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ABSTRACT

Atrial natriuretic peptide (ANP) is a circulating honnone, released from the hearl,

whose natriuretic and diuretic actions play an important role in cardioY&SCular

hcrnoostl/sis. It is stored as a prohonnone in cardiac myocy1es and converted to a

circulating fonn upon release from the myocytes. Numerous factors have been shown to

modulate ANP release, however the principal stimulus for release is believed to be stretch

of the atrial wall.

Recently it has been demonstrated that the capsaicin-sensitive peptidergic

innervation of the rat heart, namely the substance P (SfJi and ca:citonin gene-related

peptide (CGRP) fibers, is a component modulating the release of immunoreactiveANP

(irANP). This research project initially investigated the role of the intrinsic cardiac ganglia

on cardiodynamics and irANP release. In Spraglle-Dawlcy rats. III vitro electrical

stimulation of epicardial regions dense with cardiac ganglia (50Hz. 15-20~s, 4~A

delivered in 5s trains), referred to as 'ganglionic' stimulation, resulted in a dramatic

decrease in heart rate followed by a transient period of tachycardia. Cardiodynamic

effects were accompanied by a significant increase in irANP release. Results from

stimulation of epicardial regions lacking the presence of cardiac ganglia, termed 'non­

ganglionic' stimulation indicated that heart rate changes were attributable to excitation of

particular components of the ganglia at the site (If stimulation, and not simply to spread of

an electrical current ovcr the epicardium.

Also investigated were the effects of neonatal capsaicin treatment (capsaicin is a

chemical that abolishes SP and CORP cardiac innervation in rats when administered

neonatally) on irANP release in the model of cardiac ganglia stimulation and in other



models previously demonstrated to release irANP. such as stretch of the right atrium. In

ganglionic stimUIWOll experiments. r~~ ofirANP wu independent of changes in heart

rate. The presence of innervation by immunoreactive Sf" and CGRP wu shown to be

imperative for significant increase in jrANP release after ganglionic stimulation and after

stretch ohhe right atrium.

Pharmacological studies were carried out to gain insight into the role of

acetylcholine and noradrenaline in the biphasic change in heart rate and release ofirANP

aRer ganglionic stimulation. The initial decrease in heart rate was shown to De associated

with parasympathetic innervation and similarly, tachycardia was associated with

sympathetic innervation. However, release ofirANP was demonstrated to be independent

from either decreases or increases in heart rale. It is hypothesized that if SP and CGRP

innervation are involved in irANP release., and if capsaicin depletes lhese peptides, then an

acute treatment of capsaicin should release stores of SP and CGRP and yield an increased

release ofirANP. This was the case when vehicle-lteated animals were administered an

acute dose of capsaicin. however the tissues from animals lteated neonatally with

capsaicin showed no release ofirANP. Acute Clpsaicin administration bad no effect on

hcanrateineit~group.

Finally. Nonhem blot analysis of ANP messenger ribonucleic acid (mRNA)

production was perfonned to a.scenain if r'leo~~\1 capsaicin treatment was affecting

synthesis of ANP and if levels of mRNA expression were equivalent in vehicle- and

capsaicin-treated animals.

It was concluded that electrical stimulation of the intrinsic cardiac ganglia results in

a biphasic change in hear1 rate associated with the sympathetic and parasympathetic

cardiac iNWValion. Also, in the models used here, the SP and CORP cardiac iMervation
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seem responsible for the modulation ofthe release or irANP. Some preliminary data also

roggest that SP and CGRP may be modulating irANP release in itt l'iVO models of atrial

pacing u well. Further studies are necessary before conclusions ':all be drawn reguding

the effects ofcapsaicin on ANP synthesis.

KEY WORDS and PHRASES: alriaJ natriuretic peptide. elec::lrical stimulation ofcardiac

ganglia. atrial stretch., atrial pacing. substance p. calcitonin gene.related peptide, mRNA

forANP
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CHAPTER I

1.0. INTRODUcnON

1.1. Atrial Natriurdic: Peptide (ANP)- Background In(ormation

While searching for evidence of the location of receptors influencing urine flow,

Hel\f)' el al. (1956) postulated that increased atrial pressure wu associated with diuresis

and natriuresis ill vivo. In 1964 Jamieson and Palade proposed a secretory role for alrial

muscle cells as granules present in the atria closely resembled granules ofendocrine cells.

Then, in 1979 de Bold demonstrated that the population of granules in the rat atria

decreased in response to increased salt and waler intake and funker demonstrated in \981

thai intravenous infusions ofatrial extracts caused rapid and significant diuresis, natriuresis

and hypotension. All of these observations suggested that the atria may be producing I

natriuretic hormcne that affects extracellular fluid homeostasis. The biochemical

characterization of such • natriuretic and diuretic hormone, referred to as atrial natriuretic

peptide (ANP) or atrial natriuretic factor (ANF) was initially carried out by Flynn in 1983

(Flynn et oJ., 1983). ANP is a 17-mcmber amino acid ring formed by a disulfide bond and

has a carboxyl and amino acid extension to the molecule.

Following the discovery of ANP it was speculated that atrial distention, caused

by acute hypervolemia. might release ANP. The resulting increase in salt and water

excretion could then restore both vascular volume and atrial pressure to normal (de Bold

e( aJ., 1981). To investigate this hypothesis, Ledsomc et al (1986) carried out

experiments in anesthetized dogs. They distended the left alria and increased left atrial

pressure by obstructing the mitral orifice with a balloon. ANP measurements during



distention demonstrated that increased left atrial pressure could indeed release ANP. Such

a protocol could have also stimulated the atrial volume receptors which may themselves

have stimulated ANP release. Therefore. mitral obstruction was repeated after bilateral

cervical vagotomy which intcnupted the afferent pathway from the atrial receptors.

Changes in plasma immunoreactive-ANP (irANP) were the same fonowing vagotomy

suggesting that atrial distention released ANP by a local stretch elfeet rather than through

atrial volume receptors (Ranlcin, 1987). In vivo studies ofcardiac denervation and in vitro

experiments in an!mals, as well as water immersion experiments in man, confinned that

neither afferent nor efferent nerves were essential to the release of ANP during atrial

distention (Goetz el 01., 1986; Dietz, 1984; Lang elal., 1985; Katsube el 01., 1985).

Elevated levels of ANP had Deen noted in patients with essential hypertension

(Sagnella el of., 1986) which was attributed to elevated arterial blood pressure (Manning

el 01., 1985) or to factors associated with increased myocardial work (Rankin, 1987).

Paroxysmal tachycardia has been associated with diuresis and natriuresis in humans and

also leads to increased atrial volume and distention. Therefore, arterial blood pressure and

heart rate have been implicated in the release ofANP.

These studies reflect an intensive dccade of researching a peptide which, by its

natriuretic and diuretic properties, had the potential to playa key role in our understanding

ufhemodynamic homeostasis.

1.2. Stimulation or ANP Release

Many researchers now believe that stretch of the atrial wall is the primary

stimulus for release of ANP into the circulation. IrANP release showed an increase within

2 minutcs of atrial distention in anesthetized dogs and the half-life of the circulating



molecule was shown to be 4.5 minutes (Led50me el 01., 1986). To determine the

involvement of intra·atrial pressure in stretch induced ANP release, Edwards e, 01. (1988)

studied the effects of acute cardiac tamponade in the intact dog. Cardiac tamponade is a

unique condition in which atrial pressure is acutely elevated. However, because of a

balanced increase in both intra-atrial and pericardial pressures, transmural atrial pressure

does oot increase. By controlling transmural atrial pressure, stretch of the atria is

inhibited. When the results from this model were compared to great artery constriction.

which results in increases of intra-atrial and transmural pressure. it was demonstrated that

an increase in atrial transmural pressure with associr.ted atrial stretch. not increased intra­

atrial pressure, acts as the principal mechanism controlling release of ANP.

Studies with low-dose infusions of synthetic ANP in dogs (Bie d al., 1988 and

Pichet eJ al., 1989) and humans (Cuneo et al., 1987; Richards I!{ al" 1988) have

demonstrated that renal function, aldosterone secretion, circulating blood volume and

arterial pressure may be influenced even in the physiological range of circulating plasma

levels. In this range, though the effects of ANP were easily detectable, they were

quantitatively rather modest (Ccmacek and Levy, 1991). However, the same plasma

concentration of ANP was much more effective durirg volume expansion (Metzler and

Ramsay, 1989), suggesting that ANP palticipated not only in day to day homeostasis of

blood volume, but also during increased volume in the vascular compartment. Cemacek

and Levy (1991) suggested that secretion of ANP from the atria had to be positively

related to volume ofthe circulating blood to fulfill this role and therefore investigated why

plasma levels of ANP do not always respond as a simple function of volume status. In

anesthetized dogs, they studied the relationship between irANP release and different

volume--expansion protocols concluding that in normal dogs subjected to various types of



intravascular volume expansion., the primary detenninant of ANP release is the increase in

cenlral blood volume translated to an increase in atrial pressure. They implied that in

pathophysiological conditions characterized by an expanded blood volume. plasma irANP

may not be increased if the extra volume is not proportionately centralized and therefore

docs not elicit an elevation of pressure. Atrial dimensions were not measured in this

study.

Tachycardia in intact animals and isolated hearts has been associated with

significant increases in irANP (Rankin etal.• 1986; King and Ledsome. 1991; Silder et aJ.,

1989; Schiebinger and Linden, 1986; King and Ledsome, 1990). In 1986, Rankin and his

colleagues demonstrated that electrical pacing of the right atria of anesthetized rabbits

could increase irANP release, hOWC'lCT these findings were confounded by increases in

right atrial pressure and decreases in blood pressure. The results ofth;s study did suggest

that ANP release did not involve a classical sympathetic or parasympathetic neural reflex

since release was the same after administration of atenolol (a competitive antagonist of

noradrenaline at bela,·adrenergic receptors), atropine (a competitive antagonist of

acetylcholine at muscarinic cholinergic receptors) and hexamethonium (a ganglionic

blocker which inhibits activation ofboth sympathetic and parasympathetic ganglia). When

isoproterenol (a positive inotropic and chronotropic agent that increases myocardial work

through Ilctivation of beta adrenergic receptors) was given to anesthetized rabbits, ANP

was not released, suggesting release of ANP is independent from stimulation of efferent

adrenergic fibers innervating the atria; however ANP may be released as a result of

changes in myocardial work and oxygen consumption (Rankin et al, I987a). However,

King and Ledsome (1990) found no significant change in right atrial dimensions during

tachycardia suggesting that release of ANP in response to tachycardia was not due to



simple mechanical stretch of the atria bul perhaps is due to atrial wall stress, particularly

systolic right atrial wall stress. Elevated levels of ANP during tachycardia in the presence

of constant atrial dimensions has been supported by olhers (Riddervold el al., 1991).

Portaluppi el 01. (1990) a!so reported that atria! strain, not intra-atrial pressure in itself nor

heart rate. was the main determinant ofacute release of ANP. It has also been postulated

that the reduction ofatnal distention is the stimulus for ANP release. Cho rt aJ. (1991)

reported that the direct and principal stimulus for irANP secretion in response to atrial

pacing was the length shortening of atrial myocytes and that the response of irANP

secretion to pacing is the result of an increase in frequency of length shortening of atrial

myocytes.

A1lhough results of early studies suggested that an atrial renex was not involved

in release of ANP during atrial distention, those studies had not ruled out neurally

mediated release of ANP (Rankin, 1987). To investigate whether a sympathetic

component could modulate irANP release, studies were carried out in anesthetized dogs

al\d rabbits. EfFerent sympathetic stimulation resulted in increased heart rate but no

changes in irANP release ensued; there were also no accompanying changes in arterial or

left atrial pressure (Lcdsomc et 01., 1986; Rankin et 01., 19R7b). Similarly, efferent vagal

stimulation in anesthetized rabbits did nol cause any accompanying increases in ir·ANP

release (Rankin et al., 1987b).

