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ABSTRACT

The role and mechanism of action of 0l·adrenoceptors in adrenergic spinal
antinociceplion is uncertain. ol-Adrenoceplors are normally excitatory in the eNS,
suggesting thai any intlibitory effect on nociception must be indirect. Recently, we
shovled that intrathecal (I. t.) 0l-agonists potentiale 02-induced spinal antinociception
in the rat by a 6-receptor mediated, enkephalin-dependent process. If enkephalins,
released from spinal ir:ternl'uronr., mediate the antinociceptive effect of OJ­
adrenoceptors, then non-seler;live o-agonists (i.e. norepinephrinf.l; NE) should
exhibit cross-tolerance to 6-agonists (I.e. DAOLE), but not 10 lJ·agonists (i.e.
morphine), in the spinal cord. Conversely, the anlinociceptive effect of o.-selective
agonisls (i.E'. dexmedetomidine; OX) should be unaffected by spinal opioid
tolerance. To test iilese hypotheses, male, Sprague-Dawley rats (3oo-400g) were
continuously infused with i.t. saline (1 1J11h), morphine (MOR; 5, 10, or 20 IJgIh) or
DADlE (10 IJgJh) for 6 days using ALZET osmotic minHxJmps. Antinociception was
assessed using the tail flick (TF) test. In an inilial time course study, significant
recovery from DADlE and MOR tolerance did nol occur until day 3 and 4 post­
infusion (PI), respectively. In subsequent cross-tolerance experiments, NE and OX
dose-response curves were determined on days 1 and 2 PI for DADLE-pretreated
rats, and on days 1-3 PI in MOR-pretreated rats. The table of EDso ratios for 1.1. NE
and OX in opioid- and saline-infused animals demonstrates that NE exhibits
significant (t-) cross-tolerance to OADlE, but not morphine. No cross-tolerance was
observed between OX and DAOlE.

INFUSION TEST DRUG EOsoCopioid)IED~saline)

MOR5 NE 1.12
MOR 10 NE 1.51
MOR20 NE 1.35
DADLE 10 NE 2.504*,

DADLE 10 DX 0.66

In separate groups of rats, i.p. naloxone significantly attenuated the antinociceptivll
effect of MOR, but not DADLE, on day 1 of infusion (tima of peak antinocicep!ion);
i.p. naltrindole significantly antagonized DAOlE, but not MOR. These data indicate
that~· and 6-receptor selectivity was retained during infusion, consistent with the
different cross-tolerance results to NE. The marked antagonism of Lt. OX by Wyelh
27127, but nol by prazosin, confirmed the 02-selectivity of DX at the doses used.
The results of this study are consistent with the hypothesis that 0l-adrenoceptors
facilitate the release of enkephalins in the spinal cord which, in turn, effect
antinociception by a 6-receptor mechanism.
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1.0 INTRODUCTION

1.1 Statement of tho Research Problem

The perispinal administration of a~adrenoceptor agonists produces robust

antinociceplion in a variety of Etxperimenlal animals, without affecting muscle

strength, motor reflexes and locomotor activity (see review by Yaksh, 1985).

Extensive pharmacological studies using receptor-selective agonists and

antagonists have yielded structure aCtlvity profiles Indicallve of an anlinocicepllve

affect mediated by spinal 02-adrenoceptors. These rasults are consistent with

receptor binding and autoradiographic dala demonstrating the dense localization of

o2-binding sites in the substantia gelatinosa (UnnerstaJI et al., 1984; Sullivan et al.,

1987; Simmons (;I1d Jones, 1988), and the inhibitory role played by °2­

adrenoceptors in the eNS. Thus, the activation of spinal 02-adrenoceptors has

been shown to inhibit neurotransmitter release from the central terminals of primary

afferent pain fibers (Howe and Zieglgansberger, 1987; Ueda et af., 1995); and to

depress high threshold stimulus-evoked activity in wide dynamic range neurons

(Fleetwood-Walker et af., 1985; Omote et al., 1991). Importantly, the functional and

behavioral inhibition mediated by spinal 02-adrenoceptors appears to be

independent of endogenous opio!d systems (Figure 1).

The contribution of 0l-adrenoceplors in spinal adrenergic anlinociceplion is

less clear. Radioligand binding studies and quantitative autoradiography indicate

a homogeneous distribution of 0l-.adrenoceptors throughout the grey matter of the
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Figure 1. Proposed mechanisms underlying spinal adrenergic
antlnociceptlon, and the hypothesized oplold link to Ql·adrenoceptors.
Activation of the o\-receptor by drugs such as methoxamine (MX) or norepinephrine
(NEl may facilitate the release of enkephalins which act preferentially on 6-opioid
receptors 10 effect anlinociception. Co-activalion of 0 1" and 02-receptors could lead
to the potentiation of spinal adrenergic analgesia via an opioid-a2 interaction.



rat spinal cord (Giron etal., 1985; Sirrvnons and Jones, 1988; Roudet etal., 1993).

That these binding sites are functionally coupled is demo:1straled by the

pharmacological effects of aI-selective agonists and antagonists on motor,

aulooomic and sensory function in the spinal cord of experimental animals (Davis

and Astrachan, 1981; Astrachan et al., 1983; Howe et al., 1983; Yaksh, 1985;

Loomis and AnJnachalam, 1992). In the [alter case, intrathecal (i.t.) a,-agonists like

methoxamine and phenylephrine significantly increased the thermal nociceptive

threshold of conscious rats (tail-flick and hot-plate tests) (Howe at al., 1983; Yaksh,

1985). Unlike 02-agonists however, antinociceptive doses of methoxamine and

phenylephrine facilitated motor reflexes, raising questions about the selectivity of

acllon and thus the potential of at-agonists as spinal analgesic drugs.

Nevertheless, the contribution of ot-adreno~eptors in sp,nel adrenergic

antinociceplionlanalgesia has never been disproved by experimental data.

0t·Adrenoceptors aro excitatory in the eNS (Aghajanlen and Rogawski,

1983), enhancing neuronal depolarization and Ca.... influx. Consequently, the ability

of a,-agonists 10 effect spinal anlinociception suggests that they activate, or at loast

facilitate, an inhibitOfY neural Input on primary afferent and/or projection neurons in

nociceptive pathways. Enkephalin, one of three major endogenous opioid peptides,

is known to selectively modulate nociceptive transmission in the spinal cord (see

review by Yaksh, 1993). Enkephali~tajning neurons, and the i5-opioid receptors

that are believed to mediate the biological activity of enkephalin, are densely



kx:alizedin the dorsal hom (Dado et al., 1993; Todd and Spike, 1992; Ruda et aI.,

1986). There is an extensive literature documenting the antinociceptiv8 synergy

between opioids, including enkephalin analogues, and o-agonisls, following co­

ir1edion into laboratory animals (Ossipovet al., 1990; Omole et aI., 1991; Roerig

et al., 1992). A similar interaction has also been reported in tlunans (Molsch et al.,

1990; Gordon et 81., 1992; Siddall et aI., 1994). Recent studies in our laboratory

have shown that, in the rat, a threshold dose of Lt. methoxamine significantly

potentiates the antinociceptilJe effect of the highly selective 02-agonisl.

dexmedetomidine, via a O~receptor-mediated, enkephalin-dependent process

(loomis et al., 1992a, 1992b, 1993). Although a pharmacokinetic interaction

between the lYiO drugs could not be totally excluded, the data suggest that

methoxamine, and presLITlably other a,-agonists, augment the antinociceptive

activity of a 2-agonists in the rat spinal cord by facilitating the local release of

enkephalin (see Figure 1). Extracellular enkephaJin woutd then be free 10 inhibit

nociceptive transmission ltV"ough its normal opioid receptor-coupled mechanisms

in the spinal dorsal hom. In this manner, the co-adivation of al~ and °2­

adrenoceptors with appropriate receptor agonists could induce, albeit indirectly, an

02-opioid interaction that is known to be both supra-additive and antinociceptive.

Considering thefacl that norepinephrine (NE), the neurotransmitter released from

bulbospinal neurons of the endogenous pain control system, is a non-selective a·

agonis~and the proximity of enkeptlalin-containirltl neurons 10 the terminals of these



noradrenergic fibers. ~ is possible that such an interaction also underlies the

modulatory effect of NE. at least in the rat.

If the hypothesis illustrated in Figure 1 is correct, then non-selective a­

agonists like NE, and al"selective agonists like methoxamine, should exhibit cross­

tolerance to O-agonists in the rat spinal cord. Conversely. highly selective °2­

agonisls such as dexmedetornidine (DX) should be unaffected by tolerance to Lt.

6-agonists. Using dose-response analysis, we determined the degree of cross­

tolerance between opioid- and oieceptor subtype selective agonists in the rat tail­

flick test. Opioids were delivered by continuous i.1. infusion using ALZET osmotic

mini-pumps. The antinociceptive effect of the LI. a-agonist was determined in

tolerant and non-tolerant animals by means of dose response analysis. Agonist

selectivity was verified using receptor subtype-selective antagonists.

1.2 Spinal Op{old Analgesia

Although opioids unquestionably produce analgesia by a supraspinal action,

basic and clinical studies have shown lhatlhey also act directly in the spinal cord

to inhibit Ihe transmission of pain (see reviews by Yaksh and Noueihed, 1985;

Yaksh,1993). Electrophysiological studies in animals first demonstrated the potent

depressant actions of morphine on the electrical responses of spinal neurons

evoked by noxious stimuli; an effect antagonized by specific opioid antagonists

(Belcher and Ryall, 1978; Duggan et al., 1977; Sastry, 1978). The conclusion from
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these studies was that, at appropriate doses, opioids could selectively depress the

activity of small afferert fibres Involved in pain transmission without affecting large

diameter fibers.

The development 0( the technique of chronic catheterization of the

subarachnoid space in several animal species (Yaksh and Rudy. 1976a) made it

feasible to apply oploids to the spinal COfd of conscious animals. Using this

procedure, spine:11 opioids were shown to produce segmental analgesia thai was

dose-dependent, stereospecific and antagonized by naloxone (Yaksh and Rudy,

1976b). AI analgesic doses, the acule i.t. injection of opioids in animals has no

major effed.00 respiration, mJSCIe activity Of autonomic funct!o.l (Yaksh and Rudy,

1976b), although large dose can produce hind limb weakness and convulsions

(Frenk. et af., 1984; Watkins etal., 1984).

Withrl three years of the first report of spinal opioid analgesia in rats. spinal

Ill(WJlhine was lested il humans (Wang et aI., 1979). Wang and cowor1ters reported

thatlhe i.t ~dO.5-1.0mg of morphinerelie....ed se....ere back and leg pain in

patients with iloperable maliglatlcies of lhe genilOllfin<ry trad fa up to 24 h. Since

that fitst dinjcal report, spinal opioids have been used successfully in the treatment

of postoperative pain, obstetric pain, pain associated with trauma, deafferentation

pain and pain arising from chronic illness, including cancer. In the clinical

management of pain, both i.t. and epidural routes of adminislration are used.

The selective and localized effect of spinal opioids offers a number of



advantages over other forms of pain control. First, the duration of analgesia is

longer with spinal iieCtiOn Ihan with systemc administration d the same agent. In

humans, systemically administered morphi'le (10 mg, s.c.) produces analgesia

lasting for 4-5 h (Jaffe and Martin, 1990), while the equivalent dose administered

epldurally is effeclive for 4310 18 h (Cousins and Mather, 1984). The duration of

spinal analgesia permits n longer dosing intorval dUfing repeated administration,

thereby providing more freedom to !he patient and the allendanlmedical personnel.

A second advantage Is thai the I. t. 1)1" epidural injection of oplolds concentrates the

drug near Its site otaction in the dorsal hom Consequenlly, effective analgesia can

be produced with lower doses of oplolds than those required for systemic

actninistration. For example, in the treatment 0( cancer pain, doses of I.t. morphine

ranging from 0.5-16 mg, iJl'ld doses ofepidlsalmorphrle ranging from 2-30 mg have

been reconvnended (Payne, 1987). This is il contrast to oral doses of 30.00 1'119

(Foley and Inturrisi, 1987) Vrtlich must also be given more frequently than Lt.

mcrphine. As a result, the concentration of aug eventually reaching the systemic

cil'QJlation after spinal injection is low and the incidence of adverse effects mediated

at supraspilal sites, such as mental douding and drowsiness, is reduced (Payne,

1987). A third advantage is that the selective action of spinat opiolds avoids the

complication of sympathelic blockade associated with spinal anesthesia. Overall,

the absence of autonomic and .motor effects with spinal oplolds provides patients

with adequate pain control over long periods of time, while remaining ambulatory



and having an otherwise functional sensorium

The advantages afforded by spinal opioids have been tempered however by

the development of adverse effects, including delayed respiralory depression,

pruritus, urinary retention, tolerance and withdrawal. Respiratory depression is a

life-threatening consequence of spinal opioid use that generally occurs 6·12 h after

injection. The use of more lipid soluble opioids such as fentanyl has partially

overcome this problem but patients do require continuous and intensive monitoring,

In the management of chronic pain, tolerance is a factor limiting the use of spinel

opioids. For example, of 62 palients receiving U. morphine for cancer pain, 74% of

the palients experienced effective analgesia without severe respiratory depression

or los5 of motor or sensory functions (Wang, 1985). Many of the patients were

effectively managed as outpatients. However, 43% of patients given repeated i.l.

morphine injections, and 50% of patients receiving continuous i.1. infusion via drug

pumps developed tolerance and severe complications (pruritus, sphincter disorder,

and somnolence). In addition, withdrawal in patients receiving epidural opiates has

been reported following discontinuation of treatment or when treatment is

antagonized by substitution of a pure agonist with a partial agonist or agonist·

antagonist (Cousins and Mather, 1984). While i... oploids are useful in the

management of chronic pain, it is clear that more effeclive drugs or combinations

of drugs are needed 10 reduce the problems of tolerance and the incidence of

adverse effects. Moreover, some types of pain, partiCUlarly those of a non·



malignant nature, do not respond to opioids administered either spinally or

systemically (I.e. neural injury pain) (~r and Meyerson, 1988; Siddal at al., 1994).

Synaptic transmission between primary afferent fibres and second order

neurons thai comprise the spinothalamic trad is SUbject to modulation by a I~; Je

number of neurotransmilterslneuromodulators within the spinal cord (subslant;.a P,

VIP, CCK, somatostatin, neUTotensin, angiotensin, mel-enkephalin, bombesin,

excitatory amino acids, GABA, norepinephrine, and serolonin)(HOkfelt et a/., 1977;

Barber at aI., 1978; Salt and Hill, 1983; Basbaum and Fields, 1984; Besson and

Chaouct1, 1987; Yaksh, 1993). Drugs that mimic the actions of spinal

neurotransmitters or neuromoduJalors that inhibit pain transmission could be useful

as spinal analgesics. To the eldent that these drugs exert their effect through a

receptOf subtype and an intracellular mechanism that is distinct from those of the

opioid peptides, they could be used as adjuncts with spinal opioids ()( as an

alternative therapy to optimize analgesia.

