Eq. (2-18) into Eq. (2-16b) we find that the thickness of the fluid at the
front of the film is

hn =34/2zn. (2-19)

Since, from Eq. (2-10), the fluid velocity increases with height, the solution of
Eq. (2-13) will develop into a shock at large ¢. This unphysical result is due to the
neglect of surface tension, which will tend to smooth the free surface profile near the

flow front.

Huppert also derives an expression for the length scale of the contact line instabil-
ity. He first finds the form of the quasi-steady two-dimensional fluid front by including
surface tension and matching the tip onto the main flow given by Eq. (2-18). The

addition to Eq. (2-13) of the terms due to surface tension leads to

% 4 Gasinaf i 2E - ) (of (2-2)

Near the fluid front the dominant balance is between the gravitational and surface
tension terms in Eq. (2-20), and thus

P9 smug- ~ (1/3)nh ﬂ (2-21)
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This gives

Db/ 2k . ength® ~ (o1 (pg sinc @-2)
Therefore a “typical” length scale is ~ (ok/pg sina)'/3. Taking h = hy at the contact
line gives a length scale for the contact line of (ohin/pg sin a)!/3. Since the instability
results from a competition between gravily and surface tension, it is reasonable to
identify this length scale with the wavelength of the instability, and thus Huppert

predicts that the wavelength of the instability varies like (sina)~!/3.

2.8 Theoretical work of Reference 13

Troian et al.!® use Huppert's solution, Eq. (2-16b), which ends abruptly at

@ = an, Eq. (2-18), for the fluid profile far from the contact line (outer region).

Then using the lubrication approximations with surface tension, the height profile,
h(z,y), is obtained from the solution of the height-averaged continuity equation

‘;—’:+v-h(6)=u. (2-23)

Here, (7) = (u)i + (v)j where (u) and (v) are height averaged velocities in the i and

j directions, respectively. They find a solution for the shape of the surface near the

contact line and match this to Huppert’s solution. In the lubrication approximation

the velocity is given by
w(@) = (h%/3)[pg sin i + oV, (2-24)

where the curvature x is given by x ~ (9%h/8z2 + 8%h/dy?) in their approximation.
In order to remove the contact line singularity (see section 2.4), they match the
resultant fluid profile to a thin precursor film. They then perform a linear stability
analysis of this solution and find it to be unstable to spatially periodic disturbances.
I will now discuss their procedure in more detail.
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For the unperturbed flow away from the contact line, the flow profile is given
by Huppert’s equations, Eq. (2-16b), which ends abruptly at z, given by Eq. (2-
18). Near the contact line (the “inner” region) the flow profile will be smoothed by
surface tension. ‘Troian et al. work in a reference frame moving with the contact line
with velocity Uy = dzy/dt. To find the unpertnrbed profile in the inner region they
write the profile as h(z,y,t) = hn(t) H(é,t) and require H — 1 as € = z/l = oo
in order to match the solution (k ~ ky) in the outer region. The dimensionless
length € = z/, where z is distance along i measured from the contact line and
1= h/(3Ca)!/3 is the characteristic length over which surface tension competes with
gravity, where it is assumed that the capillary number Ca = plUp/o < 1. Assuming
small Re, a time-independent solution of Egs. (2-23) and (2-24) determines the

function H(€,t) = Ho(é).

The boundary conditions are first that for £ — oo, the inner and outer solutions
must match,i.c., all derivatives of H with respect to z must vanish and Ho — 1, and
second that near the contact iine the dynamics must take into account the singularity
due to the no-slip boundary condition (7 = 0 at h = 0). Troian et al.13 remove this
singularity by matching their flow profile to a thin precursor film of thickness b Ay,

where b < 1. The equation they find for the flow profile is

3 —p>
Hg(x-%fT")=—‘(ll _"b)) ~(+b. (2-25)

The solution of Eq.(2-25) gives the profile shown in Fig. 2-5 for three values of b.

They then perform a linear stability analysis of the uniform profile to small per-

turbations in the j-direction, neglecting terms of order b < 1. They define { = y/I

and look at pe bations with di ionl q = Q/I. The position of
22
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) 3 w0 80 at
Fig. 2-5. Unperturbed flow profile calculated from Eq. (2-25) for

three values of b as a function of A{, which includes an arbitrary shift
along the £ direction so that the maxima line up. From reference 13.

the boundary is displaced from £ =0 to £ = £, where
£p(¢,1) = —A(() B(t). (2-26)

If A(¢) = cos(q(), then the region —7/2 < (g{) < 7/2 is a section of the boundary
perturbed in the forward z-direction, i.e., a finger. The time-dependent amplitude of
the perturbation is assumed to be of the form B(t) = By-#7 where 7 = [[Up(t)/1] dt
is proportional to the distance travelled. If 3> 0, then @B/dt > 0 and the finger will
grow.

Solving numerically the linearized continuity equation with the appropriate bound-
ary conditions, Troian et al.13 find the growth rate B to depend on the dimensionless
wavenumber ¢ = Q/! and precursor film thickness b as shown in Fig. 2-6. Positive
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values of A indicate unstable modes. The profile is unstable for ¢ < 0.9 and even

though there is a maximum growth rate for A = 14!, a whole range of wavenumbers

are unstable. This implies that the domi length for the instability will be
A = 141, but perturbations with other wavelengths will also grow. This may explain

why the experimentally observed instability is not perfectly periodic.!"2

-08 e L
05 C)

Fig. 2-6 § as a function of g, where positive val
unstable modes. From referenceq 1a. ? ® wlierol f indieate

2.9 Theoretical work of Reference 12

Goodwin and Homsy!? solve for the two-dimensional flow field and free surface
shape in the vicinity of the contact line. They assume a slow moving, viscous New-
tonian fluid advancing on a dry, inclined solid plane under the influence of gravity.

