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Abstract

Rayleigh-Bénard convection in binary fluids has been studied wid

recent years due to the richness of instability phenoniena observed.  With

properly chosen parameters, the first bifurca ion from conduction to conveetion
can be to a traveling wave (TW) state, and there is then a second transition
from the TW state to a stationary overturning convection (SOC) state, In this

thesi

, we report on an experimental study of TW and SOC states in ethanol-
water mixtures in a narrow rectangular cell. The flow is visualized using the
shadowgraph techuique. By comparing our recorded shadowgraph intensity
profiles with recent numerical results [13], we studied the temperature and

concentration fields in the convecf

ive flow, both in the TW and SOC s

o8,

While our results confirm some of the qualitative features of the numerical

results, there appear to be some

ant differences which may be due

pattly to the narrow geometry of the experimental cell.
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Chapter 1

Introduction

Rayleigh-Bénard convection is one of the most extensively studied hydro-
dynamic systems and has been the subject of a tremendous amount of exper-
imental and theoretical work. This interest is due in part to the fact that it is

a nice, simple, well characterized system for the study of nonlincar dynamics,

h 1

and also to the role played by on in such as

drift, solar lation ¢..d the dictability of the weather.

The study of thermal convection can be traced back to the early 1900s,

when the first i i i igations were undertaken by Bén-

ard [1]. The convective system he studied was more complicated than he
realized, and its true nature was not revealed until the 1960s. In an attempt
to explain Bénard's results, Lord Rayleigh published a theoretical article on
convection, based on lincar stability analysis, in 1916 (2]. It is now known that
Lord Rayleigh’s theory docs not apply to the system examined by Bénard;
nevertheless, Lord Rayleigh's work is the starting point for almost all modern

theories of convection.



Lord Rayleigh’s theory can be explained in the context of a model experi-
ment that employs a fluid with somewhat simpler properties than any real gas
and liquid. A thin layer of the fluid is confined between two flat, rigid, horizon-
tal plates and completely fills the space between them, so that there is no free
surface. The layer is thin in that its horizontal extent is much greater than its
depth, which is equal to the separation between the plates. This constraint is
intended to remove the influence of the boundaries at the edges of the plates,
which do not explicitly enter into the theoretical description. Ideally the layer
would be of infinite horizontal extent; in practice the layer is always confined
within a finite geometry, but a large aspect ratio of the horizontal size to the
vertical size approximates this constraint. This experimental setup is often
called the Rayleigh-Bénard configuration and has been used widely.

The fluid layer is heated from below, with the temperature of the top
plate kept constant by a thermal sink. Thus, with a fixed amount of heat
supplied to the bottom plate, the temperature of the bottom plate as well as
the temperature difference are constant. Furthermore, in the absence of flow,
the temperature gradient in the fluid is linear.

Consider a small parcel of fluid near the bottom of the layer, as shown
in Figure 1.1. Because of the elevated temperature at the layer bottom, the
parcel has a density that is less than the average density of the entire layer.
As long as the parcel remains in place, however, it is surrounded by fluid of
the same density, and so it has neutral buoyancy. All forces acting on it are
in balance, and it neither rises nor sinks. Suppose now that through some
random perturbations, the parcel of fluid is given a slight upward motion.
The parcel is then surrounded by cooler, more dense fluid. As a result it has

positive buoyancy, so that it tends to rise farther. However, the buoyancy
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Pigure L1: Imbalance of forces is needed to initiate a convective flow. For a
thin layer of fluid between two rigid plates and heated from below convection
begins when buoyancy overcomes the dissipative effects of viscous drag and heat
diffusion, or in other words when the Raylcigh number exceeds a critical value,




force is opposed by viscous drag and by the effect of heat diffusion. which
tends to equalize the temperature of a displaced pareel and its environment,
so the mere existence of a temperature gradient is not enough 1o ensure the

onset of convective flow. It is necessary for the buoyane,

resulting from this

gradient to overcome the dissipative effects of viscous drag and heat diffusion.

The gravitational potential encrgy liberated by the rising of lighter fluid and

the sinking of heavier fluid must. be great fod by drag

than the energy di

i

and diffusion. The relative importance of these effects can he expressed

1
dimensionless ratio: the buoyant force divided by the product of the viscous
drag and the rate of heat diffusion. The ratio is dimensionless in that all

the units of measurement associated with the three quantities caneel exactly,

leaving a pure number whose value is the same no matter what system of it

is adopted. This ratio is called the Rayleigh number and defined by:

_ agd(AT)

K

R (L.1)

where a is the thermal expansion coclli

i, & s the thermal diffusivity, v s
the kinematic viscosity, g is the acceleration duc to gravity, d is the separation

lifference

between the two plates and A7 is the temperature

begins when the Rayleigh number exceeds a eritical value.
At the onset, of convection, the flow in the fluid layer forms a regular

pattern with regions of warm fluid going up and ool fluid going down. The

pattern can be described in terms of a wavevector, which specifies the overall
scale of a pattern but not its detailed from. The pattern actually observed
depends on the geometry of the experimental apparatus. The patterns seen in

the Rayleigh-Bénard configuration are roll-like, as shown in Figure 1.2, The

fundamental unit of the pattern consists of two rolls that rolate in opposite
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directions; the width of these two rolls forms one wavelength. In a rectangular

container the rolls are parallel to the shorter sid
When the convecting fluid is a binary liquid mixture instead of a pure

. lor ¢

liguid, the instability pheniomena become riche sample, with the proper
choice of fluid parameters, the inslability at the onset. of convection could

be oscillatory, i.c., periodically time-dependent. A binary liquid mixture is

an example of a double diffusive system, s called hecanse thete is a second
diffusive field — the concentration fiekd — in addition to the first diffusive
field — the temperature field. The first donble diffusive system considered in

detail was a salt-water mixture, treated by Stommel of al. 3], 1

work by
Hurle and Jakeman [1] extended the study to more general double diffusive
systems where the temperatute and concentration fields couple Lo cach other.

A nondimensional quantity, called the separation ratio, is defined as

po A

aAl ™

(12)

where 3 is the solutal expansion coclficient, ¢ and Ae are the mean coneen-

tration of the mixture and the concentration diffc

ence across the fluid layer,

St is the Soret coefficient, which characterizes the coneenty

tion gradient, in-

duced in the misture by the applied temperature gradient. The value of the

ermines whether the tr

separation ratio of the binary fluid mixture de ition
from the conduction state will be to an oscillatory convection state or Lo a

stationary one.

To understand the richness of the possible instabilities in such systems,

consider a salt-water mixture where both

salinity and Lemperature inerease

upwards. While incre:

sing salinity upwards makes the migture more dense

at the top and thus tends to destabilize Uhe systom, incrensing temperature




upwards makes the mixture lighter at the top and tends to stabilize the system.

Suppose that the system is in equilibrium initially. The question to ask is
whether the cquilibrium s stable or not.. To test this, imagine a small quantity
of solution being displaced upwards. The environment in its new position is
warmer and more saline. In such a solution, the thermal diffusivity is much
higher than the diffusivity of salt, so the temperature difference is quickly
equalized, but. the salinily difference remains. lence the displaced packet
rises still further, signalling an instability. Thus for double diffusive systems,
convection can occnr even when the temperature gradicnt is stabilizing. This
is due to the very different time scales for thermal and mass diffusion. The
ratio of these two Lime scales can he described by a dimensionless number, the
Lewis number, defined as

L= Dnlx (1.3)
where D, is the coefficient of mass diffusion.

Now consider a situation where the solution is hotter and more saline be-
fow. An upwardly displaced packel will meet an environment which is colder
and less saline and, when the temperature is equalized by the rapid thermal
diffusion, it will drop down because of its excess salinity. When it reaches its
previous position it will still have the same salinity, but its temperature will
be lower than the surroundings, and it will continue to fall until the excess
salinity of the surroundings forces it back up. It will thus keep oscillating back
and forth, signalling an oscillatory instability.

A binary liquid mixture is a more experimentally accessible example of
a double diffusive system. It differs from the thermohaline (salt-water) sys-
tem ouly in that, in the case of a binary mixture, a concentration gradient

can be induced in the fluid by a temperature gradient through the Soret of-



fect. Since the theoretical prediction of the onsel of uscillatory conveetion by
Hurle and Jakeman [1], a lot of work has been done on Rayleigh-Bénard con-
vection in binary liquid mixtures. As the relevant. parameters of the system
are varicd, a number of interesting phenomena have heen observed, including

forward and backward bifurcations to steady or time-dependent states [5)

dimension-two bifurcations [6], time-dependent states inchuding traveling

(TW) convection [11, 15, 16, ele.

One quite interesting phenomenon revealed in studies of TW conveetion in
binary fluid mistures is the existence of a variely of confined states, in which
TWs are observed in one spatial region of the experimental coll, while the rest

of the fluid is motionless [7]-[10]. Several types of stable confined states have

been discovered, both in rectangular cells, where the presence of endwalls can
affect the dynamics, and in annular cells. The value of the separation ratio i

es observed,

has a strong effect on the nature of the st

At the onset, of convection with sufliciently negative value of i, the con
vection amplitude is observed Lo grow via a long transient Lo a state of slow-
moving traveling waves [11]. If the reduced Ragleigh number 1 = 1t/ 1., where

R, is the critical Rayleigh number for a pure fluid (4 = 0) with tk

e prop-

erties as the mixture, is then decreased, this state of nonlinear traveling waves

ion back to conduction at » =

remains stable down to a saddle-node bifur

If 7 is increased above onset, the TW phase speed dec

ases and eventially
stops at a Rayleigh number denoted by 1, and a stationary overturning con-

vection (SOC) state results.

