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Abstract

This thesis is concerned with techniques for determining the properties of

singularities in the flow ficld. Okubo and Ebbesmeyer (1976) and Moli

and Kirwan (1975) doveloped a regression technique that has hecome a s

dard for determining velocity gradients of the [low fiell. Kir

an (1988) has

ally inadequate be-

pointed out that Uis regression Lechmique is
cause it assumes a paradigm with the flow contre fixed to the centroid of the
drifter cluster. Kirwan cf al., (1988) fornulated a solution to this dilemma

by inverting non-linear solutions obtained by Okubuo (1970) for motion wear a

flow field singularity with specified differential kinematie properties (DKP).
The DKP are horizontal divergence, vorticity, stretching and shearing defor-
mation rate. We solve the non-lincar equations of Kirwan ef al., (195%) to
obtain DKP and the position and velocity of a flow field singularity from
a single drifter trajectory. This solution (henceforth called the OK solu-
tion) is mathematically more conise than that presented in Kirwan el al.,
(1988) and corrects previously undetected algebraic errors in e published
literature. It has boen successfully tested using artificially generated data.

The method is fundamentally limited due to the requirement that DK are



time invariant. It also has the undesirable feature that it requires fourth
order time derivatives of data. A new method, the HS method, that uses

ssion withont artificially setting the flow centre to the cluster centroid

reg

is presented. Tt has also been successfully tested by application to artificially

generated data. The DKD are successfully recovered by the 1S providing all
drifters in the cluster are being moved by the same unique singularity in the
flow field.

Applying all three methods to three neighbonring drifter tracks measured

on Sable Island Bank clearly indicated the limitations of all three methods.

“Ihe regression technigue of Okubo and Ebbesmeyer (1976), the OE method,
Failud” hecause the flow centre was not at the cluster centroid position. The

s in that it can not distinguish between

OK method gives ambiguons resul
solidd body rotation abont a point and a slab that oscillates. The lack of a
single well dofined flow centre for all three driftor trajectories was sufficient
1o cnsure the 1S method gave meaningless DKP that had large intermitient
(lnctuations. Nevertheloss, given Lrajectories near a well-defined flow field
singularity, we can be assured that both the HS and OK method can be used

Lo obtain the position, velocity and DKP of the singularity, Depending upon

the separation scales of the drifters, the HS method can be much less or more



sensitive to noise than the OK method.
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Chapter 1

Introduction

The objective of this thesis is to analyse flow fields hy studying drifter tra-

jeclories. A trajectory is a path of a current follower, an object that follows

the water movements. We are especially i 1 in determining Differen-

tial Kinematic Properties (DKP) of the fluid flow in the vicinity of velocity

singularitics, the stationary points (relative to some spatially uniform trans-

lation) in the flow field. In I flow, these propertics can cause
some {luid surface o be increased /decreased in area, rotated, stretched or

sheared (Sancier, 1953; Molinari and Kirwan, 1975; Sanderson, 1984).

Thet

are several reasons why we analyse drifter trajectories. The dis-

tribution of material, eg. biota, can be more directly related to Lagrangian



measurements of velocity than Bulerian measurements. Drifter trajectories

can cover broad range of scales including large-scale lows and mesoscale ed-

dies (Ponlain and Niiler, 1989) with high spatial resolution. Spatial resolntion

of Lagrangian techuiques is better than most Enlorian techniques with the

possible exception of satellite observations. Spatial resolution of L

observations is adequate for comparison with eddy-resol ving numerica

els (Kirwan et al., 1990).
The DKP are of interest for a variety of reasons. Flow field propertics of

drifter data, such as DK, can be assimilated into eddy-resolving madels for

purposes of data interpolation/extrapolation and flow field predietion, DRI

of the flow field provide a direct link to dynamical forces. For example, by
using a group of drifters, Reed (1971) calenlated divergence from changes in

a cluster’s arca, and vorticity from changes in a cluster’s orientation. "This

provided a link to dy b5 inthe Alaskan enrrent.. Sanderson

anical proces

(1987) inferred dynamic

via a vortieily equation and analysis of icchery, tra

jectories. Bower (1989) examined the dynamics of lage-amplitnde meanders
by estimating potential vorticity from the trajectories of RAFOS floats in

the Gulf Stream. These floats follow an isopyenal surlace of fluid. Padnan

and Niiler (1990) deployed ARGOS drifters, satellite-tracked drifting Inoys,

2



in their attempt Lo investigate the dynamies of a cold-water jet. Finally,

Okubo (1978) has shown that DKP can play an important role in deter-

ibution of material in the occan such as an accumulation of

g the dis
moplankton in parallel rows al the ocean surface (Owen, 1966).

Okuho (1970) investigated the trajectories of particles due Lo singularity

strnetures in the flow field with varions DKP. He particnlarly looked al how
flow field singularities alfocted dispersion of floatable particles due to turbu-
lenee, ‘This work interpreted observations of reversal and suppression of the
dispersion of floating objects in Lake Huron (Csanady, 1963) as being cansed
Iy convergent singularities callod surface confluences,

Regression methods were then developed in order to obtain DKP from

observations of drifter clusters, The basic method was developed by Molinari

and Okubo and Ebbesmeyer (1976). Okubo et al., (1976)

extended e technique to calenlate Lagrangian deformations and eddy diffu-

sivitios, kinematic variables that canso a horizontal spreading of the clusters,

of the residual motion. Kirwan and Chang (1979) considered the effect of
biasing die to sampling frequency. Sanderson et al., (1988) showed how

previous investigators had calenlated the number of degrees of freedom in-

ectly when they calenlated eddy-diffusivities from residual motion caused

3
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by small-scale turbulent eddies.

Ki

wan (1988) pointed ont bias problems with the regression model para-
digm in the OE method of Okubo and Ebbesmeyer (1976). Let us consider

a cluster of drifters embedded in a

hown in

jonary anticyelonic eddy
figure L1 Here, the initial and later positions of the drifters are denoted
by the dashed and solid cireles, respeetively. §; and by are the positions of
the flow centre and a drifter with respect to the eluster’s centroid. The hias
problem in this particular case is dne to the fact that the clister’s centroid
does not coincide with the flow centre of the eddy. For a small-area cluster

(I < 1), the OF model would show that the eddy moves with certain

velocity that equals to the value of the DKP multiplied by &, This is not

true sinee we are dealing with a non-moving cddy. Further, the estimated

DKP using this madel would also become biased.  Enlarging the s

arca by incre

ing Ly will not solve the problem becanse the eluster iy

encounter another bias factor produced by yet larger-scale shear across Uhe

flow. Kirwan (1988) demonstrated that, the above regression techuigues gave

fundamentally nnreliable estimates of the DKP of flow field singularities.



O = difter
x = centroid

\ © =flow centre

Figure 1.1: The displacerment of a cluster of 3-drifters in a stationary anti-
cyclonic eddy.

Kirwan et al., (1984, 1988, 1990) found an alternative method for calcu-
lating DKP from drifter trajectories. They assumed that drifters were near a
flow field singularity and then inverted the solutions of Okubo (1970) to ob-
tain DKP from the drifter trajectory. This method (subsequently called the

OK method) is an elegant way of obtaining flow field singulari P

from one drifter trajectory. However, previous tests, made by Sanderson and
Goulding (personal communication) on simulated data, indicated that the
solutions reported by Kirwan et al., (1988) had errors. This is not surprising

in view of the algebraic complexity of the inversion of the very non-linear



equations of Okuho (1970).

The present work finds and corrects algebraic errors in the solution of

Kirwan of al., (1988) and gives more concise expressions for the sulutions,
Having made these corrections, the OK method s tested by analysing pen-

s of

erated data. By adding random motions we evaliate how OK estin:

dilferential kinematic propertics of the flow field might he alfeeted by mea
surement error. The OK method reguires determination of high ordes time

derivatives of the drifter trajectory.  Dilferentiation of experimentally oh

¢ process. Thus conside

Lained drifter trajectories is an inherently nois
smoothing is required.
A new regression method is developed for calenlating DRI from drifter

ion technique does not snffer from the assnmption

clusters. This new reg

s cluster

that the contre of the flow fiokd singularity s coieiedent with o

that

sumptions of the ORK method,

centroid, Instead it uses one of the

. We

the velocity of the flow centre is steady, to close the statistical analy

sequently refor this new regression technique as the 1S method. Then, we

sul

is of computer generated

compare the OK, 1S and OF methods in an analy

and real oceanie data.

Having obtained the tools for determining the flow ficld

6



n ocean may consist of eddies

fo. Sine

ler the following ques

wihl Lo cons

that are nearby measure the same flow field

al all seales, do two dr

an interesting answer in the case of

will provide

singularity? Our anal,

otian Shell,

three drifter trajectories on Sable Island Bank,




Chapter 2

Calculating the Properties of
Flow Field Singularities from
the Trajectory of a Single

Particle: The OK Method

Generally a particle’s velocity will be constautly chianging as it moves wnder
the influence of a flow field. However, we expect that there might be points

in the flow field where, relative to some uniform translation, the components



ity wonld vanish simultancously (Minorsky, 19625 Okubo,

of particle’s vele
1970). Such points will be called stationary or singular points in the following
work. We will consider that, these stationary points define the position of a

flow centre (that may be translating). Near the flow centre we assume that

ance from the flow

in the di

the velocity can he expanded as a Taylor seri
centre. Thus, sufliciently close to the flow centre the first order terms in the
Taglor expansion dominate and the flow fields kinematic parameters can be
deseribed using linear velocity gradients. Flow near singularities can have a
variety of kinematic properties so that particle trajectories may be stable or
unstable to small perturbations about the singularity position. We will be

concerned with two-dimensional velocity fields, which is consistent with the

constraints on the motion of most commonly used Lypes of occanic drifting
Duogs. However, the methods throughont this thesis could be generalized to
3D,

Figure 2.1 shows the commion types of singularity (Okubo, 1970): (1)
n infinite number of streamlines

points of divergence (convergence) whe

meet; (2) Tines of divergence (convergence) from which au infinite number of

-

st s diverge (converge) asymptotically; (3) neutral or saddle points
where a couple of streamlines meet and the others converge and diverge

9



asymptotically; (1) vortex point abonut which streamlines form ellipses. Some

examples of singularities can be found in the ocean. Line of convergence can

he observed parallel Lo the coast as a result of a horizontal flow toward the
coastline (Bjerknes of al, 1911; Newmann and Pierson, 1966). The vortes
point or centre can e found as a result of warm/eold core rings (Parker,
1971; Richardson ¢l al, 1978).

In general, flow fields cam have a very complicated spatial steueture, 17 we

sion of velocity

were to deseribe such a fow fiell nsing a Taylor series expa
as a function of space then many terms with high order spatial derivatives

wonld be required. In the vicinity of the singularity, however, the flow field

can be approximated in terms of linear velocity gradients.

A scaling argument on the Navier Stokes equations shows that the differ-

ence between velocity at a point ¥ and a veloeity at a second point a distance
€ away from 7 scales proportional to (' (Sehertzer and Lovejoy, 1989). Thus

velocity gradients will scale as =23, Kawai (1985) h

ompiled observations

that are consistent with velocity gradients scaling as £=** for a wide range

of uceanic scales, A consequence of this scaling is that as £ = 0 the velocity

gradients tend to infinity. Ultimately molecular viscosity defines a smallest
possible scale € over which velocity can vary substantially, so velocity gradi-

10



ents do not become infinite in the vecan. But velocity gradients do become
larger as ¢ becomes smaller. Furthermore, measurements are seldom able to

hle seales of occanic motion.

resolve more than a narrow hand of all the pos
Thns a drifter trajectory, for example, is a smoothed version of the real flow.

Nevertheless, velocity gradients due to the smaller scale eddies resolved will

he greater than those due to the larger scale eddics. We might expect, there-

fore, to find localized regions in the flow field that have strong gradients. For
mustly istorical reasons (Okibo, 1970) we call these points flow singularities

and expeet that it is sensible to deseribe the flow field near singularities as

ylor series expansion in terms of distance from the singularity.

A search for the frequency of occurrence and properties of oceanic flow
lield singularitics is therefore important for two reasons. First, flow field
singularitics are likely to be our clearest, mathematical window into the highly
non-linear dynamical processes that often control fluid flow. Sccond, the
horizontal distribution of particies or floatables can be greatly influenced by
properties of any nearby flow ficld singularities. Third, the concept of flow
field singularities can be used to interpret flow field pattern resulting either
Stoke:

from Ui solutions of Navie and continuity equations close to the

singularitios or those obtained from i Classifying singul

11



based on local solutions of the Navier-Stokes and continuity equations has

been done before (Oswatitsch, 1958; Rott, 1958, 1959; and Perry and Fairlie,
1974). This enabled Perry and Chong (1987) to identify some singularities
such as nodes, saddles, foci from the dye patterns on the downwind side of a
missile-shape body.

In this section we follow Okubo (1970) and caleulate particle trajectories
near flow field singularities with known DKP. We then follow Kirwan of
al., (1988) to solve the inverse problem, namely to find DKP of a flow fickl
singularity given a particle trajectory in the vicinity of the singularity.

Following Okubo (1970) the lincar velocity field near a flow field singn-

larity can be expressed using the Taylor series expansion as

dr
—=a " 2.
Gty (21

= —=ce+dy (2.2)
d

dl

where a” = 2, 1" = %, ¢ =

are the velority gradients

pendent of time (i.c. constants), and r and y are positions relative to the
singnlarity point. Note that we are assuming above that the singularity does

not move, i.c. its translation velocity Uy = Vi = 0 and we have neglected

the higher-order terms in = and y. These veloeity gradients can be

12



to the DKP a, b, c and d as:

(23)
o o
o= by
where the DKP are:
stretching deformation rate = o =% -5
shearing de formation rate = b =24+ 2
= 1 5y
(24)
vorticity = c=k_m
divergence ==

These DKP are often more readily related to our usual formulations of dy-
namical processes than the velocity gradients. The stretching deformation
rate is a measure of change of shape by different rates of stretching along the
x and y directions without change of area or orientation. Positive a describes
a stretching in the z direction and shrinking in the y direction. The shearing
deformation rate can be related to the change of shape and/or distortion of
fluid elements as a result the velocity varying in a direction perpendicular to
the velocity. The vorticity implies the rate of change in orientation without
change in area or shape, so it represents the rotational nature of the singu-

13



larity. The horizontal divergence is a measnre of the fractional rate of area

increase (Sancier, 1955; Okubo, 1970; Molinari and Kirwan, 1975; Kirwan,

1975). The above DKP are not independent of the coordinate system and a

principal coordinate system can be defined so that the shearing deformation

vanishes and the flow

terized by a, e, d and the orientation of the

principal axes (Batchelor, 196

Saucier, 1953).
The DKP are related to varions types of singnlarity structure as shown in
figure 2.1. The choice of axes can he refated Lo the chiaracteristie roots rosult-

ing from manipulating (2.1) and (:

2) as will he di wd next. Sehematie

trajectories near the low centre are drawn on the Fignre, The shape of the

urajectory depends upon the re

ve importance of stretehing-shearing de-
formation and vorticity (plotted on the ordinate) and the divergenee (plotted

on the absisc;
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LINE OF DIVERGENCE
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POINT OF DIVERGENCE

VorTEX

Figure 2.1: Classification of singularities in the parameter space for the linear

velocity field. Adapted from Okubo (1970).
Defining the differential operator D ( ) = & () we can rewrite (2.1)
and (2.2) as
(D-a)z-by=0 (2.5)
(2.6)

~C o+ (D—d" )y=0

Eliminating = by multiplying (2.5) by * and operating on (2.6) with (D—a")
and adding the resulting equations gives

(27

D= (a*+¢) D+a ¢ — b d* Jy=0.