They first recap Huppert's! work with the lubricati proximati ing sur-

face tension and find that this results in a shock-type solution. In order to resolve this

shock solution they include the first order effects of surface tension in the lubrication

theory but obtain a different unphysical result. Then Goodwin and Homsy use a
24




different scaling in order to prescribe a contact angle boundary condition but find
this results in an unrealistic contact line velocity. Finally they formulate a Stokes
flow problem which permits satisfaction of a contact angle boundary condition. Al-
lowing slip near the contact line removes the contact line singularity. They show that
the inner region is governed by Stokes flow while in the outer region the flow is well

described by lubrication theory.

Following the procedure of Huppert,! Goodwin and Homsy!? calculate, in the
lubrication approximation without surface tension, that the location of the leading
edge prior to the instability goes like za(t) 2 (3/2)2/3(1/3, with r scaled like £ ~ A/h*
where A* is the characteristic length normal to the slope, and the thickness of the
fluid at zn is hn(t) = (3/2)1/3¢=1/3, with & scaled by h*. These cquations are similar
to Eqs. (2-16b) and (2-18) above derived by Huppert. Since surface tension was
neglected, a shock-type solution is obtained with the front located at zp.

Next they rescale the problem to include the first order cffects of surface tension
while retaining the lubrication approximations. They work in a reference frame mov-
ing with the average velocity of the contact line. They find the position of the free

surface to be described by the differential equation
(1+%1-'3')h2=1, (2-21)
subject to the boundary conditions h =0 at 2 =0, h; - —cc asz — 0and h — |
as ¢ — —co. In the limit h — 0, the rate of change of curvature, 3h/dz3, must be
unbounded in order to satisfy Eq. (2-27). Since it is also required® that the slope of
the free surface be unbounded at the contact line, a solution is not easily found.
Goodwin and Homsy found that a contact angle boundary condition could not

be satisfied using either of the above cases, and so tried a new set of scalings which
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would allow them to specify such a condition. They were also interested in how the
no-slip condition affected their ability to model the flow near the contact line so a
generalized slip boundary condition was introduced. Goodwin and Homsy again used
the lubrication approximation including the first order effects of surface tension in a

reference frame moving with the average velocity of the contact line.

The no-slip boundary condition was replaced by one in which the slip velocity is

proportional to the product of the velocity gradient at the wall and a function, S(h),

of the fluid thickness. Following the same procedure as for the ding case, they
find the differential equation for the shape of the free surface to be
h 1+ S(h) @-23)

L e
9z3 ~ S(h)-h+ A2
The singularity at the origin can be removed by specifying S(h) ~ O(h~1) as h — 0.
However, since S(h) is proportional to the slip velocity, this introduces a singularity
in the slip velocity.
The above three attempts to obtain a solution at the contact line using the lubri-

cation imations all contain a singularity. The si) ity is either in the rate of

change of curvature of the free surface with respect to position at the contact line for
both the slip and no-slip models or in the slip velocity if a slip model is chosen. Thus
they conclude that the lubrication approximations are of limited value in modelling

the flow in the region of the contact line.

Finally, Goodwin and Homsy derive and solve numerically Stokes flow equations
for the region near the contact line with a contact line boundary condition. The
Stokes flow equations,

Vp = uV%, (2-29)
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are simplifications of the Navier-Stokes equations for a viscous fluid with very small
Reynolds number. The pressure pin Eq. (2-29) includes gravity terms while Goodwin
and Homsy write the gravitational terms separately. The Stokes flow equations differ
from the lubrication equations in that Vp = dp/dzi + dp/dy j + 8p/d: k and V2§t =
9%5/82% + 8%5/0y? +8%5/2? for Stokes flow, while in the lubrication approximation
Vp = 8p/dz i +38p/dy j and V7 is approximated by 8%5/3:2. In this approximation
an inner solution can be obtained. Goodwin and Homsy find solutions for the free
surface profile over a range of capillary number, contact angle and inclination angle
of 0.01 € Ca < 0.164, 10° < ¢ < T0° and 7.5° < @ < 135°. As an example, Fig.
2.7 illustrates the calculated free surface shape for a contact angle of 70° inclination

angle of 45° and Ca = 0.03, 0.10 and 0.144 for curves a, b and ¢, respectively.

—
a )

Fig. 2-7. Calculated flow profiles for a contact angle of 70°, inclination
angle 45° and capillary numbers 0.03, 0.10 and 0.144 for profiles a, b
and c, respectively. From reference 12.

Goodwin and Homsy find that near the contact line a hump or bulge of fiuid oc-
curs, the size of which increases with decreasing capillary number, increasing contact
angle and increasing inclination angle. They demonstrate that the bulge is not due
to the contact line singularity but is the result of an interaction between interfacial
forces and and the stress field inside the fluid.
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Chapter 3 Apparatus and Experimental Technique

3.1 Apparatus

The experimental apparatus is conceptually similar to that used by Huppert!
and Silvi and Dussan V.2 A sheet of plexiglass or glass 122cm in the downslope (z)
direction, 91cm in the cross slope (y) direction and 1.3cm thick was clamped in a rigid

aluminum frame. The angle of i « was adjustable; the here

were taken over a range of 0° < a < 55°. Graph paper with a grid of two inch squares
marked on it was placed under the experimental surface to facilitate measurement of
the contact line position. An aluminum gate spanning the full width of the surface
was placed near the top of the slope. Foam rubber weather stripping was attached
along the bottom of the gate to provide a seal to prevent leakage of the fluid prior to
opening the gate. The seal also prevented the gate from scratching the surface. The
gate was hinged at its upper end so that its axis of rotation was in the y direction and
approximately 10cm above the surface. Thus when the gate was opened it swung out
and up allowing the fluid to flow down the slope. An alternate method of opening the
gate was to pull it directly up from the surface, but this usually resulted in jamming

of the gate which in turn caused uneven release of the fluid.

The experiments were recorded using a Burle Industries CCD video camera con-
nected to a video cassette recorder. The camera was mounted approximately 100cm
to 125cm above and perpendicular to the surface. A 12.5mm focal length lens gave
the camera a field of view wide enough to include the full width of the experimental
surface. A Burle Industries video monitor was used to accurately position the camera,
to watch each experiment from the camera’s view point and to analyze the recorded
experiments. A Laser 286/2L personal computer was employed for doing fits to the
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data as discussed below.
3.2 Fluids

Experiments were carried out using three fluids: glycerin??, *heavy’ mineral oil
(HMO)? and ‘light” mineral oil (LMO).24 The density, viscosity, surface tension and
static contact angle of each fluid were measured using the methods discussed below

and are shown in Table I.

