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Abstract . s ®

. Anti-dynamo theorems are proofs that certain : -

conbinatichs of magnetic and velocity fields cannot

. pxodute the dynamo action needed to sustain Ythe magnetic
£ield. They can be ‘divided into two classes. One class
applies only rto magnetic fields that are comstant in time! -
The second’ is concernm w;th the more general case of

.
magnetx.c il.elds that are- auawed to vary 1n txme.

The previously ‘accepted proofs ‘of this second c1ass:

= . are mot qenerally valid~in a compressible £1uid.. An anti:
dynamo theoreri can. be app:ued ina particular case only if

the, parameter Rmz is much less than one. This param_eter

is given by

L Ric® = CRem- -

where” Rm  is the magnetic Reéynolds mumber or the ratio
of the inportaice Of transport processes to ohmic aiffusion
. ' an'dv C. is tne Smylxe—-llocheater compresaibility number
: - which v;xves the ’ftactxonal compressx.qn of -material
For large scale prccesses 1nvolv1ng suhstan:isl radxal
“'motion i the core of the Farth '€ s about.0.2 while Rm

is about 200. Thus an anti-dynamb theorem for tine-dependent

,axisymmetric velocity and magnetic £ields does ot apply.

the core of “the'marth. Another thigoren for. non-radial

velocity flelds is probably. applicable as the denisity: -

chfferenca on any suzface of constant radius in the' core




‘b itie . ttonof

is not likely to be large. A thixd f_i:eo:em on two-
dimensional fields is hard to apply tc the Earth - .

because- thu system considerad in r.he theora.m is, oi

_infinite extent alonq -one axxs.

The theozul oE the fixst _class- are not affected
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", Question"”, - Tt cannot.be permanent: magneusatmn., Aside from the

Introduction
The Earth possess&s a magnetic field. It is predominantly .
a dipole field with a surface strength of a.few tenths 6f a gauss

4

(11 Gauss = 107" T ). The dipole is aligned almost but not quite

along‘the Earth's axis of rotation. ‘The field undergoes minor

- changes from year to year. The £c>ssu maqnetxsatxon of rocks °

shows that the field has existed. for ove% two billion years but

i)

in that time has fluctuated greatly, even reversmg in: sign.

Throughout its }ustory, however, the fleld seen\s to have been a

dipole fleld Tined up ‘with tpe’rotation a:}( 8! et i
The source of 'the field surely qualxﬁ.es as’a "puzzling i

changes over geéologic time, the interior temperature of the Barth
is- far above the critical Curie point at;which ferromagnetic

behaviour disappears. Thi C £ield is though}@ originate with: -

the motion of the conduéting molten netal of the Earth's core.
}’ Dynamo theory, a branch of maqnetohydrcdynamxcs (MHD), is concerned f
with the aetalls. ; .

In 1919 Sir ‘Joseph Larmor asked "How could a -rotating body °
such as thé sun bécome a magnet?”. (The Sun: too has a magnetic
fxeld and -the. objections S permanent agnetisation’ for the Earth .
vere not yet cleaxly established.) ‘As a possible answer he
. ‘Proposed the £undamema1 idea of - theory: that'fluid motion )
thrauqh a magnetic f1e1§ might generate electric currents in the .
fluid which coul‘d}vpra'videv the self-same magnetic. field: - In the




_sense, unfortunate. It was the First and most celebrated anti-

: about an axis could'not’ maintain a magnetic £idla.

* théorem was surprisan~

" left the question ‘of. the

absence of such motion, any magnetic £ield in the conductor decays
i ER . e B
‘Interestingly, Larmor realized that the extension of this

away: >

idea to the Barth would x‘efqulre the exlstence of deép-seated fluid
mdterlal in the Earth not bélieved at that time ‘to exist.

‘One of the earliest results of dyna.mo theory was, ina

aynario theorem (AnT),-ﬂ',at, of Cowling..(1933).. ‘The cuncep: oF. an

3 ,ant;-dynamo theo:em is' qﬂlte sm\ple.—‘ It is a’statenm nt that Eux

action’ wu; take p).ace 50 that the magnetlc £ m_

Covling's’ theorem showed that & veloeity £

evetywhex:e steady in time and symietric about the 'same "axig. - The

nd cast doubt on the soundness of Larmo:'s

idea. .. . _» o

It was feared that a genaral ‘theotem formdamg a1l aynano .

* action lurked undxscovered. “In anestlgatlng possible dynanos

Elsasser: (1946) advocated the expanslon of both velocxty and *

magnetic f;elds in sphexx.cal harmonics. As caz:x:].ed out by - Bullard :

. rand Gellman (1954), thxs Fesults in 1nfln1te sets: of coupled

ordinary aifferential equathfs for evel the! slmplest conﬁquratmn

uf velocity fxems,‘ This ‘made actual computation difeicult and:

xistenceof dynamt: action open

(Herzenbérg, 19587 Backus; 1858).was invaluable as reassurance |

aiscovery. of hwo working, if physically unrgal‘lstlc, dynaio' models |




that no qeneril theorem’ would be found. ﬂowev!x q'ulte a

mmber of special fb’l s have been founﬂ and more conject\lred

Table 1 collects a number of these.. - &'

i : m:le 1. ‘Anti-dynamo: Theoremd

7 Yelocity - ¢ Magnetic Reference
. . Pleld % : ;joFleld’ B

cowung, 1933
ﬂmxtz, 1968,

Steady: -

© Namikawa and 2 14
Hatsushxt:a, 1970 Lt

ubieiazx

‘Backus and
Chandrasekhar, 1956;

St
‘Braginskii, 1964

. ; c.
'l'ime dependant

L w7 -Nonsradialic " Atbit ‘Bullard and Gellman, is54;
o I < - 'H.me dapendent ACowung, 1957b; 2

) o E “Backus, 1958 . .

= “Two d‘me’nsim;ax ' mwe: Qimensional | Cowlifg, 1957b;
FF Time- dependent Moffatt, 1978 - :

S conjectumdm by e
Mhitrary o . Pololdal . * .7 -Childress,.1968 H
ek b Steady : & b
se:a:y Toroidal
Steady

Arhlt:ary g
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(e incempteuihle. Th.(s is shown by r.ha fact tha

'l'he e!tabllshed ADT's’ can he dividm‘l mtc two cxasses.

eaca with three mubers. rhe first class applies to mgnetic

fields that are evexywheze constant in stime. They :l.nclude

Cowling's original e.heorem

‘a ‘theoren forbidding dyna-o action
when the veloeity field #s putely adial (in a sphere), und- a

sinilar theorém on two Simenaional mthorii, o s/

 ‘The - sécond class was recognized as. a class'hy co\vlinq

(1!571:). They apply to genexal magnatie fields, that 15,"f0t

ve;oci‘ty fielda v(ithout radial companent and ‘any. magnetic field,

ana two dlmensional velocu:y and magnetic. fields.

The tbeory ‘of astrophysical dynamos is of fmudabxe KD

complexu:y. It is understandable’ that simplifying asnmptions

mn be made in working -it out. A common assumpf_xon is tHat r,he

< ﬂui.d is incoupranible’. 'nus ‘thesis exa-ines sme ‘of the ‘results
of relm.ng this requirement.: This point 1s of geophyucal
sig-niticam:a. e = Y T y

| .The material nakmq up- the outu core of the Earth i

lt transmitn

P-vaves! T

the 'nquid core due ‘o ccmp:esston u some 20%. Smylxe and s




" . .
® ¥ *
LI “  arguments show that-the gqffects of compressibflity are always
' small and can be substantial. A striking result concerns the
';econa class of ADT's. The-proofs of this group all rely on flow
‘h" in the fluid being divergenceless. This follows in the proofs
from the assumption that'the fluid is incompressible. Flow in an

** incompressible fluid'is solenoidal, that is, has a divergence of

. zero. Solenoidal flow i a compressible fluid is, of course,
[ . 4 P
possible but not negessary; , W
R . ,This:is.mot a statement. that dynamusﬂuolatmg the conditions
i 1'a*xd down by the aDT's exxstl thexe are no existence proofs here.