The characteristic equation of (2.7)
M)t e = A =0

has the following roots.

d(a? 452212
o= Leseeedin |
(2.8)
= [d=(@4b2-c)t2
= 2

ry

The roots have been expressed in terms of the DKP «, b, ¢, d by using (

Providing that the roots r, r; are distinct, i.e. a* + b* — ¢* # 0, the general

solution for y is

y(t) = Cre™* + Coc™* (2.9)

where  and C; are arbitrary constants. We will consider the case 7y = 1
later in this chapter. Substituting the solution for y as given by (2.9) into

(2.6) we obtain the following solution for .

ofy e BRI = YO -

The initial particle position relative to the singularity is:
2(t=0)= Xo (2.11)
y(t=0)=Yo (2.12)
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Setting £ = 0 and substituting (2.11) and (2.12) into (2.10) and (2.9) respec-

tively, yiclds

(2.13)

(2.14)

Substitnting (2.13) and (2.14) into (2.9), we get

{(bXo+ eXo — aYa)g + Yot + {=(bXo & cXo — aVe)q + Yo}ers!

ne) = >
= ,';’((% — Yok (b+ Ko + g«% )Y (b+ )Xo}
{Xo(b+ ©) + Yo(p — a)}ent + {Yo(p+0) = Xa(b+ )}e™} .
- (2.15)

and substituting (2.13) and (2.14) into (2.10) gives

0 {Xu + (aXo + bYs — e)o)g} et + {Xo — (aXo + bYy — cYo)q}e™'}
") = £
= HG+ %ot (= ke 4 Lz — )Xo = (1= o)
{Xolo + @)+ Yaf0 = e SRR IES A
where

1 ST
B (a2 462 = )2 (2.17)

Note: that, we have expressed (2.15), (2.16) and (2.17) in terms of the DKP

vather than velocity gradients.



The value of p? together with the divergence d were nsed by Okabo (1970)

to classify the flow field singularity

fnward fontward nodal, saddle, in-
ward /ontward spiral, vortex and fines of convergence, Okubo (1970) called
P the singularity paramotor.

Kirwan el al., (1988) inverted the above solition in their attempt to

obtain the Kinematic properties of rings from trajectories of drifters in e

Gulf of Mexico. They divided the veloeity field into translation and swirl

components, This Kind of treatment can be foune in atmospheric studies.

.. the theory of frontogenesis (Pettersson, 1935). T fact. this s still the

Taylor series expansion near the singularity point. Here, Kirwaw o/ al., (19588)

allowed the flow field singularity i.e. the ring centre to move.

w = Uptu, (2.18)

v o= Vp+u, (2.19)

The subscripts T and s denote ‘translation’ and ‘swirl', respectively. The

translati is the translational velocity of the singnlarity position

in the velocity field. The swirl velocity of a particle near the flow centre

describes rotation and other motion relative to the t

wslating contre of the
flow singularity. The differential kinematic parameters can, therefore, he
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related to these swirl velocitics

we = (d+a)e/2+(b—c)y/2

o o= (b c)ef2 4 (d—a)y/2
Substituting (2:20) into (218) and (2.21) into (2.19) gives

uell) = Upic+ (d + ax)ei/2 4 (b = cx)ye/2

op(t) = Vit (b + e)an/2 + (di — ar)ye/2

(2:22)

(2.23)

where the subscript & indicates values caleulated in the time interval (, <

L < gy The expressions for . and gy obtained from (2.15) and (2.16) have

the form:

o) = AR e ae) o+ Vi(b — e)elrst=nl

= [Xe(as = pi) + Ye(by = ci)]el2 =40} /2

D)) = {[Xelby + ) + Vipi = ap)elrst=o))

(=Xl + cx) + V(e + a)]el =40y /2,

(2.24)

(2.25)

i and ¥ are the coordinates of the fluid parcel relative to the singularity

point at t =t The position of the particle relative to the singularity for
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Limes Gy € 1< L is given by wl) and ge(t). Similarly ug(1) and 0g(1)

are the total velocities at times Gy € 0 < Ty, The variables ag(t), oy(0).

wr(l), ye(t) all vary with £ over the interval 1, < 1< gy, This variation
with respect to time occurs as a consequence of Okubo’s solutions (equation
(2.15) and (2.16)). Translation velocity Upg, Vi and the DRI ag b g

dy are all taken Lo be constant over the interval 1 < 1 < fgy. although

they may change, of course, from interval to interval, In another words, this

assumption requires that. U, Vi, a, b, e, d are slowly changing over the tine

interval between fixes.

Substitnting (2:21) and fnto (2:22) and (2:23) and evaluating them

at 1= 14, with the subscript & suppressed, gives:

W o= Up+{(d+a)[Xat Xp—Xa+ Xp+¥(h=e)=V(b—e)+
(b= X(b+e)= X(b+e)+Vp—YatVYatVpl}/p
v o= Vp+{(b+o)Xat+Xp—Xa+ Xp+Y(h—e)=V(b=r)+

(d—a)[X(b+e) = X(bt )+ Vp = Vet Yt Vpl}/dp.
After cancelling and rearranging terms, the above equations reduce Lo
2u = 2Ur+(a+d) X+(b=-e) ¥ (2.26)
20 = 2Vp4(bte) X+ (d=a)V. (2.27)
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It is elear that we face a problem in which we have eight unknowns Uy, Vi,
X, ¥, a, b, e, d and only two equations (2.26) and (2.27) presently available

 equations. These additional L

to solve for them. We need anoth

can be obtained by differentiating (2.22) and (2.23) with respect to time.

Taking the first derivative with respect to time of (2.22) and (2.23) and
assuming as hefore that a, b, ¢, d, Uz, Vi are constant gives:

t(b-ay

ot

o (bt + (d—a)y
= e

Now, in general we can not expect a, b, ¢, d, Ur, Vr to be independent of
time. But we assume that, the time scale for them to change is long compared

ge. This condition must be satisfied for

Lo the the time seale for , y to cha
&,y sufliciently small providing «, b, ¢, d are not all identically zero. Whether
or ol e, y are sufliciently small for a given data is something that must be
checked for as part of the data analysis. Here and subsequently, the prime
denotes dilferentiation with respeet to time. Substituting (2.24) and (2.26)

into the above equations and evaluating them at £ = ¢ gives
d = () {Xp+ Xat Y(b— o)} —ro{Xa— Xp+ Y(b— o)} +

(b= {X(b+c)+Yp-Ya}+r{=X(b+c)+ Yp+Ya}]}/4p
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V= (b N+ X+ V(b= )} = ra{Na= Xp+ V(b= )]

(d = @) {X(b+ )+ Vp = Ya} 4 ra{=X(b+ )+ Vp -+ Val}p.
The above equations can be rewritten as:

au = X[(a+d?+ 0= +2Y (b-c)d (2.28)

do = V[(d=a) + = +2X (b+c)d (2.29)

Taking the second derivative of (222) and (2:23) with respect to time

of then substituting for & and y nsing (2:21) and (225), and evalwating the

resulting equations at = Iy, gives

v (dta)e" + (b= c)y”
v s T

= {(d+QpH{Xp+ Xa=Y(b=c)} —r3{Xu— Xp+ V(b=)}] +

X0+ ) +Yp=Ya} +13{=X(b+e)+ Yp+Ya}]}dp
1

_ Q'+ (d~a)y”
- 2

= {(b+ P Xp+ Xa+ V(b= )} = 13{Xa— Xp+ V(b= e)}] +
(d= @) {X(b+c) +Yp—Ya} +

13 {=X(b+ )+ Yp+Ya)l}/1p
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and, after rearranging terms and using the equalities

p @+ p
Bl = —

ani

the above equations become

S = X[(d+a)+ (6 - F)(3d+a)] +
Y{(b— )3 + a* + 1 — )] (2.30)

80" = V[(d—aP+ (B - A)Bd— )] +

XI(b+)(3d* + a® + > = &), (2.31)

Applying the same procedure for the third derivative with respect Lo time
of equation (2.22) and (2.23) gives

wo (A a4 (b= )y
W SR RS,
3

= {(d+a)pH{Xp+Xa=Y(b-e)}—13{Xa= Xp+V(b—c)}]
+ (b= X(b+e)+Yp—Ya} +

—X(h4 ) +Yp+ Y} p

(bt "+ (d =)y
= O Tt

8
vy




= A+ YD+ Xa= V(b= )} = i{Na = Xp+ V(b= )]
(A= DX+ +Vp=Vah+

B{=X(b+ )+ Vp+Val]} 1 p.

After rearranging terms and nsing the equalitios

T
Hapd o 2 +§u. P
and

p Gpd
R - i%

we gel

160" = AVd(b =) + 1 = 2+ d?)

+ X[(a® + 6" =+ d*)?

+ dad(a® + 6 = * 4 d)

+ AP (@ + 0 = cH)] (2.32)
160" = AXd(b+ e)(u? + b = ¢ 4 %)

+ Y [(af b= )t

— dad(a? + 1* = * 4 d*)

+ Ad*(a* + b = c*)]. (2.33)
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The above eight equations, from (2.26) through (2.33), are equations (A3)
to (A10) of Kirwan et al., (1988).
Putting I' = a® 4 1% - ¢ + d?, we can rewrite equations (2.28), (2.29),

(2.30), (2:31), (2.32), and (2.33) as

2Xda+2Ydb-2Yde = 4u' — XT (2.28")
—2Yda+2Xdb+2Xde = 4’ —YT (2.29")

X@d* +T)a+ Y& +T)b-Y2 @ +T)e = 8u" + Xd(2d4* - 3T) (2.30")
—YQ&E+ DN+t X2+ T+ X(2d*+D)e = 8"+ Yd(2& - 3T) (231')

4PXda +4TVdb—4TVde = 16u" + X(4d' —4d’" ~T?) (2.32')
—4TYda + 4TXdb + 47 Xde = 16v" + Y(4d* — 42T - T?) (238').
We now solve the equations analytically. Using (2.28') to eliminate ¥’

from (2.30') gives

X@d-T) = 42F4+T) v ~16d". (2.34)

Using (2.29') to eliminate X from (2.31') gives
YR&#-T)? = 428 +7) v —16dv". (2.35)

Using (2.28") to eliminate ¥ from (2.32') gives
X(@d@-T)? = 8’ —16u". (2.36)
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Using (2.29') to climinate X from (2.33") gives

VEE-T? = 8§ —160"

Using (2.34) to eliminate X from (2.36) gives

AR =T) ' =16 (" d—u")

and similarly (2.35) can be used to climinate Y from (2.37) to give
A2 =T) v =16 (0" d=0"). (2.39)

Using (2.38) to eliminate I from (2.39) gives

i o Bmi (2:40)

w'e" = v'n"

We note that

2d8-T = A M= d*~ bt (2.41)

where M? is the determinant of

(d+a)/2 (b=e)/2
M = (242)

(b+¢)/2 (d=u)/2
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Fauation (2.41) indicates that M? can be substituted for 2 & — T in hoth
equations (2.38) and (2.39). Bliminating d from the resulting equations gives

wo -y

M = g 2.4
L P —— (243)

Thus we have solved for d nsing equation (2.40) and have aother equation

(243) relating the remaining unknown DKP to d and to the velocity deriva-

lives. Now, we are in a position Lo solve the equations for the remaining

variables X, ¥, @, band e. Note, we can solve this problem withont defining

M, bt do so in order to preserve parallels with Kirwan e al,, (1988).
Substituting (241) into (2.36) gives

(d? —2M*' —u"

X e (2.44)
Substituting (241) into (2.37) gives
Y (2.45)

We still have three vatiables a, b, ¢ to solve for. Eliminating a from
(2287) and (2:29°) Lo give an expression for b in terms of ¢ as

8d(Xv' + Yu') = 4XYdl — dP(X? = Y?)c

b= 1B(X2 1 77)

(2.46)

<
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Substituting the above value of b into

28°) gives

@ = {AP(X? 4 V) — XT) = 20V [Sd(N o' + V') = ANVl

FL6PXY e} (8P X (X + V2)). (247)

Substituting the above valies of @ and b into (2.11) gives an cquation that,
is quadratic in . To simplify the equation and solve for ¢, we use computer
algebra software (ie. MACSYMA). It turns ont that the equation has re-
peated roots, We then substitute the solution for ¢ into (2.16) and (2.67)
to solve for a and b, Using T' = 22 — A4/, (240), (244), (215), (2.13)
we substitute for T, d, X, ¥, M?in the resulting cquations to obtain the
following solutions in terms of the time derivatives of velocity.

