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ABSTRACT

CD14 expressio n and sheddi ng are important in the requtation

of cellular responsesto lipopolysaccharide (LPS) andconcomitant production

of cytokines and related immunological and pathophys iological changes .

The rapid shedding of CD 14 from monocyte s, subsequen t to contact with

LPS, has led us to hypothesize that signalling events through the CD14

receptor complex are invo lved in the activation of enzymes responsible for

the clea vage and loss of CD14 from the cell surface. This then ultimately

regulates cellular responses 10 lipopolysaccharide. This hypothesis was

tested using a number of signal transduct ion modu lating agents to inhibil or

activa te secretions of the CD14 signalling pathw ay . Besides LPS, two othe r

natu ral ligands tumou r necrosis faclor a (TNF-a) and (ormyl-methionyl·

leucyl-phenylalanine (f MLP ) were investigated to observe illhey also had

a role in regulating CD14 expression or loss. TNF·u, a cytokine released

rapidly following LPS contact with CD14 on mono cyles , was suspected of

having a negative feedba ck control on monccytes by blocking LPS signalling

o r increasing CD14 loss from the monocyte surface. The other ligand, f

MLP, was known to have chemotactic activity for both monocyle s and

neutrophils. Although f MLP has its own recep tor, it activates monocytes in



a number of ways that are similar but not identical to LPS and may share

common signalling pathways, In these studies only early events, up to 4

hours, were investigated using FACS analysis 10 follow (; 0 14 expression,

and lmmunoprecipitation and 20 ·S0S PAGE analysis of membrane and

soluble C014 to confirm the mechanism and characterize the products

released from cells. It was found that the most active pharmacological

agents. inducing loss uf membrane CD14 from monccytes, were regulators

of PKC or cytoplasmic calcium levels. .11 was also found that f MLP was able

to induce a rapid loss of membrane CD14 expression from monocytes.

TNF-cx, on the other hand, had reverse effect and caused a rapid increase

in CD14 expression by monccytes.

As a result of the initial investigations into the action of various

signalling pathway inhibitors on CD14 expression and shedding, an

interestingobservation was made with celonostln C, a photoactivated protein

kinase C inhibitor. This compound was found to induce 100% loss of CD14

expression from normal human peripheral blood monon uclear cells and Ihe

human monocytic leukaemia cell line, THP-1, through membrane vesicle

shedding or apoptosis. Further investigation found that Cah dependent K·

channels were also involved in the regulation of apoptosis induced by

cafphostin C. These data were presented at the Paris Conference on

iii



Apoptosis in AIDS and CANCER (OtartH , uepos.A. Richardson,V.J.,p113.

Dec.2·4, 1993, Paris, France. Abstract attached to the following page),

Finally, ouabain, an inhibitor of Na+/K '·ATPase, was also found to

induce a rapid and complete loss of membrane CD14. Using 2D·SDS·

PAGE analysis, this did not appea r to be due to apoptosls or shedding of

CD14 into the media.
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ROLE OF PROTEIN KINASE C AND Ca" DEPENDENT 1<' CHANNELS

IN APOPTOSIS

H.Qian, A.Liepins and V.J.Richardson. Faculty of Medicine, Memorial
University of NFLD, St.John's, Newfoundland, Canada, AlB 3V6

Calphoslin C is a photoactivated protein kinase C inhibitor which
induces a stte-specific oxidat ive modification of PKC at the Ca2+-induced
hydrophobic region (Gopalak rishna, 1992). Exposure of human monocytic
leukaemia THp·l cells to calphoslin C in the presence of light, at
concent rations of 10 nM to 200 nM, triggered the apoptosts process as
manifested by cell surface blebbing, nuclear DNA condensation and
fragmentation. Kinetic studies showed that calphost in C induced apoptosis
in THp· l is time and dose-dependent. The involvement of PKC in the
apoptosis process was further confirmed by PMA, a PKC activator. The
induction of calphos tin C·mediated THP-, cell apop tosis was significantly
inhibited by the addition of PMA (100 nM). This may be due to competitive
bind ing to regulatory domain of PKC by PMA and caiphostin C. Pre­
incubation of THP-l celts with quinidine, a Cah dependent K+ channel
blocker, and 4·aminopyridine, a K+channel blocker, significan tly delayed the
induction of aooptosis in THP·l cells by ca lphostin C. We also found Ihal
the suscept ibility to calphoslin C-induced apoptos ts is not restricted to THp·
" but also occurs in other tumour cell lines such as the monoblastic
leukaemia U-937 , as well as in normal human peripheral mononuclear cells.
Staurosporine , also a PKC inhibitor, taueo to induce apoptosls in these cells.
This may reflect the different species of PKC thai are inhibited by calphostin
C and staurospo rine respectively.

In conclusion , our data indicate that PKC function is required for
suppression of apoptos is in the above leukaemia cells and normal human
peripheral blood leucocytes and that Ca2

• dependen t K· channels may also
be involved in the regulation of apoptosis induced by calphostin C.
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Chapter 1 Introdu ction

1.1 Function 01mononuclear phagocyles

The immune system is a network of remarkable defense mechanismsthat

protect our bodies from invasion by microorganisms and cancer, in which

mononuclear phagocytes play a major role. When microorganisms such as

bacteria invade our tissues, phagocytes such as neutrophils and monocytes are

chemotactically attractedto the infectionsite and immedia tely beginphagocytosing

these foreign particles. Phagocytosed organisms are killed and then degraded

within the phagocytes by a number of mechanisms, all of which are part of the

innate immune process. In addition to this, macrophages are activated and may

stimulate an acute inflammatory response through secretion of short-lived

inflammatory medtatora such as platelet-activating factor (PAF), prostaglandins

(PGj, teukctrtenee (LT), reactive oxygen intermediates (ROI), reactive nitrogen

intermediates (RNI) including nitrite, nitric oxide and nitrogen dioxide, as well as

inflammatory cytokmes such as rL·1.IL·6 and TNF-a, some of which also serve to

kill microbes and control the spread ollhe infection.

