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ABSTRACT

Vascular endothelial cells respond to certain vasoactive agents by releasing
factors which act on medial smooth muscle to cause relaxation or contraction of blood

vessels. One of the ible for

to acetylcholine has recently been identified as nitric oxide. We have tested the
hypothesis that the ability of vascular endothelium to cause relaxation in response
to stimulation by vasoactive agents is related in some way to the pattern of
perivascular innervation. The actions of acetylcholine and substance P were tested
in the presence of methoxamine induced tone in the isolated perfused mesenteric
arterial bed of the rat. Tissues were tested from untreated normal 12 week old

Sprague-Dawley rats and from rats which had been treated from birth with capsaicin

to prevent the js of peptidergic perir lar innervation or 6-
to prevent of inergic innervation,
C p i p ions were observed in

response to acetylcholine. The concentration response curve to acetylcholine was
shifted 1.2 log units to the right in the capsaicin-treated group but no change was

observed with 6 i P caused a dose dependent

potentiation of the methoxamine induced tone which was not dependent on the

presence of an intact i ions to sub P were not observed

atany dose. Sympathectomy with neonatal 6-OHDA treatment resulted in an increase



in the substance P pressor response, but no changes were observed with capsaicin
treatment. Thus, it appears that altering the peptidergic perivascular innervation
results in a decreased sensitivity of the mesenteric arterial bed to acetylcholine and
changes in the catecholaminergic fibre plexus result in an enhancement of the

substance P modulation of adrenergic vasoconstriction.
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INTRODUCTION

1.1.  The Control of Vascular Tone

The control of the cardiovascular system involves a variety of components
which influence smooth muscle tone. The distribution of blood to tissues in the body
is determined by the flow of blood from the heart and the regulation of blood

vessel diameter. The complex system responsible for this function includes the

of the i ing factors in the blood, and the endothelium.

1.1.1. Vascular Innervation

One of the most powerful mechanisms for the overall control of the

system is the innervation provided by the autonomic nervous system.

The nerve fibres which supply the blood vessels are called perivascular nerves since

they form a mesh-like terminal plexus at the adventitial-medial border of the blood
vessel wall.

For a long time the innervation of the vasculature was thought to consist of

[ ic nerves ini i However, with the development of

capable of identifying and defining neurotransmitter
substances, these fibre networks have been shown to be more complex (Kenigsberg

and Cuello, 1987). Three different types of perivascular nerves, adrenergic,
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and peptidergic have been distinguit In addition, some nerve fibres

have been shown to contain more than one of these types of neurotransmitter co-

localized at the nerve terminals (Hokfelt et al., 1987).

(@ A i ion of the

‘The most important component of autonomic motor control of the vasculature
is the sympathetic nervous system, in which noradrenaline is the peripheral
neurotransmitter. The adrenergic nerve supply to most vessels in the body originates

in the pre- or p: tebral ganglia of the

nervous system. However,

the innervation of some blood vessels in the brain may originate in central

neurons (Edvil et al, 1973).

There is a great variation in the pattern and density of the sympathetic
innervation of vascular smooth muscle (Burnstock, 1975). It is likely that such
variation is related to the physiological role of the blood vessel in the tissue it
supplies. In general, large elastic arteries show a sparse pattern of innervation and,
as the size of the artery decreases, the density of innervation increases. Capillaries,
venules and small veins are considered to have very little adrenergic nerve supply.

Veins usually have a much less dense innervation than arteries.



(b)  Cholinergic Innervation of the \

Innervation of blood vessels by postganglionic cholinergic nerve fibres is
generally thought to provide an inhibitory control of vascular tone. However, the
nature of this vasodilatory action is understood less than the actions of adrevergic
nerves. These cholinergic nerves have a less widespread distribution in the
cardiovascular system than do the sympathetic fibres. However, physiological and
histochemical studies have suggested the possibility of cholinergic vasomotor control
in the brain, heart, lung, kidney, skeletal muscle and uterus (Schenk and El Badawi,
1968; Bell, 1969; Iwayama et al., 1970; Borodulya and Pletchkova, 1973). Thus, some
vascular beds possess a dual adrenergic and cholinergic innervation.

Cholinergic nerves in the blood vessels of skeletal muscle originate from
ganglia of the sympathetic chain, while those of the uterine artery arise from the

paracervical ganglion. The origin of the inergic supply to the i jal blood

vessels is not yet known. Vessels of the gastrointestinal tract receive their cholinergic

nerve supply from the intramural ganglia (Owman, 1983).

(c)  Peptidergic Innervation of the vasculature

In addition to the sympathetic adrenergic and parasympathetic cholinergic

divisions of the autonomic nervous system, a netwoik of peptidergic nerves which

innervate the vasculature of a range of mammals, including man, has been shown
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to exist (Furness e al., 1984). A variety of small peptides, with up to about 40 amino
acid residues, have been found in peripheral nerves which supply autonomically

innervated organs (Hokfelt ez al,, 1980; Furness et al., 1982; Furness and Costa, 1982).

‘Within the i system, the di ion of the peptides appears to vary
from bed to bed and from one species to another. While many of the peptides have
been found in the cardiovascular system, those most commonly involved are substance
P (SP), calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY) and

vasoactive intestinal polypeptide (VIP).

Substance P

Among the peptides listed, SP has perhaps the longest history. It was first
described as a biologically active compound in crude gut extracts by von Euler and
Gaddum in 1931. It was not until 1971 that Chang and co-workers isolated SP in
its pure form from bovine hypothalamus and estab’shed the eleven amino acid
sequence of the peptide. Shortly thereafter the peptide was synthesized successfully
(Tregear et al, 1971). Then, the availability of a pure and chemically defined SP
made it possible to generate specific antibodies to the peptide for radioimmunoassay

and immunohistochemistry.

P has a widesp istribution in the central and peripheral

nervous systems in a variety of species, including man (Furness et al, 1984).
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Extensive studies have established the presence of SP in most parts of the central

nervous system of all Detailed radioi studies have indicated

that the highest concentrations are present in the mesencephalon, hypothalamus and

preoptic area, while the contains insignif amounts of SP (B:

et al., 1976; Kanazawa and Jessell, 1976; Gale et al,, 1978; Emson et al, 1980; Cooper
et al,, 1981). Immunohistochemical mapping has so far identified SP in over 30 areas
of the brain including the brain stem and spinal cord. For a thorough account of
studies which have been done to localize SP in the central nervous system the reader
is referred to Pernow (1983).

In the periphery substance P is mainly in sensory nerves with a widespread
distribution to the heart and most vascular beds. In some animals such as the guinea-
pig, virtually all vascular beds are supplied with SP-containing nerve fibres. The
presence of SP fibres has been demonstrated in the guinea-pig heart (Wharton et

al., 1981a), rat carotid sinus (Helke ef al, 1980), and in the arteries and veins of the

jal tissue of the gui ig (Sundler et al,, 1977). Immunohistochemical

studies have also identi P-like it ive (SPLI) nerves in the

guinea-pig aorta and pulmonary artery (Reinecke et al,, 1980) and in the vessels of
the urinary and reproductive systems (Alm er al, 1978; Wharton et al, 1981b).
Substance P fibres have been shown to innervate the cerebral (Liu-Chen et al,, 1986),

coronary (Brum et al., 1986) and mesenteric vascular beds (Scott et al, 1989).
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Both vasomotor and sensory functions have been suggested to account for

the presence of SP-fibres in blood vessels. In coronary, pulmonary, mesenteric, renal
and cerebral blood vessels SP has been shown to cause vasodilation (Maxwell, 1968;
Hallberg and Pernow, 1975; Eklund et al, 1977). Vasoconstriction by SP has been
reported in the hepatic portal vein of the rat (Hellstrand and Jarhult, 1980;
Mastrangelo et al,, 1980) and the anterior mesenteric vein of the rabbit (Berube et

al, 1978). A sensory function for SP in vascular nerve fibres has also been suggested,

since p with capsaicin elimi SP-like i ivity from these

fibres (Furness et al, 1982; Matthews and Cuello, 1982).

Calcitonin Gene-Related Peptide

Calcitonin gene-related peptide (CGRP) is a 37-amino acid peptide resulting
from alternative processing of the RNA during expression of the calcitonin gene
(Amara et al, 1982; Rosenfeld e al, 1983). The existence of CGRP was first
predicted by analysis of a new RNA in a rat cell line. A similar peptide was
subsequently isolated from human medullary carcinoma of thyroid tissue and
sequenced in 1984 (Morris et al, 1984). CGRP has been shown to have strong
vasodilatory actions (Brain et al,, 1985). It exerts its vasodilatory effect both through
direct influence on vascular smooth muscle and by inhibition of neurogenic

vasoconstriction (Brain ef al,, 1935; Fischer et al,, 1983; Hanko et al,, 1985).
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Immunohistochemical studies have shown a widespread distribution of CGRP
in sensory neurones and nerve fibres of the cardiovascular system of several species
(Wharton and Gulbenkian, 1987). Many studies have been done in guinea-pig
where perivascular CGRP fibres have been seen in all vascular beds. In an extensive
study by Uddman and co-workers (1986), the distribution of perivascular CGRP nerve
fibres in the guinea-pig was described in detail. Their findings indicate a substantial
CGRP nerve supply to the heart and coronary blood vessels. The carotid arteries
and thoracic aorta receive numerous CGRP fibres, while the brachial and femoral
arteries to the limbs contain few fibres. In the guinea-pig brain, the cerebral arteries
were shown to be surrounded by a dense network of perivascular CGRP fibres,
whereas the small pial arteries were accompanied by few fibres. Vessels of the
respiratory and genitourinary tracts received a moderate supply of CGRP fibres.

In the gastroi inal tract the ic and iploic arteries had a dense

supply of CGRP-containing nerve fibres. In contrast, small blood vessels of skeletal
muscle received a very scarce supply of CGRP fibres. Studies in the rat have also
indicated a widespread distribution of CGRP-fibres in the cardiovascular system
(Mulderry et al., 1985). There are, however, some regional and species variations

regarding the distribution of CGRP-i ive nerve fibres (Wharton ef al.,

1986).
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The distribution of CGRP- and SP-immunoreactive fibres is very similar and

several studies have now d that they are freq co-localized i

nerves (Lundberg et al, 1985; Uddman ef al., 1986; Wanaka et al, 1986).

Neuropeptide Y

Neuropeptide Y (NPY) isa 36-amino acid peptide isolated from porcine brain
tissue (Tatemoto ef al, 1982). The peptide has been sequenced (Tatemoto, 1982)
and synthesized by a solid phase method (Balasubramaniam et al, 1987; Yamamoto
et al, 1984). NPY has been found to be rich in tyrosine and is structurally similar
to pancreatic polypeptide (PP) and peptide YY (PYY; Tatemoto ef al,, 1982). NPY
is widely distributed in the central and peripheral nervous systems and has bezn
shown to be one of the most potent vasoconstrictor peptides isolated so far (Emson
and DeQuidt, 1984).

In the perip.ery, NPY has been localized in perivascular nerve fibres of
several species, including man (Pernow ef al,, 1987). It is often closely associated
with or co-stored with noradrenaline (Ekblad et al, 1984). In the rat, Allen and
co-workers (1985) have ideritified high concentrations of NPY throughout the heart
and within the major blood vessels, in particular in the renal and superior mesenteric
arteries. This study showed a similar pattern of innervation by NPY- and NA-

containing nerve fibres, which was depleted after treatment with 6-hydroxydopamine
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(6-OHDA; Allenet al., 1985). Inthe guinca-pig, NPY-immunoreactive nerve fibres
have been found to be widely distributed in the vascular system (Uddman et al,
1985). In general, NP fibres were more numerous around arteries than in veins
of the guinea-pig. The heart and coronary vessels, like the rat, were shown to have
arich NPY-innervation. A well developed NPY plexus was visualized around large
elastic and muscular arteries such as the thoracic aorta and common carotid arteries.
Perivascular NPY fibres were numerous in arteries of the respiratory, gastrointestinal
and genitourinary tracts. Techniques of surgical and chemical sympathectomy, as
well as sequential immunohistochemical staining, revealied the coexistence of NPY

with NA in perivascular nerve fibres of the guinea-pig (Uddman ef al., 1985).

Vasoactive Intestinal Polypeptide

Vasoactive intestinal polypeptide (VIP) is a 28-aminoacid peptide which was
originallyisolated from porcine intestine and named for its potent vasodilatory actions
(Said and Mutt, 1970). VIP was first synthesized in 1973 (Bodansky et al)and has
since become commercially available. This peptide, which is structurally related to

secretinand glucagon, was originally thought to be limited to the gastrointestinal tract.

However, radioi and i i ical studies have revealed that
VIP has a widespread distribution in the body, localized in neurons (Fuxe et al, 1977;

Larsson et al., 1976).
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Peri nerve fibres ining VI’ i ivity have been found

mainly in regional vascular beds rather than in the larger conducting blood vessels
(Wharton and Gulbenkian, 1987). In the cat, VIP-containing nerve: fibres were found
to be numerous around arteries of the upper respiratory, gastrointestinal, and
genitourinary tracts (Uddman er al, 1981). Very few fibres were found in blood
vessels of skeletal muscle and none were found in coronary arteries. VIP fibres
were sparse around large arteries and veins and appeared to be absent entirely from
blood vessels of the liver, spleen and kidney. In the guinea-pig, similar results have
been reported (Della et al, 1983). This study demonstrated a sparse supply of VIP-
immunoreactive nerve fibres o the heart and major distributing arteries: aorta,
subclavian, carotid, femoral and pulmonary. Of the vascular beds receiving VIP
fibres, the most densely supplied arteries were the mesenteric and uterine arteries,
VIP innervation of cerebral vessels varied from the most dense in the anterior and
middle cerebral arteries to very little in the basilar artery. As in the cat, arteries
running to skeletal muscle and mazjor organs were less densely supplied. Throughout
the body veins of the guinea-pig were sparsely supplied with VIP nerve fibres.
Evidence for the coexistence of VIP with ACh has been summarized by
Lundberg (1981). In addition it has been shown that VIP-containing fibres were not
depleted when noradrenergic nerves were degenerated by 6-OHDA or when SP

nerves were disrupted by capsaicin (Della etal, 1983). Thissuggests that VIP nerves
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innervating the vasculature form a population distinct from substance P or

sympathetic nerves.