Wy =2 v

« R (248
w'v" =" )
o "o " 4
b= T (249)
w'v" —u'v'
S o 4 "
¢ = (2.50)

wo” —u"v
Our solutions for X, Y, a, b, ¢ are all different, from those of Kirwan ¢l al.,

(1988). Only in the case of d does the OK solution give the same expression

as Kirwan el al., (1988).
To sum up, we present all solutions for the DKP and positions relative
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to the flow centre obtained using the OK method as below

u'v

wow oms
wv +uv
1

Yo

B
R R
b " —vv —uwutuu

"

u'v'

00" =" + " = "

' — "y

(= 2MY) — "
M

(= 2M* — "
M )

From (2.26) and (2.27) we see that, the swirl velocity defined by (2.18) and

(:2.19) can he written as
W = %(a X+ %(z,- oy (251)

3 B %u, FoOX + % i-a)Y (252)

and the trangiation velocity of the flow centre is
Up = u—u, (253)
Ve = v—u, (2.54)

The above solutions were obtained on the assumptions that a® +b? —¢* 3

0. ie. the charecteristic roots in equation (2.8) are different. Let us now use

2



continuity to show that the above solutions also hold for the multiple oot

case, i.e. a4+ 0

0. A point of divergence/convergenee is an exatmple

of such a case. Let a, by ¢ be such that o 4 6 — 0. 10 we perturh the

parameters so that @ = a,b = b+ ¢, & = e,d = d, the velocity field hecones

then, equations (248, 2.19, 2.50) still hold sinee & + 5 — & # 0. This allows
us to caleulate for @, b, & nsing equations (248, 249, 2.50). Note that, here
we have to calenlate up Lo third order time derivatives from the pertarbed

flow fields (cquation (2.55) and equation (2.56)). The results are

« = +0(0) (2.87)

i = 71}!’ el 'U"—-u”u’ +uu +”(() (2;’“)
P

g BE SR UG HN oy (2.59)

" — v’

11 we let ¢ — 0 into the above equations, we find that these equations will

reduce to (248, 249, 2.50). Similarly, these results are also obtained by

perturbing a and ¢. From this, we deduce that the OK solutions still hold

for both the unrepeated and multiple root cas
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Chapter 3

Testing Our OK Solutions

I the previans ciapter we showed how a single particle trajectory would be
used to caleulate: the position X, Y of the particle relative to the flow centre
wsing (244) and (2.45), the translation velocity Uy and Vy of the low centre
wing (253) and (2.54) and the DKP a, b,¢, d of the flow centre using (2.48),

(249), (250) aud (2.40), respectively. We will now test tiese solutions using

artificially generated data that s known flow properties. Several artificially
pencrated data sels covering cases of pure stretching and pire shearing with-

ont trandation velocity and pure rotation with wiform translation velocity

are wsed, We construet the sinulated trajectory of a particle from its initial
position relative lo the flow centre Xo, ¥o; the translation velocity of the flow
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centre Up, Vg and the DKP @, by ¢, o of the flow field. The OK wethod
i then wsed Lo caleulate the kinematic parameters of these artificially gou-
erated trajectories. Kirwan's solutions (Kirwats ef al., 1958) will be used 1o
caleulate kinematic parameters from the same data sets. From now on we
will refer to the solution given by equations (A), (A1), (AL2), (AL8), (A1),
(A15), (AL6), and (A17) of Kirwan cf al., (1988) as the Kirwan solution,
This solution is incorrect, bt has been wsed by others (Lewis and Kirwan,

1987; Lewis cf al.,, 1989; Indest f al., 1989; Kivwan ¢f al., 1990) to caleulate

DKP of drifter data. They therefore merit some study to interpret these
drifter analyses.

The OK method requires taking high order derivatives of the particle
trajectory. High order derivatives are nunstable to hoth measurement ervors
and trajectory fluctnations caused by small seale eddies. We will, therefore,
analyse the robustness of the OK method by applying it to an artilicially
generated trajectory to wlich a known amount of random noise has heen

added.
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3.1 Pure Stretching

We niow consider the case of an eddy with pure stretching and no translation
velocity. The streamlines for such a flow are sketched in Appendix B. In this
case, the absolute position (#7) of the particle is the same as its position
relative to the flow contre and is obtained from (2.15) and (2.16) with 2,y
replaced by & .

To caleulate the time derivatives numerically, we use a forward differenc-

ing scheme for the first three points (Mathews, 1987)

) = —3a(1) + ;ﬁ) —E( +20) 1)
=3g(4) 4+ 4j(t + A) = g(L +2A
o(l) = w, (3.2)
centered difforencing at the middle points
—F P) & — 8t — E(t - L
ary = HLE2)48 :L(I,+A‘)2 As (A=)
o) = —i(t+28)+8 gL+ A) 84t — A)+y(t— ?A)’ (3.4)
12A
and a backward differencing at the last three polnts
ut) = (3.5)
ol) = i) -1 W-l—ﬁ)ﬂi(l —24) (36)
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Here, A denotes the time interval hetween two conseentive points in the time

. Throughout the thes

the above numerical differencing schemes will

be used to oblain up to the fourth order time derivatives of positions. Tests

were also done using time derivatives obtained analytically from (215) and

(2.16), but these are not reported here, These tests gave, of conrse, the same

results as obtained using numerically

fenlated time derivatives,
We set the stretching deformation rate at @ = 0.1, and the other DKI
al b= ¢ =d=0. Let the initial position with respeet to the flow centre

(which is also the absolute initial position in this ) he Xo = 0,003 and

Yo = 0.4. The DKP and the position have a unit of time™" and unit distance,
respectively. The time interval between suecessive positions is chosen Lo be
2 units. Substituting these values for Xy, Yo, a, b, ¢, d into equations (2.15)

and (2.16), we can obtain a time series of positions. The same data set. is

used to evaluate Kirwan’s solutions (Kirwan el al., 1988). From now on, the
numerically calculated results of the generated data using onr solutions to the
OK problem will be labelled ‘OK’. Values obtained from the generated data

using solutions given by Kirwan al al., (1988) will he: labelled as *KIRWAN?,
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oK

DKP

Figure 3.1: The DKP calculated, using OK (above) and KIRWAN (below)
solutions, from trajectories with pure stretching deformation.

Figure 3.1 shows time series of the DKP calculated from the simulated
trajectory with pure stretching motion. The upper diagram is obtained by
using the OK solutions ((2.40), (2.48), (2.49), (2.50)) and gives the expected
values of all parameters, e.g. a =0.1, b=c= d = 0in unitsof time'. These
parameters are constant and in accordance with those used to generate the
trajectory. The lower diagram, on the other hand, is produced by KIRWAN

solutions. It shows that only the divergenceis calculated correctly. The other
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three parameters do not conform with those used to generate the simulated

trajects

Note that in both the upper and lower diagrams, we donot inelude some

results at the beginning and at the end of the time series sinee it containg

spurions features. This is caused by the mumerical differentiation process

that is being used. In figire 3.2 we show the position of the particle at

intervals A. Clearly, at small and large times the particle moves quickly in
one direction and slowly in the other direction, This leads to mmerical errors
at small and large times. We do not have this problem when making use of
the analytically computed time derivatives of equations (2.15) and (2.16).
Having calculated the DKP, we caleulate the position of the particle rela-
live to the flow centre using (2.44) and (245). The position of the flu centre

ive fo the flow centre

is calculated by subtracting the position of particle
from the absolute particle position gencrated nsing (2.15) and (2.16). The
result, is shown in figure 3.2. Tn this figure, the **' symbol denotes the par-
ticle’s trajectory and the ‘o’ symbol corresponds to the flow centre, We find

that the OK solution gives the flow contre at the origin (0,0) where it should

be.
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Figure 3.2: The particle’s trajectory and the calculated position of the flow
centre for the pure stretching case using OK.

The above procedures are used again to locate the flow centre from the
KIRWAN solutions, i.e. subtracting (A.13) and (A.14) of Kirwan et al.,
(1988) from the particle position. The result is presented in figure 3.3. In

this figure, the flow centre moves far from the origin, whereas it should be

stationary at the origin.
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Figure 3.3: The particle’s trajectory and the calculated position of the flow
centre for the pure stretching case using KIRWAN.

Having obtained the DKP and the position relative to the flow centre, we
proceed to calculate the swirl and flow centre velocities. To do this, we make
use of equations (2.51), (2.52), (2.53) and (2.54). The result is presented in
figure 3.4 in which we plot the time series of translation velocities, Ur and Vr,
togethie » with the swirl velocities, u, and v,. The top diagram is the result
given by the OK solution. Here, we find that the translation velocity (Ur, Vr)

is zero. This is correct since our simnulated eddy has no translation velocity.
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The swirl velocity describes the particle velocity relative to the velocity of
the flow centre. A particle placed in this type of flow with pure stretching
having a positive stretching deformation rate, a, will move toward the x-axis
and away from the y-axis (see figure 3.2). As a consequence, the eastward
component of velocity, u,, increases. On the other hand, the northward

component of velocity, v,, will decrease. These features are obtained by the

OK solutions.
oK
4+ UT o000 VT s vt

2 oo

S

=2

s o

) E] ) 0 ) £ 0 %

time

2o

S

=2

F

Figure 3.4: Swirl and translational velocities calculated from trajectories
with pure stretching. The upper/lower plot shows values obtained using the
OK/KIRWAN solution.
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The bottom diagram is obtained nsing KIRWAN's solutions. 1t shows us

that the eddy has translation velocities that arc inconsi

ent with the paran-
cters used Lo simulate the trajectory. Also, we see that hoth components of

the swirl velocity increas  inconsistent with a pure stretebing low
field singularity.
In the case of pure stretehing, we find that the OK solution correctly

obtains all the kinematic parameters. On the other hand, KIRWAN solutions

give incorrect values for all the kinematic parameters except divergenee.

3.2 Pure Shearing

Equations (2.15) and (2.16) are now used 1o simnlate trajectories resulting

from a stationary eddy with pure shearing. The streamlines for sach i flow
are sketehed in Appendis B, In this case the DKI valies and initial position

are: b= 0.1, a

=d =0, Xy = 0.003, ¥, = 0.0 The time interval
between two successive points is chosen Lo be 2 units. The resnlting trajectory

was analysed by both the OK and KIRWAN methods and the resulting DRI

are presented in fignre
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Figure 3.5: The DKP calculated, using OK (above) and KIRWAN (below)
solutions, from trajectories with pure shear deformation.

The diagram at the top of figure 3.5 is obtained by using the OK solutions
and gives the correct values of all parameters, e.g. b=0l,a=c=d=0
in units of time=1 which are are independent of time. The bottom diagram
shows DKP obtained using the KIRWAN solutions. It shows that only the
divergence is calculated correctly. The shearing b has the correct magnitude,
but the wrong sign. The other two parameters are inconsistent with those

used to generate the simulated trajectory.
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Figure 3.6: The OK solution for particle trajectory and position of the flow
centre from a trajectory with pure shearing.

Having obtained the DKP, we calculate the position of the particle relative
to the flow centre using (2.44) and (2.45). As for the previous case, the
position of the flow centre is computed by subtracting the position of particle
relative to the flow centre above from the trajectory generated using (2.15)
and (2.16). The positions obtained from the OK solutions are presented in

figure 3.6. The OK solutions show that the flow centre lies at the origin (0,0)



as it should.

position y direction
=

r<”

particle

position z direction

Figure 3.7: The KIRWAN solution for particle trajectory and position of the
flow centre calculated from a trajectory with pure shearing.

Using Kirwan's solution for the particle position relative to the flow centre
position, i.e. (A13) and (Al4) of Kirwan et al., (1988), and subtracting them
from the trajectory generated using (2.15) and (2.16) we obtain the plot of
flow centre trajectory ‘o’ in figure 3.7. The particle trajectory obtained from
(2.15) and (2.16) is plotted with ‘*’. It shows that the flow centre moves

rapidly, whereas it should be stationary.
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Figure 3.8: Swirl and translational velocities calculated from trajectories
with pure shearing, using OK (above) and KIRWAN (below) solutions.

Having obtained the DKP and the position relative to the flow centre,

we proceed further to lating the lation and swirl vel In

this regard, we make use of (2.51), (2.52), (2.53) and (2.54). The result is
presented in figure 3.8 in which we plot the translation velocities, Ur and
Vi, together with the swirl velocities, u, and v,. The upper diagram are

results given by the OK solutions. Here, we find that there is no translation
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velueity s shown by the both values of Uy and Vi being equal to zero.

T cs. The

s correct sinee onr simulated «ddy has no translation veloc

trajectory of a particle in this type of pure shearing flow with a positive

6). As

shearing deformation rate, b, has an asymptote of & =y (sce figure

a vesult, both components of swirl velocity (i, v,) enlarge. These featnres
are properly deseribed by the OK solutions.

The lower diagram is obtained nsing KIRWAN's solutions. 1t shows that
U eddy has Lranslation velocities which are not consistent with the values

used Lo generate the trajectory. We also see that the u, decreases whereas v,

These: values are inconsistent with the trajectory heing analyzed.

We have tested the OK and KIRWAN solutions by analysing trajectories
with pure shearing. The OK solutions give a correct representation of the flow
field. On the other hand, KIRWAN solutions fail to give correet estimates

for all kinematic parameters exeept the divergence.



3.3 Pure Rotation with Translation Velocity

The artificial trajectory for the case of pure rotation is generated nsing the

following expressions:

B(1) = Up 43 cos(wl) (3.7)
B(1) = Ve L+ 3 sinwl) (3.8)

where w = f5. Here the 3 indicates that the particle moves inoa civen-

lar trajectory of radius 3 abont the flow centre which translates at veloeity
U, V.
Putting the angular velocity w = 3.140 x 1072, (7 = Vp = 001 into

(3.7) and (3.8), we got a trajectory for pure rolation about a translating llow

centre. The time interval between two successive points is chosen to be §
units. The OK and KIRWAN solutions are used to analyse the generated
trajectory. Note that equations (3.7) and (3.8) could equally well deseribe a
flow field that moves as a sheet so that all points on the sheet have the same
(bt displaced) civenlar trajectories relative to a uniform translation (g, V.
An inertial oscillation superposed on uniform translation is one example of

this type of motion.
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Figure 3.9: The numerically calculated DKP for pure rotation with transla-
tion case using OK and KIRWAN.

Figure 3.9 shows the time series of calculated DKP for pure rotation and
translation. The upper diagram is obtained by using the OK solutions. It
shows a single line at ¢ = 6.28 x 10~2 and three overlapping lines showing
a=b=d=0. These values are identical to those used to generate the
trajectory.

The lower diagram produced by KIRWAN shows that only the divergence,

d, is calculated correctly. This finding is similar to those of the pure stretching
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and pure shearing shown earlier. The vorticity, ¢, is only one fourth of the
true value but it is constant. The stretching b and shear c oscillate at twice

the rotational frequency of the eddy.

position y direction

0 2 4 6 8 10 12 M

position z direction

Figure 3.10: The OK solution for particle trajectory and position of the flow
centre calculated from a trajectory that rotates around the translating flow
centre.

