OVERLAP PARAMETERS AND HEXADECAPELLE-INDUCED TRANSITIONS IN H-AR MIXTURES 2

CENTRE FOR NEWFOUNDLAND STUDIES

TOTAL OF 10 PAGES ONLY MAY BE XEROXED

(Without Author's Permission)

SESHU BABU YERNENI
OVERLAP PARAMETERS AND HEXADECAPOLE-INDUCED TRANSITIONS IN H_2-Ar MIXTURES

BY
Yemeni Seshu Babu, M.Sc.,

A thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements for the degree of
Master of Science.

Department of Physics
Memorial University of Newfoundland
July 1986

St. John's

Newfoundland
Permission has been granted to the National Library of Canada to microfilm this thesis and to lend or sell copies of the film.

The author (copyright owner) has reserved other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without his/her written permission.

L'autorisation a été accordée à la Bibliothèque nationale du Canada de microfilmer cette thèse et de prêter ou de vendre des exemplaires du film.

L'auteur (titulaire du droit d'auteur) se réserve les autres droits de publication; ni la thèse ni de longs extraits de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation écrite.

ISBN 0-315-33642-0
ABSTRACT

The collision-induced enhancement absorption spectra of the fundamental band of molecular hydrogen in its binary mixtures with argon at 201, 273, and 296 K were recorded with a 2 m absorption cell for total gas densities up to 160 amagat for several base densities of H₂ on an infrared spectrometer equipped with a specially-constructed data acquisition system controlled by a microprocessor system. Binary and ternary absorption coefficients of the band have been determined from the measured integrated absorption coefficients. The experimental profiles were analyzed by assuming appropriate line shape functions and using the theoretical matrix elements of the quadrupole moment of H₂, and the characteristic half-width parameters δ₂ and δ₄ of the short-range overlap-induced transitions and δ₁₂ and δ₁₄ of the quadrupole-induced transitions have been determined. The half-width δ₄ of the intercollisional interference dip increases with the total density ρ of the perturbing gas and is represented by δ₄ = aρ + bρ². The contributions of the overlap and quadrupolar induction mechanisms to the total absorption of the band have been also separated from the profile analysis. For H₂ - Ar collision pairs, the overlap parameters λ and ρ which represent the magnitude and the range, respectively, of the induced dipole moment and μ_overlap(σ), the overlap-induced dipole moment at the Lennard-Jones intermolecular diameter, have been determined.
Further experiments of the fundamental band of H₂ in H₂–Ar mixtures at room temperature were performed for gas densities up to 520 amagat. From these experiments, the hexadecapole-induced transition U₁(1) corresponding to the rotational selection rule ΔJ = +4 has been observed, which represents the first such observation of a U-branch transition in a H₂-foreign gas mixture.
Acknowledgments

I am deeply indebted to my supervisor, Professor S.P. Reddy for his willingness to discuss problems, and for his suggestions and advice during the entire research project. I thank him for his counsel, good humour and criticism, which have enlightened, stimulated and encouraged me.

I am grateful to Mr. C.T.W. Hsieh for his help in assembling the stepping motor control unit and for many helpful discussions during the experimental work. I also express my gratitude to Dr. P. G. Gillard for his help in modifying the original design of the microprocessor controlled data-acquisition-system and in computer programming (Appendix A in the thesis). I thank Carol Broderick, a fellow student, for typing the thesis manuscript with great care.

Thanks are also due to the School of Graduate Studies, Memorial University of Newfoundland for providing financial assistance, to the technical staff of the Physics Department for their cooperation in several aspects of the experimental set-up, and to my friends for their constant encouragement.

This work would not have been possible without the love, constant moral support, and patience of my parents.
Table of Contents

Abstract ... (ii)

Acknowledgements ... (iv)

Chapter 1: Introduction ... 1

Chapter 2: Apparatus and Experimental Techniques ... 9

2.1 The 2 m stainless steel absorption cell .. 9

2.2 The optical arrangement and spectrometer .. 12

2.3 Microprocessor - controlled dc stepping motor .. 14

2.4 Detection and recording of the signal .. 18

2.5 The gas handling system ... 20

2.6 Isothermal data of gases .. 22

2.7 Reduction of water vapor from the optical path ... 23

2.8 Calibration of spectral region and analysis of the experimental data 23

Chapter 3: Enhancement absorption profiles and absorption coefficients 27

3.1 Enhancement absorption profiles .. 28

3.2 Absorption coefficients ... 32
Chapter 4: Analysis of the enhancement absorption profiles

4.1 Line shape functions ... 36
4.2 Relative Intensities ... 40
4.3 Computational procedure 43
4.4 Results of profile analysis 44

Chapter 5: Overlap parameters for the H₂ - Ar molecular pairs

5.1 The overlap absorption coefficients 55
5.2 Overlap parameters for the H₂ - Ar molecular pairs 56

Chapter 6: Hexadecapole - Induced-U transitions in H₂ - Ar mixtures

6.1 Introduction .. 64
6.2 Observation of U transitions in H₂ - Ar mixtures 65

Chapter 7: Conclusions ... 68

Appendix A .. 71
References ... 78
CHAPTER 1
INTRODUCTION

Isolated homonuclear diatomic molecules such as H₂ do not possess permanent electric dipole moments in their ground electronic states and hence do not give rise to allowed infrared spectra in their pure rotation and vibration-rotation spectral regions. However, transient electric dipole moments can be induced during binary or higher order collisions between these molecules or between them and some other (foreign) molecules. Their induced moments are modulated by the vibrational, rotational, and relative translational motions of the molecules giving rise to infrared absorption spectra. This collision-induced absorption (CIA) was first observed in the fundamental bands of O₂ and N₂ by Crawford et al. (1949) and in the fundamental band of compressed H₂ by Welsh et al. (1949). Since then, a great amount of experimental work has been done by several researchers on the CIA of H₂ in the pure gas and in binary mixtures with other simple gases over wide ranges of temperatures and pressures. A review of the experimental work done prior to 1971 on the CIA of H₂ has been given by Welsh (1972) and comprehensive bibliographies on the subject were compiled by Rich and McKellar (1978) and Hunt and Poll (1986). Van Kranendonk (1974) and Birnbaum et al. (1982) have reviewed the theoretical aspects of CIA. Recently Reddy (1985) has given a comprehensive review of CIA of the
It is convenient to express the induced dipole moment $\mu_{\text{ind}}(R)$ in a colliding pair of molecules, following Van Kraneendonk and Bird (1951), by the expression

$$\mu_{\text{ind}}(R) = \mu_{\text{ov}}(R) + \mu_{\text{q}}(R) + \mu_{\text{h}}(R).$$

where R is the internuclear separation, $\mu_{\text{ov}}(R)$ is the short-range, angle-independent electron-charge distribution, $\mu_{\text{q}}(R)$ is the long-range, angle-dependent quadrupole-induced dipole moment arising from the polarization of a molecule by the quadrupole field of its collision partner, and $\mu_{\text{h}}(R)$ is the intermediate-range hexadecapole-induced dipole moment resulting from the polarization of a molecule by the hexadecapole field of its collision partner. In the exponential model for the induced dipole moment proposed by Van Kraneendonk (1968), the overlap and quadrupole-induced parts have been considered with $\mu_{\text{ov}}(R)$ and $\mu_{\text{q}}(R)$ varying as R^{-6} (see, for example, Reddy et al., 1980).

As far as the induced fundamental $(\Delta v = 1)$ band is concerned, the overlap matrix element $\langle \nu=0 \mid \mu_{\text{ov}}(R) \mid \nu=1 \rangle$ gives rise to single transitions $Q_{\text{ov}}(1)$.

The overlap induction is the occurrence of a characteristic dip in the Q branch which was first observed by Crawford et al. (1950) in H_2-foreign gas mixtures and was later confirmed by Chisholm et al. (1953) at higher gas densities.
Kranendonk (1988) has explained this feature in terms of a destructive interference between the short-range induced dipoles in successive collisions. A detailed kinetic theory of the intercollisional interference dips in the Q branch has been given by Lewis and Van Kranendonk (1971; 1972 a,b,c) and Lewis (1976, 1983, 1985).

In the quadrupole induction mechanism, the strength of the induced dipole depends on the quadrupole matrix element $<vJ | Q | v'J'>$ of a molecule and the polarizability (α) matrix elements of its collision partner and vice versa. For the induced fundamental bands the matrix elements of the isotropic part of the polarizability contributes to the absorption of the single transitions $Q_1(J)$, $Q_1(J) (J \neq 0)$ and $S_1(J)$ and, if the absorption is in the pure symmetric diatomic gas, to the double transitions $Q_1(J) + Q_0(J)$ and $Q_1(J) + S_0(J)$. The anisotropy component (γ) of the polarizability of the molecules of the collision pair contributes to the absorption of the transitions mentioned above as well as to the transitions of the form $S_1(J) + S_0(J)$. But in the CIA spectra of the fundamental band of H_2 in $H_2 - X$, (where $X = \text{He, Ne, Ar, ...}$ etc.), only single transitions $Q_1(J)$, $Q_1(J)$, and $S_1(J)$ are of importance and no double transitions need be considered.

In the hexadecapole induction mechanism, the magnitude of the induced dipole depends on the hexadecapole matrix element $<vJ | H | v'J'>$ of a molecule and the polarizability of its collision partner. This induced dipole $\mu_h(R)$ gives rise to the single transitions $U_1(J) (\Delta J = +4)$ and the double transitions
$Q_{1}(J) + U_{0}(J)$ in the CIA fundamental band of a pure symmetric diatomic gas. In pure H_2 these transitions, first observed by Gibbs et al. (1974) have been studied in detail by Reddy et al. (1980). Prior to the present work, no hexadecapole-induced transitions have been observed in H_2-foreign gas mixtures.