In summary, it can be seen that the innervation of the vasculature is more
complex than was commonly accepted until recently. It now appears that three types
of perivascular nerve plexus exist: the catecholaminergic system which has NPY co-
localized with NA in nerve terminals, a system of peptidergic nerves containing SP

and CGRP, and the system of cholinergic and VIP-containing nerve fibres.
1.1.2. Circulating and Local Factors

There are many factors which contribute to the overall control of the
cardiovascular system, some to a greater degree than others. In the circulation there
are agents such as peptides and hormones which have a widespread influence on
vascular tone. Local factors such as flow, pH, P°z and sz as well as the
concentrations of certain ions in the blood can determine the functional state of a

vascular bed.



(a) Circulating Factors which Regulate Blood Flow

There are certain naturally occurring vasoactive amines, peptides and lipids
which circulate in the blood and can be grouped under the term local hormones or
autacoids. Among these are acetylcholine and catecholamines which may be formed
extraneuronally and released into the blood. Acetylcholine has been shown to cause
relaxation of arteries, which is dependent upon the presence of intact endothelium
(Furchgott et al, 1981). Little effect has been observed in veins. Adrenaline,
secreted from the adrenal medulla, can cause vasoconstriction by its action on a-
adrenoceptors or vasodilation by an action on g-adrenoceptors of vascular smooth
muscle.

Histamine is one of the most potent of the endogenous biogenic amines. Its
actions on blood vessels are complicated, since it acts on two receptor subtypes and
may also interact with the sympathetic nervous system (Brody, 1980). In a number

of species histamine has been shown to produce vasoconstriction mediated by H,

and ilati diated by H, p (Owen, 1977). Serotonin is

a ive amine identified as 5-hydroxytryptamine (5-HT). In the blood, 5-HT
is contained in platelets and is involved in the clotting process. It is a potent
vasoconstrictor except on blood vessels of skeletal muscle and coronary vessels of

the heart, which are dilated (Cohen et al, 1981; Van Nueten et al., 1984).
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and its phosphory ivatives, AMP, ADP and ATP have

vasodilator activity in the vascular beds of skeletal muscle and the coronary vessels
of the heart, and have thus been shown to produce a fall in blood pressure upon
intravenous injection. In many blood vessels ATP and ADP have been shown to

cause i ions while ions to ine and AMP

were independent of the presence of endothelial cells (Vanhoutte and Rimele, 1983;
reviewed by Furchgott, 1984).

The polypeptide family of kinins includes substance P, kallidin and bradykinin,
and angiotensin. Substance P has already been reviewed. The substances kallidin
and bradykinin are closely related peptides of which bradykinin has been the most
studied. Bradykinin has been shown to have a potent vasodilatory action (Fox et
al, 1961; Haddy et al., 1970). This is an endothelium-dependent action which will
be discussed later. Studies have demonstrated that this action is important in the
maintenance of normal blood pressure (Gavras et al, 1987). Kallidin is thought to
have the same actions and similar potency as bradykinin. Renin is an enzyme,
secreted by the kidneys, which activates the renin-angiotensin system to generate
angiotensin I, While angiotensin II is a direct vasoconstrictor agent, it also elicits
the release of aldosterone from the adrenal cortex. Aldosterone regulates sodium
and potassium excretion by the kidneys and thus contributes to the control of arterial

blood pressure (Reviewed in Bowman and Rand, 1980).
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Vasopressin is a peptide hormone released from the neurohypophysis into
the circulation in response to nerve impulses. It is also known as antidiuretic
hormone (ADH). ADH is a potent vasoconstrictor of all types of blood vessel,
especially capillaries and venules. A major role played by ADH is in the response
to haemorrhage. Atrial natriuretic factor (ANF) is another peptide hormone
belonging to a recently discovered group of peptides (de Bold er al,, 1981). ANF
is released from granules in the atria of mammals and has been shown to be a potent
vasodilator in pre-contracted blood vessels (Currie et al, 1983).

Prostaglandins are another group of local hormones that exert an effect at
or distal to the site of their synthesis (Vane and McGiff, 1975). Prostaglandins are
released from a variety of tissues including blood vessels themselves (Tuvemo and
Wide, 1973). Prostaglandins have a wide variety of cardiovascular actions including
reduction of blood pressure, vasodilation of many vascular beds and constriction of

cerebral blood vessels.

(b)  Local Factors Which Regulate Blood Flow

In addition to circulating amines and peptides in the blood, there are certain
local factors which may influence the circulation (Haddy and Scott, 1968). The
balance between dissolved oxygen (O,) and carbon dioxide (CO,) can have both

a direct and indirect effect on vascular tone. When levels are elevated, CO, acts
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directly to dilate blood vessels and depress cardiac function (Price, 1960). Through
reflex actions, CO, causes the release of adrenaline from the adrenal medulla to
result in peripheral vasoconstriction and an increase in blood pressure. Similarly,
studies have shown that a reduction in oxygen tension of the perfusing blood lowers
the resistance to flow in the coronary, hindlimb, forelimb, intestinal, gracilis and renal
vascular beds (Beme et al, 1957; Daugherty et al., 1967; Attinger et al., 1967; Skinner
and Powell, 1967).

The pH of blood is another factor involved in local regulation of flow.
Although the blood is a buffered solution, metabolic changes during exercise can
cause slight variations in hydrogen ion concentration. Studies have shown that local
administration of acid produces changes similar to those which occur during increased
CO, tension. In fact some studies indicate that the action of CO, is mediated via
the hydrogen ion (Hilton and Eichholtz, 1925; McElroy et al, 1958). It has thus been
shown that the hydrogen ion is a vasoactive agent, with high concentrations causing
dilation and low concentrations causing constriction.

The concentration of potassium jon in the blood can also influence vascular
tone. It has long been known that a2 small increase in potassium in the blood or
in a perfusing solution causes vasodilation (Dawes, 1941). It seems, however, that
the effect of potassium on the tone of vascular smooth muscle depends on its
concentration. Konold and co-workers (1968) found a vasodilatory response up to

a potassium concentration of about 35 mM but at higher concentrations a contractile
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response was obtained.  Vasoconstriction was also observed upon decreasing
potassium concentration below normal (2.68 mM).

‘The dilator response of conduit arteries to an increase in blood flow was first
observed in 1933 (Schretzenmayr, A: quoted by Pohl et al, 1986). More recently
the vasodilator response to increased flow has been shown to be mediated by the
endothelium (Pohl ef al, 1986; Rubanyi et al, 1986). Bevan and Joyce (1988a) have
shown in rabbit ear artery that increased flow can cause contraction of an intact

segment with or without the presence of i In the same p: ion, they

have shown flow induced vasodilation after active tone had been induced by
noradrenaline (Bevan and Joyce, 1988b).

Many of the factors involved in the control of vascular tone depend on or
are influenced by the endothelium. While this cell layer does act as a barrier
between the blood and vascular smooth muscle, it is also an active tissue involved
in the synthesis and release of compounds which act to contract or dilate the blood

vessel.
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12.  The Endothelivm

Endothelial cells form a continuous layer a single cell thick that lines the entire
circulatory system. These cells act not only as a barrier between the blood and the

vascular wall, but as an active tissue receiving a variety of signals, both blood-bome

and ti derived. V i p interact with jal cells to cause
the release of prostacyclin (Cruichley et al,, 1983), platelet activating factor (McIntyre

et al, 1985), endothelium-derived vasodilators (reviewed by Furchgott, 1984) and

derived icting factors (reviewed by Rubanyi, 1988). Thus, the

plays an i rolein the control of cardiovascular tone.

1.2.1. Receptors on the Endothelium

A variety of receptors have been characterized on the intimal endothelial

surface of blood vessels by the use of pharmacological techniques and

iography. Itis through the mediation of these receptors that many vasoactive
agents act.

Several studies have shown that the presence of a functional endothelium limits

the ictor response to gic agonists such as ine (Cocks and

Angus, 1983; Miller and Vanhoutte, 1985; Angus ef al, 1986). These authors

prop that ic agonists stimulate the release of an endothelium-derived
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relaxing factor (EDRF) through an a,receptor located on the endothelial cell
surface. The vascular endothelium has also been shown to have g-adrenoceptors,
stimulation of which leads to elevation of cyclic AMP (Schafer ez al, 1980). These
p-receptors are of the g, subtype and do not mediate the release of EDRF when
stimulated (MacDonald ez al., 1987).

The release of EDRF from endothelial cells in response to ACh has been
shown to be mediated by a muscarinic receptor on the endothelium (Furchgott and
Zawadzki, 1980a). Furchgott and Cherry (1984) could find no evidence to indicate
that this muscarinic receptor was of a novel subtype in their rabbit aortic ring
preparations. On the basis of affinity for pirenzepine, a selective muscarinic
antagonist for the M, subtype, the muscarinic receptor of the endothelium which
mediates vasodilation has been classified as M, (Hynes et al,, 1986, Choo et al., 1986).
However, more recently it has been suggested that two subtypes of muscarinic
receptor may be responsible for the release of different types of EDRF (Rubanyi
et al, 1987). Horst and colleagues have also suggested this possibility and have
indicated that further studies with new and novel M, antagonists may clarify the
situation (Horst et al.,, 1987).

Receptors for substance P have also been localized on the intimal surface of
blood vessels. Substance P relaxed preparations of preconstricted porcine coronary
artery only when an intact endothelium was present, thus suggesting the presence

of SP receptors on the endothelial cells (Gulati et al,, 1986). In dog carotid artery,
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autoradiographic techniques have been used to demonstrate the presence of SP
receptors on the endothelium (Stephenson et al,, 1986).

The action of bradykinin in canine and human arteries has been shown to
depend on the presence of intact endothelium (Altura and Chand, 1981; Cherry et
al, 1982). These studies suggest that the vasodilatory effect of bradykinin in these
vessel beds is the result of an interaction with some receptive substance of the
endothelium to elicit the release of EDRF.

Histamine receptors have been studied in a variety of blood vessel
preparations. In rat thoracic aorta, Hy-receptors were found to be responsible for
mediating the release of EDRF in response to histamine (Van de Voorde and
Leusen, 1983). Radioligand binding studies indicate a differential receptor population
between arteries and veins. In guinea-pig aorta, H,-receptors were found to be more
concentrated on the endothelium than on the smooth muscle (Hide ez al.,, 1988).
The population of H,-receptors was fourd to be of higher density on the endothelium

in venules of mouse di:

than in oles or capillaries (Antohe et al., 1986).

Studies with ATP have indicated that subtypes of receptors for purines exist
on the vascular endothelium. The P,receptor which responds to the purine
nucleotides, ATP and ADP, has been differentiated into 2 subtypes on the basis of
affinity for the antagonists, reactive blue 2 and a,8-methylene-ATP (Houston et al,,
1987). These experiments indicate that it is the P,, subtype which is located on the

endothelium and is responsible for the release of EDRF elicited by ATP and ADP.
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Similarly, Hopwood and Burnstock (1987) have found coronary vasodilation to be
mediated by the P,,-purinoceptor subclass.

Although some agents act directly on the vascular smooth muscle to elicit their

response, it is evident that receptors on the intimal surface of the endothelium play

an active role in mediating vascular reactivity to a wide variety of vasoactive

substances.

1.2.2. Endothelium-Derived Relaxing Factor

It was first discovered in 1980 that an intact endothelium was required for
the relaxation of isolated arteries to occur in response to ACh (Furchgott and
Zawadzki, 1980a, 1980b; Furchgott ef al, 1981). This finding explained why ACh,
a potent vasodilator of arteries in vivo, often produced no relaxation or even
contraction of isolated preparations of arteries in vitro (Furchgott, 1981; Furchgott,
1982). In those tissues which failed to respond to ACh, the endothelium was often
damaged or stripped from the vessel wall during preparation. In their original report
of these findings, Furchgott and Zawadzki (1980a) proposed that ACh was acting
on a muscarinic receptor on the endothelium to stimulate the release of one or more
factors which caused relaxation of vascular smooth muscle. The term endothelium-
derived relaxing factor(s) (EDRF) was coined for this substance(s) (Cherry et al,

1982).
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(a)  Characterization and Identification of EDRF

These original findings by Furchgott and Zawadzki prompted many
investigations into the identity and mode of action of EDRF. Early studies
demonstrated the lack of effect of cyclooxygenase inhibitors on the relaxing action
of ACh indicating that EDRF was not a prostaglandin (Furchgott and Zawadzki,
1980a). EDREF is a labile factor with measured half lives of 6 to 49 seconds (Griffith
et al,, 1984; Forstermann et al., 1984; Rubanyi et al., 1985; Angus and Cocks, 1987).

Like the nif i such as nif in and sodium nitroprusside (SNP),

EDREF has been shown to cause vasodilation by stimulation of the soluble guanylate
cyclase of vascular smooth muscle, resulting in elevated cyclic GMP levels
(Forstermann et al., 1986; Holtzmann, 1982; Ignarro et al, 1984; Rapoport and
Murad, 1983a). Cyclic GMP then mediates relaxation, probably by multiple actions
on the control of intracellular free calcium (Collins et al, 1966). EDRF and the
nitrovasodilators also inhibit platelet aggregation (Ayuma et al, 1986), presumably
via a similar cyclic GMP-mediated action.

In the search for the identity of EDRF, several agents and conditions which
inhibit endothelium-dependent relaxations were found. It was discovered that the
actions of EDRF on vascular smooth muscle are potentiated by superoxide dismutase
and cytochrome C (Gryglewski et al., 1986a; Rubanyi and Vanhoutte, 1986; Moncada

et al, 1986) and are inhibited by Fe?* (Grygl i et al, 1986b),
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(Griffith et al, 1984; Moncada er al, 1986) and by pyrogallol (Moncada ef al,

1986). This led to the suggestion that these agents inactivate EDRF via the

of superoxide anions (Moncada ez al., 1986). in also inhibits
the actions of EDRF (Griffith e al, 1984; Martin ef al,, 1985) probably through a
different mechanism of action involving the binding of the molecule (Cocks and
Angus, 1985; Martin ef al,, 1986).