The non-existence proofs are however nullified.

The compressibility of the core is of importance chiefly
P when ma(:e (41 rises through the hydrostatic pressure gradient. The :
ey pargmetex is what 1 havercalled (very much for want of anythn’xq
" better) "the compressible part of the maqnetu: Reynolds number i
g ) . R,,,‘ It is the product of the cohventional magnetic Reynolds
4 nunber, Rm , and ghe Smy)xe Rochester compressibility mumber,C .

The necessary-condition for the ADT4ys ta fail is -

S o | R.;: >l

&% - T]qls is 11ke1y fulfxue& for, :the' axisymmetric and two dimensional
n ‘P . cases, However the )\DT for non-radial velocity fxelds is not
affectéd by Jthe pure],y radial hydrostatic pressure gradlent.
~- The effects of compressibility on the £irdt class of m)'r s

“ are guch less mazked\ Indeed, Namikawa and Matsushita (1970)




remark that compressibility is likely to be of importance for
dynago theory; The assumption of steady magnetic fields is quite
a strict condition. Any fluctuation anywhere is forbidden.

The failure of the second class of ADT is important as
their effects on the history of dynamo theory have been great.
This is especially so for the axisymmetric theorem. The magnetic
field is observed to be highly axisymmetric while rotation is
expected to make axial symmetry likely for the velocity field
as well. i

A way out of this difficulty was proposed by Parker (1955).
He Yenlized that = system not axisyimetric in detail could still
be axisymmetric in the mean. This important concept was pursued
by Steenbeck, Krause, and Radler (English translation in Roberts®
and Stix, 1971) who separated the velocity field into two parts
vy s different scaieg of length, one large-scale mean part
and a smaller-scale turbulent or random part. Much progress has
been made along this road (see e.g. Moffatt, 1978). )

A different approach is, the nearly axisymmetric dynamo.of
Braginskii (1964a,b). The circulation of the core is conceived

as being large scale. It, and the magnetic field, are represented

" by a predominant axisymmetric part and a smaller non-axisymmetric

part. Solutions are sought by a perturbation technique. This

model and its derivatives are the leading exariples of the one-scale

"method (Gubbins, 1974).

Both schools grew out of the necessity of avoiding Cowling's

—

>




theorem on axial symmetry. This'is the importance of the failure
of the time dependent version of the theorem in a compressible
fluid. The failure of the theorems on non-radial and tiwo

dimensional velocity fields are also ‘of interest for reasons that

will be discussed.

T emiitavin TRpeTtant ¥E CRNES. BHRLEE. SR sn e B ey
the assumption of incompressible flow, perhaps the rest of dynamo
theory needs to be examined with that in mind.' The intractable
nature of the subject makes this difficult without extended -

analysis but some starts can be made.

Before turning to mathematical pHysics we must first look

at the nature of the core’ of the Earth and other jsuch matters.




2. The Core of the Earth

This chapter is a brief exposition of some of the properties
of the core. As the core is shielded from us by a great thickness
of rock our knowledge of it is indirect; sometimes exceedingly so.

Seismology reveals that the core can be divided into two
parts: an outer core that fails to transmit shear waves and an
inner one that does. The solid inner core has a radius of some
1200 kn while the fluid outer core extends' to 3500 km. The
thickness of the outer core is thus about 2300 k.. This{wiil be
taken as the typical length for processes involving -the whole
‘(outer) core. ’

The average density and moment of inertia of the Earth
together indicate a high central density. The zero pressure
-3

density of the outer core is perhaps 6.3 x 10° kg m > (Stacey, 1973)

The cosmic abundance of the elements makes iron the most likely
main constituent. The density of molten iron is 7.0 x 10° kg m 3.
A lighter comprment must be present, silicon, sulphur, and oxygen
all being possible ‘(Loper, 1978). '

The lighter compo{aeri: may have important consequences as a
‘possible source oi‘ the energy needed to power the geo-dynamo.
" As the Earth cools the solid inner core grows from the melt. Since

the solid is more metallic than the melt, the layer above the

inner core becomes enrithed in the lighter non-metallic component
which naturally moves towards the top of the core, driven by

buoyancy. This mechanical stirring of the core is said to be a




EghLY SEfeEtive Tesnh OEaviving SIveELATIon TRt ThEEnal
convection driven by radioactive decay, perhaps of potassium,
is much less efficient as the conduction of heatup the -
adiabatic temperaturé gradient would be large (Lgper, 1978).

If the circuldtion is vigorous enough, th core;i.;;
well-mixed; that is, chemically homogeneous and-adiabatically ; .
stratified. Another possibility is that the coré is ]
thermally stably stratified (Higgins and Kennedy, 1971). In’
this case raﬂ;,al rotion ‘would be inhibited, though
osciliatory zadial motion would still be possible. However, -
the Higgins-Kennedy hypothesis rests on’the extrapolation _'
of experiment at modest pres;ur_es to very high ones, and on /
theoretical arguments of uncertain vatidity so that the
‘evidence for it is not compelling. )

The anti-dynamo cheor'eyy\ for non-radial motion must be
considered an argument against this idea. . This matter will

- e N
be aiscussed, below. " :

A chemically humoqeneous outer core can account for

the observed variation of density w\th depth when the

effects of pressire are considered (Driewonski et al.] A975).-
Figure 1 shows that the density of the outer core varies from
12.1 x 102 kg m':? at the bottom to 9.9 at the top, a
difference Gf about 20%.° Material mc\}ing; large distange
radially will expand and contract by considerable amounbs.

A quantity that will be of interest is the radial ’

]

{

i

derivative of density divided by the demsity. Figure'2 shows | ’
\ ' .
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that this quantity varies fram 4 x 1075

the liquid core to about 16 x 10°° m % at the top. Averaged

over the core, a typical value is 11 x 1078 m™},

at the bottan of

lI\n importa;';t parameter in dynamo theory is the
electrical conductivity of the core. Extrapolation of
laboratory data suggests a value of around 5 5105 § m™L.
(Gardiner and Stacey, 1971).

The speed and and pattern of £low," ice. the velocity field,'

" is poorly. known. -However,' it may be pogsible to et §am_

idea of a' typxcal speed;,

B theorer of MHD says. that, &

‘paghetic €ield, in d-highly conducting fluid tends.to move

with that Eluid; the £ield i "frozen in". When the majot-
features of the Earth's magnetic field are mapped year by .
year, they show's slow westward deifi of some 11 minutes of
arc a year. If this change is caused by the motion of

core material then the corresponding speed is about 107 m 571

This might-be described as a plausible estimate of the ‘typical

speed (Bullard et al, 1950).
The p'a:‘c'ezn of flow is even more unclear. However;

using the typ:.cal veldcity, the typical length scale and

the angular velocxty of the Eax‘th 5 rotation, we can express
the importance of rotation by _the Rossby .number (the typical
veldcity aiviasa by thd gypical length timgs the angular
vs}ocity'. see Greenspan, 1968, 'p.7).which for the core is

“about; 3 x 1077, This means that rotation is very important;

Py ” wa
a high degree of akial symmetry would not be surprising..-




The flow in the core may be said to be magneto-

’ . geostrophic; that: is, the Coriolis forces are balanced

by the Lorentz forces. The fields required, perhaps
[ d 1072 mesids (100 gauss) ave not BhcehsoRablE (Bullard
[ 7o and Gellman, 1954).
| E Observations..in ghe Solar System indicate that B
rotation must Ve Ay oE et oE v s ;}enezatum of
‘ : . . magnotic’ fields. The way the’dipole fleld of'the Earth

alxgns Wit]

ation axis is.one point.. Table 2

ccllect some facts 2

bout the innér- five.planets. An

interesting pattern kists in the £irét threewhich all

havé about the same density. EBarth has the highest 2 n

rotation rate and the strongest magnetic field. Venus

rotates most slowly and has a very weak field, if any.

i
;
|
{
i

I A Mercury is in between. Mars and our own Moon spoil this
| progression. However their density is smaller so fhat

any metallic core that may be present may be reduced in

| ) size or'solidified. Jupiter has .a very strong magnetic
‘ field and a short day,. . .

o L _ Besides leadln); us to expect sdme degree of axial
. symmetry, the effgcts of rotation may make ‘another
anti-dynamo thegfrem important. A thearem of fluid
méchanics. maled two dimefsional motion very likély in
any case whe/xé'ro\:ation dominates. This too will be
| aiscussed pelow.
In ;}é/eparation for some work with equation;, Table 3 )

collects. some of the parameters from above.




