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ABSTRACT

In this thesis Brillouin scattering data are presented for
three different binary gas mixtures composed of species with
widely different masses, f.e. Ar + Hy(m/my,=20), SFg + CH,

(mgp /mcp,= 9), and SFs + Hj (mgp /mg,=73). Under the experimental
conditions predicted by the theory a fast sound mode contribution
to the light scattering spectra of Ar + H, mixtures has been
detected. Unlike the ordinary sound mode the fast sound mode
propagates only in the light component with a velocity higher than
that obtained using hydrodynamic theory. However, the attempts to
observe the same effect in mixtures of SFg + CH, under similar
conditions were unsuccessful. An analogous slow sound mode
contribution to the spectra of SFg + H, mixtures has been clearly
identified and it was found this mode was, in general, much easier

to detect.

A new parameter called the effective mean free path was also
introduced in order to obtain a more consistent characterization
of the dynamical behavior in binary mixtures with disparate

masses.
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Chapter 1. Introduction

§. 1.1, FLUCTUATIONS & BRILLOUIN SCATTERING

The scattering of light generally arises as the result of

opt*cal ties in the medium. The physical
reasons for the generation of optical inhomogeneities in the
scattering medium are various. For example, contamination by
foreign substances s one possibility. However, even in substances
which are completely free from any kind of foreign contaminants,
scattered light can be observed as the result of the statistical

character of thermal motion. In this ca: the optical

inhomogeneities are caused by the local fluctuations of the

optical dielectri vhich are 1y brought about, in

turn, by the fluctuations in local density of the substance. In

contrast with the impurity and Raman this

kind of light scattering, arising from random thermal fluctuations

is called Brillouin scattering[l].

According to Brillouin, the density fl

in the medium can be decomposed into different plane-wave Fourier
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vz

These pl in the medium causs a

periodic density change along the n directions.

1ight is brought about by the diffraction of the incident plane
monochromatic light wave which is considered to be diffracted by

the density maxima of the thermal sound wave in the same way as

X-rays are scattered by a crystal. If k, is the wave vector of the
incident light, k, is the wave vector of the scattered light and K
is the wave vector of the Kth Fourier component of the sound wave
caused by the spontaneous local density fluctuations of the medium
in direction R, then the condition for scattering is given by the

Bragg relation (Fig.1.1]
R=2 (k - k), .1

where the choice of signs refers to either of two oppositely
directed sound waves. Because the density maxima are travelling
with the velocity of sound in the fluid (fluid refers to both gas
and liquid here), the frequency of the scattered light will
consequently be Doppler shifted. If w, is the angular frequency of
the incident light wave, w, is that of the scattered wave, v, is
the sound velocity, § is the scattering angle, n is the refractive
index of the med{um, and c is the velocity of light in vacuum,
then to a high degree of approximation, the frequency shift is
glven by the well-known Brillouin relation

2% ind). .2

B =g - a =t
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Density
Wave

Fig. 1.1 Classical picture of Bragg reflection. The incident
11ght vave 1s scattered by the density vave in the medivm.
, is the vave vector of the incident light, k; 1s the wave
vector of the scattered 1ight, K s the wave vector of the

density vave, and # is the scattering angle.
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Although sound vaves of many different vavelengths and any
propagation direction are present in the medium, in an actual

light for each angle 0 other than

zero only the sound waves with wave vector given by (1.7) can be
observed. According to (1.2), the scattering spectrum consists of
only two sharp lines with frequency shifts of *Aw, respectively,
from the central frequency wy. In reality, the spectrum of the
scattered light also includes a central line with no frequency
shift, Landav and Placzek[2)] gave the following explanation for
the origin of the central peak. They pointed out that ti~ thermal
fluctuations in a £luid were composed of two parts, namely,
isobaric fluctuations caused by entropy fluctuations at constant

pressure, and adiabatic fluctuati caused by

fluctuations at constant entropy. Fluctuations of the first type
are unorganized in time, so they are not propagated in the form of
waves and consequently the central line can be erolained as elastic
Rayleigh scattering. On the other hand, the pressure fluctuations
represent random local compressions or rarefactions which, as a
consequence of the elastic properties of the medium, do not remain
fixed but travel through the fluid and give rise to & shifted
doublet. Because of the existence of dissipative processes which
damp out the elastic waves in the medium, the doublet components
have nonzero line widths. The nonzero width of the central line
can be explained in terms of heat conduction and diffusion. A

typical Brillouin spectrum is shown in Fig. 1.2,




Intensity

800

0
-100 0 100

Frequency shift

Fig. 1.2 of the 1ight

spectrun from a fluld: long-dashed line represents the
undisplaced Rayleigh component; short-dashed line represents
the Stokes and anti-Stokes Brillouin components; dotted line

the ing fourth which is much

less intense than others[l]; solid line indicates the

aggregate intensity distribution in the scattered spectrum.



§. 1.2. THE MEAN FREE PATHS IN BINARY MIXTURES

Thy ically the density f in the

medium can be decomposed into demsity plane-waves of different
wave lengths. In reality, however, only those density waves with
wave lengths larger than or comparable to the mean free path t
exist in the mediun. Usually the product of K and mean free path &
1s used to characterize the conditions of the samples(see §. 1.3).
The mean free path in a low-density one-component fluid is given

by

L= (JZrno®)™t, (1.3)

where ¢ is the hard sphere diameter of the particle and n is the

number density.

For the binary mixtures the situation is somewhat complicated

cause there are several possible definitions for the mean free
path. For example, it is possible to define a mean free path with
respect to collisions between the specific types of particles.

Here we introduce two mean free paths £, and f, defined by[3]

|
i

4=+ anT (1.4a)

(1.4b)

-1 -1
L, = (25 + 253)

where £, (1,j = 1,2), the average distance travelled by a



particle of species i between its two successive collisions with

particles of species , is =iven by the following rela.ion
£, = [myol (1 +m/m) )Y, @,)-1,2) a.s)

where n,, o, and m, represent the number density, hard sphere

diameter and mass of specles i, oy = (o,+ @)/2.

If a particle of species 1 travels a distance L, according to
the definition of £,,, the average numbers of collisions it
experiences with particles of species 1 and 2 are given by L/t;,
and L/t respectively. The average total numbers of collisions is
given by L/t;,+ L/t;,. Hence £,, which equals to L/[L/t;,+ L/%;,],
can be understood as the average distance between two successive
collisions experienced by particles of species 1. However, as we
will see in Chapter 4, for the binary mixtures with large mass
difference t; and t, are insufficient to characterize the
conditions of binary fluids. A possible solution is via the
"effective mean free path" which will be defined and discussed

later.

§. 1.3, HYDRODYNAMIC & KINETIC REGIMES

In a simple fluid, a dimensionless parameter Kt (L is the

mean free path of particles in the fluid) is used to characterize



the nature of the density fluctuations to be probed[4]. The
individual particles in the fluid travel a finite distance ¢
between inter-particle collisions which cause local density
fluctuations. Since K is the wave vector of the fluctuations to be
probed, a small value for Kt means that within the length scale
1/K (the wave-length of thermal sound wave) many collisions occur,
So in the limit of Ke<<l (hydrodynamic regime), the deviation from
local thermodynamic equilibrium is very small and hydrodynamic
theory can be used. On the other hand, for Kt~1 (kinetic regime),
particles undergo few collisions over the 1/K length scale and the
local equilibrium assumption ceases to be valid. One must use
kinetic theory to obtain a more general and more microscopic
description. The region Ke>>1 is the free-streaming region and
ylelds the well-known Doppler profile, which is not of interest

here.

In a binary fluid, the situation is more complicated since
there are several possible definitions of the mean free path. More

detailed discussions will be given in Chapter 4.

§. 1.4, DYNAMICS OF DISPARATE-MASS GAS MIXTURES

The Fast and Slow Sound Modes

The investigation of binary disparate-mass mixtures, where

the two components have very different masses, began in 1960. At



that time Grad[5] pointed out that in a dilute disparate-mass

mixture the slow exchange of kinetic energy between two components

should lead to two : one is iated with the light
component and another is associated with the heavy component. In
the Late 1970s, when Huck and Johnson[6] studied the behavior of

forced sound modes in dilute binary dispa

e-mass gas mixtures of
xenon and helium (my,/my,=33), the idea was further developed. In
their studies, they predicted the existence of two different
forced sound modes, namely a fast sound mode and a slow sound
mode. The fast sound mode is assoclated only with the light
component and propagates with a velocity greater than that

for hehavior of the mixture, while the slow

sound mode is just the opposite; it is associated with the heavy
component and propagates with a lower velocity. In the experiments
conducted by Bowler and Johnson[7] in dilute binary mixtures of He
and Xe, a sharp increase in sound velocity was found under an

with w>10'Hz and He mole

fractions higher than 0.45. More recently, in 1986, Bosse, Jacucci
and Ronchentti[8] found a fast propagating sound mode in computer
simulations of LiPb liquid alloys with large atomic mass
difference (mpy/m~30). They predicted, for high frequencies and
large wave numbers beyond the hydrodynamic regime, and under the
condition of high concentration of the light compoment, that the
fast sound could be observed by the using inelastic neutron
scattering technique. This was confirmed in experiments by

Montifrooi], Westerhuij and Haan[9]. In their latest paper, Campa



and Cohen[10] considered light scattering in dilute disparate-mass

binary gas with high of the light

component and predicted that a fast sound mode should also be
observed as the presence of side peaks or extended shoulders which
are only associated with the lighter component in the scattering
cross section for visible light. For a binary mixture, the
scattered light intensity can be expressed as a weighted average
of partial dynamic structure factors, (see detailed discussion in

Chap. 2)
1(K,0) & aix;Sy; (K,0) + 20,0505, % Syp(K,0) + abx,Sp; (K,0), (1.6)

where subscripts 1 and 2 refer to the lighter and the heavier
species respectively, a, and x, denote the molecular polarizability
and the mole fraction of component i, K and w are wave number and
angular frequency to be probed, S,,(K,w) are partial dynamic
structure factors. The first and the third tems in (1.6) are
associated with the lighter and heavier species alone and the
second is a mixed tern, As we can see from expression (1.6), the
polarizibilities of two components play important roles im light
scattering. In order to observe the fast mode which is only
associated vith the lighter component, a;/a, should be as large as
possible (at least comparable). Considering both mass and
polarizability ratios, the mixture combination which Campa and
Cohen suggested to study was argon and hydrogen with a mass ratio

of my./mg,~20 and polarizability ratio of ag,/ap.=0.5.

.10.