Finally, as the actions of EDRF were found to be quite similar to those of

the nif il it was sugg by gott (1988) that EDRF might simply

be nitric oxide (NO). Nitric oxide is thought to be the active metabolite througn

which ni i i soluble cyclase. Evidence has been given
by Palmer, Ferrige, and Moncada (1987) to show that NO released from endothelial
cells is indistinguishable from EDREF in terms of biological activity and stability, as

well as ptibility to inhibition by in and by

dismutase. Since this first report, further confirmation that EDRF is NO has been
provided by studies of the comparative pharmacology of the two agents (Hutchinson
et al., 1987; Radomski et al, 1987). Mechanisms other than the release of NO may

also play a role in i P isms have been

suggested including i such as ia (NHy; Vi 1987a), or the

involvement of ion channels which may regulate EDRF release or propagate
endothelial signals via gap junctions (Olesen et al, 1988; Lansman et al, 1987).

of vascular smooth muscle

An i transient hyp



23
cells, which may be independent of NO, has also been suggested (Vanhoutte, 1987a).
These observations must be fully investigated before it is known if non-prostanoid

endothelium-dependent mediators other than NO exist.

(b)  Agents that Produce lium-De Rel

Although acetylcholine was the first agent shown to elicit endothelium-
dependent vasodilation, a variety of agents, both humoral and synthetic, have also
been shown to cause the release of EDRF. Some of these agents also cause the
releass of prostaglandins from endothelial cells. However, prostaglandins do not
appear to have a significant role as mediators of these relaxing effects. In addition,
with some of these agents, endothelium-dependent relaxation of isolated arteries has
been limited to certain species. In scme cases it is limited to specific arteries in a
particular species.

Acetylcholine was first shown to cause relaxations which were dependent on
the presence of intact endothelium in isolated rings of rabbit thoracic aorta using
isometric tension measurements (Furchgott, 1981; Furchgott and Zawadzki, 1980a,
1980b; Furchgott et al,, 1981). In addition to the actions of ACh on rabbit aorta,
it was found that ACh caused endothelium-dependent relaxations in isolated arteries
from all mammalian species. These tissues included: rabbit superior mesenteric,

puimonary, and ear arteries; rat thoracic aorta; guinea-pig thoracic aorta; cat thoracic
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and abdominal aortae, superior mesenteric, pulmonary, and external iliac arteries;
and dog circumflex and left anterior descending coronary arteries (Furchgott and
Zawadzki, 1980a). Other investigators have found relaxations to ACh in canine renal
(Chand and Altura, 1981) and femoral arteries (De Mey and Vanhoutte, 1981), rat
(Davies and Williams, 1984) and pig aorta (Gordon and Martin, 1983), as well as
cat cerebral arteries (Lee, 1981) and bovine coronary arteries (Holtzmann, 1982).
Studies on human blood vessels have shown that ACh causes relaxations in the
presence of intact endothelium in isolated renal and peripheral arterial rings (Luscher
et al, 1987a) and in isolated renal, splenic, gastric, pulmonary, brachial, transverse
cervical and coronary arterial rings (Thom et al, 1985). The endothelium-dependent
vasodilatory effect of ACh is much less pronounced in isolated venous preparations
(De Mey and Vanhoutte, 1982).

A synthetic compound, the calcium ionophore A23187 is even more potent

than ACh in its i ilatory actions ( i et al,, 1980).

Against high levels of tone, the maximal relaxation by A23187 is always greater than
that by ACh (Furchgott et al, 1983). A23187 has been shown to cause endothelium-
dependent relaxations in rabbit thoracic aorta (Furchgott, 1981; Zawadzki e al., 1980;
Singer and Peach, 1982), rat thoracic aorta (Rapoport and Murad, 1983b), pig aorta
(Gordon and Martin, 1983) and in a variety of human arteries (Thom ef al,, 1985;
Thom et al, 1987a). It is interesting to note that in the presence of a maximally

effective concentration of A23187, additions of ACh and other endothelium-



25
dependent vasodilators produce no relaxation of contracted arteries (Furchgott et
al, 1983). This has been attributed to A23187 fully activating the mechanism for
production and release of EDRF in endothelial cells.

Noradrenaline and selective a,-acrenoceptor agonists can cause relaxation of
canine and porcine coronary and systemic arteries and canine pulmonary arteries
and veins if the endothelium is present (Cocks and Angus, 1983; Miller and

Vanhoutte, 1984). In the canine coronary artery the relaxing effects of the g-

ic agonists, ine and i are reduced following removal
of the ium (Rubanyi and , 1985a). It is not certain whether this
greater effect is due to an action on g-receptors on the ium or if

is caused by the basal release of EDRF. The presence of ay-inhibitory receptors

on the endothelium does help to explain why the contractile response to nonselective

ptor agonists is d upon removal of the endothelium.
The purines ATP and ADP, which are released by platelets during aggregation,
also induce endothelium-dependent relaxations in arteries. Removal of endothelial

cells was shown to markedly reduce the graded

P

to ATP or ADP in isolated preparations of rabbit aorta (Furchgott, 1981; Furchgott
et al, 1983; Furchgott and Zawadzki, 1980c), dog femoral artery (De Mey and
Vanhoutte, 1981) and pig aorta (Gordon and Martin, 1983). Vasodilation by
adenosine and AMP in rabbit aorta and dog femoral artery were shown to be

independent of the presence of endothelial cells (De Mey and Vanhoutte, 1981;
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gott er al, 1983; gott and i, 1980c). However, in pig aorta a

part of the ion by ine and AMP has been reported to be
endothelium-dependent (Gordon and Martin, 1983). Relaxations to adenosine in
canine coronary artery are also mediated by the endothelium (Rubanyi and

Vanhoutte, 1985a).

Substance P is one of the most potent s
studied (Zawadzki et al, 1981). SP has been shown, using an electromagnetic
flowmeter technique, to increase blood flow in the aorta, carotid, hepatic, superior
mesenteric, and femoral arteries of the dog (Hallberg and Pernow, 1975).
Subsequently SP has been shown to give endothelium-dependent relaxation in isolated
rings of rabbit aorta and dog superior mesenteric arteries which had been
preconstricted with noradrenaline (Furchgott e al, 1983). The threshold
concentration for relaxation by SP was 10 pM in rabbit aorta and 1 pM in dog
superior mesenteric artery. In these experiments a desensitization to SP at 1 nM
occurred within 10 minutes. This was overcome by washout of the preparation and
did not have any effect on relaxation to ACh or A23187. Endothelium-dependent
vasodilation by SP has also been studied in isolated dog (D'Orleans-Juste et al., 1985)
and pig (Gulati et al, 1987) coronary arteries. In the dog, SP relaxed isolated
coronary arterial rings which had been preconstricted with noradrenaline (20 nM)
at a threshold concentration of 65 pM. In isolated rings of pig coronary artery;

which, like human coronary artery, contracts to acetylcholine (50 uM), the inreshold
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for endothelium-dependent relaxation to SP was 30 pM. Substance P has also been

shown to cause ilation upon i inistration in the p

pulmonary vasculature of the dog (Archer ef al, 1986). In humans, SP has been
shown to increase blood flow in the skin and skeletal muscle of the forearm upon
close arterial infusion of 1-2 ng/minute (Eklund ef a’, 1977). Experiments on isolated
branches of human mesenteric arteries have shown that relaxations by SP are strictly
dependent on the presence of endothelial cells (Furchgott et al, 1983).
Bradykinin is also known as a potent vasodilator. Bradykinin has been shown

to produce i ion of canine i 'y and renal

arteries which is dependent on the presence of an intact endothelium (Altura and
Chand, 1981). Removal of the endothelium resulted in either a contractile response
to bradykinin or no response at all. In isolated rings of dog carotid arteries

preconstrictedwith drenaline (20nM),

at a threshold ion of 2 nM (D'Orl Juste et al., 1985). These
relaxations occurred only in the presence of an intact endothelium. The lack of
inhibition of this vasodilatory response to bradykinin by cyclooxygenase and
lipoxygenase inhibitors indicated that it was not mediated by prostaglandins. An
extensive study by Cherry and co-workers (1982) evaluated the actions of bradykinin
in isolated arterial rings from cats, dogs and rabbits. In the superior mesenteric and

celiac arteries from rabbit and cat removal of endothelial cells did not consistently

result in loss of the ions to dykinin. This ion was blocked by
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cyclooxygenase inhibitors and thus in these vessels the action of bradykinin appears
to be mediated by prostaglandins. In contrast, all arteries tested from the dog:

splenic, gastric, celiac, femoral, renal, coronary, pulmonary, and superior mesenteric,

showed a requis for jal cells in the jion by dykini
Cyclooxygenase inhibitors did not interfere with the relaxation response and so
bradykinin is thought to act via EDRF in blood vessels of the dog. Bradykinin was
also studied on rings of mesenteric artery from humans and found to elicit relaxations

with similar mechanism to those in dog arteries. In addition, Gordon and Martin

(1983) have reported that bradykinin induces relaxations of pig aorta which are also

P P

P and

Vasoactive intestinal polypeptide is a potent vasodilator which acts by different
mechanisms in a variety of species. In rat aorta VIP caused relaxations which were
endothelium-dependent (Davies and Williams, 1984). In a study of human blood

vessels, VIP p P ion in coeliac branch arteries,

but in isolated pulmonary arteries its relaxing effect was independent of the presence

of endothelial cells (Thom et al, 1987a). Another group has also reported an

T for ion of human p y arteries by
VIP (Barnes er al, 1986). VIP has also been shown to relax human gastric and
transverse cervical arteries in an endothelium-dependent matter (Thom et al., 1987a).
The vasodilation of bovine pulmonary artery and canine coronary artery has also been

reported to be independent of the presence of endothelial cells (Griffith et al,, 1985).
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Calcitonin gene-related peptide is another peptide which has vasodilator

activity in man and other mammals. In a strip preparation of rat thoracic aorta

CGRP gave d jons of ine-induced one which were
dependent on the presence of endothelial cells (Brain ef al, 1985). This relaxation

was partially supp by inhibitors and so ins may be

responsible for some of the response to CGRP. In this study CGRP also caused

of the i of rabbit and man in vitro. CGRP
was 1000 times more potent than ACh, ATP, ADP, adenosine, 5-HT and SP in this

action. Another study has

P ions to CGRP
in rings of rat thoracic aorta (Kubota e al, 1985). Recently CGRP has been shown
to relax preconstricted segments of human radial, coronary, gastric and cerebral
arteries in an endothelium-dependent manner (Thom et al., 1987b). Cyclooxygenase
inhibitors did not block the responses to CGRP and thus EDRF is thought to be
the mediator of these relaxations.

Histamine is a vasodilator which has been shown to act via EDRF in certain

isolated blood vessel p i It was first to cause a dose-

dependent relaxation in rings of rat thoracic aorta, precontracted with noradren-
aline (Van de Voorde and Leusen, 1983). This relaxation to histamine (10-1000 uM)
was dependent on the presence of an intact endothelium and was not mediated by
prostaglandins. The use of specific histamine receptor antagonists indicated that

histamine was acting on an H, receptor of the endothelium. Rapoport and Murad
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(1983) have reported similar results for histamine in rat aorta. Histamine also

produces i P ion of guinea-pig pul y artery (Satoh

and Inui, 1984). This response is thought to involve the H, receptor on the
endothelium in this tissue as well. It is also of interest to note that histamine causes
the release of EDRF from human umbilical blood vessels via an H, receptor subtype
(Van de Voorde et al, 1987). This is a tissue which does not release EDRF in
response to ACh.

Thrombin, which is generated during the cascade reactions of coagulation,
causes endothelium-dependent relaxation in basilar, coronary, femoral, saphenous,
splenic, and pulmonary arteries of the dog (De Mey et al, 1982; De Mey and
Vanhoutte, 1982; Katusic et al,, 1984) and in aorta of the rat (Rapoport ez al., 1984).

Relaxation was not inhibited by inhibi of and

P Y

synthetase, but was inhibited by heparin. Similar findings have been made on

hrombin-induced i P ion of isolated canine coronary
arteries (Ku, 1982). In these arteries, the relavation to each addition of thrombin
was transient, and was counteracted by a direct contractile action on the smooth
muscle.

Platelet activating factor (PAF) is released during platelet aggregation and
has been shown to cause vasodilation in a number of animal models (Vargaftig and

Benveniste, 1983). At very high ions, PAF induces ium-d d
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relaxations in isolated canine coronary and femoral arteries and rat aortae (Kamitani
et al,, 1984; Kasuya et al., 1984).

Serotonin is also released during platelet aggregation. Precontracted canine
coronary arteries have been found to relax to serotonin only if endothelial cells are
present (Cohen ef al, 1983). In the absence of endothelium, serotonin produces
only a contraction in the canine coronary arterial rings. Endothelium-dependent
relaxation by serotonin has not been reported for any other arteries.

Hydralazine is an antihypertensive drug which produces its relaxant effect on

isolated rings of rabbit aorta mainly through an endothelial cell:

(Spokas et al,, 1983). This effect occurs at relatively low concentrations of 0.1-1 uM.

This is of interest because most other antihyp ive drugs; nitrogly
nitroprusside, minoxidil and diazoxide, are thought to act directly on the vascular
smooth muscle, independent of the presence of endothelial cells.
Endothelium-derived relaxing factor is also released from arteries in response
to increments in flow (Holtz et al, 1984a). Effluent from perfused rabbit aorta
(Griffith et al, 1984), or canine femoral artery preparations with endothelium
(Rubanyi et al,, 1986), in response to increased flow, caused relaxations of bioassay
coronary arteries without endothelium. Increments in flow through arteries in vivo
(Gerova et al,, 1983; Hintz and Vatner, 1983; Holtz et al,, 1984a; Kaiser et al.,, 1985;
Rubanyi ez al., 1986) or in vitro (Holtz et al,, 1984b) induce vasodilation, which cannot

be

p d by inhibitors (Holtz et al,, 1984a), but can be abolished
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by removal of the endothelium (Holtz et al,, 1984b) or depressed by mett.ylene blue
(Kaiser et al., 1985). Thus, the EDRF released by large arteries in response to flow
has characteristics very similar to that released by ACh.