Thickness of outer core
Density. of cuter core

Fractional' density
derivative :

Electricalconductivity

Typical velocity

3

< 9 o

‘}_gf‘(‘n.

1

Table 2.  Planetary Magnetic Fields.
Density  Rotation Period - Typical B Field
gr/cc Earth days at surface, gauss
‘Mercury 5.4 59 3.3 x 1073
venus 5.2 243 1.8 x 107
Earth 5.5 11,0 3.11 -x 107t
Mars -, ‘3.9 1.026 6.36 x 107"
Moon 3.34 Lbrs © o4 x 107t
Jupiter  1.3% " lo.a1 3,61
: Y | \
From Moffatt (1978) p. 76
and Hartmann (1972) p. 265
Table 3. - Core Parameters .
Radius Of inner core 1200 km
Radius of outer core 3500 km . -
2300 km

10.9 x 10% kg/m3

p
11 x 1078 w7t

5 x 10° s/m
~4 :

1074 s




3. Introduction to Dynamo Theory
_ ¢
Dynamo theory might be called the astrophysical
branch of magnetohydrodynamics (MHD). Tt is divided from
Laboratory MAD by the large typical length scale .of
the processes with which it i% concerned. MiD is itself
separated from plasma bhysids in that it deals with '
fields that vary only slowly with time. We consider an
electrically conducting. fluid obeyirg Ohm's law.
‘. The equations’ of riotion . of the fluid.are just the
"normal hyarodynamic ones with _the addition of the Lorentz
force. Here we must make a dlsblnctlcn between kinematic
dynamo theory and the full hyd;omagnecxc préblem. In
Kinematic dynamo theory we take the velocity field as -
*nown and ask whether it is capable of sustaining or
increasi{:q a magnetic field. _:l‘he forces that drive the .
flow, in particular thé Lorentz force, are ignored.
Hydromagnetic or dynamic dynamo theory introduces the
forces and the reaction of the nagnetic field on the
velocity field. This is clearly a more difficult task.
Anti-dynamo theorens fortunately belong to the kinematic
branch so that we may restrict ourselves to the simplg{%
6f tha two theories. :
Even in the kinematic theory; the velocity field must

be a possible-one. Mass must be conserved; the flow must




obey the equation of continuity:

dp L T-(o3) =
hoet

where

~..g,e“ " 'fcﬁ.’v‘)&.oz

where oo A o e THRE W a 2

is the Lagrangian or material derivative. Tt is:the rate
of change in a quantity over.a small parcel of fluid as
that parcel moves in the velocity field. '

‘ Now the density of & parcgl of mcompressmle ﬂum

will rot change: Thus the.equatron of continuity becomes ® 7

Vo0 o,

A.velocity field obeying, this'equation is said.to be

solenoidal.  Flow in an incompressible fluid is divergenceless,

Flow in-a compressible f£luid may be, solenoidal but
B p T




is not generally so.

Let us write down, in the MKSA System, Maxwell's

=y

P where & B is ‘the electn.c field, € the d1electr1c constant,
a5 a.). the charge density) B the' maghetic field, pho the

pemeablllty of free space, andI the current density.’

We have limited: ourselves tD fxelds vaxying slowly

with time. This is equivalent tu the neglect of the

displacemﬁnt current in Ampere!s s, {3.6). If a typical
time sz much longer than the tnne hgm: ‘takes to ¢foss

A typ).cal lengthl_, i.e if




- ) ,
which will alvays be the case. - .

We can also. ignore the ctrrent caused by the convective

motion of charge, as ooy :

density from the fiélds wmch are.d detemmed by the
other:. “three equatmns. : .




~

The three equations are

From (3.9) it follows that the equation of continuity
for charge is | .
VT = 0 319

+ We have remarked that Ohm's law will be obeyed. {
for quantities (primed) fixed with respect to a moving

medium 3 o
J' = o FE’ 3.13

where O is the conductivity.
A Lorentz transformation of the fields neglecting terms in
2
Y yielas .
c - -
g, W a A B
' @ ' "
E'=FE+vxB; B'=B,J"=J
where the last follows from the second.

Substituting the effective electric field into

(3.13) gives Ohm's law in a moving medium.
a N o
J = o (E +yxB) 3.14

We are now in a position to derive the induction

equation of magnetohydrodynamics.




Putting (3.14) ‘1ntc (3.9) gives
&y sl 3 a
VxB =/Lar(E*\7XB) 3.15

Taking the curl of this and using (3.10)
- a b1 3 P
Fx7xB = -po7 38 +,¢.0-Vx(va)

at

Using a vector identity and (3.11) gives the induction -

equation
.

L

b, VIB ¢ TxGxB)

3.16

o |
~+| 0ol
)

where Dm is cqual to |//L.Eand is called the magnetic

aiffusivity.
A

tion (3.11) means that we can express B in terms

Equa
3
of A the vector potential:
- - > ’
B=0xA .37
ulomb gauge we can assure that

By choosing the Co

-

V-A=0 - 3.18

We will alsp require that s

a
A-0 ) lela = 3.19

This will fix the vector }mtential.

putting (3.17) into (3.10) gives




Fxb = 7204
3

showing that € difcers from -YA/3 by at most a gradient
of some tuiction 9 3
3 o

E = -3 _V$

)

PuttIng this and (3.17) into (3.15) yields the 'uncurled'

induction equation.

}_j = \-/\X(ﬁliu -ﬁJ “D».Vzla 3‘.20
¥ : )

Suppose the velocity field in_a conducting body is
zero. Suppose also that at some initial time a magnetic

field is present. The induction equation becomes

a .z
¥B - D.. V'B
a
We may look for natural modes B; decaying exponentially
Fy - )
- 2 .
B; (xlf) = B, (3) e_ap_(pd’)
Such functions form a complete set so that we may express
any total magnetic field as a sum of the eigenfunctions.
All the eigenvalues P.’. are real and negative (Moffatt,
1978, pp. 36-42). Therefore each mode has its typical
decay time. For a sphere of radius R the slowest decaying

2 1
mode is a dipole. It has a decay time R¢//Bmi- For the




(

22

Earth this is about 25,000 years. The ficld has of course
been present for very much longer. :

When the conductivity of the fluid is high, Alfven's
theorem applies. Simply stated, lines of magnetic force
behave as if they were frozen into the fluid and move with
it. The flux I through a surface bounded by a material
curve varies in time with the integral of the effective
electric field around the curve by Faraday's law

5 - > -
dF . é(Ec-FxB)-Jt
d 4

By Ohm's law this is
-

dF | I
S dt §¢°’

1f & goes to infinity white J rematns finite, the fluc
does not change. Since this holds for each and every
curve in the fluid the flux in'each fluid element is
conserved. By appropriate motion the magnetic field can.
be increased.

The balance between magnetic (or ohmic) diffusion
and the effects of fluid motion can be expressed by the.