The first three of these are the physical properties of the fluids which enter into
the theoretical treatments discussed in the previous chapter, and the fourth, as argued
by Silvi and Dussan V2, is important in determining the pattern that develops after
the instability. The fluid properties of HMO and LMO are the same except for the
viscosity, so a comparison of the flow development for these two fluids will show the

effect, if any, of viscosity.

The density of each fluid was easily determined using a Mettler AE260 electronic
balance having a resolution of .0001 g. The mass of a known volume of fluid divided

by its volume gave the density.

A Gilmont Instruments size 3 falling ball viscosimeter was used along with a stop-
watch to measure each fluid’s viscosity. The viscosimeter was filled with a fluid and
the time of descent through a given height of a ball of known density was measured.
The equation p = K(p, — py)t gave the viscosity in (g/cm - s) - 1072 (centipoise),
where u is the viscosity, K is a constant equal to 0.63cm2/32 for this viscosimeter, py
and py are the densities in g/cm? of the ball and fluid respectively and ¢ is the time
of descent in seconds.

The surface tension was measured using a Cenco 70545 torsion wire tensiometer.

This instrument consists of a torsion arm clamped to the middle of a torsion wire. A
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Table I. Properties of fluids studied

static contact

static contact

surface tension  viscosity  density  angle [plexiglass]  angle [glass]

o (dynfem)  p (g/cms) p (g/cm®) 0 (degrees) 0 (degrees)
Glycerin 59+1 1L1£.1 126+ .01 60£2 50£2
HMO ETES 151 087+.01 142 16+2
LMO 32+1 05£.1 085+.01 4+2 16+2




platinum-iridium wire ring of 5.992 cm circumference was connected to the other end
of the torsion arm. After the instrument was calibrated with known masses, the ring
was immersed in the fluid being measured. The torsion on the wire was increased and
the: fluid surface lowered simultaneously so that the torsion arm remained at its zero
position. The scale reading was taken when the ring broke free of the fluid surface.
From the calibration curve and a correction based on the fluid density the surface

tension was calculated.

The static contact angle was measured by placing a drop of fluid on a horizontal
piece of glass or plexiglass. The video camera was then positioned so that its optic axis
was approximately aligned with the glass or plexiglass surface and the middle of the
drop. Then a frame grabber, which was used to control the camera by computer, took
a picture. From the printout of the picture the static contact angle was measured.
An interesting observation concerning the static contact angle is that over a period
of several hours it decreased. This decrease was small for HMO on both glass and
plexiglass, for which it changed from ~ 17° to ~ 14° over 2 hours, but for glycerin
on glass (plexiglass giving similar results) it went from ~ 75° to ~ 50° in 5 minutes,
to ~ 43° in 10 minutes and to ~ 20° in 2.5 hours. This large change in the static
contact angle for glycerin is due to the absorption by the glycerin of moisture from
the air. During experiments, the fluid was left behind the gate for approximately 5
minutes and for this reason the value cf the static contact angle for glycerin given in

Table I is the value after 5 minutes exposed to ihe air.

3.3 Experimental Technique

All experiments were performed at room temperature which was not especially
controlled and varied between 21°C and 27 °C over the course of this work.
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Before each experiment the solid surface was carefully cleaned to ensure uniform
surface conditions. The cleaning procedure was as follows. After most of the fluid
from a previous run had been removed, the surface was washed twice using detergent
in water and rinsed each time with clean water. Then a commercial glass cleaner,
Windex, was applied to the surface which was then wiped clean with paper towel or
a chamois. Following this the surface dried quickly. Wiping the dry surface with dry
paper towel created a static charge which had a dramatic and adverse effect on the

flow; care was taken to avoid this.

Following the cleaning procedure, the surface was inclined to the appropriate
angle and a level was used to make sure it was level in the y direction. The video
camera was set perpendicular to the surface and positioned so that the gate was at
the upper end of the video monitor screen. Then a known volume of fluid (250cm®
for the experiments reported here) was poured behind the gate and left standing for a

sufficiently long time that it was evenly distributed and stationary. Prior to opening

the gate, the relevent of the i such as the experil 1 surface,
angle of inclination, type and amount of fluid and room temperature were recorded
on the video tape. The camera was focussed on the surface, then the gate was opened
and the fluid flowed down the slope with an initially straight contact line. Care was
taking opening the gate so as to keep it straight and not allow one side to open
before the other which would result in an uneven release of the fluid. It was also
important not to open the gate too fast or the gate would throw drops of the fluid
several centimeters down the clean surface. Since the fluids used were clear, only a
shadow of Lhe contact line could be seen. The curved surface of the fluid near the
contact line caused the light passing through it to be refracted in such a way as to
produce a shadow of the contact line on the grid below. In order to have only one
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mntgt line shadow, only one set of ceiling lights was left on in the lab during each
run. The lights were sufficiently far away so as to produce just one shadow. In a few
later experiments with other fluids, a single light was placed in front of the slope.
This produced a very distinct shadow of the contact line although fingers near the
sides of the slope had their shadows displaced slightly giving the impression of a larger
distance between the fingers. The actual fingers could be seen due to reflections from

the finger tips, so this latter problem was easily overcome.

Experiments using HMO were performed over the ranges 2° < a < 21° and
2° < a < 2° for the plexiglass and glass surfaces respectively while the ranges
for glycerin were 4° < a < 30° and 4° < a < 54° for the plexiglass and glass
surfaces respectively. For inclination angles lower than the lower limit for each the

contact line developed into poor fingers which tended to flow in the cross slope as

% £,

well as the downslop and satisfactory were not possible. For

inclination angles larger than the upper limit for each the fluid would splash down
over the surface much like a wave breaking on a beach, resulting in a nonuniform flow

front.