Early studies also addressed the nolion that humoral factors may be acting

directly on the atrial myocytes or indirectly through hemodynamic changes to release ANP

from the atria. Findings of numerous In vivo and in \litro studies were connieting u to a

role for humoral involvement in ANP release (Sonnenberg et aJ., 1984; Sonnenberg and

Veress, 1984; Lahance et al., 1986; Manning et 01., 1985; Katsube el al., 1985; Rankin et



oJ.• 198Th). However, some agonists such as catecholamines. vasopressin and angiotensin

II could have been causing release of ANP into circulation secondary to their effects on

hemodynamic variables. rather than directly on the myocytes.

To date I variety of factors have been shown to influence ANP release

including: hypoxia (Baertschi et al, 1988 and Winter et at., 1989), hypercapnia (Clozel et

01., 1989), g1ucocorticoids and mineralocorticoids (Garcia et 01., 1985), vasopressin and

angiotensin II (Manning el al., 1985), increased sodium concentration and osmolality

(Arjamaa and Vuolteenaho., 1985), endothelin (Garcia et of., 1990; Schiebinger and

Gomez-Sanchez. 1990), decrease in temperature and increases in rate and extent of atrial

stretch (Silder el of., 1986), cholinergic agents (Sonnenberg el aI" 1984), and adrenergic

agents (Onwochie and Rapp, 1988; Sonnenberg el 01., 1984).

1.3. Cellular Regulation of ANP Release

The cellular processes involved in linking mechanical distention to ANP release

have yet to be elucidated. Calcium ionophores. calcium agonists and increasing

extracellular calcium concentrations have been shown to increase ANP release in several

models ( Ruskoaho et al., 1985; Bloch el 01., 1988; LaPointe et 01., 1990; lida and Page,

1988; Yamamoto el 01., 1988). ANP release stimulated by calcium channel agonists or

tachycardia was inhibited by calcium channel antagonists (LaPointe el of., 1990, Saito et

al., 1986b, Doubell et at., 1989). As well, sodium.potassium ATPase inhibitors which

raise intracellular free calcium stimulated ANP release from isolated rat atria (Schiebinger

and Santora, 1989), cultured noonatal myocyte! (Bloch et al., 1988), and the in vivo heart

(Yamamoto el 01., 1988). These studies all support an important contribution of calcium

in ANP release. In contrast, some researchers have shown that elCl.racellular calcium has



no effect on ANP release Of" that calcium is an inhibitory regulator. 110 d aJ. (191&)

demonstrateJ that absence of calcium from the perfusion medium hu no effe..::! on total

ANP release in the perfused rat heart. Moreover. ddlold and deBold (1989)

demonstrated thlt incrcaslng the extracellular calcium concentration of the medium

inhibits ANP release from isolated atria. The disuepancies between reports of the

involvement of extracellular calcium have been regularly attributed 10 be differences in

basal contractility or technique ofprcparation (Sonnenberg el al., 1989).

Protein kinase C(pKC) has been purified rrom the heart (Kuo ef 0/., 1984). In

1991 Ruskoaho ef al. reported that phorbol esters. which mimic the action or

diacylglycerol by acting directly on protein kinase C, and lhe calcium ionophore A23187.

which introduces free calcium into the cell, both increased basal ANP secretion in lhe

isolated perfused rat heart. Phorbol ester also increased responsiveness 10 calcium channel

agonists such as 81y k8644 and 10 agents that increase cAMP. such as forskolin. In

aJltured neonatal rat atrial myocytes, PXC activation by 12.()..tetradecanoylphorbol I).

acetate (a phorbol cster wlUch is structurally similar to diacylglycerol) stimulated ANP

secretion, whereas the release was unresponsive to changes in intracellular calcium.

Endothelin, which stimulates phospholipase C.medilled hydrolysis of phosphoinositides

and activates PKC, increased both basal and atrial stretch-induced ANP secretion from

isolated perfused hearts (Mantymaa tI 0/.• 1990). Similarly, phorbol ester enhanced atrial

stretch-stimulated ANP secretion while an increase in intracellular calciu'ri1 appeared to be

negatively coupled to stretch-induced ANP release. This indicat~s that PKC activity may

play an important role in regulation of basal ANP secretion IIId that stretch or the atrill

myocytes appears to be positively modulated by phorbol elSter, (Ruskoabo ei 01•• 1991).



Inoue tJ 01. (1988) did not find any effect of forskolin and dibutyryl·cAMP on

ANP release from isolated atria, and the cAMP based regulatory system seemed to be

inhibitory in some myocyte culture modds. Morgan (1991) suggested that cAMP may

affect ANP secretion by modulating the calcium signaling system of the myocardium,

including calcium channels, calcium pump' of lhe sarcoplasmic reticulum and the

troponin-tropomyosin complex.

Little informalion exists on the role of cGMP in the regulation of ANP

secrelion. Experiments with endothelial-derived relaxing factors (EDRF) suggested that

ANP release was inhibited by cG1\1P~dependent processes (Sanchez-Ferrer ef al., 1990).

Administration of 8-bromo-cGMP and sodium nitroprusside, which increased cGMP

formal ion, delayed the release induced by phorbol esters from the perfused rat heart

(Ruskoaho eJ 01., 1986). Similarly, cGMP appeared to be an inhibitory regulator of ANP

release in non-contracting cultured lO(riai myocytes (lida and Page, 1988).

In 1990, Gardner and Schultz examined the effects of several prC"\taglandins on

synthesis and release of ANP in vivo and in vitro. Prostaglandin (pGF2J infusion in

anesthetized rats resulted in a significant increase in irANP levels in vivo despite effecting

only modest changes in hemodynamics. PGF2a administration was also effective at

promoting irANP secretion in primary cultures of neonatal rat atrial and ventricular

myocytes. Prostaglandin treatment also increased ANP mRNA levels in these cells,

suggesting that tht:se agents exert a major effect on the synthesis as well as the secretion

of the hormone. Treatment with a cyclooxygenase inhibitor resulted in significant

suppression of ANP release in Vi/TO and ill vivo. A follow-up to this study revealed that

the prostaglandins were the predominant group of arachidonate metabolites stimulating

ANP release (Kovacic-Milivojevic tJ ai, 1991).



1.4. ANP Procasine

It i, now well aceept~ that the cardiac myocytes posseu granule. which

contain the 128·anino acid precursor of ANP wl\ic:b serves as & substrate for

caJboxypeptidase H (Seidman rt aI., 1984). This enzyme, found in secretOf)' granules of

most neuroendocrine cells, including those in atrial myocytes. cleaves the two C·tenninal

arginine residues from ANP-(I-128) (Lynch el 01., 1988). The resulting I26-amino acid

peptide, called pro-ANP, seM'.s as the precursor to the bioactive form of the hormone,

ANP-(99-126) (Schwartz et 0/., 1985; Thibault el 01.• 1985) (See Figure I).

PrOo-ltrial Nltriuretic Peptide.. " 126

;£
98~99 126r----------'..:,I _

Biolctive ANF

ripn I. Scbc:mIti.c diapam of ral pro-ANP and proowilll by the lIlyocardlal celli
andhcantissuc.(AdaptcdrromSeif!ltJI.,1992),

The peptide derived from the N·terminal of pro-ANP upon cleavage. ANP-(I·

98) has been identified in plasma (Thibault f!I ul., 1988), however its biological activities,



if any, h.....e not yet been clearly elucidated (Sei et al., 1992). Studies using both the

isol.ted perfused heart and primary aerial myocyte model systems have ....erified that only

pro-ANP is stored in the .trial myocytes, while product peptides accumulate in the release

medium (Lang tt ai, 1985; Shields and Glembotski, 1988; Ito el aI., 1988). Until very

recently it was not known whether activation of ANP occurred in or on the myocyte

concurrently with secretion. or whether c1eav.ge takes place after release on either the

myocyte surface or the surface of a nonmuscle cardia.. cell. However in 1992, Sei et at

using primary cultures and reversed-phase and ion-exchange high perfonnance liquid

chromatography (HPLC), coupled with imrnunoprecipitation of biosynthetica1ly labeled

ANP. demonstrated that ttle myocyte was the cell type responsible for pro-ANP

maturation and that this cleavage event takes place simultaneously with secretion of the

pro·ANP. In 1991. Gilloteaux tt al., without addressing the exact point at whictl pro­

ANP is transfonned into the bioactive form, described an ultrastl\.lctural

immunolocalization ofttle ANP pathways in fetal. neonatal and adult Syrian hamsters. In

the three stages of cardiac development, they localized and confirmed irANP production,

packaging in atrial granules and sarcoplasmic transport by cytoskeletal elements and

described a situation in which irANP material re3ched the sarcolemma where it was

released by exocytosis. Diffusing through the endomysium (a cellular matrix between the

myocyte and the endothelium). irANP material in the fonn of pro-ANP was then bound

and specifically taken up by the endocardial and epicardial endothelial cells as well as by

endothelial cells of blood vessels. Pro-ANP was then activated into ANP and transported

transcellularly by receptor-mediated endocytosis before being released into the circulatory

system by exocylosis. The integrity of the endothelium was essential in maintaining

control for activation and release of ANP into the circulation in response to an appropriate
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stirnllus. The fact that endotbdin. a lltWly discovered ionnone which is teereted by

endothelial cdIs, has been demonstrated to be a VCf'j potent stiJftlIus for ANP rdwe

(Garcia et aI., 1990; Schiebinger and Gomez-Sanchez, 1990), supports a role for the

endothelium in regulating ANP rdease.

The atrial appendages are the major source of circulating ANP (SelII d aI.,

1992). However there is evidence supporting the importance of alternative W)Urces. For

example, Hoffman et al. (1990), demonstrated that in atri,1 appendectomiud conscious

rats, administration of deoxycorticosterone acetate (DOCA), a mineralocorticoid known

to stimulate ANP release in rats, (Ba1lennan el 01., 1986~ MetzJer el 01., 1981) and

congestive heart failure could still increase ANP levels and cause modulation of renal

sodium handling. The ventricles have proven to be one alternative source of ANP.

Ventricular cardiocytes in culture secrete ANP into the incubation medium or into the

perfusion fluid (Bloch tl al., 1986). In models of ventricular hypertrophy, ANP synthesis,

stocage and release is lUg.rncfted (Kinnunen et aJ., J992) and the amount of rdease

depench on the degree of ventricular hypertrophy (Ruskoaho el al, 1989). Under certain

conditions, then, sources of ANP other than the atrial appendages, JOCh as the ventricles,

appear to be important for natriuresis, diuresis and hypotension.

In recent yws, other natriuretic peptidcs have been discovered. The first to be

identified and sequenced was I 26-amino acid peptide from the porcine brain, tamed

'BNP' (Sudoh et aJ., 1998). Another member, teoned 'CNP', which shows. striking

sequence homology with the other peptides, was then isolated from porcine brain

(Rosenzweig and Seidman, 1991). Urodilatin, identified in human urine, consists of the

amino acid structure of ANP extended at lhe amino acid terminal by four residues

(Rosenzweig and Seidman, 1991). H:)wever, while the whole family of natriuretic

11



peptides have similar natriuretic properties., more work is necessary to identify the specific

physiological significance of each peptide (See figure 2).

Flprr 1. A schc:matie rcprescnlation or Atrial Natriuretic Peptide. Amino acids within
the l7-member ring that are Identical In all natriuretic pc:ptldcs are slladc:d.
(AdaplcdfromRoscn7;weisIllldSeidrnan, 1(91).