Sagnetic Neynelde miabas R "Hecalli the fndaction squation
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a

Y . D V2B +7x (35B)

Suppose that L is a typical length andv a typical velocity.
Then the first term on the right hand side of (3.16) . is

of the order

' [0, 78] = DniBI

L2

" .
and. the second term, describing the effects of transport,

is of the order

N
-l 3 V’BI
| Vx (% XB)I = _Z—
The magnetic Reynolds pumber R is the ratio of the second
to the first, that is, of the effects of mechanical

transport to those of ohmic diffusion

Re = wl
Dm

A large magneticReynolds number indicates the predominance
of transport over diffusion which is needed for dynamo
action. ‘ -
Substituting from Chapter 2 the radius of the core,
its conductivity, and the velocity from the westward -drift,
we £ind that for whole''core problems Riis about 200 and

we expect transport to dominate.

P SO
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4. Compressible MHD

To this point our analysis has been standard. We
will now extend the treatment to take into a?count the
effects of compressibility.

Suppose that @ is large so that we may neglect the

diffusion term in (3.16). Then the induction eguation becomes

}__E‘ . Tx (9xB)
at -

" ]
3 .

- i
since V'B=0
Now the equation of mass continuity (3.2) is
P é

) (7-9) =( ¢
B'f w ;5V)' 2

Vg = -Lbe -
7 bf
Substituting into (4.1) $

3B - (B.7)i-(7. 7B+ B Do
3t . ? £ bt

<.

4.2

Suppose a'typical length L and a typical velacityVv exist:

‘Then a typical time is just']/. Then all the terms in (4.2)

- = (807 - G-0)B -E‘(ﬁv)’




&4 -
are of the order

lml— 1(B8-V%l = I(v DBl = 18ly
%, &
except the last term ‘nn the RHS is of the order

>

B D 18, .
g i o

vwhere A o is a typical change in density ana/o a

m
\I/i'bb

typical density.
Then the relative importance of compxessihility
compared with' the other parts pf the transport term in the

induction eguation is given by

In astrophysical situations the demsity is a function -

of radius énly. Then

4

1 Lvedo
A bk

3B . (BWi- G0k + B D

.}I




Fab,

i the radial velocity. w

1%t . .
P dr . .

where L is the radial tomponent of the typical length. -

We have remarked-that the fractional dendity derivative
in the Earth's outer core is approximately 1I x 1072 m'L.
v 3 <

Then ® . 3

IelofL e

when L is in metres.

The paraméter C defined by (4.5) and (4.6) is
essentially the Smylie-Rochester: (1979) compressibility

number given by

(=43 L
s

where § - is a typical density, g a typical value of the
acceleration due ‘to gravity and A is the bulk modulus.
It is clear}y equal to the fraction material is compressed by

its own weight in the radial dlstance!. The parameter was

" introdyced to PeETaEE thE importance Of compressibility in

core. dypamics. B L 1
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Here V, has been assumed to be the same as V.

It is very hard to say what Ve might in fact be. On the
other hand, the typical velocity from the westward arife

is only barely justified, mostly by being the only candidate
in the field. While acknowledging the uncertainty, we will
nevertheless assume that V¢ is equal toV.

Then  is a function of the length scalel .
figuze 3-is-a plot of C against’ L for the Bacth. as dan be
seen, for L equal to the ‘core radius, C'is about 0.4. A
nore reasonablg‘typiéal length might bé the thickness of the
outer core,. for which C equals ahout .0.25.

In either case; the term involving compressibility is
of the same order as the entire tem‘ involving transport.
This makes its neglect in anything other than a first
appxoxim‘atinn hard to #cept. .

This does not hold for flows with a typical length
under, say, 900 kilometres (for which Cis 0.1). At a &
typical length of 100 km. the contribution of compressibility,
in this analysis, is about 1%, surely negligible.

Let us now consider the induction equhtion with the
diffusion term in pldce. Then another comparison can be
nade between the effects of that part of the transport term
arising from compressibility and the effects of diffusion.

I call this, somewhat apologetically, the ‘compressibility

o e b S0
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. )
part of the magnetic Reynolds number‘rch.. It is given by

C Rm

>
3
3
n
b 3
03
~
"

For a radial distribution of density

This quadratic dependence on the length scale
SontTaBts WEth the ordinal( magnetic Reynolds number where
the dependence is linear. 3

This is well conveyed by figure & congartig Royana.”

R £or the Earth's outer core. While R is greater than
1 for lengths as small as 20 km, Resc: is less than 1 for
lengths smaller than about 400 km. Still, for a typical
length on the whole core scale Rmc is quite large, around
a0. '

This is of interest when the rest of the transport
verm, Zafie jus: when there is an anti-dynamo theorem that
neglects compressibility. IE Rme is large enough, then the

theoren may, fail.

B
1
1
i
i
i
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5. The Stationary Axisymmetric Dynamo
The first -anti-dynamo theorem (ADT) was Cowling's
(1933) theorem that an axisymmetric velocity field could
not sustain an axisymmetric magnetic field. A proof is

quite simple. |

Let us introduce cylindrical co-ordinates $ ., # .
and Z » Because of axial synmetry we can write
s and ] components of the magnetic
field as Lo g
By - A, Ba= 1YGA) s
% dz 5 ds
vow ¢ Ap must equal zero at the origin and, by (3.19),
at infinity. Except for the trivial case, iAy must
- therefore go - through a maximum or minimmm at some distance,
fromthe . 2  ° -axis for any given value of 2 2
similarly  Ap  is zero for Z 7 t w0 . It must

l:l.kew).se go through a maximum or mmunum. At some pair
of co-ordinates ( S, e ) - L
B; =z - )Ap Z B = _I ( ’) = O
. 5

1 Se,20 5.2

IZ

A2 5,2




Using Lhe subscript m to deSignate the meridional pants

« Of vectors, we write
s . ¢ 5 .
5 s 8
Bn = Bsi +Bai
-
Wo say, thit Bm his a neutral pomt at this

pair of co-ordindtes. ‘There may be more than ‘one: sugh; -

pom\: but ‘there must be at least one. *

Recall thie uncuxled induction equation:(3+20).- 5
: - - g =
&
M. Ge(Gul - T8 + 0, 72
¥t
3 i
Taking the ¢ -component yields
- & e . » .
o oy oxBa - _ D, VB, v

RAs Y ; ; =%

: s .
Now becausg of the axisymmetry of ‘the velocity and magnetic
s fields, must be a constant for a given pair

( So ,!-) . 8ince é must be single-valued,

ae
o

R

o/
A




For a steady field (5.3) gives

;mlgn.. = Dm ﬁ"é

™

Consider the circle C of radius I drawn about the

neutral point ( $o,24) in some plane # = constant.
By (5.3)

i % - s 2 s
j Voux 8o - d§ = D f VxB a3
5.5
where ‘the’ xntegrals are over the area of. the circle.
By Stokes ' theorem. 2
s > . % a
fVX_B».jJS = &B,,,'J[
N . g
juHfere’ the line integral’is around the circumference of
¥ P b
the circle. .
. >
Suppose. that the average value of B... on the
circle is B . Then o

§B.al s In:B -

i
f



[ .

" suppose that the maximum value of
623

v on the
surface is Y Because B., is zero at (s.,2,)
o

for a small enough circle the mean value of 3., over the
surface must be smaller than B . Then

5»’/..:5,. dS <

< »r'vB

But by (5.5) this means
(

Zflr.DmB'S mriyB

-
D £,y 7

¢

For' finite vall;es_ of Dyand ¥ this is impossible
as ¥ can be shrunk indefinitely. Thus no steady’
axisymmetric dynamo can exist. ' iz

The physlical interpretation of this is clear. Around

the neutral point the inductive effects represénted by the




\/ins of (5.5) cannot overcome the ohmic diffusion
% represented by the RHS.