1.3 Endogenous Pain Control System ~ Descending Inhibitory Palhways

Anatomical and pharmacological studies have identified descending and

Intrinsic neuronal systems in the spinal cord that modulate nociceplive transmission

in the dorsal hom (Dahlstrom and Fuxe, 1965; Basbaumand Fields, 1984; Fields

and Basbaum, 1989). Neurons utilizing serotonin (S-HT) as a neurotransmitter

descend from the nucleus raphe magnus in the medulla through the dorsolateral
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funiculus of the spinal COfd to terminate in the outer laminae of the dorsal horn.

Similarly, noradrenergic neurons descend from nuclei in the pons, including the

locus coeruleus (LC), the medial and lateral parabrachial nuclei, nucleus

subcoeruleus, the AS nucleus, and the A7 nucleus (see reviews by Proudfit, 1988;

Jones, 1991) tolarminata in theouler dorsal horn. Following their release in the

spinal cord, NE and 5-HT inhibillhe evoked discharge of spinothalamic neurons.

These descending (bulbospinal) inhibitory pathways are thought to provide

aregulatory feedback loop, whereby nociceptive transmission through the dorsal

horn is modulated by afferent inputs reaching the thalamus, periaqueduclal grey

(PAG) and brainslem. For example, afferent input In the spinomesencephalic tract

(and probably other tracts ascending through the anterolateral qUadrant of the spinal

cord), as well as Input from the hypothalamus, thalamus and cortex, activate the

PAG. By mechanisms that remain poorly understood, the PAG appears to

coordinate the response of these inhibitory bulbospinal pathways to ooxious

stimulation (Fields and Basbaum, 1969).

The discovery or these monoaminergic (and other) systems, the identification

of the neurotransmitters underlying their modulatory effect, and subsequent studies

of their release and spinal pharmacology, provided important evidence for non·

opioid modulation of noxious sensory processing in the spinal cord of experimental

animals.
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1.4 HE and 5--HT E"ect Spinal Antinoclception

CoosiSIet'ltwith \heir inhibitory role in the spinal cord, and like the opioids, NE

and 5-HT werfo shown 10 depress the discharge of dorsal hom neurons driven by

noxious stimulation (Headley et aI., 1978). In subsequent rodent behavioral studies,

1.1. NE and 5-HT significantly inhibited the escape responses evoked by noxious

thermal stimuli, at doses that did not affect muscle strength. normal reflexes or

locomotor activity (Yaksh and Wilson. 1979; Yaksh and Reddy, 1981; Milne at 8/.,

1985). However, NE was approximately 30 limes more potent than 5·tH. The spinal

entinociceptive effect of NE could be blocked by a·, but not j3-adrenoceptor

antagonists, suggesting the former to be the relavant receptor subtype.

Antinociception was also potentiated by monoamine oxidase inhibitors and

monoamine reuptake blockers (Kuraishi et 81., 1979; Reddy et al., 1980; Reddy and

Yaksh, 1960; Yaksh and Wilson, 1979). In view of the fact that vasoconstrictors,

such as angiotensin II, and vasodilators. such as bradykinin, given i.l., were without

effect in these behavioral tests, it was concluded that Lt. monoamine-induced

en!inociception is not secondary to changes in spinal cord blood now. Rather, it is

adirect effect on sensory neurons In the spinal cord, consistent with the results of

electrophysiological studies described above. While their short time course of action

(<30 min) makes Ll. NE or 5-HT impractical for clinical use, these studies provided

direct eKPBrimenlal evidence thai monoamines could selectively inhibit the

behavioral responses to noxious stimuli in conscious behaving animals.
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1mportartIy, the ninociceptive effect of i.t NE is shared by other a-agonisls.

For example, low dose i.t. clonidine produced significant anlinociception withool

dishxbing motor flnction (Yaksh and Wdson. 1979; Yaksh and Reddy. 1981; Milne

et al., 1985b). '" general, the rank order of potency of a-agonists in behavioral tests

of nociception paclllels that observed in other pharmacological preparations utilizing

a-adrenoceplors. A fundamental question arising from these results, and one

critical for the rational selection of an adrenergic spinal analgesic, is the

a~adrenoceplor sublype(s) mediating anlinociception in the spinal cord.

1.5 Spinal AdrenergIc Receptors and Antinoclceptlon

1.5.1 Binding Studies

Early binding studies with radiolabelled ligands that could disaiminate

between 0,·, Q)" and B-adrenoceptors confirmed the presence of all UYee binding

sites in the spinal cord (Jones etaJ.• 1982). Autaadiograpny with [\-4)WB-4101, an

0l-selective antagonist. indicated a moderate density of a,-binding sites in the

substria gelatinosa and the spinal trigeminal r'll.deusoflhe rat (Young and Kuhar,

1980). Similar studies with I'Hpara-aminoclonidine showed the highest density of

arbinding sites in rat and human spinal cords to be in the substantia gelatinosa and

the intennediolateral cell column (Young and Kuhar, 1980; Unnerslall et al., 1964).

In contrast, 02-binding sites were very low in the ventral hom. Using the fluorescent

probe, 9-amino-acridine propranolol, a high density of lWeceptors was located in the
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region of the ventral hom containing a-motoneurons (Melamed et aI., 1976). e­

Receptor blRing was sparse in the dorSal hom except in the substantia gelatinosa

where moderate B--receptor binding was obS8l'Ved.

In a SlbsequeIt study,lhe lesioning of clescencflllQ adrenergic fibers with 6~

hydroxydopamine was shown to have no delectable effed on the density of a,~

binding sites In the gray mattllf of the cal lumbar spinal cord (Howe et af" 1987a).

These data io:licate that the majority of o,-binding siles are present on cells in the

lumbar spinal gray maller, and oot on Ihe spinal terminals of descending adrenergic

neurons. This is further supported by autoradiographic data indicating thai Qa­

adTenoceplors are located on spinal dorsal hom neurons in the rat (Sullivan et af.,

1987). Howe at al. (1967b) also showed thai a unilaleral ganglioectomy of the

dorsal roots in the cat yieldedonly a 20% reduction in \he total runber a o,·binding

sites in the ipsilateral kmbar usal hom. It was inferred that the remaining 80~" of

02"s1Ies are post-synaptic 10 the primary afferents neurons (Le. 00 projection

neurons andtor intemeurons~

1.6.2 Pharmacologlc.I Studies

The observation of 0,", 02- and B-binding sites In the substantia gelatinosa,

an Bias of the dorsal hom knO'Ml to modulate nociceptive Input, raised the possibility

that all three types of adrenergic sites could be Manalgetically cou~it:Od". However,

the l.llnjection of the lHeceplor agonls~ Isopropylnorepinephrine, had no effecl on
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the behavioral responses of rals 10 thermal nociceptive stimuli, Likewise, U. NE~

induced antinociceplion was not reversed by the B.antagonist, propranolol (Reddy

et a/., 1980). In contrast, a variety of o-8gonisls, with differing selectivities for ex 1~

and a 2-adrenoceptors, produced significant, dose-dependent antinociception

following I.t. administrallon to laboratory animals (Reddy et al., 1980; Yaksh and

Reddy, 1981; Milne etal., 1S8Sb; Loomis et al., 1965; Shermanet 81., 1987); an

effect thai was dose-dependenlly inhibited by phentolamine, but not by propranolol

(Reddy et al., 1980; Yaksh and Reddy, 1981; Milne et al., 1985b). The resulting

rank oo:ler of potency in \he rat tail nick, hoi plate and acetic acid writhing lests was:

ST·91 (az·selective agonist) = NE > methoxamine (at,selective agonist) >:>

isopropylllOrepinephrine = O. Similar results were reported in the primate shock

Illration test (Yaksh and Reddy, 1981). Thus, the ability of i.1. NE and other

adrenergic agonlsts to elevate nociceptive threshold appears to be uniformly

mediated by a-atienoceptors.

To assess the relative role of spinal 0,- and o2-adrenoceptors in

noradrenergic anlinociceplion, dose-response studies using a," end 02"seleetive

antagonists were undertaken. Intrathecal yohimbine significantly inhibited i.t. ST-91

in the tail flick and hot plate tesl. Consistent with its selective blockade of 02·

adrenoceplors in this experiment, the 1050 of yohimbine was 1f1oth that of Lt.

prazosin (Howe etal., 1983). In contrast, i.l. prazosin was approximately 10 times

more potent yohimbine in antagonizing the anlinociceptive effect of i.1. methoxamine
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and NE. The relative OI'der of adivity iii rsvel'Smg thermal anlinociception with i.l

NE was: prazosin. phentolamine, ralJINOIscine, yohimbine. coryanthine, propranolol

(=0) (Yaksh, 1985; unpublished observations). The relative order of activity in

fevefSing ST·91 was: yohimbine, ral.MlOlsdne, prazosin, phentolamine, coryanlhine.

propranolol (=0) (Yaksh, 1985). Thus, the dominant population of adrenergic

receptors mediating spinal anlinociception in the rat exhibit a pharmaoological profile

characteristic of Q 2-adranoceplOfs. Nevertheless, I.t. NE (8 nOIHelective a-agonist)

was more potently antagonized by Lt. prazosin than Lt. yohimbine (Howe et aI"

1983; unpublished observations), suggesting that spinal a,-adrenoceplors may

contribute to the overall inhibitory effect.

Indeed, a,-selective agonists, including methoxamine, cirazoline and

phenylep/Vine, were shown to inhibit the behavioral responses to thermal and

mec:hanical nociceptive stimuli (Reddy et ai., 1980; HCM'8 et al., 1983; Yaksh, 1985;

l.WlpLt>Iished observatials). A noo-seledive effect at 0l...adrenoceptors, particularly

at high doses, could not account for these results as methoxamine was more

potenlly antagonized by prazosin than yohimbine (Howe at al., 1983). The

a,-agonists had a lower maximum antinociceplive effect compared to NE or to the

02-seleclive agenists. In agreement with this observation, phenylephrine and

cirazoline were shown to be less efficacious than NE In stimulating the maximum

accumulation of inositol phosphate (Chiu et al., 1987), the second messenger

coupled to o,-adrenoceptors (Minneman and Johnson, 1984). However,
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antinociceplive doses of i.t. methoxamine and phenylephrine also produced cisar

molor effects. In the primate, these include hind limb tremor and exaggerated reflex

withdrawal responses to non-oociceptlve stimuli. In the rat, dose-dependenl,

cutaneous hyperreflexia, clonic flexion of the hindlimbs, rigidity and serpentine

movements of the tail have been observed (Yaksh, 1985; unpublished

observations). These exaggerated reflexes, consistent with the facilitatOfY role of

spinal Q 1-adrenoceptors on motor neurons (Tanabe et al., 1990), could explain the

apparent lower efficacy of a 1- as compared to Q 2-agonisls given spinally. At the

very least, the measurement of the behavioral responses to nociceptive stimuli

following 1.1. a,-agonists, involving both reflex and supra-spinally co-ordinaled motor

responses, are confounded by such an effect. Thus, the role of spinel

Q,-adrenoceptors In adrenergic antinociception has not been completely or

accurately investigated.

1.6 Cellular Mechanisms Underlying Spinal af~ and a,..Adrenoceptor­

Mediated Anl/noc/ception

The activation of neuronal 02-adrenoceplors results in the opening of

outwardly directed K" channels. This causes a hyperpolarization of the cell, which

results in the suppression of neuronal firing (see figure 3) (Nakamura at al., 1961;

Egan et af., 1983). As well, 02-adrenoceptor activation can inhibit voltage sensitive

calcium channels (Williams and North, 1965), thereby suppressing Cau influx and
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the fusion of neurotransmitter-filled vesicles with the synaptic membrane. These

actions on ion channels are believed to be mediated through a G-protein (Dunlap

at a/., 1987). Consistent with these observations, it has been shown that a·

agonisls, ading primarily through the 02-adrenoceptor (Kuraishi et al., 1985; Go and

Yaksh, 1987) can inhibillhe release of substance P in mammalian spinal cords,

using both in vivo (Kuraishi at a/., 1985; Go and Yaksh, 1987) and in vitro (Pang and

Vasko, 1986) preparations. Similarly, 02.receptor activation has been shown to

inhibit the release of calcitonin gene-relaled peptide (CGRP) (Holz at aI" 1989). 02­

Adrenoceptors also hyperpolarize receiving neurons in the spinal cord and thus

attenuate their response to neurotrCi:1smilters released from adjacent nerve

terminals.

Q 1-Adrenoceptors have been shown to regulate the level of excitability of

cells, rather than participating in the transmission of rapid signals (Aghajanian and

Rogawski, 1963). Using iontophoretic drug delivery and intracellular recording from

motoneurons in the facial nucleus, NE produced a long-lasting depolarization that

was associated with a decrease in the membrane conductance to K·, Thus, NE

brought these cells closer to the threshold for action potential generation, explaining

the ability of aI-receptor activation to facilitate neuronal transmission (Aghajanian

and Rogawski, 1963), Electrophysiological studies using in vitro spinal cord

preparations have also shown that NE can excite unidentified dorsal horn neurons;

an effect mediated by Q 1-feceptors (North and Yoshimura, 1964),
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Hence, it appears that Q,. and Ql-adrenoceplOl'S affect K" conductance In

opposing ways. Q1-Adrenoceplor activation inaeases K" conductance leading to

cell hyperpolarization arld lhe inhibition of neuronal transmission. In contrast, at·

adrenoceptor activation decreases K" conductance leading to depolarization and an

increase in netXOflal excitability. Unlike the electrophysiological results of the a,·

agonists, these dala appear inconsistent with an anlinocicepljYB sffed. Indeed.

electrophysiological recordings have confirmed the depolarization of many dorsal

horn neurons following the local application of NE or al-agonists (North and

Yoshimura, 1984; Todd and Millar, 1983; Howe and Zieglgansberger, 1987).

1.7 a('Fac/lltation of Enkephafinerg;c Inhibition In 'he Rat Spinal Cord

In view of the depolarizing effect of 0l-adrenoceptors in the eNS (Aghajanian

and RogawslO, 1983), the ability of o,-agonists to effed spinal anlinociceplion

suggests that they activate, Of at least facilitate, an inhibitory f'le\I'al input on primary

afferent and/or projection neurons in nociceptive pathways. Enkephalin, one of

three major endogenous opioid peptides, is known to selectively modulale

nociceptive transmission in the spinal cord (see review by Yaksh, 1993).