Although several light-scattering experiments had previously

been on binary df -mass gas by Gornall
[11], Clark[12,13] and L [14], the conditions
and the mixtures they chose were le for the

of the fast sound mode. For example, in Clark and Letamendia's
experiments, they used xenon and helium (my,/my,~33) mixtures with
a polarization ratio of ay,/ag,<19.6, much higher than that of Ar
and Hy. Besides this, according to Campa's calculations, in order
to observe the fast sound mode the gas density should be much
lower and a larger scattering angle is also preferred. In this
thesis, we will present recent light scattering results for dilute
H, and Ar mixtures, which provide evidence for the existence of a
fast mode. Our attempts to observe the same effect in mixtures of
CH, and SFy (msp,/mcy,~9, agp,/acy,~1.8) were unsuccessful,
However, for the gas mixtures SFy and M, (msp /mg,=73), an
analogous slow mode was observed. Compared with the fast mode, it

seems that the slow mode is much easier to detect.

Before presenting the experimental results, it is necessary to
glve a more detailed description of the theory involved in
Brillouin scattering. In the following chapter, we will outline
the theoretical background pertaining to the thermal 1ight

scattering. The experimental aspects will be contained in

Chapter 3 ( & 1 and Chapter 4

( 1 Results & Di ion) .

W11,



Chapter 2. Theory

§. 2.1. DENSITY CORRELATION FUNCTIONS & BRILLOUIN SCATTERING

The density fluctuation of fluids is usually described in
the language of space-time correlation functions[15]. A space-
time correlation function is defined as the thermodynamic average
of the product of two dynamical variables, each of which expresses
the instantaneous devi:tion of a fluid property from its equili-
brium value at a particular point in space and time. Generally

the space-time correlation function is written as

Cpp(r,tix’,t') = Cy<SA(r’,t')-§B(r,t)>

(R X AR UN (2.1

where
SA(r,t) = A(r,t) - <A(r,t)>,
6B(r,t) = B(r,t) - <B(r,t)>,

are the fl in the {ables A(r,t) and B(r,t).




The factor C, is a constant defined for the convenience of the

specific correlation functi The angle

averages over the phase coordinates of all the molecules in the
fluid with an equilibrium ensemble as the weighting function, i.e.

<A(x,t)>y = -J dr a(r,)-e-PH(D), (2.2)

S T
2(8,V,N)
where T collectively indicates all the phase space variables, H(I')
is the Hamiltonian of the system with N particles in volume V,
B=(kyT)"1, and Z(B,N,V) is the partition function of the system. A
space-time correlation function is therefore a function of space

and time, and it the thermal fluctuati which exist

spontaneously in the equilibrium system.

Using classical electrodynamic theory the relation between
the appropriate correlation functions and the intensity of
Brillouin scattering can be obtained. In order to simplify the
discussion ve assume that the fluids are composed of optically
isotropic molecules, e.g. the inert gases. In this case the

fluctuations of the dielectric caused by ori 1 of

the molecules in the medium do not need to be considered.

Considering a fluid with an average dielectric constant cg,
the dielectric constant will fluctuate from place to place and
from time to time giving rise to inhomogeneities. The

instantaneous dielectric constant e(r,t) can be assumed to be

.13,



equal o the average ¢, plus a fluctuation part Ae(r,t), i.e.
e(r,t) = ¢ + Be(r,t), 2.3)
where r is the position in the scattering medium. The volume of
the medium is assumed to be large so that surface effects may be
neglected. Because the molecules are isotropic, ¢ and Ac are

simplified to be scalars instead of temsors[16].

Using this local dielectric constant in the Maxwell equations

for a nonconducting, nonmagnetic medium, we have

{7xvxe- -(1/c?) (8" p/8c%) (2.4)
vV.D-0

where E is the electric field vector in the medium, and D is the
Maxwell displacement vector which satisfies the following relation

D = e(r,t) - E. 2.5)
The equations that need to be solved are, therefore

(v’z - (v n) - (/%) - (8% (cB)/8t%) = O (2.6)
. (cB) =

In classical e

P on theory, the
electric field E can be expanded in terms of the incident field E,

plus higher order terms which only include the light scattered in



other than the direction of the incident light, {.e.

E=B + B + B 4 coooeene s (2.7)

Here we assume that the intensity of scattered light with
scattering angle # » O i{s small compared to the intensity of the
incident light; this condition can be generally realized in gases

at not very high pressures.

Substituting equations (2.3) and (2.7) into equations (2.6)
and setting sums of the same order of magnitude equal to zero, we

obtain a series of equations:

)
v’g,-:—",naT,'!-o (2.8a)

o .
Fieon] vIv@oR)

< ac < at o

E,, vhich represents the incident light wave will (according to
the approximation) be transmitted through the fluid without

E, can be idered as the result of a single

: 1.e. in the quantum mechanical description,

scattering proces

photons by E, are only once by phomons[17].

The term of most interest in (2.7) is E,, the single scattering

term. The contributions of E, and other higher order scattering



terms are very small except in the neighhourhood of a critical

point.

The incident field is assumed to be a plane monochromatic

wave of the form

Ey = Agexp(iky ‘¥ - ugt), (2.9)

where k, is the propagaticn vector of the incident light, and w,

1s its angular frequency. Since E, satisfies (2.

, ve obtain the

relation ky = (£9)*/2+ (uy/c)

E, in equation (2.8b) can be solved for by double Fourier
transformation in space and time. When R, the distance from the
origin to the point of observation, is much larger than the

largest dimension of the s medium, the space-ti

Fourler transform of E,(K,w,) is glven by[18)

B0 = - 2 20 aprm[Tae onpin)

2
x Ivdr’ [exp(iK-1)] ;— [A:(r,t)axp(-imt)], (2.108)

i @
i or B(K t) -2 sl Ry
. R be"x

2
x fvdr’[exp(u:-m & [A:(r,c)exp(-lu,t)], (2.10b)

.16,




where the space integration is over the volume of the scattering
medium, K = k, - k; is the di£ference batwean the vave vectors of
incident and scattered light, ¢ is the angle between the electric
vector of the incident wave E, and the propagation vector of the
scattered wave kg, and w, is the angular frequency of the
scattered wave (Fig. 2.1). In practice the variation of Ac(r,t),

which is caused by fluctuations in the medium, is much slower

to the of the 1ight (about 10'*Hz).

Its derivatives with respect .. time can consequently be ignored

to the time of the incident field, and

(2.10b) beconmes

B (K, t) = nﬁ . % <@ - exp(ikR)

x J"a:’u(:,:)[.xpumr)) (2.11)

The intensity of the scattered light can be defined by the
relation{19],

IR0, = 32 [ <B 0 E® s O3expliuenar, (2.12)
where the angular brackets denote the averaga with respect to a
stationary equilibrium ensemble. E, is the conjugate of E,. We

also note from the es of the 1 ble, that the

ensenble average of a dynamical variable actually does not depend

.17,



Scattered

1light
¥y
i
¥
Incident
light -

Medium

Fig. 2.1 The angles used in (2.10) are defined here. The
electric field in the incident beam is along the z
direction, and the incident beam propagsates in the x
direction. ¢ and ¢ are the angles between the propagation
direction of the scattered beam and the z and x axes

respectively.

18.



on t, that is,
I(K,0g) = I(K,0,0) = I(K,0,,t). (2.13)

Using the result (2.11), (2.12) and (2.13), we thus obtain the

ai of the 1ight as

2
I(Rywg) = '—:'5'— .

32x°

x r:”[«:'(r' .O)Ax(:",:)>]-exp[up(r'-:-)u(u,-w,)cld’:'a°:--d:
o [7[ <, 002k e3> expl £ ug-vp) 1 (2.14)
-

Considering a binary mixture which is composed of N,
molecules of species 1 and N, molecules of species 2 in volume V
(if §,=0, we can easily obtain the result for a simple fluid), the
average partisl number densities are np=N,/V, nj=N;/V and the
total mmber of molecules is N=N,+¥,. Let r; and r; denote the
positions of molecule number i of species 1 and 2, respectively.

Then the diel ic can be in a Taylor series in

the local density about the average density n§ (i=1,2) so that Ac

in (2.3) becomes

Ae(r’,t) = [ E,]“,_“:‘An‘ + [:—:,]n,_m:'Anl 4 oeane

e
an’

]n:_n:-( )‘:c[:'-ﬂ(:)]-m’ }



* [:—:x],.ﬁ_,,:-( Jit[:’-r}(:)]--\: Yoo @as

where { = 1,2,

Wi = 1,2, N,

By substitution of (2.15) into (2.14), we obtain

I(R) « I_:ac axpu(u,-u,,):)f d’r'_[ & r" exp[iK-(x'-x")]’
{ [—] L pr-doig X predoig } >
<[ ] S pre-dend X pre-gond >

+<

(2] [ 2] poter-sicornt { poten-sfeerrood } >

v < (B ] al el prtesicon-a K pier-sieonat ) o).

After further simplification (2.16) can be written as

I(R,0) « Byais;, (K,o)+ NyaiSyp (R,o)+ (48 a0, 8, (K,0)

+ () a0y, (R,e) @.an

where v = wg-uy, and a; (which is proportional to (3c/dn')ntmnj
(19]) 1s the polarizability of species 1. The S,y(1,] =1,2), which
are usually called the "partial dynamic structure factors", are

defined by:

.20,



8,y (Kw) = % J«dc [exp(ivt)]
xjd’z'fd’r" exp[iK- (x' -x*) ]<8R, (x*,0)60, (z",£)>,  (2.18)

where

N 1 '
&0 = W . [2‘,5(:-:,(:)) -y ] (2.19)

Since for clasazical fluids in equilibrium all the S, (K,w) are

real, and are even functions of w, we have
Syy(Kyw) = 5y (Kyw), (1,§ = 1,2) (2.20)

and assuming the dilute fluid is isotropic, S,;(K,w) depends only

on K=|K|. So all partial dynamic structure factors also satisfy
53 (K,0) = Syy(K,0). (1,§ = 1,2) (2.21)

Using (2.20) and (2.21) we can easily see (2.17) is just (1.3)

used in Chapter 1.

It is clearly shown in (2.17) that the intensity of
scattered light for binary fluids is proportional to the weighted
sum of the partial dynamic structure factors given by the
space-time Fourier transform of the density correlation functions.
From the definition of dynamic structure factor (2.18) we can also

see that Sy, (or S;,) 1s only related to the microscopic properties



of the lighter(or the heavier) species in a binary mixture while
the cross term S,, is related to the both. Most of the theoretical
studies concerning thermal light scattering concentrate on using
different methods to calculate the partial dynamic structure
factors, thereafter the theoretical results can be compared with
experiment. As was mentioned in Chapter 1, in the limit where
K2<<1 the density fluctuations in a fluid are governed by
hydrodynamic theory, while for the case where Kt=1, on the other
hand, kinetic theory s necessary. In the following two sections
we will show how the partial dynamic structure factors are

obtained in these two different regimes.