3.4 Raw Data Gathering

The raw data was obtained by direct measurement of the contact line position
from the video monitor during replay of a recorded experimental run. The position
as a function of time of three or four fingers and troughs was measured for each run.
The VCR used here incorporated a real-time counter so that the video tape could be
moved ahead an appropriate number of seconds then stopped to take measurements.
The zero time of each run was taken as the time at which the contact line shadow first
appeared from under the opened gate. The finger and trough measurements started
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at the point at which the contact line began to show the instability. Also measured
were the distance downslope, z, at which the contact line became unstable, the finger
width, §, taken as the full width at half the finger length and the average wavelength,
X, of the finger pattern. The fluid at the edges of the flow was held back by the walls
at each edge of the surface causing the contact line to be curved in that area. For
this reason the fingers closest to each edge were not included in the calculation of the

average wavelength.



Chapter 4 Results

4.1 General Observations

Experiments with all three fluids were performed on the plexiglass surface, while
only glycerin and HMO were used on the glass surface. In all cases the rivulet (parallel
sided finger) pattern was observed. Since I took substantially more data for IMO
than for LMO, I will quote only data for HMO except in cases were the LMO data is
of importance althouzh data for LMO is shown on some of the figures below. In the
case of glycerin, the troughs appeared to stop shortly after the contact line became
unstable while for HMO, the troughs continued to move very slowly downhill. The
observed fingering pattern was not perfectly periodic, nor were the finger lengths
perfectly uniform. Several preliminary experimental runs were tried with silicone oil
on glass, for which the unstable contact line developed into the sawtooth pattern in
which both the fingers and troughs continued to move downhill, but at different rates.
In this case the fingering pattern was fairly periodic. The finger lengths were more
uniform than for the rivulet pattern but still not perfectly uniform.

The fluid at the edges of the flow was held back by the walls at the edges of the
surface. This perturbation of the contact line resulted in fingers forming at the edges.
Although Schwartz? found numerically that this edge perturbation caused fingering
as it propogated inward along the contact line, all experiments here indicate that the
entire contact line becomes unstable simultaneously. Due to the surface’s large width

(91cm), any edge effects are expected to be small in the middle region of the surface.

4.2 Before the Instability

Huppert1 predicted that, prior to the instability, the position of the uniform
contact line should advance like ¢1/3; his measurements agreed with this prediction.
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Due to this, I analyzed my data from before the instability by fitting the position to
a power law in time, i.e.,

z = Ag(t - tg)P. “-1)

Fits to Eq. (4-1) were performed only for a < 14° for glycerin and a < 8° for HMO.
At higher angles the time before the instability was too short for enough position
measurements to be made and meaningful fits to Eq. (4-1) were not possible. The
data was well described, for the most part, by Eq. (4-1) but the exponent fy was
substantially larger than the value of 1/3 predicted by Huppert. In fact the exponents,
shown as open symbols in Figs. 4-3, are in reasonably good agreement with the
exponents characterizing the growth of the fingers which develop after the instability.
similarly, the values of the amplitude Ag of Eq. (4-1), shown as open symbols in Figs.

4-4, agree within error with the corresponding value for the flow after the instability.

Fits to data from two different runs having the same experimental parameters

produced results which were equal within it 1 error, thus indicating that

the fow is reproducible.

The discrepency between my results and the t1/3 behaviour found by Huppert
can be understood from Fig. 4-1, which shows the front position as a function of
time for HMO on plexiglass with a = 8°, both before and after the instability. The
pre-instability data, shown as opes symbols, seems to approach a ¢!/3 behaviour, but

only after a transient period in which the front advances more quickly.

This behaviour is seen only at the smallest angles. At larger angles, a X 5° for
HMO and a  8° for glycerin, the instability occurs before the transient has relaxed

and the approach to t1/3 behaviour is not observed.

The film thickness at the onset of the instability was not
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However rough estimates were made based on Huppert's result that the fluid thickness
at the front of the shock solution, Eq. (2-18), is given by Eq. (2-19). My data for
In suggest that the contact line becomes unstable when the fluid thins to a certain
fluid-dependent thickness on the order of three millimeters. This critical thickness is

hp = 0.33cm for glycerin and hy = 0.27 cm for HMO.

4.3 After the Instability

Since [ am unaware of any theoretical predictions for the growth of the developing
fingers beyond the regime where linear stability analysis is valid,25 I analyzed my data
in terms of empirical fitting functions. The downslope tip position after the instability,
z4, was well described, within experimental error, for all fluids on both substrates at

all angles a by a power law in time:
zq= Alt-to)P, (4-2)

where the amplitude A, the exponent 8 and the time origin tg were all used as free
parameters. A typical fit to Eq. (4-2) is shown in Fig. 4-2 for HMO on plexiglass at
8°.

The trough position, zu, was fitted to the function
zy=BeT4+Ct+D 4-3)
with B, C, D and 7 as free parameters. A typical fit of this function to experimental
data is also shown in Fig. 4-2.

Other fitting functions were tried but gave less satisfactory descriptions of the

data. In particular, power law fits to the trough data were tried, but they gave

satisfactory fits only when the troughs inued to moved with sufficiently high
38
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speeds, e.g., the power law fit would not work for glycerin troughs but did work for

some HMO troughs.

Figs. 4-3(a) to (d) show the tip growth exponent 8 as a function of sina for
glycerin and both oils on plexiglass, (a) and (b), and for glycerin and HMO on glass,
(c) and (d).

Each point on these plots (and similar plots below) represents the average of
results from fits to a number (three for very low angles and four for other angles)
of fingers (or troughs) from a particular run. The error bars represent the range of
values obtained from all of the fits to that data set. The range of values obtained for
different runs at the same angle is roughly the same indicating that any variability in
surface condition between runs is no greater than the variability across the slope for

a single run.