One of the main features that distinguishes CIA spectra from the allowed spectra is the broad half-widths of the lines. The width of a line is due to short duration of the induced dipole and the uncertainty principle, $\Delta E = \hbar/2\pi \Delta t$ (Van Kranendonk, 1967). If \vec{R} is the range of the induction mechanism and \vec{V} is the relative velocity of a molecule with respect to its collision partner, then the collision duration is given by $\Delta t = |\vec{R}|/|\vec{V}|$. The width (in cm$^{-1}$) of the collision-induced line is therefore given by

$$\Delta \nu = \frac{\Delta E}{\hbar c} = \frac{|\vec{V}|}{2\pi |\vec{R}|}$$

Because of the smaller value of \vec{R} in the short-range overlap induction, the $Q_{ov}(J)$ components will be broader than the components arising from the long-range quadrupole induction. Also, the relative translational energy of the molecules can be approximated by $\frac{1}{2}mV^2 \approx \frac{3}{2}kT$, which gives a \sqrt{T} dependence for the half-widths of CIA lines. In the enhancement absorption of the collision-induced fundamental band of normal H_2, all possible transitions in a $H_2 - X$ (where X is a monoatomic molecule) at room temperature, arising from the overlap and quadrupolar induction mechanisms are shown in Fig. 1. The hexadecapole-induced U-transitions corresponding to $\Delta J = \pm 4$ are not shown in this figure. At room
Figure 1. Energy level diagram showing single transitions arising in the collision induced fundamental band of H₂ at 296 K.
temperature all the molecules of \(\text{H}_2 \) are distributed among the rotational levels \(J = 0 \) to \(3 \) of the vibrational state \(v = 0 \). The vibrational terms \(G_0(v) \) and the rotational terms \(F_V(J) \) in Fig. 1 were calculated from the constants of the free \(\text{H}_2 \) molecule (Stoicheff, 1957). An enhancement absorption profile of the fundamental band of \(\text{H}_2 \) in \(\text{H}_2 \)–X at room temperature contains a total of 13 components: two \(\Omega_4(J) \) (\(J = 2 \) and \(3 \)), four \(\Omega_{34}(J) \) (\(J = 0 \) to \(3 \)), three \(\Omega_{14}(J) \) (\(J = 1 \) to \(3 \)) and four \(S_4(J) \) (\(J = 0 \) to \(3 \)).

The intensity of absorption of the collision-induced transitions depends not only on the matrix elements of the overlap induced moments and those of the quadrupole moment, hexadecapole moment, and polarizability, but also on the population of the initial states. The number of molecules \(N_J \) in a rotational state \(J \) of the ground vibrational level of a symmetric diatomic gas in thermal equilibrium at temperature \(T \) depends on (i) the \((2J + 1) \) fold degeneracy \((g_J) \) (ii) \((2T + 1) \) fold degeneracy \((g_T) \) due to nuclear spin and (iii) the Boltzmann factor \(\exp(-E_J/kT) \), i.e., \(\exp[-F_0(J)h\epsilon/kT] \). Here the absolute temperature \(T \) and the total nuclear spin \(T \) of \(\text{H}_2 \) should not be confused with each other. Since the nuclear spin of the H atom is \(\frac{1}{2} \), the total nuclear spin has \(2l + 1 \) values, i.e., \(T = 1 \) (parallel spins) and 0 (antiparallel spins). Symmetric and antisymmetric rotational levels have even and odd \(T \) values, respectively. The ground electronic state of \(\text{H}_2 \) is \(^1\Sigma^+ \). Hence the even rotational levels \(J = 0, 2, \ldots \) are symmetric and have \(T = 0 \) (i.e., \(g_T = 2T + 1 \) = 1) and the odd rotational levels \(J = 1, 3, \ldots \) are antisymmetric and have \(T = 1 \) (i.e., \(g_T = 3 \)). Thus

\[N_{J,\text{even}} \sim 1 \left(2J+1\right) \exp[-F_0(J) \hbar c/kT] \]

and

\[N_{J,\text{odd}} \sim 3\left(2J+1\right) \exp[-F_0(J) \hbar c/kT] \]

Prior to the present work, some aspects of the CIA spectra of the fundamental band of \(H_2 \) in \(H_2 - Ar \) mixtures have been studied by previous researchers. The first observation of the band in \(H_2 - Ar \) was made by Crawford et al. (1950) at moderate pressures. Further observations on the band in \(H_2 - Ar \) were made by Chisholm and Welsh (1954) and Hare and Welsh (1958) at very high densities. A preliminary profile analysis of the band in \(H_2 - Ar \) was made by Hunt and Welsh (1964). Varghese et al. (1972) made an analysis of the profiles at room temperature in para \(H_2 - Ar \) mixtures. Mactaggart and Welsh (1973) and Mactaggart, De Remigis and Welsh (1973) studied the band in the normal \(H_2 - Ar \) and para \(H_2 - Ar \) mixtures at temperatures in the range \(152 - 298 \) K and performed an analysis of the absorption profiles by appropriate line shape functions. However, these authors did not obtain the overlap parameters such as \(\rho \) and \(\mu_{ov}(\sigma) \) for the \(H_2 - Ar \) mixtures.

The aim of the present research project was to make a systematic study of the CIA of the fundamental band of \(H_2 \) in \(H_2 - Ar \) mixtures for a number of gas densities at \(201, 273, \) and \(298 \) K, first by obtaining accurate absorption profiles and then by carrying out profile analysis by using line shape functions adopted successfully in the analysis of CIA spectra in the infrared. Another aim was to observe the \(U \) - transitions corresponding to the selection rule \(\Delta J = +4 \) and
arising from the hexadecapolar induction mechanism in H_2-Ar mixtures. Details of the apparatus and experimental techniques are presented in Chapter 2. The enhancement absorption profiles of the overlap- and quadrupole-induced transitions and the derived absorption coefficients are presented in Chapter 3. The analysis of the absorption profiles and the results obtained therefrom are given in Chapter 4. The overlap parameters which characterize the induced overlap dipole moment μ_{ov} in H_2-Ar collision pairs are determined in Chapter 5. Preliminary observations of $U_1(1)$ transitions in the CIA of the fundamental band of H_2 in H_2-Ar are presented in Chapter 6. Finally, the conclusions of this research project are summarized in Chapter 7.
CHAPTER 2

APPARATUS AND EXPERIMENTAL TECHNIQUES

The enhancement absorption spectra of the collision-induced fundamental band of molecular hydrogen in its binary mixtures with argon were recorded for total gas pressures up to 160 atm at 201, 273, and 296 K for the overlap and quadrupole-induced transitions and up to 950 atm at 296 K for the hexadecapole-induced transitions. The experimental data were obtained with a 2 m high-pressure low-temperature absorption cell and an infrared recording spectrometer equipped with a data acquisition system and controlled by a microprocessor. During the present research project, several modifications were made to the data acquisition system and to the existing absorption cell. A description of the apparatus and its operation is presented in the present chapter.

2.1 The 2 m Stainless Steel Absorption Cell

A 2 m transmission-type stainless steel absorption cell originally designed for the experiments at room temperature by Reddy and Kuo (1971) and later modified for the experiments at low temperature by Gillard (1983) was used in the present studies after making further modifications and improvements. The cell, one half of whose cross-section is schematically shown in Fig. 2, was constructed from a type 303 stainless steel tube T, 2 m long and 7.62 cm in diameter. It has a central bore, 2.54 cm in diameter. A polished stainless steel light
Figure 2 A cross-sectional view of one end of the absorption cell.
guide L with a rectangular aperture 1.00 cm x 0.50 cm, made in five sections and inserted into the bore ensured good transmission of radiation. A synthetic sapphire window W, 2.54 cm in diameter and 1.00 cm thick was attached to a window seat S having a circular aperture of 1.00 cm in diameter with General Electric RTV 108 Silicone Sealant. An inner O-ring R₃ between the window seat and the body of the cell was compressed by tightening eight Allen-head bolts against the retaining end piece P to obtain a pressure-tight seal. The experimental gases were admitted into the cell through an inlet I in an Aminco fitting.

A type 312 stainless steel nut N, 7.62 cm in internal diameter and 1.50 cm long was threaded on to the end of the cell and welded to it. A stainless steel flange F₂ and a stainless steel cone were welded to this nut. Eight holes were drilled in flange F₂ as illustrated in Fig. 2. A stainless steel bellows B₂, 10.2 cm in diameter was welded to the stainless steel cone. The outer jacket end piece consisted mainly of flanges F₁ and F₂ and bellows B₇ of 16.5 cm in diameter, all made of stainless steel. The two bellows allow relative expansion and contraction of the cell and the vacuum jacket V. A neoprene O-ring R₁ between F₁ and F₂ allows a vacuum seal. Chamber C was filled with an appropriate coolant.

Flange F₃ provided a seat for the aluminum end cap A which in conjunction with another end cap D made of Delrin material forms a vacuum chamber 10.0 cm long and 10.5 cm in diameter. The aluminum end cap was sealed against a silicone rubber O-ring R₂. A vacuum tight seal between the aluminum and Delrin end caps was provided by means of a neoprene O-ring R₄. A sapphire
window W_2, 5.08 cm in diameter and 0.30 cm thick, was sealed to the Delrin section with a neoprene O-ring R_5 between them. The vacuum chamber at each end of the cell was evacuated during the experiments to prevent frosting on the cell window. Heating tape H wound around the aluminum cap avoids freezing of the O-rings R_2 and R_4.