Lortz (1968) claimed to have extended the theorem
to arbitrary velocity fields. However his proof depends
on the assumption that both B o Vé are axisymetric, and
it follows from (3.20) that this asurption is

equivalent to assuming axisymmetric velocity fields,as vell. -

The continuity equation has not been invoked in any
way. The proof is not affected by whether the fluid is
compressible or not.

Suppose for a moment that equation (3.20) has a

solution of the form

a

A Gi) = A exp )t

Then (3.20) becomes

MYAG) = V& L x (GxAlD] - Do i ( Txh)

This is an eigenvalue problem. We know that zero is




not an eigenvalue by the argument above. Futhermore if
any given velocity ficld is multiplied by a constant
which is allowed to go to zero, we recover
the problem of the decay of a magnetic field in a solid
conductor, for which all the eigenvalucs are negative.
Tt would seem that in turning up the velocity field
so that an eigenvalue becomes positive we must pass
through zero which is impossible.
This argument for extending the thggrem to the time
dependent case has two, flaws (pointed out by Backus,
1958).  They stem from the fact that.the right hand side
of (3.20) is not self-adjoint (Cowling, 1976, pp. 91-92).
.This has the consequences that the eligenv_alues A 3
need not be real and that the eigenfunctions need not ]
form complete sets. (In this of course lies the @ifficulty
of dynamo theory.) Therefore the path in the complex plane
. folloved by A in 'turning up' the velocity field
need not pass through the origin. If all the siganvalues
are real, however, the lack of completeness does not
preclude the existence of some solution increasing with’
time. Thus a more general anti-dynamo theorem must run

on other lines.




6. The Time Dependent Axisymmetric Dynamo

The clearest exposition of the theorem that even a
time dependent axisymmetric dynamo is impossible (if the
flow is solenoidal) is that of Braginskii’ (1964a) whom we
will follow. We will not, however, assume solenoidal
f£low so that our comclusions will be different.

* We'start with the 'uncurled’ induction equation (3.20)

o/
>

s ﬁ} *[i‘x‘B‘] - D 615

o
~

.and the induction equation itself (3.16)

.
.

ﬁx [7x§~1 -V-D,, ﬁn (ﬁlﬁ)

v

UIV
-~

We assume there afe no Sgurces at infinity; that is

18] =

We shall also assume that )),, is constant throughout the

conducting fluid.




Consider a homogeneous conducting fluid contained in
a volume V| symmetric about the Z -axis. As before we
use the subscript m-.to designate the meridional parts of

vectors thus

B.2+B,348,5:=B,+8B,¢

Because of axial symmetry
- ;i &
B.. = Vx (Ap #) 6.3

Thus the magnetic field is given completely by two
variables A ? and By 5

Let us first consider Ag.

Take the £ - component of (3.20)
YAy = 33 4 AALUATAL D, Vel
3+ 37 6.4

Because of axial symmetry

¥ .o
7

e ol




e o e

F.Laxtedl= =13, V(A
5

Putting these into (6.4) gives

Yhe - L vm P0A) +Da 004,
St 5 <

Aflse) = - #nbe(£7)
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In ‘7, the space outside V,, we have from (6.3)

and (3.9)

A‘ A? =0 ' 6.7
Multiply equation (6.5) by ,’A’
5 Ay VAo = -sh, [7.- VisA)] + D s*Ap A4y
3t ;

Integrate this overl/, . We may integrate the second term
on the RHS over all space, i.e. over Y/ + |} as the integrand

is zero in Y.

S st A, AV 5‘4,(;m-m,»av,om S;A,A.A,AV
A 5
v Y A 6.8
Let us deal with this term by term.
The LES o'i (6.8) is'
§ A Mg AV - 4 SiéEJV
Y it )7

The first term on the RHS is

S oAy G FAN IV - 5 Vo V(4D 2V
v, v 2

S, (v ETAL)JVSViAL (ﬁ,w{\;




By the divergence theorem, for §, bounding V,
S (V-Vm s*Ag ')JV; g s*As %, 45 - 0
v, 2 s, 2

-,
because the normal component of V on the surface 5,

is zero. So the first term is
S sho (3., - Tshp)aV .
v,

The second term on the RHS of (6.8) is

Dm SSIAr_AlAyJV: Dm v~ ﬂ,‘)JV )
Ve, VitV :
- Dm S | Vshgl*av
Ve, 3
By the divergence theorem
V- (sA,Tshp- 358,14V ( (she Tsh, - 354,9)-d3
ViV, - 5
where S, is the surface at infinity. By (3.19)

A, = -Lz 5 PP o0
i
4
Therefore the surface integral is zero and
F k2
DMSS‘A,A,A,AV = 2D 5 17 shpl "V

VitV VitV




Putting (6.9), (6.10), and (6 I1) into (6.8) gives

L (s oV D [TsholaV, (5°A¢ (3-0av
ar 4 2 Vit v 2
This is one of two eq\:\ations we need.

We must derive a similar equslion concerning Bf .

Take the - component of the -induction equation (3.16) _

'&: ;.§XIVXE] + bm A B’
3t

6.13
Now ¥ Al
4. UxLixb] -._-svn-ﬁ(s?g) - B (V) :
"3 y N 5 L
. +Vm (VB)+ ﬁ.LV(%,)xv,A,J { |
But ﬁj:o so (6.13) becomes -

? )52 2 st T(B) -8, @0

+ F[ﬁ(%) xﬁsﬁ,} + D ‘_a- B, i

f
1

From (3.9), in %',

\J7x (B,H B =

=

s, L8 220
S .35

os




J
But by (6.1) B20 at ©® .  this means that in V‘

BP =0 ' 6.15

Multiply (6.14) by EZ and integrate over V/, .
sl

(B Y av. Be im0 b )av

v, st 3t ]

S .
N Sv. B i (’)szA,]JV i f.EL‘A pdV
We will deal with t_.his term by term, ‘

._'.
s>

.
The LHS is

The first term on the RHS is
( Bp v V(B aVo (Vi Bt dV, ( By* (Fo)V
S_pv ()d jvlv__L j_L(VVJ

v, S 5' 1st y 25t

By the divergence theorem

d 2s*

because there is no normal camponent of velocity across 3, .




A B

We leave the next two terms in 16.16) as they stand.

The last term is
5IE‘ABJV D,.jv‘ (9;;%_, ;;Eg_l)av

ks 5 I (gi)/‘av

v

By the divergence theorem
5 (B B, 7B, gs )JV_ g, %\,‘B)Js 0
v,

as B’=0 on S; by (6.15). So the lastterm on the RHS of

(6.16) is
D, 5% By B - 5.: fV%}laV 25

Putting (6.17), (6.18), and (6.19) into (6.16) gives

J_ Sf - -l i ﬁg(\ivmv_ DMS Iﬁg,)w
$ i

S BAOA

Vi st

i
i



Equations (6.12) and (6.20) correspond to equations
(2.9a) and (2.9b) of Braginskii (1964a) except that we have
retained the terms in ﬁ-? '

If we discard them (6.12) becomes
d 5 g AV _p,,,j 1Vs Apl'av
dt o2 (A

6.21

and (6.20) becomes

/
4
- - >
(B ] T80, f B Tlu)e P4V
4t v, 2 AN % s i .
These two equations form the basis of the anti-dynamo theorem.

Consider (6.21). The integrand on the RHS is aluays
positive; therefore the integral on the left must decrease
with time. As the integrand on the left is also always
positive, this means that Ap must eventually go to zero.