It is evident that a wide range of agents cause the release of a relaxing
substance from the endothelium. Some of these agents are found in perivascular
nerve fibres and some are endogenous to the circulation under various conditions,
while some compounds which elicit the release of EDRF are synthetic. It seems
that even the flow rate of blood through the vasculature is involved in the control
of smooth muscle tone through the mediation of the endothelium. Whether all
these agents release nitric oxide or other types of a non-prostanoid EDRF is not
known. However, based on common susceptibilities to inhibitory agents it is likely
that many of these agents act to release the same relaxing factor that ACh produces

(Furchgott et al,, 1983; Furchgott, 1984).

12.3. Endothelium-Derived Contracting Factor

In addition to the vasodilator substances which are released by the

endothelium, evidence has been given for the release of one or more vasocontractile

factors from vascular endothelial cells. It was first reported in 1982 that an intact

was for ion of canine systemic and pulmonary veins

in response to arachidonic acid (De Mey and Vant 1982). V
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onor by an intact ium, has been observed in response
to various chemical and physical stimuli (reviewed by Vanhoutte, 1987b; Vanhoutte

and Katusic, 1988).

(a)  Characterization and Identification of EDCF

Part of the evidence supporting the release of ictor from

the thelium comes from experi in which anoxia produced endothelium-
dependent contractions of peripheral, coronary, and cerebral arteries (Rubanyi and
Vanhoutte, 1985b; De Mey and Vanhoutte, 1983; Katusic and Vanhoutte, 1986).
These responses were not sensitive to inhibition of cyclooxygenase and thus were

te an

termed EDCF, (Vanhoutte

1987b). It has also been that cultured helial cells produce a

vasoconstrictor peptide (Hickey et al., 1985; Gillespie et al., 1986), which has recently

been ized and named in (Yanagi: etal, 1988). Endothelin has,
upon further study, been shown to consist of a group of three structurally distinct
isopeptides which have different pharmacological profiles (Inoue et al., 1989). Since

the p ion of in and its ile effect do not depend on cyclo-

oxygenase activity, it has been proposed that EDCF, may be endothelin. There is,
however, evidence to indicate that endothelin is unlikely to be the mediator of the

so-called hypoxic response of vascular smooth muscle (Vanhoutte and Katusic, 1988).
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Another series of experiments has led to the discovery of endothelium-
dependent contractions that are sensitive to inhibitors of cyclooxygenase. These
studies began with the findings of De Mey and Vanhoutte (1982) that arachidonic

acid caused an i ion of ine-induced

in system and veins of the dog. Further studies revealed

in canine veins and cerebral arteries and in the

aorta of spontaneously hypertensive rats to a variety of stimuli, including arachidonic
acid, acetylcholine, A23187, serotonin and sudden stretch (Miller and Vanhoutte,
1985a; Luscher and Vanhoutte, 1986a; Luscher and Vanhoutte, 1986b; Katusic er
al, 1987; Katusic er al, 1988). The mediator of these endothelium-dependent
contractions was suggested to be an unidentified product of the cyclooxygenase
pathway, possible thromboxane A,, and was tentatively referred to as EDCF,
(Vanhoutte, 1987b). Vanhoutte and Katusic have noted that superoxide anion causes

contractions in canine basilar artery and that superoxide dismutase plus catalase

abolish endotheli ds ions to A23187 in the same preparation

(Vanhoutte and Katusic, 1988). On the basis of this and other studies with
cyclooxygenase (Kontos ef al, 1985; Rosenblum, 1982) it has been suggested that

EDCEF, is the superoxide anion (Vanhoutte and Katusic, 1988).

Thus, it can be seen that the endothelium can be ible for mediati

both vasodilation through the release of nitric oxide and possible other dilator

substances, and vasoconstriction through the release of endothelin peptides,
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A‘ 'P i ion and possibl
The physiclogical signi of these is beginning to be and
the ium is now gnized as an imp: contributor to the control of

wvascular tone.

This review has attempted to encompass the wide number of components
involved in the control of the cardiovascular system. From the direct control of
vascular and cardiac muscle provided by the autonomic nervous system, to the
influence of factors in the circulation, the rate of flow of blood depends on the end
result of a balance between vascular contraction and relaxation. Although much
progress has been made toward an understanding of the mechanisms involved in this
rontrol, much remains to be studied with respect to cardiovascular control in disease

states such as atherosclerosis, diabetes and hypertension.
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13.  Objectives of the Study and Review of Methods

The objective of this study was to test the hypothesis that the ability of
vascular endothelium to release EDRF inresponse to stimulation by vasoactive agents
is related in some way to the pattern of perivascular innervation. From this work
it is hoped to determine what influence, if any, the perivascular innervation of a
vascular resistance bed has upon the ability of endothelial cells to cause relaxation
of medial smooth muscle. In disease states such as hypertension and diabetes,
changes occur in the structure and function of the vasculature (Scottand Pang, 1983;
Brody et al., 1980; Gabbay, 1971; McMillan, 1975). Information about the
mechanisms involved in the control of the vasculature may be utilized in the

development of pharmacological age nits used to treat cardiovascular disease.

13.1. The McCregor Preparation

‘The tissue chosen for this study was the McGregor preparation of the isolated

perfused mesenteric arterial bed of the rat (McGregor, 1965). There are several

reasons for this choice. First, an isolated tissue was chosen so that cardiovascular

reflex mechanisms did not i to the d result. Some whole animal

preparations have been used to investigate the effects of vasoactive agents on blood

flow of vascular beds, but these results can be

by

P!
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in situ (Hallberg and Pernow, 1975; Smiesko ez al., 1985; Angus et al., 1983; Archer
o al., 1986). Second, an intart arterial resistance bed was studied in order to
simulate the in vivo situation in the determination of the effect of the vasoactive
agents used. While there are problems inherent in the setting up and maintaining
of an isolated vascular bed, this tissue is a comparatively simple preparation of
perfused mesenteric blood vessels, The majority of the studies of endothelium-
dependent relaxation have been carried out on isolated ring or strip preparations
of large conduit arteries (Furchgott and Zawadzki, 1980a; reviewed by Furchgott,
1984). Although these preparations are easily set up and respond well to vasoactive
agents, the entire tissue is bathed in the administered drug solutions. In the isolated
perfused mesenteric arterial bed, only the intimal surface of the blood vessel is
exposed to administered agents. In addition, the role of the conduit artery in the
contribution to blood pressure is thought to be less important than that of the smaller
resistance vessels of the vascular beds (Prewitt ef al, 1987, Longhurst et al.,, 1986).
Ring and helical strip preparations of resistance blood vessels, including superior
mesenteric artery, have also been studied (Toda, 1974; Furchgott and Zawadzki,
19804a; reviewed by Furchgott, 1984). However, the smaller diameter of these vessels
makes it difficult to avoid endothelial damage during preparation. These tissues are
also completely bathed in the agent being tested.

The choice of the mesenteric bed of the rat was based on the body of

anatomical and histological information already available in this laboratory (Scott,
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Robinson and Foote, 1986, 1989). There is also extensive information in the

Tt

nutrition, bolism, and physiology of the rat which,
along with its size, make it a useful animal for cardiovascular research (reviewed by
Gill e al, 1989).

The McGregor preparation of the isolated perfused mesenteric arterial bed

is, therefore, a suitable tissue in which to studv the action of vasoactive agents on

the ium in a vascular resi bed. However, in an isolated vascular bed
such as this, there are many components which react to vasoactive substances to
contribute to the overall measured changes in perfusion pressure. It is possible
that in pharmacological experiments with this tissue the variation in measurements

may be high.

132. Immunchistochemistry

The perivascular innervation of the mesenteric arteries was visualized using

immunohistochemical staining to verify the presence or absence of nerve fibres

containing SP or TH. The method of immunohistochemical staining was a three step

peroxi ti-peroxi (PAP) p which utilizes diaminobenzidine to
produce a colored reaction product which can be viewed at a later date with light
microscopy. This method has been routinely used in this laboratory (Scott, Robinson,

and Foote, 1987) and is quite specific for the neuropeptides being visualized.
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Although primary and linking antibodies are readily available for this method of
staining, these materials can be expensive. It was also possitle to do
immunobhistochemical staining using primary antibodies which are linked to a
fluorescent marker. This method is also specific for the neuropeptides but is more
expensive and the tissues must be viewed immediately as the fluorescence may

fade.

1.33. Electron Microscopy

Transmission electron microscopy was utilized to check the integrity of the
endothelial lining of the blood vessels of the tissue preparations. This type of
electron microscopy allowed us to visualize a cross section of even the smallest of
the jejunal arteries. While each 1 um section is only a very small sample of the
vessel bed, a large number of samples were taken randomly. In this way it was
possible to determine if endothelial cells were being removed from any vessels in
the preparation. There are other methods for viewing the endothelial surface of
blood vessels. Scanning electron microscopy can also be used to check the
endothelium. As well, a method of en face silver staining allows visualization of the
endothelium by light microscopy (Poole et al,, 1958). Neither of these methads is
suitable for the small jejunal vessels of the mesenteric bed as the vessels must be

cut lengthwise to visualize the intimal surface.



1.3.4. Methods of Chemical Denervation

6-Hydroxydopamine

Development of the sympathetic nervous system was prevented in a group

of rats for this study by neonatal inistration of 6- pamine (6-OHDA),
an isomer of noradrenaline. This treatment was used to provide an experimental
model of blood vessels with an altered sympathetic nerve fibre plexus.

In 1959, while studying the i i of i to

noradrenaline in rat tissue homogenates, Senoh and co-workers discovered and
isolated the metabolite, 6-OHDA. The initial biological effects of 6-OHDA were
reported shortly thereafter (Porter ez al., 1963; Porter et al, 1965; Stone et al, 1963;
Stone ef al., 1964). These experiments demonstrated that 6-OHDA produced
depletion of noradrenaline in the hearts of mice and dogs and that this effect lasted
longer than that caused by other agents. It was also found that certain other agents
could antagonize the effect of 6-OHDA, indicating that uptake into the noradrer<.igic
neuron was necessary for this action of 6OHDA. Next came the discovery that 6-
OHDA caused an actval destruction of the terminal endings of the sympathetic
neurons (Tranzer and Thoenen, 1967, quoted by Kostrzewa and Jacobowitz, 1974).
This result was later defined as "chemical sympathectomy" (Tranzer and Thoenen,

1968). Since these original findings, a vast amount of information hes been
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accumulated on 6-OHDA and its pharmacology. For detailed reviews the reader
is referred to Thoenen and Tranzer (1973) as well as Kostrzewa and Jacobowitz
(1974).

The sequence of events which lead to the destruction of noradrenergic fibres
after administration of 6<OHDA has been well described, beginning with the active
uptake into sympathetic neurons. 6-OHDA is actively transported to intraneuronal

sites where it acts as a false i i i ine (Thoenen and

Tranzer, 1968). When critical intraneuronal concentrations of 6-OHDA or
metabolites are attained, destructive processes begin and cellular enzymes and
elements of the respiratory electron transport chain are destroyed. It is at this point
that the sympathetic nerve terminals lose their ability to conduct action potentials
but may still have a relatively intact monoamine uptake mechanism (Haeusler, 1971).
Because of the internal destruction, noradrenaline is released into the synapse,
resulting in a host of sympathomimetic effects (Stone et al., 1964). After a period

of time, the nerve terminals may be completely destroyed and there will be a marked

of

tyrosine activity, and monoamine uptake
capacity in these tissues (Iversen and Uretsky, 1970).

The action of 6:OHDA is selective for terminal fibres of noradrenergic
sympathetic nerves. Electron microscopic studies have indicated that cholinergic and
noradrenergic neurons, myelinated axons, smooth muscle cells, Schwann cells and

endothelial cells appear normal while noradrenergic neurons are in the process of
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degeneration (Bloom ef al, 1969; Tranzer and Thoenen, 1967, 1968). However, it
was discovered that after a period of weeks the adrenergic terminal plexus appeared
to regenerate in tissues in which the NA content had been markedly reduced by 6-
OHDA treatment (Thoenen and Tranzer, 1968). Thus, while destruction of

noradrenergic terminals had been achieved, the perikarya appeared intact to bring

about the reg ion of fibres. This ibility was found to be related to the

age of the animals at the time of 6-OHDA treatment. When 6-OHDA is

administered to newborn animals its ic effects are Angel
and Levi-Montaicini (1970) found that when 6-OHDA was given to newborn mice
or rats it caused extensive lesions, resulting in the destruction of the sympathetic
perikarya in the superior cervical, stellate, celiac, mesenteric ganglia and all of the
thoracic paravertebral chain. Thus the distinction was made between the "reversible
chemical sympathectomy” in adult animals and the “irreversible chemical
sympathectomy” in newborn animals after treatment with 6-OHDA (Thoenen, 1971).
‘While 6-OHDA has proven to be a valuable pharmacological tool, there has

been some y as to its in cardi rescarch. Some studies

indicate that 6-OHDA does not produce a complete sympathectomy of the
vasculature (Berkowitz et al., 1972; Finch et al., 1973a, 1973b; Kurnjek et al., 1984).
However, the degree of chemical sympathectomy attained depends upon a variety
of factors. While the age at which treatment is initiated is clearly important, the

dose of 6-OHDA, its route and frequency of administration, as well as the tissue
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being ined are all i factors which ibute to the effecti of 6-

OHDA treatment.
Capsaicin

Capsaicin treatment was used in this study to destroy peptidergic peripheral
innervation containing the peptides SP and CGRP. This treatment produced a group
of rats with an altered peptidergic nerve fibre plexus. v

Capsaicin is the trivial name for 8-methyl-N-vanillyl-6-nonenamide, the major
pungent component of hot peppers of the genus Capsicum. Hot peppers have been
used as food additives and preservatives, as medicines and in social rituals for

centuries. In the late 1940s an extensive ization of the p

effects of capsaicin and its congeners on sensory processes in mammals was
undertaken by Jancso and colleagues in Hungary. These studies revealed that most
of the biological effects of capsaicin result from an initial intense excitation of certain

sensory neurons, followed by a p ged period of i itivity to

stimuli. For reviews of this early research on capsaicin the reader is referred to
Jancso (1968), Virus and Gebhart (1979) and Szolcsanyi (1982).