2.2 The Optical Arrangement and Spectrometer

The optical arrangement used in the present experiment is shown in Fig. 3. The source S is a 600 W General Electric FFJ quartzline lamp held in a water-cooled brass jacket and was operated at a voltage of 90 V, AC from a stabilized power supply unit. The radiation from the source was focused on the entrance window of the cell by a front coated concave spherical mirror M_1. The radiation leaving the cell was then focused onto the entrance slit of a Perkin-Elmer model 99 double-pass prism monochromator by a similar spherical mirror M_2. This radiation was collimated by an off-axis paraboloid mirror M_3 and then dispersed by an LiF prism P. The radiation was then reflected by the Littrow mirror to complete the first pass through the prism and brought to a focus. The diverging beam from this focus was chopped by a 260 Hz tuning fork chopper and sent back through the prism for a second pass. This radiation was then focused on an uncooled PbS detector. The wavenumber drum of the monochromator was coupled to the Littrow mirror. Thus the spectral region of interest could be scanned by rotation of the drum. The slit width maintained at 45 µm gave a spectral resolution of ~ 5 cm$^{-1}$ at the origin (4181 cm$^{-1}$) of the fundamental band of H_2.
Fig. 3. Arrangement of optics and monochromator in the present experiment. S: source
S1: entrance slit, S2: exit slit, D: PbS detector, M1, M2 and M9: spherical
mirrors, C: tuning fork chopper, P: prism, M3: parabolic mirror, M4: Littrow
mirror, M5-M8: plane mirrors, I & O: dry nitrogen gas inlet and outlet, respecti-
vely, V: to vacuum pump, HP: to high-pressure gas handling system.
2.3 Microprocessor - Controlled DC Stepping Motor

A microprocessor-controlled dc stepping motor (model M091 - FD03, supplied by Superior Electric Company, Connecticut) having a step angle of 1.8° in full step mode and 0.9° in half step mode with a precision of ±5% was used to drive the wavenumber drum. It was operated in a half step mode, and the wavenumber drum was rotated at a step angle of 0.45°, by using an appropriate gear system. A schematic circuit diagram of the stepping motor control unit, with appropriate pin connections is shown in Fig. 4(a). An Intel 8255 PPI (to be shown in Fig. 6), controlled by a microcomputer was used to generate the pulses for driving the stepping motor. These pulses were first fed into a Schmitt trigger circuit 74LS14 for pulse shaping and then into the clock input of a 4-bit up/down counter 74LS191. The output of this binary counter was fed into the input of a decimal decoder 74LS42. The output from this decoder was then fed into a 3-input NAND gate 74LS10 and then to a power amplifier circuit as shown in Fig. 4(b). In order to reduce the signal noise, the grounds of the stepping motor and the microcomputer were separated by four optical isolators 4N25, connected between the 74LS10 and power-amplifier circuit (Fig. 4(b)). With the help of the switch shown in Fig. 4(a) the motor can be operated either in a full-step mode or a half-step mode. The up/down input of the 74LS191 counter controls the direction of rotation of the motor.
Fig. 4(a) The circuit diagram of the stepping motor control unit. clk.: clock input. u/d.: up-down input of the counter. GND: ground. VCC: 5 V. S1 to S4 represent the outputs (inputs to the Fig. 4(b)). See also Fig. 4(b).
Fig. 4(b)(i) The circuit diagram of the stepping motor control unit. The inputs S_1 to S_4 are from Fig. 4(a). D_1: diode (1N5402), T_1: transistor (ECG123A), T_2: Transistor (2N3055), R: resistor (10 kΩ).

(ii) Connections to the stepping motor.
Fig. 5. A block diagram of the signal detection and recording system.
2.4 Detection and Recording of the Signal

A block diagram showing optics and electronics for the signal detection and recording system is shown in Fig. 5. The resistance of a photoconductive device such as a PbS detector used in the present experiment varies with the intensity of radiation falling on it. A constant voltage of 67.5 V was applied to the detector so that the varying resistance of the detector gave rise to a varying voltage signal. This signal was amplified by a Brower Laboratories model 261 preamplifier and model LF-100 lock-in voltmeter. A square wave from the chopper was matched only with the chopped radiation, thus, discarding the unchopped first pass radiation. Any ripple in this full wave rectified a.c. signal was filtered out by an RC filter unit. As the acceptable range of the analog-to-digital converter was limited to 0 - 2 volts, an Electro - Measurements Inc., Model DV-412 decade divider was used to attenuate the signal coming from the voltmeter whose range was 0 to 10 volts. This attenuated d.c. signal was then fed to a model 5711 ADC unit controlled by the microprocessor and to a Hewlett Packard model 7132 A strip chart recorder as shown in Fig. 5.

A block diagram of the microprocessor - controlled data acquisition system is shown in Fig. 6. This system was originally designed by Gillard (1983) and was modified in the present work, to accommodate a stepping motor control unit. The microcomputer was based on the Intel 8085 microprocessor and was supplied in kit form by Netronics R & D, Ltd. It incorporates a standard S-100 microcomputer bus and an interpreter for the BASIC language. The Intel 8255 parallel...
Signal From Decade Divider (See Fig. 5) → ADC 3711 Analog to digital Converter → Stepping Motor Control Unit

TIL 138 Optical Switch → PPI 8255 Interface → 8253 Counter/Timer

Main Computer → 8085-Based Micro Computer → Computer Terminal

Fig. 6. A block diagram of the microprocessor-controlled data acquisition system.
peripheral interface (PPI) has three individually programmable input/output ports and was used to control the operation of the ADC, stepping motor control unit and the optical switches. The Intel 8253 is a programmable timer chip, which was used to count the number of pulses in a given trace. The ADC converts the lock-in amplifier's output into a decimal number in the range 0 - 4000 for each step. The microcomputer reads the ADC for each step and sends it to the main computer. The optical switches were used to assist the positioning of the wavenumber drum of the monochromator and will be discussed in Section 2.7. For a detailed description of the data-acquisition system, the reader is referred to Gillard (1983).

2.5. The Gas Handling System

The high pressure system used in the present experiments is shown schematically in Fig. 7. Bourdon tube pressure gauges G1, G2, and G3 have the ranges 0 - 20000 p.s.i., 0 - 5000 p.s.i., and 0 - 1000 p.s.i., respectively, and were calibrated against an Ashcroft dead-weight pressure balance having an accuracy of 0.1 %. The Matheson ultra high purity grade hydrogen and argon were used in the present experiments. The hydrogen gas was first passed through a liquid nitrogen trap made of copper tubing, 8.4 mm in outside diameter, before admitting into the absorption cell. A stainless steel thermal compressor was used for developing high pressures of argon. Aminco fittings were used to connect the cell with the gauges, cylinders, traps, and the compressor. The assembled system was tested for pressures up to 15000 p.s.i. and for good vacuum. The base density of
Fig. 7. The high-pressure gas handling system.
hydrogen in the present experiments was in the range 3 - 7 amagat for overlap- and quadrupole-induced transitions and 57 amagat for the hexadecapole-induced transitions. The perturbing gas density was in the range of 15 to 520 amagat.

The argon gas was found to contain small amounts of impurity for pressures greater than 3000 p.s.i., in the spectral region around 5700 cm\(^{-1}\), which was pressure-dependent. For the experiments on the U transitions, the absorption due to impurity was subtracted from the observed absorption profile.

2.6 Isothermal Data of Gases

The gas densities are normally expressed in units of amagat, which is the ratio of the density of a gas at a given temperature and pressure to its density at S.T.P.. The densities of hydrogen were obtained by polynomial least squares fits of the PVT data given by Michels et al. (1959). The densities of argon were obtained from Michels et al. (1949; 1958), by a similar procedure. The base density \(\rho_a \) of hydrogen was directly obtained from its isothermal data.

The partial density \(\rho_b \) of the perturbing gas in a binary mixture was determined from the formula (see, for example, Reddy and Cho 1965)

\[
\rho_b = \{1/(1 + \beta)\} \{(\rho_a)_p + \beta(\rho_b)_p\} - \rho_a, \tag{1}
\]

where \((\rho_a)_p \) is the density of hydrogen at the total pressure \(P \) of the mixture and \((\rho_b)_p \) is the density of the perturbing gas at the same pressure, and \(\beta = \rho_b'/\rho_a \) where \(\rho_b' \) is the approximate partial density of the perturbing gas corresponding to the partial pressure \(P_b = P - P_a \), \(P_a \) being the pressure of hydrogen. The
final value of ρ_b was determined by iteration.

2.7 Reduction of Water Vapor from the Optical Path

Absorption due to the atmospheric water vapor in the spectral regions 3500 - 3900 cm$^{-1}$ and 5200 - 5500 cm$^{-1}$ interferes with the recording of the fundamental band of H_2. It was therefore necessary to remove water vapor from the entire optical path from the source of radiation to the detector and this was accomplished in the following manner: The source and mirror M_1 were enclosed in one Plexiglas box (Fig. 3) which was sealed to the end cap of the cell with a rubber tube. The monochromator and mirror M_2 were placed in a second Plexiglas box at the exit end of the cell. Both boxes were fitted with neoprene gloves so that the inside settings could be changed without disturbing the air-tight seal. Dry nitrogen gas developed by passing current through a resistor (100 Ω, 25 W) immersed in a 200 litre liquid nitrogen dewar was passed through the Plexiglas boxes. The outlets of these boxes were fitted with one way valves, to avoid re-entry of air into the path of radiation. It took about 4 to 5 days to bring down the water vapor absorption in the system to a negligible and stable level. Flushing with dry nitrogen was continued during the entire experiment.

2.8 Calibration of the Spectral Region and Analysis of the

Experimental Data

The spectral region 3500 - 6500 cm$^{-1}$ was calibrated with the standard wave numbers of the mercury emission lines (Humphreys, 1953; Plyer et al. 1955; and
Zaidel et al. (1970) and atmospheric water vapor absorption peaks (Downie, 1953; IUPAC Tables of Wavenumbers, 1977).

The spectral region was calibrated by a polynomial least squares fit of the wavenumbers of the standard mercury lines and water vapor absorption peaks against the corresponding pulse numbers of the stepping motor. Once this was done, it was essential to start always at the same point of the wavenumber drum. To ensure the accuracy of the starting point, a Plexiglas circular disc having transparent and opaque markings shown in Fig. 8 was mounted on the wavenumber drum. Two optical switches (TIL 138) were fixed on the body of the monochromator so that the circular disc could be rotated freely, through the air gap of the optical switches. An optical switch consisted of a light-emitting diode (LED) and a phototransistor in a single plastic housing separated by a air gap of 0.318 cm, also shown in Fig. 8. The emitter is connected to the ground of microcomputer and the collector to the PPI (at 5 Volts), through a resistor. When the transparent region of the disc comes in the air gap of the optical switch, light from the LED passes through the circular disc and turns on the phototransistor. Whenever the output of the phototransistor is low, it conducts. On the circular disc a larger opaque mark follows four small opaque marks. The optical switches S₁ and S₂ scan the smaller opaque marks and the larger opaque marks, respectively. The microprocessor reads the optical switches and displays the number 0, 1, 2, or 3 for each step of the motor. The number 0 indicates that both S₁ and S₂ are OFF, 1 indicates S₁ is ON and S₂ is OFF, 2 indicates S₁ is OFF while S₂ is ON, and 3 indicates both S₁ and S₂ are ON.
Fig. 8. (a) Schematic diagram of an optical switch. E: emitter, C: collector.
(b) Circuit diagram of an optical switch. I: input, O: output, R: 200 Ω.
(c) Plexiglas disc mounted on the spectrometer.
The enhancement in the absorption coefficient at a given frequency \(\nu \) (cm\(^{-1}\)) due to the addition of a foreign gas into the absorption cell of sample path length \(l \) containing a fixed amount of hydrogen gas is given by