Now consider (6.22). So long as Mg is not egual to
zero, the second term on the RHS can cause the integral on
the left, and with it Bp', to increase with time. . However
We Jnow ‘Trofil Cis TITSE PATE. 6F the theorem that Ap’ must g0
to zero. But the integrand of the other term on thé RES is
al&fg’ys positive so that once Ap goes to zero the integral on
the LUS must decreasé with time and Bp vanishes ‘as time
goes on. ’

This means that no 'axisypmetric time dependent dynamo
is possible in an incompressible fluid. The trouble comes when

we keep the discarded terms.

A e e S



Recall (6.12).

4 5 £ 4V - -baf lﬁ,A,luv,,J P2 (G50aV
v 2

dt. Vs

-

Apparently the-integral on the LHS will increase with time if
- x 3
A (F)av >, 5 1§51V
oL L e

B AF does not go to zero then the sécond term in (6.22) dees

nGt go, to zéro and, the argument above about Bp- s invalia.

Even it A520 the fu11 ~eayation (6.20) now has a teim contamx‘ng‘“

Vv "V of uncertain sign that still invalidates the conelusion. s
Thus, given’ (6.23)," bhe" anti~dynano theorem breaks down.

We must now inquire whether the condition (6.23) might
not be fulfilled in the core. Let us suppose that the
circulation in thé\core is {large-scale, with radial velocities
not differing much from the horizontal velocities inferred
from westward drift. Because.of Alfven's theorem the magnetic
field must also be -large-scale.

Because of the continuity equation we may yrite

57 s*A, (§-9)dV 2 < § sthtve dp dV
v L oL p o3

wy

6.23 -
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The integral still®gontains two unknown fields Ap( ang

Ve .. The upward and downward parts of Ve would tend to

.cancel were they not weighted against the vector potential.

This may lead to a non-cancelling part which we can express

with the aid of the parameter & . Supposing Ve to be a

typical value

, .
S s Aptv dV = ”’5 s*As 4V

vi 1 . M 2

wh;re ol is pre‘sumably: small and may be negative. We may
re}phrase the question about whether (6.23) is fulfilled to

ask how large ™ may be allowed to get before the theorem

breaks down. The condition (6.23) becomes
Iyl Lt/

The ratio of the integrals is of the order R* and the condition

,,,;E_:A’vr R* 1

or
o Rue 21
For the Earth's outer core R-u is perhaps 40. Then o must

be smaller than 0.025 for the anti-dynamo theorem to apply.

This is not a very large number. As it arises from the product
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of two unknown fields there is nothing certain that can be
said about the true value of ® . But since the possibilitly
exists that o is large enough for the discarded term in
the anti-dynamo theorcm to be as large as the term that is
kept, it is probably not wise to discard it. Then, however, 7
there is no longer an ay{ti—dynamn theorem about time dependent
axisymmetric fields that applies to the coxe of the Earth.
This is not a sta}ement that axisymmetric solutions to

the dynamo equations exist; it is not an existence theorem.

It is calling into doubt of a non-existence theorem.

Suppose that
S st (7-3)dV - Dm { 1954514V ;
v, 1 vy

Then by (6.12) o

d j s'hgtdV = 0
(4]

dt 2

At first glance this might Sdem to contradict cowling's N
theorem on the stationary-axisymmetric¢ dynamo.

This is not so. Only the value of the integral is con-
stant, while Ap may be chafiging. locally. Cowling's theorem

requires the magnetic field to be constant- everywhere at once.




7. Non-radial velocity Fields

We now turn to another anti-dynamo theorem. The wor'_k'
below follows Moffatt (1978, p.118) except that the
fluid is not assumed to be incompressible. Consider a
sphere, Y, , containing a homogeneous conducting fluid. .
Suppose that ¥ has no radial component.
®  ecall the induction.equation (3.16)

38 . \7){(\7:&5) = D, Tx9xB

-+

Let us turn our attention to the radial component of
=
the magnetic field,. Multiply equation (3.16) by riBr F
and integrate over the sphere. . - i

1B eV f, 7 (BB T
v, A

3t

_'ums B, #:(ix TV

d 7.1

. We will deal with this term by term. v

The LHS of (7.1) is b ‘

Smr‘Br%_ii_,AV: %’i/ r2B2 gV




The first term on the RIS of (7.1) is
r2B, 7. (Vx(GaB)aV - S 7. § 8, i34 Blay
LA
" 5 vxB - (Vx (B F)AY
5 "%

The integral involving a divergence goes to zero when

3 &
transformed-into a surface integral over ), as, of

A B .
-course, ¥ (¥xB) has no radial component.

Now

SVI;,E}(.?;(;@))AVS (,__)JV

_5 '8 (7 ‘)JV
v,

Again the first integral goes to zero when transformed into a

=
surface integral as V has no normal compohnent on §,. Thus

S B, i (TaoeBIAV 5 B (P-Dav

Ve e ow s v 2 j

The remaiping term in (7.1) is

S,‘Br%'(wm)av 0.0t B px(iBRV

o v +5 lVrBr”'dV
V.

1



The integral involving a divergence goes to zero when
2 . £xUxB=0
transformed’ into a surface integral as FxVXxB=0 on the

sphere. Putting (7.2), (7.3), and (7,4) into (7.1) yields

3 o > 1
4 Sr’B;‘ JV;_} B (7:9)dV - D S 19(:B"aV
dt r o
Ty 2 v, 1 % 7.5
EIEY
_Now if V-v=0 then (7.5) means that the ragial
component of the magnetic field must decay away, as the RHS

of (7.5) is then always negative. N
Before turning to the other part of B we must digress
: for a moment on the decomposition of vector fields.
It is ;:eu known that any vector field Q can be divided
into curl-free and divergence-free parts:
- 4 &
Q= -VL + V‘K 7.6

-
The field A may also be expanded (Roberts, 1967, p. 80):

2 = a
Re GR-Tzoinp: ,
where | R, T, ana P are scaler fields. By expanding in spherical
Iarmonics ve can show that the mean values of R, Tand P over a
sherical surface may, vithout loss of generalitv, he taken to vanish. -
2 & - g &, o
2 Q =-VL + T2 (T2) 4 FxiatPr)
The three parts are called respectively lamellar or

scaloidal, toroidal, and poloidal. The toroidal part does not .w

have a radial component; the poloidal part in general does.
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The magnetic field can be expressed as a sum of

toroidal and poloidal parts

B = Ux(T2) v Tx¥a(P2)
From Ampere's law ' /

a

= e (TP) 4 PxTx(TR)

i
i

Returning to the anti-dynamo theorem, if the radial
g 3
component of B is zero, as eventually required by (7.5)
y 4 8

when the flow is solenoidal, then B is purely toroidal and
s 4 "
SN . %
B= Valr?) = -#59T

From (7.10) B20 ouesise V.
From the inductfion equation

2P Frix (2eFT) + Do V(aTT)
-3t

. BV DT+ #xT (Da7T)

' (DT 4 0m VT +400)

Al .
Y




where ':l is some function of r alone.

Mudtiply (7.12) by T and integrate over V) .
Sv.Tg_“v; LT(;-&)TJV +Dm5“fV‘TJV
S T 494V

v 2143

.

We will deal with this term by term.

The LHS is

g TV 4 T
v, ot

7.14

The First term on the LHS is

( VPPV (U-ilav. ( THauy
2 % 2

7.15
vl

v

The first integral goes to zero when transformed to a surface
5

integral, as ¥ has no radial component on §, .

The second term on the RHS is &

STV‘TAV »;lvnm jv (rvwv
V. \

7.16
The integral. involving a divergence goes to zero when

transformed into a surface integral as | = O on § by (7.100.




The remaining term is .

S TG4V =0 s 719
Y%

as the mean value of | is zero over the surface of all spheres.
Putting (7.}4], k7.25): 17.16); an‘d (7.17) into (7.13) qiveé

2 T T
d 5 T"aV - 'S T‘(vw;),;v_bmj 17717aV
dt 4, v 118

If the flow is solenoidal then T must go to zero with time.