1.5. ANP Receptor!

As with other peptide honnones. ANP exerts its effects by binding to specific

membrane-bound receptors in target tissues. To date, \hree types of ANP·specific

receptors have been identified: two different guanylate cyciase-linked receptors that

appear to mediate most of ANP's biological activities and a clearance receptor which may

playa role in clearing ANP from the circulation (Rosenzweig and Seidman, 1991). BNP

and CNP interact with ANP receptors on bovine aortic smooth muscle cells (Song et al.,

1988), cultured rat vascular smooth muscle cells (Hirala et aJ., 1988), rat kidney

{Oehlenschlager et al., 1989), and bovine adrena; cortex (Hashigushi e/ 01., 1988). There
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is little evidence to suggest that these peptides bind to distinct receptor subpopulations

(Fethiere and De Lean, 1991).

1.6. Physioloeical effects ofANP

Although it is not clear whether all actions of ANP are cOMP-dependent, the

increase in plasma, urinary and tissue cOMP often correlates with the effe.:ls of ANP

(Cusson et 01., 1987). In isolated human glomeruli, Ardaillou et 01. (1985) reported Ihat

synthetic ANP could activate guanylate cyclase, an enzyme responsible for the intracellular

formation ofcOMP, suggcsting a role for cGMP as a second messenger of ANP. III vivo,

ANP administration markedly stimulated glomerular production of cOMP, which

coincided with a marked increase in glomerular fiitration rate (GFR). Dibutyryl cGMP

treatment caused increased GFR, therefore cGMP seemed to be r,t:ting as the second

messenger of ANP actions in the kidney (Huang et al., 1985).

ANP administration also inhibits aldosterone synthesis and release (Atarashi el

al., 1984; Vari etal., 1986), but in contrast to renin administration, cGMP does not seem

to be involved in this inhibition (Vari eI al., 1986). This effect may be mediated through

unknown receptors or through known receptors utilizing different transduction pathways

(Rosenzweig and Seidman, 1991). In 1990 McCarthy et 01. demonstrated that ANP can

differentially affect two different populations of calcium channels that may be involved in

aldosterone secretion. Thus, ANP-induced inhibition of aldosterone secretion may be

partially mediated via a reduction of calcium currents. De Zeeuw el al. (1992) have

recently summarized the effecis of ANP in humans.

Acute administration of exogenous ANP results in natriuresis and diuresis in

rats and these effects are mediated by activation of guanylate cyclase and production of
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cyclic guanosine monophosphate (cGMP) (Appel et aI., t9.86). ANP administration

causes an increased g10lmrular filtration rate in dogs (Burnett ~t aJ., 1984) and baboons

(Bourgoignie ~t aJ., J986). This rate that did not always correlate with diuresis and

natriuresis in these animals, suggesting that a renal tubular effect may be involved

(Mendez ~t oJ., 1986). RC5Illts of microperfusion studies in anesthetized rabbits indicates

that a distal segment of the kidney may be involved. since there was no detection of a

direct effect of ANP on proximal tubule transport (Baum and Toto, 1986). Using in vivo

microcatheterization of the whole medullary collecting system in dogs, Sonnenberg et 0/.

(1986) demonstrate an ANP·induced reduction of tubular salt reabsorption compared to

results of control experiments, indicating that ANP was an inhibitor of nonnal sodium

reabsorption from the medullary duct, and that such an inhibition was necessary for the

natriuretic response.

ANP is a potent vasorelaxant in large arteries (Currie et 01., 1983) and this

effect is mediated through production of cGMP (Winquist ~t al., 1984). However, the

acute hypotc.'lsive response to ANP administration appears to be due to ~ decreased

cardiac output resulting from reduced preload and consequently Moke volume. This

effect has been shown in sheep (parkes et of., 1988) and rals (Lappe et oJ., J985). The

preload reduction found in rats may be mediated by reduced net capillary absorption rather

than an cffC{:t on venoto;. capacitance (Trippodo and Barbee, 1987) with ANP altering the

extracellular fluid dj~~ribution to favor interstitium over plasma (Rosenzweig and Seidman,

199J). However, Woods el aJ. (1989) reported that, in conscious rabbits, ANP lowered

metlJt arterial pressure mainly by decreased atrial filling pressure and cardiac output and by

inhibiting neuronal cardiovascular reflex respons~s. ANP caused reversible los:; of fluid

from the vascular compartments and these effects were due to direct circulatory actions of
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the peptide that did not include generalized vasodilation. These studi~ suggest that.

decrease in intravascular volume due 10 efflux of fluid from the capillaries wu not

responsible for the fall in cardiac oulput following ANP infusions.

ANP also interacts with renin and aldosterone and thus has the potential 10 play

a major role in hemodynamic homeostasis. ANP inhibits renin release from

juxtaglomerular cells (Kurtz el al., 1986; Scheuer el al., 1987). This inhibition correlates

with increases in cOMP and it is believed that the inhibition occurs by a cGMP-medialed

pathway via a guanylate-cyclase associated receptor for ANP (Kuru. e( aI., 1986;

Rosenzweig and Seidman, 1991).

1.7. ANP and Cardiovascular Diseases

It is estimated that more than 90010 of hypert(:;'lsive patients are affiicted by a

disease ofan unknown etiology, refened to as 'essential hypertension'. Theories about the

causes of hypertension include: a renal defect in sodium excretion, increased sympathetic

nerve activity, inappropriately elevated aldosterone production. disordered calcium

homeostasis, altered vascular compliance, enhanced sensitivity to vaspressor mechanisms

and a relative lack ofvasodilatory substances (Hollister and Inagarni, 1991). All of these

theories could be associated with ANP actions. ANP seems to be able to antagonize many

mechanisms proposed as causes of EH. The smooth muscle relaxing properties of ANP

counteract enhanced arteriolar vasopressor effects leading to dilatation and antagonism of

an increase in central blood volume. Natriuretic and diuretic actions of ANP may reverse

a def"t in sodium excretion and an ANP·mediated inhibition of renin release and

aldosterone synthesis. ANP release may. then, antagonize vasopressor and volume

expansion mechanisms for elevation of blood pres:.ure. Decreased activity in the central
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nervous system by peripheraf (Nakamura and Inagami, 1986) or centraf mechanisms

(Aoras, 1990) or by an interaction with the cardiopulmonaJY and arterial baroreceptor

mechanisms (Takeshita el al., 1987) may also represenl means by which ANP could act as

an antihypertensive agent.

ANP hag antihypertensive actions. however it is uncertain whether abnonnal

ANP levels contribute to hypertension. HaUister and inagami (1991) sununariz.ed the

findings of37 studies involving plasma levels of ANP in hypertensive and nonnal patients,

concluding that after age-, sodium intake-. and posture-adjusted elevations in plasma

ANP. elevated concentrations of ANP were associated with essential hypertension with

end organ damage or volume dependent, secondary forms of hypertension. In a study

involving the offspring of hypertensived, Ferrari el al. (1990), indicated that both acute

and chronic sodium loading produces less of a rise in plasma ANP concentration in Ihe

normotensive offspring of hypertensive patients than in age-matched offspring of

normotensive subjects.

It is also possible that hypertension is related to resistance 10 ANP actions or to

enhanced ANP clearance. Essential hypertensive patients require higher renal perfusion

pressures to excrete sodium. suggesting a reduced renal response to ANP (Hollister and

Inagami. 1991). It has also been reported that sympathetic nerve activity may be increased

in hypertension (Dibona. 1989) and renal sympathetic nerve activity can antagonize the

natriuretic and diuretic responses to ANP (Morgan et al., 1989), further supporting the

resistance hypothesis. Alternatively, accelerated clearance of ANP could result in

expanded plasma volume, a defect in the excretion of salt load. and less antagonism of

vasoconstrictor mechanisms. However, it is important to note that a role for accelerated
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ANP clearance in euential hypertension has not yet been established (HOUiRa- and

lnagami,I99I).

Bolus as well u short and long term infusions of ANP have been reported to

lower blood pressure (Cusson el aI., 1987; Cusson d oJ., 1990; HoIliRa- and lnagami.

1991). However the half-life of ANP is very short (4-5 minutes) and studies utilizins

alternative routes of administration or ANP analogs with Ionga- half lives have not been

very successful (Kreiter tt aJ.• 1989).

Significantly hisher levels of ANP have been demonstrated in congestive heart

failure (CHF) and valvular diseases. These high levels of ANP were suggested to arise

from chronic elevation of left and/or risht atrial pressure (Bates d aJ., 1986) and could be

considered an appropriate response to maintain circulatory homeostasis (Dussaulc and

ArdaiUou, 1990). Other stimuli may be involved, however. since in mitral stenosis, atrial

fibrillation influenced ANP release independently ofatrial presSlJre or tension (Dussaule el

al. 1988). As Perrella tt 01. (1992) reported, in acute CHF. the increase in plasma ANP

is regulated by release of stored peptide. and in chronic;; CHF. e1ewtion of ANP is

maintained by an increase in atrial synthesis. This findins conflictl with that of Moe d aI.

(1991) who indicated that ventricular ANP production may serve to suslain the higher

plasma ANP concentrations in CHF.

Plasma levels of ANP can be up to SO times higher than normal in patients with

chronic renal failure (Dussaule and Ardaillou. 1990). Elevations in plasma ANP level, in

diabetes mellitus have also been implicated in the mechanism of glomerular hyperfiltralion

which occurs at the early stage of the disease (Dussaule and Ardaillou, 1990). In rats.

streptozotocin-induccd diabetes-dependent increases in ANP, associated with increued

filtration, were inhibited by anti-ANP antibodies (Onola tt 01., 1987).
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Although there are still many nissing links, the evidence suggesting ANP is

playing a role in cardiovascular diseases is abundant

1.8. Future DirccliOAl of ANP Researda

To gain more insight into the role of ANP in hypertension and cardiovascular

diseases, research will likely focus on the use ofsynthetic ANP or analogs of ANP which

degrade or are metabolized less quickly. Similarly, work with neutral endopeptidase has

proved very infonnative. Neutral endopeptidase 24.1 1(NEP) is the major ANP degrading

enzyme. Inhibiting this enzyme., and thus potentiating the effects of endogenous and

exogenous ANP. (Murohara and Johnston, 1992) could have important experimental and

therapeutic implications. In rats with CHF. administratration of a new NEP inhibitor

caused natriuresis and diuresis and sustained effects on hemodynamics, possibly through

poter.tiation of biological activity of ANP (Murohata and Johnston, 1992). Devising a

new therapeutic model for treating CHF is important because the short half-life of ANP.

and its degradation by the gastrointestinal system, complicates infusion procedures. Other

exciting areas in ANP research involve studies with transgenic mice which overproduce

ANP. enzymes which interfere with cleavage of ANP. guanylate cyclase antagonists, and

the devdopment ofcompetitive ligands for the ANP clearance receptor.

1.9. Clrdiac Ganglia

The presence of autonomic ganglion cells in or on the mammalian hem was

first established almost 90 years ago (Meiklejohn ar.d Walker, 1914). These cells are

found in the subepicardial tissue of the atria and auricular appendages. around the roots of

the great vessels. along the interatrial and atrioventricular sulci, in the interatrial septum
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and in the vicinity of the sino-atrial and atrio-ventricular nooes (Mitchell, 1956).