The observation that capsaicin depletes fluoride-resistant acid phosphatase
activity, known to be associated with central terminals of some primary afferent

neurons from the dorsal horn of the spinal cord, suggested that capsaicin acts on
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the biochemical processes of these sensory neurons (Jancso and Knyihar, 1975). This
had been suggested earlier by Gasparovicand co-workers (1964) who discovered that
capsaicin treatment reduced the amount of bioassayable SP in the spinal cord but
not in the brain. Further confirmation of the specificity of the effects of capsaicin
for SP-containing primary afferent neurons came from the results of Jessel and co-
workers (1978). They observed that systemic treatment of adult rats with a
cumulative dose of capsaicin depleted SP from the dorsal horn of the spinal cord
wiithout a general effect on spinal neurons and without destruction of primary afferent

neuron terminals in the cord. Numerous studies have confirmed by

or radioi hnig the SP depleting actions of
capsaicin in laboratory animals. In particular, a study by Furness and co-workers
(1982) found that capsaicin markedly depleted SP from nearly every vascular bed
of the guinea-pig. The exception to this was a group of SP-containing fibres on
arteries to the distal colon and rectum. These investigators also confirmed the
depletion of SP in the ureter, atrium and superior mesenteric artery of capsaicin-
treated animals (Murphy ef al., 1982). These results indicate that the neurochemical
effects of capsaicin are specific for primary afferent neurons.

Since the original research on the denervation of SP-containing sensory nerves

with capsaicin, further studies using i i ical and i

methods have revealed the presence of a variety of peptides in afferent neurons

(reviewed by Holzer, 1988). Functional evidence indicates a possible mediator or
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transmitter role for some of these substances. CGRP is one such peptide which has
been shown to coexist with SP in primary afferent capsaicin-sensitive fibres (Lundberg
et al., 1985; Skofitsch and Jacobowitz, 1985). Another peptide, VIP has also been
localized in sensory afferent fibres but is not generally associated with SP. Usually
VIP is found in ACh-containing nerve fibres with the exception of the cat, where
evidence has been found for its coexistence with SP (Leah et al., 1985).

Most studies with capsaicin have been carried out on small rodents such as
rats, mice and guinea pigs. At low doses, in the pg/kg range, capsaicin causes a
powerful excitatory effect which is confined to small unmyelinated afferent nerve
fibres or C-fibres (Kenins, 1982; Buck and Burks, 1986; Szolcsanyi, 1977). This
excitation is followed by a desensitization to capsaicin and blockade of impulse
conduction.  Systemic administration of high doses, in the mg/kg range, has a
neurotoxic effect on sensory neurons. The extent of this toxicity depends upon the
dosage, route of administration, species and age of the animals. The most extensive
and consistent lesions are produced by systemic treatment of newborn animals. A
single dose of 50 mgfkg results in permanent degeneration of 50% - 90% of all
unmyelinated afferent fibres in newborn rats with no significant change in the
myelinated afferents (Jancso et al, 1977; Nagy et al., 1981, 1983). Specifically, in
guinea pigs capsaicin causes a marked depletion of SP and CGRP from curdiac SP-
and CGRP-containing neurons, while cardiac adrenergic and VIP-containing neurons

remain intact (Della et al., 1983; Lundberg et al, 1985; Papka et al., 1981; Saito et
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al, 1986). At doses higher than 50 mg/kg a reduction in the number of small
myelinated fibres is also seen (Nagy et al, 1983). Administration of 50 mg/kg
capsaicin to adult rats results in less pronounced effects with no degeneration or
partial degeneration of unmyelinated sensory afferents (Jancso, 1981; Jancso et al.,

1985). In the guinea pig, which is more sensitive to capsaicin than the rat, the same

dose causes rapid ion of app ly i fibres (Papka et al., 1984).

It has been summarized that there are three major actions of capsaicin on
primary afferent ncurons (Buck and Burks, 1983, 1986). The first effect is an
excitation which probably occurs when capsaicin, a lipophilic molecule, dissolves in
the plasma membrane of the free ending of the nerve fibre. Capsaicin is presumed
to affect the fluidity and possibly the ion permeability of the plasma membrane.
These changes result in the flow of Ca?* and other ions across the membrane as well
as the release of SP. The second effect is a desensitization of the primary sensory
afferent neurons to the peripheral stimuli. It is thought that capsaicin results in a

long lasting plasma p ion that locks the ina depularized

state. It is this inability for further depolarizations to be initiated or propagated that
results in the sensory deficit which has been observed. Finally, capsaicin produces
a depletion of most of the SP contained in the primary afferent neurons. This is
caused in part by the release of SP that occurs during the initial membrane excitation.
However, the neuron is also unable to replenish its peripheral and central SP stores

because capsaicin has a disruptive effect on the intracellular organelles including the
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microtubule system. Any remaining vesicular SP may also be lost due to capsaicin-
induced disruption of the storage vesicles. It is not clear if capsaicin produces all
these effects by more than one mechanism of action. It has been suggested from
structure-activity studies that the initial excitation and SP release in primary afferents
are one action and that the subsequent desensitization and sensory deficits produced
by capsaicin are a separate action. There is as yet little data to support this idea.

Capsaicin was chosen as a tool in this study for depletion of the SP-CGRP
afferent nerve fibre plexus in the mesenteric arterial bed of the rat. It is a useful
agent because of its specificity of action and long lasting effect when given in a 50

mg/kg dose to newborn rats at 2 days old. However, although many studies have

the effect of capsaici on nerve fibres, very little is known about
its effect on other tissues such as endothelium and vascular smooth muscle. Studies
on the acute effects of capsaicin on blood vessels have indicated that it can have
two different effects. Capsaicin, when administered in vitro, causes a vasodilation
which is independent of the presence of the endothelium but does not occur in
vessels from animals which have been treated with capsaicin in vivo to remove
sensory afferent innervation (Duckles, 1986; Donnerer and Lembeck, 1982, 1983).
Thus, this vasodilatory effect is thought to be mediated by an unknown transmitter
released from sensory afferents by capsaicin. Insystemically capsaicin-treated animals
a contractile response to capsaicin applied in vitro is observed. This is thought to

be a direct excitatory action on vascular smooth muscle. The chronic effects of
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capsaicin administration on vascular smooth muscle and endothelium are unknown.
In addition, the effects of the vehicle treatment on vascular tissues have not been
described. The most common vehicle used for capsaicin injection, and also used in
this study, is a mixture of 10% ethanol and 10% Tween 80 in isotonic saline (Jancso
et al, 1977). However, in many studies the effects of capsaicin treatment are
compared with a vehicle-treated control only. An untreated animal is rarely used
as a control for the vehicle treatment. Since the effects of this vehicle treatment
are unknown, it is suspect and must be considered to have potential effects of its
own. Capsaicin was therefore used in this study, along with a vehicle and an
untreated control, to cause permanent degeneration of the primary sensory afferent

nerve fibre plexus in the mesenteric arterial bed of the rat. As with many

P gical agents, the i of is known to vary with the age

of the animal at treatment, the dose administered and the route of administration.
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MATERIALS AND METHODS

In this study, dose response ionships were ined for P

and acetylcholine in the presence of methoxamine in the isolated perfused mesenteric
arterial bed of the rat. These experiments were carried out on tissues from untreated
and vehicle-treated control animals as well as groups of animals which had been
treated with 6-hydroxydopamine or capsaicin to provide a chemically denervated

model.

2.1.  Tissue Preparation

The tissue chosen far this study was the McGregor preparation (McGregor,
1965) of the isolated perfused mesenteric arterial bed of the rat with some
modifications. Adult male Sprague-Dawley rats (12 weeks, Charles River Canada

Inc.) were anaesthetized with sodium pentobarbital (Somnotol, M.T.C.

Phar i 35 mg/kg il i A itudinal midline incision was made
through the abdominal wall and the mesenteric bed was spread onto a gauze square
dampened with buffer solution. The superior mesenteric artery was dissociated
from the surrounding tissues and ligated proximal to the abdominal aorta. A cannula
of PE-90 polyethylene tubing, (Intramedic, Becton Dickinson & Co.) which had been

heated with a flame and drawn out to a tapered end, was inserted distally into the
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superior mesenteric artery above the ligation and secured with 5-0 silk sutures
(Ethicon). At this point the superior mesenteric vein was cut just proximal to the
portal vein and the bed was flushed gently to prevent clotting.

Then the colic and ileo-colic branches of the superior mesenteric artery were

quickly ligated (Figure 1).
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Figure 1. The mesenteric arterial bed of the rat.
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In addition, all primary jejunal arteries except the four most distal to the cannula
were tied off in groups and the mesenteric vein was tied off with the pancreato-
duodenal vessels. The tissue was removed from the animal by severing the vascular
pedicle.

Finally, the intestine was separated from the mesentery by cutting close to
the intestinal border, leaving only the cut ends of the tiny vessels on the intestinal
margin of the mesentery for the perfusate to flow from.

The tissue was suspended in a jacketed glass bath at 37°C and perfused at
a constant rate of 2 mL/minute with a Krebs bicarbonate buffer (Hynes and Duckles,
1987).

The composition of the buffer solution was as follows (millimolar): Na*, 147.6;
K*, 6.4; Ca?, 1.6; Mg?, 1.2; Cl"» 130; HCOy™» 26; SO 2"+ 1.2; H,PO, "+ 1.2; glucose,
11. Disodium ethylenediamine tetraacetate (EDTA) was not used. The buffer
was incubated at 37°C in a thermostated water bath and was aerated with a gas
mixture of 95% O,/5% CO,. Pressure measurements were made using a Gould

Statham P23Dc pressure transducer and a Beckman Type R411 Dynograph recorder.

22.  Apparatus

In these experiments perfusion pressure was measured from the isolated

mesenteric arterial bed. A schematic diagram (Figure 2) is presented to illustrate

the apparatus used.
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Figure 2. A schematic diagram to illustrate the perfusion apparatus.
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During the dissection the tissue was attached to a 10 mL syringe (Luer Lok,
Becton Dickinson & Co.) with a 20 gauge 1 inch needle (Precision Glide, Becton
Dickinson & Co.) which had been filed down and inserted into the blunt end of the
polyethylene cannula. This syringe was filled with warmed oxygenated buffer to flush
the tissue during the dissection. When isolated from the animal, the tissue was
attached to the perfusion and detection apparatus by inserting the fitting of the
needle into a 2 cm piece of latex tubing (4.8 x 2.4 mm, Scimatco, Fisher Scientific)
which was connected to one port of a three way stopcock (Monoject). The second
port of the stopcock was attached to a Gould Statham P23Dc pressure transducer
and a Beckman Type R411 Dynograph recorder for the measurement of perfusion
pressure. The third port of the stopcock was attached with silicon rubber tubing
(29 mm LD, 49 mm O.D,, LKB) to an LKB 2132 microperpex peristaltic pump
which supplied the tissue with buffer at a constant rate of 2 mL/minute. Both the
buffer and the jacketed tissue bath were kept at 37°C by a Haake immersion

circulator (model D1, Fisher Scientific).

23. Drugs and Chemicals

The methoxamine used in this study was a gift from Burroughs Wellcome Inc.,

Kirkland, Quebec. Stock solutions of 102 M were made up in water, aliquoted and
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frozen until used for an experiment. Solutions were never refrozen for repeated
use.

Acetylcholine chloride was obtained from Sigma Chemical Company, St. Louis,
Missouri. Stock solutions were made up in water, fresh for every experiment, and
were stored on ice during the experiments.

P tri was p from Sigma Chemical

Company, St. Louis, Missouri. Solutions of each concentration to be tested were

made up in distilled water, aliq and frozen i i ivi aliquots
were thawed just prior to injection. Substance P solutions were never refrozen for
further use.

The collagenase used for removal of the endothelium was obtained from
GIBCO laboratories, Burlington, Ontario. This preparation of clostradiopeptidase
A was a crude extract. Collagenase was used at a concentration of 0.2 mg/mL,
weighed freshly and made up in regular buffer solution for each experiment.

Sodium nitroprusside was purchased from Sigma Chemical Company, St. Louis,
Missouri. Stock solutions of 10-2 M were made up in water fresh for each experiment.
The solutions were stored on ice and protected from light during the experiment.

Angiotensin Il was obtained from Sigma Chemical Company, St. Louis,
Missouri. A 1 mg quantity was dissolved in 841 L of water to achieve a 103 M

stock solution for each experiment.
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24.  Animal Models

In this study the action of two ive agents, ine and

P were studied in the isolated perfused mesenteric arterial bed of the rat. In order

to determine if the perit nerve fibres i to the of the

ability of the blood vessels to respond to these agents, experiments had to be carried
out on tissues from animals with and without the normal nerve fibre plexus. In
total, five groups of animals were studied. The experimental groups consisted of
two models of chemically denervated adult male Sprague-Dawley rats. The control
groups were untreated adult male Sprague-Dawley rats, as well as two groups of
vehicle-treated animals to correspond with the experimental models.

The first experimental group was a2 model of chemical sympathectomy.
Sprague-Dawley rats were treated from birth with 6-hydroxydopamine (6-OHDA)
to prevent the development of the sympathetic nervous system. The 6-OHDA was
dissolved in a solution of phosphate buffered saline which had been boiled and
bubbled with nitrogen gas to remove dissolved oxygen. This solution also contained
ascorbic acid (5 mg/mL) as an antioxidant and was adjusted to pH 5 with 1 M HCI
to further protect the 6-OHDA. Rats were given a subcutaneous injection of 0.1
mL of this solution containing a dose of 60 mg/kg of 6-OHDA. Injections were ad-

ministered on day 0, 1, 3, 5, 7, 9, 11 and weekly thereafter until the age of 12 weeks.
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The second experimental group consisted of male Sprague-Dawley rats which

had been treated with capsaicin from birth to destroy peptidergic peripheral
innervation containing the peptides substance P and CGRP. Capsaicin was dissolved
in absolute ethanol (2 mL) and a mixture of Tween-80 (2 mL) in 0.9% saline (16
mL) was added. This solution needed warming to dissolve the capsaicin completely.
Rats were given a subcutaneous injection of 0.1 mL of this solution. Injections
were administered on day 2, 3, 4, Il and 25, followed by two further monthly intervals
until the rats were 12 weeks old. On day 2 the injections contained a dose of 25

mg/kg of capsaicin, with subsequent doses containing 50 mg/kg.