Having obtained the above DKP, we calculate the position of a particle
relative to the flow centre using (2.44) and (2.45). The position of the flow

centre is obtained by subtracting the position of particle relative to the flow
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centre from the trajectory generated using (3.7) and (3.8). The positions
ubtained from the OK solution are shown in figure 3.10. In this diagram,
the -*-" symbol denotes the flow centre trajectory and the ‘—' symbol corre-
sponds Lo the particle’s trajectory. Using the OK solution, we find that the
flow centre translates northeastward consistent with the flow velocity used
Lo generate the simulated data, The translation velocity will e presented
later on.

Using Kirwan’s solution for particle position relative to the flow centre,
i (A13) and (Al4) of Kirwan cf al., (1988), and subtracting them from
the position of particle generaled using (3.7) and (3.8) we obtain the plot of
Hlow centre trajectory “*-" in figure 3.11. The particle trajectory obtained
from (3.7) and (3.8) is plotted with ‘—". Figure 3.11 shows that the flow
centre moves northeastward while rotating. The radius of its circle is greater
than the actual trajectory. This feature shows that KIRWAN gives another

incorrect result.




KIRWAN

— panicle <#-%- flow centre.

position y direction

<30 20 -10 o 10 20 30 4“0 50
position z direction

Figure 3.11: The KIRWAN solution for particle trajectory and position of the
flow centre calculated from a trajectory that rotates around the translating
flow centre.

Having found the DKP and the position relative to the flow centre, we
proceed to calculate the flow centre and swirl velocities. In order to get these,
we make use of equations (2.51), (2.52), (2.53) and (2.54). In figure 3.12 we
plot a time series of the translation velocities, Uz and Vr, together with the
swirl velocities, u, and v,. The top diagram shows results given by the OK
solutions. Here, we find that the particle has a translation velocity with both

Ur and Vi equal to 0.01 (the lines are overlapping on the plot). This s exactly
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Figure 3.12: Swirl and translation velocities calculated from a trajectory that
rolates around a translating flow centre. The top plot is from OK solution
and the lower plot is from Kirwan solution.

as same as the values used to simulate the trajectory. The swirl velocity is

also obtained correctly. The components of swirl velocity, u, and v, have an

amplitude of 9.42 x 10~2 and oscillate at the eddy rotation frequency. The

actual amplitude of the swirl velocity is equal to w x r = 7 x 1072 x 3 =

9.42 x 1072, Here, r denotes the distance to the flow centre which is set to 3

in equations (3.7) and (3.8).
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The bottom diagram is obtained using KIRWAN's solntions. 1t shows
that the eddy has an oscillating translation velocity which is not consistent
with the value ised to generate the trajectory. Further, we see that both com
ponents of the swirl veloeity oseillate bt with an incorrect pattern. Again,

KIRWAN's results are not in agreement with the parameters used Lo generate

the simulated data.

Parameters TRUE RTRWAN
u (X107 [

b (<107 [

(<1077 [

T (1077 [

Ty (< 107) i 1

Vi (x1077) 1 1

w, (<107%)

vy (X1077)

Table 3.1 Tabulated kinematic properties obtained nsing ORK and KIRWAN
and the TRUE

calues for the pure rotation with trans 1 cise

All findings resulting from pure rotation abont a translating flow cen
tre are summarized in Table 3.1 The calenlated kinematic parameters oh
tained from the OK solution and the Kivwan of al., (1988) solution are in

the colimns labelled *ORK" and *KIRWAN . respectively. The colmmnn labelled

shows values nsed 1o generate the trajectories. The ORK method ol



tains all kinematic parameters corvectly. Thus, the OK is able to give a

reliable

stimation of the flow field for pure rotation with translation. With

the exeeption of divergenee d the KIRWAN solution gives kinematic parame-

ters that differ from the true valie. There is no doubt that Kirwan’s solution

(Kirwan of al. 1988) contains errors, The vorticity ¢ obtained from the

KIRWAN solution is at least steady (whereas a and b {lnetnate). Previons

Kirwan «f al, 1988; Indest of al..

investigators (Lewis and Kirwan, 1987

1989; Lewis o al., 1989; Kirwan of al.. 1990) have applied their solution to

drifter tracks in a large rotating eddy. The KIRWAN solution probably gives

sed Lo look

reasonable looking divergence and vorticity when it is

rotating eddies, but the vorticity will be too small by a factor of 4.

We have tested both the OR and KIRWAN solutions using several gen-

erated trajectories with kinematie properties ranging from pure stretehing

and deformation without translation to pure rotation with translation. In all

cases, the OR solution snee

ssfilly obtains all kinematic properties from the

trajectories. As a result. the OK method is able to deseribe the flow field

eharacteristics quite well. On the other hand, only divergence can be found

correetly using the KIRWAN solution, The other parameters and the kine-

matic properties of the fow field are not in agreement with values nsed to




generate the trajectories. This is not surprising since only the divergence as

a commion expression in both the OK and KIRWAN solutions (sce equation

(2.40) in Chapter 2 of this thesis and (A.12) of Kirwan of al.. (195%)).
Special attention will be given to Kirwan's solutions. Having read his

laboratory notes whieh demonstrate his elegant procedure for deriving the

solutions. we have located the points al which a raic errors have b

made. The errors are cansed by wrongly expressing the value of a® | 7 -

in terms of parameter M2 the determinant matrix of the DRI (Kirwan's

Taboratory notes). Instead of using o 4 5% = ¢t —d* = — 1M he probably

wsed @ 4 02— 2 = = —MF when solving for X and Yo Also he used

—dt =

a0 - 2M? st e = = = LM when

of using o + b —

solving for M2 00 we correet the above substitutions in Kivwan’s laboratory

totes then we have shown that the parameters M2 N0V would be calealated

correctly and would he the same as onr OK solutions. We did not el

whether or not this wonld be saflicient to correet his solutions for a. b and

tly determining the

Now. we are promoting the OK solutions for corr
flow field singularitios from a single drifter trajectory. Let us be elear on
one matter, however, it was the work of Kirwan of al., (1988) that provided

correeted the algebra. OF

the method of solution. whereas we have mer
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conrse Kirwau ol al., (1988) was really invorting Okubo’s (1970) study for
flow aronnd a flow ficld singularity. Heneo we label the OK solutions in

Bononr of the prople principally responsible for obtaining them,

3.4 The Effect of Random Noise on the OK

Method

This section will foeus on ow the OK method is affected by noise. The
naise added 1o the trajectory has also a normal distribution. This kind of
distribution is commonly cncountered in nature, The amount of noise is given
i terms of e /N ratio, which measures the strongth of signal relative to
the noise, This noise is added to the trajectory of pure rotation given by

7) and (3.8). The OK solution is then used to obtain the DK from the

noisy trajectory.

ributed

The following steps will be employed Lo ereate the normally di

noise, We genierate a nuiformly distributed noise by using the IMSL subrou-
tine called “RNUNE This subroutine is a multiphcative congruential gener-

ator and it produces a random mumber hetween 0 and 1 (Neclamkavil, 1987).



ion relation

It has an iter
ram, = K e,y mod(2 - 1)

where rruim, -y s the initial valne, the seed, and A s aconstant which
has a value of 7% = 16,807 (Law and Kelton. 1982). Next. this uniformly

distrilmted noise is transformed to a normally distributed noise. Vo produce

this kind of noise. we use the so-called “polar method” (Marsaglia and Bray.
1961). "The method will generate vandom mnmbers which have a0 man of 0
and a variance of 1 (Morgan, 19851 Press of al., 1956).

The normally distributed random mambers B(2) produced by the above

method are added (o the trajoctories

Ht) = Upl43coswt 4+ AR (1.9)
) = Vrl+3sinwt+ AR (3.10)
where w = g and A s the noise amplitude, The time interval hetween

suecessive positions is chosen 1o be 8 nuits. We will use the translation ve-

locities, Uy = Vi = 0.01 for the following work. Withont the noise. the DK

28 % 1072 Three different trajectories

aca=b=d=0c=2w=

will he ereated corresponding Lo values of A = 107010741071 These 1ra-

joctories will have different $/N ratios according 1o 1he noise ampli i
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arnplitndes, A, of 10731072, 107" will correspond to $/N ratios of 5:

5.3, respectively. These S/N ratios: are obtained by dividing the root. mean
square vahie of the velocity obtained from (3.27) and (3.28) with A =0

Having obtained these

by the root mean square valie of the noise veloci
noise contaminated trajectories, the OK method will he nsed to analyse cach

Lrajectory in turn.

Elfects of the random noise on the DKF are shown in fignre 3.13. The

Jowor diagram shows that if the signal is relatively strong compared to the

noise (L. §/N of 530), we may still obtain DK which are close o the valies

withont noise, ie. A= 0. The middle plot in fignre 303 shows a S/N of

As the noise level inereases, the

and Ui npper plot shows a 8/N of

random variability dominates the caleulated DKP. A relatively small amount

ol noise in the a large amomt of noise in the calculated

joctory canse

DKL For example, when the signal Lo noise ratio for the trajectory velority

is 53 the signal to noise ratio of the vorticity calenlated by the OK niethod

The tragjectory and ealeulated positions of the flow centre are shown in
fignre 811 I the Tower diagram, we see that for very weak noise the position

of the low centre is close to the position without noise. With a §/N of 5.3




a3

okPx 1082

& & 8 8 o v a8 8 8

oRPa 10K

_;: ! '
i)

Figure 3.13: The DKP calculated using the OK method with S/N ratios of
5.3 (top), 53 (middle) and 530 (bottom).



Figure 3.14: The particle’s trajectory and calculated positions of the flow
centre using the OK method with S/N ratios of 5.3 (top), 53 (middle) and
530 (bottom).
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Timated S/N wlio
paramcters

530
0005 | 000 % 007 |

ax 10
b x 1077 0.0 £0.5 | 0.00 £ 0.05
ex 1072 [ =13 £ 18 [ T.24£0.0 | G2 £ 001

X I07F =TT EG [ 0.0 £ 0T [ 000E 001

Tues of DK obtained from noisy data, The aver
. The signal to noise ratio of the raw data

consiclered,

Table 3.2: Avera
was done over 106 poin
53,530 for the three cas

(upper diagram) or 53 (middle diagram ). the positions of the flow centre

. These seattered positions are cansed by the large

catter all over the pl

variability in the calealated DRP.
We expeet that averaging will reduce the noise induced fuetuations in the

signal

DK Howev wh averaging will also climinate real high frequen,

in the DRP. This is not at issne for the present case sinee we are considering

DKP that are constant.

shows the effect of noise on- estimating the DK using the OK

Table
method. Three diflerent noise levels, characterized by the §/N ratios of the

raw generated data are examined. The generated data hal §/N ratios ol

are labelle ¥

53, 530 and the corresponding cohumms in Table 3.2

L5307, These valies of DRI are caleulated for a trajectory comprising

G0



106 ddrifter positions, s giving 106 estimates of cach DRI parameter from
which the mean valie and standard deviation of this mean are obtained.

suflicient o yield a nseful

g over 106 independent estimates i

estimate of ¢ for the data that has

S/N of 53, however, it is not enough

when $/Nis *

It is elear that the OK method is very sensitive to noise. A similar finding
has een presented carlier by Kirvan ef al., (1990). The source of noise
may he the experimental error in fixing the drifter position, the small scale

ionsin the flow field and the up to fourth order inmerical differentiation

seheme inherently possessed by the OK method. Smoothing Uie trajectories
by filtering can greatly improve the performance of the OK method. But sich
filtering also eliminates bigh frequency information. A new cluster method

that daocs not. involve so many higher order differentiations will be presented

in the nest chapler,
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Chapter 4

A New Regression Method for
Calculating DKP from a
Cluster of Drifters: the HS

Method

Velocity gradients can he caleulated from a single trajectory under the as
sumption that the Eulerian flow ficld is stationary and the flow field centre

(i.c. singularily position) is fixed (Kirwan f al, 1983). However, this has



the disadvantage that, the fonrth time derivative of drifter position must be
calenlated. A small amount. of measurement, error can lead to such higher
order derivatives heing very nreliable.

Okitho and Ebbesmeyer (1976) use a lincar regression method to caleulate
velocity gradients from the position and velocily of many drifters. This
method assumes the flow contre is fixed lo the cluster centroid and that
the veloeity gradient is common to all diifters. Kirwan (1988) shows that
fixing the flow centre to the cluster centroid can cause serious biasing whereby
cnergy might be transferred from the swirl velocity to the translation velocity
for example.

Let us now develop a way Lo calenlate velocity gradients from a cluster

of drifters. We will not fix the llow singularity centre to the cluster controid.
However, we will assume that, the same velocity gradient applies to all drifters
i a chister occupying a local region of space.  Our new method will only
require up o the second time derivative of drifter position. It is still based
upon a lincar regression it we will be doing a best fit to a different model
from that of Okubo and Ebbesmeyer (1976).

Okuho and Ebbesmeyer (1976) did a loast squares il for a model that

consisted of motion being described by a mean flow equal to the centroid
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velocity and linear velocity gradients causing velocities proportional to the

displacement from the centroid positon. Our new approach fits the data

to a model where the flow centre does not aceelerate and linear vels

gradients cause veloeities proportional Lo the displacement from the position

of the flow contre. The position and velocity of the flow contre are variablos
that are regressed for, in addition to the velocity geadionts. Okuho and
Ebbesmeyer (1976) use a regression to solye for the centroid velocity and

velocity gradients. Our stipnlation of zero flow centre acecleration gives

further regression equitions so that we can als solve for flow centre pos

and veloriy.