For both fluids, glycerin and HMO, on both substrates, J is essentially inde-
pendent of a within experimental uncertainties. The mean value of J for the plexi-
glass surface is 0.65 £ .04 for glycerin and 0.52 % .05 for HMO; for the glass surface
B = 0.55 .05 for glycerin and 0.48 +.01 for HMO. (Errors here and elsewhere in this
thesis are statistical standard deviations.) These values of 3 are also shown in Table

IL. My value for glycerin fingers on plexiglass is in within i 1|

error, with the exponent of .6 reported by Huppert!. 4 does show a slight tendency
to decrease with increasing a for HMO on both surfaces and for glycerin on glass but
it is difficult to tell if this trend is real from my data. The values of 8 and fy, where
values of fy are represented as open symbols in Figs. 4-3, appear to be equal within
experimental uncertainty in most cases.

Figs. 4-4 show the d d of finger growth
40
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(a) and (b), and glass, (c) and (d). For all fluids on both surfaces I find that

A=ksina (=)
with the slope k increasing with decreasing viscosity. For the pleiglass surface,
[ find that k = 11.1 % 5cm - s~ for glycerin, 36.4 + 1.6cm - s=9 for HMO and
63.1 +2.8cm - s~ for LMO and for the glass surface k = 12.6 £ 5em - s~ for
glycerin and 38.1 £ 1.2cm - s™# for HMO. The values of A and Ag are equal within
experimental error for glycerin and HMO on both surfaces. Table 11 shows the values
of k for glycerin and HMO on both surfaces.

In most cases the contact line position, measured at points corresponding to finger
tips, varied smoothly through the instability. However in a few cases a kink appeared
in the position-time plots at the onset of the instability. These are the cases for which
there is a significant difference in § and fg apparent in Figs. 4-3 (a) to (d).

The trough positions are described by Eq. (4-3), which represents an exponential
slowing of the contact line, with the trough approaching a constant downhill velocity
C at large times. The exponential slowing time  as a function of sina is shown in
Figs. 4-5(a) and (b) for plexiglass and Figs. 4-5(c) and (d) for glass. For all fluids on
both surfaces 7 decreases with increasing a like

r=ay sina”?r, (4-5)
For the plexiglass surface ar = 3.1+ .45 and by = 0.51 £ .08 for glycerin and ar =
0.62+.19s and br = 1.4 +.1 for HMO. The glass surface gave ar = 2.7 + .25 and
by = 0.85+.04 for glycerin and ar = 1.9+ 1.0s and by = 1.08 .17 for HMO. These
results are shown in Table IIl.

At low angles the exponential slowing times are on the order of 1 minute for HMO
on both surfaces while for glycerin it is about 15 seconds on plexiglass and 30 seconds
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Table II. Parameters characterizing the finger tip position.

glycerin glycerin HMO HMO
on on on on
plexiglass glass plexiglass glass
B 0.65 & .04 0.55 £.05 0.52 .05 0.48 £ .01
k(ems™8) 1L.1£5 126 .5 36.4£1.6 38.1+1.2
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on glass. However, for a ~ 17° the values of r for glycerin and HMO on plexiglass

are roughly equal as are the values for the two fluids on glass.

The amplitude of the exponential slowing time, B in Eq. (4-3), is shown in Figs.
4-6. Bis constant within experimental scatter except at low angles. For the plexiglass
surface, the average value of B at high angles, i.e., not including the first two or three
points, is ~10.7: .9 cm for glycerin and —12.4 4.8 cm for HMO. On glass the aserage
value of B is —12.9 £ 1.0em for glycerin and —12.1 £ 1.1 em for HMO. Values of B

for both fuids on both surfaces are shown in Table III.

The velocity of the troughs at long times, C, is shown in Figs. 4-7(a) and (b) for
plexiglass and (c) and (d) for glass. For glycerin C = 0 within experimental error for
both surfaces at all angles studied. For HMO, however, C = 0 at small angles, but
increases smoothly and approximately linearly to about 0.1 cm/s at a = 20° on both

surfaces.

Even though the rivulet pattern which develops from the instability is not per-
fectly periodic, the average wavelength X is a well defined length. X is taken as the
distance between two adjacent fingers averaged over the pattern, but excluding the
finger at each edge which may be strongly influenced by the nearby walls. Figs. 4-8(a)
and (b) show X as a function of sina for plexiglass and glass respectively. Within
experimental scatter the data for the different fluids on the plexiglass surface are
indistinguishable. The same is true for the data for the glass surface except at low
angles, where the HMO data appears to be lower than that for glycerin. X for hoth

fluids on both substrates shows a power law dependence on sin a:
X =aysina™®. (4-6)

Fits to the data for the plexiglass surface result in a) = 2.7+.2cm and by = 0.41£.03
55
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Table I[l. Parameters characterizing the trough position.

glycerin

glycerin HMO HMO
on on on on
plexiglass glass plexiglass glass
ar(s) ERET 27+.2 0.62+.19 193 .97
by 0.51 £ .08 0.85%.04 R 108+ .17
B(em)  ~107+£9  —-129410 -124+8  -121%1l
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for glycerin and a) = 2.8+ .2cm and by = 0.40 + .02 for HMO. The fits for the glass
surface give ay = 2.5 £ .1 cm and by = 0.49 £ .02 for glycerin and ay = 3.0+ 4 em
and by = 0.39+.05 for HMO. Performing fits to each of these data sets using the 1/3

exponent predicted by Huppert! yields for the plexiglass surface ay* =

03+ .07 cem
for glycerin and ay* = 3.23 + .08cm for HMO and for the glass surface a\* =
3.11 £ .09 cm for glycerin and ay* = 3.38 .13 cm for HMO. These values for ay, by

and ay* are shown in Table IV.