II the invasion by microorganisms persists, the inflammatory response will

be supplemented and augmented by theelements of acquired immunity, in which

macrophages playa central role in the development of both humoral and cell­

mediated immune responses through antigen processing and presentation 10

specific immune effector cells and further cytokine secretion. Subsequently,



specific acquired immune response s, both humoral and cellular, are induced to

speeilicany eradicate the invadi ng pathogen. Macrophag es are also involved in

direct tumour cell killing. either by antibody ndependen t processes involving

Cylokines or reactive inte rmed iates such as nitric oxide (Fl8rs, 1991). or through

an antibody mediated process (Koren. 1983).

When mononuclear phagocytes are activated by microorganisms. they begin

10 secrete a variety of cyto kines and other factors incl uding IL-' . IL-ij , TNF·a. GM·

CSF, G·CSF, M-CSF. INF.o., complement factors and hydrolytic enzymes . Some

of these cytokines are also involved in the development of a local inflammatory

response and are a major component of the body's defense mechan ism.

Mononuclear phagocytes can also cause inflammatory disease. if they produce

excess cytokines. For example. sepsis is the mos t severe inflammatory disease

clinically, in which Ihe cytokine TNF·rx is the p rimary mediator secreted by

activated mononuclea r phagocytes. It was recently est imated that the incid ence

of Gram-negative sepsis in the United States was 170.000 cases per year, with an

associated mortality of more than 70.000 per yea r (Adams. 1992). Substantial

eucn has been devoted to understanding the prec ise regulation of mononu clear

phagocyte activation dur ing Gram-negative sepsi s. in order 10 maintain host

defenses while avoiding complic ations such as organ failure and death due to

endotc xemia. Upopolysacchride (l PS) produced by Gram-negat ive bacteria has

been implicated as the major contributing tacto r in the path ogenesis of



endotc xemia (Rietshel et et.; 1987).

1.2 Lipopolysaccharide (LPS) structure and biologica l activity

LPS Is the principal lipid component of the outer membrane of all Gram­

negative bacteria (Fig.1) and is one of the most potent actlvators 01mononuclear

phagocyles. It is an amphoauuc molecule, having three distinct regions (Fig.2);

(i) the polysaccharide a-antige n, whichis immunodominant and confe rs serological

specificity 10 each particular Gram-negative bactertum: (ii ) Iho core

oligosacc haride, composed of the outer core and inner core, wh ich is more

conse rved than the "0 antigen" between the different species of bact eria: (iii) Ihe

lipid A region comaining a diphosphorylated glycosamine disacchar ide acvtated

with ch aracteristic hydroxylated iandnonnydroxylated fatty acid cha ins. Maximal

toxicity is associated with the lipid A component which is highly conserved within

families of bacteria (Morrison et BI., 1992).

During the course of a G ram·ne~lative infecl ion, LPS is released from the

outer membranes of bacteria into the circulation, where it subsequenlly is

respon sible lor initiating a cascade of events. These include an in itial release of

cytckinee, PG, LT, AOI, ANI w ith activation 01 the coagulation, fibrinolytic, and

complement systems, eventually leading 10'he severe p.:lothologica l sequelae01

endotoxlc shock (Bone, 1991). Endotoxic shock is characterized by fever,

hypotension, hypoxia, acidosis and disseminated lnfravascvlar coagulat ion, offen



leading to mu ltisystem organ fa ilure and death (Tracey et af., 1988). For many

years, it has been recogni zed that expermentat administration 01purified LPS

mimics the symPtoms elicited during Gram-negative se psis, and f";loncnuclear

phagocyles are believed to be the major target cells (Volgel et sf., 1990, 1992;

Manthey et s f., t992 ). These cells respond to LPS by sy nthesizing and secreting

a variety 01cytokines such as IL·1 , IL-6 and TNF-a. all of which p lay a de leterious

role in septic shock (Morrison et al., 1979).
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Figure 1. E.coli envelope organization.
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1.3 CD14, a new cand idate receptor for LPg

During the past twodecades. a considerablevol ume of dala has appeared

conce rning the interaction bet ween m ononuc lear phagocyles and LPS. This has

inclu ded LPS bnd ing , uptake ofLPS a nd the synthesis and sec retionof cytoldnes

(Morr ison et al , 1987 ; Schumann et a l.• 1990). Binding 01LP g to the phagocyte

plasm a mem brane is the first essentia l step in thisLPS -eeninte raction. There a re

two different mechanisms by which L Pg init ially inte racts with the ce ll's plasma

membr ane. namely specific and non -specific binding (Morriso n. 1985). Non­

spec ific o teracucne result from the binding ot LPS to the plasma membran e

phos pholip id (Morrison, 198 5). Whether this noo-speclnc bind ing trigge rs cell u lar

respon ses is still unknown. On the other hand. specific interact ionsresu lt from the

bind ing of LP S 10 receptors on the pl asma membrane. Recen tly, several ma jQl

receptors for LPS have bee n ident ified. incl udilg the 95 KOa C0 18 found on

leukocytes. the eo KDa mac rophage scavenger receptors A IIII and acetyl-lo w

dens ity lipoprot ein receptor (acetyl-LOL). th e 55 K Oa C01 4 found on hum an

mo nocytes and macrophages and a 73 KDa memb rane prot ein on rnceccyt es.

macrophages. lymphocytes. neutroph ils and platelets {Halling et a/.• 19921.