A convenient quantity for measuring the convection amplitude is the heat

transfer through the convecting layer, which, written as a dimensionless ratio,



is the Nusselt number, defined as

N= %< (1.4)

where Q is the total rate of heat transfer per unit arca across the fluid layer, A
the thermal conductivity of the fluid and AA7'/d the rate of heat transfer per
it area when there is no convection. Thus N = 1 in the conduction state and

N>1in cction states. N ically calculated data for Nussclt number

as a function of r for an cthanol-water misture are shown in Figure 1.3 [13].
The TW state and the transition from TW to SOC have been considered
in theoretical work (12] and numerical caleulations [13, 14]. In relerence [12], a
perturbation expansion in i and (r —1) around the convective state in a pure
fluid is carried out, while the numerical work is a finite-difference integration

of the Navier-Stokes equations. Both assume the Bonssitiesq approimation

of the fluid ions and two-di 1 flow dicular to the roll axes.

‘They impose rigid, imperncable boundary conditions at the upper and lower
plates of the container, and periodic horizontal boundary conditions. Both the
theory and the numerical calculations predict that the transition from TW and
SOC should be continuous with no hysteresis at r*, and that the phase speed
should decrease close to 1+ as (r* — r)"/2.

In experiments with a rectangular cell done by Walden cf al. [11] and Moses
of al. 15, the trausition from TW to SOC was observed to be hysteretic,
and the TW phase speed was reported to decrease lincarly as a function of
1= Ina recent experiment by Ohlsen et al. [16], which was conducted in an
aunular cell with periodic boundary conditions, the transition was observed to
be continnous within the experimental resolution of Ar®/r* < 0.02%. Ohlsen

« al. found that the T\ phase velocity depended on Rayleigh number near r*
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Figure 1.3: Numerically calculated Nusselt, numbers as a function of r for TW
and SOC states. Full symbols (small dots) refer to states in the mixture (pure
fluid) that are stable under lateral periodic boundary conditions. Al r* the
TW state loses stability to SOC, and at #* the system undergoes a transition
back to the conductive state. From [13).



like: (#*=r)", with b 2 0.57. reasonably close to the predicted valueof b= 0.5,

“T'le manerical ealenlations by Barten of al. [13. 11] also indicate that the
linear concentration profile present in the conduction state is destroyed by
conveetive mixing in the TW state. Thus. the vertical concentration gradicnt

thin, horizontal boundary layers at the top and bottom of the

remains only

fluidl layer, and the fluid is well mixed in theinterior of the rolls. Concentration

from these boundary layers is fed into the npflow and downflow boundaries be-

tween the rolls, forming a lateral concentration wave. 1t is the phase difference
between this lateral concentration field and the lateral temperature fild which
leads to traveling convection rolls. For sufficiently large convective amplitude,

concentration gradient duc to the Sorel effect is eliminated, and the result-
ing homogencous fluid mixture exhibits the same stationary conveetive flow as
a pure fuid.

Eaton ¢t al. [17) stuied the role of the concentration field in the TW

state, using a combination of shal pl and ical cal-

culations. They performed an esperiment in an annular cell with an 8% by
weight elhanol-water misture. They visualized the convecting flow from the

top of the cell using de hy, and { their with

mmerical resulls. They confirmed some predicted features of the symmelry
and phasing of the TW concentration ficld.

In order to measure the lateral concentration distribution, which has been
calelated numerically (13, 14], flow visualization from the side of the cell is
needed. We have conducted experiments ina narrow rectangular cell, in which
the width is much smaller than the length and the height. By viewing the cell
from theside, lateral shadowgrapl intensily profiles were recorded; these were

then compared with nunierical caleulations. In choosing such a narrow rect-

:
!
s
i
3



angular coll, we attempt to obtain lateral shadowgraph intensity profiles with

fewer optical dlfects in the direction of light propagation. This narrow geom

etry constrains the convection pattern to be quasi-one-dimensional. We thus

refer to convection cell s quasi-once-dimensional. We studied the symmetry
and phasing features of the concentration field in ‘TW and SOC states. Our

data appear to confirm some of the qualitative features of the numerical results

ably dud

gnificant quantitative differences, prosun at least in part

but sugec
(o the near-onc-dimensionality of the experimental cell. i general however,
it

our uggest (hat o substantial improvement in our shadowggaph flow

on can be made with the

visualization is reguired before quantitative comparis

numerical predictions. There thus remains a lot of further work 1o be done on

this matte

In Chapter 2, a brief introduction to the Tine

Bénard conve

ction ina pure fluid and binary mistures is given, and the mmer

ical results of Barten ¢f al. [13, 18] are discussed. Chapter 3 is a deseription

xperimental results

of the experimental set-up and procedure. o presented

and discussed in Chapter 4. Chapter 5 contains a briel summary and conclu-

sion. In an Appendis, some relevant properties of water-ethanol mixtores ar

tabulated.



Chapter 2

Theory

In this Chapter, an introduction to theories describing Rayleigh-Bénard

conveetion is given. The starting point for theoretical studies is the linear

stability analysis, which gives the critical Rayleigh number and wavelength at
the onset of convection. Beyond the onset, nonlincar theory or direct numerical
calenlations have 1o be used to describe the system.

Following Chandrasckhar [19], Hlurle and Jakeman [1] and Bliattachar-

20], we first discuss the application of lincar stability analysis to a pure

lnid. th

to a binary fluid mixture, including in each case a discussion of the

Ly criteria. Then we review the results of a nonlincar theory of binary
wisture conveetion [12] and discuss the results of mmerical clculations of
TW states and SOC states [13. 14, 18],

I what follows, we consider a tin fluid layer confined between two horizon-
tal plates. The distance hetween the two plates is o and the lateral dimension

1 is supposed to be infinity, We use Cartesian coordinates with the r-y plane




horizontal and the = axis pointing up. with = = 0 at the hottom plate. 7}
and ¢; denote the temperature and concentration of the fuid layer at the hot-
tom plate and Ty and ez the temperature and coneentration of the fuid layer

at the top plate. We alw

take the concentration to be that of the lighter
component of the binary misture: for our ethanol-water system, ¢ denotes the

concentration of cthanol.

2.1 Linear stability analysis for a pure fluid

2.1.1 Governing equations

"The governing equations for thermal conveetion ina pure fuid can be found
in many fluid dynamics text books [19]. The equation of continuity is

ap = .
Vi) =0 (1)

where p is the density and i@ the velocity of convecting low. The equations of

motion are the Navier-Stokes equations

v

+ 7+ Vi (2.2)

g
W=

where I is the pressure, g the gravitational aceeleration and v the kinematic

viscosity. The temperature field 7 satisfies

I o o »
I (@Y= 60 (231)

where # is the thermal diffusivity. The steady, conduetive state with




ane

v
—=g (2.6)
7

i always a solution of cqs. (2.1 - 23). To find out whether this solution

is stable or not. we add small perturbations 87, 87 and 8P to the sleady
conduction solution and study the equations governing the time development
of the perturbations. I the perturbations deeay exponentially in time, then

able. If, on the other hand, the perturbations grow

the unperturbed state
with time, then the original state is unstable against, the perturbation and an

in.

instability
In general, the density of the fluid is a function of temperature and we can
write

= poll - a(T = )] 2.7

where o = '/l'%' i

tare at which p = py. To simplify the cquations, we apply the Boussinesq ap-

s the thermal expansion cocflicient and T is the tempera-

proximation [21], which sets p cqual to s everywhere except in the coefficient

of  and treats the other fluid propertics as constants. For an incompressible

fluid, the continuity equation (2.1) becomes
V.i=0. (2.8)
Using the Boussinesq approximation, we can lincarize oqs. (22) and (23) in

the small pecturbations &7 = (tty,u,y12), 67 and 6P about the conduction

state. After using cq. (2.8), we find the equations governing 67 and u; to be

— VT =, AT
AV = (2.9)
and
12 vy, = g+ 2oy
g7 == 00+ T (2.10)



We now scale all lengths by d, lime by & /1, temperature by A7 and veloeity
by #/d. The dimensionless quantities are (N, ¥,2) = (a,p, 2)/de 7 = t/d?,

0 = 6T/AT and w = u.d/s. Bgs. (2.10) and (29) then hecome

9 2 J?* 0
2 9oty = Y 5
V- =V = 5 + (1)
and
1.7(—% —V)0=w (212)
where
o=k (2.13)

is a dimensionless ratio called Prandtl number and 12, the Ragleigh number.
was defined ineq. 1.1. We now scek solutions Lo the above equations which
correspond o the formation of convection rolls. Such rolls are characterized
by a two-dimensional wavenumber in the X-37 plane with components &y and

ky and hience the solutions will be of the form

0(X, Y, Z,1) = Q(Z)citkx X th¥)4pr (2.14)
w(X, Y, Z,7) = W(Z)cihx ¥ theV )t (2.15)

Substituting these forms into cqs. (2.11) and (212), we get
(D* — @)D? — = p)W = a0 (2.16)
(D= =) = —W (217)
with D = b and a, the dimensionless wavenumber, given by
o=k 4k} (2.18)
Eqs. (2.16) and (2.17) are cigenvalue equations for the growth rate p. I

Re(p) < 0, the nctuations decay to zero as L — oo and the initial state is

16



stable. I, however, Ie(p) > 0, the perturbations grow in time and the initial

condurtion state is unstable against the formation of rolls.