Enkephalin..containing neurons, and the 6-opioid receptors that are believed to

mediate the biological activity of enkephalin, are densely localized in the dorsal hom

(Dado etal., 1993; Todd and Spike, 1992; Ruda et 81" 1966). Enkephalin is known

to be released in the spinal cord following a noxious stimulus in a number of
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species. Noxious mechanical stimulation has been shown to increase the release

of met-enkephalin-like malerial in the spinal cord of anesthetized rats (LeBars et a/.•

1987), and high intensity stimulation of peripheral nerves and the intra-arterial

injection of bradykinin produces an enhanced release of met-enkephalin-like

material in the spinal perfusates of anesthetized cats (Yaksh and Elde, 1981).

Given the excitatory nature of o,..adrenoceplors in the eNS, and the rocation of

enkephalin~laining neurons in the dorsal hom, activation of these receptors could

facilitate the local release of enkephalin in the spinal cord.

Intracellular recordings indicate thai opioids induce a hyperpolarization of

neurons, secondary to an increase in K+ conductance (Williams et al., 1982;

Yoshimura and North, 1983). The relevance of these data to the antinociceptive

effect of opioids is indicated by the observation that: a) the elevated mouse lail-flick

latency induced by ~-, 6-, or K-agonists is attenuated by K+ channel blockers; and

b) antinocicepUon induced by K+ channel openers is blocked differentially by i.t.

opioid antagonists (norbinatlorphimine, lei 174,864, and naloxone) (Welch and

Dunlow, 1993). The results also suggest thai these two classes of drugs probably

do not interact al a common receptor, but rather with a common second messenger

system (Welch and Dunlow, 1993).

Opioid..jnduced hyperpolarization of dorsal hom neurons inhibits the release

of nociceptive neurotransmitters (see Figure 1). Thus, IJ-agonists have been shown

to inhibit the release of substance P in vivo (Yaksh et al., 1980; Kuraishi et 81., 1963;
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Go and Yaksh, 1987) and in vitro (Jessell and Iversen, 1977; Pang and Vasko,

1986). Substance P is a neurotransmitter found in small primary afferent fibers and

released by A61C.fiber activity (Yaksh at aI., 1980; Kuraishi et a/., 1983; see review

by Yaksh and Noueihed, 1985). Similarly, enkephalin-analogues (i.e. (j·agonists)

attenuate the evoked release of substance P in vitro (Jessen and Iversen, 1977;

Mudge at aI.• 1979) and in vivo (Go and Yaksh, 1987); an effect that is antagonized

by naloxone. Anatomical and electrophysioiogicsi dala also suggest thai opioids

can act at receptors localed post-synaptically to primary afferent terminals to

suppress nociceptive processing (see Figure 2) (see review by Yaksh and

Noueihed, 1985). D·A1a2·D·Lell-enkephalin (CADLE) attenuated glutamate-induced

excitation of attached rootlets in vitro (Zieglgi:lnsberger and Sutor, 1983), and

intracellular recordings in vitro showed thai application of morphine, DADlE, and

met-enkephalin results in hyperpolarization. These effects were antagonized by

naloxone. Additional evidence for a post-synaptic action of opioids has been

provided by recordings of cell bodies in the nucleus proprius following the

application of opioids near the terminals in the substantia gelatinosa. In particular,

morphine applied to the dorsal lamina has been shown to depress responses

evoked by noxious thermal stimuli, but has no effed ..men administered near the cell

body (see review by Yaksh, 1985).

These data indicate that enkephalin<.ontaining interneurons, and the opioid

receptOf's mediating their effect, are strategically located in the dorsal horn where
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SPINAL DORSAL HORN

P/O~ / p/o
ENK

MORPHINE

BRAIN

Figure 2. Pre- and post-synaptic sites of antlnoclceptive action of oplold­
and a 2 -adrenerglc agonists In the dorsal hom of the spinal cord. The large
mangle represents a central nerve terminal of a small diameter, myelinated (AO) or
unmyelinated (C) primary afferent fiber from which substance P (SP) is released.
The large circle represents the soma of an adjacent second-order neuron in the pain
pathway which is activated (+) by substance P. The smalliriangies represent ~- and
~piojd receptors mediating the inhibitory (-) effects of morphine and enkephalin
(ENK), respectively. 02-AdrenocepIOfs, mediating the inhibitory effects of clonidine
or dexmedelomidine (OX). are indicated by the small squares.
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they normally modulate nociceptive transmission across the first synapse in the pain

pathway. By decreasing K· conductance, o,-adrenoceptor activation would bring

these neurons closer to the threshold for action potential generation thereby

facilitating the endogenous release of enkephalin under conditions of noxious

stimulation.

1.B AntlnocJcepUvelnteract;on Between Spinal a t- and Ql-Agonlsts In the

Rat· Oplold and Adrenergic Synergy

Previous studies in our laboratory have shown that a threshold dose of j,t.

methoxamine (10 I-IQ) potentiates the effect of i.t. dexmedelomidine (a2-saleclive

agonist) in the rat tal1-fllcl< and paw pressure tests (Loomis at al., 1992a, 1992b,

1993). Dexmedelomidine (0.01-1 1-19 i.t.) alone produced dose-dependenl

antinociception (ED50 =45 n9 in the tail-flick test and 252 ng in the paw pressure

lesl). The addition of a fixed dose of methoxamine (10 ",g i.I.), yielding <5% MPE

in the teil-flick lest and 0% MPE in the paw pressure test when injected alone,

significanlly shifted the dexmedelomidine dose response CUNe to the left (E050 =8.1

ng; tail-flick test and 10 ng; paw pressure test). Methoxamine did not prolong

dexmedetomidine's duration of action suggesting that a pharmacoklnetic interaction

was unlikely. Moreover, pretreatment with SCH 32615 (75 I-Ig Lt.; a neulral

endopeptidase inhibitor), but not vehicle, produced a further parallel leftward shift

of the methoxamine +dexmedelomidine dose response CUNe (ED50 =1.8 ng; lail-
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flick test and 7.7 ng; paw pressure Illst). This potency shift exceeded the effect of

SCH 32615 on dexmedetomidine alone. A fIXed dose c:ombinatlon of methoxamine

(10 1J9) +dexmedetomcfine (0.025 1J9), producing near maximal activity in the lail~

flick test a1d intennediale activity in the paw pr8SSl1'8 test, was significantly blocked

by each of the following pretreatments: pra20sin (10 1'91.1.), WY 27127 (0.51'9 i.I.),

naloxone (30~ l.t.), ICI174,864 (75lJQ1kg I.p.), and antiserum to Met-enkephalin

(10 ~I Lt.). These data strongly suggest that the synergy exhibited between MX and

OX involves a spinal enkephalin-dependent process, consistent with the known

antinociceptiv8 synergy between spinal oploid- and 02-agonlsts in experimental

animals (Ossipov et al., 1990; Omote at ai" 1991; Roerig at ai" 1992), and in

humans (Molsch at al., 1990; Gordon at a/., 1992; Siddall at al., 1994). The

interaction desalbed between a-agonists is not specific to MX and ox.. Intrathecal

NE-induced anlinociception in the rat was also potentiated by SCH 32615, and

antagonized by i.t naltrindole (6-selective antagonist) or i.t naloxone (loomis et al.,

1993). Thus, a,-adrenoceptors may be CX)fllribute to spinal adrenergic

antinociception by facilitating the local enkephalinergie-modulation of nociceptive

transmission (Figure 1).

1.9 Rationale, Research Hypothesis and Specific Objectives

There is an extensive and cons;~.:·'mt body of evidence indicating that a2•

adrenoceptOl" mediated anlinociception is a direct and selective inhibitory effect on
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relevant sensory neurons in the spinal cord that is independent of endogenous

opioid systems. The phannacological activation of spinal 0l·adrenoceplors effects

antinocicepUon in experimental animals. However, these receptor sUbtypes are

nonnally excitatory in the eNS suggesting that their ability 10 interrupt nociceptive

transmission in the spinal cord must involve the activation or facilitation of an

inhibitory neural input. Considering the dense localization of enkephalinergic

interneurons in the dorsal hom, the selective modulatory effect Clf enkephalin on

nociception in the spinal cord, and the well characterized antinocicepliv9 interaction

between opioid- and 02-agonists in the spinal cord of experimental animals, we

hypothesized that spinal a,..adrenoceptors facilitate the release of enkephatin in the

rat spinal cord. The observation that i.t. methoxamine significanlly potentiated the

inhibitory effect of Lt. DX in thermal and mechanical nociceptive tests via an

enkephalin-dependent process provides further support for such a mechanism.

If this hypothesis is correct, then non-selective a-agonists (Le. those with

affinity for both a,- and a 2-adrenoceptors), given i.t. to the rat, should exhibit

antinociceplive aoss·tolerance to i.1. 6-selective agonists. Thai is, down-regulation

of spinal 6--opioid receptors following the continuous i.t. infusion of a 6·selective

agonist (Le. DAOlE) should allenuate the hypothesized enkephalinergic mechanism

underlying aI-mediated antinociception in the spinal cord (see Figure 1). In

contrast, a 2-seleclive agonists (e.g. OX), that do not utilize an enkephalin-dependenl

mechanism, should exhibit no such cross-tolerance (Figure 1).
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To test this hypothesis, male Sprague-Dawley rats were continuously infused

with either morphine (~-agonjst). D-A1a2~O-lelf enkephalin (CADLE; highly specific

6-agonist) or vehicle for 6 days using ALZET osmotic mini..pumps. Infusion doses

producing robust antinociception via distinct spinal opioid sites (~versus 6) were

verified with ~. and ~seleclive antagonists. Antinociceplion was determined during

and after infusion using the tall-flick test. Mer the G-day infusion was discontinued.

dose-responsa curves for Lt. NE (non-selective a-agonisl) or OX were determined

in morphine-tolerant, CADLE-tolerant and vehicle-infused rats. The magnitude of

cross-tolerance was delennined from the shift in the dose-response curve (e.g. E050

potency ralio). The specific otl.. I'-::,.ives of the thesis research were:

1. To determine the lime.course of recovery of antinociceptive activity following

the continuous i.I infusion of morphine or DADlE.

2. To determine if rats, made toleranllo LI. morphine, exhibit antinociceplive

cross·tolerance 10 Lt. NE.

3. To determine if rals, made toterant to U. CADLE, exhibit antinociceptive

cross-tolerance to Lt. NE.

4. To determine if rats, made toterant to i.t. DADLE, exhibit antinociceptive

cross·tolerance 10 i.t. OX.



,.
5. To verify the selectivity of i.t. OX for 02-adrenoceptors by comparing its

!snsitivity to the 02-antagonist, WV 27127, and the a,·anlagonist, prazosin.

6. To verify the selectivity of morphine and DAOLE for IJ- and O-receptors,

respectively, during continuous i.t. infusion by comparing their sensitivity to

the 6~antagonist, naltrindole, and the IJ-antagonist, naloxone.
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2.0 METHODS AND MATERIALS

1.1 Anlm_/s

All procedures were approved by lhe Animal Care Committee of Memorial

University in accordance with the Guidelines of the Canadian Council on Animal

Care. Male, Sprague-Dawley rals (Charles River Canada, 81. Constant, Canada)

weighing 250·350 g were used for aU experiments. Animals were housed In 6

climate controlled room with a 12 hour Iighl-dark cycle (lights on at 07:00 h). Tap

water and rodent laboratory chow were freely p·ovided. Animals were housed

Individually and allowed a 2~ days acclimatization period before use.

2.2 Gen.,./Methods

The general axperimeotal profoc:o{, consisting of the surgical implantation of

I.t catheters. baseline testing, continuous j.t infusion via osmotic mini-pumps, and

termlnation of the Infusion with removal of the mini·pumps, is shown in Figure 2.

2.2. f Int,.'hec.1 C.theter Implantation

Rats were anesthetized with halothane (Halocarbon Laboratories, River

Edge, N.J.) and implanted with 1.1. catheters using the method ofYaksh and Rudy

(1976&), 85 modified by loomis et al. (1987b). AIII.t. catheters were constructed

from PE10 tubing. A permanent loop was made in the catheter for attachment to the
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Figure 3. The general protocol for experiments using continuous 1.1. Infusion.
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surrounding musculature and the tubing was cut 7.5 em distal to the loop. The

proximal end of the catheter was connected to a piece of PE 60 tubing (3 em in

length) and the junction was fused with heat. The larger tubing was used as an

adaptor 10 connect the i.t. calhf·'.Nto an osmotic mini-pump (ALZET 2001; ALZA

Corporation, Palo Alto, USA) for continuous i.t. drug infusion. After filling the

catheter-adaptor assembly with nonnal saline. the i.1. catheter was inserted through

a small slit in the cisternal membrane, and carefully guided through the spinal

subarachnoid space so that the tip was positioned near the lumbar enlargement.

The catheter loop was sulured to the overlying muscle and the delivery system was

flushed with normal saline. The lip of the PE 60 adaptor was heated with a

soldering iron and pinched to seal the end. The adaptor was then inserted into a

subcutaneous pocket on the back of the animal, the incision was closed with 3-4

sutures and the animal was allowed 10 recover for at least 4 days. Only animals

exhibiting normal motor function and having normal baseline responses in the tait­

flick tost (D'Amour and Smith, 1941) were used for experimentation.

2.2.2 Osmotic Pump Preparation and Implantation

One day prior to pump implantation, each osmotic mini-pump was filled with

freshly prepared drug solution or vehicle (see belOVo') and incubated in normal saline

at room tem:erature overnight. On the following day, the pumps were transferred

to a waler bath and heated to 37°C 2-5 h before surgery.
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Animals, previously implanted with lot. catheters, were anesthetized with

halothane. An incision was made in the skin overtying the S.c. pocket thai contained

the PE 60 adaptor and the tip was ex1emalized. The sealed tip was cut with

scissors. the catheter-adaptor assembly was flushed with 20 ~I of normal sal,., and

the adaptor was trimmed to a final length of about 7 mm. The obturator of the

osmotic punp was fitted directly into the PE 60 adaptor a..,d the pump was inserted

into the s.c. pouch. The wound was then closed with sulures and the animals were

allowed to recover overnight. The combined dead volume of the Lt catheter and the

trimmed adaptor was 10.6 ± 0.31J1 (mean ± SO; n = 28).