CO'8 (also known as B,integ rins or leukocyte inlegrins) binds particu late

LPS when presented onthe surlacn of bacter ia orLPS·coated erythrocyt es(Wright

et al .• 1990) and participates in the phagocyt osis of particles. The ma crophage

scavenger receptors, recently clone d by Freeman et a/.(1990). may function to



remove endotoxin from thecircu lation and deliver ltto Iysosomes, where it can be

metabolized to less acnve substances (Ham plon Sf af., 199 1). Bot h these

recept or s media te the disposa l or removal of l PS wit hout subsequent cytokine

synthesis (Wr ight et al., 1990). CD14 has been shown to function as a receptor

for lPS and ini tiates th e secretion of a v ariety 01cv tcklnes includ ing TNF-a, Il-l ,

Il ·G, and IL-8 (Oenlener etaf., 1993). T he following introduction will foc us on th e

CD14 molecul e. How ever, CD 14 is no t the onlylPS receptor to be involved in

cy!ok in e secretion, a s monocytes from patients wi th paroxy smal nocturn al

haema globinur ia, which lack C D14 , have also been sho wn to be sensitive to lPS,

thouQh this is at much greater con centra tions th an whe n C0 14 is present (Haziot

atet., 1988). It is now believed that a low aff inity receptor, perhaps the 73 KDa

protein mentio nedab ove, may be invo lved in cytokine secretion. CD14 and the

73 KOa protein may form a rec eptor comple x similar to that o f many cytckin e

recep to rs suc h aslL-2 (Hatake yama et al., 1989 ) and IL·6 (Hibi s f al., 19 90; Ak ira

atal. , 1990). There is now some evidence th at the 73 KOa protein is a lipid A

specif ic receptor (lei er aI.,1988).

1.3.1 A cell s urface differentiati on mark er on monocyteslma crophages

CD14. a 55 KD glycoprotein, is a myelo id differentiation antigen ex presse d

in ab un dance on the surface of mcn ootasts , more mature monocyt es, an d

macropnapes (Todd er al.• 1984 : Griff in et al.• 1984; Goyert et al.• 198 7). and in



trace amounts on activated granulocytes (Hogg at at, 1987 ; Jerwnen atal., 19 89)

as well as on human B cells (Labeta et al.• 199 1). It was found that human breast

ca ncer cells also have C014 antigen on their surface (Calvo et a/.• 1987). C0 14

is no t present in early stem censsuch as the myelcmcoocytic HL-60 ce ll line o r the

monoblastic cell line U-937. Howev er, these cells can be induced 10 dillerentiale

into more mature monoc yte-like cells which do express CD1 4 (Rigby er af., 1984).

More matu re ce lls , like the monocyt ic cell line Mono Mac6, do expre ss CD 14

(Z ieg ler-He itbrock el al., 1988). Further ma turation 01these cell lines can either

inc rease or decrea se CD 14 express ion depending on the type 01inducer (Zieg ler·

Hei tbrock et al., 1988). The majority 01peripheral b loodmon ocyles express a h igh

level of CD 14 (C OW'), but a recently identified subpoputauon expresses mu ch

low er leve ls of C 014 togeth er with CD16, the FC)A III molecule (Zieg ler·Heitbrock

et al., 1988; Ca lvo 8t et., 1987). C0 14 is not onl y present in a mem brane-bo und

form but a lso as a soluble or celt free CD14 (sC D14), which can be detected in

normal human p lasma (Maliszewsk i et af.• 1985; B azil et al., 1966), in the urine 01

nephrotic patients (Bazil et at 1986. 1989) and in the tissue culture superna tant

of CD14 positive cells (Maliszewski et a/.• 1985) suggestir ,g that it can be she d Of

Secreted. Furth e r studies found th at 70% 01CDt4 could be remover Irom the

m onocyte cell su rfaceby treatment withphosph atloyinosttol-specinc phosphol ipase

C (PI·PLC), con firming also that CD14 is ancho red 10 th e membrane through a

gl ycosyl·p hosph atldylinosilol (GPI) anchor (Hazlet 9/ al. , 1988).



1.3.2 Evidence of C014 as a rece ptor for LPS

Recently, a variety of approaches have provided more direct evidence that

the LPg binding 10CD14 is more effic ient when it is associated with the LPS

binding protein (LBP) or with sepnn, Saturable and displaceabrebinding of 'H· LPS

or FIlC·LPS to human monocy1es in the presence of serum or purified LBP was

shown 10 be completely inhibited by anti-CD14 mAb (COuturier at al., 1991:

Heumann et al., 1992). A subclone of J77 4, a mouse macrophage that was

hyporesponsive10LPS, was specif ically deficient in CD14 expression, and failed

10 bind LPS (Hara at et., 1990). Finally, LPS·crosslinking studies provided direct

evidence that CD14 binds LBp·LPS complexes. A radioiodinaled. photoreactive

derivative of LPS Cl~.ASO·LPS) was used to crosslink proteins that bind LPS

(Wollenerber er al , 1985). When a low concentration of '1SJ-ASD-LPS (5 nglml)

was incubated with LBP and Ihe THp·1 monocytic ceUrine. LBP and C014 were

the only major proteins crosslinked (Tobias et al.• 1993).

A functional role for C01 4·mediated LPS binding was demonstrated using

u rarn-neceuve bacteria, LPS-coaled particles, or highly purifl9d preparations of

LPS (Wright et at. t990) . LPS-C01 4 binding was enhanced markedly by the

presence of l BP, a 60 kDa glycoprotein present in normal human serum at less

than 0.5 ~glml and rising up 10 50 ~g/mJ atter an acute-phase response (Tobias

et al., 1986). LBP binds to the lipid A moiety of the LPS molecule with an affinity

of ..109 M ' (Tobias 8t al.• 19B9). Studies also suggested that lPS-induced
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monocyt ic stimulation under physiological conditions, occurred when LPS formed

a high-aff inity complex with serum LBP and this complex then bound to cells via

the CD14 molecule (Schumann at .111., 1990). Binding of LPS-LBP complex 10

macrophaqes via CD14 was shown to induce the productio n of lumour necrosis

factor (TNF-a) (BazH at a/., 1986), which is a primary mediator of endotoxic shock.