Historically, cudiac neurons have been considered to be primarily efferent postganglionic

cholinergic parasympathetic neurons (Moravec eJ aJ., 1986; Blomquist et aJ., 1987; Ardell

and Randall, 1986). It is now well accepted that the manunalian heart is iNtervated by

both divisions of the autonomic netVous system. Individual neurons receive input from

efferent parasympathetic fibers originating in the medulla oblongata, acting as the major

mediator ofcardiovascular reflexes (Seabrook et aJ.. 1990). Intrinsic cardiac neurons also

receive physiological input !Tom efferent parasympathetic preganglionic neurons and from

sympathetic postganglionic efferent neurons and afferent axons arising from cnrdiac and

pulmonary mechanoreceptor! (Annour and Hopkins. 1990; Gagliardi eJ aJ., 1988). Ardell

el oJ., (1991), recorded the responses of 175 spontaneously active neurons from ventral

right atrial and ventral intraventricular ganglionated plexuses in anesthetized dogs whose

hearts were chronically decentralized i.e.. whose afferent and efferent nerve fiber

connections were severed from the central and peripheral nervous systems. Spontaneous

activity was correlated with the cardiac cycle in 57% of atrial and 62% of ventricular

neurons. Cardiac ganglia can generate spontaneous activity that is also modified by

cardiac mcchanoreceptors indicating that these neurons receive afferent inputs from

cardiac mechanoreceptors and thus may be involved in intrinsic modulation. The cardiac

ganglia, then, consist of afferent. efferent and local circuit neurons, all capable of

interactive control of cardiac function, with the role of the intrinsic cardiac ganglia on

ANP release to be elucidated.
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l.tO. Clrdiac Neuropeptides

Nerve fibres immunoreactive to neuropeptide Y, vasoactive intestinal

polypeptide, somatostatin, substance P (SP), and calcitonin gene-related peptide (CGRP)

have been demonstrated in or on the heart ofseveral species (Wharton et aL, 1981; Weihe

and Reinecke. 1981; Muldemy elaJ., 1985 and Moravec el 01" 1990). CORP- and SP­

colltaining nerve fibers have been identified around the coronary vessels. close to

myocardial cells. as well as under and within the pericardia and endocardia (Muldeny et

al.• 1985; Franco-Cereceda el al., 1987). These fibers are also associated with the

sinoatrial node and cardiac valves (Ganten el al., 1991). In the ventricles, CGRP- and SP~

like immunoreactive nerves are also mainly associated with blood vessels and the

endocardia and pericardia (Ganten ef al., 1991). In addition, varicose CGRP- and sp·

immunoreactive nerve tenninals can be observed around local parasympathetic ganglion

cells associated with the atria of the heart. as well as dose to some sympathetic ganglion

cells in the stellate ganglia (Ganten et al., 1991). Some intrinsic cell bodies have also been

demonstrated to be immunoreactive for substance P (Baluk and Gabella, 1989), despite

the fact that these sensory fibres have been considered tn be exclusively of elCtrinsic origin

from the dorsal root ganglia (Urban and Papka, 1985). Functional studies with peptides

have demonstrated an important role for the peptidergic innervation of the heart. In

guinea-pig atria treated with adrenergic and cholinergic blockers, transmural stimulation

still caused a positive chronotropic response which was inhibited by tetrodotoxin (Saito el

al.• 1986a). This effect was abolished by capsaicin Uld mimicked by CORP application.

Capsaicin selectively abolishes SP and CGRP iMervation in rats if administered neonatally

(Nagy et al.• 1981). Rankin and Scott (1990), demonstrated that ablation of SP and

CGRP innervation in the rat heart could significantly decrease ANP release in vitro and in
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vivo and many studies have demonstrated lhe cardiodynamic effccts of injecting peptide!

into the cardiovascular system (Armour. 1989; Thorn el al., 1987; Lappe eI al., 1987). In

the guinea-pig.. bolus injections of SP resulted in ;,radycardia followed by a tachycardia in

some preparations (Hoover and Hancock, 1988). In the rat, SP administration resulted in

significant reductions in coronlU')' blood Dow (Kulakowski eI 01., 1983). Exogenously

applied CGRP exerted a positive chronotropic cff'ect on the isolated rat atrium in a dose­

dependent manner (Saito el al., 1986a). Gennari el al. (1991) suggested that CORP

stimulated secretion of ANP leading to a vasodilatory and hypotensive effect in humans.

Thus, neuropeptides are present in the heart and are capable of modulating cardiac

activity.

1.11. Aims of the study

One of the major focuses of this project was to investigate the role of capsalein­

sensitive peptidergic fibres in ANP release. Capsaicin is a potent depletor of Substance P

and CGRP peptidergic fibres when administered neonatally (Nagy el al.• 1981). Therefore

capsaicin may be used to study the role of these peptidergic fibres on cardiodynamiClo and

ANP release. Furthermore. the role of the intrinsic cardiac ganglia on ANP release had

not been previously assessed. Therefore the effect of electrical stimulation of tile intrinsic

cardiac ganglia on ANP release in the in vitro isolated perfused heart (Langcndorffmodel)

was investigated. More specifically. the aims ofthis study were:

1) To clarify the previously postulated role of SP and CGRP in ANP release

(Rankin and Scott. 1990).
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2) To confinn the ability of nconatal capsaicin-treatment to abolish SP and CGRP

innervation in rat hearts.

3) To investigate the role of the intrinsic cardiac ganglia on irAN!' release and

cardiodynamics by electrically .timulating a previously identified ganglion­

dense (termed 'ganglionic') region ofthc epicardium of the isolated perfused rat

hoart.

3.1. To compare irANP release and cardiodynamics during ganglionic

stimulation with irANP release during stimulation of an epicardial

region of the isolated perfused rat heart that was not dense with

ganglia (tenned 'non-ganglionic').

3.2. To investigate the role of SP and CGRP in irANP release during

stimulation of 'ganglionic' and 'non-ganglionic' regions of the

epicardium ofthe isolated perfused rat heart.

3.3. To investigate whether irANP release during electrical stimulation of

the intrinsic cardiac ganglia is linked to the cardiodynamic changes

that ensue upon stimulation.

3.4. To investigate whether irANP release during stimulation of the

intrinsic cardiac ganglia is linked to the simultaneous stimulation of

cardiac adrenergic or cholinergic nerve fibres.

4) To detenni.ne ifSP and CGRP have a role in modulating irANP release during:

• in vivo right atrial pacing in the anesthetized rat (a preliminary study)

• in vllm right atrial pacing in the isolated perfused rat heart

6) As irANP release during electrical pacing has been reported to be enhanced

during volume expansion (Bilder el al., 1989), to determine if SP and CORP
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have a role in modulating irANP release during Itl vitro right atrial volume

expansion accompanied by electrical stimulation of the right atria in the

isolated perfused rat heart

6) As the storage of irANP in the cardiac myocyte" seems to be unaffected by

neonatal treatment with capsaicin (R.ankin and 3cott, 1990), to carry out RNA

isolation and probing for ANP mRNA to determine whether or not capsaicin

affects irANP synthesis.
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CHAPTER TWO

2.0. MATERIALS AND METIIODS

1.1 Animals

For experimental procedures described in sections 2.3, 2.4.1 and 2.5~2.6,

pregnant Sprague-Dawley female rats were purchased from Canadian Hybrid Farms, Hall's

Harbour. Nova Scotia, Canada. Male and female pups were treated as per section 2.3,

Male Sprague-Dawley fats (killed at 300-400 grams), for experimental procedures

described in section 2.4.2 and 2.4.3. were purchased from Charles River Inc., Montreal,

Canada. The source of the rats changed because Canadian Hybrid Farms discontinued its

supply.

Rats were maintained under standard light and dark temperature conditions

(lights on al 0800h and off at 2000h) at 20-22 °C and 40-60% humidity. Housing was

provided in rectangular shoe box cages made of polycarbonate plastic, with a detachable

melal rod lid (2.3 adult rats per cage). Bedding for the cages consisted oCBela-chip wood

chip bedding purchased from Charles River Inc. Diet consisted of free access to Purina

Ral Chow IIT-SOI2 (Ralston Purina Company) and lap water.

2.2 Capsaicin treatment

Pregnant females were observed several times every day. The day the rat pups

were discovered was considered the first day of life. Neonatal rats were treated with

capsaicin, (SOmglkg s.c.-Sigma 98%; lolli S9F7080) at 2,3,4 and 7 days, and 2 and 4
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weela after birth and used at approximately 12 weeks of age (2s0-400g). Capsaicin wu

administered subcutaneously at the bade of the neck with a small JlUged need&e (300112;

Sedan. Dickenson). After administntion of the dnJg. pinching the skin at the point of

needle insertion kept drug leakage at a minimum. All pups were subjected to the same

treatment schedule. For companson, a control group wu treated with the vehicle (IQlI.

ethanol and 1001. Tween 80 in 0.9'1. saline) alone.

1.3 Cardiac ganglia .tudies

1.3.1 Experimental apparatus for /11 vitro isolated perfused rat heart

Initial studies showed no significant differences in irANP release

between male and female rats , therefore unless otherwise slated, both sexes were

used throughout the studies. Capsaicin- or vehicle-treated rats of approximately 12

weeks of age (ranging from ]S().450g for male rats and 150-2808 for female rats) wa"e

anesthetized with 60mglkg sodium pentobarlJital administered intraperitoneally. The

ascending aorta was isolated and catheterized with polyethylene 160 tubing (inner

diameter 1.14 mm, outer diameter 1.51 mm; Clay Adams). The heart was flushed with

chilled and heparinized (50 IUJIOOg) Krebs buffer solution, pH-1.4 (See Appendix A for

details). All vessels attached to the heart were excised and the heart wu mounted on a

modified Langendorif apparatus. The entire protocol wu completed in less than 2

minutes. The mounted heart wu perfused with gassed Krebs (!IISYeOi5%COz) at a now

rate of 5 mis/min (Gilson Minipuls 2) and allowed to equilibrate for 40 minutes prior to

carrying out the protocols; buffer was maintained at ]7.50 C with a heated waler jacket.

A cotlon suture (#.4.0, Ethicon) wu inserted through the apex of the heart and attached 10

• Grass FTOJ force tranducer to record ventricular force of contraction. Resting tension
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of the tissue wu set at 0.58. Perfusion pressure was monitored by a Tranlec 60-800

transducer. Force and pressure were amp1i.6ed and recorded wilh • Beckman R6J 1

Physiograph. The height of the contractions were measured (in millimeters from the

baseline) to assess the inotropic state of the isolated heart. Figure 3 is a diagrammatic

representation ofthe experimental apparatus ofthc isolated perfused rat heart preparation.

r1preJ, Diagrarnmatical teprcsentalionorthe experimental apparatusror the lsolatedpctfuscd rat heart
ptcplll'lCion.
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1.3.1 Eledril:alstimulation or the cardiac Iinglia.

Nine capsaicin, seven vehic1e·treated and eight untreated animals were used in

this investigation. A previous anatomical study in our lab (power el aJ., Ibstrlct in press)

demonstrated the location of the epicardial ganglionic plexuses of the rat. Electrical

stimulation of these 'ganglionic' regions consisted of square wave pulses (50Hz, 15-201U,

41lA delivered in 5s trains at variuble intervals) delivered through a bipolar Tungsten

electrode driven by a Grass S48 stimulator. Regions of the rat epicardia in which no

ganglionic plelWses were identified, designated 'non-811nglionic', were stimulated under

identical electrical parameters as a control (See Figure 4 for location of 'ganglionic' and

'non.ganglionic' stimulation sites). The initial site of stimulation was alternated from

experiment to experiment (i.e. in one experiment the ganglionic site was stimulated first

and in the next experiment the non-ganglionic site was stimulated first). A forty minute

equilibration period was allowed before the stimulation of the second sile in every

experiment. Perfusate was collected in chilled 5 ml polypropylene test tubes (Sarstedl)

containing 100 III 1M Hel over 20 secolld intervals at 4 and 2 minules prior 10 electrical

stimulation and at OJ, 0.6, I, 1.3 and 2.3 minutes after stimulation. Samples were stored

at ·200 C until they were assayed for irANP.
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FIs:urc4. SChCI\\'1Cicdillgmlnorlhedors"r\lCWOran isolated rat 1Ic.1n showing ganglionic (g) lllld
llon·S:lIIgllonlcrcslons(ng)ofclCl:lricnlscimulnllon.