\[
\alpha_{en}(\nu) = (2.303/l) \log_{10} \left[I_1(\nu)/I_2(\nu) \right],
\]

where \(I_1(\nu) \) is the intensity transmitted by the hydrogen gas in the cell and \(I_2(\nu) \) is the intensity transmitted by the binary gas mixture. The quantity \(\log_{10} [I_1(\nu)/I_2(\nu)] \) was measured for each pulse number, with the aid of a computer program. Absorption profiles were then obtained by plotting \(\log_{10} [I_1(\nu)/I_2(\nu)] \) against wavenumber \((\nu) \). The integrated absorption coefficient

\[
\int \alpha_{en}(\nu) \, d\nu
\]

was obtained from the areas under the absorption profiles.
CHAPTER 3

ENHANCEMENT ABSORPTION PROFILES
AND ABSORPTION COEFFICIENTS

A brief outline of the previous work on the collision-induced absorption of
the fundamental band of gaseous H₂ and the objectives of the present research
project are given in Chapter 1. Details of the experimental apparatus and tech-
niques are described in Chapter 2. The collision-induced fundamental band of H₂
in H₂ – Ar mixtures has been studied at 201, 273, and 296 K with a 2 m absorp-
tion cell for several base densities of H₂ and argon densities up to 160 amagat at
201 and 273 K and up to 520 amagat at 296 K. In the present chapter the
enhancement absorption profiles of the band for gas densities up to 160 amagat,
consisting of mainly the overlap and quadrupole- induced transitions, will be
presented along with the derived absorption coefficients. Table I summarizes the
conditions under which the experimental profiles presented in this chapter were
obtained.

TABLE I

Summary of the experimental conditions

<table>
<thead>
<tr>
<th>Temperature (K)</th>
<th>Sample path length (cm)</th>
<th>Maximum density of the perturbing gas (amagat)</th>
<th>Number of mixture densities studied</th>
</tr>
</thead>
<tbody>
<tr>
<td>201</td>
<td>185.9</td>
<td>126</td>
<td>25</td>
</tr>
<tr>
<td>273</td>
<td>186.0</td>
<td>158</td>
<td>35</td>
</tr>
<tr>
<td>296</td>
<td>186.1</td>
<td>152</td>
<td>28</td>
</tr>
</tbody>
</table>
3.1 Enhancement Absorption Profiles

Figures 9, 10, and 11 show three typical sets of the experimental enhancement absorption profiles of the fundamental band of H₂ in the spectral region 3800 – 5300 cm⁻¹ in the binary mixtures of H₂ - Ar at 201, 273 and 208 K, respectively. In each of these figures the quantity \(\log_{10} [I_{1}(\nu)/I_{2}(\nu)] \) is plotted against wavenumber \(\nu \) (in cm⁻¹) for a fixed base density of H₂ and three different densities of the argon gas. The positions of the collision-induced single transitions \(Q_{1}(2), Q_{1}(J), \) and \(S_{1}(J) \) for \(J = 0 \) to 3, calculated from the constants of the free H₂ molecule (Stoicheff 1957) are marked along the wavenumber axis.

In all the profiles, the main dip of the Q-branch occurs at the position of \(Q_{1}(1) \) line (4155 cm⁻¹). This dip was explained by Van Kranendonk (1968) (see also Lewis, 1985 and the references therein) as a result of destructive interference occurring between the overlap dipole moments in successive collisions. The two peaks at the low- and high-wavenumber sides of this dip are designated by \(Q_{P} \) and \(Q_{R} \) respectively and the separation \(\Delta \nu_{PR}^{\text{max}} \) between them increases with the density of the perturbing gas. The widths of the individual components in collision-induced spectra have a characteristic dependence on the temperature. At higher temperatures, because of the larger relative translational energy of the colliding molecules, the collision duration is small and the widths are relatively broad. At lower temperatures, the components are relatively narrow.
Fig. 9. The enhancement absorption profiles of the fundamental band of H_2 in three mixtures of H_2-Ar at 201 K.
Fig. 10. The enhancement absorption profiles of the fundamental band of H₂ in three mixtures of H₂-Ar at 273 K.
The enhancement absorption profiles of the fundamental band of H₂ in three mixtures of H₂-Ar at 296 K.
3.2 Absorption Coefficients

The enhancement of the integrated absorption coefficient of a band depends on the partial densities $\rho_a (= \rho_{H_2})$ and $\rho_b (= \rho_{Ar})$ and is expressed by the relation

$$\int \alpha_{en}(\nu) \, d\nu = \alpha_{1b} \rho_a \rho_b + \alpha_{2b} \rho_a^2 \rho_b^2 + \ldots$$

or

$$(1/\rho_a \rho_b) \int \alpha_{en}(\nu) \, d\nu = \alpha_{1b} + \alpha_{2b} \rho_b + \ldots$$

where α_{1b} (cm$^{-2}$ amagat$^{-2}$) and α_{2b} (cm$^{-2}$ amagat$^{-3}$) are the binary and ternary coefficients, respectively. The values of $(1/\rho_a \rho_b) \int \alpha_{en}(\nu) \, d\nu$ for H$_2$ - Ar at three different temperatures, 201, 273, and 298 K, are plotted in Fig. 12. The plots are found to be straight lines in all the three cases. The intercepts and slopes of these plots were obtained by linear least square fits of the experimental data. The binary and ternary absorption coefficients, which are represented by the intercepts and slopes, respectively, are listed in Table II. It can be seen from Table II that the binary absorption coefficients are very large compared to the ternary coefficients, indicating that the main contribution to the collision-induced absorption comes from the binary collisions.

In order to compare with theory, the enhancements of the integrated absorption coefficient can also be expressed as

$$c \int \tilde{\alpha}_{en}(\nu) \, d\nu = \tilde{\alpha}_{1b} \tilde{\rho}_a \tilde{\rho}_b + \tilde{\alpha}_{2b} \tilde{\rho}_a^2 \tilde{\rho}_b^2 + \ldots$$

where c is the speed of light, $\tilde{\alpha}_{en}(\nu) = \alpha_{en}(\nu)/\nu$ is the enhancement in the absorption coefficient with the frequency factor removed, and $\tilde{\rho}_a$ and $\tilde{\rho}_b$ are the number
Fig. 12. Plots of \(\frac{1}{\rho_h \rho_b} \int \alpha(\nu) d\nu \) vs. \(\rho_b \) for the enhancement absorption profiles.
<table>
<thead>
<tr>
<th>Temperature (K)</th>
<th>Binary absorption coefficient (a_{1b}) ((10^{-3} \text{cm}^{-2} \text{amagat}^{-1}))</th>
<th>Binary absorption coefficient (a_{2b}) ((10^{-3} \text{cm}^{-2} \text{amagat}^{-1}))</th>
<th>Ternary absorption coefficient (a_{3b}) ((10^{-6} \text{cm}^{-2} \text{amagat}^{-3}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>273</td>
<td>4.73 ± 0.05</td>
<td>4.48 ± 0.05</td>
<td>4.87 ± 0.77</td>
</tr>
<tr>
<td>296</td>
<td>5.27 ± 0.05</td>
<td>4.99 ± 0.05</td>
<td>3.03 ± 0.35</td>
</tr>
<tr>
<td></td>
<td>5.68 ± 0.05b</td>
<td>5.37 ± 0.05b</td>
<td>1.48 ± 0.62</td>
</tr>
</tbody>
</table>

Ranges of error indicated are standard deviations.

b. The binary coefficient at 298 K quoted by Prasad (1976) is 5.99 ± 0.06.

a. Absorption coefficients of the fundamental band of H$_2$-Ar binary mixture at 201, 273, and 296 K.
densities (number of molecules per unit volume) of the absorbing and perturbing gases, respectively. These densities are related to those expressed in amagat units

\[\tilde{\rho}_a = \rho_a \eta_0; \quad \tilde{\rho}_b = \rho_b \eta_0, \]

where \(\eta_0 \) is Loschmidt's number (number density of an ideal gas at S.T.P., \(2.887 \times 10^{10} \text{ cm}^{-3} \)). The new binary and ternary absorption coefficients are related to the previous ones by the relations

\[\tilde{\alpha}_{1b} = (c/\eta_0^2)\alpha_{1b}/\tilde{\nu}, \quad \tilde{\alpha}_{2b} = (c/\eta_0^3)\alpha_{2b}/\tilde{\nu}, \]

where the band center \(\tilde{\nu} \) is given by

\[\tilde{\nu} = \int \alpha_{en}(\nu) \, d\nu / \int \nu^{-1} \alpha_{en}(\nu) \, d\nu. \]

The average values of \(\tilde{\nu} \) at 201, 273, and 298 K are 4381, 4385 and 4390 cm\(^{-1}\), respectively. The values of \(\tilde{\alpha}_{1b} \) are also listed in the Table II. Even though, extreme care was taken in recording the absorption profiles, small errors due to uncertainties from the spectral region calibration (standard deviation is 0.3 cm\(^{-1}\)), ADC system (non-linearity is \(\pm 0.025\% \) of full scale or 1 count), area calculations of the absorption profiles (the trapezoidal rule used in the area calculation gives the good approximation only), noise etc. could be present in this data. The contribution of these errors to the presented data is very small and lies within the experimental accuracy.
CHAPTER 4
ANALYSIS OF THE ENHANCEMENT ABSORPTION PROFILES

As discussed in Chapter 1, the absorption profiles presented in Chapter 2 occur mainly as a result of a short-range electron-overlap interaction and a long-range quadrupolar interaction. The quantity μ_{ov}, which arises due to the distortion of the electron charge distribution of the colliding pairs of molecules gives rise to the $Q_{ov}(J)$ transitions. On the other hand, μ_q, which results from the polarization of a molecule (e.g. Ar) by the quadrupole field of its collision partner (e.g. H$_2$), gives rise to various single transitions in the O, Q, and S branches. In this chapter, the contributions of the individual transitions to the total enhancement of absorption of the band will be separated by a method of profile analysis and the characteristic half-width parameters of the overlap- and quadrupole-induced components will be obtained for the observed absorption profiles.