Blockade 01CD 14 with monoclonal antibodies such as My 4 prevented synthesis

01TNF·a by whole blood incubated with the physiological concentration of LPS « 1

ngl ml) (Wright et al., 1990). Transfection 01murine 70ZJ3 B cells with the human

C014 gene resulted in a 1Ooo-fold increase in thei r sensitivity to LP$ when in the

presence of LBP (Lee at al., 1992). Moreover,transgenic mice, expressing human

C014 were shown to be hypersensit ive to LP$ (Ferrero at .111. ,1993) . The above

evidence suggests that CD14 is a receptor for the LPS· LBP complex and involved

in cytoki ne secretion .

In addition to LBP, "septin", a factor of at least two mixed protein species

in normal huma n serum, also enhances monocyte responses to LPS. Beptin is

found in normal plasma at concent rations of less than 1 nglml (Wright at al., 1992).

Wright at al. also showed that septin binds 10 LPS and induces monocytes 10

secrete TNF-a. Induction of TNF-a by low concentrations olLPS « 1 nglm l) was

complete ly blocked by anti·CD14 monoclonal antibodies in the presence of sepno.

This opsonic acttvlty of septln in plasma appea rs distinct from LBP since it is not

blocked by neut ralizing antibodies against LBP. It has been reported that LBP is
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present in low levels (- 150 nglml) in the serum 01 healthy rabbi ts and is only

abundant after induction 01the acute phase response (Tobias et al.• 1989). In

contrast, septin is present at very high titres il normal plasma and may be diluted

more than 3000 fold before its activity is lost. This suggests that sep tin represents

the principal means for opsonization of Jew levels of LPS lor recog nition by C014

on monocyles or macrophages in a healthy host. The above evidence suggests

that the response to sub-nenoqrarn-per-mnlnltreconcentrations of LPSdepends on

CD14. However, very high concentrations 01LPS (>100 nglml) can still stimulate

TNF·a synthesis in blood in which either LBP or C014 was blocked with antibodies

(Wright et aI., 1990). At a concentration 01 10 ~g1m l or more, LPS was also

reported to be associated with intracellular compartments independent of the

presence of serum (Kang et at, 1990). Thus, macrophages seem to possess a

second mechanism for responding to high concentrations of LPS that is

independent 01CD14.

1.4 CD14, a mem ber of the diverse famil y of GPJ-anchored pr oteins

Most membrane proteins are attached to the lipid bilayer by virtue 01 the

hydrophobic portion of the protein. But late in 1985, a novel post -transcriptonal

modification mechanism was elucidated by which proteins could be anchored 10

membrane through covalent attachment to glycosyl·phosphatidylinositol (GPI)

located in the lipid bilayer (Futerman at af.• 1985). This class of GPI·anchored
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proteins has now been detected in a wide variety 01 eukaryotic cells (Table 1).

They include hydrolytic enzymes, mammalian differentiation antigens, protozoal

antigens, cell adhesion molecules and oncctoetat antigen s (Low, 1989). These

GPI-anchored proteins themselves have extreme structural and functionaldiversity,

but their GPI-anchors retain a certain structural similarity. This anchoring

mechanism May be vitally important in regUlating the expression and shedding ot

these molecules. Moreover, this manner of attachment to the membrane would

consequentially result in the interaction with other cell surface molecules or soluble

hQands, due to the greater lateral mobility of the GPI-ancho( than transmembrane­

anchored proteins.
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Table 1. Proteins with a glycosy l-phosphat idylinosit ol anchor (Low,1989)

Hydrolytic enzymes
Alkaline phosphatase
S'-Nucteolidase
Acetylcholinesterase
Trehalase
Alkaline phosphod iesterase I
p63 protease (Leishmania)
Renal dipeptidase
Merozoite protease (Plasm odium)
Aminopeplidase P
Lipoprotein lipase

Mamma lian ant igens
Thy-1
RT·6
Qa
Ly6
Carcinoembryonic ant igen (CEA)
Blast-t
CD14

ProtozoJ antigens
Ssp-4 (Trypanosom a)
Variant surface glycoprote in ( Trypanosoma)
Surface proteins (Paramecium)
195·kDa antigen (Plasmodium)

Cell adhesion
~

Heparen sulfate prole ogfycan
Neural celt adhesion molecule
Contact site A (Dicryostlium)
PH·20 (guinea pig sperm)

Misce llaneous
~accelerating factor (OAF)

130-kSa hepatoma glyc oprotein
34-kDa placental growth lacotr

Scrapie prion protein
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1.4.1 Structure of GPI-anchors

Kn'owledge of the detailed structureof Ihe glycosyl·phosphatidylinositol anchors

largely derives from studies done wilh the variant surface glycoprotein (VSG) 01the

protozoal parasite Trypanosoma bruce; (Ferguson et al.,1984, ' 985; Scnmnze 8t al.,

19B7). The major features of this structure are illustrated in Figure 3 and are

summarized as follows: (a) ethanolamine is amide-linked to the a -carboxyl group of

the eQOH·terminal amino acid of the protein; (b) a phosphodiester linkage between

the hydroxyl of the ethanolamine and the 6·hydroxyl on mannose; (c) this mannose

is the part of a branching glycan which contains mainly mannose residues and a

branch containing galactose residues, A ,-"'ntral mannose is then linked 10 a

g1ucosamine residue with a free amino group at its reducing terminus, The presence

of this unusual, sugar allows the structure to be selectively cleaved al this point by

nitrous acid; (d) the glucosamine is glycosidically linked at C· 1 position to the 6­

hydroxyl on the fnoslto! ring of phosphatidylinositol (l ow et a/., 1988), Recently,

evidence has shown that these major anchor structures are highly conserved in the

GPI·linked portion, although there are some modifications found mainly in the

galactose branching chain, variation in the fatty acid composition of the diglycetide

(Ferguson et at,.1984) and the presence or absence of acylation of the inositol ring

by fany acid chains (Roberts et aI" 1987).
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Figure 3. Structu re of glycosyl-phosphalidylinos itol anchor
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Most proteins anchored to membrane via GP I-linkage are sensitive to

degra dation by bacterial phospha1idylinositol·specifie phospholipases C (PI.p l C)

resulting in the release of protein trom the membrane. The advantages to the cell are

tha t GPI-anchors may play a dynam ic and versati le role in the regulation of ce ll

surface protein expression or in the sheddingof bicacnve proteins into the circulation

or extraceHuar milieu. Regulation of CD14 expression or shedding may also occur via

pes t-translationa l anacnment to or enzymic cleavage of the GPI·structure.