We now consider the boundary conditions for 1//(Z) and ©(Z). Since the
temperatures of the fop and hottom plates are held constant, the temperature
perturbations vanish at Z = 0 and Z = 1. Since the plates are stationary, we

must have W =0 at Z = 0 and Z = 1. If the plates arc rigid, then the X

and ¥ components of the dimensionless velocity fields (u and v respectively)

also vanish at, the boundaries. This implics that 24 and F are zero on the

2
2
surfices and the continuity condition leads to - = 0 at Z =0 avd Z = 1.
“Thus the rigid-rigid boundary conditions are

W=DIV=0=0 Z=0,1 (2.19)

alculations it is often convenient to assume frec boundaries. This

For analyt

implies that there are no stresses on the horizontal surfaces, leading to

il (2.20)
and

X

57 (221)

at Z =0 and Z = 1, since on the plates, w = 0 independent of X and ¥, The

continuity equation now yields
DAY =0, (2:22)
Thus the free houndary conditions are

W=DW=0=0 Z=0,1 (2.23)



2.1.2 Stability criteria

Tor the free boundary conditions (2.23). it is immediately clear that solu-

tions of cqs. (216) and (2.17) can be written as

W = Ausin(nr)

0 = B, sin(ur%)
where u is an integer. Sclf-consistent. determination of the coeflicients A, and

B, leads to the cigenvalue equation

(n?r? + a®)? + p(n?n? + a?) = Ra*
=0

)
1 ~(n*xt ) = op

It can be shown [19] that, for a pure fluid, the imaginary part of p will e zero

il the real part is zero. To obtain the eritical value of I, we set p = 0 and find

(4l

Ity (2.27)

It is clear from the roots of the quadratic in p (1q. (2:26)) that for 12 < Ry, pis
always negative and hence the perturbations decay in time, while for £ > fiy,
is positive, leading to instability. The critical value /2. of R is now determined
by finding the minimum of g, We take n = 1 and minimize the resulting fy

with respect to a. This leads to

ol
R.= JlL (228)
and
2
at= ”7 (229)

Thus we have found the value of the Rayleigh number at which conveetion

begins, and the wavelength of the convection cells. Notice that the theory
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does ot tell us what e shape of the cells will be — that is determined by
the X and ¥ components of the wavevector. The critical Rayleigh number is
determined by the maguitude of the wavenumber alone.

In an actual laboratory experiment, the rigid boundary conditions are the

1 ones, so we really need to find Re for the boundary conditions given

in Iiq. (2.19). With these boundary conditions, solution of the equations is
more involved and ultimately . and a. must be determined numerically. The
results are [19)]

R~ 1708 (2.30)
and

e = 3117, (2.31)

significantly different from the free bovndary values of Fgs. (2.28) and (2.29).

Thus instability ocenrs if and only if R > 1708, and the horizontal wavelength
of the disturbance al the onset of instability is 2xd/a. = 2.016d. The experi-

mental data are in good agreement with the above values of 2, and a, [22)[23].

2.2 Binary fluids

In binary fluid systems, the first instability can be cither stationaty or
oscillatory. Binary fluid systems are similar Lo the thermohaline system dis-
cussed in Chapter 1, except for the fact that in binary mixtures a temperature
differeuce can drive a mass cureent through the Soret. cffect [24, 25]. Thus a
concentration gradient can be established. Sinee the density of a binary fluid
depends on concentration as well as temperature, even small vertical concen-

tration gradients can have a profound effect on the hydrodynamic stability of



these systems.

In this section, the Soret effect is discussed, then the linear stability analysis

and stability criteria for the binary fluid systems are prosented, for the most

part following the treatments of urle and Jakeman [1] and Bhattacharjee [20].

2.2.1 The Soret effect

The equations relating the flux of heat (Jg) and matter (1)) to the tem-
perature and concentration gradients in a binary fluid mixture can be writien
as [24, 25]

Jy = =Avr (2.82)

Jo = =pDy[Spe(l = VT + V0] (2.33)

where D, is the mass diffusion constant, A the thermal conductivity and Sy

the Soret coeflicient. Ilere, the contribution of the concentration gradient to

the heat flux -— known as the Dufour effect - - is neglected. In liquids, this
effect is much smaller than the Soret effect.

Tt is clear from (2.33) that a redistribution of concentration can be induced
in a two-component fluid by changing the temperature distribution. ‘This

redistribution is governed by the quations

I K .
T Ev 1 (2:31)

and
%‘;‘ = D, [Spe(l — ) V¥ + V), (2.35)

where ¢, is the specific heat of the mixture at constant pressure, and, consistent

with the Boussinesq approsimation, we have neglected the spatial variation of

the cocfficients of Ve and V7' in (2.32) and (2.33). For a mixture al rest in
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the Bénard configuration (confined between two horizontal plates and subject

to a uniform vertical temperature gradient) (2.34) and (2.35) reduce to the

(2.36)

‘The boundary conditions are determined from the relation (2.33). If the con-

fining plates arc impervious so that J; vanishes there, we obtain the boundary

condition
de
9z

A concentration gradient is therefore established at the boundaries, and this

% —c)— g B
Srefl = )5+ 5= = 0. (237)
will extend at a rate governed by the diffusion equation (2.36) through the
entire fluid. For a layer of depth d the characteristic mass diffusion time
involved is

T = Z)i (2.38)

@

The final stationary state, in which (2.37) holds throughout the mixture, is
reached after times which are long compared to 7,,.

The Soret efiect is thus a mechanism by which an applied temperature
gradient. can establish a concentration gradient in a binary liquid mixture

even though it is confined by impervious walls.

2.2.2 Governing equations

For binary fluid systems, another equation describing the concentration c,
in addition fo the cquations required to describe the pure fluid, is required.

The governing equations are

ap s
V(o) =0 (2.39)
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B oo VE G e )
m+(u~wu7 = + g+ eV (2.10)
ar T e r
W+(H-V)I—AVI (2.11)
de 2 o
a + (i@ V)e = D,V + Dy Spe(l — o)V (212)

The conduction state is characterized by

=0 (2.43)
1 - = (244
T (245)

where Ac must satisfy

(2.46)

We again consider

Uy ttyyits)y 8, 4T andd e abont the
conduction state. In this case the density p varies with both temperature and

concentration, and can be written as
p=poll —a(T' ="Ty) = flec = cu)] (247)

where f = =592 is the solutal expansion corfficient and po = p(Th, o). Ap
plying the Boussinesq approsimation, the lincarized cquations for siall per

turbations u., 87 and éc now become

v*(% — vV, = L

2.8
o ! )
9 _ ovyer=u2L 2
(D_t =KV = ue (2.19)
and
((% = D V)be = uz% + Dy Spe() = ) VAT (2.50)



Using dimensionless variables defined by (X,Y,%) = (2,9,2)/d, 7 = v/,

0 =6T/AT, w =u.d/x and ¢ = §c/Ac leads to the dimensionless equations

Py
vz(—-v“)w_ ”‘;;\'2 +m ,)ﬂ+wll(a,(2 il (2.51)
(,,?ﬁ —VY0=w (2.52)

(73’71 —vg=2 v (2.59)

where L = Dy /x is the Lewis number, and 1 the separation ratio defined in

eq. (1.2). As before, we consider perturbations of the form

w(X, Y, Z) W(2)
00Xy, 2) | =] e(z) [IxIHh (2.54)

#X,1,2) @(2)

Inscrting eqs. (2.54) in vqs. (2.51), (2.52) and (2.53) we arrive at
(D? = ®)(D? = a? = p)IV = Ra’® + yRa*® (2.55)
(D? —a? = 0p)@ = -1V (2.56)
2_2_ 9 w 2_ 2

(D= = Tp)0 = = + (D= a})0 (2.57)

where a* = k% + k% as before,

The boundary conditions need to be discussed next. For the velocity, frec
houndary conditions imply 1V = D*W =0 al Z =0, 1, while rigid boundaries
would require W = DW = 0at Z =0, 1. The temperature is prescribed on the
boundaries, which have high conductivities, hence we take @ = 0 at Z = 0,1.
The idealization for the concentration field is to lave ® =0on Z = 0,1. The
realistic boundary condition is, however, to have the normal current vanish,

i.c., from (2.37) Dlc+Sre(1~¢)T] = 0. In terms of the dimensionless perturbed
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variables this becomes D(® ~ ©) = 0 at the boundaries Z = 0,1, The two
classes of boundary conditions are thus

i) Idealized (free-pervious):

W= D4y on the houndaries, (2.58)
ii) Realistic (rigid-impervio
W=DWW=0=D"-0)=0 on the boundaries., (2.50)

2.2.3 Stability criteria

For the idealized boundaries (258), eqs.  (:

L (256) and (257) may
be solved exactly. In this case the solution for 1V, © and b will be of the
form sin(nz), with n = 1 giving the critical Rayleigh number as hefore. For
consistent determination of the coofficients of sin(x=) in the functions 17, ©

and @ from eqs. (2.55), (2.56) and (2.57), we must have

#2+a?) (7t + P+ —Ra?* —plta?
I
= T4 4op 0 =0. (2.60)
-+ —(rat) w G

For the stationary bifurcation, p = 0, we find

= —_— (2.61)
L+gp(t+7)
Minimization of this with respect to a? yiclds as hefore a2 = & and
)
pesdr___ L (2.62)

T+ )



For this system, a Hopf bifurcation to an oscillatory state is also possible. In
this case, two of e roots are of the form p = =iw and this yields, from the

veal and imaginary parts,

ot aa®R(1 + )
T = 0+ 0+ - T (263)
and ;
cwt Lo [ R+ 7 + l)] 261)
@+a)?  T+o+Ll ~ (7P +a2)P &

Eliminating w from these equations leads to an expression for the critical

Rayleigh number 7%,

(+ L)1 +o)o+ I‘).