4.1 Line Shape Functions

It is convenient to express the dimensionless absorption coefficient $\tilde{\alpha}_n(\nu)$ ($= \alpha_{nn}(\nu)/\nu$) at a given wavenumber ν by the relation (Van Kranendonk, 1968; Mactaggart and Welsh, 1973)

$$\tilde{\alpha}_n(\nu) = \sum_{mn} \frac{\tilde{\alpha}_{nm}^0 W_n(\Delta \nu)}{1 + \exp \left(-\frac{h c \Delta \nu}{k T}\right)}$$ (8)
where \(n \) stands for the induction mechanism \((n = \text{ov} \text{ for the overlap induction and } n = \text{q} \text{ for the quadrupole induction})\), \(m \) represents a specific transition arising from a given mechanism, \(\alpha_{nm}^0 \) is a parameter indicating the maximum absorption coefficient at the molecular frequency \(\nu_m \) \(\text{cm}^{-1} \), \(W_n(\Delta \nu) \) with \(\Delta \nu = \nu - \nu_m \) represents the line shape function of the \(n \)-type of mechanism, \(h \), \(c \), and \(k \) are the fundamental constants, and \(T \) is the absolute temperature. All the spectral transitions arising from a given induction mechanism can be represented by the same line shape function (Poll, 1961). The factor \([1 + \exp(-h c \Delta \nu/k T)]\) on the right side of Eq. (8) converts the symmetrized line shape \(\alpha_{nm}^0 W_n(\Delta \nu) \) into the observed asymmetric line shape and this satisfies the so-called “detailed balance condition” (see, for example, Reddy, 1985).

The line shape function \(W_{\text{ov}}(\Delta \nu) \) of an overlap-induced transition in Eq. (8) can be expressed (Van Kranendonk, 1968) as

\[
W_{\text{ov}}(\Delta \nu) = W_{\text{ov}}^0(\Delta \nu) D(\Delta \nu),
\]

where \(W_{\text{ov}}^0(\Delta \nu) \) is the intracollisional line form arising from the single binary collisions and \(D(\Delta \nu) \) is the intercollisional line form, which takes into account the correlation existing between the dipole moments induced in successive collisions. The quantity \(W_{\text{ov}}^0 \) is represented by the Levine-Birnbaum (1967) expression as

\[
W_{\text{ov}}^0(\Delta \nu) = (2 \Delta \nu/\delta_d)^2 k_2(2\Delta \nu/\delta_d),
\]

where \(k_2 \) is the modified Bessel function of the second kind and \(\delta_d \) is the intracollisional half-width at half-height. The function \(D(\Delta \nu) \) as represented by Van
quadrupole-induced lines because the Feshbach scale of the induced dipole moment force, this term, although not exact, should give a good approximation for the Lorentz line shape (eq. 12) is the dominant asymptotic term for a hard repulsive Lewis and Lyon (1978) have shown that the (13)

\[
\left| \frac{\phi^{b}(q/\Lambda) + \phi^{b}(q/\Lambda) + 1}{1} \right| = W
\]

represented by

obtain a satisfactory fit. The modified dispersion line shape function is included as a dispersion-type term in the denominator of the dispersion-type function to obtained at high densities. Really et al. (1980) and Cillard et al. (1984b) represented by Eq. (12) is not entirely satisfactory, particularly for the profiles wave number tail of the fundamental band, the simple dispersion line shape where \(g \) is the quadrupole half-width at half-height. However, at the high-

\[
\left| \phi^{b}(q/\Lambda) + 1 \right| = \Lambda
\]

where \(\lambda \) is the quadrupole half-width at half-height, the Lorentz line shape function (which is symmetric about \(\lambda \) and is expressed as

(8) is normally represented by a dispersion-type (the Lorenz-type) line shape. The Lorentz line shape function is represented schematically in Fig. 12. Overlap-induced component are represented schematically in Fig. 13. \(g \) is the intercollision half-width at half-height. The Lorentz line shape functions for an

\[
\left| \phi^{b}(q/\Lambda) + 1 \right| = \Lambda
\]

where \(\lambda \) is a constant (which is assumed to be unity in the present analysis), and

Kranendonk (1969) (see also Lewis, 1976) is
Fig. 13. Line shape for an overlap-induced component:
(a) Intercollisional line form: \(D(\Delta \nu) \).
(b) Dashed curve represents intracollisional line form, \(W^0_{ov} \).
Solid curve represents the product of above two line forms.
(c) The observed line form obtained by dividing \(W_{ov}(\Delta \nu) \) with \(1 + \exp(-hc\Delta \nu/kT) \).
\(\mu_q(R) \) is greater than the length scale in which the radial motion of the colliding molecules reverses. The quadrupolar line shapes (Eqs. (12) and (13)) are illustrated in Fig. 14.

4.2 Relative Intensities

The relative intensity of an overlap-induced transition, \(m \), is represented by (Van Kranendonk, 1958)

\[
\tilde{\alpha}_{ov,m} \propto P_J, \tag{14}
\]

where \(P_J \) is the normalized Boltzmann factor for the rotational state \(J \) (note: \(\sum J P_J = 1 \)) and is given by

\[
P_J = \frac{g_T (2J+1) \exp (-E_J/kT)}{\sum_J g_T (2J+1) \exp (-E_J/kT)}. \tag{15}
\]

Here, \(g_T \) is the nuclear statistical weight factor (it is 1 for even \(J \) and 3 for odd \(J \) for \(H_2 \)), and \(E_J \) is the energy of the rotational level \(J \). Equation (15) is true for equilibrium hydrogen. For normal hydrogen, \(\sum_{J \text{odd}} P_J / \sum_{J \text{even}} P_J = 3/1 \). The relative intensities of the overlap transitions were expressed in terms of the intensity of the strongest line \(Q_{1,ov}(1) \) and are presented in Table III.

The integrated binary absorption coefficient of a specific quadrupole-induced transition \(m \) in \(H_2 - Ar \) arising from the isotropic polarizability of argon is given by (Poll, 1971; Karl et al., 1975; see also Reddy, 1985)

\[
\tilde{\alpha}_{qm} = (4\pi^3 e^2/3hc) n_0^2 a_0^5 (a_0/\sigma)^5 J_q X_{qm}, \tag{16}
\]
Fig. 14. Line shape for a quadrupole - induced component. The solid line represents the observed line shape with $\delta_q = 110 \text{ cm}^{-1}$. While the dash-dot line represents the lineshape with the $\delta_{q2} = 110 \text{ cm}^{-1}$ and $\delta_{q4} = 230 \text{ cm}^{-1}$ at 296 K.
TABLE III

Relative intensities of the overlap and quadrupolar transitions of the fundamental band of H_2

<table>
<thead>
<tr>
<th>Transition</th>
<th>Wavenumber (cm$^{-1}$)</th>
<th>201 K</th>
<th>273 K</th>
<th>296 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q_{ov}(3)$</td>
<td>4125.8</td>
<td>0.035</td>
<td>0.106</td>
<td>0.135</td>
</tr>
<tr>
<td>$Q_{ov}(2)$</td>
<td>4143.4</td>
<td>0.098</td>
<td>0.161</td>
<td>0.178</td>
</tr>
<tr>
<td>$Q_{ov}(1)$</td>
<td>4155.2</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>$Q_{ov}(0)$</td>
<td>4161.1</td>
<td>0.247</td>
<td>0.208</td>
<td>0.200</td>
</tr>
</tbody>
</table>

Overlap transitions

<table>
<thead>
<tr>
<th>Transition</th>
<th>Wavenumber (cm$^{-1}$)</th>
<th>201 K</th>
<th>273 K</th>
<th>296 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q_{1}(3)$</td>
<td>3568.2</td>
<td>0.040</td>
<td>0.096</td>
<td>0.120</td>
</tr>
<tr>
<td>$Q_{1}(2)$</td>
<td>3806.7</td>
<td>0.073</td>
<td>0.098</td>
<td>0.109</td>
</tr>
<tr>
<td>$Q_{1}(3)$</td>
<td>4125.8</td>
<td>0.023</td>
<td>0.071</td>
<td>0.090</td>
</tr>
<tr>
<td>$Q_{1}(2)$</td>
<td>4143.4</td>
<td>0.070</td>
<td>0.114</td>
<td>0.127</td>
</tr>
<tr>
<td>$Q_{1}(1)$</td>
<td>4155.2</td>
<td>0.993</td>
<td>0.993</td>
<td>0.993</td>
</tr>
<tr>
<td>$S_{1}(0)$</td>
<td>4497.8</td>
<td>0.487</td>
<td>0.410</td>
<td>0.394</td>
</tr>
<tr>
<td>$S_{1}(1)$</td>
<td>4712.9</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>$S_{1}(2)$</td>
<td>4917.2</td>
<td>0.070</td>
<td>0.115</td>
<td>0.128</td>
</tr>
<tr>
<td>$S_{1}(3)$</td>
<td>5109.0</td>
<td>0.019</td>
<td>0.058</td>
<td>0.073</td>
</tr>
</tbody>
</table>
where

$$X_{qm} = P_J C(J 2J'; 00)^2 <0J | Q | 1J'>^2 a_{Ar}^2$$ \(17\)

In Eq. (16), \(J_q(T)\) is a temperature-dependent dimensionless integral for the quadrupolar induction, \(a_o\) is the Bohr radius, \(\sigma\) is the molecular diameter of the colliding pair corresponding to zero intermolecular potential. At a given temperature, all the terms except \(X_{qm}\) in Eq. (16) are common for all the transitions. In Eq. (17), \(\alpha_{Ar}\) is the polarizability of the argon molecule, \(P_J\) is the normalized Boltzmann factor for the \(H_2\) molecule, \(C(J 2J'; 00)\) are Clebsch-Gordan coefficients (Rose, 1957), \(<0J | Q | 1J'>\) are the quadrupolar matrix elements of \(H_2\) taken from Hunt et al., 1984. The relative intensities of the quadrupolar transitions expressed in terms of the intensity of the strongest line \(S_1(1)\) are presented in Table III.

4.3 Computational Procedure

In order to separate the overlap and quadrupolar contributions to the total enhancement absorption of the band, a non-linear least squares fit program written by Gillard (1983) in FORTRAN was used. This program requires two absorption maxima parameters \(\delta^o_{ovm}\) and \(\delta^o_{qmq}\) for the overlap and quadrupolar components, respectively, and three (or four) half-width parameters \(\delta_e, \delta_d,\) and \(\delta_q \) (or \(\delta_q \) and \(\delta_d\)) defined by Eqs. (10) to (13). By adjusting these parameters, computation was performed until the computed profile which was the sum of all the individual components gave the best non-linear least squares fit to
the experimental profile over the entire region of the band. The analysis of a typical profile at 273 K for a H2 – Ar mixture is shown in Fig. 15. In this fit Eq. (13) was used for the quadrupolar lines. In Fig. 15 the individual overlap and quadrupolar components are shown by dashed lines. The overlap components can be easily distinguished by their characteristic dips. Examples of the profile analysis at 206 K are shown in Figs. 16 and 17, and the analysis of a profile at 201 K is shown in Fig. 18. In Figs. 17 and 18, only the total overlap and quadrupolar contributions to the experimental profiles are shown along with the synthetic profiles.