1.4.2 Evidence of CD14 8 S a GPI·anchored prc teln

It was predicated, from tho cDNA sequence, that the amino acid sequence 01

CD14 would contain a typica l hydrophobic leader peptide 0117 amino acids (GoVen

er af., 1988). No absolute co nsensus sequence motif lor GPI attachment has been

con firmed. and six different amino acids have been found at the carooxyl lerminus of

the 19 or so proteins sequenced with covalently attache d GPI anchors (Ferguson.

1988). A decrease in the cell surface expression of CD14 was observed aher

treatment of monocytes with PI-PLC (Goven at al., 1988). Sensitivity 10 PI·PLC

confi rmed that CD14 is ancho red via GPI-linkage. II was also found by Goyert eI al.

(1988) that the monocytes of patients withparoxysmal nocturnal haemog lobinuria . a

d isease characterized by the lack of expression of aU GPI-linked proteins. failed to

express CD14. Low and Saltiel (1988) found that prole ins linJo:ed to membrane via a

GPI anchor possess, in the nascent protein. a sequence of amino acids at the C­

te rmina l 01relatively hydroph obic amino acids. This is also true for CD14, in whiCh
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the C-terminal amino acid sequence is (Ser, Gly) Thr-Val-Leu-COOH (Bazil et al.•

1989). All of the above evidence support CD14 as a GPI-anchored protein.

1.5 Solub le-form CD14 (sCD14)

1.5.1 An antagonist for monocyte response to LP$ 1

Apart from the membrane-bound form of C0 14 as a receptor for the complex

of LP5 -LBP or lPS·septin, a soluble form. sC0 14, Is found in normal human serum

al a concentration of 2·6 ~g/ml (Bazil et al.• 1986: SchUnat et. 1992) and in even

higher concentrations in some pathological conditions such as post-poiytraumatlzed

and severely burned patients (Kruger at a/., 1991). and in septicemia patients. in

which an increased level of sCD14 correlates with the acute-phase C-reactive protein

(Kruger et al., 1991). Recent in vitro studies have shown thaI native sCD14 and

recombinant soluble CD14 (rsCD14) can inhibit the response of monocytes to

l PS:lBP (SChun et af., 1992). SchUtt et al provided evidence that sCD14 reduced

LPg·induc ibie monocyte activation in a dose-dependent manner. tia ziot etal. (1992)

showed that native and rsC014, isolated from the urine of a patient with nephrotic

syndrome and trom Baculovirus cuttures. respectively, can bind LPS:LBP. More

recently, Haziot at al. (1993) showed that the recombinant sCD14 competes very

ellec tively with cell surface CD14 for LPS. and is a potent inhibitor of LPS-induced

TNF-a production in whole blood. Thus, lhis evidence suggests that sCD14 may act

as an antagonist lo r monocyte response to l PS. Bul this antagonistic LPS sHeet

requires concentrations 01sCD14 1D-fold higher 'han normal human serum levels
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(SchOtt sf aI., 1992; Haziot er al., 1992; Hazier 81 al., 1993). Indeed, in

polytraumanzec and in severely burned patients, sCD14 in serum starts to increase

within the first 6 days post traum a and remains elevated during the first 14 days

(Kruger at al.• 1991). It is possible that elevated levels of serum sCD14 in these

patie nts indicate a natural prctecnvo mechanism against excess ive monocyte cylokine

production. Therefore. sC01 4 was viewed as a possible Iherapy in prevention ot

endotox ic shock. However, this therapy must be viewed with caution as sC0 14 can

also act as an agonist for LPS·induced responses by endothelial cells.

1.5.2 An agonis t for endotheli al/epitheli al cell respon ses to LPS ?

Recent evidence has shown that sCD14 was at least partly . if not entirely.

produced by shedding of mem brane CD14 following monocyte or macrophage

activat ion in response 10 a physiologically activating agent such as bacterial LPS

(Bazi l st a/., 1991). /n vivo ci rculating sCD14 may also result from shedding by

activated monocyteslmacrophages . In the presence of a physio logical concentration

of sCD14. both bovine and human endolhe linl cells. which do not express CD14 on

their surface. were shown to respond to LPS (Beekhuizen et al., 1991). Patrie et 81.

(1992) was able to show that anti·CD 14 antibodies can inhibit the serum-dependent

response of bovine and human endothe lial celts to LPS. Furthermore, Frey at al.

(1992) demonstrated that m munodeple ticn of sCD14 from serum prevented human

umbilical vein endolhelial cell response to l PS and thaI the response was restored

by the addition of sCD14. Pugin et a/. (1993) supported that sCD14 was required for
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the activation of endothelial cells and, in addition, found that epithelial cells were

activated by LPS. Pugin also provided evidence that the LPS-LBP complexes

transfer LPS to sCD14 and he proposed that the LPS-sCD14 complexes then bind to

epithelial or endothelial cell receptor(s) yet to be identified. Haziot's (1993) data also

supported thisproposal since it was found that endothelial cells were activated by high

concentrations of LPS in the presence of rsC0 14 alone . In low concentrations of LPS

(5 and 10 ng/ml), the rsCD14-stimulated activation was strongly enhanced by LBP.