Consider a cluster with n drogues in it. The velocity of the i drogne

can be expressed as:

wo= Urta(F-Xr) + 5 — V) + o] (1)

v o= Vot (Fi-Xr) +d( — Vi) + of (1.2)

whete = 2, 4t = 2 ¢ = 2 and d" are the velocity gradients,

Ur, Vi are the velocitics of the flow centre, Xp, ¥ are the position of the

B s

flow centre, &, 7 is the position of the 3% difter (i = anid 17,

of are the residual velocities. Note that, the DKP can e delermined from
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e aove veloeity gradients by making wse of (2.4). Differentiating (1.1) and

(1:2) with respeet o time (indicated by a prime) gives

X @iy —allp 4+ 0 = 0V 4+l (1.3)

L}

0= Cug— el e = AV (44)

where the flow center is assnmed not o aceelerate (LU = $17 = 0) and

at bemodt are taken to he constant over a time interval. Equations (-1.3)

and (L1) can be rewritten into a standard forn for a lincar regression model

W= o taTug ol (1.5)
o= At Cui+ el (1.6)
where
o = —alip=bVy (1.7)
4 = =l —dV (1.8)

Expressing (L) and (LG) as a matrix equation:

A= UG+R (1.9)

where

G5







"=

ul o

Standard linear regression (Draper and Smith, 1966; Oknbo and Ebbesmey

: Okubo of al., 1976) yiclds the following solution for a. 4. a".

g
G = Tt (1.10)
andl residual accelerations uf'. o’

R = [L=6GETHY 0T, (4.11)

Note that this regression technique will produce biased estimates of the co-

ients cansed by uneertainties in both the independent and dependent

iables (Kirwan and Chang, 1979). Having obtained a, A, a*, b7, ¢, and
@ from (4.10). we nse (1.7) and (4.8) Lo solve for Uz and Vi The expressions

for Uy and Vi are

Fa=bf

by o T .12
L e —ad :12)
% w HEE (1.13)

bres —atd”
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Wee are now in a position to solve for X amd Ve, We vewrite (11) and

(1.2) as

where

U, o= pAaE AV
roo= otei +d b
v = Up—a'XNpr—bYy
& = Vp—eNp—ad¥y

(L

(L

(1.16)

(1.17)

To fiud ¢ and o (aned therehy N, ¥) we do i least squares regression on

cquations (1.14) aud (115). The sum of the squares of the residuals in (1.11)

and (4.15)

5

Sz

The following normal equations are fonnd by mi

= i(u:)" = z":(u. —u
= b=

= 2

squares of the residuals

a5y
Do
A
6

= 0= —Zt(u; —a
=

= 0= i(n.—r'
=

68
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&

B gi—p) =0

Fo—d'i—4) =0

g the sum of Lhe



anl, therely. we solve for g and .

o (18)
b (1.19)

Note that equations (4.18) and (1.19) can be equivalently obtained by aver-

aging (1.14) and (1.15) over all drifters and requiring that S0, wf = 0 and

Lo = 0. Now, the exprossions for the position of the flow contre, N and
Vi, can e obtained by substituting (1.18) and (1.19) into (4.16) and (1.17)

respectively.

Ny o= (.20}
Y (4.21)

Having located the flow centre and velocity gradients, we can write the switl

veloeity of the i drifter as

wi = a’(

1)+ (i = V) (1:22)

v = ¢

- Xp) 4= V) (1.29)

and the residual velocity of the i drifter hecomes

W= w=Up—ug (4.24)
o= Vg (1.5)
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The velocity of the the @ drifter in (1.1) and (1.2) has been divided: into
translation of the flow centre (L12)0 (L13): a swirl velocity (L2200 (L23):

and a residual velocity (L21)0 (1.25). Thus (L0 (L1200 CLI3). (L20) and

(1.21) constitute a complete set of equations for a*.
Vi, The swirl velocities are given by (122) and (1.23) and are dilforent for

elative to the flow centre

the drilter

cach drifter, depending upon wh
The application of this system of cquations to obtain DRI will subsequently
be referred to as the 118 method and the cquations will e referred 1o as
e 1S equations. The magnitude of the residual veloeity comparced 1o the

Tanee is

magnitwde of the total drifter veloeity indicates how mmeh of the va

aceounted for by the model.
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Chapter 5

Testing and Comparing
Techniques for Obtaining DKP

from Drifter Trajectories

The 1S method can be used to calenlate velocity gradients, the flow centre
position, and the flow centre translation velocity from the motion of a cluster
of deifters. T the following sections, the HS method will be applied to
data and will e compared with Okubo and Ebbesmeyer’s (1976) cluster

method and the OK solution obtained in Chapter 2. First we will analyse
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v generated data that has known DKE. Subscquently we ana

drifter measurements macde in the spring of 1991 on Sable Island Bank on

the Seotian Shelf,

5.1 Artificially Generated Data

In this section, three trajectories are generated analytically, These trajec

tories simulate an eddy with pure rotation and a translating flow contre, as

i subseetion (3.3) of Chapter 3. The Okubo and Ebbesmeyer (1976), OK

and 1S methods are applicd to obtain the kinematic propertios of this ar

“al data. Subsequently the method of Okibo and Ebbesmeyer will Te
referred as the OB method, Tu caleulate the kinematic parameters and
the position and the velocity of the flow contre using 1S method. one has
Lo calenlate the velocitios and the aceclerations of each diifter in a cluster.
On the other hand, one does not need Lo compute aceelerations when using
the O method (Okubo and Ebbesmeyer, 1976) Lo obtain the DK and the
mean velocity of the clister. The OF method gives information abont. the
centroid velocity /position rather than the flow centre velocity/position. The

OE method is, therefore, fundamentally different. from the 1S and the OK
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methods. We anly expeet the OF method 1o be equivalent to the OK and

the HS methods in the special eirenmstanee that the flow centre position aid

velority coincide with the cluster eentroid position and velocity,

The three artificial drifter

trajectories are denoted by subseripts 1, 2

indicating the drifter’s number,

)

)

ais(l)

where w = g2

Upt + 2

Vil 4+ 2.9 sm(w(t = 2))
Uip 4+ 3.0 cos(wt)
Vit 4+ 3.0 sin(wl)

Up 1 4 3.0 cos((l = 1))

Vit 4 3.0 sin(w(l = 1))

U = Vi = 0.01. The time interval hetween two consecntive

data points is taken to be 8 units as before. The artificially generated data

can e seen in figur

position, . and g This pos

we(t)

(20}

2. In the OE method, one has to caleulate the centroid

ion can be obtained by using

al) + .,gt) + d(t) (5.7)
D) + dalt) + (1) (5.8)

3
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The velocity and acceleration of each drifter are numerically calculated as in

chapter 3.

HS.
—acb . d

DKP x 1072

DKP x 1072

2 3
time (eddy periods)

Sigure 5.1: The numerically calculated DKP of pure rotation with translation
case using the HS and the OE.

Figure 5.1 shows the time series of calculated DKP for the simulated
trajectories with pure rotation and translation. The diagram at the top
is obtained by using the HS solutions and gives the correct values for all
parameters, e.g. ¢ = 2w = 6.28 x 10°2,b = ¢ = d = 0. These are shown
by one line at 6.28 x 102 and three overlapping lines merge into a single
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line at 0.0. Note also that these values are independent of time, The same

using the OK solutions (refer

result has been reported in the carlier analysi

sfully obtain the

s that both the 1S and OK sueces

Lo fignre 3.9). 1L mea

DEP from simulated da

The bottom diagram in figire 5.0 shows DK obtained by nsing the
OF method. All the DRP a, b, ¢, d oscillate abont their true value. This
oscillation is al the frequency of rotation. These oscillations result from the

ing can be

so-called biasing problem disenssed by Kirwan (1988). The bi

viewed as energy from the swirl velocity contributing to both the velocity

gradients, i.e. the DKP, and the translation velocity of the flow field.

The position of the fow centre is abtained from the HS method by using
(4.20) andl (4.21). This position is plotted in figure 5.2, along with the three
simulated drifter tracks. T Uis diagram, the % denotes the flow centre
position and the drifter’s positions are represented by three different types
of lines, e dash, solid, dot and dash lines, Using the 1S method, we find
that the flow centre translates northeastward consistent with values of (,
Vi used Lo generate the trajectorics, This result s also obtained from the
OK method as shown in figure 3.10, Hore, we can not, compare the HS and

OK methods with the OF sinee the latter does not solve for the flow centre



position.
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particlel _._._particle 2 -..- particle_3
12 **** flow cenre

position y direction
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Figure 5.2: Trajectories of three particles with pure rotation about a trans-
lating flow centre. The flow centre trajectory has been calculated using the
HS method.

In the case of the HS method, translation velocities of the above flow
centre can be calculated from (4.12) and (4.13). Also, having obtained the
DKP and the position of the flow centre, we use (4.22) and (4.23) to calculate
the swirl velocity. The results of the HS method are given on a diagram at

the top of figure 5.3. In this diagram, we plot both the translation velocities
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denoted by UT” and VT as well as the swirl velocitics, ‘us” and ‘vs’. We sce

that the translation velocities represented hy two overlapping lines at 1.0 x
1072 which is exactly the value used to generate the data. The components of

jon

swirl velocity are shown by two oscillating lines at the frequency of ro
and with an amplitnde of 9.42 x 107 which are in accordance with the

amplitude and frequency of the oscillating functions nsed 1o generate the

. These results are the same as the OK analysis described carlier (refer

Lo fignre 3.12). Again, we can see that both the HS and OK methods produce:
the same result.
T the lower diagram, however, we find quite different results. It shows

the cluster centroid  ocity denoted by ‘U_BAR’ and ‘V_BAR calculated by

the OB method. The litude and the [ of oscillation are almost
the same as for the swirl velocities obtained by the HS and OK methods.

The only difference is that the components of centroid velocity are shifted
upward by 1.0 x 1072, This amount of shifting is equal to the translation

veloeity of the flow centre,

7



HS

A NN A
EYAVAVAVAVE

2 3
time (eddy periods)

velocity x 10~2

2 3
time (eddy periods)

Figure 5.3: The numerically calculated velocities for the pure rotation with
translation case using the HS and the OE.

The results of the three different methods are summarized in the columns
labelled ‘OK’, ‘HS’, and ‘OE’ along with the ‘TRUE’ value in table 2. It is
clear that both the OK and HS methods give the same result for all of the
calculated parameters and they are in agreement with the true values used
to generate the simulation data. The O solution shows the biasing problem
that has been elucidated by Kirwan (1988). We have put the centroid velocity

for the OE method in the rows showing swirl velocity for the OK an." HS

8



methods. The centroid velocity is the sum of the swirl velocity plus the

velocity of the translating flow centre, We have also tested the HS method

Parameters TRUE OK 115 0l

a (x107%) 0 0 [0 030 to 031
b (x1077) 0 0 0 -0.35 Lo 0,35
¢ (x107%) 6.28 625 .28 o

d (x107%) 0 0 0 -0.35 Lo 0.35
Ur (x107%) 1.0 L0 1.0 -

Vy (x1072) 0 0 0

s (x107%) | -9.42 to 9.42 | 942 to 9.42 [-9.02 o 902 | -8.12 Lo 1012
0, (x107%) [ -9.42 10 942 [ -0.42 1o 9.42 [ -9.402 to 9.02 [ -8.42 (o 10.12

Table 5.1: Kinematic parameters calelated by the three different methods
for the case of pure rotation with translating flow contre.

on three generated trajectories for case of pure stretehing. The results are

the same as those obtained using the OK method and are consistent. with

This means that both the OK

parameters used Lo generate the trajectord
and the TIS are able to determine the flow field propertics correetly.
Summarizing, we have Tound two methods that ean correctly calenlate
the flow field propertios from drifter trajectorics for the case of pure streteh-
ing and rotation with translating flow centre that have only one flow field
singularity. These are the OK or the 1S methods. The OK method requires

the 1S

that, we calenlate up to fourth order derivatives of position, whe

79



iethod only requires up Lo second order derivatives. Numerical instabilitics
can ocenr when we take high order derivatives. We expeet, therefore, that
in this regard the 119 method has an advantage over the OK method. The
118 method has the disadvantage, however, in that it requites more drifters
than the OK method. We still need to perform one more test to examine the
sensitivity of the 1S method to noise. This is a similar test to that nsed in

the OK method before,

5.2 The Effect of Noise on the HS method

In this section, the effect of noise will be evaluated. The noise A R(1) has the
same characteristics as that used in Chapter 3, e.g. normally distributed noise
with mean of zero and variance of A% The noise is added to the trajectories

with the same kinematic properties that were used in subsection 5.1

B = Up(1=) + 29 cos (w(t—24))+ A R(l) (5.9)

W) = V(1) + 29sin (w(t—24))+ A R(t) (5.10)
(1) = Up () + 3.0 cos (wl) + A R(t) (5.11)
dal) = Ve (1) + 3.0sin (wt)+ A R(t) (5.12)



E(t) = U (1) + 3.0 cos (w(I = A) + A R(D) (5.13)

Ba(t) = Vo (1) + 30 sin (w(t=2)+ A K1) (5.11)

where w = 1%, AR(1) is the G

tude A, and A is the time interval hetween two suceessive points and it is

chosen to he 8 inits. We still use the translation velocities

=13 =0.004

before. Withont the noise, the DKP arcn = b=d =0, r = 2w = (.28%
Three trajectories will he generated using these values for cach given noise
amplitnde. The noise amplitudes, A, of 107 1072, 107" will correspond

to S/N ratios of 53u, 53, 5

, respectively. aving obtained these noise-

~ontaminated trajectorics, the 118 method will he wsed to an

of three particles in a cluster for cach noise level,

Effects of the random noise on the DRI” are shown in ligure

lower diagram shows that if the signal is relatively strong compared Lo the

noise, (i.e. S/N of 530), we may still obtain DKI* which are close to the
values without noise, i.e. A = 0. The middle plot in figure 5.4 shows a §/N

of 53 and the upper plot shows a $/N of 5.3, As the noise level iner

random variability dominates the calenlated DKPA relatively small amonnt.

of noise in the signal brings about a large amount of noise in the calenlated
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DKP. For example, when the signal to noise ratio for the trajectory is
the signal Lo noise ratio of the vorticity calenlated by the HS method is only

0.62. This is a factor of 2 lower than the signal to noise ratio for DKP

alenlated carlier using the OK method.

The trajectory and calenlated positions of the flow centre are shown in

fignre 5.5, In the lower diagram, we see that for very weak noise the position
of the flow contre is close Lo the position without noise. With a $/N of 5.3

(upper diagram) or 53 (middle diagram), the positions of the flow centre

seatter all over the place. These scattered positions are cansed by the large

variability in the caleulated DKP.

The generated data had S/N ratios of 5.3, 53, 530 and the correspond-

ing columns in Table 5.2 give the mean DKP and their standard deviation.
These vales are caleulated for a trajectory comprising 106 drifter positions.
Averaging over 106 independent estimates is sufficient to yield a useful esti-

mate of ¢ for the data that has a $/N of 53, however, it is not cnough when

/N i

. We sce that the HS method is very sensilive to noise.