4.4 Result of Profile Analysis

Profile analysis of the enhancement of absorption was carried out for all the experimental profiles using the procedure outlined in Sec. 4.3, and the results of the analysis are presented in Table IV. The overlap contribution to the total enhancement of absorption decreases from 48% at 201 K to 40% at 206 K, and the quadrupolar contribution increases from 57% at 201 K to 60% at 206 K. The collision duration \(\tau_d \) and \(\tau_q \), calculated from the relations

\[
\tau_d = 1/2\pi c \delta_d^2 \quad \text{and} \quad \tau_q = 1/2\pi c \delta_q^2, \tag{18}
\]

are also listed in Table IV. The half-widths \(\delta_d \) and \(\delta_q \), for each of the mixtures remain constant at a given temperature within the range of gas densities studied; however, the intercollisional half-width \(\delta_c \) increases with density. This increase can be understood from the fact that as the density of gas mixture increases, the
Fig. 15. Analysis of an enhancement absorption profile obtained in a H₂ - Ar mixture at 273 K. All the quadrupolar components are marked along the wavenumber axis. The relative intensities of the quadrupolar components are shown by the stick spectra.
Fig. 16. Analysis of an enhancement absorption profile obtained in a H₂-Ar mixture at 296 K. All the quadrupolar components are marked along the wavenumber axis. The relative intensities of the quadrupolar lines are shown by the stick spectra.
H₂-Ar

T : 296 K

Path length : 186.1 cm
Density of H₂ : 4.3 amagat
Density of Ar : 137.4 amagat

LEGEND
- Experimental profile
- Synthetic profile
- Quadrupolar profile
- Overlap profile

Fig. 17. Analysis of an enhancement absorption profile obtained in a H₂ - Ar binary mixture at 296 K.
Fig. 18. Analysis of an enhancement absorption profile obtained in a H_2 - Ar binary mixture at 201 K.
Results of the profile analysis of H$_2$-Ar binary mixtures

<table>
<thead>
<tr>
<th>Temperature (K)</th>
<th>Intracollisional half-width (δ_d cm$^{-1}$)</th>
<th>Quadrupolar collision duration (τ_4) (10$^{-14}$ s)</th>
<th>Overlap half-width (δ_1 cm$^{-1}$)</th>
<th>Quadrupolar contribution (% of τ_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>201</td>
<td>159 \pm 4</td>
<td>3.3(3)</td>
<td>75 \pm 4</td>
<td>7.1(2)</td>
</tr>
<tr>
<td>273</td>
<td>166 \pm 4</td>
<td>3.2(0)</td>
<td>87 \pm 4</td>
<td>6.1(4)</td>
</tr>
<tr>
<td>296</td>
<td>168 \pm 4</td>
<td>3.1(6)</td>
<td>89 \pm 4</td>
<td>6.0(0)</td>
</tr>
</tbody>
</table>
The coefficient a is related by (see Maclaurin and Welsh, 1973, Chapman and Cowling, 1962, and Press and Reid, 1977). The coefficient a is shown in Figs. 19 and 20. In Fig. 19, out of total 8 points, the first two are for the perturbing gas density and a and b are constants. A plot of α_r is shown in Fig. 20.

$$\alpha_r = \frac{2 \pi k T}{m + m_2}$$

The hitting curve which passes through the origin. The collision diameter a_r and corresponding to argon densities less than 50 amagat deviates considerably from the collision diameter from a plot of α_r.

$$\alpha_r = \frac{2 \pi k T}{m + m_2}$$

The duration between successive collisions decreases, giving an increase in the separation.
Fig. 19. Plot of intercollisional half-width parameter, δ_c, against ρ_b at 296 K.
Fig. 20. Plot of intercollisional half-width parameter, δ_c VS. ρ_b at 273 K.
the intercollisonal half-width parameter decreases with temperature. It is less than 1 Å in the region of strong repulsive forces, which are operative even at \(T = 0 \). A similar situation was found to exist in the case of \(\text{H}_2 \). The intercollisonal half-width parameter also increases with temperature. The dissociation energy \(\Delta E \) for \(\text{H}_2 \) is given by Reddy et al. (1977).

The quadrupolar half-width \(g \) satisfies the linear relation \(g = 2.6 \angle \) for \(\text{H}_2 \). The quadrupolar half-width \(g \) is the angular part in Fig. 21, which was constructed to pass through the origin and \(4.1 \) Å. The plot of \(g \) vs \(\angle \) in Fig. 21, assuming the direct proportionality relation between \(g \) and the angle, the positive \(\Delta E \) in general directly proportional to square root of the absolute temperature from Table 17. As discussed in Chapter 4, the half-widths of CH are clearly evident.

The temperature dependence of the half-widths \(g \) and \(\phi \) is clearly evident.
Fig. 21. Plots of half-width parameters δ_d and δ_q against the square root of absolute temperature T (in $^\circ$K).
CHAPTER 5

OVERLAP PARAMETERS FOR THE H₂ - Ar MOLECULAR PAIRS

The contributions to the intensity of the enhancement of the collision-induced fundamental absorption band, resulting from both the overlap- and quadrupole- induced components have been separated in Chapter 4, by the method of profile analysis. The results of the analysis are used in this chapter to determine the overlap parameters λ and ρ, representing the magnitude and range, respectively, of the overlap dipole moment and μ(σ), the overlap-induced dipole moment at the Lennard - Jones intermolecular diameter σ, for the H₂ - Ar collision pairs from the theory of Van Kranendonk (1958).

5.1 The Overlap Absorption Coefficients

The enhancement of the integrated overlap absorption coefficients \(\int \alpha_{en(ov)}(\nu) \, d\nu \) obtained from the profile analysis can be represented in terms of its partial densities \(\rho_a(=\rho_{H_2}) \) and \(\rho_b(=\rho_{Ar}) \) by the relation

\[
\int \alpha_{en(ov)}(\nu) \, d\nu = \alpha_{1b(ov)} \rho_a \rho_b + \alpha_{2b(ov)} \rho_a \rho_b^2 + \ldots \tag{20}
\]

or

\[
(1/\rho_1 \rho_b) \int \alpha_{en(ov)}(\nu) \, d\nu = \alpha_{1b(ov)} + \alpha_{2b(ov)} \rho_b + \ldots \tag{21}
\]

where \(\alpha_{1b(ov)} \) (cm⁻² amagat⁻²) and \(\alpha_{2b(ov)} \) (cm⁻² amagat⁻³) are the binary and ternary absorption coefficients, respectively. Plots of \((1/\rho_a \rho_b) \int \alpha_{en(ov)}(\nu) \, d\nu \) vs. \(\rho_b \) at
temperatures 201, 273, and 298 K are shown in Fig. 22, and are found to have a linear dependence ρ_0. The intercepts and slopes of these plots representing the overlap binary and ternary absorption coefficients, respectively, were obtained by linear least squares fit of the experimental data. The values of these coefficients and those of the new binary absorption coefficients $\tilde{\alpha}_{1b(ov)}$ (cm6 s$^{-1}$), obtained by using a relation similar to Eq. (7) are listed in Table V.

5.2 Overlap Parameters for the $\text{H}_2 - \text{Ar}$ Molecular Pairs

For the fundamental band the overlap binary absorption coefficient $\tilde{\alpha}_{1b(ov)}$ as given by Van Kranendonk (1958) is

$$\tilde{\alpha}_{1b(ov)} = (8\pi^2/3\hbar) k^2 \int \{\tilde{M}_{ov}(\bar{R})\}_{ov}^2 g_0(\bar{R}) d^3\bar{R},$$ \hspace{1cm} (22)

where $\tilde{M}_{ov} = \left[\frac{\partial \tilde{\mu}_{ov}}{\partial r} \right]_0$ is the rate of change of the induced overlap dipole moment $\tilde{\mu}_{ov}$ with respect to r at the internuclear separation r_0. The quantity $g_0(\bar{R})$ is the low density limit of the pair distribution function, \tilde{M} is the matrix element $<0 | r - r_0 | 1>$ corresponding to $v = 1 \rightarrow v = 0$ and $d^3\bar{R}$ is the volume element. The quantity $M_{ov}(\bar{R})$ is assumed to decrease exponentially with the intermolecular separation $-\bar{R}$ and is expressed as

$$M_{0}(\bar{R}) = \xi \exp(-\bar{R}/\rho) = \lambda e \exp[-(\bar{R} - \sigma)/\rho].$$ \hspace{1cm} (23)

Here λe is the amplitude of the oscillating overlap induced moment when the molecular separation is σ corresponding to the intermolecular potential $V(\sigma) = 0$. λ is a dimensionless quantity given by
Perturbing gas density, \(\rho \) (amagat)

\[
\frac{1}{\rho} \left(\int \rho \sigma \, d\nu \right) \text{cm}^{-2} \text{amagat}^{-2}
\]

Density of \(H_2 \)

- \(\Delta \): 7.3 amagat
- \(\square \): 6.1 amagat

Density of \(H_2 \)

- \(\triangle \): 6.2 amagat
- \(\square \): 6.1 amagat
- \(\bigcirc \): 5.0 amagat
- \(\bigtriangleup \): 4.0 amagat

T : 201 K

Path length: 185.9 cm

T : 273 K

Path length: 186.0 cm

T : 296 K

Path length: 186.1 cm

Fig. 22. Plots of \(\frac{1}{\rho} \left(\int \rho \sigma \, d\nu \right) \text{cm}^{-2} \text{amagat}^{-2} \) vs. \(\rho_b \) for the overlap enhancement absorption profiles.
TABLE V.

Overlap absorption coefficients\(^a\) of the fundamental band of

\(\text{H}_2\)-Ar binary mixture at 201, 273 and 296K.