In addition, they showed thal LPS bound 10 rsCD14 directly in the presence of low

concentrations of LPS, and thal binding was enhanced by the presence of LBP. It

was proposed that sC014 is responsjble for the eftects of LPg on epithelial and

endothelial cells, potentially leading to the activation and perhaps the dysfunction of

these tissues in the pathophysiology of endctoxlc shock when sCD14 levels are

elevated above normal.

1.6 CD14 and Lpg-Induced signalling events In monocytes and macrophages

One of the in~ial steps of the immune response to bacterial endotoxin is the

binding of LPS to one of the host cell surface CD14 receptors. This interaction

induces an oxidative burst (SchUtt at al., 1988), enhancement of adherence of

monocytes (Lauener atal.. 1990), the activation of the nuclear transcription factor NF·

11:8, as welt as the secretion 01cytokines such as TNF'a (Wright et et; 1990), IL-1

(Schult et af., 198a: Couturier et al., 1992), IL·B and IL·B (Denlerner et a/., 1993) by

macrophages. CD14 is subsequently released from the cell surface (Bazil at al.,
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199 1). Antibodies against CD14 prevent LPS-LSP complexes from binding to

macrophages (Wright et al., 1990; Kitchens at et., 1992), block the LPS-induced

activa tion of the NF-KB transcription factor (Kitchens et al.• 1992; Sagasra et af.,

1992), and block TNF· CJ: and IL-1B product ion (Couturier er al., 1992; Kitchens at af.,

1992). Thus, cell surface CD14 appears to playa very important role in LPS-induced

mon ocyte/macrophage activation.

Since CD14 is GPI-anchored to the cytoplasmic membrane and. therefore,

tacks an intracellular domain that could directly transduce signals into the cytoplasm,

current data provide clues as to how CD14 might mediate transmembrane signalling.

Firs t, GPI-anchored proteins have increased lateral mobility in the membrane (Low at

et., 1988), which may facilitate establishing interactions with transmembrane molecules

that provide the signal transduction func tion. Indeed, data from Stefanova and her co­

wo rkers (1991) support this signalling model. They co-precipitated protein tyrosine

kinase (PTK) activity with several GPI-anchored proteins, includi ng CD14. More

recently, they further identified that the PTK p531p561'yt1 is coupled to CD14 in human

monocytes (t;tefanova at al.,1993). P531p56~n is a member of the src-reia tee tyrosine

kinase family. The p53/56/)'", encoded by the Iyngene, is expressed in haematopoietic

cells of myeloid lineage such as macrophages, monocytes and platelets. and of

lym phoid lineage. i.e.. B lymphocytes (Yamanashi et al., 1989). II is present in

membrane fractions but no! in the cytoplasmic or nuclear fractions (Yamansh i et a/.•

1989) and therefore, like Bro. it may be myrisoylaled. These findings suggest that the

PTK p56",nhas a specialized function at the plasma membrane level. Indeed, like
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other members of se- related tyrosine kinases, Iyn has also been implicated in signal

transduction. II was shown thai Iyn is involved in transmembrane signalling

associated with the IL-2 receptor (Kobayashi at a/., 1993), the high affinity IgE

receptor (FeLAI) (Eiseman et al., 1992), and with the B-cell antigen receptor

(Yamanshi et ai , 1991).

In monocytes. lyn was reported to be involved in Lpg- stimulated monocyte

activation (::>tefanova at al., 1993). It was also shown that P53156~ was the only PTK

detected in LPS-activated or in resting monocytes (Stefanova et af.• 1993), and may

be physically associated with CD14. However, other src-relateo PTK such as

p58164/1Ck and p59C
-1p may be activation-inducible and associated with CD14 following

LPg triggering (Stetanova at et; 1993). Stelanova et af. also demonstrated an

increase in CD14-associafed kinaseactivity, and an increase in phosphorylation of the

PTK substrate enolase in vitro following LPS stsnulancn. After stimulation for 15

minutes. a relative decline was observed in CD14-precipitated p53Jp56/)'n, which may

be caused by the shedding of CD14 Irom the surface of activatedmonocytes. These

data suqqcst that LPS binding to CD14 induced an increase of CD14-associated

p531561)<n tyrosine phosphorylation. Furthermore. Stefanova at ar. found that

herbimycin A. a src-refatec tyrosine kinase inhibitor. could block Lpg- induced

production of TNF-a,IL-1a and IL-6 as well as Ihe shedding of CD14. Anti-CD14

antibodies could inhibit both protein tyrosine pnosphorylanon and TNF·a production

induced by ng/ml concentrations of LPg (Weinstein et a/.• 1993).

The above evidence suggests that CD14 signalling might occur directly or
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indirectly via protein phosphorylation mediated by p5315S~. which may lead 10 the

secretion of cytok ines by LPS·activaiad monocyt es. When CD14 was transfeeted Into

l PS-responsive 70lJ3 pre-B cells which lack CD 14. the lPS sensitivity of the cells

was increased withoU1 altering the qualitative response (Lee et al.. 1992).

Transfeet ion 01 C0 14 iI"Ito LPS non-responsive chinese hamster ovary cells by

contrast did not confer l PS respcosfveoess (Tobias at at, 1992). These results

suggest that transfected CD14 functions cooperate with the endogenous l PS

sl')nalling appa ratus resulting in an increased cellular responsiveness to lPS. This

Is analogous to what is found with many cytoklne receptors such as the IL-1 and IL·S

receptor s each having at least a two subunit receptor, one lor ligand binding and the

other lor transmembrane signalling (Akira et et, 1990; Halakeyma at a/., 19S9; Hibi

at al., 1990).