Control experi were done on and vehicle-t d rats. The
vehicle injections consisted of the same solutions, volumes and intervals as described

for the experimental models, with the 6-hydroxydopamine or capsaicin omitted.
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2.5. Experiment Protocols

is an a, agonist which was utilized as a pressor
agent throughout this study. In this experiment eight rats were used to determine

the ion response ionship for ine (gift from Burroughs

Wellcome Inc., Canada) in the mesenteric bed.
Stock solutions of 1x 102 M methoxamine were made up in water, fresh for

each day. After dissection, each tissue was allowed to equilibrate for 60 minutes.

Then, h ine was added i to the perfusing buffer solution in a
concentration range from 1 x 107 to 5 x 10 M. After the tissue had reached a
maximal plateau in pressure, ACh from a 10°2 M stock solution in water, was added
to the perfusing solution to achieve a solution concentration of 1 x 10 M. This

was done to determine the functional state of the endothelium in the preparation.

2.5.2. Acetylcholine Experiments

In this study ion response ionships were determined for ACh,

in the presence of tone induced by ine, in the ic bed

of five groups of rats.
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The experimental groups consisted of rats treated with 6-OHDA or capsaicin,

as previously described, to provide models of chemically denervated animals. The
control groups were normal adult male Sprague-Dawley rats, as well as vehicle-

treated animals to with the two i 1 groups.

In these experiments the mesenteric bed preparation was dissected and set
up as described previously. The tissue was allowed to equilibrate for 60 minutes
before it was challenged with 1 x 10> M methoxamine in the perfusing buffer for
a 5-7 minute exposure. After a further 30 minute equilibration period of perfusion
with regular buffer, the tissue was again exposed to methoxamine in the buffer at
a concentration of 1-3 x 105 M to induce a stable plateau of pressure of 75 to 120
mm Hg above the basal pressure. Then, cumulative additions of ACh were made
to the buffer in the range from 1x 10 to 1 x 10" M stepwise. Only one dose
response experiment was completed for each tissue.

The dose-dependent reductions of pressure to acetylcholine were calculated

as percent reductions of methoxamine indv _d pressure.

2.5.3. Substance P Experiments

A series of experiments were carried out to investigate the action of substance

P in the isolated perfused mesenteric arterial bed of the rat. Dose response

relationships were studied for substance P in the presence of methoxamine in six
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groups of Sprague-Dawley rats. As for the acetylcholine study, rats were treated
with 6-OHDA or capsaicin from birth to provide two models of chemical denervation.
Control groups consisted of normal adult rats as well as the two corresponding
vehicle-trzated groups. In addition, substance P was studied in the presence of
methoxamine in preparations which had been denuded of endothelium. Subsequently,

experiments were done to further i igate the ism of action of

P in this preparation. These studies involved the administration of substance P
before methoxamine exposure, as well as substance P in the presence of Angiotensin
11 or elevated potassium concentration in the buffer.

It was determined in preliminary experiiaents that SP is susceptible to
hydrolysis in a heated buffer solution such as that used to administer the methoxamine
and ACh. This was not found to occur with ACh or methoxamine over the time
course of the experiments. It also required a substantial amount of the synthetic
peptide to add it to the perfusing buffer solution, which could be extremely expensive.
However, when injections of a 10 uL dose of stock solutions ranging from 102 to
10°M were given at the injection port (figure 2, page 54) pressor responses were
obtained. An injection artifact was ruled out by injecting 10 uL of the solvent
(H,0)and observing no response in the tissue. Higher volumes (2100uL) were found
to give a transient artifact pressure response. Therefore SP was administered as an
injected bolus dose in contrast to the cumulative concentrations of ACh in the

perfusing buffer.
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(a) Substance P in the Presence of Methoxamine

In this group of experiments the mesenteric bed was dissected and set up as
previously described. After an equilibration period of 60 minutes the tissue was
challenged with 1 x 105 M methoxamine in the perfusing buffer for a period of
5-7 minutes. The tissue was then perfused with regular buffer and allowed to
equilibrate for a further 30 minutes. At this time the tissue was again exposed to
1x 10"5 M methoxamine in the buffer. As soon as the stable plateau of pressure
was reached, a control injection of 10 uL of water was delivered with a Hamilton
syringe through the latex tubing which attached the tissue to the recording and
perfusion apparatus. Then, at five minute intervals, two further injections of 10 uL
of SP dissolved in water were riade at the same site of injection. Finally, after the
second response to SP was obtained, a 10 uL injection of 102 M ACh was made

to indicate the i state of the

Concentrations of SP from 102 M to 102 M were tested and a range from
10°5 to 102 M was chosen for measurement of the dose response relationship. Doses
of SP were calculated based on the 10 uL volume of injection of the 105 to 102
M solutions. Finally, to avoid desensitization, only two doses of SP were given to
each tissue. The dose response data was expressed as both the actual change in
perfusion pressure and as the percentage increase in the methoxamine induced

pressure measured just prior to the injection of SP.
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®) P in Endothelium-Denuded P

To determine if the endothelial cells lining the blood vessels of the mesenteric

bed were necessary for the action of substance P in this tissue, it was of interest to

study tissues which had been denuded of endothelium. Removal of the endothelit
was attempted by: flushing the tissue rapidly with buffer solution during dissection,
allowing air to perfuse through the tissue for 5 minutes, and by a combination of
a treatment with collagenase in the buffer and an air embolism. Electron microscopic
examination of preparations treated by these methods indicated incomplete removal
of the endothelium for the first two methods. The combined treatment with
collagenase and air resulted in a tissue which was free of endothelial cells.

Six normal adult male rats were used for these experiments. The mesenteric

bed was dissected and set up as previ ibed. After equilibration with normal

buffer for 60 minutes, the tissue was challenged with 1 x 10> M methoxamine in
the buffer and was tested for functioning endothelium with 10 M ACh in the buffer.
After a wash out period of 5 minutes the tissue was exposed to collagenase 0.2
mg/mL in the perfusing buffer for 60 minutes. Following this treatment, an air
bubble was allowed to perfuse through the tissue. The preparation was allowed to
equilibrate with regular buffer for 15 minutes and was then exposed to 1x 10°* M
methoxamine in the buffer. When a stable plateau of pressure had been reached,

two 10 pL injections of SP from 10°¢ to 10-2 M were given, followed by 105 M ACh
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in the perfusing buffer. In addition a 10 uL injection of 102 M ACh was given to

test for i Finally sodium

prusside was given, 10~ M in the perfusing
buffer, as well as a 10 pL injection of 102 M to ensure that the preparation could

relax to a direct stimulus.

The resp toSP ined in the preparations which had been denuded

of endothelium were expressed as the control data for SP had been.

(c)  Substance P Before Methoxamine

To further i igate the ism of action of P, experiments
were done in which SP was administered before the tissue had been exposed to
methoxamine. These experiments involved the use of six normal aduit male rats.

Tissues were dissected and set up as previously described. After an
equilibration period of 60 minutes, a control injection of 10 xL of water was given.
This was followed, after five minutes, by an injection of 10 pL. of 10-2 M SP. After
an additional five minutes, the tissue was exposed to 1 10°5 M methoxamine in
the buffer. When a stable plateau of pressure was reached, the tissue was given two

10 uL injections of 102 M ACh.



(d)  Substance P in the Presence of Angiotensin II

To further study the mechanism of action of substance P in this tissue, it was
necessary to determine the response to SP in the presence of a pressor agent which
activates a different receptor system. For this purpose, Angiotensin IT was used.
The experiment was carried out using six normal adult male rats.

The tissue was again dissected and set up as previously described. After 60
minutes of equilibration the tissue was exposed to 1x 10°* M Angiotensin Il in the
perfusing buffer. A control injection of 10 gL of water was given to the tissue,
followed by an injection of 10 uL of 102 M SP. Finally, a 10 L injection of 102
M ACh was given to check the integrity of the endothelium,

The responses of the tissue to this dose of SP were expressed as absolute

changes in perfusion pressure.

(¢)  Substance P in the Presence of Depolarizing Buffer

The response of the bed 1o substance P in the presence of a depolarizing
buffer was studied in this series of experiments. The direct substitution of potassium
chloride for sodium chloride in the perfusing buffer gave a solution which would elicit
a pressor response by acting directly on the smooth muscle cell membrane to cause

a depolarization. Six normal adult male rats were used for this study.



65

‘The mesenteric bedwas dissected and prepared as previously described. After
a period of 60 minutes of equilibration with regular buffer, the buffer was changed
1o a similar solution with an increased potassium concentration of 40 mM and a
decreased sodium concentration of 86.8 mM. This buffer solution was also warmed
10 37°C and oxygenated. After a stable pressor response was attained, the tissue
was given a control injection of 10 uL of water which was followed, at five minute
intervals, by a 10 yL injection of 102 M SP and 10 L. injection of 102 M ACh.

The responses to SP were measured and expressed in terms of actual change

in perfusion pressure.

254. i ical and Electron Mi pic Study

In addition to recording responses of the McGregor preparation to
pharmacological agents, this study examined the tissue preparation at both the light
and electron microscopic level to verify the presence or absence of the perivascular
nerve fibres and the endothelium,

Tissues were fixed after the experiments with Zamboni's fixative (Zamboni
and De Martino, 1967). The mesenteric bed preparations were flushed gently with
fixative from a syringe and then immersed in the solution for 1 hour. Tissues were
then stored in phosphate buffered saline (PBS) and the arterial bed was dissected

out of the surrounding ft and connective tissue with the aid of a dissecting
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microscope. The arterial bed, which now included the superior mesenteric artery

and four primary jejunal vessels with their

quent branches, was ivided for

p ing or p ing for electron microscopy.

(2)  Immunohistochemistry

Tissues were stained using immunohistochemical techniques to visualize the
perivascular nerve fibre plexus at the adventitial-medial border of the blood vessel
wall.  Sections of the mesenteric bed which contained a segment of superior
mesenteric artery with at least one attached primary jejunal artery with its branches
intact were processed whole using a three step peroxidase anti-peroxidase (PAP)
procedure. Vessels were washed in a solution containing phosphate buffered saline
(PBS), 1% Triton X-100, and 1% normal goat serum for one hour before incubation

in primary antiserum. This solution was used as an antibody diluent as well as for

rinses. The primary antisera used were anti P (1:2000; )
or anti-tyrosine hydroxylase (1:10,000; Eugene Tech). The tissues were incubated
in the primary antisera for 36 hours at 6°C. After three 15-minute washes, the
vessels were incubated in a linking antibody, goat anti-rabbit (1:50 Sternberger) for
2 hours and, following a further three washes, the tissues were incubated in rabbit
PAP complex (1:300; Sternberger) for 2 hours. Then, after the final three washes,

the tissues were reacted with a solution containing diaminobenzidine (50 mg) in
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distilled water (S0 mL) with 0.2 M phosphate buffer (50 mL) and 30% hydrogen
peroxide (33 pL). After the reaction was completed (1-2 minutes) the tissues were
dehydrated with 75% ethanol, absolute ethanol, and xylene for 15 minutes each and
mounted on slides as whole mounts with Eukitt mounting medium.

The presence of a nerve plexus, specific to the primary antibody used, was
determined by light microscopy.

Controls for the immunohistochemical staining method were carried out as
described above with one of the steps altered or omitted. The procedure was carried
out with primary antisera which had been preadsorbed with antigen, with primary
antisera omitted, or with the PAP linking antibody omitted to ensure that the reaction

product was due to specific labelling.

(b)  Electron Microscopy

Tissues selected for electron microscopy were placed in individual labelled

vials and kept on a rotating stirrer to ensure complete mixing throughout the

p ing. They were i in sodium buffer (0.1 M) for 30 minutes,
and then postfixed with osmium tetroxide (1% in cacodylate buffer) for 1hour. After
en bloc staining with uranyl acetate (saturated in 50% ethanol) for 30 minutes, the
tissues were put through a dehydration sequence, beginning with 70% and 95%

ethanol for 30 minutes each. Then, the tissues were further dehydrated with 3
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changes of absolute ethanol and cleared with two changes of absolute acetone for
10 minutes each. The tissues were infiltrated in a 50:50 mixture of resin and
acetone overnight at 6°C. The resin was made up using 16 g of Epon 812, 8 g of
DDSA (Dodecenyl Succinic Anhydride), 8 g of MNA (Methyl Nadic Anhydride) and
04 g of DMP 30(2,4,6-tri{dimethylaminomethyl] phenol). In the morning the tissues
were immersed in fresh resin for 4 hours on the rotating stirrer and polymerised in
Epon resin in flat embedding molds overnight at 60°C. Prior to embedding and
polymerisation, the superior mesenteric bed and its branching jejunal arteries were
separated and labelled.

Sections 1 um thick were cut and stained with toluidine blue. Thin sections
were stained with lead citrate and examined in a Philips EM300 electron microscope.
The presence of intact endothelium and perivascular nerve fibres was determined
from examination of the thin sections. With the exception of the intentionally air
embolized tissues, data was not used for tissues which were found to have damaged

or removed endothelial linings.

255. Statistics

Statistical analysis of the data was completed using the SPSS-X package on

the VAX/VMS computer at Computing Services, Memorial University of

Newfoundland. A oneway analysis of variance (ANOVA) was carried out on the



69
data from each animal group to determine if a dose response relationship exists for

the ine or P

peril The Scheffe test for significance was
used in these procedures (P<0.05 was considered significant).

From the means and standard errors of the means, calculated by the ANOVA

procedure, d ponse curves ucted for each group using the Sigmaplot

package on a Tatung TCS-7000 personal computer. The EC,, values were obtained

by grap g the ion of agonist p ing 50% of its
response using the method of Fleming et al. (1972). To test for differences in the
dose-response relationships for an agonist with the chemical denervation animal
treatments, a twoway ANOVA procedure was used. Differences indicated by the
ANOVA were considered to be significant for P<0.05.

In experiments where an ANOVA was not used, the means and standard

errors of the means were calculated using a Hewlett Packard HP-11C calculator.
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RESULTS

3.1 Immunchistochemistry Results

Upon ination by light mi the ic arterial bed

Pref

of the untreated animal groups were found to exhibit a nerve fibre plexus which was

disposed in two planes. Bundles of large diameter fibres appeared to run along the

outer itia, while at the adventiti dial border a plexus of finer beaded fibres
occurred. This layering of the perivascular nerve fibre plexus has been previously
described (Scott ef al., 1987). Although the form and extent of the fibre plexus was
different for SP and TH, both appeared to exist in two planes with the outer fibres
appearing smooth and the deep plexus displaying varicosities.