2.2.3 Continuous Inltalhecallnfusion

Animals received either morphine sulfate (5, 10 or 20 lJ9·h·'), [D-A:.f O.leu't

enkephalin (CADLE; 10 ~g·h·tl or saline (1 1J'·h-l) by continuous i.t. infusion for 6

days. Tail-flick latency was determined daily between 08:00 and 10:00 h to

minimize the effects of diurnal variation on behavioral responses (Frederickson et

a/., 1977). Bod)' weight was also recorded dally and room temperature was

maintained between 23-25°C. Immediately after testing on day 6, the animals were

lightly anesthetized with halothane and an incision was made in the skin overlying

the mini-pump. The pump-adaptor assembly was removed from the s.c. pocket and

cut near the catheter-adaptor junction with scissors. The rostral end of the catheter

was passed s.c. to the back of the head, externalized through the skin, and the
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incision was closed with sutures. The catheter, having a dead volume of 7.9 ± 0.21.11

(n=47), was flushed with 101.11 of sterile saline 10 clear the residual drug solution,

except for rals infused with morphine (20 ~g·h·'). In thIs case, the catheter was

initially flushed with 51.11 of saline followed approximately 0.5 h later with another 10

1-'1 of saline 10 clear the remaining drug solution. Two separate saline flushes,

spaced 0.5 h apart, were necessary to minimize the development of high dose

morphine hyperesthesia (Yaksh at <JI., 1986; Stevens et a/., 1988; Slevens and

Yaksh, 1992). The catheters was sealed with a stainless steel plug and used for

alt subsequent U. drug injections. The animals were allowed to recover overnight

before being assigned 10 either: A) the opioid·recovery experiments; or B) the

cross·tolerance experiments.

2.2.4 Recovery from Oploid Tolerance

To determine the timEH:OUrse of recovery from morphine tolerance, animals

were infused with i.t. saline (1 lJI·h·1) or morphine (5 IJg'h") for 6 days. The infusion

was terminated (as described above) and a test dose of i.t. morphine (4I-1g) was

injed.ed beginning on day 1 post-infusion. The test dose of morphine was chosen

from previous dose-response experiments to yield a near maximal effect in the tail

flick test. To minimize the possibility of prolonging opioid tolerance with repealed

test doses of i.t morphine, each rat received only one test dose during the recovery

period (days 1-5 post·jnfusion). Thus, separate groups of rats were used for each
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of the 5 post-infusion days. A similar protOCOl was used 10 determine the time·

COlSSe ctrecov8lYfoI1owi'lg contirlJOUS i.t DADLE infusion (10 J,Jg'h"), except that

a test c:Ioseof3 IJ5ldi.l OADLEwasused. In another group d morphine {5~'h'1}­

and saline (1 ~-tfl}-infused .-ats, dosEH'"esponse curves of i.t morphine were

determined in the post-infusion period. The E050 ratio was then calculated to

quantitate the magnitude of opiold tolerance.

2.2.5 Crossp Tolerance Experiments

The magnitude of cross-tolerance between opiofds and a-agonists was

determined using cIose-response analysis. In morphine-tolerant rals, lest doses of

NE (2.5,5.0, or 10 1J9 i,t) were injected on days 1-3 posl-lnfusion. In CADlE­

tolerant rats. test doses ofNE orOX( 0.1, 0.2,0.3 and 0.5 ~ i.t.) were injected on

days 1-2 post-infusion. These time porns were chosen from CMX study of the

recovery from morphine and CADLE tolerance. All behavioral testing was

ca"lducted between 08:00 and 14:00 h. Rals received only one i.t dose of NE or

OX per day. Tail·fIick latencles were meaSl.led immediately before and 30, 50, and

90 min after injection of the test dose of NE or OX. Body weIght was recorded daily

throughout the cross-tolerance experiments.

2.2.0 a·Antagonlst experiments

Separate groups of rats were surgically implanted with 1.1 catheters 8S
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described above, except that no PE 60 adapter was used. Rather, the s.c. end of

the catheter was externalized on the back of the head and sealed with a stainless

sleel plug. The dead volume of the catheter was 7.0 ±0.8 IJI (n=46). The selectivity

of Lt. OX (0.5 ~) for a 2-adrenoceplors was assessed by challenging the agonist

with i.t Wyeth 27127 (WY; Qz-selective antagonist) or prazosin (PZ; oj-antagonist).

Tail flick lateneles were initially measured before and 15 min after i.l. OX.

Immediately following this 15-min determination, rats were given a second i.t.

injection of either WY (101-19), PZ (101-19), or vehicle (OMSO or saline). Tail flick

latencies were then determined 30.45. and 60 minutes after OX administration. As

Ihese experiments required two U. injecllcns spaced .. 15 min apart, \NY and PZ

were injected in a volume of 5 !JI, followed by 10 IJI of saline.

2.2.7 Oploid Anfagonlsl Experiments

The selectivity of morphine and DADLE for IJ- and 6-receptors during

continuous Ll infusion was assessed by challenging each agonist with naloxone (1

mglkg i.p.) or naltrinctole (1 mglkg Lp.; determined from previous experiments). Rats

were continuously infused with morphine (20 ~g'h-l) or DADlE (10 IJg·h·1) as

described above. Naloxone or naltrindole was injected on day 1 of infusion (i.e.

when anlirlociceplion was maximal) in a volume not exceeding 0.2 ml for naloxone

and 0.5 ml for naltrindole. Tail flick latency was measured before, and 15, 30, 45,

50, ancl 00 min after i.p. administralion. FOf graphical purposes, data from each rat
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were calOJlaled as the %of the peak tail flick lalency to correct for the difference in

maximum antinociception induced by morphine and DADlE. However, all statistical

analysis was conducted on the raw dala.

2.2.8 VerlflcaUon ofClltheterPosltion

At the completion of each experiment, animals were injed.ed with 10 ~I of 5%

lidocaine followed by 10 ~I of saline. Rats were subsequently obselVed for evidence

of hind limb weakness Of paralysis, indicative of the correct placement of the spinal

catheter. A laminectomy was also performed on rats randomly selected from the

experimental groups 10 visually confirm the position of the catheter.

2.3 Drugs

Morphine sulfate (BOH Chemicals, Toronto, Canada) or [D-Ala2
, D-teu!}­

enkephalin (Acetate Salt, Sigma Chemical Company, St.LoUis, USA) was dissolved

in 0.9% saline, These solutions were filtered through a sterile MiHex-GS filter (0.22

~m; Millipore Products, Bedford, USA) as the osmotic mini-pumps were filled.

Norepinephrine bitartrate (Sigma Chemical Company, SI. louis, USA),

dexmedetomidine Hel (Orion Corp. Farmos, Turku, Finland), WY 27127 HCI (Wyeth

Ltd., Philadelphia, USA), naloxone HCI (Research Biochemicals Incorporated,

Natick, MA), naltrindole HCI (Research Biochemicals Incorporated) and lidocaine

HCI (Sigma Chemical Company) were dissolved in 0.9% sterile saline. Prazosin
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Hel (Sigma Chemical Company) was dissolved in dimethyl sulphoxide (OMSO,

98%; BOH Chemicals, Toronto, Canada). Drug solutions were freshly prepared on

the moming of the experiment, except lidocaine which was stored al46 C for up to

2 weeks. Except where indicated, all drugs were infected Lt.ln a volume of 10 IJI

followed by 10 IJI of saline using a hand held IJI-syringe. All doses are expressed

aslhe sail.

2." Aigesiometrk resting and Data Analysis

Tail flick latency was measured using a Tail FUck Analgesia Meier, model

MK-330 (Muromachl Kika! Co. ltd.• Tokyo, Japan); acut-off of 10 s was imposed

to avoid tissue damage. All data are expressed as the mean ± the standard error

of the mean (SEM). For the cross-tolerance experiments, dala were analyzed as

both absolute tail flick latency (sec) and as the maximum percent effect (MPE).

MPE was calculated using the equation:

post drug response· predrug response
MPE= X 100

cutoff ~ predrug response

MPE values below baseline were assigned an MPE of zero (Russell et ai, 1987).

Area under the tail flick latency versus lime curve (AUC) for each rat was calculated

by trapezoidal approximation.

DoslH8sponse analysis, including the EDso and 95% CI, the least-squares

regression lile, and lests for parallel shifts of dose-response aJrves, were based on
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the methods outlined in Tallarida and Murray (1987). ED~'s and 95% el's were

calculated using both peak tail flick latencies (where the EOso is the midpoint of the

regression line extending from the mean control base;ine 10 the 10 5 cut~ff), and

MPE's (where ED50=50% MPE). EDso ratios were defined as the ED50 of the test

drug in opioid·irtused animals divided by the corresponding ED!IO in saline-Infused

rats (ED60 (opiold)'EOeo (saliner11. A signifICant difference between two groups was

determined using either the unpared Student's Hest or Mann·Whitney two-sample

lesl Repeated measures, one-way ANOVA was used to analyze the within-group

time-colrse data; completely randomized, one-way ANQVA was used for all other

multiple group comparisons. Posl-hoc analysis was performed using the Newman­

Keuls test and differences with a probability of P<O.05 were considered statistically

significant. A significant shift in the ED50 of NE or OX in opioid- versus saline­

infused rats was indicated when the 95% el's did not overlap. Oala were recorded

and analyzed using a commercial spread·sheet program (Ouattro Pro) on a Wise

Data System computer. Statistical analyses were conduced using a commercial

program (Instat).
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3.0 RESULTS

3.1 NlorphlneExperiments.

3.1.1 Induction ofMorphine Tolerance with Continuous Intrathec.llnfusion

Spinal morphine (5, 10 and 20 ~g·h·') induced significanl antinociception as

compared to sa1ine~jnfused rats on days 1 102 of infusion (Figure 4). Tail-flick

latency peaked on day 1 and then progressively declined 10 baseline over the next

5 days. The area under the curve (AUC) for each morphine infusion dose was also

significantly different from saline (data not shown), confirming the antinociceptive

effect. Saline had no effect on tail-nick latency throughoullhe infusion period. A

parallel, rightward shift in the morphine dOS8-fesponse curve, representing a 6-fold

incl'Elase in the ED". was observed on day 1post·jnfusion in rats that had received

morphine (5 ~g'h") for 6 days. The E050 and 95% CI of I. 1. morphine was 1.02 1J9

(0.87-1.20) in the saline-infused group and 6.22 j.Jg (4.76-7.99) in the morphine­

infused group. These data are consistent with the induction of morphine tolerance

following continuous 1.1. morphine infusion.

3.1.2 Behavlora/Effects with Morphine Infusion

The general behaviour of rats appeared 10 be unaffected during morphine or

saline infusion. Morphine-treated rals, especially those receiving 20 j.Jg·h·\ exhibited

increased muscle tone in the hind limbs and stiff tails on the first day of infusion.

Generally, these effects disappeared by the next morning and were not observed
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Figure 4. The time coune of tall·fllck latency during the continuous I.t.
infullon of: A) morphine 5 vg·h"; C) morphine 10 fl9-h"; or 0) morphine 20
JIg'h't for 6 days. Control animals received continuous i.t. saline (11J1'h'l). Each
poinl represents the mean ± SEM of 6-16 morphine-treated and 4-1 a saline-trealed
rats, All points were significantly different from saline control on days 1 and 2,
except morphine (10 lJQ'h'l) on day 2 (Sludent's 1·lest or Mann·Whitney two sample
test; A:. *,*P<O,OO5; '.fP<O.05; B: *,*P<O.OO5; 0: flP<O.OOOS; *P<O,OO5). AUC's
for opioid infused animals \N8re signifiCMtly different from saline (Mann-YVhitney two
sample test;P<O.OS). B): Morphine dose-response curves determined one-day
after the saline or morphine (51J9'h") infusion had been discontinued. The ED50
and 95% CI of 1.1. morphine was 1.02~ (0.87-1.20) in saline-infused rats and 6.22
IJg (4.76-7.99) in lllOl'phine-infused rats.
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thereafter. The highest dose of morphine (20 IJg·h·1) produced hematuria in two

rals. All groups displayed 8 comparable inaease in body weight during the infusion

period (days 1-8; Figure 5), indicating thai 100 i.t. catheter and s.c. osmotic pump

were weilioleraled.

After removal of the pumps on day 6, some morphine-infused rats exhibited

signs of opioid withdrawal. Diarrhea, piloerection, sensillvity to touch and increased

vocalization upon handling were observed on day 1 post-infusion. A significant

deaease in body weight was also observed after the morphine-infusion had been

discontinued (as compared to saline-Infused rats; Figure 5). This deCfoase was: a)

maximal on day 1 post-infusion and coincided with the appearance of opioid

withdrawal behaviour; b) opioid dose-dependenl; and c) temporary, with animals

regaining their body weight 4 days alter terminating the infusion (data not shown).

Following removal of the pump and subsequent flushing of the i.t. catheter with

saline, 52% of animals (7 of 15) receiving morphine (20 IJg·h·l ) displayed a transient

writhing, biling and scratching of the dermalomes, suggestive of hyperesthesia.

3.1.3 Recovery from Morphine Tolerance

To delennine the lime course of recovery from tolerance following low dose

(5 Wh01)-morphine infusion, a probe dose of morphine (4 ~g i.t.) was tested once

daily during the post-infusion period (Figure 6). Aller saline-infusion, morphine
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Figure 5. l'he change In body weight during (days 1-61 and after (day. 7-9) the
continuous I.t Infusion of: A) morphine (5 1J9'h'll or ullne (1 JoII·h·'); B)
morphine (10 lJ9·h·l ) or saline; and C) morphine (20 IJg·h·' ) or ••Ilne. Data are
expressed as the percent of body weight before infusion and each point represents
the mean ± SEM of 4·10 saline-infused and 6·16 morphine-Infused rats. Symbols
indicate a significant difference from saline-infused rals at the corresponding time
point (unpaired Student's t-test or Mann-'Nhitney two-sample lest, where applicable;
+P<O.OO01; ,**P<O,OO5; ,*P<O.OS).
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Figure 6. The time course ofrecovery from morphine tolerance following the
continuous I.llnfuslon of morphine (5 IJg·h"l) for 6 d!!ys. Histograms indicate
the maximum tail-flick response to a test dose of morphIne (41Jg i.t.), injected on
consecutive days after the infusion was discontinued. Separate groups of rats were
used on each post-infusion day and the results represent the mean ± SEM of 6-1
rats. The results are also expressed as a percent of the morphine effect In saline·
jnfused rats. The upper solid horizonlalline and adjacent dashed Jines represent
the maximum tail.flick latency:t SEM produced by the morphine test dose in saline­
infused rats (n=23). The lower solid line and adjacent dashed Unes indicate the
baseline response :t SEM before injection of the test dose. An asterisk denotes a
significant difference from saline·infusad animals (one-way ANOVA followed by
Newman·Keuls test; P<O.OS). Significant recovery from tolerance was nolobserved
until day 4 post·infusion.
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produced an average taif·flick latency of 9.1 ±0.3 s (n = 23),determinecl over a 14­

day post-lnlusion period (see upper horizonlal1ine and adjacent dashed Iill9s in

Figure 6). The same test dose had a minimal effect in morphine-infused rats up to

day 3 post·infusion (n=6-7). Partial recovery from morphine tolerance was observed

on day 4 post-infusion (76.8% of morphine activity in saline-infused rats), and by day

5, recov9f)'wss complete (95. 1% of morphine activity in saline-infused rats). lhasa

results indicate that i," infused animals remain significantly tolerant 10 the

anlinociceptive effect of morphine three days alter morphine is discontinued.