The b iochemical events between the LPS-induced activation of CD14­

assoc iated p53156~, and TNF-a secret ion in monocytes and macrophages, is still

unclear. However, ind irect evdenc e provides some clues. Evidence from co­

m munocreclp ftation studies have shown that the SfC lam ~y protein tyros ine kinase,

associates with down-stream effector molecules such as PLC}. GAP (p21'···GTPase

activating protein) and PI3·K (phosptlatidylinositol 3·kinass) in a variely 01ceu tsoes

(Cichowshi et al., 1992: Weber et al., 1992: Yamanashi et st, 1992). More recently,

it has been shown by Pleiman et al. (1993) that the amino·lerminal 27 residue s within

the unir.ue domain 01 pSS"""mediate association with PLC'(2, MAPK (microtubule­

associated protein kinase) and GAP, Binding to PI3-K is mediated through the src
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homology 3 (3H3) domains of the src family kinase. Although there is no direct

evidence showing that p53156""" is assoctated with these downstream effector

molecules in monocytes and macrophages, it was found that p53J56~ is associated

with PLCy2, GAP and PI3-K in a-cenvsate and that the amount of detectable kinase

activity increases with anti-lgM stimulauon (Pleiman at st., 1993; Yamanshi et al.,

1992). These effector molecules propagate signa ls by, for example , PI3-K, hydrolysis

of PI 4,5-biphosphate (PLCy1 and PLCy2) and by possible activation of p21lU activity

(GAP). Hydrolysis of phosphatidylinosilol by PLCy1 and PLCl2 generate the

secondary messengers, diacylglycerol (DAG) and inositol t.e .s-tnsotospnare (IP3)'

that possess potent effector functions themselves. IP3 activates the release of Ca2•

from stores in the endoplasmic reticulum. OAG functions by recruiting PKC to the

membrane, where it can be activated. Aclually, in the murine macrophage cell line

RAW 264.7, two LP$-induced tyrosine phosphopro tens of 41 KDa and 44 KDa have

been identified as isoforms otthe mitogen-activated protein (MAP) kinases (Weinstein

at et., 1992). MAP kinase is one 01 a family of serine/threonine protein kinases

(Sturgill at al., 1991) which has been shown in vi/rot o phosphorylate and activate a

90 KOa ribosomal S6protein kinase (Chung et al ., 1991; Sturgill et al., 1988)and the

c-nm transcription factor (Pulverer et et., 1991). Since many of the responses

triggered by LPS in macrcphaqes depend on transcription and translation, LPS

activation of MAP kineses could be a cr itical part of the mechanism by which LP$

induces responses in macrophages. But the identity of the LPS·aetivated tyrosine

kinase that phosphorylal es MAP kinase is yet to be identified.
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In addition to the role 01 PTK, PKC also has bee n implicated n LPS

macrophage activation . In the murine macroph ages, it was fou nd thai LPS induced

phosphorylatton of p6S exclusively at a serine residue (Shinom iya et al.• 1991),

indicat ing a contribut ion by a LPS inducible serine kinase . LPS or LP5-derived lipids

have been shown to activate PKC (Pripe et al.• 1987; W right at al.• 1984). Thus, p65

could be phosphorylated by PKC in LPS -stimulatedmacrophages. The deqree of the

p6S phosphorylat ion In macrophages stimulated with LPS or lipid A, correlated well

w ith IL-1 production (Shinom iya et al., 1991), indicating p65 may pray a crucial role

in macrophage activall on. The serine/lhreonine kinase (PKC) which phasphorylates

p6S has not yetbeen identified. Itwas also repor ted th at PMA. a PKC activator. could

induce a pattern of protem phOsphOrylation which resembles that induced by LPS

(We iel et al.. 1988; Shinomi ya et af.• 1991). These findings indicate a possible role

fo r PKC-directed protein phosphorylation in mediat ing respon ses to LPS. This

possibility is consistent with the documentation 01increa sed OAG in LPS·l realed cells .

Of the five distinct ph osphap roteins produced in macrophages in response 10 LPS. the

68 KOa PKC substrate has recently been termed the myristalyated alanine rich C

k inase substrate. or MARCKS (Seykara et af.• 1991). It is spec if ically phosphOf)'lated

in lP5-treated macrcpnaqes and as a consequence is redistributed from the

cytoplasm to the plasma membrane.

The ability of LPS to pr ime cells to release metab olites 01arachidonate has also

been linked to the altered ph osphorylation of this prote in (Ade rem et af.. 1988). More

recently, it was report ed that PMA at concen trations between 3x1O'1O M 103x l 0 D M,
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Of okada ic acid. which inhibi ts phosphatase I and lI a could augment LPS-induced

TNF·a product ion in human monocytes (Coffey st al.• 1992). ate uroeccroe, a PKC

inhibito r, compl etely inh ibited LPS indudion of TNF.-n and reduced IL.a mANA in

human monocytes, but had no effect on IL-1B. indicat ing that LPS can activate PKC

but also that th is kinase is important in the LPS induct ion 01TNF-a and IL.a , but not

Il·1A . A PKA inhibitor. Hag . inhibited lP8-induced IL·6 mANA synthes is but had no

effect on IL·1 or TNF-a (Geng et aL, 1993), suggesting that IL-6 induction in

mcnocyt es is both PKA and PKC regulated following LP S stimulation. In contrast,t he

PTK inhibitor, herblmycln A. inhibited production of all three cytokines. IL-l , IL·6 and

TNF-(l and blocked LPS activation of NF-KB. The PTK signalling event could

thereto-a be an earlier signall ing event than ?KC or PKA. Whether PKC or PKA are

down stream molecules of PTK remains to be identified . Inleres tingly, the release 01

arachidonic acid rnetabcut es from LP5-treated macrophages was also inhibited by

herb imycin A. suggesting thai the activation 01P~ and phospholipid hydrolysis

(which produ ce arachidonic acid) may also be linked to tyrosine kinase act ivity

(Weinstein et at., 1991).