§. 2.2. HYDRODYNAMIC THEORY

In the the of the

local dielectric constant are related to the fluctuations of a

complete set of local thermodynamic quantiti

a, such as

and i.e.

ety -3 [ 2
£
de

- [ :—; ]riuﬁp(r,t) +[ % ]wnu,c)

+[2% ]r.psc(z.:) (2.22)

.22,



Any three independent variables will suffice for binary fluids,
but certain choices of variables may provide more convenience for

the calculation than others[20].

The space and time response of the system to a deviation from
equilibrium is calculated by using the linearized hydrodynanic
equations and initial values for correlation functions provided by
thermodynamic fluctuation theory. If (T,p,c) are chosen, then
these equations are the continuity equation,

[2‘;] * pgVv =0, (2.23)
the longitudinal part of the Navier-Stokes equation,
A 1
p,[ ﬁ] - %+ m T+ Grm )V, (2.24)
the diffusion equation,
2 - biTe + (k/TOITT + (/p0)7 01, (2.25)
and the energy transport equation,
8T o de 8 T
7% 3¢ "’k’[ ac ]p,‘l ac * ’“T“[ ap ],,= G~ AV (206
In these equations, all the equilibriun values are denoted by a

subscript zero. p is the density, v is the mass velocity, u is the
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chemical potential of the mixture[2l], n, and 5, are the shear and
volume viscosities respectively, D is the diffusion coefficient, S
is the entropy, x Ls the thermal conductivity, k; is the thermal

diffusion ratio, and k, is a thermodynamic quantity defined by

(Po/po) (3p/30)y ,x
(ap/de)y, x

Hence if we rewrite equations (2.23)-(2.26) in terms of the
spatial Fourier transforms, we can obtain p(K,t), T(K,t) and
c(K,t) in terms of initial fluctuations p(K), T(K) and c¢(K).
Meanwhile the spatial Fourler transform of the local dielectric

constant can be expressed as

e(K,t) = :—; ]mp(x,:n g—; L_.T(x.:n %ﬁ ]"'c(l.t) (2.27)

Using (2.27) and (2.14), the final expression can be obtained

in the form

S(K,0) = ﬁ + :::L:‘—w; + z:-G(H_A.-u.)T + —m (2.28)
where Apy, Apz, Ay Zoy, Zpg, 2y and wy are coefficients depending
on K. The Rayleigh peak cannot simply be considered as the
superposition of the first two Lorentzians shown in (2.28). In
fact, as the result of the coupling effects between diffusion and
heat flow in a binary fluid, the actual central peak is the

resultant of a much more complicated superposition which consists
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of six Lorentzians(see ref. 20 for more detail).

In the hydrodynamic description the local equilibrium
assumption is used, which means that at each point in a fluid the
same thermodynamic relations can be used to relate different
thermodynamic variables, and the fluid is considered to behave
like a continuum. So the hydrodynamic theory is proper only for
small K and w under this condition, and the microscopic detail of

local structure can be ignored.

§. 2.3, KINETIC THEORY & PREDICTION OF A FAST-SOUND MODE

1IN DISPARATE-MASS MIXTURES

In a dilute fluid where Kt=1, hydrodynamic theory ceases to
be an applicable theory. Kinetic theory, which involves a more
detailed microscopic description, is needed. As will be seen
later, kinetic theory is more gemeral and includes hydrodynamic
theory as a specific case. In this section, using kinetic theory,

the dynamic structure factor for simple fluid is deduced.

Kinetic theory is base< on the Boltzmann equation which
involves the distribution function £(r,v,t). In a fluid this
distribution function is defined in such way a that f£(r,v,t)ArAv
is the average number of particles at time t inside the volume Ar

around position r, and with velocities within the range Av around
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v. Because the intermolecular interaction range is much smaller
than the average intermolecular distance in a dilute fluid, it is
unlikely that more than two particles will collide at the same
time. Therefore under the molecular-chaos assumption the Boltzmann

equation (2.29) gives us the time evolution of f£(r,v,t):

%Ef(t,v,c)+v-vf(r,v.t)-_r &of an - o(8,|v-v] ) ¢ |v-u|

x (£(r,v' ,t)E(r,0',t) - £(xr,v,t)f(x,v,t)} (2.29)

where v’ and ¢’ (which are the velocities of two particles, after
a binary collision, with initial velocities v and v, respectively)
depend on their initial velocities and the scattering angle (f,¢)
in polar coordinates (polar axis parallei to v - ). @ in (2.29)
is the solid angle and o(4,|v-»|) is the differential collision

cross section.

The most important result of the Boltzmann equation is that
for any given initial distribution function, £(r,v,t,), the
solution of (2.29) will approach the absolute equilibrium Maxwell

distribution function:

3/z
£, 8 » ) = 0D exp(-pmt /2) (2.30)
vhere u is the average number density of the fluid. This result is
also known as "Boltzmann's H-theorem". The assumption which follows
is that equation (2.29) can be linearized because the distribution

function £(r,v,t) is close to its equilibrium form, fy(v). If we
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define a small p of the di function as

Af(r,v,t), then £(v,r,t) = AE(V,r,t) + £(v). Substitution of the
latter form into (2.29), while considering only the first order of

Af, ylelds the linearized equation for Af(r,v,t);

%[u(x.v,:)] + v-V[AE(r,v,t)] = Ag[AE(E,v,E)],  (2.31)
where Ay is a linear integral operator which acts only on v.

Now we introduce the dynamic variable £(r,v,t) which is given

by

Fx,v,0) = itlr-ry(nnslv-v?(:)l. (2.32)
P=1

It can be seen that #(r,v,t) describes the particles’ position and
velocity distribution at time t, and that its ensemble average is
just equal to the equilibrium distribution function fy(v), while
its perturbation A%(r,v,t) = (r,v,t) - £,(v) satisfies the
equation (2.31). According to the Onsager regression hypothesis in
statistical mechanics[19], the decay of microscopic spontaneous
fluctuations of a dynamic variable, and the decay of its
correlation function, on the average, follow the same linearized
equation. Therefore we can replace Af(r,v,t) in (2.31) with the

correlation function

Cir-x'1,v,v' ,t) = v<ab(r,v, t)ab(r

,0)>, (2.33)

and obtain
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g—cc(lt-t'l.v, v, t) + vICUIL-T Y, V', t)

= ApC(1z-x'1,v, v',t). (2.34)

Because of the isotropic condition in dilute fluids, the
correlation function in (2.33) depends only on the modulus of the
relative position, and the factor V introduced there is for
calculation convenience. Then the spatial Fourier transform of

(2.33) can be written as
3
C(K,v,v",t) = [d lx-r'1 exp[-iK-(x-r")]C(Iz-1'1,v,v',t)

= [@ir-r1 & <ab(x,v,e)0k(x' v, 0)>exp[ - 1K (x-x")]

= < ®,v, 0388 (R, v ,0)>, (2.35)

where

28k, v,t) -'tlﬁ[v—v,(r_)]exp(-lK'r,(:)]. (2.36)

and because of isotropy at equilibrium, C(K,v,v’,t) depends on
K = |K|. The equation for G(K,v,v’,t) 1s obtained from the Fourier

transform of equation (2.34)

ﬁ C(K,v,v',t) + iK-vC(K,v,v',t) = B(K)C(K,v,v',t), (2.37)

where B(K) is a linear integral operator. Using (2.18), (2.19)
(considering components 1,j are the same), (2.32), and (2.33) the

stucture factor can immediately be obtained as



S(K,w) -ﬁ Jae exp(mz)[_[d’vd’v'c(x,v,v',c)], (2.38)

so the key problem remaining is to find a way of calculating

C(K,v,v',t).

Since the Boltzmann equation is valid only in the limit of
dilute gases, based on a hard-sphere model Cohen and Campa used
a modified Enskog theory in order to obtain the more general
results which are valid for both dilute and dense fluids. And
instead of trying to obtain C(K,v,v',t) directly from the equation
sinilar to (2.37) which proved to be quite difficult, they

an way by calculating an infinite set of

correlation functions(22,23). The computations of partial

structure factors S, (K,w) are performed by a spectral

tion of a ti L;(K) in terms of
discrete eigenmodes. The final result for the partial structure
factor can be expressed as a sum of Lorentzians:

- Ay (K)
S35 (K,0) Re); To (6 ' 12.39)

vhere the sum runs over the eigenvalues z,(K) of Ly(K), and

1,] = 1,2 denote two different components of the mixture, Ay, (K)
are the amplitudes corresponding to the eigenvalue z,(K), N is the
number of eigenvalues used, which is chosen on the basis of the
Bhatnagar-Gross-Krook method[23]. These different eigenmodes can
be interpreted as the different channels by which the fluctuations

decay in time.



In Campa’s calculation the eigenvalues of the kinetic
operator Ly (K) fall into two types. One type is real and another
is complex. Because of the existence of damping processes, the
real parts of both types are megative. The complex efgenvalues

always come in conjugate pairs and their real parts represent

damping p while imaginary parts on

processes in two opposite directione.

In the hydrodynamic limit, (i.e. for K of sufficient small
value) all the amplitudes A, ,(K) are real and contributions to

the sum (2.39) come only from four eigenmodes with following

eigenvalues
2,5 (K) = te,K - K, (2.40a)
and
23 (K) = -D,K%, (2.40b)
2, (K) = -D, K2, (2.40c)

where ¢, 1s the adiabatic velocity of sound which is independent
of K, and D,, D,, T are positive coefficients associated with the
damping process. Therefore for K + 0, substitution of (2.40) into
(2.39) shows that the kinetic result is in agreement with

hydrodynamic result (2.28). The description in terms of discrete

modes is thus a generalization of the hydrodynamic theory.

.30,



When the conditions are beyond the hydrodynamic regime, the
situation becomes more complicated. Contributions from higher
propagating modes must be taken into account, and some of the
amplitudes A, ,(K) can be complex. The eigenvalues for diffusive
modes are still real, but the eigenvalues of the propagating modes
come in complex conjugate pairs and eigenvalues should be written

in the general form

2, = L, (K47, (K) (2.41)

where the negative real part v,(K) represents the damping, and the
imaginary part w,(K), which is the dispersion relation for the
n-th mode, determines the propagation velocity of the mode
assoicated with z,(K) (the group velocity of the n-th mode ¢, is
given by dw, (K)/dK ). Contrary to the hydrodynamic limit, w(K) can
no longer be expressed in simple form as the product of K and ¢,

which is independent of K.