Thus we see that velocity fields without a radial

component cannot sustain a dynamo in an incompressible fluid.
Such a velocity field can be expressed by (7.7) as a toroidal
field. %

Toroidal velocity fields camnot sustain a dynamo. However,
if the térms containing W'V in (7.5) and (7.18) are large
enough and of the right sign then the anti-dynamo theorem
fails for compressible fluids.

By the Higgins-Kennedy Hypothesis (Higgins and Kennedy,
1971) the core is stably stratified and radial motion is
strongly inhibited. This and the anti-dynamo theorem on
toroidal velocity fields are in apparent contradiction and
much effort has been spent on feconciling the two (Busse, 1975).
The Higgins-Kennedy hypdthesis is unproven, but the results ,
above may be of interest in this connection.

However, non-radial velocity fields cannot involve the
large radial density change in the earth's core. This means

that the density differences appearing in




v Rmc = é'e_ Rm
f}

must arise from pressure gradients along surfaces of constant
radius. As R it 5e greater than one for the anti-dynamo
theorem to fail and Rm is at best a few hundred, the excess
pressure needed would be high. While i€ is difficult to be
dogmatic, the existence of such pressures is unlikely. “irhus

non-radial motion is’ probably not able to sustain the

Earth's magneticfield.

small anplitude oscillatory motion vith a radial caronent is
possible in a stably stratified core. This motion might be able to take
part in driving the o as, of curse, the anti-dynam theoren on nor-
radial motion would not apply. If the radial wavelength of such an
oscillation were large, the effects of compressibility on the motion
would doubtless have to be ‘considered.

IS
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8. The Two Dimensional Dynamo

The anti-dynamo theorem for two dimensional dynamos
has two forms. One concerns steady velocity and magnetic
fields that do not depend on one Cartesian co-ordinate,7 ,
say. )

That is .
-

)B:_)v_

3

Lortz /(1968) showed that velocity and magnetic fields

5,

-0

8.1

1
4 et
"
‘v\“/
wi<y

obeyin;; (8.1) could nct’satisfy the dynamo cquations. The
proo¥ {nvolves properties of elliphic partidi §iffereriial
equations and will not be reproduced heré. The proof is
unaffected by the compressibility of the fluid. This is
reminiscent of Cowling's 193F theorem on time dependent
axisymmetric dynamos which can also be proved on the basis of
properties of elliptic partial differential equations. (Backus
and Chapdrasekhar, 1956; Lortz, 1968).

The other theorem concerns time dependent fields. It
was’ pdt forward by Cowling (1957b). Suppose that the velocity
and magnetic fields do not depend on?, and that the velocity

field has no 3 component. That is

R ;}_2:\;/'3 =0
32

!U:Iv

%
"

v
Consider an infinitely long volume, ¥, , of constant

cross-section perpendicular to % containing a homogeneous

i




57
conducting fluid.
Recall the induction E_quatioﬂ (3.16) .
<A - 55 - 2 2 >
98 _ Vx(ixB) -D. UxixB
at

Multiply this by Bad and integrate over a unit length of Y, ,
over V,’. This is to avoid the divergence of integrals.
- - o
5 Ba 3B: 4V = S Ba i V“(_';‘B)JV_DMJBai'V‘V"BJV
et V. W 3

Now because of (8.2)

( B 3-Gx(aB)aV = ‘_5 V- VB dv

(A4 4 v T )
s B TRV
v, % 3

where the first integral goeb to zero when transformed to
a surface integral; and
o b B B
58,2-V17~BJV’ = 1081V
- (24
v, 4
so that (8.3) becomes

o
d ( B*av. 5 B (i-0)dV_ 0_5 1V8.1av
dt v L Sy 2 . v .
( 8.4
We see/Erom (8.4) that in-an incompressibie fiuid Bgwast
go to zero With' time, but that thi‘s is not nece;sarily the

case if the flow is not solenpidal.




Now suppose that B3=0 . then

é = a"(Ali) © 8.5

Recall the uncurled mductmr; equation (3.20)
o u o a 4 o3 3
é_A_ = Vx(VxA) - V& + Do Vx4
3t -
From (8.2)
¥ o0
Yz

& .
Multiply (3.20) by A2 ana integrate over V, .

5 A JV=J4;5~HI'7‘;& agv +ij fad ey
w4, "

-

v 8.6 .

Now given the assumed co?ditions‘
Aed-in(Gah)dV s SV' yklau ALF-DV
Ay, v 1 w2 8.7

where the first integral on the RHS goes to zero when

tansicis

B . i -
trans formed into a surface integral as ¥ has no component
. normal to the surface of ¥, or to a plane ¥ = constant.
The last integral on the' RHS Of (8.6) can be taken over a i
o

3
’
unit length of all space, over WiVy', as VxB=0 outsice ¥, i




Then

IR 2N S ;‘7.<A,\‘7A.i)av_5 VALV

v -
A A oy e

Now the first integral on the RHS vanishes when transformed

into a surface integral as A2 and
32
Az oL
ea

Therefore (8.6) becomes =

. - a
4 (AT, 5 Al (V)dV. D,.\5|VA,I‘4'V
dt 4 v L oy 5.9
Again we see that in an incompressible fluid Ai and therefore
the maqnetlc field must eventually vanish, wh)le this need
not be so if the flow is not solenoidal. i
" A slightly different anti-dynamo th;ore;m was detived
by Moffatt (1978, p. 121). The theorem is supposed to apply
to arbitrary magnetic fields; however, in going from his

equation 6.52 t0'6.53 it is necessary to assune k.o .

-when Bz=0 as is the case under study, this means that )B

2

must also be zero.
- What is the geophysical significance of these théorems?

After all they only apply to infinitely long dynamos.’ Houever,

it is possible that they are not as irrelevant as might at .

first be thought. '




- the body force.

The Taylor-Proudman theorem states that for steady
flow in an inviscid, incompressible fluid rotating about
the 2-axis having typical flow speeds negligible with
respect to the speeds of rotation, the flow does not depend

on2.

A proof is simple. Let us write down the momentum

equation for such flow (Greemspan, 1968, po 5)-

V(v )+ (V‘v)"v’,*l!l!v +!Lx(ﬂlr)
' r b

= L, i Ny .

where ) is the angilar velocity, P the pressure, ana F
a ‘a 5

1£F=Vl, i.e. if F i5 conservative we may

form the rediced pressure P
Papll - Vo pldded)-(f2) :

and write

+ 1017 =

<t
<3t
<w

8.11

)
6 .
Neglectitg the term of order yYand taking the curl yields
. . R ’ a
! a3
Ux (Nxv) =0
If the fluid is incompressible this is equivalent to L

s e«
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which is the required result.

The Taylor-Proudman theorem is expected to apply
only approximately to the core as all the ¢onditions for the
the&rem to‘work are at best only approximately fulfilled.

Busse (1978) has shown that the préferred mode of
convection in a spherical shell of incempressible fluid
consists of long counter-rotating cylinders parallel to the
rotation axis arranged as a belt outside the inmer boundary
of the shell. A small component of velocity exists along the
cylinder but the rotating of the cylinders is the main
feature.

Near the middle of length of one of these cylinders the
anti-dynamo theorem might well forbid dynamo action for a
unit length. It would be interesting to know if relaxing the
assumption of incompressibility would have any effect in this.
event. However, it is not clear what effects the relaxation
would have on the basic model in the first place. The

discussion must remain imprecise.

e




9. A Class of Anti-dynamo Theorems

The three anti-dynamo theorems on time dependent
fields are all very similar. Cowling,(1957b) has shown
that they are all special cases of a more general theorem.
This general anti-dynamo theorem can be modifisd to include
the effects of compressibility. The modification involves
the invalidation of the anti-dynamo theorem.