T+ e+ ] (2.65)

Minimizing with respect to a? yields

(L + L)(1 + o)(o+ 1)
ol + o1+ 9]

(2.66)

Lot
with «? = % and

(1+ LYo+ 1) " o
g M (267

"The stationary and Hapf bifurcations coalosce at a point called the co-dimen-
sion-bwo point, ¢ = ¢, wherew = 0 and °* = %%, From cgs. (2.63) and (2.64),

the separation ratio ¥, at the co-dimension two point is

(49 2,68
I+ P+§) +o @69

The convection will be oscillatory if R < R* and stationary otherwise. In
principle, ¢ is not restricted in magnitude or sign. The relations (2.62) and
(2:66) are plotted in figure 2.1 for a wide range of $ and taking ¢ = 10 and

L = 1072, appropriate to water-like mixtures. Only curve (a) in figure 2.1
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RJRL0)

Figure 2.1: R. vs.  for binary fluid mixture systems with frec-pervious
boundaries. (R.(0) = 27x4/4.) (a), time-dependent solution; (b) and (c),
stationaty convection. The inset shows detail in the region R/Re(0) ~ 1,
% ~ 0. From [4].



corresponds to the onset of time dependent motion. The detailed behaviour
near b = 0 is shown in the inset. For positive Rayleigh numbers (destabilizing

temperature gradients) time-dependent motions are restricted to the region

S o P RVPR 5 ;) W 2.69
o T+ fee )

When this incquality is satisfied, the first kind of instability to set in is oscil-

ltory sinee B2 < B2,

There is also an asymptole in the RE versus i curve at ¥ = "ﬂ‘ll‘/‘L
(shiown as a dotted line in figure 2.1) below which stationary convection oc-
curs when the applied temperature gradint is stabilizing (i.c., heating from
above). The strong destabilizing offect of the concentration gradient in such
cireumstances, and also when 3 is positive for destabilizing Lemperature gra-
dients, shows up in the extremely small values taken by B2 (curves (b) and
(c)). Note that when 3 < -W, the system is unstable to both positive
and negative temperature gradients.

For the realistic boundary conditions (2.20), the problem is not analytically

solvable for arbitrary i and L. The stability graph obtained from approximate
or exact, numerical solutions is qualitatively similar to that of Figure 2.1 for

idealized boundaries [1, 26, 27].

2.3 Nonlinear theory

A linear stability analysis of the conducting states correctly predicts the
critical Rayleigh number and the existence of a Topf bifurcation at the onset
of convection for binary fluids. Beyond the onset, nonlincar theoty has to be

taken into account {o describe the system. By a nonlinear expansion around
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the conducting state of a hinary fluid. the dynamical behaviour of the con

vection state around the o

has been studied [28]-[30]. Such an expansion

is only valid neat the co-dimension-two point, where the convective llow does

ot destroy the linear concentration profile.

Considering the effect. of convective mising of concentration. Bensinon

el al. [12] have recently developed a noulinear theory and presented results

relevant to the experiments done at values of 4 « T their theory, they
treated the separation ratio  as a small parameter, and analyzed conveetion

in binary mixtures by an expansion aronnd the pure fluid convective state

instead of the binary mixture conducting s

ate, The temperature and v

fields were assumed to have the same form, though not necessarily the

amplitude, as in a pure fuid, The equation for the concentration fiekd was
solved analytically in two limits: for TW velocity r, 3 ], the velocity of

the conveetive flow. which corresponds to the regine near the transition from

conductive state to TW state, and v, < |if], which is in the regime near the
transition from TW to SOC. In between these two limits, the concentration
field was determined numerically,

For rigid-impermeable boundaies, they determined the amplitnde of con-

vection ¢A (Figure 2.2) and the TW velocity o, (Fignre

as a funetion of

the reduced temperature dif ce d = (1= 1)/ R The lower branch of

the amplitude in Figure 2.2 cor

sponds to fast and nnstable TW solutions,

the upper one Lo slow, stable oes. Plie TW phase velacity decreases quickly
as € is increased on the upper branch of slow TW. Their vesulls predicted a

contimious transition from the TW state to the SOC state as shown in the

inset of Figure 2.3,

For the unstable fast TW states, the concentration profile deviates only
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slightly from the linear gradicnt existing in the conductive state (Figure 2.1),

while for the stable slow TW states, the concentration profile exhibits clear

boundary layers (Figure 2.5). In this case, the concentration gradicnts a

con-

fined to the boundary layers near the walls (where the flow velocity

vanishes),

and to the free boundary layers along the vertical separations of adjacent. rolls.

2.4 Some numerical results for ethanol-water
mixtures

Recently, B:

en cl al. [13, 14, 18] have mumerically studied the TW and
SOC stales in cthanol-water systems. They used a finite-difference method

to solve the basic hydrodynamic equations in the ssinesg approximati

They considered a system infinitely large in the y direction (along the voll ases)
and applied periodic boundary conditions in the ¢ direction (perpendicular to
the roll axes) and realistic vertical boundary conditions as discussed in seetion
2.2, These numerical results are briefly reviewed here and will be used to
compare with our experimental data in Chapter 4.

Tigure 2.6 is the numerically calculated Nusselt nuniber for ronlinear $OC:

and TW convective states as a function of r for = —0

corresponding to

an 8% ethanol-water mixture at a temperature of 27°C,, as well as for SOC in

a pure fluid corresponding to 1 = 0. The frequency of the TW. jcall

decreases from its Topl value at 72* until the TW merges nonhysteretically, and
with vanishing frequency, with the SOC branch at 1. Close to 1, a square-
root variation of the frequency, w & 13(r* = #)'/2, is found. 1 1 is decreased

from 72° to the saddle point at »*, the TW st

e undergoes a discontinnons



Figure 2.2: The reduced amplitude of convection €A as a function of the
reduced temperature €2/|y| for L = 0.01 and 4 = —0.25, in the case of rigid-
impermeable boundary conditions. The lower branch corresponds tc fast (and
unstable) TW solutions, the upper one to slow and stable ones. From [12].

Figure 2.3: The reduced phase velocity of the traveling waves v,/ as a
function of the reduced temperature /]| for L = 0.01 and ¢ = —0.25, in the
case of rigid-impermeable boundary conditions. The inset is a magnification
of the critical point where the TW convection goes into the SOC state. The
transition is continuous. From [12].



soconcentration lines for various unstable solutions for L = 0.01
0.25, (a) /|| = 0.700 and (b) /|| = 0.850. From [12].

gure 2.5: Isoconcentration lines for various stable solutions for L = 0.01 and
~0.25, (a) ¢¢/[4] =0.700 and (b) €?/[4| = 0.850. From [12].



transition back to the conductive state.

7, which illustrates the

Aur-th phase diagram is shown in Figure

range of stable conductive and nonlinear convective states in the ethanol-

system. The double logarithmic plot was used to resolve details at small ¢

and r—1. The conductive state is stable below the oscillatory eri Rayleigh

number 7', In the ¢ range of Figure 2.7 TWs bifurcate at £ if we increase »

tive ¢ the upper existence houndary

from the conduction state. For large ne

of the T'W state, »*, moves Lo larger and larger values. For less neg

the existence range of stable TWs shrinks to zero as r* and »~ come together,

Figure 2.8 shows the structural changes of rolls in the TW and SOC
as ris increased from * Lo r* and bheyond onto the SOC state. After transicnts
have dicd out, the TW conveetive fields have the form of waves traveling o
the right: F' = F(z = vyt, =) where v, = w/k is the phase velocity, With the

resolution of Figure 2.8, the velocity fields of TW and SOC roll patterns look

similar to cach other and to those found for a pure fluid.  With increasing

7, convection intensifies and warm upflow (cold downflow) bends the initially

horizontal isotherms more and more upwards (downwards). Tu the ‘TW state,

however, the extrema of the isotherms do not coincide with those of the vertical

velociy field: the femperature wave lags hehind the w-velocity wave. Also, the

ture wave and the

concentration wave is phase shifted relative to e temper

as the TW frequency

w-wave. These phase dilferences monotonically decreas
decreascs.