<table>
<thead>
<tr>
<th>Temperature (T) (K)</th>
<th>Binary absorption coefficient (a_{1b}) ((10^{-3} \text{ cm}^{-2} \text{ amagat}^{-2}))</th>
<th>Ternary absorption coefficient (a_{2b}) ((10^{-6} \text{ cm}^{-2} \text{ amagat}^{-3}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>201</td>
<td>1.90 ± 0.02 ((10^{-3}))</td>
<td>1.80 ± 0.02 ((10^{-3}))</td>
</tr>
<tr>
<td>273</td>
<td>2.27 ± 0.03 ((10^{-3}))</td>
<td>2.15 ± 0.03 ((10^{-3}))</td>
</tr>
<tr>
<td>296</td>
<td>2.41 ± 0.02 ((10^{-3}))</td>
<td>2.28 ± 0.02 ((10^{-3}))</td>
</tr>
</tbody>
</table>

\(^a\) Ranges of error indicated are standard deviations.
\[\lambda = \left(\xi / e \right) \exp(-\sigma / \rho) \]

(24)

and

\[\mu_{ov}(\sigma) = \lambda e \sigma \]

(25)

The quantities \(\xi \) and \(\rho \) give respectively the magnitude and the range of the oscillating part of the overlap induced moment. Equation (22) can now be written as

\[\tilde{\sigma}_{ib(ov)} = \frac{8 \pi^3}{3\hbar} \left| \langle 0 | r - r_0 | 1 \rangle \right|^2 \lambda^2 e^2 \sigma^3 d_0 \int_0^{\infty} e^{-2(R - \sigma) / \rho} g_0(R) 4\pi R^2 dR \]

\[= \lambda^2 \tilde{\gamma} \]

(26)

where \(\gamma \) is given by

\[\tilde{\gamma} = \left(\frac{8 \pi^3}{3\hbar} e^2 \sigma^3 \right) \left| \langle 0 | r - r_0 | 1 \rangle \right| \]

(27)

which has the dimensions of the binary absorption coefficient. The temperature-dependent dimensionless integral \(I(T^*) \) is given by

\[I(T^*) = 4\pi \int_0^{\infty} e^{-2(x-1)\sigma / \rho} g_0(x) x^2 dx \]

(28)

where \(x = R / \sigma \) and \(g_0(x) \) is the classical pair distribution function given by

\[g_0(x) = \exp[-V^*(x) / T^*] \]

(29)

Here \(T^* = kT / \epsilon \) is the reduced temperature and \(V^*(x) = V(x) / \epsilon \) is the reduced intermolecular potential, \(\epsilon \) being the depth of the potential. In this work Lennard-Jones intermolecular potential is assumed and is given by

\[V(x) = 4\epsilon (x^{-12} - x^{-6}) \]

(30)
At intermediate temperatures, where quantum effects should be included, the integral \(I \) can be expressed as

\[
I = I_{cl} - (\Lambda^* \epsilon)^2[2] + (\Lambda^* \epsilon)^4[4]
\]

where

\[
\Lambda^* = \left[\frac{\hbar^2}{2 \mu_0 \sigma^2} \right]^{1/2}
\]

is the reduced de Broglie wavelength. Here \(\mu_0 \) is the reduced mass of the colliding pair of molecules. The values of the depth of the Lennard-Jones potential \(\epsilon = 66.58 \text{ K} \) and the Lennard-Jones diameter \(\sigma = 3.167 \text{ Å} \) were taken from Hirschfelder et al., (1967), who calculated these parameters using the empirical combining laws, i.e., \(\sigma_{12} = \frac{1}{2} (\sigma_1 + \sigma_2) \) and \(\epsilon_{12} = \sqrt{\epsilon_1 \epsilon_2} \), as the force constants for a dissimilar pair of molecules are not available. The force constants obtained in this way seem to give reasonably good results in calculations involving mixtures (see Hirschfelder et al., pages 168, 169 and 222). The matrix element \(\langle 0 | r - r_0 | 1 \rangle \) were obtained from Poll (1975). For \(\text{H}_2 - \text{Ar} \) molecular pairs \(\Lambda^* = 0.8678 \text{ and } \gamma = 7.09 \times 10^{-32} \text{ (cm}^6 \text{ s}^{-1}) \). The experimental values of \(\lambda^2 \) for the \(\text{H}_2 - \text{Ar} \) pairs were obtained from Eq. (26), from the observed \(\delta_{1b(ov)} \) and the calculated \(\gamma \) and were plotted against the absolute temperature \(T \) in Fig. 22. The integral \(I_{cl} \) (Eq. (28)) depends on the factors \(\sigma/\rho \) and \(T^* \). In order to find the most probable value of \(\sigma/\rho \) for \(\text{H}_2 - \text{Ar} \) pairs, the integral \(I_{cl} \) was computed for a series of values of \(\rho/\sigma \) in the range 0.070 to 0.140 at intervals of 0.002 at the,
Fig. 23. Variation of $\lambda^2 I$ against absolute temperature (T).
The corresponding values for the molecular pairs H₂-He and H₂-Ne (ready and Chang, 1973) are also listed in the table for H₂-He, and H₂-Ne. These values correspond to the two end distances in Table VI. The values of ρ, a, and ρ by the induced dipole moment in Fig. 22. The values of ρ and χ for H₂-He and H₂-Ne are obtained from these. All are plotted in Fig. 22. The experimental and calculated values of the experimental values were used for the calculations. The experimental values were such that the deviations of the calculated values of X\(\alpha\) from the corresponding experimental values were a minimum. The experimental and calculated values of X\(\alpha\) were used for the calculations. The values of the corresponding values were found for a particular value of \(\alpha\) using the corresponding value of X\(\alpha\). The quantity X\(\alpha\) was assumed to be independent of temperature obtained from Poggendorff (1979). Finally, the appropriate values of X\(\alpha\) were obtained from Gibbs (1979). The quantum correction is given by the equation:

\[
\Delta \chi = \chi_1 - \chi_0
\]
TABLE VI

Overlap parameters for the H$_2$-H$_2$, H$_2$-He, H$_2$-Ne and H$_2$-Ar pairs.

<table>
<thead>
<tr>
<th>Collision pair</th>
<th>ρ/σ</th>
<th>λ (10$^{-2}$)</th>
<th>σ (Å)</th>
<th>ρ (Å)</th>
<th>μ_{overlap} (10$^{-2}$ $\text{e}a_0$)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$_2$-H$_2$</td>
<td>0.071</td>
<td>0.37</td>
<td>2.928</td>
<td>0.21</td>
<td>2.00</td>
<td>Reddy et al (1977a)</td>
</tr>
<tr>
<td>H$_2$-He</td>
<td>0.088</td>
<td>0.56</td>
<td>2.757</td>
<td>0.24</td>
<td>2.9</td>
<td>Reddy & Chang (1973)</td>
</tr>
<tr>
<td>H$_2$-Ne</td>
<td>0.100</td>
<td>0.90</td>
<td>2.854</td>
<td>0.29</td>
<td>4.9</td>
<td>Reddy & Chang (1973)</td>
</tr>
<tr>
<td>H$_2$-Ar</td>
<td>0.104</td>
<td>1.01</td>
<td>3.167</td>
<td>0.33</td>
<td>6.05</td>
<td>Present work</td>
</tr>
</tbody>
</table>
CHAPTER 6
HEXADECAPOLE - INDUCED U TRANSITIONS
IN H₂ - Ar MIXTURES

6.1 Introduction

The results of a systematic study of the CIA of the fundamental band of H₂ in H₂ - Ar mixtures arising from the overlap and quadrupolar induction mechanisms have been presented in Chapters 3, 4, and 5. The dipole induced in an Ar atom by the hexadecapole field of its colliding partner H₂ give rise to the rotational selection rule ΔJ = 0, ±2, ±4. The small magnitude of the hexadecapole moment of H₂ results in relatively weak transitions. The hexadecapole-induced U transitions of the form U₁(J) and Q₁(J) + U₀(J) corresponding to the rotational selection rule ΔJ = +4, first observed in the pure H₂ at 195 K by Gibbs et al. (1974) were later studied in more detail at 77 K by Reddy et al. (1980), who analyzed the observed profiles using the theoretical matrix elements of the hexadecapole moment of H₂, calculated numerically by Karl et al. (1975). The U transitions in the fundamental band of solid H₂ both in normal and para species have also been first observed in our laboratory by Prasad et al. (1978). However, prior to the present work, no U transitions have been observed in the fundamental band of H₂ in any binary mixture of H₂ with foreign gases. In this chapter we report the observation of U branch transitions in the fundamental
band H_2 in H_2–Ar mixtures at 296 K and this constitutes the first such observation in a H_2–foreign gas mixture.

6.2 Observation of U Transitions in H_2–Ar Mixtures.

The experiment to observe the $U_1(1)$ transition was performed with the 2 m high-pressure stainless steel absorption cell and other experimental apparatus described in Chapter 2. The slit-width, maintained at 45 μm, of the Perkin-Elmer model 99 double pass monochromator equipped with a LiF prism, gave a spectral resolution of ~ 0.9 cm$^{-1}$ at 5895 cm$^{-1}$, the calculated wavenumber of the $U_1(1)$ transition. The enhancement absorption spectra were recorded at 296 K with a base density of 59.7 amagat of H_2 for several partial densities of Ar in the range 350–520 amagat. Three representative enhancement absorption profiles of the fundamental band of H_2 in the spectral region 5300–6200 cm$^{-1}$ for argon gas densities of 438, 491, and 519 amagat are presented in Fig. 24. The position of the $U_1(1)$ (5695.6 cm$^{-1}$) calculated from the constants for the free H_2 molecule (Stoicheff, 1957) is shown on the wavenumber axis. As mentioned earlier, double transitions of the type $Q_1(J) + U_0(J)$ do not occur in the enhancement absorption spectra of H_2–Ar mixtures. The single transition $U_1(0)$ which is expected to occur at 5271.6 cm$^{-1}$ is completely masked by the strong absorption in the wings of the overlap and quadrupolar components of the fundamental band. The other U branch transitions, namely, $U_1(2)$ and $U_1(3)$ are too weak to observe. The observations reported in this chapter are only preliminary. Further work on the U branch transitions in H_2–Ar mixtures at lower temperatures is planned for
Fig. 24. Hexadecapole-induced $U_{1}(1)$ transition in H$_2$-Ar mixtures at 296 K.
the future. Once an accurate set of enhancement absorption profiles at lower temperatures is obtained, absorption due to U branch transitions will be separated from that of the other transitions by the method of profile analysis used by Reddy et al. (1980) for their work on the U branch transitions in the pure H₂ gas at 77 K.