The widths of individual fingers are very uniform across the pattern and vary
only slightly along the length of a given finger. I found that this width, measured

half way along the length of a finger, also varies as a power law in sin a:

§=agsina™", (]

as shown in Fig. 4-9(a) for plexiglass and Fig. 4-9(b) for glass. Fits to the data
for the plexiglass surface yield ag = 0.68 % .04 cm and bs = 0.53 + .03 for glycerin
and a5 = 0.86 % .10cm and b = 0.66 £ .04 for HMO, while for the glass surface
a5 = 0.91 & .05cm and bs = 0.51 % .03 for glycerin and a; = 0.98 + .05cm and
bs = 0.59 + .04 for HMO. These values of a and bs are shown in Table IV. For
comparison I also show a line of —1/3 slope in Figs. 4-9(a) and (b); such a slope is

not consistent with my data.
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Table [V. Parameters characterizing the wavelength and finger width.

glycerin glycerin HMO HMO
on on on on
plexiglass glass plexiglass glass
ay (em) 274 .2 25+ .1 2842 30+ .4
by 041£.03  049+.02  040£.02  039+.05

ay®(cm) 3.03+£.07 3.11£.09 3.23 +.08 3.38+.13

ag(cm) 0.68+ .04 0.91 £.05 0.86 .10 0.98 .02

b 0.53+.03 0.51 £.03 0.66 +.04 0.59 +.04
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Chapter 5 Discussion

5.1 Before Instability

My results for the flow of this fluid sheet before the instability show a somewhat
more complicated behaviour than that implied in Ref. (1). Huppert! found both
experimentally and theoretically that, prior to the instability, the position of the
contact line moved downhill like z ~ £1/3. At all but the smallest angles studied,
my data are also consistent with a power law behaviour, but with an exponent larger

than 1/3. Within the i | error, the 1 ined for the flow

before and after the instability are the same - about 1/2 for MO and about 2/3 for
glycerin on both surfaces. However, at the smallest angles for both fluids my results,
shown in Fig. 4-1, indicate that the flow approaches t!/3 growth at long times while
at earlier times it advances with an exponent larger than 1/3. Thus the approximate

equality of the exponents before and after the instability may be coincidental.

Huppert! studied this flow in the lubrication approximati lecting surface
tension. In section 2.7 I followed his procedure and derived an equation for the shape

of the free surface h(z,t)
oh 5 20k _
G +lasina/whtE =0 (5-1)
and using this derived an equation for the position of the uniform contact line,
zp = (9A2g sin a/dp) /3173, (5-2)

Flow governed by Eq. (5-1) will evolve into a shock, and zq is the position of the
shock. Eq. (5-2) is valid when z, 3> I, and at long times when the initial conditions
no longer significantly affect the flow. In my experiments the first condition is always

71



true = zn/l ~ 15 for glycerin at small a and is larger for larger angles and for HMO
— but my data indicate that the second condition is almost never true, i.e., the initial
conditions affect the flow of the uniform contact line right up to the time at which the
instability develops. Further experiments with more viscous fluids — to increase the

time before the instability — are necessary to study this behaviour in more detail.

5.2 After Tnstability

Both Huppert! and Silvi and Dussan V2 observed experimentally, as did I, that
the glycerin on plexiglass resulted in the rivulet pattern developing. However, for
glycerin on glass they observed the sawtooth pattern while [ observed the rivulet
pattern. This may be due to the condition of the surfaces. Since neither Huppert nor
Silvi and Dussan V give any description of the cleaning procedure used, the condition
of the surfaces may have been different, i.e., my surface or their surfaces may have

liad a slight film after cleaning due to the procedure and/or cleaning agent(s) used.

[ can also compare my results with previous work on the behaviour of the average
wavelength, X. From my experiments X is observed to have a power law dependence
o sin & but not with the exponent of 1/3 predicted by Eq. (1-2); the experimental
exponents, shown in Table V, are consistent, except for glycerin on glass. Huppert also
predicted, Eq. (1-2), that X should vary with fluid properties like (¢/p)"/%. From my
fits of X to Eq. (4-6) with the exponent fixed at 1/3 gives Ay p0/AgLy = 1.07+.04
for plexiglass and 1.09 4 .07 for glass, while (05410 pGLY /oGLY PrMO)Y® = 094 £
.04, Thus I observe no significant difference in X between the two fluids on either
substrate. However the predicted difference is small.

From fits to Eq. (4-6) with by = 1/3 I determined the constant of proportionality

in Eq. (1-2) for the plexiglass surface to be 7.0+ .4 for glycerin and 8.0 +.3 for HMO,
2



while the glass surface gives 7.2 .3 for glycerin and 8.3 £ 4 for HMO. These are

consistent with the results of Refs. (1) and (2) which quote 7.5 and 8, respectively.

The finger width & did not display the same a-dependence as did X, and while
Xis approximately the same for the fuids on both surfaces, § is not. This points to
Xand 6 being governed by different physical mechanisms. While the length scale of
the instability, i.e., X, depends on the competition between gravitational and surface
tension forces at the contact line,"2 § will be a function of the properties of the
fluid. The finger must have a certain cross-sectional area in order to accomodate
the fluid which is flowing down it. Thus the width of the finger will depend on the
static liquid-solid contact angle. If the contact angle along the side of the finger
is larger (smaller) than the maximum (minimum) static value, then the finger will
become wider (narrower) until the contact angle decreases (increases) to its maximum

(minimum) static value, but the cross-sectional area of the finger will remain constant.

[ discuss the work of Troian et L™ in chapter 2 where they apply linear stability
analysis to the equations for a film flowing under the influence of gravity. Their
theoretical analysis differs from my experiments in two repects. The first is that a
precursor film does not appear to exist in my experiments, and the second is that the
analysis of Ref. (13) is valid only in the limit 3Ca < tan a!/3, i.c., for large angles,
while for my experiments 3Ca/ tan a!/3 ~ 3. Although the experimental situation is
somewhat different from the theoretical one, it is interesting to compare my results

with the predictions of Ref. (13).