In the caleulation for dilute, disparate-mass, binary
nixtures of Ar+l,, Campa found that under the conditions of high
concentration of the lighter component and K larger than a certain
value, one of the eigenvalues he obtained had an imaginary part

@, (K) for which the group velocity dw(K)/dK was considerably
larger than that of other modes. Calculation of the partial
dynanic structure factors shoved that this fast mode was only

associated with the light component and would give an observable
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shoulder or peak only in the partial dynamic structure factor

S, (K,0). No shoulder or peak would appear in S,,(K,w) and
S;2(K,0). This shoulder or peak in Sy, (K,0) leads, for a proper
choice of the two components (the combination of Ar+H, was
suggested by Campa), to a shoulder in the differential cross
section for Brillouin scattering. This implies that the fast mode

is associated only with the light component.
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Chapter 3. Apparatus and Experimental

Procedure

The overall arrangement of apparatus used to study Brillouin
scattering from the gas mixtures is schematically depicted in
Fig. 3.1. An Ar* laser was used as the incident light source. The
spectrometer consisted of a piezoelectrically-scanned Fabry-Perot
interferometer, & photomultiplier tube and a Data Acquisition and
Stablization System (DAS-1). The spectral data were first
accumulated for seversl hours in the DAS memory and then
transmitted to a personal computer for further processing. More

detail is given in following sections.

§. 3.1. OPTICAL SYSTEM

Because the frequency shifts observed in Brillouin scattering
are very small (less than 10GHz in our experiment), the incident

radiatlion must be highly

The exciting radiati

used in our experiment was provided by an Ar* laser (Coherent




Fig. 3.1 Schematic diagram of the experimental setup.
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Radiation, Model Innova 90-5) which was operated in a singla
cuvlr_y mode with a nominal wavelength of 514.5nm and nur.put power '
of 30_0~500m“. Selection of the output light frequency was made
possible by using an intracavity prism. An intracavity etalon was
installed inside the resonator for obtaining a narrow laser
linewidth, The tilt of the etalon could be adjusted to obtain a
single mode. After several hours warm-up, both the frequency and
power output of the laser was generally quite stable. No further

attempt was made for laser stabilization in this experiment.

Since light at low or
pressure (less than 10 atm. in our experiment) involved
measurements of light at very low intensity levels, long data
aquisition times (from 5 to 24 hours) were required. In order to
minimize the effects of long term drift in the interferometer
alignment, it was consequently necessary to utilize the feedback
control capability of the DAS-1 where a reference laser signal was
provided as follows: The laser beam was first divided into two
parts by using a beamsplitter (BS), of uncoated glass. Then the
reflected light was attenuated and transmitted through an optical
glass-fiber (GF) when the shutter (S) was open. The output of
glass-fiber was accurately directed along the optical axis of
spectrometer by a second uncoated reflector (M4), and finally

collected in the DAS-1 for feedback control(see section 3.2).

The main laser beam was focused by lens L1, and then



reflected by mirror H2 and a prism into the center of scattering
cell.C< The scattering angle formed b): the incident h;am and the
scattered light was about 157.5°. This configuration also
permitted us to observe the spectrum corresponding to a smaller
scattering angle of 22.5° by adding two mirrors M5, M6 as shown
in Fig. 3.1, while keeping the distance from Ll to the centre of
the cell almost unchanged. The scattered light passing through
aperture APl was collected by the lens L2 and focused at a point
which was just coincident with the virtual image of the bright
head of the glass-fiber produced by M4. Mirror M3 was used to
direct the scattering light to a Fabry-Perot (FP) interferometer
(Burleigh, Model RG-110). F was an adjustable narrow-band
monochromatic grating filter (KRATOS, Model GM 100-2), which

was adjusted only to transmit the light signal near the wavelength
514.5nm and to reject unwanted Raman rau...tion from the samples.
Because of the low intensity of the scattered light, it was
necessary to minimize the intensity of the stray light. The
apertures APl and AP2 were used to prevent unwanted stray light
from getting into the spectrometer. This fact was also considered

in the design of the scattering cell.

Aperture AP2, pinhole PH, lenses L3 and L4, the Fabry-Perot
interferometer FP, the photomultiplier tube Pi and a
‘thermostatically controlled heater were all containmed in a
styrofoam box covered with black polyethylene. In addition, a

large piece of heavy black cloth was draped over the box. The



purpose of this was first to exclude stray light and secondly to

provide p fron of the

80 as to the inside the box
around 20°C. A 4cm hole was cut in the styrofoam box so that the
lens L3 could direct both the scattered light from cell and the

reference laser signal to the Fabry-Perot interferometer.

In our experiments, the Fabry-Perot interferometer consisted
of two flat mirrors (with flatnesses of 1/200 and reflection
ratios of 98%) mounted parallel to each other in an adjustable
super invar assembly. If the cavity between the mirrors is
illuminated with a beam of monochromatic light, it will transmit

the beanm only when the relation (3.1) is satisfied, i.e.

mA = 2ndeosd (3.1)

where m is the order of interference, A is wavelength of the
incident light, n is the refractive index of medium between the
two mirrors, d is the mirror spacing, and § is the angle formed by
the incident beam and the normal line of the plates (in the
present experiments, n= 1, § = 0). The front mirror was mounted
on an adjustable mount using three extremely fine differential
micrometer adjustment assemblies. The rear mirror was supported by

three stacks of piezoelectric transducers placed around its

The of the 1ight was obtained by

changing the voltage applied to the piezoelectric transducers,



which consequently changed the spacing between two plate mirrors.
The Eringes produced by the interference between the parallel
mirrors were focused on a pinhole (PH) installed in front of the
photomultiplier. The diameter of pinhole was important to the
overall finesse of the spectrometer. If too large it broadened the
line and if too small it cut down the transmitted intensity([24].
The appropriate size of the pinhole, which was generally selected
by trial and error, ranged from 100um to 200um and the observed
finesse was about 45. The photomultiplier tube (ITT Model, FW130)
was mounted in a thermoeletrically-cooled, RF-shielded chamber,

which the cathode at -20°C and reduced the

dark count of the photomultiplier to about 1 count per second.

§. 3.2. DATA AQUISITION AND STABILIZATION SYSTEM (DAS-1)

The long experimental runs needed for low intensity spectra
required high stability of both the interferometer and laser.
However, changes of interferometer alignment and frequency
drifting of the laser which could significantly broaden the
instrumental linewidth are largely unavoidable, it was necessary
to compensate for such drifting effects. This was made possible by
using the DAS-1 in conjunction with a reference signal which was

mentioned previously.

The aster clock of the DAS-1 prcduces pulses which are used
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to step the data accunulation through successive chamnels of a
1024 channel scaler. These pulses are themselves accunulated and
subsequently converted through a DAC to produce the scanning ramp
voltage which is applied simultancously te all three of the
plezoelectric transducers on which one of the Fabry-Perot mirrors
is mounted. A single cycle in the repetitive scanning process was
usually completed in less than 5 seconds, and the amplitude of
the ramp was chosen to cover slightly more than two full orders of
interference (1.e. so that three successive Rayleigh peaks could

be observed). The highly linear relation between applied voltage

and pi lectric results in a relation
between channel number and frequency (see Eq. 3.1 for §-0).
Compensation for instrumental drifts is made possible by the
provision for external adjustment and control of the zero level of
the voltage ramp. It is thus possible to select a reference peak
in the observed spectrum and, through feedback control, force the
peak to maintain its position at a preselected channel number. In
the present case, however, the scattered light intensity was not
sufficient for the purpose, and it was necessary to provide a
reference signal of higher intensity through direct sampling of

the laser beam.

The electromechanical shutter S was controlled by a separate
microprocessor, MP, vhich utilized the digital clock of the DAS-1
as time base. It was programmed to open the shutter at a point

(usually near the end of each sweep) where resonant transmission
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at the laser frequency was ahout to occur, and to close it

immediately after scanning the laser profile so that none of this

high intensity signal could the (low )
Brillouin sp Any y for this peak to drift
away from its lected location was by the DAS-1 when

operating in its feedback control mode, and an appropriate
adjustment to the zero level of the scanning ramp was

ically made to for the drift. A similar but

somevwhat more complicated method is also provided for optimization
of the instrumental finesse. Details of how the feedback controls

are achieved can be found elsevhere[25,26].

Another important feature of DAS-1 is segmented scanning
which permits different scanning speed for accumulating counts in
the selected reglons. In our experiments two segments were set for
the DAS-1. The main segment for the spectrum we were interested in
was set between channel numbers 310-730, and the laser segment,
which vas used to provide enough counts for the reference laser
signal, was set between channel numbers 925-955. The speed ratio
between the fast and slow portion of the ramp was 99, so that for
each scan almost 908 of time was used in the main segment. The
spectrun was accumulated in a total time of between 5 to 24 hours.

A typical spectrum obtianed from the DAS-1 is shown in Fig. 3.2.
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Fig. 3.2 Typical spectrum recorded in Brillouin
scattering experiment (CH, + SFy mixture wich CH, base

pressure of 6.3 bar and xgp,=0.08).



§. 3.3. GAS HANDLING SYSTEM

A block diagran of the gas handling system is shown in

Fig. 3.3. The high purity (>99.99%) gases used in our experiments
were provided by Matheson Gas Products. A Bourdon-tube gauge with
an estimated accuracy of #0.05 bar vas used to measure the gas

pressures.

The sample gases, for example SF, and CH,, were mixed using
the following procedures, Refering to Fig. 3.3, first we closed
valves V3, V&4, V5, V6, and V7, opened valves V1, V2, and V8,
turned on the rotary vacuum pump. The scattering cell and the
connected tubes could be evacuated to a pressure of about 10-*torr.
Then we closed valve V8, opened V4, and slowly filled the
scattering cell with CH, in order to reduce the gas turbulence
which could disturb any dust inside the cell. When the gauge
reached the base pressure needed, we closed valves V1 and V4,
opened V8, and turned on the rotary vacuum pump to evacuate the
connecting tubes. The procedure followed was to close V8, open V3
and fill the connecting tubes with SFs until the reading on the
gauge vas a little bit higher than the pressure inside the cell,
then close V3, opened V1 and added SF into the cell. By repeating
this process we obtained the gas mixtures of different partial
pressure ratios. We needed to be careful during the whole process
to keep the pressure inside the connecting tubes a little higher

than the presure inside the cell.
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The entire were in an ai

room. No extra precautions were taken to keep the scattering cell

at constant temperature.
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Chapter 4. Experimental Results

and Discussion

§. 4.1. GENERAL REMARKS

The method used to detect the fast or slow mode contribution
to a given spectrum was to compare the observed sound velocity v}
and the sound speed v, calculated using the hydrodynamic theory

(K 0). v} was deternined by the Brillouin equation,
v = vg)/[2sin(6/2)], (4.1)

where vy is the observed frequency shift, A is the wavelength of
the incident light in the medium, and § is the scattering angle.
Initially, the law of partial pressures was assumed to be valid
for all mixtures studied, and values of v, vere calculated via the
ideal pas rulation v, = Gt e, ez« cp/Cys P 1s the
pressure, and p is the mass density (for a given mixture).
Subsequently more accurate values for v, were obtained through

collaboration with Dr. J. A. Zollweg of the School of Chemical
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Bngineering, Comnell University(27]. Zollweg's technique utilized

the basic relation[28],

v, = Va/me)M?, “.2)

where V, is the molar volume of the mixture, M is the average
molecular weight, and &, is the adiabatic compressibility. Because
the actual average molecular weight for a disparate-mass mixture
could be significantly different from that calculated on the basis

of partial , the were first used to

calculate the concentration of each species via the virial state
equation. Then the sound speed is obtained using the virial

form

uﬁ-(wr/mx[1§ {1 R[u— ] x[e p ]‘} . .3

vhere p is again the total pressure, Cj is the ideal-gas heat
capacity, and B, the second virial coefficient for the mixture, is
obtained by using Hayden-O’Connell method[29]. As it turned out,
the values of v, obtained by the second method were not
significantly different from the initial calculations, with one or

two exceptions.