Nole thial tiesoncontration wave is Wighly mibmrmonte: 1t e W con
centration field that shows the most pronounced structure. Furthermore its

To un-

changes when approaching the SOC state al r* are most conspicuion

derstand these propertios, one has to keep in mind that conveetion mixes the
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Figure 2.6: Numerically obtained t i P of nonlinear

states. a) Frequency of stable TW and b) Nusselt, number vs. r. Full symbols
(small dots) refer to states in the mixture (pure fluid) that are stable under
lateral periodic boundary conditions. At r* the TW merges nonhysteretically
and with zero frequency with the SOC branch. The calculations were done for
L =001, 0=10,% = -0.25,r*(k = 7) = 133, wy(k =) = 11.2, r* = 1.21,
r* o~ 1.65. From [13].
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0.01 |
21

Figure 2.7: Boundaries of stable states in a double-Jogarithmic r — 1 vs.
phase diagram (paramclers as in Figure 2.6). The symbols show calculated
points and full lines are guides to the eye. The conductive stale is stable
below ¢, TWs are stable in the region between the saddle node at r* and r*.

From [13].
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Figure 2.8: Structural properties of TW and SOC convective states: velocity
field (a), cquidistant isolines of the (b) and jon (c)
field, streamlines (d) (for TWs in the frame comoving with the phase velocity
to the right), and lateral profiles () at midheight, z = 1/2, of w (thin. line),
40(T — Ty) (triangles), and 400(c — co) (squares). The first three columns
represent TWs traveling to the right. The first one at r = 1.22 with frequency
w 2 0.3wy is close to the saddle, r* = 1.21. For the second one w = 0.07wy.
The last one at r = 1,62 is close to r* & 1.65 with w = 0.02wy. The SOC
stale ai r = 1.82 is well beyond the transition point r*, From [13].
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fluid and de

s the conductive state’s Soret induced concentration gradient
between the top aud bottom of the Tayer. In fact, in the SOC state where
the streamlines of the velocity field are closed. the alcohol is practically ho-
mogencously distributed at the mean concentration lovel over the bulk of the

fluid. Only in the two narrow top and bottom houndary layers, the width of

which decreases with increasiug convection intensity, is there an almost linear
concentration variation with z. AL the positions of maximal up and down flow
these boundary layers are slightly deformed into the bulk,

The symmetry properties of the fluid ficlds ai

Iso quite distinet in the
different states. In the conductive state the deviations of all fields from their

mean are invariant under lateral (ranslation and

mmetric under reflection

through the midplanc of the layer, = = 1/2. SOC in mistures, as well as in

the pure fluid, breaks both symmetrics, bul there is a lateral periodicity and
reflection symmictry between rolls of opposite vorticity. While a TW also has

the lateral periodicity, the reflection symmetries presented in the SOC

state

are broken.

These ical results will be 1 with onr experimental results in

Chapter 4.
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Chapter 3

Experimental Apparatus and

Procedure

In this Chapter, the general experimental sct-up and procedures are de-

seribed. The central of our experiment is the convection cell, a

narrow rectangular cell which constrains the convection pattern to be quasi-

one-dimensional. Accurate thermal measurement and temperature control are
employed. The flow field is visualized from the side of the cell by a shadow-

graph optical method. The experiment and data acquisition are lled by

an 80286 microcomputer, and data analysis and image processing are done on

the microcomputer and on a MIPS workstation.




3.1 Convection cell

The conveetion cll used in onr experiments is a rectangular coll with a
leight h = 0462 e, which is larger than the width b = 0,140 cm, bt
much smaller than the length I = 6483 em. The aspect ratio ¢ -
Lis 138 03 : L. The cell, which is machined from alumminim plate, is

shown in Figure 3.1. About 1 em above and below the cell the aluminum

widens to 1.27 em. The bottom plate of the cell is heated by an electrie foil

heater with resistance 71,162 [31], ane e top plate is i good thenual contact

with continuously circulating, temperature regulated water. ‘Two calibrated
thermistors arc embedded in holes in the top and bottom plates (A and Bin
figure 3.1) for measurement of the temperatures, The transpavent side walls of
the cell are made out of glass microscope slides 096 mm thick with good optical

quality, glued to the aluminum with silicone sealant. The thermal conductivity

of the glas , comparable to that, of the ethanol-

e ’ W
s on the order of 0541 (1
water mixtures, The heat conducted through the sicde walls is estimated to be
2 ~ 3 limes that conducted through the cell (sample fuid). The eell is filled

illaries which

with the experimental fluid through two stainless-steel

cepoxied into holes at the left. and right ends of the cell. The left and right end
walls of the cell are made very narrow to minimize heat transfer through the
aluminum. Two small “cars” were machined at the left and right top cormers

for the purpose of trapping possible air bubbles,

The sample cell hangs at the center of a copper eylinder of diameter 105

em, wlhich is in thermal contact with the circulating cooling water. The copper

cylinder sits on alevelling plate and is surrounded by insulating foam contained

in a cubic wooden box of side 40 em. “This hox is itsell surrounded by styrofoamn



ciraulating water

e
-]
| top
plate
i, oo e
o

glass window

bottom
[“plate

ectric foil heater

Figure 3.1: Sketch of the convection cell.
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insulation.

3.2 Temperature control

Accurate e control is a requil for our experiment. Shown

in Figure 3.2 is a skelch of our temperature control sy

e, The tempera-
tures of the top and bottom plates of the convection cell are detected by two

calibrated thermistors at holes A and B of Figure 3.1, The thermistor resis-

tances are monitored with 61-digit digital multimeters (Keithley Model

16)
and transmitted by an TEEE-ISS bus to a microcomputer.

The temperature of the top plate is controlled by the drenlating water,
which is in good thermal contact, with the top plate. In our experiment, the
top plate is maintained at 18.00020.001°C. The circulating water is pumpec by
a temperature controlled water bath (Lauda Refrigorating Cirenlators Medel
RMS-6), which has a control accurcy of £0.01°C, This cirenlating water is

further temperature regulated usinga heater con

ting of a lenglh of wire past
which the water flows. The microcomputer, after comparing the temperatire
read in by the thermistor with the pre-set temperature, sends outl a voltage

signal through a D/A converter (Lab Master DMA). This voltage is then

amplified by a DC amplifier (Kepeo Model BOP 20-10M) and applied 10 the
heater.

Before each run of our experimment, the temperature difference A1 hetween

the top and bottom plates has to heset. This temperature difference is con-
trolled Lo an accuracy of £0.002°C inour experiment by regulating the voltage
applied to the bottom heater while the top plate temperature is regulated in-

dependently. The computer reads in the temperatures of the top and bottom
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Figure 3.2: Temperature control system



plates, compares their difference with the pre-set value of A7 and then sends
out a voltage signal Uhrough a D/A converter, After being awmplified by a
second DC amplifier. this voltage is applied to the hottom heater to regnlate
the temperature difference.

During a run of the experiment, e temperature of the ottom plate, and
thus the temperature dilference, is 1o longer controlled by regulating the voli-
age supplied to the bottom plate heater. Tnstead, the power (or equivalently,
the voltage) supplied to the bottom plate heater s fised for each step of a v,
In this case, the measured temperature difference is fonnd to be stable within
+0.005°C.

The voltage applicd to the bottom heater for cach step of a run is also
monitored by a 61-digit digital multimeter and transwitted by the TEEE
488 bus to the microcomputer. This voltage is wserd to caleulate the Nusselt

number.

3.3 Shadowgraph flow visualization

We use shadowgraph flow visualization to view the conveeting llow due to

the applied temperature gradient and induced concentration gradient. The

optical arrangement is shown schematically in Figure 3.3, The light sonrec is
an AND Kilobright red light emitting diode (LED), the front surface of which
is machined close to the diode junction and polished simooth. Light from the

LED is passed through u spatial filter with a 50 m pinhole: to approximate a

point light source. A collimating lens is used to produce a parallel light bean

which is sent through the convection cell. T'he shadowgraph intensity profile

of the convection flow pattern is then obtained by a CCI
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lens

pinhole

convection cell

Figure 3.3: Shadowgraph system with parallel Tight through the convection

cell.

The principle of the shadowgraph method is shown in Figure 3.4 [33]-[35].
The parallel light is deflected as it passes through the convection cell because
the refractive index varies with position in the convecting fluid. The rising
fluid is warmer and less dense, and thus has a smaller refractive index than
the descending fluid, which is cooler and more dense. The light is refracted
and focussed towards the regimes that correspond to the descending fluid.
Concentration gradients also alter the fluid density and the refractive index.
Therefore, the shadowgraph intensity recorded by the camera yiclds informa-
tion about the temperature and concentration field of the flow.