Troian et al.3 study the stability of the calculated profile by imposing periodic
perturbations on the contact line and studying the growth of these perturbations.
They find that the profile is unstable for wavenumbers g £ .9 with 2 maximum
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growth rate for A = 14/ where [ = h/(3 Ca)'/3 is a characteristic length.
I can calculate the ratio A/l for my data by first estimating the film thickness at
the contact line to be
h =3A/2za, (5-3)
from Huppert's' expression, Eq. (2-19), where z, is the length of the flow at the
onset of the instability. | find & % 0.33 cm for glycerin and h % 0.27cm for HMO on
both substrates. The velocity U is estimated from results of fits to Eq. (4-2), along
with the observation, discussed above, that the flow velocity varies smoothly through
the instability. Then
U = dzg/dt = BA(t — )", (5—4)
cvaluated at the point of instability. Also from above we have
A=ksina (5-3)
and from fits to Eq. (4-6) with by = 1/3,
T =ay*sina /3, (5-6)

Thus
1= 9 (3BkY (5-1/3 7
M= (—"—) (t = to) X 6-7
From my measuremcats I find that (¢~ to) is a function of sina and the data for

lexiglass are bly well described by

0

t—tg=19sina™!" (glycerin)
(5—8a)
=053sina”!3,  (HMO)
while for glass
t—tg=19sina™"®  (glycerin)
(5~ 8b)

=20sina%®.  (HMO)
T4



Using my results for the relevent parameters and the fluid properties from Table [, 1

find for plexiglass -
Mi=141sina®?  (glycerin)

. (5 - 9a)
=192sina”,  (HMO)
while for glass
M1=136sina™2  (glycerin)
(5-9b)
=124sina®'6,  (HMO)

I estimate the

in the coefficients of Eqs. (5-0a) and (5-9b)
Lo be on the order of 20%. This percentage is estimated after taking into account the

standard errors in ay*, d and &, the inties in the experimentally delermined

physical properties o and  and the uncertainty in estimating the film thickness h.
These functions are plotted in Figs. 5-1(a) and 5-1(b) for the plexiglass and glass

surfaces, respectively, along with the prediction of Troian et al.!

The experiments performed here are confined to a < 22° for HMO on both
surfaces, @ < 32° for glycerin on plexigless and a < 55° lor glycerin on glass, while
the theory is valid for large angles (3Ca < tana!/3); despite this the agreement
between their prediction and the extrapolation of my results to large angles is quite

reasonable.

In my experiments the advancing front was never perfectly periodic. A possible
explanation comes from the results of Troian et al. who find that the contact line is
unstable for a range of wavenumbers g $ 0.9, Fig. 2-6, with a maximum growth rate
for A = 141. A superposition of several high growth rate wavelengths may contribute
to the imperfect periodicity of the pattern which develops.

My results for the varinus fitting parameters can be categorized in terms of their
dependence on the physical properties of the system studied. { found that X was
essentially independent of fluid and surface for fluids and surfaces I studied, depending

5]



“J|nsa1 [e2139109Y) - - 120418 — — — {QWH ——— g1 PUIPA Jo uorpipard
[ean10109y) a3 yjm Suoje aoejans sseiSixald ayy 10) sy[nsal [euaILadxo Aur woly 1Y olyes A, (@)r-g By

(sea4bap) 0
06 08 OL 09 0S5 Or Oc 02 ObL O

T T T T T T T T 0




~aoejns 5598 243 J0f 1daox@ () (-G “B1g sv survg (q)1-g

(seaibap) O
06 08 Ui 09 0S5 Oy OE 02 O}

g

T T T ¥ T 25 T

ol

Sl

(14

14

744

7



only on the slope angle a. The weak dependence on fluid properties predicted by
Iuppert! was not ohserved, although more study of this point is needed. The finger
width & was indistinguishable for HMO on both surfaces while & for glycerin on glass
was slightly larger than for the plexiglass surface. The finger width of HMO was larger
than that for glycerin for both surfaces. This may be due to glycerin's larger static
contact angle, which allows a narrow glycerin finger to have the same cross-sectional

arca as a wider HMO finger.

‘The fitting parameter A — the amplitude in the finger growth expression, Eq.
(4-2) — increased with decreasing viscosity and seemed independent of surface for
the surfaces studied here. All other fitting parameters — the growth exponent 8 of
the rivulets, and the slowing time 7, amplitude B, and asymptotic velocity C of the
troughs — are equal within experimental error for the two oils, and thus apparently
independent of viscosity. At higher angles, a 2 8°, the amplitude B of the exponential
slowing term in Eq. (4-3) is constant and equal within experimental uncertainties for
all fluids on both surfaces. The differences between the values of the other parameters
for glycerin and HMO for each surface probably reflects a dependence on the surface

tension or, as Silvi and Dussan V2 point out, on the liquid-solid contact angle.

I used the fitting functions Eqs. (4-2) and (4-3) simply because they gave a good
description of my data, although the use of Eq. (4-2) was motivated partially by the
"

results of Huppert.! The physical si of these fitting p is not clear

and a more complete theoretical treatment of the problem is required before they can

be considered as anything other than empirical.

Finally I will consider the evolution of the fingers, and following Silvi and Dussan
V2 1 will think in terms of the local contact angle 6(y) at the liquid-solid-air contact
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line. For a typical liquid-solid system the contact angle is a function of the speed
of the moving contact line having the general form of Fig. 2-2. For contact angles
g S 0 < 0, the contact line does not move, for 8 > 64 it advances in the direction
perpendicular to its local tangent, and for § < g it recedes. A straight contact
line, advancing with uniform velocity vy, will have 8(y) = 0y, say, with 0] > 0, as

illustrated in Fig, 5-2.

Fig. 5-2. The general form of the contact angle 8 at the liquid-solid-
vapor contact line, 2s a function of contact line velocity. Here it is
shown that some advancing contact angle 8 is advancing with velocity
1.

As the straight contact line becomes unstable, the contact angle will begin to vary
with y. Faster-moving regions of the front will have 6(y) > 6 while slower moving
regions will have 84 < 0(y) < 6. If the contact angle at some point drops below 64,
that point will stop. Thus for the rivulet pattern, 8(y) < 84 in the trough region

while 8(y) > 04 near the tips.



Consider the situation sketched in Fig. 5-3, where the solid line represents the

contact line shortly after the onset of the instability.

Fig. 5-3. The contact line shortly after the onset of the instability
is sketched as a solid line. 0 is greater than, less than and equal to
0, at the points X, ¥ and 7 respectively. The dotted lines show
schematically the growth of a rivulet.