§. 4.2, THE FAST SOUND MODE IN H, + Ar MIXTURES

A dilute gas mixture which is composed of two species with a



large mass difference responds to a thermal fluctuation with
propagating density waves. Under conditions of high concentration
of the lighter component, a density wave of high frequency and
short wave length might only be supported by the lighter particles
without the participation of the heavier particles in the
collective motion. In this case the group velocity of the mixture
is very close to the sound velocity in the single-component fluid
which is obtained by removal of all heavier particles. The
dynamics of the two components are thus partially separated. The
contribution of the heavier component to the propagation mode is
negligible because the heavier particles are unable to follow the
fast sound mode which is caused by the rapid oscillations

associated with the lighter component.

The wave vector K of the local density perturbation to be

ng to a angle #, satisfles the

relation (1.1). So the length scale of the thermal fluctuation to
be probed is given by A = 2x/K = 1/[2sin(6/2)], where A is the
wavelength of incident light in the medium. Because the fast scund
mode, which corresponds to a short wavelength perturbation in the
fluid, ceases to propagate if K is smaller than a certain
value[23], a large scattering angle (157.5°) was selected in our
experiments. For each series of experiments the sample cell was
first charged with enough of the lighter species so that well-

defined Brillouin peaks could be observed in the spectrum. This

was as of



the heavier species were added into the cell. Because of the fast
sound mode effect, it was expected that the position of the
Brillouin peak would remain substantially unchanged, or shift much

less than expected on the basis of the hydrodynamic theory.

Three groups of spectra were collected for different H, base

pressures. The mixtures, conditions are listed as follows:

0<x,<0.23, 0.21<Kt,<0.27, Kt,=0.07, p,;=9.0 bars,
0<x,<0.18, 0.27sK2,<0.32, K2,=0.09, p,~7.7 bars, .

05x,<0.17, 0.333K%,<0.39, K&;=0.10, p,=6.3 bars,

where %, is the concentration of species 1 (1 and 2 refer to the
1ight and heavy species, respectively) and 2, is the mean free
path of species i obtained using the conventional way which has
been discussed in Chapter 1. The o values that were used in the
calculations were 0,=0.297nm and 0,=0.340nm for H, ard Ar
respectively. The contribution of the fast sound mode to the
spectrun was observed in all three cases for low concentrations of
Ar (Fig. 4.1-4.3). As the concentration of the heavy species
increased, the Brillouin peaks were decidedly broadened due to the
severe attenuation of sound. For x;20.1 the Brillouin peaks became
unrecognizable. Hovever, for x;<0.1, it is clear that the peak
positions on the scale of normalized frequency shifts (the solid
triangles) differ increasingly from positions (the open triangles)

obtained using hydrodynamic theory (K=0) as the concentration of
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Fig. 4.1 Spectra for Ar+H, mixtures with a H, base pressure
of 9.0 bars and

of Ar as

The central peaks have been removed to permit stacking of the
spectra on an appropriate scale. The frequency shifts are
normalized to unity at the position of the Brillouin peak for
pure H, (each 1

to 9.2GHz). Only
the (Stokes) reglon of down-shifted frequency is shown. The

open triangles indicate the normalized shifts obtained based

on hydrodynamic theory, while the solid triangles designate

the of the Brillouin
The arrow the

of the Brillouin
poak for pure Ar. The scattering angle vas 157.5°.
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Fig. 4.2 Spectra for Ar+H, mixtures with a fixed M, pressurs
of 7.7 bars. See Fig. 4.1 for additional legend.
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Fig. 4.3 Spectra for Ar+l, mixtures with a fixed H, pressure

of 6.3 bars, See Fig. 4.1 for additional legend.
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the heavy component is increased.

Based on our experimental results{30], Campa used the hard
sphere model and performed calculations[31] to produce theoretical
Brillouin spectra for Ar+H, mixtures with a H, base pressure of
6.3 bars. He found that the relative positions of the observed
peaks, with respect to the peak positions calculated on the basis
of hydrodynamics (the ratio of the solid triangle positions to the
open triangle positions in Fig. 4.3), agresd with his calculated
spectra (Table 4.2). He also found for x,=0.14, as observed
experimentally, that there is no visible contribution from the

fast sound mode in the Brillouin spectrum.

Table 4.2 Comparison of the Present Experimental Results and
Campa’s Calculations for an Ar+H, Mixture with a H,

Base Pressure of 6.3 bars

Xz Observed Result Campa's Calculation
0.05 1.30 1.20
0.10 1.51 1.46

As shown in Fig. 4.1-4.3, considerable difficulty vas
experienced in detecting the fast mode contribution as a well-
defined spectral feature. This might be due to (i) a relatively
high polarizability of Ar (a,,=1.64x10"%'/cn’, al,z-mszno'“ Jen®

ape/az,>2) vhich favors the second and third terms in (1.3),
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(11) broadening of the spectral feature because of the strong
attenuation of the fast sound mode caused by the heavier particles,
and (1i1) the low absolute polarizability of H, which leads to a
low signal level in the density range of interest. The relatively
high intensity of the central peak also indicated that the data

might be contaminated by stray light.

§. 4.3. CH, + SF, MIXTURES

Bearing the foregoing points in mind, mixtures of CH,+5Fg
were selected for further investigations. The polarizability of
CH, is about three times greater than that of H, (acg,/ay, 3.2).
In addition, the yolarizability ratio of SFs and CH, is about the
same as that of Ar and H, (u,,./ﬂc!'-l.ﬂ). However, the mass ratio
for the mew combination (msp,/mcy,=9.1) is lowered roughly by a
factor of 2. Two groups of spectra werc collected for CH, base

pressures of 6.3 bars and 3.7 bars, with conditions as follows:

0sx,<0.27, 0.17<K2;<0.23, K£,~0.07, p,;=~6.3 bars,

0<x,50.30, 0.285K2,<0.39, Kt,=0.11, p,~3.7 bars.

The o values used in the calculations of £, were o,~0.389m,
9,=0.463nm. Comparing the conditions for CH,+ SFy with those for
Hy+ Ar, it should be noted that they were quite similar. Because

of the large increase in polarizability, as expected, the
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Brillouin peaks of the recorded spectra were well-defined.
Nevertheless, no sig;xificant fast mode contribution was detectable
in either case. As shown in Fig. 4.4 and Fig. 4.5, for the spectra
corresponding to the CH, base pressure of 6.3 bars, the identified
frequency shifts of the spectral peaks agreed with the calculated
results based on hydrodynamic theory. For spectra with the CH, base
pressure of 3.7 bars, the observed frequency shifts did not differ
significantly from the hydrodynamic prediction. Using the hard-
sphere model, Campa again confirmed that, under the experimental
conditions chosen above, no fast mode should be observed in these
cases[31]. Furthermore, it was concluded that the conditions
required for detection of the fast mode contribution for SFg+CH,

mixtures were unlikely to be achievable in practice.

A possible point of importance here is that the structures of
the SFy and CH, molecules are more complicated than those of Ar
and H,, and the validity of the hard-sphere model may be

questionable. Hovever, because msp,/m,>3.7 and mgy, /ng,>7.9, the

average velocity of both the SF, and CH, molecules are
considerably lover (Vy;/ Vgp 2, Va,/ Vcu,=2.8). At the same time,
the £, values for SFy+CH,, which depend on the densities and the
diameters of the particles, remain almost unchanged. It was
consequently expected that deviations from the hard-sphere model
should not be significant (i.e. because of the low density and
slower speed of the particles in the medium, the collision time is

much lower than the mean free time). The observed results also

.55,



Counts

0" T T

SFg+ CH 4

0.17
0.11

0.08

0 1 2
Normalized shift
Fig. 4.4 Stokes spectra for SFg+CH, mixtures with a fixed CH,

partial pressure of 6.3 bars and fractional concentrations of

SFg as listed. Each h division

shift of 3.1GHz. The trianglar markers have the same meaning

as in Fig. 4.1.
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Fig. 4.5 Stokes spectra for SFg+CH, with a fixed CH, partial
pressure of 3.7 bars. Ses Fig. 4.4 for additional legend.
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proved this. Hence the negative result for the SFy+CH, mixture

might be caused by a smaller m,/m; ratio.

In the above two cases( H,+Ar & SFg+CH, ) the method used to
characterize the experimental conditions for the gas mixtures with
disparate masses (i.e. in terms of the t; values obtained using
the conventional way) provides mo insight into the distinctly
different results, It was consequently decided to investigate
alternate characterization criteria. The following discussion
introduces an effective mean free path which provides a more

consistent description.

§. 4.4  THE EFFECTIVE MEAN FREE PATHS DISCUSSION

First it is necessary to introduce the mean persistence ratio
0,4, vhich is defined as the mean ratio of the velocity component
of particle i along its incident direction to its original velocity

after a collision with a particle §. 0, is given by [3]

oy =1 [+ 8 2 0m00d/2 4 ) ] .4
where M, = m /(m, +m), (1,] = 1,2). m,, m, are the masses of two
different particles, e.g. the H, molecules and Ar atoms in a

binary gaseous system. Using (4.4), 0, values were calculated for

the studied mixtures. The results are listed in Table 4.3 where it
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should be noted that, due to the large mass differences, M, = 1
ané @, = 0, i.e. the velocity vector of a heavier particle almost
does not change after it collides with a lighter particle, and the

velocity vector of a lighter particle is totally changed after it

collides with a heavier particle.