It can he shown that the intensity 7 of the shadowgraph image is given
by [33]

1=kVin (3.1)

where kis a constant, # is the refractive index, and V3 = 92/9:?+9?/0:% is the

two dimensional Laplacian, Hlere xis the along the long di



Light

Figure 3.4. Principle of the shadowgraph method: T, incoming Paralle] Jighy
is deflecteq 2ccording to 1), gradient of },, refractive index,



of the ccll, and z the vertical coordinate. Light enters the cell traveling in

the y direction, and fluid propertics are assumed to be constant along the y

direction. For thermal convection of binary fluids, the refractive index changes
with temperature 7" and concentration e, and for small variations of T and ¢

about their mean values 7o and ey, we can write

i a i
et S @1+ 2 o a 3:2)
where g = 0Ty, c0). Assuming J2| and Lo he constant at given ¢ and

T, eq. (3.1) can be wrilten as

I AMVic+ bViT) (3.3)

or

/(.,:)_/\[(d":2 7 )c[r,z)«l—b(dz:-} J):r(m)] (3.4)

.

where A = and b= / 28| are constants al given T and ¢. We

can sce that b measures the relative nn]mrLaucc of the contribution to the
shadowgraph intensily due to variations of the concentration field to that due

to v

iations of the temperature field. Bq. (3.4) will be applicd when compar-
ing our experimental data with the numerical results. Because dimensionless
cquations were used in the numerical caleulations [13, 14], we have to non-

dimensionalize b as

/07|,
adnjoclr

where o is the thermal expansion cocflicient and 8 the solutal expansion co-

b= (3.5)

eflicient.



3.4 General procedure

The sample fluid used in our experiment is a solution of 25% by weight
ethanol in water. Some propertics of cthanol-water solitions are given in
the Appendix. At the mean temperature of 22.81°C, we estimate, using the

fluid properties given in the Appendix and in ref. [36], a mean separation

ratio 1 2 —0.08, a Lewis number of 0.01, and a Prandth number of 19, The
estimated separation ratio and Leswis number are the same as those used in

the numerical calculations [14, i8]. The vertical thermal diffusion time is

7y = d?[K 2 200s and vertical mass diffusion time 7, = d*/1,, 22 22000s,
The temperature at the top plate is always maintained constant at 18°C,
Belore a run, the temperature difference between the top and bottom plates
is sel at a value within the conduction state of the fluid but, close o the onsel
of convection and held there for two days, long enough fur the establishment
of the temperature induced concentration gradient due to the Sorel. effect to

occur. By using cq. (246) and the Soret coefficient. from Ref. 36], the induced

imated

concentration difference Ac het

en the top and bottom plates

to be ~ 0.3% at the mean temperature ol 4°C and the temperature dif

ference AT of 8.9°C, which is just helow the onset. This Ae is nmely smaller
than the mean concentration of 25%, s does ot affect, the flnid properties
substantially. We begin a run by incrementing the heat current Q applicd to
the bottom plate in steps of ~ 1% through its eritical value Q). Between cach
step, we wait for times of approximately 100 7,.

Shadowgraph images are taken by a CCD camera (Burle TC100) which

s interface board. A

is controlled by the microcomputer through a ¢
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monitor (Burle TCI910A) is used to display the shadowgraph images from

the camera through the PC Eye interface hoard. The video camera has a

nonlinear response at weak and strong light intensities, so it was calibrated
against a photodiode with a linear response to light intensity. Calibration was
done with the fluid in the conductive state. The shadowgraph intensity taken
Iy the camera is averaged over all points within the flow field (500 x 30 pixcls).
Tl corresponding light intensity is given by the photodiode, which monitors
Uhe same light source vin a beam splitter. Based on these measurements at

different light. intensitics, a calibration curve for the camera is obtained.

To minimize the offects of nonuniform illumination across the cell, imper-
fections in Uie optics, c/e., and to increase the sensitivity of the shadowgraph
Lo the small changes in refractive index that accompany he onset of convective
flow, we also take a background shadowgraph image in the conduction state
of the fluid and divide all subscquent shadowgraph images by this background
image.

For cach step of a run, we read the temperature difference between the top
and bottom plates and the power supplied to the bottom plate. From these
measurements and the known properties of the fluid misture, the Rayleigh and
Nussclt. numbers can be calenlated. We also take three types of shadowgraph

images. One is a shadowgraph of the entire flow field from which we get a

two-dimensional shadowgraph intensity distribution. The second is a “space-

time™ image which is made up of a serics of shadowgraphs taken at the middle
lorizontal line of the cell every 1.57,. The third one is the time series of the
shadowgraph intensity at the middle point of the coll (averaging 2 x 2 pixels),

for which the intensity was recorded every 0.157,.




Chapter 4

Experimental Results and
Analysis

In this Chapter, our experimental results from runs with a 25% by weight
cthanol-water misture, with a top plate lemperature of 18°C are presented
and discussed. Over a run, the temperature difference between the top and
bottom plates varies typically from 8.5°C to 10.5°C". The hifurcation propertios

nd transition from T\ st

e to

at the onset of convection and at the

stationary overturning convection state are discussed first, Then we present
measurements of the shadowgraph intensity profile, and discuss the effect of

the concentration field on the

hadowgraph signals observed in hoth TW and
SOC states,

We also did several runs of our experiment. for 25%, ethanol-waler mixtures

with a top plate lemperature of 26°C, and for 8% cthanol-water mistures at
various top plate temperatures. We did notget usable results in these runs,

For the 8% misture, we did not even observe TWs, despite the fact that



Uhe range of ¥ over which the TW state exists is expected to be larger for

the 8% mixture than for the 25% mixture [14]. These results might indicate

that the strongly one-di psional geometry used in our experiment has a very

significant effect on the dynamics of the system. In addition, the properties of

ificantly from the i imation, and

our sample likely deviate si
this may also have an effect. There are other possible explanations, however.
1t mag be that some unknown feature of our cell pins the traveling waves and
prevents them from propagating. It is also possible that our samples become
contaminated sonichow, since sometimes (but not always) the results were not
repeatable,

The results presented here for the 26% ethanol-water mixture come from
the only set of runs that showed TW behaviour consistently from one run to

the next.

4.1 Bifurcation properties

Convection is observed Lo begin at AT, = 8.91°C £0.01°C, with a backward
bifurcation from the conduction state to a stable nonlincar TW state. The
corresponding critical Rayleigh number at the onset is r, = Re/Ro = 1.31 &
0.01, where Ry is the eritical Rayleigh number for the onset of the convection
with pure water in the same coll. The average temperature in the cell at the
ouset of convection is 22.81°C £0.01°C. From the fluid properties given in the
Appendis. the separation ratio s estimated [36] to be § = —0.08. As r is
increased to r* = 143, a second transition from TW to SOC is observed.

Shown in Figure 1.1 is the Nusselt numiber N — 1 as a function of Rayleigh

number . As mentioned in Chapter 1, N is a convenient quantity for the
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characterization of convective flow, and is defined as the ratio of the total heat
flux through the convecting layer to that due to thermal conductance. Sinee
the heat supplied to the bottom plate is transported to the top plate through
the side and end walls of the cell as well as through the sample, we have

to caleulate and subtract the heat flux throngh the coll (which is assunied

to be constant), when caleulating V. To do this, we did a straight line fit

Lo meas

rements of AT as a function of the power supplicd to fhe hottom
hieater in the conduction state. This gives the effective thermal conduetance
of the cell and sample, Then the constant effective thermal conductance of
the cell i calenlated by subteacting the known thermal conduetance of The
sample. Subtracting this effective thernial conductance due to the cell from
the total effective thermal conductance (in hoth conduction and convection

states) gives the effective thermal conductance due to the s

plo only. Finally,

N s caleulated by dividing this quantity by the known thermal conductance
of the sample.

1 number is about 1in the conduetion

As seen in Figure 1.1, the Nu

state, as it should be. At re, there is a discontinous transition from the

conduction state to a convection state. Becanse conveetive flow enhimees the

heat transfer through the layer, and hecanse the amount of heat supplied 1o

the bottom plate is fixed, the temperature difference across the layer decreases

when convection sets in, corresponding Lo decrease in Rayleigh mmber, 1f

the Rayleigh number is increased further above the onset, the Nusselt number

also increases slightly, indicating that the conveetion amplitude beconies larger

and thus more heat is transferred,

Figure 1.2 shows typical shadowgraph images taken at a sories of different
8! 3 grap 4

ges have been divided by the back-

igh numbers. All shadowgraph ima




ground image. The bright regions in the image correspond (o cold falling fluid
while the dark regions correspond to warm rising fluid. Between r, and r*,

when the system is in the TW state, the convection rolls are found to be mov-

ing, while in the SOC state when r > 7, they are fixed in space. This motion
is shown more clearly in the “space-time” shadowgraph images (Figure 4.3)
taken at the middle line of the cell every 300 scconds. For cach Rayleigh num-
ber, ten lines are shown in Figure 4.3. Close to the onset, the convection rolls

move to the left relatively quickly. As r is increased, they slow down, and

finally stop moving at r Some of the TW characteristics in Figure 4.3
appear to be non-uniform, mainly due to the way that the images were sam-
pled. It is also interesting Lo notice that the TW direction is reversed when »
approaches r*. This reversal, which we are unable to explain, does not exist
in the numerical calenlations of Ref. [14] and in the measurements of Ref. [16].