We have shown one example where the HS method is more sensitive to
noise than the OK method, This is interesting since the former contains
only first-order derivatives whereas the latter method has up to third-order

82



DKPxI0N-2)
°

DKPx 104:2)

DKPx 104:2)

8|
7|
6|
s|
4
3|
2|
1
0
“

)
Figure 5.4: The DKP calculated using the HS method with S/N ratios of 5.3
(top), 53 (middle) and 530 (bottom).
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o paticle 2 panticle

posiiony direction

‘position y direction

‘position y direction

position 1 direction
Figure 5.5: The particle’s trajectory and calculated positions of the flow
centre using the HS method with S/N ratios of 5.3 (top), 53 (middle) and
530 (bottom).
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Estimaled SN ralin
paramclers 3 0

ax 107 | 750 | —17 £ 10| 0.0 £ 00
Tx 10-2 [ =13 19 | =1 £ 15| 0001
cx 1072 | ISEH | TAEIL0 | Gall
dx 107 | O£ 15 | —Id£ 17| 00E01

Table 5.2: Average values of DKP, analys
from noisy data. The averaging
noise ratio of the raw data was 5.3,

e using the 118 method, obtained
done over 106 points o
58, 530 for the three cases considered.

The s

time derivatives of velo

That noise obtained from the higher-order time

derivatives upon doing the numerical differentiation may allect the es

tion was recently shown by Kirwan ef al., (1990). Using spectral an

they found that the higher-order contribution of the random noise enlarges

as the order of the derivatives in Tn such a case, the OR method

ASCS,
should suffer from noise more than the 1S method. However, onr simmlation
shows that the opposite sitnation ocenrs. We argne that the noise problem

enconntered in the HS method is cansed by the matrix operations inherently

involved in the method. These operations are matri inversion and m
multiplication with its transpose. Tn the former operation, a small pertur-
bation in the clements of a matrix may cuse a large elfoet on the inverted

matrix (Westlake, 1968; Stewart, 1973). In our case, the pertarbation is due



to the normally random noise added to the trajectories together with the

ives of drifter’s

noise that comes from the fiest and second-order time deri
position. This, in turn, will produce errors in the solution since that are
proportional 1o the fuctuation of the matrix coefficients (von Nenmann and
Goldstein, 1947; Wilkinson, 1963). As we can see from the above simula-

tions, the estimation of ihe kinematic parameters gets poorer as the noise

level increases. A measure of this offect is called ‘condition number’ and a

matrix that sulfers from this phenomenon is called an ‘ill-conditioned’ matrix

(Forsythe and Moler, 1967; Ralston and Rabinowitz, 1978). The situation is

made worse when we multiply a matrix with its transpose since Uis operation
produces a more ‘ill-conditioned’ matrix (Taussky, 1950).

Physically we might think of the HS method being dependent upon both

fal and time derivatives of the Lagrangian velocity, whereas the OK

method depends on the higher order time derivatives but ot spatial deriva-
tives. I is, therefore, the spatial derivatives implicit in the HS method that
cansed the 115 method to be even more sensitive to noise than the OK method

in the example above. Towever, if the drifters are initially separated by a

greater distance then the DKP calenlated using the HS method are far le

itive (o noise than those from the OK method. This result is shown in
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fignre 5.6. For an example where the drifters were separated by v

L where

the radins of the eddy. the DKP flnetuate relative to theie trne values

28 % 1072, Averaging over 106 points, we obtain the
valie of 6.50 x 1072 and 0.05 x 107* for vorticity and the other parameters,
respectively, These estimations are mneh closer to the frie values than those
given by the OK method for the same S/N ratio of 5.3 (see ligure 313 and

table 3

arly, the more reliable estimates of the DRI ean he obtained

by the IS method by enlarging the separation distance among drifters. In-

creasing the separation distanee reduces the error that is introduced by the

noise to the spatial velocity gradients. Iner

tion between

sing the sopa

drifters can, however, inerease the likelihood that the different drifters will

be ne:

different flow field singularitic



DKPx 10X-2)

05 1 15 2 25 3 35 4 45 5
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Figure 5.6: The DKP calculated using the HS method with S/N ratios of

5.3. The drifters are separated in a larger distance than those generated
using before.

5.3 Oceanic Data

In this section, we will present the analysis of drifter trajectories measured
on the Scotian Shelf. Three drifter trajectories are used in the following
analysis. These trajectories are presented in figure 5.7. The trajectories

consist of positions at 15-minute intervals spanning a total period of about
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95 hours. The position is measured with a nominal accuracy of £20 m. Three
methods of analysis will be performed i.e. the CK, HS and OE methods. The

results obtained from each method will be compared.

x10¢

northward position - m

(X}

05

eastward position - m 2104
Figure 5.7: The trajectories of three drifters deployed in the Scotian Shelf.

As mentioned in the previous sections, both the OK and HS methods are
sensitive to noise. To reduce the noise, we use a low-pass digital filter. A 10
order Butterworth filter was chosen because of its flat frequency response.

This high order is needed to have a sharp slope at its cut-off frequency, the
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frequency at which the gain has the value of -3 dB. Having set the order of
the filter, we do some experiments o drifter 6 denoted by *dr.6” to examine
the difeets of different ent-off frequencies on the DKP obtained from the OK
method,

The experiment involves several steps. We low-pass filter the trajectory.
We nse 104 order Butterworth filter with a ent-off frequency of § cycles/hour,

“This filter is available in MATLAB subrontines. We also nse a subroutine

called “AILIL. Firstly, this subroutine filters the signal, then, the filtered

sequence is reversed and run back through the filter. As a result,, there is

no phase shift in the filkered signal (Little and Shue, 1988). We calenlate

the velocity numerically and filter this velocity the same way. These veloci-

ties ave subsequently differentiated numerically and filtered and the process
repeated until we have up to third order derivatives of the diifter velocity.

Having obtained all these derivatives, we nse the OK formulae to obtain the

Kinematic parameters. These procedures are performed with each of these

entalf frequencios .42 and & ceyeles/hour. Some of the results obtained

alter filtering with these different cut-off frequencies are shown in figure 5.8

and figure 5.9,
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X104

Figure 5.8: The DKP calculated using the OK method with a 10% order
filter having a cut-off frequency of § cycles/hour.

Figure 5.8 shows that the calculated DKP fluctuate wildly when the cut-

off frequency is } cycles/hour. Here - - - -, ‘..., “.....", ‘—" denotes
stretching deformation rate, shearing deformation rate, vorticity, divergence

pectively. The order of itude takes the value of 10~%. Setting the

cut-off frequency at § cycles/hour, we get a clear feature of each parameter

(see figure 5.9).
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X 10N-4)/s

Figure 5.9: The DKP calculated using the OK method with a 10** order
filter having a cut-off frequency of ! cycles/hour.

From the above i an appropriate cut-off freq should be
used in order to increase the signal to noise ratio. We could use the cut-off
frequency at % cycles/hour, but this is a harmonic frequency of the semi
diurnal tide that may contain some information. In order to keep some of

this information, we choose the cut-off frequency of % cycles/hour for the

following work. Typical drifter speeds ass 0.10 m/s, so this cut-off frequency
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results in displacements of 0.10 x 5 x 60 x 60 = 1300 m in the 5

homr period
hetween positions. The position uncertainty due to measurement error is 20

m. Thus the signal to noise ratio is 90.

The frequency response of the 10% order filter is shown in lignre 5.10.
The higher-order low-pass filter being used might have an effect on the fil-
tered signal, cansing ringing at the heginning and at e end of a time series
(Helbig, personal communication). To examine this we plot the filtered and
wnfiltered position versus time in fignre 511, We see that. the ringing has an

effect at the end of the time series of both the filtered positions. Here, the

unfiltered positions are plotted using the solid lines and the filtered positions

of x and y arc shown * lines, respee . Note that the

‘filUIC subrou

e produces zero phase shift hetween unfiftered filtered
signal but fails to reduce the ringing effect cansed by the high order filter

that is used. In the following work, therefore, we shonld regard the fast 10

hones of Lhe time series to be spurions.
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Figure 5.10: The frequency response of the 10** order low-pass filter with a

cut-off frequency of § cycles/hour.
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Figure 5.11: The ringing effect on the filtered positions as a result of per-
forming the 10'* order low-pass with a cut-off frequency of % cycles/hour.



5.3.1 The OK method results

We now use the OK method to analyse the drifter trajectories. We follow
the above procedures i.e. numerical differentiation and low-pass filtering after
cach time differentiation. We use the 10** order low-pass filter with cut-off
frequency of } cycles/hour. We do the analysis on all three drifters in order
to calculate the kinematic parameters, i.e. the DKP, translation and swirl

velocities as well as the flow centre’s position.

Figure 5.12: The DKP resulting from the OK analysis on the trajectory of
‘dr.6”.



Figure 5.12 shows the calenlated DKP from “dr.6". The

the same trends as in ligure and have an order of magnitnde of 107

These values lie within the range of those that had heen reported by previons

investigators (of the order of 107 to 107*) (Chew and Berhe 19712 Reed,

1971; Molinari and Kirwan, 1975; Kirwan, 1975; Kawai, [985). Note that

in spite of differences in location and method of analyses, the present. result

is in agreement with carlier findings. Owing to the fact that all of these
measurements were obtained for similar seales of the order of kilometers, the

agreement s expeeted (Kawai, 1985). We see that of all the parameters,

the vorticity takes the largest absolute value. It means that the motion is

ce that a negative val

dominated by a roti ing feature. Purther, we 1

of vorticity is associated with anticyclonic or clockwise rotation can be

shown from the drifter trajectory in figure 5.13.

The position of the flow centre denoted by plotted along with the
corresponding trajectory in fignre 5.13. For most of the time, the flow centre

moves with the drifter and is within | km of the drifter, 1t also shows that the

flow centre performs mostly a translation and few small amplitiuce looping

motions. The drifter, meanwhile, makes bigger looping motions abont the

flow centre. Note that near the end of the drifter’s tory, the ringing
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effect caused by the use of the high order filter mentioned leads to a spurious

ter-clockwise loop. This counter-clockwise is spurious as can be seen by

comparing figure 5.13 with figure 5.7.

,xIU‘

"
a3 sy
2

€
&
‘E? 15
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03
0
24 22 2 8 16 14 2 1 08

Figure 5.13: The particle’s trajectory and flow centre resulting from the OK
analysis on the trajectory of ‘dr.6’.

The translation velocity of the flow centre of ‘dr.6’ is shown in figure 5.14.
The long time-scale trends in Ur and Vy are consistent with the trajectory
of the flow centre plotted in figure 5.13. Both components of the flow centre
translation velocity show strong fluctuations with a period of about 6.1 hours.
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This is approximately half the semi-diurnal period of the tide.

04

J

"""awwmwsosomwyo

time (hours)

Figure 5.14: The translation velocities resulting from the OK analysis on the
trajectory of ‘dr.6"

The motion of the drifter relative to the flow centre is described by the
swirl velocity. Components of swirl velocity are ploited in figure 5.15 as
a function of time. Figure 5.15 shows a periodic motion with the period
between peaks of about 12.5 hours. It is the semi-diurnal tide. We also
see that the amplitude of the velocities are not uniform. We try to further
investigate this non-uniformity in the velocities by presenting the position of
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the drifter relative to its flow centre.

time (hours)

Figure 5.15: The swirl velocities resulting from the OK analysis on the tra-
jectory of ‘dr.6".



Figure 5.16: The position of the drifter relative to the flow centre resuiting
from the OK analysis on the trajectory of ‘dr.6'.

Figure 5.16 shows the time series of the drifter position relative to the

" and the northward

flow centre. The eastward position is denoted by ‘X
direction by “Y". It resembles the swirl velocities (figure 5.15). The distance
from the drifter to the flow centre is v/ X7+ YZ. Thus we obtain a time
series of this distance to compare with the time series of vorticity plotted

in figure 5.12. Fluctuations of X? + Y? about the mean value are then

correlated with fluctuations of vorticity about its mean value. We get a
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correlation cocllicient of -0.81. Similarly we can calealate the speed

o
of the drifter using /a2 + 02 and correlate it with vorticity and obtain a
coeflicient of -0.85. These coeflicients tell us that both the distance and
speed of the drifter relative to the flow contre are negatively correlated. 1t
means thal s the refative distance of the difter o its centre decreases,
the magnitude of the vorticity gets larger. This is consistent with the idea

of conservation of angnlar momentum.  The closer the drifter to its flow

contre, L greater its angular frequency. This kind of argument was used to

ectory in the North Equatorial Current

explain five eyclonic features of a tre

(Kirwan, 1984; Kirwan of al, 1934). We can also think of another way
of interpreting the result in terms of potential vorticity Q = ([ +¢)/H.

Here, [ s the planctary vorticity and is assimed to he constant along the

s the local vorticity and H is the water column. Stretching

drifters path,

and shrinking of the water column can be associated with a convergent and
divergent motions, respectively (see Gill, 1982 p. 232-233). In the former
case, as the drifter moves elose o the centre, it rolates faster. Stretching
the water column (inereasing /) causes ¢ lo increase is compensated by

gaining positive vorlicity (increased cyclonic motion) in order to conserve

the potential vorticity. On the other hand, as the drifter mov
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the centre (corresponding to divergence) then ¢ gets smaller and the drifter

rotates slower aronnd the flow centre.

Similar results are found for the other two drifters denoted by de.” and

dr.2. Their DKP have the some order of magnitnde of 10 except for

peaks at certain time intervals associated with times when we had (o nse

interpolated positions hecanse of instrument. failures. These trajectories al

show that angular momentum abont the How centre and potential vorticity
are conserved,

Table 5.3 shows the cross correlation coeflicient hetween the kinematie

The correlation coellicient s

parameters obtained from neighbouring drifte

obtained by cross correlating parameters related to dvifter 1 and drifter 2

put under a column labelled *dr.f and dr.2, and similarly for e columns
labelled *dr.! and dr.6" and *dr.2 and dr.67. The Jeft columu is provided for

the pararacters. Note that the position of the flow centre is denoted

and *Yp'. Ascan be seen from the table that the DKP of dr. 1 are uncorrelated

to those of dr.2 and dr.6. But dr2 and dr.6 have well correlated DKP. This

suggests that both dr.2 and dr.6 may be responding to the same singularity
in the Mow field, whereas dr.l appears to be sesponding Lo a different flow

field singularity. Fignre 5.7 shows the relative positions of the three drift
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Rinrmalic Correlalion rocfJicicnls belwcen

parancters | AT and -2 ] Al and 4.6 | dr.2 and dr
0 0.19 0.12 0.63
b 0.05 067 0.50
< 0.9 0.17 0.96
d 0.16 0.06 0.61
Tr 0.2 0.26 041
Vr 015 0.17 0.19
it 0.16 0.54 0.64
v, 031 0.39 047
Xr 0.1 0.97 0.97
Vi 0.19 0.64 0.76

flicients of the kinematic | s belween pairs
of diifters from the OK aualysis

Drifters 2 and 6 start adjacent but end wp separated with drifier 1 between
them, In a fiuid flow which has singularities of different scales embedded one
within the other, it is not. simple to equate proximity with similarity in flow
structure. Another interesting finding is that, the cast-west component of the
swirl velocities gives a higher correlation coefficient, than that of the north-

sonth component. A similar result is obtained for the translation velocities.

s more cohierent in its cast-west component, than in

1t seoms the singular
the north-south compouent of motion.