H, 0.406 2.64x107% ... 7.01x107
Ar 0.937 0.406

cH, 0.406 5.89x107%
SFy 0.982 0.871 0.406

Given a particle of species i moving in the gas of species j,
after a number of collisions with particles of species j, the
velocity vector of particle i is randomized. The average number of
collisions required for randomization, i.e. T, can be obtained

using the Poisson distribution:

o,

By e
£ 0y

1,5 =1,2) (4.5)

The calculated fi,; for the studied mixtures are given in

Table 4.4.

As shown in Table 4.4, if the collisions occur between
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identical particles, the velocity vector is randomized after less
than two collisions (fi,; = 1.68). If the collisions occur between
unlike particles with large mass difference, the velocity of the
lighter particles is greatly changed immediately after a collision
with a heavier one, while the velocity vector of a heavier

particle can be randomized only after a long series of collisions

Table 4.4 The Average Randomization Collision for the Studied

Mixtures
Tiyy H, Ar CH, SFg
H, 1.68 1.03 1.01
Ar 15.9 1.68
OH, 1.68 1.06
SFg 54.6 7.73 1.68

with lighter particles. It should also be moted that unlike Ty,
T,, s very sensitive to the change of mass ratio m,/m,. Compared
to the Ar+H, mixture, the mass ratio of the SFg+CH, mixture
decreases by roughly a factor of 2; fi,, also decreases by a factor

of 2 (fprn,/ Mspyen,> 2-1).

For the picture to be it must be that in

a binary mixture the collisions can occur not only between the
different species but also between the same species. So instead of

using 0, in formula (4.8) it is more appropriate to use a



weighted mean persistence racio as

t, L,
1 s
Ll TR e el V8 (4.6)

where £,, %, are given by (1.4) and (1.5), respectively. This
weighting scheme is chosen because, according to the definition of
£, and ,,, the quantities £,/%,, and ¢ /t,, are the probabilities
that a particle of species i collides with the particles of
species 1 and j respectively. The average number of randomization
collision T, (i = 1,2) can therefore be calculated in a consistent

way by substituting ), for A,y in the expression (4.5).

After an average of T, collisions with both like and unlike
particles, or in other words after moving an average distance of

T, t,, the velocity vector of a particle of species i is

Ve can define an effective mean free path
given by
Toee, =W 4/ 8, (1=1,2) 4.7

where the factor fi = Ti;; = 1.68, is used for normalization
purposes to maintain consistency with the definition of the mean
free path of a simple fluld, The effective mean free path L,gq ,
can be understood as the average distance that a particle of

species i needs to travel before its velocity vector is



i
¢
¢
}

randonized y, if the gth of the density

fluctuations to be probed is much lirger than the effective mean
free path for either spacies, the particles of both species should

participate the process, and theory is

expected to be valid. However, if ome of the effective mean free
paths is comparable to the wavelength of the perturbation to be
probed, then deviations from hydrodynamic theory are expected.
RE,g¢,y (i=1,2) should provide the appropriate characterization of
the conditions for a binary mixture, just like K¢, is appropriate

for a one-component fluid.

In order to test this point, the values of £,, 2,7, , and

Ke,ep,, (i=1,2) were calculated for Ar + H, mixtures with base H,

Table 4.5 The Mean Free Paths and the Effective Mean Free Paths

for Ar+H, Mixtures with a H, Base Pressure of 9.0 bars

X L) Lp(nm) Loep g (om) Lee () Kbygp g Kloge

0 11.3 weEE 11.3 mans 0.271 sme-

0.04 11.0 3.00 10.8 25.7 0.259 0.616
0.10 10.4 2.92 9.85 22.7 0.236 0.544
0.13 10.1 2.89 9.44 19.3 0.226 0.462
0.16 9.80 2.85 9.05 17.8 0.217 0.427
0.18 9.55 2.82 8.70 16.5 0.208 0.395
0.21  9.31 2.78 8.38 15.5 0.201 0.371
0.23  9.08 2.75 8.07 14.5 0.193 0.347
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Table 4.6 The Mean Free Paths and the Effective Mecan Free Paths

for Ar+H, Mixtures with a H, Base Pressure of 6.3 bars

Xz 2i(nm) L;(nm) Logg g (nm) L,pp p(nm) Keyee .y Kiep o

o 16.1 16.1 i 0.386

0.05 15.4 4.24 15.1 34.8 0.362 0.834
0.10 14.8 4.16 14.1 30.2 0.338 0.724
0.14 14.2 4.09 13.3 26.8 0.319 0.642
0.17 13.7 4,02 12.5 24.1 0.300 0.578

pressures of 9.0 bars and 6.3 bars. These values are listed in
Tables 4.5 and 4.6, respectively. It can be seen that the L,.p
values are almost equal to £, but the £,,. , values are much
larger than £, in both cases. This can be understood in the
following way. In these binary gas mixtures, due to the low
concentration of Ar, the collisions experienced by a H, molecule
are mostly between H, molecules themselves, even after some Ar
atoms vere added, On the contrary, the collisions experienced by
an Ar atom are primarily with H, molecules. Because of the large
mass ratio m;/m;, the motion of the Ar atom is hardly changed at
all after such collisions. It is only after collisions with other
Ar atoms or a series of collisions with H, molecules that the
velocity vector of an Ar atom can be severely disturbed. So the
effective mean free path for Ar is much larger than ,, which is

the average distance between two successive collisions experienced
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by an Ar atom. We also find that L,g, ,, the effective mean free
path of Ar, {s much larger than £,., ; for H,. co;-p-xtng e
K gp,, values of Ar and H, (especially for lower Ar
concentrations), Ki,ee , is seen to be comparable to 1 while the
Ke,,, values for B, are such smaller than 1. Thus as expected
the dynamics of two components are partially decoupled. The sound
mode probed in the ¢ ceriment should therefore only be supported
by the lighter species with a speed close to that for the single-
component fluid (at the same temperature) obtained by removal of
all the heavier species. Meanwhile the particles of the heavier
species act like fixed scattering centers in the medium and
severely damp the propagating fast sound mode. The observed
sprctral feature becomes broader and even unrecognizable as the

of Ar It is that

characterization in terms of K¢, .., is consistent with the
experimental results for this mixture, while characterization in

teras of K¢, is not.

Using the similar method, we obtained %,, £,r, , and Kt ., ,
(i-1,2) for SFe+CH, mixtures. The data listed in Tables 4.7 and
4.8 correspond to SFg+CH, mixture with CH, base pressure of 6.3
bars and 3.7 bars respectively. As we can see from Table 4.7 and

4.8, that there are some similarities between SFg+CH, and Ar+H,

mixtures. For instance, &, « £,,, , and t,., , are much larger
than £, due to the low concentration of heavier particle and large

mass ratio. However, in these cases the mass ratio m,/m, is



Table 4.7 The Mean Free Paths and the Effective Mean Free Paths

for SFg+CH, Mixtures with a CH, Base Pressure of 6.3 bars

x2 Ly(na) G(mm) L,ee . (nm) Lgg,a(mm) Keep ; Kiep
o 9.43 9.43 0.226

0.04 9.07 3.38 8.90 1.4 0.213  0.345
0.08 8.76 3.31 8.42 13.2 0.202  0.316
0.11 8.46  3.24  7.99 12.1 0.191  0.290
0.17 7.9 311 7.28 0.6 0.174  0.254
0.24 7.32  2.96  6.50 8.96 0.156  0.215
0.27 7.09 2.90  6.20 8.42 0.149  0.202

Table 4.8 The Mean Free Paths and the Effective Mean Free Paths

for SF+CH, Mixtures with a CH, Base Pressure of 3.7 bars

Xz ty(om) L(na) Logp g (nm) Leg p(nm) Kbep 3 Kiep o
L] 16.2 16.2 0.388

0.08 15.0 5.66 146.4 22.1 0.345 0.530
0.12 14.3 5.51 13.4 20.0 0.321 0.479
0.17 13.7 5.37 12.6 18.1 0.302 0.434
0.20 13.2 5.23 11.9 16.3 0.285 0.391
0.23 12.6 5.10 11.3 15.1 0.271 0.362
0.30 11.6 4.80 9.91 13.1 0.237 0.314

roughly lowered by a factor of 2, so the average number of

collisions ly. as a result,
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unlike the ArtH, mixtures, Kl,ce ; and Kt,g, , are no longer very
different for SFg+CH, mixtures. In the case with a c{(‘ base
pressure of 6.3 bars (Table 4.7), Kt,g,,; and K&, , are almost
the same and small compared with 1. So the sound mode propagated
in both components and no deviation from hydrodynamic theory was
observed. In principle, a decrease in density might, as predicted
by Campa[30], lead to the proper condition under which the sound
mode is only supported by the lighter component (e.g. Kl,,q 3<<1
and Kt,ge,, = 1). Such an experiment would, however, be difficult
to perform because of the low spectral intensity levels, and would
probably not produce any more definitive results than for the case

of the Ar+H, mixtures.

§. 4.5, THE SLOW SOUND MODE IN SF, + H, MIXTURES

As previously mentioned, for a fast sound mode to be present,
it 1s necessary that the mass ratio m,/m be much larger than i.
Besides this, since the fast sound mode propagates exclusively in
the lighter component, in order to observe the fast sound mode
contribution, which is associated with the first term in relation
(1.3), the polarizability of the lighter compoment should be large
or at least comparable to that of the heavier component. In
general, since m,>>m; implies a,>>a,, the selection of such
mixtures is very limited. On the contrary, however, it is quite

easy to choose suitable mixtures in order to study the dynamical
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behavior of the heavier component in disparate mass mlx:ur:s‘
because the large polarizabiliy of the heavier patticla favors the
observation of the third term in (1.3). On intuitive grounds the
SFg+H, mixture (m,/m;=73) was consequently chosen for the
investigation of a possible slow sound mode contribution. Because
the intensity of scattered light contributed from each term in
(1.3) is propotional to a (or the cross product of a, and a;),
the large polarizability of SFy (agp,/og,=5.8) effectively reduces
the contributions from the first and second terms in (1.3) to a
negligible level. In other words, to a good approximation the
scattered light is from the heavier species only. In this
experiment the spectra were obtained by (the reverse of the

previous ) the heavy into the cell

first. The observed sound mode was identifiable without ambiguity
as the only shifted feature in the spectrum and, as expected, it
propagated exclusively in the heavier species with speeds much

lover (almost ) than those ob using

theory (Fig 4.6). The conditions for the experiment vere as

follows:

0sx,50.50, 0.11=K2,<0.59, 0.662Ke;s1.2, p,=1.7 bar.