The half-width parameters of the collision-induced quadrupolar lines have shown density dependence at high densities. De Remigis et al. (1971) observed a decrease in the half-widths of the quadrupolar S lines in the fundamental band of H₂ in H₂ – Ar mixtures at 152 K for gas densities above 300 amagat. This line narrowing was explained by Zaidi and Van Kranendonk (1971) in terms of a diffusional effect in which the line width is proportional to the diffusion constant, which, in other words, is approximately proportional to the density of the gas. However, Lewis and Tjon (1978) showed that this explanation is inapplicable in some cases. Mactaggart et al. (1973) studied this pressure narrowing in more detail for the quadrupolar lines of the fundamental band of H₂ in H₂ – Ar, H₂ – Kr, and H₂ – Xe. As the U₁(1) in H₂ – Ar in the present work was observed for densities above 300 amagat it is quite possible that this pressure narrowing effect may be present in this transition also. However, definite conclusions in this regard will be possible only after a satisfactory analysis of the absorption profiles obtained in the present work as well as of the profiles to be obtained at other temperatures in the future.
CHAPTER 7
CONCLUSIONS

In the present experimental project several modifications to the data acquisition system designed by Gillard (1983), have been made. In particular, a microprocessor-controlled dc stepping motor was successfully incorporated into the spectrometer system in the place of a continuous drive, which had been used by earlier researchers in our laboratory. The control unit for the stepping motor was initially designed by Gillard (1986) and was assembled in the present work. The spectral region was calibrated against the pulse numbers of the stepping motor and the signal corresponding to the absorption profiles was digitized at each step of the motor by using an analog to digital-converter system. This new arrangement helped in analysing the experimental data with a reasonably good accuracy and repeatability without undergoing the manual labor involved in measuring the intensities of the absorption profiles at different wavenumbers. In order to begin the recording of the absorption profiles accurately at a particular point, two optical switches were fixed to the body of the monochromator (see Sec. 2.8) and the microcomputer was programmed to read the optical switches at each step of the motor.

Also, some modifications were made to the 2 m stainless steel, high-pressure and low-temperature absorption cell in order to prevent the O-ring R_2 (Fig. 2)
from freezing at low-temperatures, which in turn affects the vacuum tight seal of the vacuum chambers provided at each end of the cell. This was achieved by welding the outer bellows \(B_1\) to a flange \(F_2\) (Fig. 2), which is larger in diameter to the previous one, and by increasing the distance of O-ring \(R_2\) from the cold cell. Thus, cell windows were free from the atmospheric water vapour and improved operating conditions for the cell, were obtained, particularly at low-temperatures.

The collision induced absorption enhancement spectra of the fundamental band of \(H_2\) in \(H_2 - Ar\) mixtures at 201, 273 and 296 K were recorded for a total of 88 densities. From the analysis of these spectra several parameters have been determined for the \(H_2 - Ar\) mixtures. These are the absorption coefficients: \(\alpha_{1b}, \alpha_{2b}, \alpha_{1b}^\text{(ov)}, \alpha_{2b}^\text{(ov)}\) and \(\delta_{1b}^\text{(ov)}\) (Table 2 and Table 5), the overlap half-width parameters: \(\delta_c\) and \(\delta_d\) (Table 4), and the quadrupolar half-width parameter \(\delta_q\) (Table 4). From the absorption coefficients it was found that the main contribution to the CIA spectra at all experimental temperatures arose from the binary collisions and the contribution from the ternary collisions is relatively small. The quadrupolar and overlap half-width parameters decreased approximately linearly with \(\sqrt{T}\). The half-width \(\delta_c\) of the intercollisional interference dip, increased with the perturbing gas density \(\rho_b\) and was represented by the expression

\[
\delta_c = a \rho_b + b \rho_b^2
\]

The collision diameter \(\sigma_{12}\) calculated from the linear coefficient \(a\) is about 12% less than the Lennard-Jones diameter \(\sigma_{12}^{\text{LJ}}\) for the \(H_2 - Ar\) molecular pairs. The overlap parameters: \(\rho, \lambda, \) and \(\mu_{ov}(\phi)\) (Table 6), were calcu-
lated for the H_2–Ar molecular pairs for the first time in the present research project.

The experiments carried out on the fundamental band of H_2 in H_2–Ar mixtures for higher densities up to 520 amagat at 296 K have shown the occurrence of the U_{11} transition corresponding to the selection rule $\Delta J = +4$. This is the first observation of the U branch transition in a H_2–foreign gas mixture.
APPENDIX A

Program to Control the Peripheral Devices of the Data Acquisition System
PROGRAM TO CONTROL THE MICROPROCESSOR

010 REM DATA LOGGER
020 FW = 0
030 BACK = 1
040 DELAY = 2000
050 STIME = 100
060 INPUT "INITIAL TRACE NO. ":C
070 OUT 11,146
080 OUT 10,255
090 REM READ FILE NAME, TEMP, PATH LENGTH
100 READ F$, H$, T$, PT
110 PRINT "POSITION SPECTROMETER - F FOR FORWARD"
120 PRINT "B FOR BACKWARD"
130 PRINT "<CR> TO CONTINUE IN THE SAME DIRECTION"
140 PRINT "Q TO START LOGGING DATA"
150 OUT 11,FW
160 INPUT A$
170 IF A$ = "F" THEN OUT 11,1
180 IF A$ = "B" THEN OUT 11,0
190 IF A$ = "Q" THEN GOTO 310
200 OUT 11,3:OUT 11,2
210 GOSUB 1050
220 PRINT INP(0)
230 GOTO 160
240 REM SET INITIAL VALUE
250 PRINT "SET INITIAL VALUE"
255 PRINT "Q - TO CONTINUE"
257 PRINT "J - TO SET THE VALUE"
260 OUT 11, 146
270 GOSUB 1500
280 PRINT E
290 INPUT A$: IF A$ <> "Q" GOTO 260
310 PRINT "SWITCH TO VAX, THEN PRESS RETURN" : INPUT A$
320 PRINT "sed -f ed.file > " ; FS + MID$(STR$(G),2)
330 GOSUB 1900
340 REM GET INITIAL DATA
350 PRINT H$
360 PRINT "TRACE NO." ; G
370 INPUT "PRESSURE" ; P
380 INPUT "NO. OF POINTS" ; N
390 PRINT "DENSITY" ; O
395 PRINT "NO. OF POINTS" ; N
400 PRINT "PATH LENGTH" ; PT
410 PRINT "TEMPERATURE" ; T
420 REM INITIALIZE Timers, ADC, etc.
430 REM INITIALIZE PPI
440 OUT 11, 146
450 REM DISABLE ADC OUTPUT
460 OUT 11, 8 : OUT 11, 10 : OUT 11, 12
470 REM SET MOTOR TO STEP FORWARD
480 OUT 11,FW
490 REM SET UP TIMERS FOR 0 AVERAGE
500 OUT 7,54 : OUT 7,116
510 REM CLOSE SHUTTER
520 REM GET ZERO AVERAGE
530 OUT 11,16
540 REM START FAST TIMER
550 OUT 4,24 : OUT 4,0
560 REM START 0.5 SEC. TIMER
570 OUT 5,0 : OUT 5,125
580 S = 0
590 FOR I = 1 TO 40
600 GOSUB 1400
610 S = S + E
620 NEXT I
630 S = "INT(S/40+.5)
640 PRINT "O AVERAGE " ; S
650 REM OPEN SHUTTER
660 OUT 11,14
670 REM SET UP FOR DATA COLLECTION
680 REM INITIALIZE TIMERS
690 OUT 7,116 : OUT 7,176
700 REM START 0.5 SEC. INTERVAL TIMER
710 OUT 5,0 : OUT 5,125
720 REM SET UP COUNTER FOR INTERVALS
730 OUT 6,0 : OUT 6,250
800 REM START SAMPLING EVERY INTERVAL
810 FOR I = 1 TO N
820 REM GET DIGITIZED VALUES AS E
830 GOSUB 1400
840 Z = INP(0) : Z = Z - INT(Z/64)*64
850 PRINT K:E:S:Z
860 REM STEP MOTOR
870 OUT 11,3 : OUT 11,2
880 NEXT I
890 PRINT "COMMENT/2 LINES"
900 INPUT A$: INPUT A$
900 REM PLACE DATA IN FILE AND REPOSITION SPECTROMETER
910 PRINT CHR$(4)
920 GOSUB 1900
930 REM START NEXT RUN
940 REM REWIND DRUM
950 OUT 11,BACK
960 FOR I = 1 TO N + 20
970 GOSUB 1950
980 OUT 11,3 : OUT 11,2
990 NEXT I
1000 GOSUB 1910
1110 OUT 11,FW
1120 FOR I = 1 TO 20
1130 GOSUB 1950
1140 OUT 11,3 : OUT 11,2
1150 NEXT I
1160 G = G+1
1170 GOTO 110
1200 DATA "Gle"
1210 DATA "TITLE"
1230 DATA 298
1240 DATA 188.1
1250 END
1400 REM READ ADC, RETURNS A
1420 OUT 7,64
1430 X=INP(5) : X=INP(5)
1440 Y=X
1450 OUT 7,64
1460 X=INP(5) : X=INP(5)
1470 IF X<Y THEN 1440
1500 REM ONE INTERVAL HAS PASSED
1510 WAIT 8.64
1520 OUT 11,10 : OUT 11.8
1530 Z=INP(8)
1540 A=2*INT(Z/16)*16
1550 OUT 11,10 : OUT 11.9
1560 Z=INP(8)
1570 B=Z-INT(Z/16)*16
1580 OUT 11,11 : OUT 11.8
1590 Z=INP(8)
1600 C=Z-INT(Z/16)*16
1610 OUT 11,11: OUT 11,9
1620 Z = INP(8)
1630 D = Z - INT(Z/16) * 16
1640 OUT 7,128
1650 L = INP(6) + 256 * INP(6)
1660 K = 64000 * L
1670 E = A + 10 * B + 100 * C + 1000 * D
1690 RETURN
1900 REM DELAY TIMER
1910 FOR J = 1 TO DELAY
1920 NEXT J
1930 RETURN
1950 FOR J = 1 TO STIME
1960 NEXT J
1970 RETURN
1990 END
REFERENCES