The trajectories of the flow centres are presented in figure 5.17. Here
427, ()" corresponds o flow centre of drifiers dr.l, dr-2, dr.6, respec-
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tively. Wesee that cach drifter seems to have a different. flow centre position,

typically separated abont 2 km. The flow centre pusition for drifter | secms

to fuctuate in a noisy manwer. Thi

may account for the poor correlation

between drifter | and other drifters. It is clear from the present analysis that
these drifter tracks are not strongly dominated by a single coherent llow fiell
singularity.

From the above discussions, we have presented the OK analysis on a par-

tieular trajectory embedded on the Scotian Shell, The results reveal sowe

interesting features. First of all, the magnitude: of the DK are within the

range obtained by previous i i One of the s, the vor-

ticity, shows that the trajectory will be dominated by

eyele
which is in agreement with casual observation of the data. We also find
a result that agree with conservation of angular momentum shown by the

drifters. The motion of the particle abont the flow contre has a1 dominant

period of 12.5 hours whereas the motion of the flow centre a 6.1 hour

period. We have also shown that even though each trajectory has its own

singularity or flow centre, the kinematic parameters of two of the drifters
are somewhat related. There are similarities hetween U trajectories of the
three driflers plotted in fignre 5.7. It is clear, however, that the three drifter
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Figure 5.17: The positions of the three flow centres resulting from the OK
analysis on the trajectory of ‘dr.l’, ‘dr.2’, ‘dr.6".
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trajectories do not all result from a common flow field singularity. We ex-

pect, therefore, that the 115 anal of this data will break down

is not one unambiguons singularity common to all three drifters.

5.3.2 The HS method results

In this section, we will nse the 1S method to analyse the deifter measnre

ments on the Seotian Shell. This method s als ve Lo noise. o

remove the noise, we use a low-pass filter which has the same cha

t-oll

as that mentioned carlier, 10% order Butterworth filter with

frequency of 1 cycles/honr. The HS method also explicitly assumes that all

drifters in the cluster are moving in response to the same flow contre. For

the present data set this assumption

njustified. [Uis therefore of interest

to see whether or not the HS method breaks down totally, or just gives a

slightly dilferent looking answer from the OK analysis. To make a compar-

ison hetween methods, we will calenlate the time derivatives and filter the
data, in the same fashion as we did for the OK analysis.

Figure 5.18 and fignre 5.19 show the calenlated DKP. The stretehing and

shearing deformation r

¢, vorticity and divergence are denoted by the lines
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‘" respectively. All parameters have large amplitude

swings. Bearin mind that we have used the same low-pass filtering to smooth

the data as was used in the OK method.

2104y

lculated using

Figure 5.18: The hing and shearing ion rate
the HS analysis on the three drifters.
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Figure 5.19: The vorticity and divergence calculated using the HS analysis
on the three drifters.

The position of the flow centre calculated using the HS method is plotted
in figure 5.20 along with the trajectories of the three drifters. In this plot, the
c4#4%1 danotes the flow centre position and the ‘(1)', *(2)", *(3)' corresponds to
the trajectory of each particle. We see that the flow centre position fluctuates
greatly from one time interval to the next. It is clear that the HS method
does not identify either the position of the flow centre or the DKP of the

flow.



104

pos. northward dir. m

Figure 5.20: The particles’ trajectories and flow centre position resulting
from the HS analysis.

This probably results from the lack of a well-defined singularity in the
flow field to control the motion of all three drifters. The tide dominates the
flow on Sable Island bank and the tidal currents generally have large spatial
scales compared to the separations between dr.1, dr.2 and dr.6. In view of this
situation, we can think of an oscillating sheet of fluid. A drifter embedded in

a fluid that is oscillating as a sheet will move around in an elliptic path. There
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is no flow field singularity. We are asking the 1S method to tell us where

the flow contre s and what its properties are. But there is no well defined

flow contre, so the HS method responds by giving ridienlons rosults. The

OK method, on the other hand, gives DK consistent. with motion aronnd a

vortex - becanse it is unable to discriminate between motion around a vort

and an oscillating sheet, We will inve

igate Lhi: o later on. For the time

being, we will nse the OB method to analyse the data set.

5.3.3 The OE method results

This part of the section will present the resnlts obtained nsing the 014
method. We also low-pass filter the positions and velocities of each drifter.
Note that, the O method does not require the caleulation of acecleration
terms. However, we nead to compute the centroid position of the cluster.

Figure 5.21 shows the DKP obtained using the OF method. The parame-

ters have a magnitude of order 1071571, We see that the DRI are oscillating

abont zero. This might not be truy L ous Lake a ook at the vorticity, We
notice that in some time intervals, its value hecomes positive. This means

that at some particular time the brajectory changes its sense of rotation. This

m
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Figure 5.21: The DKP resulting from the OE analysis on the cluster of

drifters.
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is not realistic since the trajectory always rotates in a clockwise direction,
anti-cyclonic. Similarly, the other DKP are probably unrealistic as discussed

by Kirwan (1984).

__UBAR
04 HEVBAR

Figure 5.22: The centroid velocities resulting from the OE analysis on the
cluster of drifters.

Both eastward and northward components of the centroid velocity oscil-
late with a period of 12.5 hours in figure 5.22. This means that the centroid
is influenced by a semi-diurnal tide. We see that the centroid velocity in
figure 5.2 is strongly correlated to the swirl velocity obtained from the OK
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analysis in fignre 5,15, This is consistent with our carlier interpretation that

most of the flow moves elliptically as a spatially coherent sheet.

5.3.4 Data simulation using DKP obtained from the
OK

We have presented the results of three methods i.e. the OK, HS and OE.
From the analysis, the results obtained by using the HS method give no useful
information about the kinematic parameters. Thus, we can not properly
deseribe the low field. We suspect that the failure is caused by the absence
of well-defined singularitios which are common Lo all difters. We will perform
another simulation in which the drifters share the same singularitics. We take
the DKP and the flow centre’s position caleulated from dr. using the OK
method. These DKP are then used to caleulate trajectories for three drifters
by substituting them into a forward differencing formulac for the first time
stop
FHA) = (1) + 0.5A[(a(t) + (b)) (E () — Xr(1)]
HOSAM() — )G ~ Ve + Ur(DA  (5.15)
Bt +A) = G(t) +0.5A[(b(E) + e())(E:(t) = Xr(1))]

14



FOSA[(d(1) = a(t () = Ve(D)]) + V(DD (5.16)
and a centred differencing scheme for later time: steps.

E(t+A) = Fi(l=A)+ Af(a(t) +d(O)(F() = X4())]
FA[(b(1) = (D)E() = V)] +20(A - (5.17)
Fill+A) = gl = )+ AL(b(1) + (D)) = Xe(1)
FA(A() = a() (1) = V()] +2V(1A. - (5.18)
Here, the subseript %" with i = 1,2,3 denotes the i deifter. A is the time
interval between positions. The DRI a(t), b(i), (1), d(1), translation velocity

Uz, Vr, flow centre position X7, Y7 are all functions of time d

rmined
from the OK analysis of dr.6. Initially, we locate onr simulated drifters at
each corner of an equilateral triangle with the singularity at its centre. Thas
we expect that the OE method shonld work for this data. The simulated

trajectories of the three drifters are given in fignre 5.23.



2104

25|
2
e
a‘ 15|
H
g 1
£
05
0
24 22 2 48 6 4 42 1 28
pos. castward dir. m 210
Figure 5.23: The simulated traj i Iculated from the ki ic pa-
rameters of ‘dr.6".

The positions of the three simulated drifters are shown in figure 5.23.
The three drifters are represented by different lines, i.e. ‘—, *- - - -’ and
‘... Having generated the trajectories, we proceed further by calculating
successive time derivatives of the trajectories and performing low-pass filter-
ing after each differentiation. Then, we apply the OK, HS and OE methods

to the simulated data to obtain the kinematic parameters.
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Figure 5.24: The DKP resulting from the OK analysis on the simulated
trajectory.

Figure 5.24 shows the DKP calculated by applying the OK method to the
simulated data. Here, we choose one of the trajectories plotted in figure 5.13.
The DKP used to generate the simulated data are plotted in figure 5.12. The
DKP in figure 5.24 are very similar to those in figure 5.13, but they are not
identical. The DKP obtained from the simulated data by applying the HS
method are shown in figure 5.25. The details of these time series in figures

5.23 and 5.24 are different, but both methods do give strongly correlated

17



results.

X 10N-4)/s

time (hours)
Figure 5.25: The DKP resulting from the HS analysis on the three simulated
trajectories.
The results shown in figure 5.26 are obtained from the OE method. They
most strongly resemble the DKP, plotted in figure 5.12, which were used to
to generate the data. This means that the OE method provides us with a

better estimation of the ki i ters of the simulated data than

those of the OK and HS methods. This is not surprising that the OE gives
a nice result since the centroid is no other than the flow centre itself. Hence,
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Figure 5.26: The DKP resulting from the OE analysis on the three simulated
trajectories.

the results show no biasing problem. If, however, we move the centroid away
from the flow centre, then the OE method gives very poor results. Now, we
will present the results of performing a cross-correlation analysis between the
DKP used to generate the trajectory and the DKP obtained from each of
the three methods.

Table 5.4 shows the correlation coefficients obtained by cross-correlating

the DKP used to simulate trajectories (symbolized as *SIM’) to the DKP
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Nincmatic Clorrclation cocfficients between
paramelers | SIM and OK [ SIM and HS [ SIM and OE
a 0.88 0.91 0.996
b 0.87 0.996
[ 0.98 0.996
d 0.55 0.85

Table 5.4: Correlation coeflicients of the kinematic parameters between sim-
ulated valies and the values caleulated from the three methods: OK, HS,
OL.

calenlated from cach mothod. Strongest correlations are obtained between
the simulation DKP and those from the O method. The other two columns
obtained by correlating the simulation DKP with from OK and HS analysis
give lower correlation cocllicients. Despite its higher order derivatives, the
DKP obtained using the OK method are more closely correlated to the sim-
ulation DKP than the DKP obtained using the HS method. However, the
1S method still gives quite a good estimate of the DKP. Clearly, the HS
method can provide useful information about DKP if the drifter cluster is
moved by only one well defined flow centre, The fact that it breaks down so
Dadly when this condition is not satisfied, suggests that it might be a good
indicator for the existence of well defined flow field singularities.

In cirenmstances where there is no wi't defined flow centre (such as the
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Sable Island bank) the OK method gives plansible DRI and also gives a
solution for the flow centre position. But the OK method indicates that a
neighbouring drifter might give a different. flow centre position in such a flow

field. The OK method is

ssentially mable t use only one trajectory to
resolve the difference between a flow field that rotates about a stationary
point and a flow field which moves as a sheet so that all points on the sheet
ases Lhe

have the same (bnt displaced) cirenlar trajectories. To resolve these

OK method requires two drifters. In view of the ambiguity and inacenracy

inherent in all the methods of obtaining DKP from dr
prudent Lo consider all techniques available sinee they arve all likely to have
their own particular strengths and weaknesses. For example DKP might be
much better obtained from the 1S method than the OK method if drifter
trajectories are distributed at the scale of a dominant eddy and the time
series of positions is shorl. I this case the 1S method is Jess affected by

than the OK method.
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Chapter 6

Summary

Our problem has been to find ways of inverting a drifler trajectory to find
Kinematic properties of the flow field. In particular we search for structures
in the flow field that can be identified as singularities. Two approaches have
been developed. First we have corrected algebraic errors made by Kirwan
ol al., (198%) when they inverted Okuho’s (1970) solution for the motion
of a drifter near a flow field singnlarity, Nest we generalized the regression
techuique of Okubo and Ebbesmeyer (1976) so that the flow centre was 1o
longer fixed to the drifter cluster centroid,

Our solutions as manifested in the OK method, have been tested in two

First, by substituting the solutions into the nonlinear equations that
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they are supposed to solve and wsing the MACSYMA program to cheek

that the equations arc identically satisfied. Second, by generating sets of
data ranging from pure stretehing and shearing with no translation to pure
rotation with translation velocity. The OK method obtained the correct DRI
from these simulated trajectories. The solutions by Kirwan et al., (1988) are

also examined hy the same t

but generally fail to give the correet DKP

excopt for the divergence,

The cluster method of Okubo and Ebbesmeyer (1976), OF, was nsed to
analyse artificially generated trajectories with pure rotation and a constant
translation velocity. This OF method failed whenever the position of the
flow field singularity was different, from that of the cluster controid. This
so-called biasing problem has been pointed out by Kirwan (1988). A new 115
cluster method has been doveloped iu order 1o overcome this problem. The
HS method explicitly solves for both the position and veloeity of the flow

centre. The biasing problem in which the DKP oscillate in accordanee with

the angular frequency of the eddy, has heen suecessfully overcome by the 115
method. Note, however, that the OF method ean still be nseful for studying
the elongation or distortion of a pateh of drifters with respect to the pateh

centroid (Okubo cl al., 1976; Okubo of al., 1983).
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Both OK and 1S methods are capable of determining the flow field pa-

rameters of the generated data. Some assumptions have been posed to both

methods, i.c. the kinematic parameters are constant or slowly changing rel-
ative to the time interval between fixes, a well-defined flow field singularity
and the singularity does not accelerate. We can name a translating ring as
an example that may fulfill the requirement. The OK method has the ad-
vantage of allowing DKP to be determined from a single trajectory. But we
can not. he sure that a second neighbouring drifter would give the same DKP.
This uncertainty arises ont of the possibility that the flow field sampled by
a drifter may not always consist of unambignous isolated singularitics. The
115 method has the disadvantage of requiring more drifters. The HS method
seems to break down in a very obvions fashion if all three drifters are not
heing moved by the same flow field singularity. This might be considered

vither an ad or disadvantage; depending upon your point of view.