Although some broadening caused by the damping effect of H,

molecules is evident, compared with the Ar+H, mixtures, the

damping is much weaker in this case.
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Fig. 4.6 Stokes spectra for SFg+H, mixtures with a fixed SF,

partial pressure of 1.7 bars and fractional concentrations of

H, as 1listed. Each horizontal division represents frequency

shift of 2.1Ghz. See Fig. 4.1 for additional legend.
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In order to investigate the dynanic behavior of the SFg+H,
mixtures, the effective mean free paths were caleulated as before.
The calculated results corresponding to the above conditions are
listed in Table 4.9. As the concentration of H, is increased ¢,
(the average distance between two successive collisions experienced
by SFg molecules) decreases rapidly. However, this effect is due
to increasing numbers of collisions between SFy and Hy, which
hardly changes the velocity vector of the SF, molecules at all
(Forgn,54.6), and L,¢;, remains unchanged. It should also be

noticed that 2, ; (the effective mean free path of H;) is

smaller than 2, (the average distance between two succesive
collisions experienced by H, molecules). This can be explained in
following way: vhen a H, molecule collides with a SF; molecule the
collision is so "effective" that immediately after collision the

velocity vector of the H, molecule changes greatly (fig,sp =1.01).

2574
Therefore, although £, is quite large for the mixtures with a very
snall amount of H, added, this effect brings the effective mean
free path of H, down to almost the same value as that of SF;. We
can picture the situation as one where the sound wave is
propagating in the heavier species SF; while the H, molecules are
Tapldly (%,/ Vgp,= 8.5) bounced back and forth between the SFg
molecules. The situation here is quite different from that for the
fast sound mode in Ar+, mixtures. Although the dynamics of two
components are no longer separated in the same sense, the sound
mode is only supported b the heavy species, while the light

particles act as small perturbations following the collective
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Table 4.9 The Mean Free Paths and the Effective Mean Free Paths

for SFy+H, Mixtures with a SF, Base Pressure of 1.7 bars

* Ly(nm) &y (mm) Loep, (M) Loppp(nm) Kb,pp, Kbype,p
0 26.6 24.6 0.589
0.07 48.4 18,6  29.8 24,4 0.714  0.585
0.14 45.5 149  28.6 24.1 0.685  0.578
0.19 43,0 12.5 27.6 23.9 0.661  0.573
0.24 40.7 10.7  26.7 23.6 0.640  0.566
0.27 38,6 9.37  25.6 23.5 0.613  0.563
0.35 35.1 7,53  24.2 23.1 0.580  0.554
0.42 32,1  6.27 22.7 22.6 0.544  0.542
0.47 29.6 5.37 21.4 22.2 0.513  0.532
0.50 27.5 4.72 20.3 21.8 0.486 0.522

motions of the heavy particles. Consequently little change in

sound velocity is expected, as observed in Fig. 4.6. In reality

the slow sound is not uncommon. One example is the sound mode in a

piece of metal at room temperature where the sound is supported by

the ions vibrating around the lattice points while the valence

electrons act as a small perturbation which has little effect on

the sound velocity.
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§. 4.6. CONCLUSIONS

Under the experimental conditions preici id by the theory, a

fast sound mode on to the light of
Ar+H, mixtures has been detected. Unlike the ordinary sound mode,
the fast sound mode propagates only in the light component in the
presence of the (essentially fixed) heavy scattering centers. It
is the first time that a non-hydrodynamic mode in a fluid has been

detected using the light scattering technique.

An analogous slow sound mode contribution to the spectra of
SFg+H, mixtures has been clearly identified. It is concluded that
this mode is, in general, much more readily observable due to the
highly favorable polarizability ratio and considerably weaker

acoustic attenuation caused by the light component.

A new called the effective mean free path was

introduced in order to obtain a more consistent characterization

of the in binary with

masses. In particular, this has made it possible to more clearly

understand why the fast sound mode was not detected in mixtures of

SFg+CH, under conditions similar to those for Ar+H, (where the
fast mode was detected). It is most probable that the effect is
due to the decreased mass ratio (m,/m;) for the case of the

SFg+CH, mixtures.
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Campa and Cohen [Phys. Rev. A 39, 4909 (1989)] have predi

disparate masses should cxhi

ted that dilute, binary mixtures

it a (fast) sound mode whose velocity is considerably

of gases
greater than expected on the basis of conventicasl hydrodynamic theory, and which should be ob-

servable

ight-scattering experiments. Effects tha

at are consistent with this prediction were ob-

served in the Brillouin spectra of the Ha+Ar system, but were not detected for the case of
CH(+SFe. Results for the SF+H; mixture demonstrate the exisicace of an analogous slow-

mode contribution to the spectrum,

“The suggestion' that a fast sound mode can exist in
binary mixtures of noble-gas liguids when the two molec-
ular specics have widely diflerent (ic., dispa-rtc) masses
has been confirmed by ncutron-scattering experiments,?
which are capable of probing the appropriate wave-vector
regime. More recently it has been proposed that the cor-
responding cffect should also be present in binary mix-
tures of gases at low density and in the wave-vector re-
gime accessible by light-scattering techniques, The Bril-
louin scattering experiments and calculations described in
this paper provide evidence for the existence of a fast-
mode contribution in the spectrum of Ha+Ar mixtures
which, however, is difficult 1o detect. Spectra of CHy
+SFg as obtained under comparable conditions did not
exhibit a similar behavior, By comparison, corresponding
effects which can be identified with an analogous slow-
mode contribution to the spectrum were found to be readi-
ly observable in the casc of SFe+ H; mixtures.

The fast mode is interpreted* as one which propagates
only in the lighter of the two species when the mole frac-
tion of the heavier species is relatively low (<0.3) and
under conditions which conform to the approximate cri-
terion kiy~kl3~1, whers J; is the mean free path for the
llghl:r species, [ is the mean free path for the heavier
species, and k =2x/A is the wave number of the sound be-
ing probed. One thus envisions an experiment where the
sample cell is first charged with a fixed number density of
the lighter species which is high enough so that a well-
defined Brillouin peak is observed in the scattered-light
spectrum, and this spectrum is subsequently monitored as
increments of the heavier species are added.
Qualitatively, the predicted* behavior (for low concen-
trations of the heavier species) is that a spectral peak will
persist at a position (frequency shift) which is nor deter-
mincd by the density of the mixture as normally expected,
‘but which remains substantially unchanged. This is in
cative of a fast sound mode which continues to propagate
in the lighter species only. One expects, however, that the
heavier species will contribute to the attenuation of this

4

‘mode, 50 that the observed .pecm: feature will become
broader and perhaps uni
Given that the minimum vllnc of the probed wave-
length A in a Brillouin scattcring experiment is ~250 nm
(at a scattering angle of 180°), it turns out that the ap-
propriate conditions can be satisficd for mixture pressures
of order 10 bar. or less, provided the mole fraction x3 of
the heavier species is kept sufficiently small. There is,
however, the observational requirement that the permissi-
ble range of x; values be large enough 5o that the corre-
‘sponding changes in the mean density of the misture give
t . ¥ LY.

ly
sound propagation that are normally expected for a mix-
ture, ¢.g,, the velocity. Otherwise, & possible fast-mode
contribution to the spectrum would not be distinguishable
from the (normal) contiibution of the mixture. With the
above constraint on A, this dictates that in most cases the
partial pressurc of the lighter specics should be kept as
low as possible while maintaining a readily detectable
Brillouin signal.

In the theoretical formulation of the problem™ the
scattered light inter“ity is expressed as a sum of three con-
tributions, the first two of which are associated respective-
ly with the lighter and heavier specics llone. while the
third is a mixed term

Ik,0)~ afx S k,a)+ adxaSnlk,0)
+F2aarEmSulk,e). [0}

Here the Sy are partial dynamic structure factors, a are
molecular polarizabilities, the x; are mole fractions, and k
(as above) and o are the probed wave number and ai
Iar frequency, respectively. Throughout the remainder of
this paper we adhere to the convention established *~ this
cquation, whereby the subscripts 1 and 2 refer to the
lighter and heavier species, respectively. It is clear from
Egq. (1) that, for given x;, the a; values are important in
determining which Gf any) of the three contributions will
dominate the spectrum. In particular (while recognizing

2239 ©1990 The American Physical Society
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that heavier molecules have generally higher polarizabili-
ies), obscrvation of the fast-mode associated with the first
term is facilitated by an a; value that is at least compara-
ble to a;. The combination of H and Ar, with a mass ra-
moflmm.nulmlbkw in this
3 and it is this suggested” mixture that
was chosen for initial investigations. As mentioned above,
experiments were also performed with the mixtures
CH,+SFq and SF¢+Hy. In the latter case emphasis was
placed on investigation of the slow-mode contribution cor-
respondul;mdiemndlemm Eq. (1).

The spectra were obtained using incident radiation pro-
vided by an Ar* laser (Cohml Radiation Innova Model
90-5) operating in a single-cavity mode with a nominal

wavelength (o) of 514.5 nm and a power output in the
range 300-500 mW. The spectrometer consisted of a
lunning Fabry-Pérot interferometer (Burleigh Model
RC-110), a cooled photomultiplicr detector (ITT
FW130), photon counting electronics, and a combined
data-: -cqumuon and Fabry-Pérot control system (Bur-
leigh Model DAS-1). The scattered radiation was
prefiltered (using a grating monochromator) to reject
unwanted Raman radiation, and the spectra were ob-
tained by a repetitive scanning process with accumulation
times ranging from 5 to 24 h. All experiments were per-
formed at room temperature (293 K) using a sample cell
which permitted a choice between scattering angles () of
157.5° and 22.5°. The former angle was used in most ex-
periments and corresponds 10 & probed wavelength
A=22/sin(6/2) =262 nm. Pressures were measured via
Bourdoa-tube gauges with an estimated accuracy of
+0.05 bar, and particular care was taken 10 ensure that
all gases were properly mixed before the spectral accumu-
Iation process was begun.

M implied -bou. M criterion used to detect & fast-

frqmcylmdlhobs:ndm-lpukmmn
determined from the well-knowa qunm.-.
=4x(c,/A)sin(6/2), where the sound sricd o, for the
mixture i calcalsted in the limit k — 0 4a the basic rela-
-,-(v./ux.)"‘ Here Ve, is tue molar volume of
mmmu-m.m.uolmmmag-dr.u
the sdisbatic compressibility. For mixtures of com-
ts, the largest

to the molecular weight of the mixture being different
from that calculated on the basis of partial pressures.
Consequently, the measured pressures were first used to

calculate different mixture compositions (i.c., the x/'s) via
the virial cquation of state, with terms involving virial
coefficients beyond the second being ignored. Second viri-
al coefficients were calculated using the method of Hay-
den and O'Connell.® For cach series of experiments
(where different mixture compositions were obtained by
incremental addition of one species to an initially pure
sample of the other species), the molar volume of the ini-
tially pure component at the initial pressure was calculat-
ed first. The x's for subsequent mixture compositions
were then determined subject to the constraint that the
partial volume of the initial purc component maintain its
original velue. Sound speeds were calculated using the

M. J. CLOUTER, H. LUO, H. KIEFTL
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virial form,
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Ly ”RT 1-R I+R ar
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where p is the (total) pressure, G is the idcal-gas heat
capacity, and B is the secood viial cocfficien for the mix-
ture.