The tissues from the capsaicin-treated group did not display SP
immunoreactivity at either layer in the mesenteric arterial bed. However, the
preparations stained for TH revealed nerve fibres at both layers in all vessels of the
bed. The density of these fibres was not measured.

Tissues from 6-OHDA-treated rats stained positively for the SP-containing
nerve fibres at both levels. However, tissues stained for TH did not have the fine
deep fibre plexus observed in the controls but some large fibres were still present

in the outer adventitia.



32 Meth ine Ce ” -

Methoxamine was shown to exhibit a graded concentration response relationship
in the isolated perfused mesenteric bed (Figure 3). In the ACh experiments a
concentration of 1-3x10"* M methoxamine was used to achieve a stable plateau of
pressure from which the relaxations to ACh could be measured. In the concentration
response curve to methoxamine this concentration range can be seen to give a

submaximal to maximal pressor effect in this preparation.

321 feth i in Capsaicin-treated Rats

It was found in this study that the response of the mesenteric arterial bed to
methoxamine was increased in tissues from capsaicin rats (Figure 4). At a

ionof 1x10°M ine in the perfusing buffer the pressor response

was significantly higher in tissues from capsaicin-treated rats. A change in reactivity

of the preparations from capsaicin vehicle-treated rats to ine was not

observed.
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Figure 3. Concentration response curve for methoxamine in the isolated perfused
ic bed of rats. errors are indicated (n=38).
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Figure 4. The response of the mesenteric arterial bed to methoxamine in tissues

from capsaicin-treated rats. Standard errors are indicated (n=10).
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3.22. Methoxamine Response in 6-OHDA-treated Rats

A decreased reactivity of the mesenteric arterial bed to methoxamine was
noticed in preparations from 6-OHDA-treated rats in this study (Figure 5). The
pressor response to 3 x 10°> M methoxamine in the perfusing buffer was significantly
lower in tissues from 6-OHDA-treated rats than those from untreated or vehicle-

treated groups.

33.  Acetylcholine Experiments

A i da i ioninthe

induced pressure in the mesenteric bed preparation. Figure 6 shows the graded

response i ip for ACh in the animal group.

3.3.1. Capsaicin-treated Animals

A significant decrease in the sensitivity of tissues to ACh was detected by the
two way ANOVA for the capsaicin-treated group of animals. The concentration
response curve (Figure 7) is shifted t; the right 1.2 log units. The corresponding

EC;, values are shown in Table 1.
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Figure 5. The response of the mesenteric arterial bed to methoxamine in tissue

from 6-OHDA-treated rats. Standard errors are indicated (n=6).
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Figure 7. Concentration response curves for acetylcholine in tissues from
untreated and capsaicin-treated rats. Standard errors are indicated

(n=9).
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Table 1. EC;, Values for Acetylcholine
Treatment EC,, [M]
untreated 145 x 108
capsaicin 234x107°*
6-OHDA 129x 108
capsaicin vehicle 3.89x 108
6-OHDA vehicle 7.24 x 1077

* This value was found to be significantly different at P<0.05.
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The EC;, for ACh in the caps.cin vehicle-treated animal group is not

significantly different from the untreated group. Figure 8 shiows the concentration

response ionship for ACh in the psaicin-treated and capsaicin vehicle-

treated animal groups.

3.3.2. 6-Hydroxydopamine Treated Animals

No significant change in the sensitivity of tissues to ACh was detected by the
two-way ANOVA for the 6-OHDA-treated group of animals. In addition, no
difference could be shown between the responses in the 66OHDA vehicle-treated
group and the untreated animals. The concentration respanse curves for the three

groups are shown in Figure 9.

34. Substance P Experiments

Substance P was shown to cause a dose dependent augmentation of the
methoxamine induced pressure in the isolated perfused mesenteric bed of the rat

(Figures 10, 11). In preliminary experi on rats, SP

as low as 1pM did not result in relaxations in the tissues. In these experiments the
tissues did exhibit reductions of methoxamine induced pressure in response to ACh
(102 M). This response was not changed upon removal of the endothelium (Figures

10, 11).
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Figure 8. Concentration response curves for acetylcholine in the mesenteric bed
of untreated, capsaicin-treated and capsaicin vehicle-treated rats.
Standard errors are indicated (n=9).
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Figure 9.
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Concentration response curves for acetylcholine in tissues from untreated,

6-OHDA-treated, and 6-OHDA vehicle rats. Standard errors are

indicated (n=8).
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Increase in Perfusion Pressure (mm Hg)
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Figure 11.
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Since this app tobearp iation of the
the pressor response to SP was calculated as a percentage increase in the
methoxamine induced pressure measured just prior to the injection of SP. When
expressed as an absolute change in perfusion pressure the SP dose response
relationship is not altered in the treated animal groups (Figures 12, 13). However,

when the dose response data is

P as ap 1B iation of the
methoxamine induced pressure 6-OHDA treatment results in an increase in the
pressor response at the 107 mole dose (Figure 14). No significant change is seen

with capsaicin treatment although the response at the 10-7 mole dose appears to be

depressed (Figure 15).

34.1. Substance P Before Methoxamine

When a 107 mole dose of SP was given to tissues before methoxamine buffer

no measurable response was seen. These tissues did respond normally to

methoxamine and ACh after the SP injection.
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Increase in Perfusion Pressure (mm Hg)
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Dose response relationships for substance P in tissues from untreated,

psaicin-treated and capsaicin vehicle-treated rats. Data is expressed
as absolute change in perfusion pressure (mmHg). Standard errors
are indicated (n=6).
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Figure 13.

Increase in Perfusion Pressure (mm Hg)
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Dose response relationships for substance P in tissues from untreated,
6-OHDA-treated and 6-OHDA vehicle-treated rats. Data is expressed
as absolute change in perfusion pressure (mmHg). Standard errors

are indicated (n=12).
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Figure 14.  Dose response ionships for P in tissues from d,
6-OHDA-treated and 6-OHDA vehicle-treated rats. Data is expressed
asthe p ge increase of ine-induced pressure (mmHg).
Standard errors are indicated (n=12).
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Figure 15.  Dose response relationships for substance P in tissues from untreated,
psaicin-treated and capsaicin vehicle-treated rats. Data is expressed
asthe p ge increase of ine-induced pressure (mmHg).
Standard errors are indicated (n=6).
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34.2. Substance P in the Presence of Angiotensin II

‘When a 1077 mole dose of SP was injected into tissues perfused with buffer
containing 105 M Angiotensin I as a pressor agznt, a small but measurable pressor

response was obtained (Figure 16). This response was highly variable.

343, Substance P in the Presence of Depalarizing Buffer

When a 107 mole dose of SP was injected into tissues perfused with 40 mM

potassium depolarizing buffer, a small but measurable pressor response was achieved

above that caused by the buffer (Figure 16). This response was also highly variable.
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Figure 16.  The response to substance P in the presence of Angiotensin II and
depolarizing (K*) buffer in the isolated perfused mesenteric arterial

bed of the rat. Standard errors are indicated (n=6).
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DISCUSSION

Tliis study has found that chronic capsaici causes a

sensitivity to ACh in the mesenteric arterial bed of the rat which is indicated by a
shift in the concentration response curve for this endothelium-dependent vasodilatory

response (Figure 7, page 77). No signi change in sensitivity of the

prep
to ACh was noticed with capsaicin vehicle, 6-OHDA, or 6-OHDA vehicle-treated
groups (Table 1, page 78). In this same tissue preparation SP caused a pressor
response which was independent of the presence of endothelial cells (Figures 10,

11, pages 82, 83). When exp dasap 1 iation of the mett

response, 6-OHDA treatment resulied in an increased SP response (Figure 14, page

87).

4.1 Consi ion of D ion T

To compare the responses to ACh and SP of the mesenteric bed preparations
between tissues from untreated, capsaicin and 6-OHDA-treated animals a
consideration of the success of these treatments must be undertaken.

Capsaicin treatment was found to remove the SP-immunoreactive nerve fibre
plexus completely in the mesenteric arterial bed in this study. This is not surprising

since the treatment was initiated at 2 days after birth and was quite rigorous. Studies
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have shown that it is possible to completely remove SP innervation from the
mesenteric arterial bed of the rat with this sort of capsaicin treatment (Murphy et
al., 1982). Because the density of innervation was not measured, it is not known
for sure if an increase in TH-containing adrenergic fibres occurred with capsaicin
treatment. However, it has been reported that this can occur (Woolgar and Scott,
1989).

The 6-OHDA treatment was shown to remove the fine beaded TH-containing
fibre plexus at the adventitial-medial border. Since this is thought to be the terminal
plexus of the sympathetic nerves in the blood vessel wall, a functional sympathectomy

was achieved. However, large TH: ining fibres ined in the outer

of many 6-OHDA-treated preparations. Although these fibres do not appear to have
varicosities from which transmitter would be released, their presence means that NA
is present in the blood vessel wall during development. The complete removal of
sympathetic innervation with 6-OHDA is difficult to achieve in the mesenteric arterial
bed but studies have shown that it is possible with neonatal treatment (Angeletti and
Levi-Montalcini, 1970). Treatment with 6-OHDA did not appear to inhibit the
development of the SP nerve fibre plexus. Whetner SP perivascular innervation was

increased in these tissues was not measured.
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42.  Factors C ing to the ion of the ACh Resp

The decreased sensitivity to ACh in this tissue with chronic capsaicin treatment
has not been previously described. Although a high variability in measurements in
this preparation has been encountered, it is unlikely that the observed shift in the
ACh concentration response curve is an artifact. A substantial number of animals
were used so that reliable means for the responses were obtained. Statistical analysis
of data using an ANOVA indicated that a significant difference (P<0.05) exists for
the capsaicin-treated group but not for the 6-OHDA or vehicle-treated groups.
Therefore a change in one or more elements of the blood vessel wall must be
assumed to have caused the observed shift of the ACh response. What components
of the mesenteric arteries might be involved in such a functional change? The

to il ACh could have resulted from:

(1) a change in the muscarinic receptor density

(2) a change in intracellular events in the endothelial cells

(3) a change in the ability of EDRF to diffuse to its site of action

(4) changes in the smooth muscle relaxing ability
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4.2.1. Changes in Muscarinic Receptor Density

A decreased EDRF response of the preparation to ACh would occur if the

ic receptor population of the ium was ‘The muscarinic
receptor density was not directly measured in this study. However, the use of agonists
which activate other receptor systems on the cndothelium to produce EDRF would
provide data for a comparison of receptor effects. The original use of SP in this

project was as an agonist which causes i p ions by

a different endothelial receptor population (Zawadzki et al, 1981). Other agonists
which might be useful for further study into this question of muscarinic receptor
population change are bradykinin and A23187. Bradykinin is another potent
endothelium-dependent vasodilator which is thought to act via a receptive substance
on the endothelium (Altura and Chand, 1981). The use of the ionophore, A23187,
to produce endothelium-dependent relaxations in the treated and control groups of
this study would provide data for comparison (Zawadzki ef al, 1980). If responses
to A23187 were not altered with capsaicin treatment, then the shift in the ACh
responses would most likely be due to a change in the density of muscarinic
receptors.

A change in the muscarinic receptor population of vascular endothelium with

removal of the SP- and CGRP-containing innervation is quite possible. It has been



95
reported that both SP and CGRP can have an influence on the development of ACh

receptors (Boyd and Leeman, 1987; New and Mudge, 1986).

422, Changes in Intracellular Events of the Endothelium

A decrease in the ability of endothelial cells to generate and release EDRF
would also result in a change in sensitivity of the mesenteric bed to ACh. Several
observations strongly suggest the existence of more than one EDRF and as such more
than one synthetic pathway is likely to be involved (Vanhoutte, 1987a). While

products of arachidonic acid via the cytochrome P-450 pathway, or even ammonia,

have been suggested as possible medi: of i T ion, NO
is the only compound which has been positively identified as an EDRF so far (Palmer
etal., 1987). Palmer and colleagues have since reported evidence for the involvement
of L-arginine as the endogenous substrate from which NO is generated in vascular

endothelial cells (Palmer et al., 1988). This pathway appears to involve two distinct

steps, the initial mobilization of the substrate (L-arginine) and then its conversion

to NO. These steps are both activated upon ial sti ion by

and A23187. If availability of is altered, the NO-generating
enzyme is capable of utilizing exog substrate ively. The actual

by which release of L-arginine and activation of this NO-generating ¢ ..  occur

has not yet been reported.
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It is not known whether changes occurred in any of these EDRF generating
pathways in this study. However, to fully investigate this possibility the use of a
cascade system of arteries is required. Many studies of the mechanism of EDRF
production and release have utilized a donor tissue with intact endothelium and a
bioassay strip of artery from which the endothelium has been removed (Rubanyi et

al., 1985). The use of such a p ion would allow a sef ion of the effects

oi changes in several different components of the blood vessel preparation. If the

bioassay strip relaxed to the same extent with equal concentrations of ACh in perfused

ic bed p! ions from and capsaici ted rats, then it might
be assumed that the previously observed shift for ACh was due to changes in the
ability of the smooth muscle to relax, rather than a loss of EDRF producing ability.
However, if the same decreased sensitivity to ACh was observed, further experiments
with an inhibitor such as indomethacin would be required to block the synthesis of
prostaglandins and some of the effects of EDCF. This might determine if the
vasodilator ability of the endothelium had been altered due to an increased basal
release of contracting factors. Finally, although the enzyme system involved in the
production of NO has not been fully characterized, the addition of L-arginine to the
ACh solution might improve the ACh response if the mechanism by which the
substrate for NO production is mobilized were altered by capsaicin treatment.
It is not known what effect long-term capsaicin treatment might have on the

biochemical pathways involved in the production of EDRF.



423, Coanges in the Diffusion of EDRF

It is possible that the diffusion of EDRF after its release from the endothelium
might be limited by morphological changes in the intimal medial region of the blood
vessel wall. This would also result in an altered response to ACh in the mesenteric
arterial bed.