Plotted in Figure 4.4 is the TW frequency w as a function of Rayleigh

number. The TW frequency is obtained from the shadowgraph intensity profile

taken at a fixed point in the cell while the TW passes by it. The time ¢ between

adjacent maxima in the optical intensity is averaged and scaled by 7, = d?/x
to give a dimensionless time, 7. The dimensionless TW frequency is then
given by w = 2x/7. This frequency is found Lo decrease monotonically as r is
inereased, dropping most quickly near the onset of the convection, in gencral
agreement with theoretical (12] and numerical results [13], as well as with other
experimental measurements [11, 15, 16].

In a laterally infinite system with ¢ = —0.08, numerical calculations [14]

predict the onset of conveetion to oceur at re = 10965 with a dimensionless

TW froquency w = 5.753 while the transition from TW to SOC occurs at

r* 2 109, which is smaller than r.. This implies that TW would only be seen



when » is decrcased below re alter the onset of conveetion, The caleulations

of Ref. [14] also predict that TW will exist over a range of r of only about 0.3,

In contrast. we observed TWs over a range of r about three times as larg

at the onset

extending to well above the onset, The measured TW requeney
is 6.01, somewhat larger than the caleulated value for the Hopf frequency for

a laterally infinite system. Ohlsen «f al.[16] observed the same beliavionr in

their cell for

=0.25, and pointed ont that this is apparently generally the

ca

although no predictions of the effeet of cell width on wy have been made,

Our TW frequency decreases much more rapidly just above onset than did the

measurements of Rel. [I6]. "This difference is in qual

ative agreement with

the hehaviour caleulated in Ref. [11] for mixtures with 4 = ~0.

el —(L08,

Alter the initial rapid drop, w remains almost cons

ant intil going to zero
at the transition to SOC; in the caleulations [11] this region does not oceur.
Our measurements did not extend close enough to the TW-SOC transition to
permit us to make any comment on the nature of the transition, or on the

behaviour of w there,

4.2 Structure of TW and SOC states

We studied the role of the concentration field in the dynamies of the TW

and SOC states by comparing our experimental s hintensity profiles
I LS I odt

with the numerically caleulated ones [18]. Presented first in this section are

the numerical results, which were calenlated with fluid parameters ¢ = —(0.08,

o = 10 and L = 0.01. We “ana

lyze™ the numerical resulls in two ways: by

averaging hem over the vertical dimension = Lo et an integrat ed shadowgraph

intensity [17] and as a funetion of <. The experimental results are then studied

©



in the same way.

Shown in Figure 4.5 are the vertical averages of numerically calculated
20
7

, their second derivatives £

2.

temperature field 8(x), concentration field

, 7y = 1.074). Alter averaging over z, we interpolated
betwesn the caleulated data points for () and () using a polynomial inter-
polation routine [38]. The second derivatives are caleulated from the original
0(r,z) and ¢(z,z), then averaged over = and interpolated. [(x) is calculated

o ol
from g%’é and 25 using cq. (3.4) with A = 1 and b = —0.908, where b is

caleulated for the mean cell temperature of 22.84° indicated by Fig-

ure 1.5(c), in a TW there is a difference in the concentration between adjacent

rolls with opposite vorticity, while the concentration within a roll is approi-
mately constant. ‘Phus, the concentration is uniforn. except in the regions of
strong upflow and downflow at the roll boundaries, and in the boundary layers
near the top and bottom plates. The concentration difference between rolls
becomes smaller as r s inercased, and decreases to zero when r > 7. The

width of cach boundary layer near the top and bottom plates and between the

rolls shrinks as r is increased, albeit not to zero. At the transition from TW to

50 at #*, the mirror-symmetry between left-turning and right-turning rolls is

restored. Thercafter, the concentration field is almost laterally homogencous,
except for a mirror-symmietric variation at the npflow and downflow regions at
the roll boundaries. The maxima of /() correspond to the downflow and the

minima to the upflow. In the TW state, there is a phase difference belween

irs 27
the main peaks in gﬁ and the extrema of 3—12- This phase difference, and

the corresponding one between the temperature and vertical velocity, vanish

at the TW to SOC trans

ion. The caleulated temperature and concentration

53



ficlds in the SOC and TW states are both symmetric under lateral translation

by /2, where a is the wavelength of a roll pair, and subsequent reflection at

the horizontal midplane of the fluid layer,

but the mirror symmetry hetween

broken in &

left-turning and right-turning rolls TW. Thus the optical sig
nal caleulated for the TW state shows the symmetry (e 4 af2) = —I(r).

but not the mirror symmetry around upflow and downflow houndaries that

charactes a SOC state.

i

We can ea:

stinguish the contribution due to the concentration from

that due to temperature. The temperature contribution to /(x) is smonth,

nearly sinusoidal, and almost symmetric about the upllow and downflow hownd

aries, whereas the concentration contribution has sharp maxima and minima

as well as two side peaks associated with each of these featres, which hecome
bigger il r is increased.

Shown in Figure 4.6 are caleulated optical signa

Is at various vertical posi-

tions = for TW states at ry = 10635 and ry = 10T, The optical signal aronnd
the middle line of the fluid layer looks almost the same as the vertically aver-
aged signal. Close to the top plate, the sharp feature at the minimnm becomes
smaller and the optical intensity varies more smoothly around the minimum.

This indicates that the contribution from the concentration around the op-

tical minimum (warm rising flow) is smaller near the top plate. Similarly,

close to the bottom plate the sharp feature at the n

i of aptical signal

shrinks, indicating a smaller contribution from the concentration field around

the maximum (cold falling llow).
Our experimental shadowgraph data, taken with the video camera, are
first corrected for the nonlinear response of the camera, then divided by the

background image. The resulting intensity profile is smoothed to remove ligh




lrequency noise. The smoothing involves an FI'T' procedure with a spatial

fi

¢ which cnts off the high frequency components [38]. The smoothing used
correspands roughly o removing variations with a wavelength smaller than
three pixcls.

Shown in Figure 1.7(a) is the vertically averaged experimental shadowgraph
intensity in an SOC state with r = 1.54. Figure 4.7(b) shows the vertically
averaged shadowgraph intensity for a conveetion state for pure water (in the

ne cell) at v = 1.19. By comparing these two figures, we can see that

without the contribution of the concentration field, the shadowgraph intensity
in the pure water case is quite smooth and almost sinusoidal. In the mixture,
on the other hand, the shadowgraph intensity has sharp features, This clearly
illustrates that it is the concentration field that contributes Lthe sharp features
to the shadowgraph profile of Figure 1.7(h).

Shown in Figure 4.8 is the measured shadowgraph intensity, averaged over
the height of the cell, for TW states moving to the left and for SOC states.

The main peaks are found to be higher and wider relative to the smooth back-

ground than | by the lculations. Only one side peak is
observed between the maxima and minima, while the numerical results pre-
dicted two side peaks between the maxima and minima. Since measurements

of the intensity at a single fixed point in the cell as the TW propagates past

that point do show two side peaks, this difference is most likely due to limita-

tions in the resolution of our optical system. The intensities of the main peaks

as well as of the side peaks incrense as the Rayleigh mumber is increased. This

. a . . 2

indicates that the contribution to the optical signal duc to 28 becomes larger
or

when 1 is inerensed, as also found in the numerical results shown in Figure 4.5.

The absence of mirror symmetey hetween adjacent. rolls and the phase shifting



predicted for the TW states are not casily seen.

Shown in Figure 4.9 is the shadowgraph intensil

v for a TW state with

= 1.29 at several vertical positions in the cell. The signals are noisier than

the vertically averaged ones shown in the previous figure, which nsed the same

smoothing cut off frequency. "The maxima and the minima have approsimately

the same intensity a 0.0 while in the num ults the maxima and

minima are the same size at the middle of the cell, = = 0.5, For = > 0.1,

toward the top of the cell, the minima of the shadowgraph intensity decrease

quickly in strength and become indistinguishable from the experimental noise.
Similarly, moving toward the bottom of the cell, the maxima quickly hecome

smaller. The decrease of the maxima or minima when elose to the bottom or

top of the cell is in qualitative agrecment with the numerical prediction, as

shown in Figure 4.6, but they shrink much faster than predicted. Again, we
are unable Lo say whether this is a real effect due to onr one-dimensional cell,

or whetlier it is due to residual nonlinearity in the camera respor

Less noisy intensity profile

can be obtained by wecording the optical signal
at a fixed point in the cell while TW patterns propagate past this point.
Figure 1.10 shows intensily profiles taken at the middle point. of the cell for

TWs moving to the left at various Rayleigh numbers. ‘The maxima do not. have

the same size as the minima in thes As deseri

intensity profiles. d ahove,

the measured maxima and minima were found to be approximately the same

size slightly below = = 0.5 The intensity profiles presented in this figure are

at the same 2 value as that in Figure 4.9(b). It can be seen that the two side

peaks between the maxima and minima are now distingnishable,

peak of the main peak - on the side towards which the rolls are traveling
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Figure 4.1: Nusselt number N — 1 as a function of Rayleigh number r.
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TWs. No systematic phase shifts between main peaks at different Rayleigh
minbers are observed within onr experimental limitations cxcept for the TW

stateat » = 1.98 (close 1o %), which has an obviously non-symmetric intensity

hift of the main peaks compared with those at lower

profile and a large phase
Rayleigh numbers. This is not expected from the numerical predictions for

laterally infinite systems. We specalate that this might again be due to the

narrow geometry we nsed in our experiment.