Acrordingly, cross-tolerance experiments with i.t. NE were conducted on days 1-3

post·infusion.

3.1.4 Cross~ Tolerance $ludles between Morphine and NE

The time course or tail-flick latency following the acute i.l. injection of NE

(2.5, 5.0 and 10 1-19) in rats thai been infused with morphine (5 IJg·h·t) or saline (1

I.Ilfl'l) are shown In Figure 7, AU doses of NE significantly increased tail-nick latency

in both treatment groups, Peak antinociception occurred 30 min after injection, with

tail.flick latency reluming to baseline 60 min after the 2.5- and 5.0·~ doses, and 90

min after the 1O-lJg dose, AUC analysis of the NE time-course data indicated no

significant differences between the morphine- and saline-infused groups (Table I),

except for NE (2.5 and 10 I-Ig) in morphine {10 IJg·h,IHnfused rats. Both doses

produced amarginally but significantly lower antinociceptive effect in this morphine-
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TABLE I. Summary of the Differences in the Area Under the Tail-Flick latency
versus Time Curve (AUC) Following the Intrathecal Injection of
Norepinephrine (NE) in Rats Previously Infused with Morphine Of
Saline for 6 Days

NE DOSE (~g) TREATMENT (dose) AUC (s'min)

2.5 SALINE (1 ~I·h·') 315:t54
MORPHINE (5 ~g'h") 274 ± 27

5.0 SALINE (1 ~I.h·') 399.28
MORPHINE (5 1-l9·h·1) 385:t 24

10 SALINE (1 ~I·h·') 579.35
MORPHINE (5 ~g·h·') 504 ± 32

2.5 SALINE (1 IJI·h·1) 329 ± 20
MORPHINE (10 ~g·h·') 200t 13*

5.0 SALINE (1 ~I·h·') 406:t41
MORPHINE (10 ~g·h·') 354:t 22

10 SALINE (1 ~I'h") 573.42
MORPHINE (10 ~g'h") 448:t3D*

2.5 SALINE (1 ~I·h·') 343.28
MORPHINE (20 ~g'h") 314.13

5.0 SALINE (1 ~1·h·'1 402:t 30
MORPHINE (20 ~g·h·') 379:t 24

10 SALINE (1 ~I'h") 559:1: 40
MORPHINE (20 ~g·h·'1 492:t31

'* P<O.OS



44

:Ee

A ~ , k.'!l
~ .
i= 3 MORPHINE 5pVh

, ..(30'

:§:7 IeB
~ 0

.'!lo
~

i=
, MORPHINE 5pg/h
(30) .. "

:g 0 "AUNE'pVh

cL
§
i= •

~30L'__O'----'30:--,::----r",Mc=O,-,;~~HINE5 Jlglh

Time (min)

Figure 7. The time course of tail·f1ick lalency following the acute 1.1. Injection
of NE: A) 2.5 1-19: B) 5.0 1-19; and C) 10 1019 to rats previously Infused with
morphine (5IJg'h'l; .A.) or saline (1 1J1·h-'; .). Dala are expressed as the mean
± SEM of 10 saline-and 15 morphine-infused rats, except Figure 7A where n = 4
and 6, respectively. Doses of NE were injected on days 1-3 post-infusion. There
were no significant differences between the two groups except at time 0 (baseline)
in Figure 78 (unpaired Student's t-Iest or Mann-Whitney two-sample lesl, where
applicable; '* P<O.01).
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infused group (Table I). Identical NE time course studies were conducted following

the continuous &day infusion of i.t. morphine (10 and 20 1J9'h") and saline (1 Ill-h")

(data not shoYm). Using the peak lail·f1ick response (30 min) from these dala, NE

dose-response aJrve8 were constructed (Figures 8-1 0). Regardless of the infusion

rale, there was no significant shift in the NE dose-response curve in morphine­

tolerant as compared to saline·infused animals. The dose-response curves did not

differ from parallelism (P>O.05) and the EOso's of Lt. NE were comparable in bolh

treatment groups (overlapping 95% CI's; Table II). The EDso ratio was 1.12, 1.51,

and 1.35 fcrlhe 5-, 10- and 20-1J9·h" infusion dose, respectively (Table II). These

data indicate that there was no significant cross-tolerance between i.t. NE and

morphine in the rat tail-flick test at morphine infusion rates up to 20 Ilg·h·1 for 6 days.

3.2 DADLE Experiments

3.2.1 Induction ofDADLE Tolerance with Continuous Intrathecal Infusion

The time-«lUrse of tail-flick latency during the continuous infusion of DADLE

(10 jJ9·h·') or saline (1 Ill-h") is depicted in Figure 11. Like morphine, significant

antinociception was observed on days 1 and 2 of infusion (P<0.05). The AUC for

the DADLE-infused group was also statistically different from that of saline (P<O.05).

Peak tail-flick latency occurred on day 1 and then gradually declined to baseline on

day 3. reflecting the development of opioid tolerance in the spinal cord.
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Figure SA. NE doae-response curves (expressed as peak tall·nlck latency In
seconds) determined after the continuous I.t. infusion of saline (1 fjI·h": .) or
morphine (5 ~·h·'j A) for 6 days. NE was lested on days 1·3 post·infus;on with
only one dose injaded daily. Cala are expressed as the mean ± SEM of 4-15 rats.
The corresponding EOso (95% el) of i.I. NE, expressed in IJg, is indicated on the
figure.
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Figure 8B. NE dose-response curves (expressed as MPE) detennlned after the
continuous I.t.lnfuslon of saline (1 ..-I·h"; _, or morphine (5 Jlg·h"; A) for 8
days. NE was tested on days 1-3 posl-infusion with only one dose inj!\lcted daily.
Data are expl'essed as the mean ± SEM or 4·15 rats. The corresponding EDso (95%
el) of I.t. NE, expressed in 1-19, is indicated on the figure.
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FIgure gAo NE dose-r.sponse curves (expressed as peak tall·fllck latency In
seconds) delennined after the continuous I.t. infusion of saline (1 tJI·h'l; .) or
morphine (10 ~·h·1; A) for 6 days. NE was tested on days 1-3 posl·infusion with
only one dose injected daify. Oala are expressed as the mean ± SEM of 5~9 rats.
The corresponding EDeo (95% el) of i.t. NE, expressed in 1J9, is indicated on the
figure.
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Figure 98. NE dO......apon•• curves (expressed as MPE) determined Ifter the
contlnuoual.t. Infusion of saline (1 pl_h'l; .) or morphine (10 PO·h,l j A) for 6
clap. NE was tested on days 1-3 post-infusion with only one dose injected daily.
Data 8(8 expressed as the mean ± SEM of 5-9 rats. The corresponding ED!ll) (95%
el) of Lt. NE, expressed in 1J9, is indicated on the figure.
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Figure i0A. HE doae~sponse curves (expressed as peak tall·fllck 'atency In
seconds) determined after the continuous I.t. infusion of saline (11A1·h"; .) or
morphine (20 lJO'h'l; .&) for 6 days. NE was tested on days 1-3 post·infusion with
only one dose injected daily. Data are expressed as the mean t SEM of 7-14 rats.
The corresponding EOso (95% el) of Ll. NE, expressed in ~g, is indicated on the
figure.
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Figure 108. HE dose.,.e.ponse curves (expressed as MPE) determined after
the continuouaU.lnfuslon of saline (1 ~l'h"; .) or morphine (20 JolU'h"; .A.) 'or
8 days. NE was tested on days 1-3 post-infusion with only one dose injected daily.
Data are expressed as the mean ±SEM of 7-14 rats. The corresponding EDso (95%
CI) of Lt. NE, expressed in ~g, is indicated on the figure.
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TABLE II. EDso, 95% Confidence Interval eel) and ED50 Ratio for Intrathecal
Norepinephrine Following the Continuous Intrathecal Infusion of
Saline or Morpnine

TREATMENT (dos.) EDso (95% CW EDso Ralio~

SALINE (1~I'h") 4.33 ~g (3.10-6.05)

MORPHINE (5 ~g·h·') 4.84 ~g (3.77-6.22) 1.12

SALINE (1 ~I·h·') 3.72 ~g (2.54-5.44)

MORPHINE (10 ~g·h·') 5.60 ~g (4.63-6.77) 1.51

SALINE (1~I·h·') 4.70 ~g (3.52-6.29)

MORPHINE (20 ~g'h") 6.35 ~g (5.14-7.85) 1.35

a EDso and 95% CI calculated using MPE data

b EDso ratio is defined as E050 in opioid·infused rats·EDso in saUne-infused rats-l

No significant differences (P>O.05)



7

3
(1) o

**

2

50

3 4
Day

5 6 7

Figure 11. The tlme-course of tail-flick latency during the conlinuous !.t.
Infusion of CADLE (10 foIg·h·1) or saline (1 ..J1·h·1). Dala are expressed as the
mean ± SEM of 7-21 rals and the asterisks denote a significant difference between
the DADLE and saline groups (Student's t-last or Mann-Whitney two sample test,
**P<O.OO5; *P<O.05).
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3.2.2 Seh.vlofll Effects with DADLE

All animals exhibited normal grooming and feeding behaviour throughout the

Lt. infusion period; both CADLE- and saline-treated rats had comparable increases

in body weight on days 1-6 (Figure 12). Forty percent of CADLE-infused rats (8 of

20) exhibited stiff tails on day 1 of infusion. When the pumps were removed at the

end of the infusion period and the i. 1. catheters were flushed with saline, 65% of

OADLE-infused rats (40 of 61), but no saline-infused rals, displayed a cataleptic

condition for up 10 1 h. These animals had muscular rigidity and could be easily

manipulated into an upright "silting" position where they remained stationary until

moved by the observer. There was no startle response and no effort to escape.

CADLE-infused rats also exhibited a significant decrease in body weight as

compared to control in the immediate post-infusion period (Figure 12), indicative of

opioid-withdrawaL Collectively, these data are consistent with the continuous spinal

infusion of DADLE and indicate that the decline in antinociceptiv8 activity was not

due to a problem with the drug delivery system (LI. catheter and/or osmotic pump).

3.2.3 Recovery from DAOLE Tolerance

The time-<:ourse of recovery from OADLE tolerance is shown in Figure 13.

The DADLE test dose (3-~g Lt.) significantly increased tail-flick latency in saline­

infused animals on days 1-4 post-infusion, yielding a mean peak effect of 9.5 ± 0.4

s (upper solid horizontal and adjacent dashed lines). In OADLE-tolerant rats, the
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F~ure 12. The change In body weight during (days 1-6jand aft.r(day. 7"")
the contlnuous I.l Infusion of DADLE (10 ~g'h") or saline (1 tll,h"). Each point
represents the meantSEM of 7-21 rats and the asterisks indicate a significant
difference between the saline and CADLE groups (unpaired Student's t-test or
Mann·Whitney two-sample test, where applicable; **P<O.005; ,*P<O.05).
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Figure 13. The time cours. of recovery from OADLE toleranc. following the
continuousl.llnfulion of DADLE 110 ~g·h·l) for 6 days. Histograms indicate the
maximum tail-flick response to a lest dose of CADLE (3 JJQ i.t.), injected on
consecutive days after the infusion was discontinued. Separate groups of rals wefe
used on each post-infusion day and the results represent the mean ± SEM of 4-5
rals, except on day 4 where n =3. The results are also expressed as a percent of
the CADLE effect in salino..-infused rats. The upper solid horizontal line and adjacent
dashed lines represent the maximum tail-flick latency ± SEM produced by the
DADlE lest dose in saline-infused rats (n=13). The lower solid line and adjacent
dashed lines indicate the baseline response ± SEM before injection of the test dose.
Asterisks denote a significant difference from saline-infused animals (unpaired
Student's t·tast or Mann-Whitney two sample test, where applicable,**P<O.OOO1;
'*P<O.005). Significant recovery from tolerance was observed on day 3 post­
infusion.
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same test dose had little anlinociceptive activity on days 1 and 2 post-infusion.

Peak tail-flick latency was only 7.1 % and 16.0%, respectively, of that induced by

CADLE in the salifl&.infused group. By day 3 post-infusion, this effect increased 10

81.5% (8.4 ± 1.1 s) and recovery of anlinocicepliv8 activity was virtually complete

(00.2%) by day 4 post-infusion. Accordingly, cross-tolerance experiments to DADLE

were conducted on days 1-2 post-infusion.

3.2.4 Cross-Tolerance Studies between DADLE and NE

AUC analysis of the time-course profiles for individual test doses of Lt. NE

(see Figure 14) revealed a significant reduction in anlinociceptive activity in rats

previously infused with CADLE (10 IJg·h·1) as compared to saline (Table III). This

attenuated response was confirmed by the rightward displacement of the NE dose·

response curve in OADlE-tolerant rats (Figure 14) and the corresponding increase

in the E050 of NE (ED50 ralio was 2.54; Table IV). The dose-response curves did not

differ from parallelism (P>O.05). Thus, rats made lolerant to DAOlE using

continuous Ll infusion for 6 days displayed significant cross-tolerance to Lt. NE in

the post-infusion period. For completeness, NE dose-response curves were

analyzed as both the absolute latency (s) and as MPE. There was no difference

in the overall result using either method of calculation.
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Figure 14. The time course of tall·tUck latency following the acute I.t. Injection
of NE (5.0 Jig) to rata previously Infused with CADLE (10 tJg·h-1j .) or saline (1
.,'·h·' j .). Dala are expressed as the mean ± SEM of 7 saline- and 12 DADLE­
infused rats. Asterisks indicate a significant difference between the two groups
(unpaired Studenfs t·test or Mann-\Nhitney two-sample test, where applicable; **
P<O.OOO1; ·*P<O,OS).
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TABLE III. Sumwyctthe Differences in the Area Under the Tail-Flick latency

versus Time Curve (AUC) Following the Intrathecal Injection of
Norepineptyine (NE) n Rats Previously Infused with OADlE or Saline
for 6 Days

NEOOSE (~g)

2.5

5.0

10

TREATMENT (dose)

SALINE (1 ~I·h·')
OAOLE (10 ~·h·')

SALINE (1 ~I·h·')

OAOLE (10 ~g·h·')

SALINE (1 ~I·h·')

OAOLE (10 ~g·h·')

AUC(s-min)

377 t 29
302 ± 6*

503 >27
327 ± 17t

617 ± 36
434 :1:24**

.. P<O.05; ** P<O.OO5; t P<O.OOO1

TABLE IV. EOso• 95% Confidence Interval (el) and EOso Ratio for Intrathecal
Norepinephrine Following the Continuous Intrathecal Infusion of
Saline or CADLE.