In this project, the ium was with ission electron

Electron mit i ination of arteries from the mesenteric bed
of the capsaicin-treated rats did not reveal any intimal thickening or ultrastructural

damage. Thus, the itivity of the ion to ACh in the capsaicin-

treated group is not likely to be due to a change in the ability for EDRF to diffuse

to its site of action on the medial smooth muscle.

4.2.4. Changes in Smooth Muscle Cells

A major factor which may contribute to the decrease in vasorelaxation is a
change in the ability of the smooth muscle cells to relax. The relaxation of vascular
smooth muscle in response to EDRF is mediated by guanylate cyclase via the
production of cyclic GMP and the activation of cyclic GMP-dependent protein kinase

(Vanhoutte et al,, 1986; Rapoport and Murad, 1983a). This results in altered protein

ylation and in ylation of the myosin light chain which is though
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to lead to relaxation. This action of EDRF on vascular smooth muscle is dependent
on Ca? and is thought to be the mechanism by which NO and the nitrovasodilators
act (Vanhoutte, 1987a) Another EDRF is thought to act via activation of the Na*,
K*-ATPase and is thus K* dependent (Rubanyi and Vanhoutte, 1988). Thus, an
alteration in these intracellular pathways would affect the ACh response.

In this study, ACh was the only vasodilator agent whose responses were

compared in tissues from unitreated and denervated animals. SNP was used as an

P i agent in some preliminary experiments in the
ACh study and also in part of the SP study. Therefore, it is not known if capsaicin
treatment affected the relaxing ability of the smooth muscle cells of the preparations.
However, if SNP had been used at the end of the ACh concentration response
experiment, it would be possible to determine if the tissue had relaxed fully. A

comparison of the SNP induced maximal level of ion in and

P
treated animals would determine whether or not the relaxing ability of vascular smooth
muscle had been altered.

It was also found in this study that the response to methoxamine in capsaicin-
treated rats was increased. The perfusion pressure increase to methoxamine was

significantly higher in tissues from capsaicin-treated rats than that for an equal

in or vehicle-treated controls (Figure 4, page 73). What effect
of capsaicin treatment could have cause this? It has been reported that peptidergic

denervation with capsaicin may result in an i density of
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innervation in the rat mesenteric vascular bed (Woolgar and Scott, 1989). Itis likely

that an increase in catecholaminergic nerve fibres during development will result

in an i reactivity to agonists such as ine. Whether
this change in ) i ion will i to changes in the EDRF
response is unknown.

From these i it has been ined that long term capsaicin

treatment results in a change in the endothelium dependent relaxations to ACh in
the mesenteric arterial bed of the rat. From the present study it can be concluded
that this decreased sensitivity was not due to the inability for EDRF to diffuse from
the endothelium to the smooth muscle. However, it cannot be determined if the
effect is a result of changes in muscarinic receptor density, alteration of endothelial
cell biosynthetic pathways, or changes in the ability of vascular smooth muscle to
relax.

The decreased EDRF response to ACh in the mesenteric arterial bed of the
rat with long-term capsaicin treatment has not been previously reported. However,
a depression of the EDRF system has been described in other situations, some of
which are also associated with changes in perivascular innervation.

Hypertension is a disease with which many changes in vascular structure and
function have been associated. In various models of hypertension, certain blood

vessels show a depi of i i Di d EDRF

responses have been reported in both aorta and small vessels and genetic hypertensive
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rats (Konishi and Su, 1983; Winquist et al,, 1984; DeMey and Gray, 1985), anrtic
coarcted rats (Lockette er al, 1986), mineralocorticoid hypertensive rats (Mayhan
et al,, 1987), Dahl hypertensive rats (Luscher et al., 1987), and in aortic coarctation
hypertensive rabbits (Miller et al. 1987). Although the final measured result was
a depression of relaxation in these experiments, several different mechanisms may

be involved. In some cases an derived ile factor to

cause the depression, while in another experiment comparison with a SNP response
suggested a lowered production of EDRF. It has been found that, although EDRF
responses may be depressed in one vessel, an increased relaxation may occur in other
vessels from the same animal (Konishi and Su, 1983). In estrogen treated rats, an
increase in relaxation to ACh but not the ATP has been reported (Williams et al.

1988). Hypertension appears to have a selective effect on the action of some

but not others (Lamping and Dole, 1987).

In hypertension changes occur in the type and pattern of perivascular
innervation. It has been reported that there is an increase in the density of
catecholaminergic fibres in certain vascular beds during development of hypertension
in the spontaneously hypertensive rat (Scott and Pang, 1983; Dhital e al., 1988;
Donohus et al,, 1986). Some changes have also been reported in peptidergic
innervation of blood vessels in hypertension but these are not universal (Scott et al.,

1986; Lee et al., 1988).
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Diabetes is a disease which involves alterations in vascular structure and
function. In diabetic rats, endothelium-dependent relaxation has been shown to be
impaired (Durante et al., 1988), although conflicting reports do exist (Oyama et al.,
1986; White and Carrier, 1986; Wakabayashi et al, 1987). The variation in
observations may be related to the experimental models of diabetes used (genetic,
streptozotocin, alloxan) or they may simply reflect differences due to variation
between different vessels. Durante and co-workers (1988) have concluded from their
experiments with aorta of genetically diabetic rats that a change in the synthesis of
EDREF has occurred, since the decreased vasodilation was the same for both ACh
and A23187 and the reaction to SNP was unchanged. There are also species
differences in the effect of diabetes on contractile responses of arteries (Head et al.,

1987) which may result in part from changes in

P is a common ication in diabetes (Hosking et al.,
1978). However, changes in perivascular innervation have not been well documented.
No change in catecholaminergic innervation was found in cerebral vessels of diabetic
rats (Lagnado et al., 1987). A substantial reduction of perivascular catecholaminergic
fibres has been found in the optic nerve of diabetic rats, but this was accompanied
by an increase in nerve density around blood vessels of the vagus and sciatic nerves
and the sympathetic chain (Dhital ez al, 1986). Since changes in sensory neurons
in diabetes have been reported (Sidenius and Jakobsen, 1980) it is likely that changes

in SP- and CGRP-containing perivascular nerve fibres would occur. In cerebral blood
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vessels from diabetic rats no change in NPY innervation was found (Lagnado ef al.,
1987). A significant reduction of perivascular VIP innervation has been reported
in certain vessel beds in diabetes. In streptozotocin induced diabetes in the rat, the
density if VIP-immunoreactive nerve fibres was reduced in the internal carotid, middle
cerebral and anterior cerebral arteries at 8 weeks after the onset of diabetes (Lagnado
et al., 1987). Reduction of VIP-immunoreactive nerves has also been found in
penile vascular tissue from 8 week streptozotocin diabetic rats and from human
diabetic patients with impotence (Crowe ef al., 1983).

Atherosclerosis is a disease in which many components of the vascular system

may be affected, including the endothelium. Several studies have reported a

pression of ial derived ion resulting from cholesterol feeding,
Various mechanisms for this observed change in EDRF response have been suggested.

It was concluded from studies of human atherosclerotic arteries and rabbit aorta that

the defect involved the ini p f the end jum (Bossaler et al., 1987).
Harrison and co-workers (1987) have made similar conclusions from studies of
atherosclerosis in monkeys. Most studies claim that the alteration is either a reduction
in EDRF synthesis, or in cases with severe intimal thickening a reduced diffusion
of EDRF. A study by Jayakody and co-workers (1988) compared the effects of

cholesterol feeding in young and old rabbits. Despite significant structural differences,

there was a reduction in relaxation in both groups. It has also been suggested that

the amount of ion of i ion is related to the
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severity of intimal lesions (Verbreuren et al, 1986). It is therefore difficult to
conclude which of the vascular changes involved in atherosclerosis are responsible
for the observed reduction of EDRF activity.

It appears that the reduction in the ability of ACh to produce endothelium-

d in

F P!

ted rats is related to a change in either the
muscarinic receptor population, the ability to synthesize EDRF, or the ability of
the smooth muscle to relax. While this decreased EDRF response has been observed
in hypertension, diabetes and atherosclerosis where changes are also known to occur

in perivascular innervation, it is not possible to determine at this time if a common

such as ion is ible for this effect.

43. The Effect of 6OHDA Treatment on the ACh Response

It has been shown in this study that chemical sympathectomy with 6-OHDA
does not cause a shift of the ACh concentration response curve in the rat mesenteric
arterial bed (Figure 9, page 81). The trophic influence of the catecholaminergic
nerve fibre system on vascular tissues has been well documented (Aprigliano and
Hermsmeyer, 1977; Fronek, 1983; Bevan and Tsuru, 1981; Lee et al, 1987;
Dimitriadou, ef al., 1988). 1t is surprising then that removal of this nerve fibre plexus

did not affect the i i response to ACh. The effect
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of sympathectomy on EDRF ability of blood vessels has not been well studied.
Therefore there have been no reports as yet to substantiate this observation.

It was noticed in this study that the pressor response to methoxamine was
altered after 6-OHDA treatment (Figure 5, page 75). The perfusion pressure attained

with methoxamine in tissues from rats treated with 6-OHDA was significantly lower

thanthat foran equal ion in d hicle-treated controls. A similar

decreased reactivity of the mesenteric arterial bed has been reported for noradrenaline

in

rats, sympat ized with a
of guanethidine and anti-nerve growth factor (Lee ef al., 1987). This decreased

reactivity to methoxamine is not thought to affect the relaxation response to ACh.
44. ‘The Response to SP in the Mesenteric Bed

Substance P was originally used in this study as an additional agonist to produce
an EDRF response in the mesenteric arterial bed. It was intended to compare the
effects of 6-OHDA and capsaicin treatments on the vasodilatory response to SP with
those of ACh. However, administration of SP resulted in an increased pressure above
that induced by methoxamine in the buffer. This pressor response is a dose
dependent effect in this tissue and is not affected by removal of the endothelium

(Figures 10, 11, pages 82, 83). When this pressor response was expressed as a
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I iation of the meth ine response, 6-OHDA treatment caused

P 8¢ P

an increase in the effect (Figure 14, page 87).

SP is known as a potent endothelium-dependent vasodilavor agent in a variety
of blood vessels (Zawadzki et al, 1981; Furchgott ez al, 1983). lts threshold for
activity in many isolated blood vessels is in the picomolar range (Furchgott et al.,
1983). In this study doses of SP from 1 pmole to 0.1 ymoles were tested in the

met ine constricted p to SP were not seen at any dose,

while these preparations did give an EDRF response to 10° ACh in the perfusing
fluid. No more than 2 doses of SP were administered to a tissue to avoid receptor
desensitization which could mask a potential response. Thus, the perfused mesenteric
arterial bed did not relaxin response to SP. Although SP has been reported to cause
endothelium-dependent relaxations in ring preparations of superior mesenteric artery
(Fu.chgott et al, 1983), this effect might be hidden in this more complex perfused
system. It has been reported that SP does ot cause relaxations in a perfused
mesenteric bed preparation (Gulati e¢ al,, 1982). In addition, based on studies with

a variety of neuropeptides, Gardiner and coll (1987) have that

different peptides can affect different vascular beds and that the same peptides can

have different effects depending on the mode and route of administration.



44.1. The Mechanism of Action of SP in the Mesenteric Bed

Substance P has been shown to p iate the i induced

by NA in the isolated perfused mesenteric arterial bed of the rat (Gulati et al, 1983),
In this study concentrations of SP from 4 x 10°M to 4 x 10'M caused a dose
dependent potentiation of the NA induced vasoconstrictor response. This effect was

blocked by the use of saralasin, a specific ist of angi in 11, ing that

SP might either sis orbe by angi in Il The use of i
in this study indicated that SP does not simulate or modulate the production of

prostaglandins to achieve its NA potentiating effect. It is suggested that SP may play

an imp role in g iction of the rat
This study did not rule out the possibility that SP might have a direct nonspecific
post synaptic sensitizing effect on the vascular smooth muscle.

In this thesis the pressor response to SP was also found to be dose dependent.
This response can be expressed as the absolute change in perfusion pressure or as
a percentage potentiation of the methoxamine induced pressure. Since SP may play

a latory role in gi iction (Gulati er al,, 1983), the pressor

response was calculated as a percentage increase in the methoxamine induced pressure
measured just prior to injection of SP. The endothelium did not seem to be involved
in this response since no change was observed after its removal (Figures 10, 11, pages

82, 83).
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In addition to the observed pressor response to SP this study has also found

that neonatal 6-OHDA treatment results in an increase of this pressor response
(Figure 14, page 87). How might 6-OHDA cause this effect? The desired effect
of 6-OHDA treatment in this tissue is removal of sympathetic innervation. As a result
there may be changes in the peptidergic innervation during development. An increase

in peptidergic innervation has been reported for hidine induced h

by Aberdeen and co-workers (1987). As a result of these trophic interactions it is

possible that the reactivity of the mesenteric bed may be aliered. It has already

been shown in this study that a d b resulted from

reactivity to
6-OHDA treatment. It hasalso been shown that SP causes onlya very small increase
in pressure in the presence of K* depolarizing buffer, thus ruling out any major
contribution of a nonspecific action on the smooth muscle membrane (Figure 16,
page 90). The effect of SPis also unlikely to be an independent effect of activation
of SP receptors on the smooth muscle, since SP caused no measurable response in
the absence of induced tone in the preparation. Therefore, it is possible that SP
may act on the cz-adrenoceptor at asite different from that occupied by methoxamine
to cause iis modulatory effect. In the case of a decreased catecholaminergic

and an i

Ppeptidergic innervation, this effect of SP might be
enhanced, resulting in an increased importance of its adrenergic modulatory role.
However, the possibility of SP acting via an angiotensin Il mechanism cannot be ruled

out as saralasin was not used in this study. Further studies with antagonists such
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as saralasin and other agonists such as 5-HT would be required to fully characterize

the pressor action of SP in the mesenteric arterial bed.

45. Conclusion

This thesis has examined the effects of catecholaminergic and peptidergic

denervation treatments on the actions of ACh and SP in the mesenteric arterial bed

of the rat. It has shown that ion of the

peptidergic peri innervation
is accompanied by a decreased EDRF response to ACh and that changes in the
catecholaminergic fibres occur together with an enhancement of the SP modulation

of adrenergic vasoconstriction.
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