By comparing our experimental results with numerical predictions, we do
see the sharp features in the shadowgeaph intensity profile contributed by the
coneentration field. for both TW states and SOC states. We are. however,
unable to confirm many of the detailed predictions of the numerical results,

including that of the breaking of mirror synunctry in the TW states, at least

partly due to the limitations of our shadowgraph optical system.

S
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Figure 4.2: (a) Typical shadowgraph images at various Rayleigh numbers,
showing TWs moving to the left and SOC states.
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Figure 4.3: Shadowgraph “space-time” images at various Rayleigh numbers,

illustrating travelling wave convection over a range of r.
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(a)

Figure 4.5: Numerical results for the vertically averaged temperature field
0(x), concentration ficld &(z), their sccond derivetives 3%0/9z? and 9%/dz?,
and the caleulated optical profile I(z). Shown are right-moving TWs with
71 = 1.0636 (solid line) and r, = 1.074 (dashed line). (a) 0(z), (b) 8°0/9z?,
(c) &x), (d) 8*¢/da?, and (e) I(x), all in arbitrary units. z is the horizontal
dimension in the unit of half a wavelength, a/2. Numerical data for (a)-(d)
were originally from (18] and were averaged and smoothed before plotting.
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Figure 4.5: (continued).



Figure 4.5: (continued).
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Figure 4.6:
positions z of the cell for TWs moving Lo the right at (a)-(f) ry = 1.063
(g)-(1) 2 = 1.074. ] is in arbitrary units,  in units of a/2and z in wits of d.
I was caleulated from 0,¢ data from [18].
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Figure 4.6: (continued).
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Figure 4.6: (continued).
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Figure 4.6: (continued).
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Pigure 4.7: The experimental shadowgraph intensity, averaged over :, for ()
a SOC state of the mixture at » = 1.54 and (b) convection in pure water at
r=1.19. I(z) is in arbitrary units and z in pixels.
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Pigure 4.7: (continued).
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Figure 4.8: The experimental shadowgraph intensity, averaged over z, at var-
jous Rayleigh numbers. I(z) is in arbitrary units and & in pixcls.
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Figure 4.8: (continued).
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Figure 4.9: The experimental shadowgraph intensity for a TW state with
r = 1.20 at various z positions. (a) z = 0.56, (b) z = 0.50, (c) z = 0.44 and
(d) 2 =0.39. I(c) is in arbitrary units, z in units of d and z in pixels.
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Figure 4.10: The experimental shadowgraph intensity profiles for T'Ws al var-
jous Rayleigh numbers, measured at a fixed point (z = 0.5) within the el
wl.le the TWs passed by it. /(z) is in arbitrary wnits and = in units of a/2.
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Chapter 5

Conclusions

Tu this th

we presented the results of an experimental study of convec-
tion for an cthanol-water mixture in a quasi-one-dimensional cell. We studied
the bifurcation properties of the mi ‘ure at the onsct of convection and the
evolution from T'W states to SOC states. \We found that at the onses of con-
vection, the system undergoes a discontinuous transition from the conductive
state to a TW state. The traveling wave frequency decreases as the Rayleigh
numher is increased, and ceventually goes to zero at the fransition from TW to
SO, in agreement with both tacoretical and numerical predictions as well as
other experimental observations. We also studied the role of thie concentration
field in the TW and SOC states by comparing our experimental shadowgraph
intensity profiles with those predicted by numerical calculations. We con-
firmed the sharp features in the shadowgraph intensity, contributed mainly

by the concentration field as licted by ical calculati We were,

however, unable to confirm the breaking of mirror symmetry in the TW states



predicted by the nmerical results,

The comparison of our experimental results with the nunerical ones s

rather qualitative, This is in part doe to the experimental ditliculties encoun

fered in this work, Noise and the limited resolition of onr optical system
prevented us from cavrying oul a good quantitative study of the shadowgraph

intensity profiles and from calenlating the concentration ficld from our data

Some of our resulls— for example, some qualitative differences between e
measured and caleulated intensity profiles (which were caleulated for a lat

crally infinite system) and the diflienlty we had in observing TAV states in

some runs suggest that onr quasi-one-dimensional geometry might lave a

significant effect on the dynamies of the conveetion. The numerical resalts of

Barlen of al. {13, 1] were calealated in the Boussinesq approsiniation, which

assumes that the fluid properties are constant over the height of the Huid layer.

I our experimental system, with A7, & 9°C, this approximation may be vio

rticnlar the viseosity of

lated sufficiently that the dynamics are affected; in |

the mixture

ries by about 30% across the eell at the conveetive onset (see
Appendix A).

ten, we reccived an abstract and a preprint

While this thesis was being w
by Winkler and Kolodner [39, 10}, who reported an oxperimental mieasire
ment of the concentration field in TW conveetion in et hanol-water wistures,
They conducted their experiment in a rectangular cell with an aspect ratio
of bih =311 [40], which is ten times wider Uhan onrs and effectively two

" P

By using shadowgraph flow visualization from the side of the

cell, they obtained very high qualily shadowgrapl intensity profiles. These in-

Le

sity profiles were then integrated to produce a map of the two-dimensional

refractive index field, which is further separated into two components due to




the conveetive temperatnre and concentration fields. Their

ssulls are in good
agreement with the mmerical predictions of Barten f al. [13].
1t is obvious that & contimation of this work will require a substantial im-

provement in our optical system. (o produce a less noisy shadowgraph intens

ty
profile with higher resolution. Onee this is done, further work suggested by
onr resulls can he taken on quantitatively, As mentioned above, the near
one-dimensional geometry might play an important role in the dynamics of
conveetion. Thus it would he of interest to continue to study the dynamical

behaviour and the concentration field for TW and SOC states

n this narrow

geometry and compare onr results with those done in a cell with bigger aspect

ratio. More det

led measurements of the TW frequency n

r the transition

from T\ to SOC are also called for, to determine whether the transition is

continuons in this narrow rectangular geometry.
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Appendix A

Some Properties of the

Ethanol-Water Mixture

In this appendix. some relevant. {luid properties of ethanol water mixtures

are given at different concentrations and temperatures. They are the heat

capacity, the thermal conductivity A, the density p and the viscosity g, Values

of these quantitics corresponding to our experimental conditions are oblained

from polynomial fits to the data in these tables. Data for the refractive index,
Soret cocllicient and mass diffusion cocflicient are obtained from Table 1 of

e, [36].



i

e(wt %) | 10°¢ 15°C¢ | 20°¢ 2500 407 ane e
5. 0.99098 0.98938
6. 0.98916 0.98730
T. 0.98801 0.936:
8. 0.98178
9. 0.98331
10. 0.98301 | 0.98157 0.97025
1. 0. US"GI 0.98171 | 0.98047 0.9752
0.97252 | 0.97068 | 0.96561
0.97139 | 0.96911 | 0.96729
0. 1 | 0.9G313 | 0.96592 | 0.
0.96907 | 0.96689 | 0.96153 | 0.96 )J
0.96787 | 0.96558 | 0.96312 | 0.
0.96665 | 0.96421 [ 0.96168 | 0.95895
0.96539 | 0.96287 | 0.96020 | 0.95738
0.96106 | 0.96141 | 0.95867 | 0.95576
0.96268 | 0.95996 | 0.95 T][) 0.95110
0.96125 | 095811 0.95211 ll 9!’!"'
0.95977 | 0.95686 0.95067 | 004711

Table A3 Density p (in g/en®) for ethanol-wafer mistures al varions con-
and temperatures (in °C). From [11],

s (in woight

per
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e (Mole %) 3.0°¢ 23.0°C 410°C

7Y
100.0

Table A.l: leat capacity (in J/gK) for ethanol-water mixtures at varions
e (in Mole percent) and temperatures (in °C). From [11].

e (wt %) 0.0°C 20.0°C 40.0°C 60.0°C 80.0°C

0 0. 0.670
20 0.451 0.505 0.516
40 0.352 0.381 0.386
60 0.273 0.283 0.285
80 0.213 0.208 0.206
100 0.172 0.157 0.152

“Table A.2: Thermal conductivity A (in W/mIK) for ethanol-water mixtures at
various concentrations (in weight percent) and temperatures (in °C). From [12].




e

c(wt %) | 0°C | 10°C | 20°C | 25°C | 30°C | 40°C | 50°C | 60°C
10 32.15 1518 8.96
20 52.75 21.68 [ARE
30 69.0 26.70 13.53
40 L5 28.67 14.55
45 70.1 28.67 14,78
50 66.25 2 I 1136
60 57.15 14. 11.09
70 47.2 23.69 1328 | 1044
80 36.48 19.98 LLS] | 9.50
90 26.91 16.01 1022 | 8.35
100 17.76 1221 821 | 6.95

500

Table Ad: Viscosity jt (in 0.001 g/cms) for ethanal-water mixtures at varions
concentrations (in weight percent) and temperatures (in °C). From [1].
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