2.4 Pharmacoloeieal studies

2.4.1 Capsaicin

Five capsaicin- and six vchi~reated animals WU'e used for this investigation.

The in vitro isolated ral heart preparation was the same as in section 2.3.1. ~riCil

stimulation ofganglionic region oflhe epicardium COMsted of square wave pulses (50fu,

15-201lS, 4J.lA delivered in 5s trains at variable intervals) delivered through a bipolar

Tungsten eleclrode driven by a Grass 548 stimulator. Perfusate was collected in chilled 5

ml polypropylene lesl tubes (5arstedl) containing 100 IJI 1M HCI over 20 second intervals

at -4, -2, 0, 0.5,1,1.5,2, J, 4,5,6,7,8,9,10, 11, 12, 13, 14, 14.5, IS, 15.5, 16, and 17

minutes where ganglionic stimulation occurred at 0 and 14 minutes, respectively; tissues

were perfused with a I0-6M capsaicin (Sigma Chemicals) solution between 4 and 9

minutes. Capsaicin solution wu made with Krebs buffer. Samples were stored al -200 C

until they were assayed for irANP.

1.4.1 Atropine

Adult male rals at approximately 350 g (Charles River Inc.) were used for this

part of the study (n=6). The in vitro isolated nl heart preparation was the same as in

2.3.1. Electrical stimulation of ganglionic region of the epicardium consisted of square

wave pulses (50fu, 15-20~ 4~A delivered in 5. trains at variable intervals) delivered

through a bipolar Tungsten electrode driven by a Grass 548 stimulalor. Perfusate was

collected over 20 second intervals in chilled 5 ml polypropylene test tubes (Sarstedt)

containing 100 IJI 1M HCI at -4, -2, 0, 0.3, 0.6, I and 2 minut~ where ganglionic:

stimulation occurred at 0 minutes. Tissues were then given a 20 minute equilibration
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period and perfusate wu samp~ at 22., 24, 25, 25.3, 25.6, 26 and 27 minutes where

ganglionic stimulation occurred It 25 minutes and pedusion of 104M atropine (Sigma

Chemicals) began at 17 minutes. Capsaicin solution waa made with Krebs buffer.

Samples were stored at -2O"C until they were assayed for irANP.

2.4.3. Cu.nethidine

Adult male rats at approximately 350 g (Charles River Inc.) were used for this

part of the study (n=6). The in ..,Uro isolated rat heart preparation was the same u in

2.3.1. Electrical stimulation of ganglionic region of the epicardium consisted of square

wave pulses (50Hz, 1S-20~s, 4~ delivered in 55 traira at variable intervals) delivered

through a bipolar Tungsten electrode driven by a Grus 548 stimulator. Perfusate wa3

collected over 20 second intervals in chilled S mJ polypropylene test tubes (Sarstec!t)

containing 100 ~ IWo HCI at -4, -2, 0, 0.3, 0.6, 1 and 2 minutes where ganglionic

stimulatkm occurred at 0 minutes. TISSUes were then given a 20 mioote equilibration

period and samples of perfu5ate were taken at 22. 24, 25, 25.3, 25.6, 26 and 27 mi.....tes

where a second ganglionic uimulation occurred at 25 minutes and perfusion of 10-6 M

guanethidine (Sigma Chemicals) solution began at 17 minutes. Guanethidine solution was

made with Krebs buffer. !Jamples were stored at -20" C until they were assayed for

irANP.

2.S Cudi.e p.clng studies

2.5.1. III vivo cardiac padng (a preliminary innsl{&.tion)

Three capsaicin- and four vehicle-treated rals were used for this study. Rats

were anesthetized with 6Om&'ks sodium pentobarbital administered intraperitone.a1Jy. The
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right carotid artery wu catheterized with polyethylene 90 tubing (mner diamc:ta' 0.16 mm,

outer-diameter 1.27 nun; Clay Adams) and blood prusure wu monitored by I Tnontec: 60­

SOO transducer. Through the left IUpalor vena cava. one pole of. bipolar TungJten

dectrode was positioned within the right atria. 1be other poSe was Ittached to the wall of

the chest cavity. Cardiac pacing (40'1. higher t1wl basaJ hean me) consisted of square

wive pulses (3.5.S.68 Ih. 5ms. 0.S5~) delivered through the: Tungsten electrode driven

by a Grass S48 stimulator. Blood pressure and heart rate, derived from the pulse pressure

signal, were amplified and recorded with a Beckman R611 Physiograph. Expffimental

procedures began 40 minutes after catheter placements. Blood samples (2 mlIsample) via

the carotid artery were collected in chilled 5 m1 EDTA test lObes (Vaeutainer, Becton,

Dickinson) at 4 and 2 minute prior to pacing and at 2 and 4 minutes after pacing. An

equal volume of donor blood from adult Sprague Dawley rats (Canadian Hybrid Farms)

was added to the circulation immediately after blood wu sampled. Samples (Ulduding a

sample ofdonor blood) were centrifuged fi'T 10 minutes at 2500Xg and 4°C. Plasma was

separated from blood and stored at ·20"C until assayed for irANP.

2.5.2 I" vitro atrial plclng

Six vehicle-treated rats were used in this part of the study. The experimental

preparation was the same u the: isolated perfused heart protocol described in section

2.3.1. Electrical pacing (WI. higher than basal heart rate) of the atria consisted of square

wave pulses (3.S4-S.12 Hz, Sms, ].S~A) delivered through a Tungsten electrode placed

on the right atrial wall. Perfusate was sampled in chilled SmJ polypropylene tcst tube,

(Sarstedt) containing lOO~.d 1M Hel over 20 second intervals at -4, .2, 0, 0.], 0.6, 1.0.
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1.3 and 2.3 where onset of pacing occ:urrccl at 0 minutes. Samples were stored at ·2O"C

until they were assayed for irANP.

1.6. /" Wlro atrial .trdcla and pacinI

Six capsaicin and six vehicle-treated rats were used for thi, part of the study.

The experimental preparation was the same as the isolated perfused heart protocol

described in section 2.3.1. However, for these experiments, following cannulation of the

ascending thoracic aorta, a balloon tipped Fogerty Arterial Embolectomy Catheter (#12­

080-3F, Baxter) was inserted into the right atrium via the right external jugular vein.

Otherwise, the Langendorff setup was unchanged. Electrical pacing (6O"ft basal heart

rate) of the aln. consisted of square wave pulses (3.84-5.12 Hz, Sms, 3.SpA) delivered

through a Tungsten c1cdrode placed on the right atrial wall. Perfusate was collected in

chiUcd Sm! pulypropyknc test tubes (Sarstedt) containing I~ 1M HCI over 20 second

intervals at -4, -2, 0, .3, .6, I, 1.3, 2.3 and 5 minutes where atrial stretch occurred at 0

minutes. li&5UCS Wert given a 20 minute equilibration period (while an expanded atrial

state was maintained) and perfusate sampled IgAin at 25, 27, 28, 28.3, 28.6, 29, 29.3, 30.3

and 33 minutes where onset of .trial pacing, in the p~nce of atrial stretch, occurred ,.:

28 minutes. Sample, were stored at -200C until they were processed for irANP.

1.7. Radioimmunoassay (or atrial natriuretic peptide.

IrANP was measured in perfusate based on • radioimmunoassay method

previously described (Wilson d al., 1986) using commercially available rabbit anti-a.·atriaJ

natriuretic polypeptide serum (RAS8798, Peninsula Laboratories. Belmont, CAl; refmed
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to IS ANP antibody in this text. This antibody is not aou reactive: with other ANP

fractions. A portion of the assays were prepared with the Moric:h mon0c1onai antibody

(Jeba II aL, 1986) doJWed from N. Wilson, University of British Columbia, CanIda.

Briefly, on day I, experimental samples were thawed immediately prior to way

preparation. A standard stode of Atriopeptin Ul (0.5J,lgfml, i'8799, PenilllUla

I...aboratories, Bdmont, California) was diluted to t, 2.5, 5, 10, 25, SO and 100 pgflOOJtl

and used as the standard curve 10 compare the e:cperimental samples. Test tubes were

arranged so that a damage (i.e., non-specific binding) and maximum binding sample wu

followed by the standard curve (all in triplicale). Damage samples c(lnlained 200 J,ll of IX

phosphate buffer (see Appendix B for details). Maximum binding samples contained 100

III IX phosphate buffer and 100 J.il of ANP antibody. Standards contained 100 ~ of

diluted standard stock and 100 ~ of ANP antibody. Each experimental sample beinS

assayed was prepared as a noD-specific.-binding fill duplicate) and specific-binding (In

triplicate) sample. Therefore, each experimental sample has 5 test tubes wigned 10 it: 2

for the non-specific binding and 3 for the specific binding. Non-specifac-binding samples

contained 100 ~ ortlle thawed experimental sample ancIlOO J,ll of Ix phosphale butTer.

Specific--binding samples contained 100 pJ of the thawed experimental wnple and 100\.11

of ANP antibody. One quality control sample was prepared in the same manner IS the

experimental samples, however 100 J!I of rabbit serum was substituted for 100J,l1 orille

experimental sample. All test tubes were agitated on a test tube vorteller and stored It 40

C for 72 hours. On day three 1251_ANP was diluted in Ix phosphate bulTer to yield

approximately 2500 counts per minute/lOOj.lI. 100j.d of 12SI·ANP was added to every test

tube in the assay. All tubes were agitated and stored at 4°C for 24 hours. On day four,

lOO~ of goat anti-rat 'gG serum (GARGG-SOO, Peninsula laboratories, Belmont, Ca.)
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'ollow<d by 600 III ofpolyethyleneg)yeol8000 (100 ...... poIydhylene glyooI+lOOgrams

distil&ed wilier, FISher" Scientific. Nepean, Ontario) wu added to each tube. Again. tubes

were: agitated on • vortexer. AU tubes were then centrifuged at soc, l500Xg for 30

minutes. Each individual test tube yielded • precipitate (bound I15I.ANP) and a

supernatant (free 12"I_ANP). A Q)fl'lputcr program linked to • gamma counter calculated

ratios of cpm from nonspecific:specific binding to • value which can be compared to the

cpm from the standard curve dilutions, therefore yielding the final concentration ofirANP

in each experimental sample. All samples for a particular experiment were included within

the one assay and all assays were conducted as described above. For the in vivo

experiments. plasma was not extracted prior to the assay. All measurements were

corrected for nonspecific binding .nd the inter- and intra-assay coefficients of variation

were 8.9'10 (n=36) and 3.9''' (n=ll), respectively. The 80 and 50';' binding (where 100'.1.

is the maximum binding in the absence of standard) of I1SI_ANP were 2.S± 0.86 (n-36,

meani:s.e.) and 6.4±1,1 (n-36, meanh.e.) pg/tube. respectively.