The values of kl; and kl, which are used to character-
ize the sample conditions, were calculated using the fol-
lowing expression* for the mean free paths in a binary
mixture:

17" =Zm o + (14 myfmy) Pxnyof) . o)
Here m and ny are the partial number densities, o/ and o,

are the hard-sphere diameters for the two specics of mass
m; and my, and oy = (o, +0,)/2.

Hi+Ar

Spectra for this mixture were obtained for three
different base pressures py of Hy. The o values (in am)
that were used in the calculations were oy =0.297,

Ha+Ar

Intensity (counts s)

1
Normalized shift
FIG. 1. Selected scattered-light spectra for mixtures of Hy
and Ar with a fixed Hy partial pressure (p)) of 6.3 bars, and
fractional concentrations (xa) of Ar as indicated, The cents
Rayleigh peak has been removed to permit stacking of the spec-
Ara on an appropriate scale. Only the (Stokes) region of down-
shifted frequencics is shown, with tbe frequency shifts normal-
ized to unity at the position of the Brillouin peak for x3=0. The
solid triangles indicate the estimated peak positions of the ob-
served Brillouin features, while the open triangles designate the
shifts that were calculated (see text) for k — 0. The
arrow indicates the position of the Brillouin peak for x3=1. The
scattering angle w- . 157.5%
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©2=0.340, The mixture conditions are listed as follows:

0xx;<0.25, 027 = k)= 0.21, kI;~0.07, p;=9.0bars,
0=<x;=0.18, 0.32=k,=0.27, kI;==0.09, p;=7.7 bars,

0<x;=<0.17, 0392 kI =033, k/,0.10, p,=~6.3 bars.

Evidence of a fast-mode contribution o the spectrum in
the lower part of the x2 range was observed in all three
cases. The best results were obtained for p) =6.3 bars,

and this case is shown in Fig. I. Here it can be scen that, -

while a distinct spectral feature is identifiable only for
x2= 0.1, it is nevertheless apparent that the peak position
on the scale of normalized frequency shifts remains essen-
tially unchanged with increasing x3, and differs consider-
ably from the calculated (k—0) values as described
above, This behavior is consistent with theoretical predic-
tions. ™ The obvious difficulty experienced in dete ling
the fast-mode contribution as a well-defined spectral
feature is most probably associated (i) with a relative po-
larizability a2/a; that favors the dominance of the second
and third terms in Eq. (1) and (ii) with the low absolute

)

—
value of a leading to low signal levels in the density range
of interest. Investigations of the CH4+SF¢ mixture weze
undertaken with the latter point in mind.

CH4+SF¢

The polarizability® of CH, is approximately three times
greater than that of H; so that lower p, values are accessi-
ble while maintaining a strong signal. The value™® of
ay/ay for this mixture is very nearly the same as for the
Hy+Ar case, while ma/m; =9 s lower by roughly a factor
of 2. The hard-sphere diameters used in the calculatioas
were (in nm) 0y =0.389, 0,=0.468. Spectra were record-
ed for two values of p, (in bars) as follows:

0=<x;=<027, 023>k, =017, kI;>=007, py=6.3 bars

0=<x;=<030, 0.39=kI =028, k/r=

It should be noted that conditions for the lower p; case
are similar to those of Fig. 1 for Hy+Ar, Nevertheless,
no sigaificant fast-mode contribution was detectable in ci-
ther case; .c., the obscrved frequeacy shifts of the spectral
peak did not differ significantly from the values calculated
for k— 0. An understanding of this result must await fu-
ture theoretical calculations: perhaps the mass ratio is too
Tow for the effect to be obscrvable.

SF+H:

‘This mixture, with m/m; =73, was chosen for the in-
vestigation of a pe:sible slow-mode nonuihul associat-
od with the sccond term i Eq. (1). On intuitive
this contribution was presumed to be observabls in the

)

011, pr=3.7

bars.

r
same regime of kI\ and kl; values as above, but with
The mixture takes advantage of a large dispari-
he donsi-

xs0.
ty in polarizability (a»/a;=><6) which favors
nance of the Sz term of Eq. (1). In
range of x; values, this large polarizability effect can be
expected to reduce the contributions from the first asd
third terms of Eq. (1) to a negligible level. Tn other
words, 10 a good approximation the experiment is sensitive
to light scattering from the beavier species only, and axy
mode which propagates exclusively in this specics should
be identifiable without ambiguity as the only (shifted)
feature in the spectrum. The wide scparation between the
Brillouin shifts for x;-l and x;=0 is also of importance.
in this connection. The conditions for two separate exper-
iments were as follows: .

0<x;0.50, 0.59=kl,=0.11, 1.2=k/;=0.66, py=1.7 bars,
0sx;084, 0742k, =003, 1.3= Kk 20.23, p;=1.3 bans.

The first case is shown in Fig. 2 where it is clear that,
although some broadening is cvident, a distinct spectral
feature persists over the complete range of x, values in-
vestigated. In view of the above comments, there can con-
sequently be no doubt that a well-defined mode exists
which propagates exclusively in the heavier species.
Furthermore, the frequency shift of the peak is essentially
independent of x), and a large discrepancy develops be-
tween the observed and calculated (k— 0) values of the
shift at the upper limit of x;. Although the lhmry“ has
not yet been applied to elucidating the propertics of this
(stow) mode, it can be assumed by analogy with the fast-

r
mode predictions that qualitative agreement exists, It
Temains to be seen whether agreement is preserved in
‘matters of detail.

Figure 3 represents a further investigation of this
phenomenon with the principal differences being (i) that
the scattering angle was changed from 157.5° to 22.5%,
thereby probing a range of k values which is lower by a
factor of ~4, and (i) that a wider range of x, values was
emp!nyed Although the wave-vector regime is less favecs
able, it is nevertheless clear that the effect persists for low
values of xy, with the obscrved peak position conforming
to the calculated (k— 0) value only at the upper limit of
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Normalized shift
FIG. 2. Stokes spectra for SF+Ha with & fixed SFy partial
pnsm (p2) of 1.7 bars and fractional concentrations (xy) of
H a3 umai The scattering angle was 151.5°. The Brillouia
xy=1 occurs at & normalized shift o 8.5, The triangu-
o marters have the same meanlog 2 n Fig 1.

x1 where the third term in Eq. (1) begins to play a dom-
inant role.

In bricf, a fast-mode contribution to the light-scattering
spectrum of Ha+Ar mixtures has been detected under
conditions predicted by theory. The negative result ob-
tained for CH4+SFs mixtures raises the question of what
is meant by disparate masses, i.e., what is the minimum
value of m/m) required for the effect to be observable?
One might also question whether the hard-sphere model

2 )
Normolized shift
FIG. 3. Stokes spectra for the same mixture as in Fig. 2, but
with p2=1.3 bars aad  scattering angle of 22.5°, The triangu-
Iar markers have the same meaning as in Figs. 1 and 2

of the theory is applicable for this mixture. An analogous
slow-mode contribution to the spectrum of SF+Hj mix-
tures has been clearly identified, and it is concluded that
this mode is, in general, much more readily observed be-
cause of the highly favorable polarizabilty racos that can
be achieved for a variety of different mixtures.

‘The authors wish to thank Professor E. G. D. Cohen for
suggesting this problem, for many illu di
sions, and for a critical reading of the manuscript.

'A.( Campa and E. G. D. Cohen, Phys. Rev. Lett. 61, 853

1988).

2W. Montfrooij, P. Westerhuijs, V. O. dc Haan, and . M. de
Schepper, Phys, Rev. Leul. 63, 544 (1989).

3A. Campa and E. G. D. Cohen, Phys. Rev. A 39, 4909 {1989).

“4A. Campa, Ph. D. thesis, The Rockefeller Uaiversity, 1989.

3J. O. Hirschfelder, C. F. Curtis, and R. B. Bird, Molecular
Theory of Gases and Liguids (Wiley, New York, 1964).

61, G. Hayden and J. P. O'Conncll, Ind. Eng. Chem, Process
Des. Dev. 14, 209 (1975).

7a;=50%10~ e’ (for SF¢) was determined via the Lorentz-
Lorenz relation using density and refractive index data from

Ref.8.
SH. Kiclle, R. Penncy, and M. J. Clouter, J. Chem. Phys. 88,
5846 (1988).















	001_Cover
	002_Inside Cover
	003_Blank Page
	004_Blank Page
	005_Title Page
	006_Copyright Information
	008_Abstract
	009_Acknowledgements
	010_Table of Contents
	011_Table of Contents v
	012_List of Figures
	013_List of Figures vii
	014_Chapter 1 - Page 1
	015_Page 2
	016_Page 3
	017_Page 4
	018_Page 5
	019_Page 6
	020_Page 7
	021_Page 8
	022_Page 9
	023_Page 10
	024_Page 11
	025_Chapter 2 - Page 12
	026_Page 13
	027_Page 14
	028_Page 15
	029_Page 16
	030_Page 17
	031_Page 18
	032_Page 19
	033_Page 20
	034_Page 21
	035_Page 22
	036_Page 23
	037_Page 24
	038_Page 25
	039_Page 26
	040_Page 27
	041_Page 28
	042_Page 29
	043_Page 30
	044_Page 31
	045_Page 32
	046_Chapter 3 - Page 33
	047_Page 34
	048_Page 35
	049_Page 36
	050_Page 37
	051_Page 38
	052_Page 39
	053_Page 40
	054_Page 41
	055_Page 42
	056_Page 43
	057_Page 44
	058_Page 45
	059_Chapter 4 - Page 46
	060_Page 47
	061_Page 48
	062_Page 49
	063_Page 50
	064_Page 51
	065_Page 52
	066_Page 53
	067_Page 54
	068_Page 55
	069_Page 56
	070_Page 57
	071_Page 58
	072_Page 59
	073_Page 60
	074_Page 61
	075_Page 62
	076_Page 63
	077_Page 64
	078_Page 65
	079_Page 66
	080_Page 67
	081_Page 68
	082_Page 69
	083_Page 70
	084_Page 71
	085_References
	086_Page 73
	087_Page 74
	088_Page 75
	089_Appendix
	090_Page 77
	091_Page 78
	092_Page 79
	093_Blank Page
	094_Blank Page
	095_Inside Back Cover
	096_Back Cover