TREATMENT (dose)

SALINE (1~I·h·')
OAOLE (10 ~·h·')

EO,,(9S%CI)

2.64 ~g (1.56-4.48)
6.70 ~g (S.OS-8.as)

EDsoRaliot

t EOso ratio is defined as EOso in opioid-infused rats' EO'll in saline-infused fets"

.. Statistically significant shift
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Figure 15A. NE dose-response curves (expressed as peak tall-flick latency In
seconds) detennined after the continuous I.t. Infusion of saline (1 ~1·h·1; .) or
CADLE (10 ~·h·f: .) for 6 days. NE Wf.lS tested on days 1-2 post-infusion and rats
received oolyane dose daily. Dalaare expressed as the mean ± SEM of 6-13 rats.
The corresponding EDso (95% CI) of i,l. NE, expressed in ~g, is indicated on the
figure.
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Figure 158. NE dose-response curves (expl"r,!'ssed as the maximum percent
effect) detennlned after the continuous i.t. infusion of saline (1 pl·h"; e) or
CADlE (10 lJQ'h'l; .) for 6 days. NE was lested on days 1~2 post·infusion and rals
received ontyone dose daily. Dala are expressed as the mean t SEM of6-13 rats.
The corresponding EDso (95% el) of i.t. NE, expressed in 1..19, is indicated on the
figure.
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3.2.5 Cross·To/erance Studies between DADLE and DX

The time course of tail-flick latency following the i.t. injectIon of OX (0.1 ~gl

to rats previously infused with saline (1 IJI'h-') or CADLE (10 j.J9·h·') for 6 days is

illustrated in Figure 16. Peakanlinociceptionwasobserved 15min after injection

and there was no significant difference between the two groups at any lime point.

Similar time-course experiments were conducted with 0.2, 0.3 and 0.5 ~ of OX

(data not shown). AUC analysis of the time-course data revealed no significant

difference between saline- and CADLE-infused rats for each Lt. dose of OX (Table

V). No sedation was observed with any of the doses of Lt. OX.

TABLE V. Summary of the Differences in the Area Under the Tail-Flick latency
versus Time Curve (AUC) Following the Intrathecal Injection of
Dexmedetomidine (OX) in Rats Previously Infused with DADLE or
Saline fO( 6 Days

OX DOSE (~g) TREATMENT (dose) AUC (s·min)

0.1 SALINE (1 ~I·h·') 268 ± 7
DADLE (10 ~g'h") 259 ± 16

0.2 SALINE (1 ~I'h") 255 ± 12
DADLE (10 ~g·h·') 265 ± 23

0.3 SALINE (1 ~I·h·') 290 ± 7
DADLE (10 ~g·h·') 326 ± 18

0.5 SALINE (1 ~I·h·') 370 ± 28
DADLE (10 ~g'h") 366 ± 34

No significance (P>O.05)
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Figure 16. The time course of lall-flick latency following the acute I.t.lnjectlon
of OX (0.1 IJSII to rata previously infused with OADLE (10 J,lg'h"; .) or saline (1
~I·h·tj e). Data are expressed as the mean ± SEM of 4 saline- and 5 DADlE­
infused rats. There were no significant differences between the two groups
(unpaired Student's t-test or Mann-Whitney two-sample lest, where applicable).
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Peak tail-flick latencies (15 min) were used to construct the OX dose-

responsewves (Figure 17). The EDso and 95% CI for OX in DAOLE· and saline-

infused animals was 0.24 IJg (0.17-0.36) and 0.38 1J9 (0.29-0.49), respedlvely

(Table VI). For comparative pUfJX>S9S, dose-response curves were also conslructed

using the MPE (Figure 178). The corresponding EOso and 95%CI was 0.25 IJQ

(0.16-0.38) In DADLE-tolerant rats and 0.381J9 (0.2g..Q.50) in saline-controls (Table

VI). The slopes of the linear portion of ~he OX dose-respoose curves fO( both

treatment groups were parallel. Thus, there was no evidence of cross-tolerance

between OADLE and OX.

TABLE VI. EOso, 95% Confidence Interval (CI) and ED!ilI Ratio for Intralhecal
Dexmedetomidine Following Ihe Continuous Intrathecal Infusion of
Saline or DAOLE

TREATMENT (dose)

SALINE (1 ~I'h")

DAOlE (10 ~g'h")

SAliNE (1 ~I'h")

DADlE (10 ~g·h·')

EDso (95%CI)

ABSOLUTE LATENCY (s)

0.36 ~g (0.29·0.49)

0.24 ~g (0.17·0.36)

MAXIMUM PERCENT EFFECT

0.36 ~g (0.29.Q.50)

0.25 ~g (0.16·0.36)

EDso Ratiot

0.63

0.66

t EOso ratio Is defined as EOso In opioid-infused rals·EDso in saline-infused rals·1
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Figure i7A. OX doss-response curves (expressed as peak tail-flick latency in
seconds) detennlned after the continuous i.t. Infusion of saline (1 .,I·h·':.) or
DADLE (10 IJO·h";.) for 6 days. DX was tested on days 1·2 posl·infusioo and
separate groups of rats were used fO( each dose. Data are expressed as the mean
t SEM of 3-6 rats and the dashed lines rePfesent regression lines used to calculate
the E050 and 95°,{. CI (expressed in ~g as shown).

0.1 0.2 0.3 0.5
I.T. Cexmedetomldlne (IIg)

Figure 179. OX dose-response curves (expressed as the maximum percent
effect) determined after the continuous U. infusion of saline (1 ~I'h'l: .) or
DADL.E (10 IJg·h"j .) for 6 days, OX was tested on days 1-2 post·infusion and
separate groups of rals were used for each dose. Dala are expressed as the mean
:t SEM of 3-8 rats and the dashed lines represent regression lines used to calculate
the ED50 Blld 95% Cl (expressed in ~g as shown).
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3.3 Antagonist experiments

3.3.1 Differential Antagonism of Aforphine(201l9-h·'j· and DADLE (10IJg-h")­

Induced Ant/noe/caption by N./oxon.and Nsllr/ndole

To assess the relative selectivity of DADLE and morphine for IJ- and 6-opioid

receptors, respectively, during continuous i.1 infusion, nallrindole (1.0 mgokg-' )or

naloxone (1.0 mg'kg-1
) was injected i,p. althe time of maximum antinociceplion (day

1 of infusion). Prior to naloxone, maximum tail-flick latency during morphine-infusion

was 9.0 5 (dashed line in Figure 18A; defined as 100%). After naloxone, the

morphine effect decreased to 48% and remained significantly antagonized from 15­

60 min (**P<O,01.,*P<O.05). The same dose of naloxone had a small but non­

significant effect on OADLE-induced anlinociceplion (P>O.05). The maximum tall·

flick latency dLling DADLE infusion before naloxone administration was 6.2 s (100%

effect). Neither naloxone nor naltrindole (1.0 mg·kg·1 i.p.) had any effect on

baseline tail-flick latency in rats continuously infused with Lt saline (data not shown).

The effect of the cS-selective antagonist. naltrinctoJe, on DADLE- and

morphine-induced antlnoclcepllon was determined in a separate experiment. The

maximum increase in tail·flick latency during DADLE infusion (6.4 s; 100% effect)

was significantly antagonized by i.p. naltrindole from 45-60 minutes (Figure 18B)

In contrast, naltrindole had no significant effect in rats receiving continuous 1.1.

morphine (peak tail-flick latency =8.7 s). Thesa data suggest that DADLE retained

its O·receptor selectivity in the eal1y period of continuous Lt. infusion; an observation
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Figure 18. The effect of naloxone (A; NX)or naltrindole (B; NTI) onlall-f1lck
latency during the continuous r.t infusion of morphine (20 ~g·h·1) and CADLE
(10llg·h-'). Naloxone and naUrindole (1.0 mg'kg" Lp.) were injected on day 1of
infusion. Data are expressed as the mean t SEM of 5 rats. Asterisks denole a
significant difference from peak anlinociception (before the antagonist) as
determined by repealed measures ANOVA followed by Newman-Keuls lest
(**P<O.01; *P<O.05).
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thai is consistent with the differential cross-tolerance results of this study.

3.3.2 Effect of Wyeth 27127 and Prazosln on Dexmedetomldln.-Induced

Antlnoclcepllon

To confirm the selectivity of high dose OX for a~·adrenoceptotS, and thus its

utility as a probe agonist in the cross-tolerance experiments, three separate groups

of naive rats were injoctedwith OX (0.5 ).19 U.) and the tail·fIick latency determined

15 min later. Ralswere then injected Lt. with either \NY 27127 (10 1J9; Q2-selective

antagonist), prazosin (10 I-Ig; a,-selective antagonist), or vehicle (DMSO; 5 1J1). The

anlinociceptive effect of OX was markedly antagonized from 30-60 min by \NY

27127 (Figure 19). In contrast, rals Ireatedwith prazosin showed no allenualion of

the antinociceptive effect of OX; the lime course was identical to receiving OX +

DMSO (Figure 19), OX ·"saline or OX alone. For the purposes of clarity, the latter

groups wafe omittej from the graph. AUC analysis of the lime course data for 'NY

27127-treated animals was also significanlly different from both the DMSO· and

prazosin·treated groups. These data confirm the Q 2-selectivity of i.1. DX at the

highest dose uSed in the cross-tolerance experiments (0.5 ~g).
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Figure 19. The effect of!.t. prazosln (PZ;.) • Wyeth 27127 (WY;I) or DMSO
(AI on dexmedetomldlne (DX)·lnduced antlnoclceptlon in three separate
groups of naive rata. Dexmedelomidine (0.5 1J9 Lt.) was injected at lime O.
Immediately aftertha is-min time point, prazosin (10 1-19), Wyeth 27127 (10 119) or
DMSO was injected i.t. toone of the groups. Data, expressed as themean fSEM
of 4-9 rats, were analyzed using one-way ANOVA followed by a Newman-Keuls test.** Indicates a significant difference of Wyeth 27127-treated from both DMSO· and
prazosin·treated animals (P<O.01). '* Indicates a significant difference between
Wyeth 27127- and DMSO·treated rats (P<O.01); and between Wyeth 27127- and
prazosin-treated rats (P<O.05).
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".0 DISCUSSION

Endogenousopioid n noractenergicsystems are well recogllzed for !heir

abiity to independently modulate nociceptive transmission in !he dorsal hom alhe

spinal cord (see reviews by Cousins ard Mather. 1984;Yakshlrld Nouened, 1985;

Yaksh, 1985; Maze and Trarq.Jl1Ii. 1991). Nevertheless, phannacological evidence,

including the blockade of spinal a-acienergic antinociception by opicid antagonists

(Tung and Yaksh, 1982; Loomis at ai" 1987a; Yang el a/., 1994) and the

observation of cross-tolerance betweeo Lt. a-agonisls and opiold agooisls (Sherman

etal., 1988; Slevens el ai" 1966; Kalsoet sl.. 1993: Paul andTran, 1995), suggest

thai spinal noradrenergic modulation includes an endogenous opioid-depenc!ent

mechanism

The results of the pr9soo1 research provide further support for this

hypothesis, and in particular. the model illustrated n Figw8 1. Thus, the non­

selective a.agonist, NE. exhibited aoss-tolerance to DADLE, but not morphine. in

the rat as assessed by doS&{8sponse Malysis. In contrast, !he highly selective Q2­

agonist, Ox, exhibited no cross-tolerance to DADLE using lhe same experimental

paradigm. These data are also consistent with the results of acute experiments

investigating the anlinoclceptive interaction between spinal a," and a,w

adrenoceptors that preceded this work (Loomis et aI., 1992a; 1992b; 1993).
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".1 Re/,tlonshlp of the Present Work to Acute Studies of.n a,- .nd a;l­

Adfttroceptor Intellction

Alhresholddose ofMX (10 IJQ tt.), producing <5% MPE in the tail-flick lest

and 0% in the paw pressure lest, when combined with 1.1. OX significantly shifted the

OX dose response curve 10 the left, A combination of otherwise inactive doses of

MX+DX. effecting near maximal activity in the tail-flick test and Intermediate activity

in the paw pressure test, was significantly blocked by naloxone (30 \-19 i.l), lei

174,864 (751J91kg Lp.), or antiserum to Met-enkephalin (10 \-II i.t.)(Loomis at al.,

1992b). Moreover, pretreatment with the neutral endopeptidase Inhibitor SCH

32615 (75 "'Q Lt.), but not vehicle, further potentiated the MX+DX interaction

(additionallaftward shift. in the MX+DX dose response curve). The potency shift with

this combination exceeded lhe small effect of SCH 32615 on OX alone. These

results indicate that the acute synergistic Inferaction between i.t. OX and MX

involves a local enkephalin·dependent process mediated by spinal fi·receptors; a

mechanism supported by the well established interaction between exogenous

opioids and 02-agonists in lhe rat spinal cord. The blockade of this supra-additive

interaction by either prazosin (10 ~ I.L) or WY 27127 (0.5 ~g 1.1.) indicated thallhe

respective antinociceptive effects of MX and OX were mediated by distinct Q­

adt&noceptor sUbtypes.
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4.2 Conf/nuous Oplold Infusion and Tolerance

In the present study, dose-dependent anlinociceptlon was observecl with

continuous i.t. morphine (5, 10 and 20 lJg·h·1) in thslaH-f1ick test (mean peak lail flick

latency and AUC analysis of the time course dala). The time course dala are in

agreement with previous studies using osmotic mini-pumps for spinal drug delivery

(Milne eta'.. 1985; Russell et al., 1987; Slevensef al., 1988; Stevens and Yaksh,

1989a, 1989b, 1989c). Unlike the morphine experiments, only one infusion dose of

1.1. DADlE (10 lJQ'h·l ) was used. In preliminary experiments, a lower infusion dose

(31J9'h") yielding significant anlinociceplion was lested. However, thesa animals

rapidly recovered from tolerance (overnight) making cross-tolerance studies

impractical. Solubility limitations prevented a higher infusion dose of i.1. DADLE

from being used.