1.8 Immunohistochemistry.

At the conclusion oftbe cardiac ganglia studies hearts were fixed in zamboni's

fixative (See Appendix C for det8l1s). The fatty areas overlying the dorsal surface of the

atri.. excluding the two luricular appendages were washed in phosphate buffered saline

(pBS, See Appendix D for details) for 10 minutes It room temperature. Tissues were

then incubated in 10% nonnal goat serum and 30'1, H202 for 45-60 minutes at room

temperature followed by incubation in primary antibodies to SP (lmmunonuclear, 1:2000)

and CGRP (Amersham, I:5000) for 48 hours at 4"C. Tissues were washed four times for

15 minutes in PBS at room temperature and then incubated in goat anti-rabbit linking



antibody (Sternberger) for 3 hours at room temperature, Tissues were washed again 4

times for 15 minutes in PBS at room temperature and incubated with peroxidase anti­

peroxidase (Stembergef) for three hours at room temperature. Tissues were washed 4

times for 15 minutes in PBS and nerves were visualized with diaminoberWdine. Tissuea

were then dehydrated in successively higher concentrations of ethanol (250/...2 minutes.

50"/0-2 minutes, 75%-2 minutes, l00'lr lO minutes). Finally tissues were washed with

xylene, compressed between two slides, and prepared as whole mounts.

2.9 Determination of mRNA for ANP

2.9.1 RNA Extraetlon

Untreated (n=5) and capsaicin-treated (n=5) adult rats were killed with a blow

to the head and then exanguinated. RNA was extracted by the lithium chloride/urea

extraction method as previously described (Goldin. 1991). Briefly, the thoracic cavity was

opened following a midline incision of the chest wall. Hearts were removed and flushed

with saline. Segments of the atrial appendages, ventricle tissue and liver tissue were

removed and placed in a denaturing solution (3M LiCV6M Urea, 10 mM NaOAc

(pH=7.5). 0.1% sodium dodecyl sulfate (80S), 0.5% j} mercaptoethanol); I mlIlOO mg of

tissue. Tissues of the same type were pooled (i.e., all atrial tissues were pooled together,

efc.), homogenized with a glass-Teflon homogenizer, and transferred to a 10 mI

polypropylene test tube. FtJr each tissue type, the homogenate WI! sonicated (Sonic Cell

Disrupter, Model 16-850. Vertis Co.) on medium power three times for 30 seconds (on

ice) to shear any DNA present and stored overnight at 4°C. The following day the

homogenate was centrifuged at 26,500xg for 30 minutes at 4°C after which the

supernatant was discarded. The pellet was resuspended in 200111 of a O.3M NaOAc
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(pH-7.S)lO.S%SOS solution by vortexing. The homogenate was then extracted with an

equal volume of phenoVchloroform (S0I50:VolumtlVolume). The aqueow phase wu

retained and the interphase and organic layer were re-extracted with In equal volume of

0.3M NaOAc and 0.5% SDS. The two aqucoullaycrs were: pooled and re-extracted with

an equal volume of RNAse-free distilled water (diethylpyrocaroonate-treated distilled

water). The pooled aqueous phase wu extracted with an equal volume of chlorofonn.

The RNA in the final aqueous phase was then precipitated with 0.1 times the volume of

3M NaOAc (pH=5.2) and 2.5 times the volume of 95% ethanol at ~20"C overnight. The

following day, the RNA was collected by centrifugation at 25,500xg fot 15 minutes and

was rinsed of excess salt with 709!e ethanol. Pellets were dried carefully under vacuum

and resuspended in a small volume of RNAse-free distilled water.

2.9.2 AnalysiJ of ANP mRNA

Total RNA was determined by UV absorption at 260nrn. To detect the

expression of ANP mRNA, Northern blot analysis was performed (Sambrook et al.,

1989). For each tissue type, IOllg of RNA was denatured in formaldehyde gel loading

buffer (50% glyccroVlmm EOTA (pH 8.0)/0.25% bromophenol bluelO.2S% xylene cyanol

FF) at 65°C for 5 minutes. The RNA samples were immediately loaded on a 1% agarose

gel and mctionated by horizontal electrophoresis. The RNA was then transferred to

nylon-supported nitrocellulose (Nytran; Schliecher and Schuell) overnight by capilhllY

transfer. RNA was linked to the filter using the automatic UV~selting of a Statslinker

(Stratagene), and then air-dried completely. The filter was prewashed at 6SoC in a O.IX

standard saline citrate (SSC)/O.S%SDS solution [IX SSC=lS0 mM NaCVI5mM Na

citrate (pH 7.0) ] for 60 minutes. The filter was prehybridiud overnight at 6SoC in a
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solution containing 6X sse. lOX Denhardt's Solution, 50mM Tri' HCI ( pH-7.4), 500~

glOO sheared salmon 'penn DNA, and 0.1% SOS. Hybridization was performed overnight

in a solution maintained at 65"C containing 6X SSC. 10';' dextran sulfate. 50mM Tri, Hel

(pH=7.4), JOO!lwml sheared salmon spenn DNA, and 1% SOS in the presence of a up_

labeled gene-specific oligonucleotide probe for ANP (Clontech catlll90Jo-J, loiN 86-4.

BioiCan Sci. Inc.). The ANP probe was radioactively labeled using a 3' end label kit

(Dupont. catNNEP·JOO). The following day the filter was subjected to four] minute

washes in a 2X SSC/O. J% SDS solution at room temperature, and OrIC 30 minute wash in

the same solution at 65"C. The filter was autoradiographed for 24 hours at ·70 "c.

2.10. Analysis of dat••

Values ofirANP levels did not fall into a noooal distribution. therefore for the

purposes of statistical calculations, values of irANP levels were transformed to their

natural logarithms (to normalize data). Since heart rate data fell into a nonnal distribution

tran,fonnation of these data was not necessary. All data is expressed as percentage

change from basal level. or rate (basal level of irANP or basal heart rate =0'1.). Since

standard error values would be uninformative when data i. expressed as a percent'gt of

change. standard error bars do not appear on the figures. Statistical comparison of

changes in heart rate and perfusate jrANP were curied out using Analysis of Variance and

the Dunnet', post hoc test of significance.
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CHAPTER 3

3.0. RESULTS

3.1 Electrical stimulation of the ganglia.

Figure 5 shows a typical polygraph Irace of a heart whose ganglion-dense region

was stimulated under the electrical parameters previously described. Tn this particular

tissue the 5 second stimulus train resulted in cardiac arrest; heart rate returned to a pre­

stimulus rate and then a transient period of tachycardia ensued. Heart rate typically

returned to basal levels 2 minutes after simulation. Stimulation of a Ron-ganglionated

region of the epicardia did not lead 10 a cardiodynamic response.

"....0.'

Fil':Ur'C 5. Polygraph lroce of an isolated perfused r.ll hc:ln before and atlcr electrical stimulation of a
g.1nglionic region or the cpicardia.
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figure 6 shows changes in heart rate and rdeue of lrANP upon stimulation of gq1jonic

and noD-ganglionic sites in 8 untreated animals. Mean basallart rate wu 111 ± 9.6

beats per minute: ran buaI levd of irANP releue wu 8:t: 1.3 ps/IOClJ1I. Ekctrical

stimulation (50Hz, 15·10ps, 4J1A delivered in 55 trains) ofthc epicardial ganglia multed

in a biphasic c:hronoIropic response with an immediate 70"1e (pSO.OOI) decreue in heart

,.te followed by a rebound 23% (pSO.OS) iDClUSe 0.6 minutes after stinwlation. ReIeue

ofirANPwas increased by 2090A (pSO.OS) I minute after stimulation when comJllrN to

the basal levels. Electrical stimulation of non-ganglionic lit~ did not result in any changes

in heart rate or changes in irANP release. Changes in inotropism and perfusion pressure

were not statistically significant.

Ganglionic stilTRJlation ors vehicle-treated animals resulted in similar effects.

Mean basa.lheartratewu 116± II beats per minute; mean basal irANP level wu l2.2±

3.8 pg/loo,d. Heart rate decreased by 71 "..{pSO.OOI) upon stimulation orthe ganglionic

site, followed by I 20"1e (pSG.OS) inaease in heart rate at 0.6 mil'lltes after stimulation.

Release ofirANP was significantly increased by 203% (pSO.OS) I minute after stim.aJation.

In 7 animals treated neonatally with capsaicin the mean buaI heart tate was 114 ±6.1

beats perminutelnd basalirANP reIase wastJ.I±3.6pg1l00~. Again, heart IlItewu

decreased by 59'Io(pSO.OOI) upon stimulation ofthe ganglionic site followed by a 21t

SY.(p:!OO.OS) increase 0.6 minutes after stimulation, however in thil group the increase in

irANP release wu abolished. Differences in basal levels ofirANP were not Slatistically

significant. Inotropic changes and changes in perfusion pressure were not aignificanl.

Figure 7 shows these chlUlges in heart rate and releaseofirANP in capsaicin and vehicle-­

treated animals. Immunohistochemical analysis confinned the presen~ ofinnetvltiOl1 by
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irSP and irCGRP fibers in the 4 vehicle-treated tissues examined, and absence of

innervation by irSP and irCGRP fibres in the 4 capsaicin-treated tissues examined (Figure

8a,8b).
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A

B

Figure Sa. (A) Light miCrograph of CGRP immunoreacthoe nen'c fibres in the ganglionic region of a
\'ehiclc-lrt3ted rat eplClfdla; magnification 480X. (B) No CGRP immunorcactJ\'e nen"e
fibers couJd be demonstr.ucd in the lighl micrograph of a ganglionic rqion of a
capsaicin-trclIed mt epicardia: magmftcatlon 480X
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Figure Sb. (A) Light micrograph of SP immuooreaeth'C ne....'C fibres In the ganglionic region of a
\'Chiclc.ffe3led rat epicardia: magnification 4SOX. (B) No SP immunoreactwc nen'C
fibres could be demonstnncd in the light micrograph of a ganglionic region of a
capsaicin-malcd rat epIcardia: magnification 4SOX



3.2. Pharmacological studies

3.2.1 Capsaicin

Mean basal heart rates wcre 123t7.7 and 118±8.6 beats per minutc and mean basal

release ofirANP was 14.6t 2.1 and 11.1±3.2 pg/l00J.11 for vehicle· and capsaicin-treated

animals, respectively. There were no statistical differences in basal values between

treatment groups. Electrical stimulation of the 'ganglionic' region of 6 vehicle-treated rat

epicardia (50Hz, 15-20J.lS, 4J.1A delivered in 5s trains) resulted in a 70% (pSO.OOI)

decreasc in heart rate followed by a 53%(p:SO.OOI) increase 0.6 minutes after stimulation.

In 5 capsaicin treated animals stimulation of the epicardial ganglia led to an 81% (p:s

0.001) decrease in heart rate followed by a 41%(p:S0.OOI) increase I minute after

stimulation. Release of irANP was increased by 29%(p:s0.OS) at 0.3 minutes after

stimulation in the vehicle.treated group, but capsaicin-treated animals showed no

significant increases with ganglionic stimulation (See figure 9). In the absence of

ganglionic stimulation, perfusion of the ti~es with a IO-6M capsaicin solution had no

significant effect on heart rate in vehicle. or capsaicin-treated groups. IrANP levels of the

capsaicin-treated group were not significantly changed, however the vehicle-treated group

showed a SI%(PsO.OS' increase I minute after perfusion. Reperfusion of the tissues with

nonnal Krebs buffer had no significant effect on heart rate or irANP in either group.

When tne ganglionic region was subsequently stimulated under the same stimulus

parameters, a significant change in heart rate was seen in the capsaicin-treated groups,

however no change was obSClVed in the vehicle-treated group. Capsaicin perfusion and

ganglionic stimulation had no signific.ant effect on irANP release in the capsaicin-treated

group. The vehicle-treated group, however, showed a significant 55'¥. (p:SO.OS) increase
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in release ofirANP. No significant differences in perfusion pcessure or inotropism were

ob••""ol.