Clearly (X) > 64 at the point X at the tip of the developing finger. Assume
that 8(Y) < 84 at Y, in the trough. Then there is a point Z at which 6(Z) = 8;
at points downslope from Z the contact line will advance perpendicular to its local
tangent. Because of the relation between contact angle and the speed of advance of
the contact line, as the finger develops its sides will become more and more oriented
in the downslope direction. This reduces the gravitational pressure along the sides,
and so reduces 0 there. Thus the point at which 8 = 64 moves downsloge, eventually
settling near the tip of the finger. As sketched in Fig. 5-3 this process leads to fingers
with straight sides oriented downslope, exactly as observed experimentally.
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As Silvi and Dussan V point out, the sawtooth pattern will result if 8(y) > 04
everywhere on the contact line; & must be smaller in the more slowly advancing
troughs than at the tips.

Figs. 4T show the asymptotic velocity C of the troughs. For glycerin € = 0

within eri 1 error at all incli di

angles i that 0(y) is indeed fess
than 04 in the trough regions. However, for HMO C is small but nonzero at larger
angles, indicating that 8(y) 2 8,4 in the trough regions for angles a 2 8°. This
result suggests that the sawtooth pattern should form at higher angles for HMO
because 8(y) > 8 4 everywhere on the contact line, but the rivulet pattern is actually
observed. The explanation for this lies in the relative downslope speeds of the fingers
and troughs. The finger speed is so much greater than that of the troughs that the
fingers grow much faster, resulting in the rivulet pattern. Hocking!? suggests that the
sawtooth pattern is only a transitory phenomenon which will eventually evolve into
the rivulet pattern if the surface is long enough. There may not actually be a sharp
division between the sawtooth and rivulet patterns, but rather a continuous range of
patterns with these as the two extremes. The silicone oil on glass produces a good
example of the sawtooth pattern while glycerin on glass produces a good example
of the rivulet pattern. HMO on glass and plexiglass produces a pattern somewhere
between a perfect sawtooth and perfect rivulet pattern but leaning more toward the

rivulet.

Silvi and Dussan V state that the size of the contact angle is the important
parameter in determining which of the two patterns will evolve for a given system.?
On the basis of tiie above discussion, it seems that the shape of the 0(v) curve is
also important. If @ is a relatively flat function ~f v, a small decrease in § will cause
a large reduction in the contact line velocity and may even cause it to stop. On
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the other hand, if @ varies steeply with v, a small decrease in 8 will cause only a
small decrease in the contact line velocity and most probably will not cause it to
stop, and the sawtooth pattern will occur. The presence or absence of contact angle
hysteresis, discussed in section 2.3, would also be expected to affect the observed
pattern. Detailed measurements of contact angles along the front would be useful in

confirming this picture.



Chapter 8 Conclusions

8.1 Conclusions

In this thesis I have attempted to characterize the behaviour of a viscous fluid
flowing down an inclined plane, and, in particular, the pattern of fingers that develop
from the contact line instability. Except at the smallest angles, the uniform contact
line became unstable before the flow had relaxed to the expected ¢/3 growth. For
the fluids studied here, the growth of the fingers after the instability is well described
by a power law in time, while the troughs show an exponential slowing to a final
velocity equal, or close tn, zero. The average wavelength of the pattern decreases with
increasing inclination angle, while the width of the fingers decreases more steeply with
increasing o The exponent by for glycerin on glass was found to be 0.49+ .02 from fits
to Eq. (4-6), but looking at Fig. 4-8(b) it appears higher but not inconsistent with
—1/3. Furthermore, fits to £q. (4-6) with by = 1/3 result in a coefficient for glycerin
on glass of ay* = 3.03 £ .07 similar to other fits as shown in Table IV. My analysis
was based primarily on fits of Eqs. (4-2) and (4-3) to measurements of the contact

line position. The fit results are ized in Table V. A th ical of

this problem is required to make clear the physical meaning of the it parameters and

to explain their dependence on fluid properties, slope angle and experimental surface.

8.2 Future Considerations

There are several open questions concerning the contact line instability that war-
rent further study. Some measurements which could be done in the future using this
apparatus are suggested in this section.

One important point concerns the behaviour of the film before the instability. In
order to study the advance of the stable contact line, and to determine if it eventually
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does advance like t'/3, a fluid much more viscous than glycerin could be used at
relatively small inclination angles. The larger viscosily should slow the fluid motion,

making a detailed study of the flow possible.

Measurement of the film thickness, before the instability, near the front as a
function of time may give a clearer picture of how the film thickness affects the contact
line stability. Also measurement of the flow profile before and after the instability

would be i ing, as would be the of the contact angle as a function

of position along the front.

Fluids which completely wet the surface, e.p. silicone oils, could be used to
study the sawtooth pattern. Some experiments with one silicone oil (4 = 0.5 g/cm s,

o = 20dynef/cm, p = .963g/cm® and 0 =~ 0°) suggest that the sawtooth pattern

develops when the fluid completely wets the surface. More detailed experiments are

nceded to confirm this, and to characterize the sawtooth pattern flow.

Fluids of differing viscosities but similar static contact angles and surface tensions
could be used to study the effect, if any, of viscosity on the instability development.
Experiments to study this are now being performed using glycerin diluted with water.
The water decreases the viscosity and static contact angle of the glycerin while not

greatly affecting its surface tension. Studies which varied other fluid properties inde-

fently would also be i ing, e.g. the o/p dependence of A could be checked.
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Table V. Summary of data from Tables [I, lIl and IV.

glycerin glycerin HMO HMO

plexiglass glass plexiglass glasy
B8 0.65 £ .04 0.55 £.05 0.52 + .05 0.48 £ .01
k(ems™P) 115 126+.5 364+ 1.6 3814 1.2
ar(s) 31+ 4 27+2 0.62 .19 1.93 £ .97
b 0.51 .08 0.85+.04 ld4£.1 108 £.17
B(cm) -10.7£.9 -129+£ 1.0 -124% .8 -121£1.1
ay (cm) 27+.2 25%.1 28+.2 304
by 0.41£.03 0.49 £ .02 0.40 £.02 0.39 £.05
ay* (em) 3.03%.07 3.11+.09 3.23+.08 3.38£.13
ag (cm) 0.68 4 .04 0.91+£.05 0.86 £ .10 0.98 £ .02
bg 0.53 +.03 0.51+.03 0.66 £ .04 0.59 £ .04
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