We start by seeking a transformation of Ohm's law

a P ;
-j =0'(El'va) 9.1
Take a vector field 4 so that @ equals zero outside the
conducting fluid. Clearly

2, 3L oAy L

1 S J-daV - ( (Evysb)-aav

v,

o

i * q
” “
As before, Y, is the space cdfitainihg the fluid. As & equals

zerd outside Y, the integrals could have been taken over
W

all spacy Y, + V;. 4
Suppose we have another field% so that
; = ; |
a 5 ;
Vxb =a . 9.3

"
- .

and b goes, to zero at infinity at least as quickly as |/f.

To a constant multiplier the two fields might be a current

density and a magnetic field, or a magnetic field and a

vector potential, or some components of’such a pair.




Substituting into (9.3) and observing that $Ki=0 outsige V,
( Baava ( E-(§xdav
A itV
| {7.(bxE) + b (BB AV
v,

; C
(v, . - }

\Now by the divergence theorem .
A s .
5 7 (baB)dv - Su,xe)us =0 . |
ViV, * 5 :
since ,‘?_ is at infinity. As well 5
o s
VxE, = - }__B_] 9.5
3t

“so (9.4) becomes

: j S E-aaV - | smvl:%;u'

g
and (9.2) becomes

3“T° -%_gav: Sr;-(Exa)AV-l 5:.3;;\/'
v, o

i Vi Vi 9.6
; . -
This is our transformation.
The antl-dynamo theorem will york for combinations
of B and v for whlchb\b\ can be found so that .
/ a . N ¢ P
- v E (BXa ) = v . V¢




where ¥ is some scalar. function. Then’
5 G (Bxa)aV = § - (mmv_j Y34y
v v Yi g
By the divergence theorem
5 V-G¥dr-( ?V’AJS
v 5

asv has no normal component at the surface of V.

~

Then for a satisfying (9.7), equa‘tiori (9.6) becomes
S hdB av- g Sw.;v_ Y09V
(T 3t o4, v . %

Of course for an incompressible fluid the last term

is zero, and
] -

SE-)_BAV:‘-_ISE-Jav o
ey, of TN, " L
An anti-dynamo theorem will arise if the left hana
side of (9.8) can be identified with the time derivative of
some méasure of the. strength of the magnetic field, and
the right hand side i¢ negative. Theng Will decrease with

time atd eventually go %o zero.

For example, wienb=B + (9.9) becomes

4§ IBraVe L Ity
at Y,
That is, for V(3= 0 V'P , no dynamo effect in an

_incompressible *fluid exists. But in a ‘compressible fluid

we have the extra term in (9.8) and for our example




d 5./ l_ll’av: -olei!‘ﬁlv_iwﬁ.mv

P & 3
&
¥ G-V 2 ( 131V
v‘ .‘.’ v‘ . ) b
then the magnetic field will grow with time. We no longer '
have an anti-dynamo theorem.™ The presence of the extra
term for a co;qpressible. fluid makes the task of-obtaining
this sort of aﬁé%-aynamo theoren gore difficult if not
impossible. 5 :
Table 4 lists a, b; ana ¥ for the three special
anti-dynamo theorems.
Cowling remarks that "The suggestion appears plausible
that ey complete. proots of steady-sinte dynamo

maintenance must be of the type considered above.” He

<
Tl A

suggests that, in gemera}, equation (9.7) is hard to
satisfy and that on. this account general theorems are hard
to find. It seems that for a compressible fluid such theorems

are even harder to find.




Table 4. Pields for the generalized

time-dependent. anti-dynano theorem

Theorem Field

oL

Axisymmetric

Non-radial

Two dimensional

B. . 6"31 H B:i

< ‘ A: A i .A,Vx-l.,;

oV

B, Fal@B)  #(cB)
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10. Conclusion

The material making up the liquid outer core of the
Earth is about 20% less dense at the top of the core than
at its bottom. This density gradient can be explained in
terms of a homogeneous.compressible fluid. The question
arises as to whether the core can be treated as an incom-
pressible fluid in dynamo- theory.

Dimensional arguments indicate that for magnetic

and velocity fields having typical lengths of more than

1000 km the effects of bility in the in equation
were roughly comparable to the total effects of transport.

The ratio of the two is given by the Smylie-Rochester
compressibility number Ty

C = 2

For a radial density distribution, this becomes
» 2l
For the Earth's_outer core the fractional density derivative

is about 11 x 107° m™2,

e

These arguments also suggest that the effects of
compressibility are comparable to the effects of ohmic
diffusion in the core for typical lengths of a few hundred
kilometres or more: The ratio of the former to the latter

is given by

Ree =RaC - : .
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anti-dynamo theorems ‘can be diyided into tws cfassez:
theorems applying for steady magndtig fields only, and
theorems dpplying to magnetic fields that are allowed to be
time-dependent. In general the proofs or the theorems
dealing with time dependent fields may hot be valid in a
compressible fluid. In particular the theorem on
axisymmetric ‘fields can only be applied with care and possibly
not at B:‘ll. .

This is not to say that dynamos violating the theorems %
can éxist. There are no existence proofs, and the theorems
might be re-established on other lines.

If the extension cannot be made, then the commonly made
statement "that nearly all velocity fields can give rise to
dynamo *action if the magnetic Reynolds number is high enough"
(Busse, 1978) can be extended a little further than before.

It is interesting to speculate on the role of
compressibility in the wider corfines of dynamo theory as a
whole. In the 'kinematic' theory we assume a velocity ield
and let it work on the magnetic field through the induction
equation. In a compressible fluid, the transport term of the
induction equation can be broken down into three temms rather
than two. This is nof really going to be much more difficult
to deal with.

very 1‘1}; the major effect will be on the task of
choosing a'velbeity field ¥ . “For instead of being

solenoidal V must satisfy tlie more difficult condition




o 4
Vv -lvlpz _lvedp
P r Ar &
The radial density derivative‘is admittedly a known
function but its inclusion must make the problem harder.
Turbulent or mean £ia1d models will presumably be less
affected than 'ope-scale' or wholeicore models. A length

scale of a hundred kilométes or s0 will likely mean that

-

ibility can be d ded.

The dynamic proplem wifl llso suffer from'the more
complicated continuity equation. One mighé think that the
expression of viscous-forces will be made nore’ Complex.
However, though the viscosity of the core is pdorly known
(Gang:, 1972), it is generally felt €hat viscous effedts can =
be negiscted i comparison with the Coriolis and Lorentz saraRg..

An insight into the hydrodynamics™f the core has
beeri gained recently (Busse,31978). In a laboratory model
consisting of a rotating spherical shell filled with water
the circulation pattern driven by a temperature difference
Betyeen the inner and outer boundaries of thelifhell takes
the form of long counter-rotating cylinders aligned with the
rotation axig, The spherical boundary at the ends of the |
cylindrical rollers causes upward and é}\nwam flow in
alternate rollers. These motions are capable of generating
the magr;etic. field of :he Earth. .

It is easy to criticize the application of this model
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to the Earth. There is no Lorentz force in the experimental
model, while viscous forces are large. In the real Earth,
the roles are reversed.

Even so perhaps some comments on the effects of
compressibility could be made. The laboratory model is quite
clearly using an incompressible fluid. We will use the
notion of the typical length.

In the experiment the ,ollers had a thickness about
one tenth tHe radius of the sphere. Other things being
equal the more viscous the liquid the thicker the rollers.
The effects of a larger magnetic field might be the same.
Taking 300 kilometres for a typical length means that
compressibility could well be neglected in the induction equation.'

On the other hand the circulation along the axes of

the cylinders is of whole core dimensions. The induction

equation ought to include the compressibility then. \

No simple analysis can decide the matter. However
the fact that the rollers extend virtually the whole diameter
of the core suggests that the continuity equation in its
fuller form should be used in.a fuller analysis. The effects

on the hy ly cs and of the core

of compréssibility await further study.
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