3.2.2 Atropine

Mean buaI heart rate of 6 untre;:lied isolated rat hearts wu 115±6.1 beau per

minute and mean release ofirANP wu 10.8±3.6pg/lOO~. Electrical stimulation of too
'ganglionic' region (SOHz. 15-20J.u. 4~ delivered in 5s trains) IUIhed in an immediale

82% (pSO.OOI) decrease in heart rate followed by an 19'I.(pSO.05) increase 0.6 minutet

after stimulation. Release or irANP increased by 53%(pSO.Ol) I minute aft« ganglionic

stimulation. Following a period of perfusion with IO-3M atropine, ganglionic stimulation

resulted in a 200/, increase in heart rate, however the initial decrease in heart rale wu

abolished. During subsequent atropine administration a J8o/,(pSO.05) increase in release

ofirANP occurred 0.6 minu!~ after stimulation. Figure 10 shows changes in heart rate

and irANP release after cardiac ganglia stimulation and atropine perfusion. No significant

difl'erenocs in perfusion pressure or inolropism were observed.

3.2.3 Guanethidine

Mean basal heart rate of 6 untreated isolated rat hearu wu 12J±5.9 beau per

minute and mean release ofirANP was 15.1±4.8pglIOO~. Electrical stimulation of the

'8!~g1ionic' region (50Hz, 15-20~, 4~ delivered in 5, trains) IUIlled in a 96-;.(pSO.05)

decrease in hun rate followed by. 17 % increase 0.6 minutes atier stimulation. Release

ofirANP increased by 36'1. 0.6 minutes after stimulation when compared to basal VaJUCl.

After perliJsion of the tissues with JO-6M guanelhidine. heart rate again decreased by 95±

4% (pSO.OOt) and there was no rebound tachycardia, however irANP release increased by

350/.(psO.05) I minute after stimulation. No significant differences in perfusion pressure
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or inotropism were observed in this study. Figure 11 shows changes in heart rate and

irANP release after cardiac ganglia stimulation and guanethidine perfusion.

3.3 Cardiac Pacing Studies

3.3.1 /11 "illO atrial paelng

This is a preliminary study. The sample .....mbcr is very tow thus statistical analysis

could not be perfonned. Mean basal heart ratcs were 204±7.8 and 216± 9.9 beats per

minute for 4 vehicle- and 3 capsaicin-treated animals, respectively. Mean basal irANP

release was 4.2± 2 and 3.9±1.6 pg/IOO/.t1, for vehicle- and capsaicin-treated rals,

respectively. In vivo electrical pacing of the right atria rcsulted in 42% increase in heart

rate in vehicle--trcated animals and a 40% increase in capsaicin-treated animals. IrANP

increased by 29010 and 23%, 2 and 4 minutes after onset of pacing, respectively.

Capsaicin-treated animals showed no incrcucs in irANP release after pacins. There were

no significant changes in blood pressure upon pacing. Immunohistochemical analysis

confinned the presence of innervation by irSP and irCGRP fibres in the 3 vehicle-treated

tissues investigated. The absence of innervation by irSP and irCGRP fibres in the 3

capsaicin-treated tissues investigated, was also demonstrated. Figure 12 shows the

percentage change in irANP release 2 and 4 minutes after cardiac pacinS.
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3.3.1 J" v/I,o atrial pating

Mean basal heart rate of7 vehicle-treated isolated perfused rat hearts wu 114±5.4

beats per minute and mean release ofirANP was 9.S±3.2 PW100p.1. Electrical pacing of

the right atria resulted in a 60"/, (psO.OOI) itK:rease in hean rate. Pacing did not yield Illy

significant changes in irANP re1ease. This protocol was not repeated with capsaicin­

treated hurts since the vehicle-treated group was unresponsive. Inununohistochcmica1

analysis conlimlCd the presence of innervation by irSP and irCGRP fibers in the 3 vehicle­

treated tissues investigated. No significant changes in perfusion pressure were obsClVcd.

Inotropism decreased by 18%(PSO.05). Figure 13 shows tlte effects of in vitro atrial

pacing on heart rate and irANP release.

3.4. In vitro atrial stretch and pacing

Mean basal heart ratewa.s I '8±9.1 for 6 vehiclweated and I19±6.7 for 6

capsaicin-treated isolated perfused rat hearts. Mun basal release ofirANP was 1.2.9 ±3

pgflOOj11 and 14.1±2.9 pgllOOIli for vehicle· and capsaicin-treated animals, respectively.

Differences in basal values were not statistically significant between treatment groups.

Stretching of the right atrial cavity by 0.5 ml in the in vitro isolated perfused rat heart did

not result in significant changes in hean rate in vehicle- or capsaicin-treated hearts. IrANP

wu not significantly <:hanged after st.-etch oftne atrial <:avity in c:apWcln-trealed animals,

however in vehi<:lc-treated animals., irANP release was increased by 26%(psO.05) 2.3

minutes after stretch. In a stretched state, electrical pacing ofthe right atria resulted in a

18o/t{pSO,OOI) in:.:rease in heart rate in vehicle-treated aruma1s and a 81% (pSO.OOI)
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increase in capsaicin-treated animals. Onset of atrial pacing during atrial stretch did not

significantly change irANP release in vehicle-- or capsaicin-treated animals. No significant

differences in perfusion pressure were observed, however the inotropic state of the tissues

decreased by 16% (pSO.OS). Immunohistochemical analysis confinned tho presence of

innervation by irSP and irCGRP fibres in the 3 vehicle-treated tissues observed and

absence ofinnervation by irSP or irCGRP fibers in the 3 capsaicin.treated tissues

observed. Figure 14 shows the percentage changes in heart rate and irANP release after

atrial stretch. and pacing with atrial stretch, in vehicle- and capsaicin-treated animals.

3.5 ANPmRNA

Northern blot hybridization showed three separate bands for atrial ANP mRNA in

the vehicle- and capsaicin-treated groups. Qualitative observation of total mRNA

expression demonstrated equivalent levels of expression for the vehicle· and capsaicin.

treated groups (Figure IS).
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Figure 15. Nonhem bioI analysis of pooled atria of 5 vchicle-treated (V) and 5 capsaicin-treated (C)
animals qualitatively demonstrated equivalent levels of ANP mRNA in both groups.
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CHAPTER 4

DISCUSSION

This research project has provided new insight into the role of the intrinsic

cardiac ganglia and the involvement of capsaicin-sensitive peptidergic neurolransmission in

the release of irANP. It was discovered that electrical stimulation of ganglionic sites on

untreated rat epicardia led 10 a dramatic biphasic change in hea~ ralt. To attribute thi,

response to excitation ofa particular component of the cardiac innervation is dinicull as a

detailed anatomi~,..l study at the uad point of stimulation has not been carried out yet.

What is clear however, is that the heart ralc response was nOI the result of direct action of

the cardiac muscle as stimulation ofa non-ganglionic sile did not lead to a cardiodynamic

response. Therefore, particular components of the ganglionic stimulation sile were

responsible for the biphasic change III hean rate. It is possible that one or more ganglia

were the origin of post~ganglionic fibers to the effector tissues of Ihe heart. Another

possibility is that cholinergic or adrenergic pre-ganglionic fibers were being stimulated

simultaneously. resulting in the biphasic response. The release of neuropeptides prevalent

in cardiac innervation may also be responsible for the chronotropic responseJ upon

stimulation of the ganglia. Hoover and Hancock (1988) reported Ihal boJu.s injection.s of

SP into the isolated perfused guinea-pig heart produced a biphasic effect on heart rate.

They described that the initial and more prominent phase was a decrease in rate followed

by a second period oflachycardia oflesser magnitude. It was suggested that this response

could be a consequence ofSP binding to receptors in the cardiac parasympathetic ganglia

and the subsequent release of acetylcholine. Exogenously applied CGRP has also been
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shown to exert a positive chronotropic effect 011 the isolated rat atrium in a dose­

dependent manner (Saito el aI., 19861).

In untreated animals, release of irANP increased significantly upon stimulation of

the ganglionic site, however at this stage it wu difficult to assess whether the increase in

release was simply a result of the ensuing tachycardia. The increase in heart rate upon

stimulation peaked at 0.6 minutes, whereas the increase in irANP release peaked at I

minute. IrANP release could have been independent of heart rate or it may have been

dependent on heart rate and the delayed release attributable to freeing of the prohormone

has to be freed from the cardiac myocytes, and the conversion to the circulating fonn,

before being deteeteel in the perfusate.

When animals had been treated neonatally with a vehicle or capsaicin solution,

electrical stimulation ofthe ganglionic regions exhibited a similar heart rate response. The

consistency of the chronotropic effects suggested that the capsaicin-sensitive CGRP and

SP innervation was not influencing heart rate changes. However, a study in which guinea­

pig alria were treated with adrenergic and cholinergic blockers, demonslrated that

transmural stimulation still caused a positive chronotropic response which was inJUbited by

tetrodotoxin and thJI this effect was abolished by capsaicin and mimicked by CGRP

application (Saito et 01., 1986a). It is possible that the discrepancies lie in the fact that

different sites and parameters were used in the electrical stimulations. Also, the Saito

sludy used isolated guinea-pig Itri. as opposed to the isolated perfused rat hearts used in

this study. In terms of irANP release upon electrical stimulation, the capsaicin-treated

group did not demonstrate an increue in release while the vehicle-treated group showed a

significant increase. The fact that cardiodynamic effects were the same in the two groups,

but irANP release was dramatically different, suggested that either changes in irANP
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release were independent of heart rate changes or that some local components of the

ganglionic network. which were affected by neonatal capsaicin treatment. were capable of

modulating irANP release. Since cardiac ganglia themselves respond to cardiac:

mechanoreceptors (Ardell tI al., 1991), it is possible that cardiac volume changes result in

• sensory afferent-medi.ted .cti....tion of pcptidergic ganglia which in tum modul.te

irANP release .ppropriately. nus may explain why Rankin and Scott (1991) found

stretch·mediated release of irANP from isolated rat heart was abolished by neonatal

capsaicin treatment. The SP and CGRP cardiac innervation, when intact. may be

modulating the release of irANP upon stimulation as it is these sensory fibers that are

selectively and permanently ablated by neonatal capsaicin treatment (Nagy tl aI., 1981).

These data do not contradict the general hypothesis that .trial stretch is the primary

stimulus of ANP release, but suggest that other modulating factors might be involved in

the hormonal response.

From these cardiac ganglia studies it was concluded that components of the

epicardial ganglia nerve network of the rat heart can mediate a biphasic change in heart

rate and release irANP upon electrical stimulation. Furthermore. capsaicin-sensitive

structures arc necesSllI)' for release ofirANP during ganglionic stimulation.

Rankin and Scott (1990) demonstrated that neonatal capsaicin administration not

only destroyed SP and CGRP innefvation in the rat heart but also showed that these

capsaicin-sensitive nervt.j influence the rdease of irANP upon onset ofa stimulus such as

atrial stretch. There is also evidence conflTllling that administration of capsaicin 10 adult

rats can result in a certain degree ofSP depletion (Buck and Burks., 1986). Therefore, to

gain further insight into the role ofneonatal capsaicin-treatment on irANP release, vehicle-
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and capsaicin--trea1ed perlWed rat hearts were admi.nisIcred an acute dose of J0-6M

capsaicin. One minute after onset of capsaicin pafusion ill the~cd group,

irANP rdea5e hid incteued by 51"-•. FIVC minutes after capsaicin perfusion, tisslJescouJd

still significantly rclcue irANP upon ganglionic stimulation, indicatina that prohonnone

stores had not been depleted or that additional I)Tlthesil had OCCUlTed within the 5

minutes. No changes in heart rate occ:urred during capsaicin administration but ganglionic

stimulation resulted in a biphasic change in heart rate. This suggests that acute capsaicin

administration to the vehicle-treated animals resulted in a dramatic release of stored SP

and CGRP which brought about increas&l levels of irANP release by some as yet

undetennined cellular mechanism. Interestingly, Ihe group of animals which had been

treated neonatally with capsaicill showed no increase in irANP release upon acute

capsaicin administration but sho~ Ihe same biphasic change in heart ratc upon

ganglionic stimulation. In these tissues the irSP and irCGRP fibers had been ablated and I

bel.iew acute capsaicin trea~t did not yield irANP rd~ because lhere was no SP or

CGRP present 10 lrigger the rdease:.