Continuous Lt. opioid infusion for 6 days induced significantlolerance to the

spinal aniinociceptive effect of morphine and DADLE. Tolerance was confirmed by:

a) the absence of antinociceplive activity of morphine or DADLE probe doses in

opioid~, but not saline-infused rats during the immediate post-infusion period; b) the

rightward (6-fold) shift in the morphine dose-response curve in morphine- es

compared 10 saline·infused rals; and c) the reversibility of this process upon removal

of the opioid (see below). These data indicate thai the decline in tail·flick lalency

during opioid infusion was the result of progressive pharmacodynamic changes 10
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the continuous exposure of opioid receptors 10 their respective agonists (e.g.

uncoupling of 1.1- or O-feceptors from the effector mechanisms normally mediating

their enlinociceptive effects). II was not due to pump or catheter failure, repeated

behavioral testing, degradation of the opioid (Stevens and Yaksh, 1989b) or

pharmacokinetic factors (Yaksh, 1991).

The integrity of the drug delivery system was also confirmed by the dose­

dependent reduClion in body weight in opioid-, but not saline-treated animals during

the immediate post-infusion period. This effect, characteristic of opioid withdrawal

(Wei eI8f.• 1973; Suzuki et al., 1988; Cridland at ai" 1991) and reflecting a

decrease in food andlor water consumption durillQ the first 24 h, Is consistent with

the conllilUOUS delivery of opioid agonists via the mini-osmotic pump/catheter

system. Opiold-infused rats did not exnibil any signs of withdrawal when probe

doses of oploid· or a-agonists were tested, indicating that this abstinence effect had

a rapid onset and short duratioo.

4,3 Recovery from Oploid Tolerance

Significant recovery of anlinociceplive activity did not occur until 4 days after

the discontinuation of i.t. morphine infusion (5 J,Jg'h"). This time course provided a

3-day window in which to conduct cross-tolerance experiments without the

complication of concurrent rect:Yolery in opioid sensitivity. In the interests of time and

efficiency, recovery was determined using only the lowest infusion dose of
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rrorphine. Since the magnitude of spinal opioid tolerance is dependent on the I.t.

infusion dose (Stevens and Yaksh, 1989c), the lime course of recovery from 10 and

20 1J9'h-1 morphine should not be less than 3 days. Accordingly, cross-tolerance

eKJl6riments were limited to 3 post·infusion days in morphillEl-toleranl rats.

In vivo studies of the rale of offset of opioid tolerance have yielded variable

results, depending 0f'I the opioid agonist, the route of drug administration and the

behavioral measure of opiold activity. Using a stereotypical pattern of automatic

Mning activny ("ruming fir) in mice, Goldstein and Sheehan (1969) estimated the

lime of .-eeovery from levorphanol tolerance (induced with 20 mg'kg" Lp. every 8 h)

10 be equal to rate of onset of tolerance (approximately 48 h). Although not

quantitatively measured, these investigators noted that. in some experiments,

CW1algesic tolerance appeared to develop considerably more slowly than tolerance

10 the running fit. Cox et a/. (1975) measured the anlinociceptive response in rats

(paw pressure withdrawal test) to a standard infusion of morphine (5 mg·kg·h·' tv.)

+cycloheximide (200 mg·kgtJ·' i. v.) to prevent the further developmenl of tolerance

at various time intervals efter cessation of repeated s.c. morphine injectioos. A

biphasic pallern of recovery, consisling of an initial rapid phase (4 days duration)

and second prolonged phase (mean half-time of 13 days) was reported; a

comparable recovery pattern was also ObSElfVed in mice. Tung et al. (1981) induced

analgesic tolerance (hot-plate test) using once daily inj£'-clions of Lt. morphill9 (45

~g) for 8 days. Seven days after the termination of chronic morphine, rats regained
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85% of their initial responsiveness to l.t. morphine. Yaksh (1991) reported a 50%

recovery of the Lt. morphine ED50 in the rat hot-plate lest, nine days after terminating

a continuous l.t. morphine infusion (20 nmoUh). In contrast, ~-receplor binding and

anlinociceplive activity of PL 017 were restored 3 days after the continuous l.t.

infusion of PL 017 was discontinued in the ral (Nishino et al., 1990). Although time

course dala provide no specific information about the molecular/cellular events

underlying tolerance, the prolonged af,j sometimes biphasic recovery after chronic

morphine treatment implies that multiple factors are involved.

Recent studies using continuous Ll. infusion of receptor selective agonists in

rals indicate thai opioid tolerance in vivo is based on pharmacodynamic rather than

pharmacokinelic factors nor is it the result of learned behaviour (e.g. associative

tolerance). Thus, tolerance is observed only after the activation of spinal opioid

receptors, the degree of opioid tolerance is proportional to both the log of the

infusion dose and the fradional receptor occupancy of the agonist used, and there

is minimal loss of response between agonists which interact with distinct receptors

(e.g. minimal cross-tolerance between jJ, 6, % agonists) (Stevens and Yaksh,

19B5a,b; 1992). These data are consistent with t:1E. down-regulation of a fraction of

the spinal opioid receptOf population ancYor an uncoupling of opioid receptors from

their corresponding effector system.

Evidence from studies using NG 108·15 and 7315c ceUs in culture

(expressi:t (; and jJ receptors, respectively) indicate that the induction of tolerance
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in these cells involves two phases (see review by Johnson and Fleming, 1989).

Acute changes, characterized by rapid onset and rapid recovery (e.g. min 10 hours)

and initiated by high concentrations of agonist, include receptor desensitization (e.g.

the functional uncoupling of ~ and (5 receptors from their associated G proteins (Law

st al., 1983; Pu!tfarcken et al., 1988]) followed by internalization of uncoupled celt

surface receptors into Iysosomes where they are degraded (Law st al., 1984).

Receptor desensitization occurs prior to any change in the number of opioid binding

sites. Long·lerm changes, characterized by slow onset and slow recovery (e.g.

days to weeks), may reflect altered expression or repression of mRNA for specific

proteins (e.g. receptors. G-proleins, ion channels, ion pumps, enzymes of 2nd

messenger systems). For example, chronic morphine administration to the rat has

been shown to dxfease mRNA coding for PQMC in the hypothalamus (Mocchelli

etal., 1989).

The relevance of these observations to the progressive loss of opioid activity

in conscious behaving animals remains to be determined. As noted above, many

characteristics of opioid tolerance in vivo can be explained by the functional

uncoupling of opioid receptors from the G proteins linking them to their effector

systems (Cox, 1991). Concurrent changes in cholecystokinin activity, an important

phy~iological modulator of morphine analgesia, has also been implicated in the

development of opioid tolerance (Xu at al., 1992; Zhou at al., 1992; Hoffmann and

Wiesenfeld-Hallin, 1994). Interestingly, tolerance to opioids acting on spinal O·
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receptors is not altered by pharmacological manipulation of cholecystokinin neurons.

Our dala are consistent with the lime-dependent recovery of functionally coupled

~- and 6-oploid receptors and/or from compensatory changes to cholecystokinin

neurons in the case of ~-receptors.

Unlike morphine, significant recovery from OADLE tolerance was apparent

3 days after discontinuation of DADLE infusion (1 0 ~g'h") and complete by day 4.

On the basis of these data, cross-tolerance studies with NE or OX were carried out

on days 1-2 post-infusion in all DADLE-Iolerant rats. Our results are similar to lhose

of Russell at al. (1987) who reported a slightly slower rate of recovery to the I-i­

agonist. PL017 (0.5 ~g·h·l Lt.) as compared to DAIJLE (2 ~g·h·ll.l.) in the ral.

Complete recovery from PL017 and CADLE tolerance was observed on days 6 and

5, respectively. The modest difference in recovery between DADLE and morphine

is probably related to the lower intrinsic activity of morphine (Stevens and Yaksh,

1989c) and/or differences in the selectivity of the two agonists for their respective

opioid receptor subtypes (see review by Yaksh and Noueihed, 1985; Russell at al.,

1987).

4.4 Cross~To/erance Between Spinal Oploids and a-Adrenergic Agonlsts

In an early stUdy using continuous i.t. infusion of morphine (10 ~g·h·j for 5

days) followed by NE (15 IJg'h"' for 7 days), Milne and co-workers (1985) reported

significant cross-tolerance in the rat tait-flick test. The absence of antinociceplive

activity in morphine tolerant rats was not due to the oxidation of NE in the osmotic
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mini-pump (as confirmed by the f1uOfomelric analysis of NE taken from the pumps

at the end of the experiment). However, only one dose of 1.1. morphine and NE was

tested. Since the extent of tolerance, and the development of cross-tolerance, is

influenced by the dose of the tolerance-inducing agent (Slevens at al., 1986), we

used three different infusion doses of morphine, and three probe doses of NE (for

quantitative dose-response analysis) in the present experiment.

Animals made tolerant to i.1. morphine using three infusion doses (5, 10 and

20 IJg·h·1) exhibited no significant cross·tolerance 10 i.1. NE in the tail-flick test. While

there was an apparent atlemlation of low dose NE in rats trealed with 10 IJQ·h"

morphine. no such effect was observed in rals infused with a higher dose of

morphine (20 ~'hO') indicating that this trend was nol pharmacologically significant.

Previous studies reporting cross-tolerance between continuous i.t. morphine (0.76­

7.6I-1g·h01
) and test doses of ST-91 (Stevens at al., 1988), and between morphine

(10 IJg'h-') and i.t. oxymetazoline (29.7 1-19) (Sherman at al., 1988) in the rat

hypothesized that re-distribution of morphine 10 the brain during i.t. infusion, and the

consequent activation of descending noradrenergic fibers, was most likely

responsible for the observed interaction.

The locus of action of drugs injected into the spinal subarachnoid space is

an important consideration. Hydrophilic drugs like morphine undergo slow cephalad

migration in the CSF while more lipid soluble drugs can be redistributed via the

systemic circulation aflor uptake in the micf'Ovasculalure of the spinal cord. The cell
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bOdies of noradrenergic neurons modulating nociceptive transmission in the spinal

cord are located in pontine nuclei (Le. medial and lateral parabrachiar nuclei,

nucleus subcoeruleus, AS and A7 nucleus) (Proudfit, 1988; Jones, 1991), and

morphine, focally injected near lhese brainstem sites, evokes the release of NE from

nerve terminals located in the spinal dorsal horn (see review by Yaksh, 1985).

Thus, the rostral migration of mOlphine, and ils attendant activation of bulbo·spinal

noradrenergic fibers, can confound the interpretation of cross-tolerance studies in

the spinal cord.

The absence of cross-tolerance between morphine and NE in the present

study (using three different infusion doses), indicates that: 1) the locus of action of

morphine, delivered by continuous i.t. infusion, and thus the site of morphine

tolerance, was primarily in the spinal cord; 2) any rostral migration that did occur

was insufficient to effect detectable a-adrenoceptor tolerance; and 3) spinal ~­

receptors are unlikely to mediate the endogenous opioid component of spinal

noradrenergic anlinociception in the rat. A predominant spinal site of action is

consistent with the results of a previous study investigating the activation of

brainstem IJ-receptors during continuous Ll. mOl'phine infusion, Rats receiving twice

daily injections of s.c. morphine or a continuous infusion of morphine (1 lJQ'h") in the

brainstem subarachnoid space for four days exhibited pronounced rhythmic fictive

swallowing (300 per minute) 30 min after i.v, naloxone (Bieger at ai" 1992),

reflecting an alteration in the brainstem opioid receptors that modulate
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buc:c:opha'yngeal and esophageal activity, dYonically exposed to morphine. This

was six times greater than the response evoked by naloxone in rats trealed with

continuous i.t. morphine (5 ~'h" for four days). These dala indicate the limited

effect of spinal rT'IOl"phine on relevanl brainstem opioid receptors during continuous

i.l infusion, and are in agreement with a previous study (Loomis at al., 1987b)

demonstrating that: 1) the antinociceptive effect of i.p. morphine is unaffected by

tolerance to spinal morphine (10 lJ9·h·1 for 7 days); and 2) the distribution of an Lt.­

infused dye is almost entirely restricted 10 the spinal segments adjacenllo the lip of

the L.. catheter. Nevertheless, any differences in the roslral migration of morphine

between the present study and previous investigations using the same type of

delivery system are not easily explained.

a-Agonists. including NE, are known to induce aaJIe tolerance

(tachyphylaxis). Depending upon the intrinsic activity and the frequency 01

administration of the probe drug, this phenomenon can influence the interpretation

of cross-toJerance experiments. To minimize this potential problem, rats were

allowed to recover for 24 h between probe doses of NE, and an escalating dose of

NE was administered on subsequent post..jnfusion days (i.e. 2.51J9 NE on day 1, 5.0

I-Ig NE on day 2, etc). This lesting regimen was based on preliminary experiments

indicating that the antinociceplive effect of NE in saline-infused rats (5 and 10 I-Ig

i.l. on days 2 and 3 post-infusion, respectively), was identical to that observed in

naive rats, administered 3 days apart (data not shown). These results strongly
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suggesllhal acute tolerance to NE was not a factor in this study.

Because of the rapid recovery from DADlE tolerance. cross~lolerance

experiments were limited to days 1 and 2 post-infusion. To assess the problem of

acute tolerance with daily i.l. injections of OX, probe doses were tested in saline­

infused rats on consecutive post-infusion days. The degree of acute tolerance

obseNed was sufficient to preclude the further use of this treatment schadule (dala

not shown). Instead, each rat received only one dose of OX during the 2-day

''window''.

If NE effects spinal anlinociception, in part, through the o,-adrenoceptor

mediated release of enkephalin (loomis et al., 1993), then down-regulation of the

spinal opioid receptors responsible for the inhibitory effect of enkephalin should

attenuate this NE response. Indeed, the EDso of i.l. NE was significantly reduced

in rats made tolerant to the i)-agonist, DADLE as compared to saline-infused

animals. It was not possible to test this hypothesis using selective Cll-agonists like

methoxamine or phenylephrine in this experimental paradigm because of the

exaggerated motor responses evoked by these drugs in the spinal cord. Such

effects confound the intepretalion of changes in behavioral responses to noxious

stimulation (e.g. TF test) as previously described (Section 1.5.2). To our knowledge,

this is the first study of cross·tolerance between DADLE and NE. Although the shift

in the EDso of NE was relatively small (2.54) in DADLE·tolerant rats, this was

expected given the spectrum of NE activity at both a-receptor subtypes (Loomis et
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a/., 1993), the predominant role of a2~adrenoceptors in spinal edrenergic

antinociception, and evidence for the dissociation of Q2-adrenoceptors from

endogenous opioid systems (Fleetwood-Walker at al.• 1965; Maze and TranquilH,

1992).