Putting noise in a trajectory affects both the OK and HS methods. The

up Lo 4™ order time derivatives of trajectories make the OK method sensitive
to noise, In the case of the HS medhod only second order time derivatives of
the trajectory are nsed. However, the HS method implicitly relies on spatial
derivatives of the trajoctories as well. Thus the HS method can be either
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more or less sensitive o noise than the OK method; depending upon the

separation distance between drogies. To reduce the effoct of noise, we conld
perform a low-pass filter Lo both the OK and 11 methods and enlarge the
separation distance hetween drifters deployed in the flow when applying the

1S method. However, we have to ensure that the separation hetween drifters

does not become so great, that different drifters are responding to dilferent

filter b

singularities, The use of low-p he disadvantage of filtering out

any high frequency variability of the DKP. Increasing the distance hetween

drifters to the order of the eddy might become impractical sinee the size of
an eddy has an order of several kilometers or greater.

Some interesting results are obtained by using these methods of analysing

the drifter trajectories on the Scotian Shelf. Using the OK method, we can

obtain the DKP for cach drifter. We find that the DKI arc in a

g

between -5 x1074s7" to 3 x10™1s™". 1L also shows that the trajectory moves

in a clockwise direction which is in agreement with observation. The drifter
rolates faster around its flow centre when it gets closer to the the flow ecntre,

5
i

consistent with conservation of potential vorticity. Further, there is a 12,
I period of oscillation, the semi-diurnal tide, observed in the swirl velocity

ach drift

with a peak of abont 0.5 m/s. The position of the flow centre of
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and its carresponding Lranslation velocity had a dominant 6.1 I periodicity.

We do not have an explanation for the fact that certain tidal constituent will

aflect certain velocity component. and not the other component.
It turns ont that the three drifters deployed on the Seotian Shell expe-
rienced different flow field singularities.  Under this circumstance, the HS

method give

s wildly fluctuating DKP. The break down of the IS method is
cansedd by the lack of a well-defined flow field singularity which is common

to all three drifters. To justify this argument, we do another simnlation in

which we set a common flow field singularity using DKP obtained from one
drifter track by using the OK method. Upon analysing this sinulated data,
we lind that the results obtained from the OK and HS methods return the

correct, valnes for the kinematic properties of the flow field. We see that the

1S method can be nsed o identify a flow field singularity provided that all

e drifters in the duster are responding to only the one singularity.

The

S

tian Shell data analysis indicates a dominant semi-divrnal tide

that has large spatial sc

50 that each trajectory has its own flow centre
and all drifters do ol respond to a single well-defined singularity. We can

think of the motion a

s an oscillating sheet of fluid rather than rotation about

a vortex. Kach drifier deployed in this type of low will move in an elliptic
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trajectory that is displaced from other drifters. This is supported by the

centroid velocity obtained by the OB method heing strongly correlated with
the swirl velocity attained using the OK method. That explains why cach

drifter seems Lo have its own flow centre in this kind of flow.

=
5
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APPENDIX A
The fullowing programs denoted by ‘ok1” and ‘ok2 are to be used on obtain-
ing a, b, e of the OK method when a? 4 6% — & # 0 (see oquations (2.48),
(2:49), (250)). The programs are written in MACSYMA.
Lokl -t
dskgestruc;
e -2 m2) ) /m2*m2;
yi((d¥d-28 m2) v l-vE) /2 m;
ra2fdrd-4t mz;
A ulxtT
kedPvly'l;
p2rdy;
2ty
ritatktp;
peptpegtes
ppptpetat s
bi(ip-pm*ro)/pp:
ai(ja*btq™ro)/p;

1o ro-aa-b¥hdd-1 v m2;



solve(%,ro);

ho:(jp-pm*ro)/pp:

%.d16;

bl:ratsimp(%);

al:(j-q*h0+q*ro) /p;

Yh,d116;

al:ratsimp(%);

rl:ro;

%5016

roliratsimp(%);

(P42l *d) 27y “d*(bl-rol )4 'l
ratsimp(%);

PoxFdH (bl rol J4y*(I-27al *d)- *v
ratsimp(%);

XA ()T (3 +al))+y (bl-rol ) (270" d41)-8

eliratsimp(%);
(D hrol (255 D)y (27 (i )+ 1 (37 el )-8 v

e2iratsimp(%);
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X P AT )47 al 7 T)+4*y 50 (bl-rol ) T-16%u3;
ratsimp(%);
ATt (Dlrol )y (1t (P-d*d)-4%al *d *T)-16%v;
ratsimp(%);

store([nilai,mac,DSK directory]al bl rol el e2,y,x);

ook -t

dskgestrnes
loadfile(nilai,mae, DSK directory);
A0:(n 1w us) /(u vy Fu2);
m20:(u2tv3-ud*v)/(nlFv2n2tvl);
el;

o2

alt

bl;

Tol;

vi

ev(d45,d=d0,m

136



ratsimp(%);
ev(d46,d=d0,m2=m20);
ratsimp(%);
ev(d47 d=d0,m2=m20);

ak:

tsimp(%);
ev(dd8 d=d0,m2=m20);
bleratsimp(%);

ev(d49,d=d0,m2

ckeratsimp(%);

quit();

- oxecuting okl and ok2 programs in a bateh mode -~

bateh™ok1™;

bateh”ok2";

4
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APPENDIX B

Using the Enlerian point of view, hoth the pure stretching and shearing

motion can be deseribed in terms of their streamlines

without 4
patterns.

For pure stretehing, the flow field ean be written

« .
S =50 (6.1)

and, for pure shearing

(62)

The equation for ste. amlines is

dr _ dy

u v’
Substituting the above llow fields from cach case into the equation for stream-

Tines and integrating to give

vy = hy (6.4)

for prre stretehing and shearing, respectively. The sketeh rosulting from these

cquations can he drawn

shown in the following figure. These sketehes are
in agreement with fignre 3.1 and fignre 3.6 of sections 3.1 and 3.2 mentioned

earlier,



- ey ey

Figare 6.1: The streamlines from pure stretehing case (npper) and those from

pure shearing (lower).
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APPENDIX C
The following program written in MATLAB uses the OK method to obtai,
e Kinematic parameters from a single drifter trajectory,
Y% ok.m - program for caleulating the parameters

load dr_G.dat

1 1); x=[dr6(:,2) dr6(:,3));

I=U(x); sx=x(:,1); yy=xI(:,2);

d=df(x0,101,1); dxf=Mt(dx)idxi(z1); vadxi(:,2);
=Tl 1011); d2xf=ut(d2x); nl=d2xl(,1); vi=d2si(:,2);

digxe=df(d2s, 101, 1); d3x=f(d3x); u2

3xi(s,1); v2=d3si(:,2);

ddx=dl{d3,101,1); ddxP=F(ddx); ud=ddxf(,1); v3=dixl(:,2);

W=ul. v2u2. vl

WL 2B )10 Y% stretehing deform, rate
Do (v 1V, v 2en ] B2, 02)./t0;% shearing deform, rate

vl

V2l u3u u2)./10; % vorticity

d=(ul A vus. v )./ Y% divergence
2= (02 s bv2), /10;

o= (d 2 e

). /(n2. m2);
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yp=((dAd-2%m2) e lvd). /(. )
ns=( 5 akd). xp) (A () Pyp)s % swirl veloeity

vs=( 55 (b+e). p)H(5T(d-a) yp)y % swirl velority

ut=u-us; vi=v-vs; % translation velocity
XN=XX-XP; YS=yY-yp % singularity’s position
Yoplotting

xl=["time (hours)Jiyld=[" x 10~/ Jiylv=["m/s);
xlp=[position castward dircetion (m)];
yip=["position northward direction (m);

axd=[0, 95, -5, 5J;axv=(0, 95, -0.6, 0.6];

000, -8000, -5000, 30000];

clg
axis(axd);
plot(tya,™=" b, e bd, )

P )
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gtext(--- ")

Alext(=- ')

xlahel(x)
ylabel(yld)
pavise

print

ele

ol

axis(axv);
plot(tut Lyt =)

gtext (- UTY)

xlabel(xl)
ylabel(ylv)
panse

print



cle
clg

axis(axv);

Plob(Lyus, v,

glext(— us")
gexa{ - - - - vs')
xlabel(x])
ylabel(ylv)

panse

print

cle

clg

axis(axp);
axis('square’);
plot(xx,yy,xs,ys,"")

xlabel(xlp)
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ylabel(ylp)
ghest(*- - dr.6)
lext(F o)
axis(normal’);
axis;

panse

print

Yolt.m - program for low-pass filtering the data
Progi I g

function [fJ=f(x);

5105 yy=x(5,2); [ba]=butter(10,0.1);

XE=hILIL(b,a,xx); yI=GlLl (b,a,yy);

NEIR

Yodlam - program for time-differentiating the data
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Tunction [d]=df(x,nlines.dt)
for j=1:2;
for i=1:3;
Aia)= (375 (1)1 (1 L)x(420)) /(20
end;
end;
for j=1:2;
for i=d:mlines-4;
A(13) =R+ A8 X (4 1§)-87x (i1 +x(0-2.))/(124d1);
end;
end;
for j=1:2;
for i=nlines-3:nlines;
A= x ()4 s (L) +x(i-20)) /(2 d);
end;

end;
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APPENDIX D

The following MATLAB program is nsed for the HS method on obtaining

the kinematic propertios from a cluster of 3 drifters.
oad dr_ldat
oad dr_2.dat
Joadl dr_6.dat

format Jong;

U=yl(;, sn=size(Ll)inl=n(1,1)s=n1-47;
Iphia=zeros(1,s);heta=zeros(1,s);ki (1,8);pi s(1,8);
as=zeros(1,s)ibs s5(1,s)es=zeros(1,s);d 1,8);
os(1,s)ivb=zoros(18)ixt=zeros(Lg)iyt=zoros(1,);
! 1s)
! 1,8);vor=zeros(1 s);di (1)
s(1,5); s(1,s); (1) ¢ soros(1,s);

AL=900.;% 1 3minute-time-interval

L=t (1)

pl=[drd(1:1:5,2)1000. dr_1(1:1:5,3)*1000.);%km-to-meter conversion
pe=(dr2(1:1:,2)1000. dr-2(1:1:5,3)*1000.];
pi=[dr6(1:1:5,2)*1000. dr.6(1:1:5,3)*1000.];
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xl=fi(pl)ix2=Mt(p2);x3=I1(p3): %liltering
AxT=di(x]s,0U)sdx2=dE(x 2,800l xB=dl(x3,5,0L);
wl=(dx)u2s (dx2)u3=l(dxd);
d2x=df(uls,db);d2x2=dl(u2s,dt);d2x3=d(nd5,dt);

upl=f(d2x1);up2=It

up3=M(d2x3);
pos=[x1(5,1) x1(:,2) x2(:,1) x2(:,2) x3(5,1) x3(:,2)];
vel=[ul (1) w1 (5,2) u2(:,1) n2(:,2) ud(s,1) wi(:,2)]s

ace=[upl (5, 1) up! (:2) up2(:,1) up2(;,2) up3(:,1) up3(,2)};

for i=ls
mus=vel(iy)ima=ace(iz)mx=pos(i,:);
sumx(i)=mx(1,1)4mx(1,3)+mx(1,5)sumy(i)=mx(1,2)+mx(1,4)Fmx(1,6):
sumn(i)=mns, ) +mn(:3)+ma(,5)ssumv(i)=mu2)Fmn )i, 6);
um=[ones(1:3)’ reshape(mn,2,3) Jam=[reshape(ma,2,3)';
gl=um"um;g2=inv(gl);g3=g2 umgd=gd amigh=um’ glires=im-p5;
alpha(i)=gd(1,1)ibeta(i)=g(1,2);
as(i)=g(2,1);es()=gd(2,2)ibs() =g (3,1)idls(i) = (3,2);

(i) =(sumu(i)-as(i)*sumx(i)-hs(i) sumy (i) /3.3 drifters
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pii)=(sumv(i)-es(i) sumx(i)-ds(i)“sumy(i)) /35
10()=bs(i)*es(i)-as(i) "ds(i);
ut(i)=(ds(i) alpha(i)-bs(i) heta(i)) /10(0);
vi(i)=(as(i) beta(i)-es(i) alpha(i)) /10():
() =((ve(i)-pi(i) *hs(i)-(ut (i)-ki(i)) ds(i))/10():
YU)=((ut(i)-ki(0)) es(i)-(ve(i)-pi(i)) *as(i))/L0();
ns(i)=as(i) (mx(13)-xt(0))+hs(i)* (ms(1,4)-(0)):
vs(i)=es{i) mx(1,3)-x4 (1)) 4ds () (mx(1,4)-yUi));
st()=10000" (as(i)-ds(i) )ish (i)=10000" (es(i)+bs(i) );
vor(i)=10000(es(i)-bs(i))idiv(i)=10000* (as(i s (i) );
end
Yiplotting
ttl=["drot, dr22, de 6 - butter(10,1/10)7;
xl=["time (hours) Jiyld=[DKP x 10(-1)/sliylv={m/s'];
shp={"pos. castward die. mliylp=["pos. northward dir. m’);

axd=[0, 95, -10, 10J;xv=[0, 95, 0.6, 0.6];

5000, -8000, -5000, 30000];

[ER)



e
g

axis{axd);

plot(tst,=" sl
title(tel)
xlabel(sl)
viabel(yll)
glext(-- - - ")
alest (e b)

print

e

el

axis(axd);
plot(t,vor.'s v, ")
title(tth)

slabel(x])

label(yld)

149



print

xv);
plot(tatiyt, )
title(ttl)
slabel(sl)
vlabel(ylv)
gext(— U17)
ghext( - - - V')

print

ele
g

axis(axv):

3



plot(tastvs” *

title(utl)
slabel(xl)
vlabel(ylv)
slest(‘ e ny’)
glext(- - - - )

print

cle

vlg

axis(axp)
plot(x1(:1),x1(:.2).~7)
lold on

plot (x2(:.1)x2(:2)."

hold on

plot(x3(:,1).x3(:,

title(ul)

slabel(xlp)



ylabel(ylp)
gtext((1))
glext('(2)')
stext('(6))
gext(start’)
axis

print

hold off

end
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