It hu been shown that cholinergic (Sonnenberg d m., 1984; Matsubara tI rd.

1988) and adrenergic (Onwochei and Rapp, 1988; SoMenberg et aI.• 1984) agents can

cause ANP release. although extrinsic innervation of the heart does not seem to be

necessary (Rankin. 1987). To investigate whether there was cholinergic involvement in

the irANP release and the cardiodynamic response upon ganglionic stimulation,

experiments were carried out using atropine. which is a competitive antagonist of

acetylcholine at muscarinic receptors. Isolated perfused rat hearts that received acute

treatment with 104 M atropine did not display the characteristic decrease in heart rate

upon ganglionic stimulation, suggesting that parasympathetic postganglionic fibers were

..



responsible for the bradycardia. However, irANP release wu IignifiClSltly increased upon

ganglionic stimulation despite the absebl:e of significant bradycardia, demonstrating that

irANP release was independent of the decrease in heart rate brought about by the

neurotransmitter acetylcholine.

A latent tachycardia still ensued after ganglionic stimulation of perfused rat hcarll

in the presence of atropine. Therefore, to evaluate the role of noradrcnergic

postganglionic fibers on cardiodynamics and jrANP release, perfusion of untreated tissues

with guanethidine. a drug which inhibits the release of noradrenaline from sympathetic

nerve terminals, was carried out using the same protocol as the previous experiment. The

cardiodynamic effects of ganglionic stimulation in the prescnce of I~M guanethidine

yielded the reciprocal effects of the atropine experiments; the typical bradycardia occurred

but the tachycardia was abolished, suggesting that sympathetic postganglionic fibers were

responsible for the tachycardia. rrANP release increased by 35% upon stimulation

indicating that irANP release was also independent of tachycardia brought about by the

neurotransmitter noradrenaline.

These phannacologica1 studies suggested that a cardiac network other than the

classical sympathetic ..1d parasympathetic systems was modulating irANP relea5C and

gave further credence to the involvement of SP and CGRP in irANP release. The data

also confirm that the release can occur independently of an increase or ~~rwe in heart

rate upon ganglionic stimulation.

Cardiac pacing has been shown to be an effective stimulus of irANP releue

(Rankin et 01.• 1986; King and Ltdsorne, 1991; Bilder el al.• 1989; Schicbinger and

Linden, 1986; King and Ledsome, 1990). The results of a small pilot study of;n \J;IIO
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pacing showed increased irANP release in vehid>treatec:l ratI. Capsaicin-treated ......

did not increase irANP release upon~ These findinp. albMt preliminuy in nature,

acc consistent wid! the hypothesis that SP and CORP innervation have a role in the rdeue

ofirANP.

Another protocol was devised to we the Lanaendortr model of in vitro atrial

pacing wilh vehicle· and capsaicin-treated rats. However, despite consislenl cardiac

pacing" no release of irANP was detected. The discrepancy from the results of others

(Bilder rt aI., 1989; Schiebingef and Linden, 1986) may be attributed 10 the fact that most

orthe cardiac pacing studies in the past used a design other than tlle Langendorlf.

Release ofirANP during pacing oflhe right atrium has been shown to be enhanced

if the atrium is also in a volume-expanded or stretched stlte (Bi1det rt aI., 1989). Initial

stretching of the right atrium caused signillcant release of irANP in the vehicle-treated

rals, but no such change was seen in capsaicin-treated animals. This suggested that

capsaicin-sensitive llbers might. also be involved in irANP release dwing atrial stretch and

supported the findings of Rankin and Scott (1990). However. pacing of the right atrium

in addition to inflation of the balloon catheter. did not ,eIease irANP in either group.

Therefore, at this time, no correlation can be made between the SP and CORP peptidergic

netlrOlransmission and irANP retease during pacing of the right Itria in the isolated

perfused rat heart. Future experiments will investigate stretching and pacing of the

isolated left ,at atria using techniques which involve perfusion of the endocardium and

epicardium with ~hysiologica' saline (Deng and Kaufman, abstract in press) as it is

possible lhat the Langendorfi' technique did not adequately supply the myocardium with

the nutrients and oxygen it needed to elicit ANP release through tachycardia.
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Rankin and Scott (1990) demonstrated that the storage of irANP prohormonc

appeared to be unaffected by neonatal capsaicin treatment, IS the prevalence and

confonnation of storage granules within the myocardium looked the same IS in vehicle­

treated animals. That study a1sodemonstrated,1S did this one. that basal levels ofirANP

release were not significantly different in vehicle- and capsaicin-treated animals. To gain

further insight into the possible effect! of capsaicin on synthesis of ANP. qualitative

assessment oflevels of ANP mRNA were carried out by Nonhem blot analysis. Levels of

ANP mRNA appeared to be the same in vehicle- and capsaicin-treated animals. Since

storage granules ofpro-ANP and basal release of the hormone appeared to be the same in

vehicle- and capsaicin-treated tissues it is possible that the basal synthesis and storage was

not affccted by neonatal capsaicin treatment. Another possibility may be lhat since ANP

mRNA isolation and immunohistochemical procedures were not carried OUI while the

lissues were in a 'stimulated state'. i.e., during stimulation of the cardiac ganglia or

stretching of the right atria., the SP and CORP innervation might not have been activated

10 initiate enhanced synthesis of mRNA or enhanced storage ofpro-ANP. This would

explain why only basal I'8tcs of ANP synthesis and stol'"&ge were detected. If lhe

peptidergic fibers were not being stimulated to release SP and CGRP. their presence

within the tissues might be unimportant and the basal slales of synthesis and storage may

be the same whether the SP and CGRP innervation was intact or whether it had been

abolished neonatally. Evidence of release of vesicular stores of pro-ANP have only been

demonstrated after physiological stimuli (Gilloteaux ef 01.• 1991). thefefore stud;CI will

need to be camed out on stimulated release of vesicular stores following neonatal

capsaicin treatment to confirm that SP and CGRP can affect storage. Measurements of

irANP release in vehicle and capsaicin-treated animals likely demonstrated dHferenccs
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bcawe periUJale wu .....p1od whiJe the CGRP In<! SP peptida """ bema ........'"

(by din:d stimuJation of the aanaJia or indirectly via 1triaI1ltCtdI) to dl'cet ANP rdeue.

In IIddition to the immunoIUSlochemil".aI studies. • lUture experiment will be to measure

mRNA for ANP when tissues ale in a stinw.ala1cd state. For example, beginning an RNA

extraction procedure I minute (the point It which irANP levds are It their peak) after a

gansUonic site has been stimulated to demonstrate if the presc:nce of SP and CGRP

immunoreactivity effects synthesis of ANP mRNA during a known stimulus. If neither

synthesis of ANP mRNA nor storage of irANP seem 10 be affected by neonatal capsaicin

treatment, it can be postulated that the capsaicin-sensitive neurotransmission throughout

the heart is affecting the mechanism or ratc of biosynthesis from prohonnonc to the

circulating honnone.

In summary, electrical stimulation of the gangJionic-dense regions of the rat atrial

epicardium rcsuIted in I biphasic change in heart rate aUnlNtable to interactions between

the sympathetic and parasympathetic innervation of the heart. The increases in irANP

release upon e1ectric:al stimulation seemed to be independent of the effects of

noradrcnergic or cholinergic effects on heart rate, however rdease of irANP should be

examined in the face of constant heart rate to confirm this fact. Studies utilizing rata

neonatally-treated with capsaicin, demonstrated that the presence of. capsaicin-sensitive

peptidcrgic inncrvacion, namely SP and CGRP iMervation, is necessary to bring about a

significant release in irANP upon stimulation of the cardiac ganglia. In addition to the

model or ganglionic stimulation, SP and CGRP iMervation was confinncd as a necessary

faclor in releasing jrANP during in viJro atrial stretch. To further support the role or

peptidcrgic innervation in irANP release. acute capsaicin administration Will shown to
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significantly rdeuc irANP in vehide-- but not capsaicUHrated anirnaIs, demonItraIins

that capsaicin-induc release of SP and CQRP. when pracnt. wiD initiate rdeue or
irANP. Although this study dtd not demonstrate differences in ANP mRNA 1eYd, in

vehicle- and capsaic:.ilHreated animals. it woWd be premature to conclude that synthesis of

ANP is equivalent in vehicle- and capsaicin.treated aroups. Noteworthy is thai these

resulu do not c:ontradict the widely held view that atrial stretch is the primary stimulus for

release of ANP. However, the dala do indicate that peptidergic nerves and cardiac ganglia

may have an intermediary role in eliciting release as a result ofatrial stretch.
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APPENDIX A

Preparation of Krebs butTer

To yield I liter:

To 500 ntis ofdistilled waler add seqentially:

50 m1s NaCl, 118mM

10 m1s KCI, 4.7mM

10 mls Cael2, 2.5mM

IOmlsKH2P04,.1.2mM

10 m1s MgS04, 1.2mM

100 m1s NaHeO) , 12.5mM

5 mls Dextrose, ll.l mM

Bring up to Hiter with distilled water and mix thoroughly

Maintain at pH-7.4 with 95% 02: 5% CO2

"



APPENDIXB

Prenaration of IX Phosnhate Buffer

Buffer is initially made up at twice the concentration, i.e., '2X Phosphate Buffer'

Titrate the following to a final pH=7.4, using approximately a 1: I volume of:

5.24 gil NaH2P04 H20 (monobasic)

23.0 gIL Na2HP04 (dibasic)

To the above add (for I liter):

5.84gNaCI

0.28 Bovine Serum Albumin

0.28 NaN)

2.0 m1s Triton X·too

Store stock of'2X Buffer' al 4°C. Dilute lOOmis of'2X' with 97 mls distilled water and 3

mls ofaprotinin (Sigma Chemicals, 81. Louis, Missouri) to yield 'IX buffer'. Store at 4°C.

80



APPENDIXC

Preparation of zambonil, FIIl:.tive

This procedure was carried out in a fume hood

To yield I liter:

Dissolve 208 ofparaformaldehyde in 200 mls ofdistilled water maintained at 600 e
Add a few drops of 1M NaGH ifparafonnaldehyde will not dissolve

Add 500 mls of 0.2 M Phosphate Buffer, pH"'7.4 (See Appendix E for recipe)

Add ISO mls of 2M picric acid

Bring solution up to I tiler with distilled water (room temperature)

Mix thoroughly
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APPENDIX D

Puparalion orpho!ph,'e Buffered Salim!

Add 13g ofsodium phosphate dibasic, heptahydrate and 8g ofsodium chloride to 900 mls

ofdistilled wiler

Stir until dissolved

Obtain a pH 0(7.4 by slowly adding 2M Hello the mixture

Bring 10 final volume of 1liter with distilled water

Sloreat4°C
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APPENDlXE

fuR.otio. orO.l M Phorph.t, Buff"

Add 8.068 ofpolassium phosphate and 37.75g JOdium phosphate, heptahydrate to 900 ml

distilled water

Stir until dissolved

Adjust Mth O.2M Hel or 2M NaOH until. pH of7.4 is reached

Bring to a final volume of I liter with distilled water

Store at 4DC
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