Further support for the research hypothesis is indicated by the absence of

cross-tolerance between DADlE and the highly selective o2-agonist, OX. These

results are similar to those of Kalso and co-workers (1993), who reported no crOS$­

tolerance between spinal Tyr-D-Ser(olbu)-Gly-Phe-leu-Thr (DSTBULET; 6-a900i51)

and i.1. OX in the rat as determined from electrophysiological recordings of dorsal

horn nociceptive neurons. In these studies. rats were administered two daily

injections oli.t. OX (5 ~g) for 10 days or LI./:STBUTLET (50 I-Ig> for 5 days before

receiving the probe doses of OSTBUTLET or OX, respectively. These behavioral

data provide further support for the dissociation of opioid- and %·mediated

mechanisms of spinal antinociceplion, as reflected in our model (Figure 1). The

attenuation of i.t. NE, but not OX, in rats treated identically with continuous i.t.

DADLE cannot be explained by the redistribution of DADLE to noradrenergic cell

bodies located in the brainslem. In such a case, both drugs would be expected to

exhibit cross-tolerance 10 OADLE. Thus, there is no evidence in either of the cross­

tolerance studies (morphine·NE or DADLE-NE/DX) to conclude thai sites of action,

other than those in the spinal cord, contributed significantly to observed results. In

view of the absence of the cross-tolerance between 1.1. morphine and NE, and
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between DADLE and OX (as assessed using dose-response analysis), similar

studies of 1.1. morphine and DX were not undertaken.

High doses of i.t. OX (1-61-19), (acule or continuously infused) are known to

induce profollld sedation in rats (Fisher at al., 1990; Kalso at al., 1991; Takano and

Yaksh, 1992; Takano and Yaksh, 1993; unpublished results). This is a supra-spinal

inhibitory effect thai arises from drug redistribution into the systemic circulation

(Savoia etal., 1986; Kalsoetal., 1991). It is important to nole that no sedalion was

observed at any of the doses used in the present experiments (0.1-0.5 1-19 i.t.).

Moreover, it is known thallhe anlinociceplive effect (TF lest) of Lt. ox in rats perists

beyond the time course of sedalion (Kelso et al., 1991).

All interesting observation was the apparent potentiation oi Lt. OX in DADLE­

tolerant animals. There was an parallel, but statistically nOfHignificant, leftward shift

of the OX dose-response curve in CADLE- as compared to saline-infused animals.

Such an observation has, to our knowledge, not been previously reported. This

effect was unlikely to be due 10 the inadvertent delivery of residual CADLE solution

during the i.t. injection of probe doses of OX (resulting in potentialion), since all

catheters were thoroughly flushed with saline following the removal of the osmotic

pump. Stress-induced antinociception, possibly related 10 the discontinuation of

OADLE infusion, also seems unlikely as we observed no abnormal behaviour attha

time of lesting nor were the baseline tail-flick latencies any different compared to

saline-infused rats.



80

One possible explanation is that the sudden withdrawal of CADLE infusion

caused a "rebound" release of endogenous enkephalin. An increase in the

extracellular concentration of enkephalin might be sufficient 10 potentiale the

antinociceptive effect of OX, subsequently injected inlo the spinal subarachnoid

space. We did not determine enkephalin concentration in the present study but

there are reports of such changes in the brain (Simantov and Snyder, 1976) and

spinal cord (Cridland at a/., 1991) of morphine-dependent rats, and the

cerebrospinal fluid of humans (O'Brien at aI" 1988). Using nearly identical

conditions to those of the present study (continuous i.t. morphine infusion _5 ~g'h"

for 6 days), Cridland at al. (1991) reported a significant increase in met-enkephalin

immunoreactivity in the rallumbar and sacral spinal cord, 24 h after Lt. naloxone·

precipitated withdrawal. These changes were localized to the spinal cord; the

caudate-putamen and globus pallidus were unaffected by the naloxone challenge.

Moreover, the Lt infusion of morphine by itself (no naloxone) did not affect met·

enkephalin immunOfeaclivity in the brain or spinal cord. The delayed appearance

of this neurochemical change is in agreement with the lime course of OX

administration in the present study (Le. for the first day of OX testing). To the extent

that this mechanism is responsible for the increased activity of OX in OAOLE·infused

rats, our data suggest enkephalin levels may remain elevated for up to 48 h after the

infusion ;s discontinued. a should be noted that a similar synergisilic interaction

between OX and morphine would also be expected during opioid withdrawal, but this
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was not investigated in the present study. The interaction between endogenous

enkephali'l crd i.t OX is in agreement with the proposed model of spinal adrenergic

antinocic:eption (Figtxe 1). In fUIxe experiments. it would be useful to determine the

change in met-enkephalin irTVTU'lOreactivity as well as mRNA fO( met-enkephalin in

the spinal cord of naloxone·treated rats following the continuous i.l infusion of

DAOLE.

4.6 RfK'4Ptor Se/ecllvlty of Morphine, DADLE and D(f)(medetomidlne

The reliability of the cross-tolerance dala depend on a number of important

factors. These include; 1) the selectivity of morphine and DADLE for their respective

opioid receptor Subtype3 during continuous i.t infusion; and 2) the selectjvi~y of OX

as an agonist al 02-adrenoceplors.

The modest but seledive blockade of morphine by naloxone, and DADlE by

natbindole. on day 1 ofcontiruous i.I. infusion is the only direct evidence of IJ- and

a-receptor selectivity in the present study. CADLE has been reported to have

modest activity at IJ-feceptors (Tseng, 1983; Russell et al., 1987; Stevens and

Yaksh, 1992). Indeed, a low dose of i.p. naloxone yielded a small bUI non~

significant reduction In tail·fIick latency during DADLE infusion. However, systomic

naloxone is only J.10 times more potent against lJ·agonlsts such as morphine and

sufentanU, than against DADLE (Tung and Yaksh, 1982; see review by Yaksh and

Noueihed, 1985; Yaksh et a/., 1986). Significant and quantilati'iely greater blockade
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of DADLE was achieved with the O-selective antagonist, naltrindole. This Is In

agreement with previous in vitro results indicating the relative inhibitory potency of

naltrindole to be over 100 limes greater for DADLE than to( morphine {Portoghsse

et al., 1988}. It is also consistent with the failure of nallrlndole 10 affect morphine

antinociception in the present study, although a>nf1iding results with naltrindole have

been reported in vivo (Tiseo and Yaksh, 1993). \'!/hila the naloxone and nallrindole

data are only relevant 10 dAy 1 of infusion, they do correspond to the lime of

maximum antinociceplion with morphine and DAOlE. As discussed in section 4.4,

the selectivity of these agonists in our experimental paradigm is also inferred from

the outcome of the cross-tolerance experiments, and the different time-courses of

recovery from opioid tolerance. Although (O_Pen2, D-Pen5)enkephalin (OPDPE) is

more selective than DADlE at the 6-receptor (Clark et aI.• 1986), the large amounts

required for continuous i.l infusion and the related cost of OPOPE made it

impractical for use in this study.

To verify the Q2-seledivily of Ox, we tested the effect of both prazosin and

WY 27127 on OX (0.5 ~), reasoning that any activity at Q,-adrenoceptors would be

most evident with the highest probe dose. Prazosin (10 IJQ i.t.) was without effect

whereas the selective 0z-anlagonisl, WY 27127 (10 ~Q 1.1.), completely reversed Ox­

induced antinociception. It should be noted that the 10-IJQ dose of prazosin is well

above the i.t. dose (2.5 IJQ) thai blocked the tail-flick effect of the a,-selective

agonist, ST-567 (loomis and Arunachalam, 1992) and equal to the IO~ of i.t.
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prazosin (9.8~) in blocki1g i,t NE in the tail flidl test (lXlplbIished results). These

results indicate that the probe doses of OX used in the.present study had no

delectable activity at spinal 0l-adrenoceptors, consistent with the pronounced

selectivity of OX for o,·adrenoceptors (o2-selectivity ralio of 1620 versus 220 for

cIonidine; Virtanen et aJ. 1988), and the results of 0lI' cross-tolerance experiments.

Prazosin is a classical o,·selective anlagonist which has been used

extensively to characterize adrenergic binding siles and functional a-adrenoceplors.

In recent years, multiple subtypes of at· and Q 2-adrenoceptors have been identified

through the molecular cloning of eDNA/genes encoding for these receptors

(Lomasney at al., 1991). Binding experiments using cells that selectively express

specifIC a-adrenergic subtypes have shc:7M11hat prazosin, in addition to being an a,·

antagonist, binds to specifIC subtypes of a~enoceptors (Bylund, 1988; Lomasney

at al.. 1991). Moreover, studies on the spinal pharmacology of 02-agonists,

induding the rank order of antagonist potency, suggest that at least two subt'JP8s

or the aradrenoceplor (designated 02A anda~ effect antinociception in the rat

spinal cord. The 0 2A-feceptor, which is nol blocked by prazosin, mediates the

antinociceptive activity of agonists like OX and c1onidine. The o~-receptor, which

is blocked by high doses of prazosin, mediates the effect of ST·91 (Takano and

Yaksh, 1992; Takano et al., 1992). The failure of prazosin to block OX In the

present study is consistent with the high doses of i.t. prazosin required to block

o~receptors(IOil(l= 38 IJg; 95%CI = 22-65; ST·91 in rat hot-plate test), and the
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>100 IJ9 required to block OX or donidine at alA receptors (Takano and Yaksh,

1992). These dose-response data strongly suggest thai prazosin induced selective

o,-aclrenoceptor blockade in the present study.

The antagonist profile of WY 27127 at different sUbtypes of -:I;e 0l-feceplor

has not been reported but. on the basis of other published data (Takano and Yaksh,

1992; Takano at 8/" 1992. Millan, 1992), we believe thallhe effect of OX was

mediated by 02A·receptorS. Future experiments will be required to clarify lhis issue.

•US Antinociceptive Interaction Between Spfnal at· and uJoAdrenocepfofS

Clearly, the results of the present study provide no detailed mechanistic

information about the coupling of a,-adrenoceplors to the enkephalin-depondent

process in spinal a-adrenergic antinociception. Based on the available information,

we have proposed that the activation of o,-adrenoceptors results in an inctease in

the exttacellular cooc:enlra!ion of enkephalin which then effects anlinociceplion via

spinal6-opioid receptors located on relevant neurons of lhe nociceptive pathway.

In the absence of release studies, it is not known if the activaton of 0,·

adrenoceptors actually evokes release or merely facililales the slimulus-evoked

release of enkephalin. Future studies measuring the spinal release of this poptide

will be required to answer this and related questions. Moreover, it is unclear if this

is a direct excitatory effect on enkephalin neurons or whether this involves

intemuncial neurons. The role of other inhibitory inputs (e.g. GABA) in spinal 0,"
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induced modulation also remains to be investigated. This possibility, and the

tI'lderfying hypoth9sis that spinal a,-adrenoceptors participate in spinal adrenergic

anlinociception are supported by the recent report that NE modulates nociceptive

transmission in the substantia getalinosa of the ral by facililating GASA and glycine

inhibitory post-synaptic potentials through o,-adranoreplors (Baba et al.• 1995).

A., interaction between monoamine receptor subtypes is not unique in tho

central nerv:xJs system; an analagous situation has been shown 10 occur between

dopamine receptor subtypes. Using animal models of Parkinson's Diseaso,

conc.urrenl activation of 0,- and D2-receptors in the striatum and substantia nigra

produces an enhancement of motor skills and alleviation of the Parkinsonian

symptoms (Robertson. 1992a, 1992b). A similar effect on Fes expression in the

striatum following administration of a combination of 0.- and D2-~elective agonists

has provided additional support to( an this interaction wit: lin the dopatiill"le system

(Paul etat., 1992).

4.7 Significance of the Results

The results of this thesis provide additional evidence for an antinociceplive

interadion between opioid and a-adrenergic systems in the spinal cord of the rat,

effected by the concurrent activation of°1" and Q 2..adrenoceptors (Figure 1). These

results are important in our basic understandin~of a-adrenergic pain modulation,

and its relationship 10 ~inal opiolds. They indicate thai in the ral, a 1-adrenoceptors
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could pray an important role in spinal anlinociceplion by potentiating the inhibitory

effects mediated by o2-adrenoceptors. These dala provide a pharmacological

explanation for the often conflicting results of cross-tolerance studies between i.t.

opioid and a-adrenergic agonists (Post et al., 1988; Solomon and Gebhart, 1988;

Ossipov et aI" 1989), and the sensitivity of i.1. a-agonisls to opioid antagonists (see

reviews by Yaksh, 1985 and Maze and TranquiUi, 1991). Based on our model, an

opioid component in spinal a-adrenergic modulation would be evident when spinal

o,-adrenoceplors, located on or linked 10 enkephalin.-eonlaining neurons, were

intentionally or inadvertently activated by the test agonist. Thus, the 0,/°2 selectivity

ralio and the dose of the a-agonist would be critical factors in the outcome of such

studies. It Is noteworthy that previous studies of opioid and a-adrenergic

interactions have generally used a-agonists with modest selectivity for a 2­

adrenoceptors (e.g. ST·91 and clonidine; see Virtanen et af., 1988).

To the exlentthat a comparable interaction occurs in human spinal cord (a

question yet to be investigated), these results also have significant implications in

the rational selection of a..agonists as -:pinal analgesics, and thus thE! drug regimen

used in the clinical management of pain. The functional interaction between spinal

01- and a 2-adrenoceptors shown in this and previous studies suggest that a low

dose combination of a,- and a 2-agonists could optimize adrenergic spinal analgesia.

Currently, analgesic doses of spinal clonidine produce adverse cardiovascular

effects that often require pharmacological intervention. These arise from the
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inhibition of sympathetic outflow following the interaction of clonidine with a,­

adrenoceptors on preganglionic sympatheli,; neurons. However, central Q,­
adrenoceptors oppose the hypotensive and bradycardic actions of clonldine. Thus,

the concurrent use of an at-agonist could potentially augment analgesia while

attenuating the adverse cardiovascular effects of Q,·agonists. Such a combination

may also represent a more rational approach to the treatment of chronic pain. The

overall reduction in a-receptor stimulation achieved by using a low dose

combination of Q1- and Q,-selective agonists may delay the development of

3nalgesic tolerance.

In summary, the results of this study are consistent with a spinal enkephalin­

dependent. i5-receptor mediated process in a-adrenergic antinociception. This

opioid componenl appears 10 be selectively coupled 10 oj·adrenoceplors, that may

facilitate the stimulus~voked release of enkephalin in the dorsal horn of the spinal

cord.
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