Following the early intracellular events such as the activation of PTK induced

by LPg binding to cell surface receptor (CD 14) on monocytes and macrophages,

un identified down stream effector molecules are ac tivated which lead 10 gene

exp ression and cytoklne production. As mentioned. herbimycin A was found to reduce

the LPS activat ion of NF-KB, which is a transcription teeter fnvclve d in the expression

of cytokine genes such as IL·6 and TNF-a, indicating that PTK is an important early
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eve nt. It was reported that LPS induces three fold increases in the rate 01transcript ion

of the TNF ·(l gene (Han at aI., 1990). Treatment of macrophages with lPS results

in nucl ear protein binding to the NF·" B enhancer. Large DNA fragments as well as

smaller ollqonucleottde a containi ng the exact sequences from several different

regu latory sites in the TNF-a gene complex were shown to bind to LPS·sensitl....e

nuclear factors (Collart st et.; 1990: Drouet s t al., 1990 ; Sbekhov et a/., 1990). These

activ ities were NF-"B·1ike as indicated by the ability of such complexes to compete

wit h unlabelled oligonuc leotides contaIning defined NF' KB sequence motifs (Drouet

et al., 1990; Narumi at af., 1992). The mechan ism of l PS actlvattc n of NF'KB is nol

well known . It is speculated that upon celt activation by l PS, h:a is phosphorylated,

probably through a PKC mechanism in which a putativ e prote in kinase , operative in

Lp g ·treated monOCyles/mac rophages, remains to be iden tified . The NF-KB

he terod imer then dissoc iates from IKB and translocates to the nucleus, where it binds

upstream of specific genes such as NF·KB enhance rs and the Y box , which ac uvata

TNF' a gene transc ription.

G-proteins are a family of receptor-associated signal transduction rncteculet

that have been implicated In the control of a variety of metab olic processes. It has

been reported that binding of the LPS·serum complex to CD1 4 of huma n neut rcphlls

causes the translocation to the membrane of the inhibit ory n -p rcteo. Goq(Kozo el al.,

1992). It was also show n that pre-treatmen t of C3He/FeJ mouse per itoneal

mac rophages with pertussis toxin (pn, a specific inh ibitor to uncouple the G.-proteln­

mediated signa! transduction (Codina et al., 1990), marked ly enhanced lPS· induced
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TNF-u production (Zhang et al., 1993), implicating that P'r-sensf ive G-protein.

mediated signal transduct ion as an important regulato ry event in LPS·dependent

macrophage activation.

In cells stimulated with LPS, there is also evidence that the Na+/H+pump Is

activated (Adams, 1992). In addition to Ca' + and Na+'W exchange, modulation of

Na'/K+exchange may also be involved in the control of LPS-induced gene expression

(Ohmori et al., 1991). Prostagland in~, produced in response to LPS. may activate

adenylate cyclase (AC) via a nucleotide re~wlatory protein coupled 10 cell surface

receptors, and the elevetcn in intracellular cAMP can also modulate numerous

intracellular events via protein kinase activation (Hamilton at at 1992). However. the

above data remain to be clarified further as does the interrelationship between CD14,

lyo, the lipid A receptor and G protein signalling. The following model of the signalling

cascade, modified from Hamillon et al., summarizes the data discussed above into a

unifying model of LPS signalling (Fig.4).
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Figure 4. Membrane signal transduction model
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1.7 Role of C014 In d isease proc esses

In addition to CD14 as a myeloid differentiation antigen marker and as a

receptor for the lPS-LBP complex. it has been found that CD14 may play a role

in either identifying or characteri zing several diseases. It appears that CD14 may

be a useful marker to assist in the diagnosis of certain Jeukaemlas and in

assessing prognosis. Anti-CD14 mAb can be used to identity mature cells of

monocytic lineage in myelomonocyte leukaemia. CD14 is also a prominent marker

found inacute monocytic leukaemia (AMol l and acute myelomonocytlc leukaemia

(AMMLl. In the former, c ate-ccsmve AMoL cells produce greater amounts of

TNF-o. and its presence may indicate a poorer pregrcsls for both AMML and

AMoL (Griffin at af.• 1983).

In inflammatory disease , CD14 expression has been studied In alveolar

macrophages ofpatients with sarcoidosis. Bronchoalveolar lavage cells, whichare

normally CD14 negati ve. show an increase in CD14 staining of the alveolar

mac rophages in sarcoidosis patients (Hance at al., 1985). Following therapy,

C014 expression decreases to control levels. indicating successful anti­

inflammatory intervention. Similar findings have been obtained in extrinsicanergic

alveoutls (EM) which exhibits an increase of CD14 expression as well as a rise

in soluble CD14 in pat ient plasma (Pfante et af.• 1993).

In septicemia patients, sC0 14 was also found to increase and this

correlates wilh levels 01the acute-phase c -reecifve protein (Kruger at al., 1991).
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The increased sCD14 may be related to the decreased expression of C0 14 on

blood monocytes in such sepsis patients (Fingerle et al., in press). Cells from

these patients exhibit a decreased functional response to LPS, but the

consequences of this decreased responsiveness are currently unknown.

More recently, it has been demonstrated that expression of CD14 Is

necessary for LPS·induced augmentation of HIV·1 production in

monocytes/macrophages. Blockade of C0 14 dramatically ablates LPS·jnduced

stimulation of HIV-1 replication (Bagasra et al.. 1992). Thus. modulation ofC D14

expression may be implicated in AIDS. The transcription factor NF-..-Bmay be the

link here as there Is an NF· ,,8 consens us sequence on HIV·1 and several other

viruses (MOiler et al.• 1993).

1.8 Genetlc s and molecular biology of CDt4

1.8.1 Isolation cloning and sequencing 01CD14

Complementary DNA. coding for membrane CD14. has been cloned and

sequenced by Goyen et al. (198B). The amino acid sequence predicted from the

nucleotide sequence corresponds to a polypeptlde consisting of an Nderminal

extracelluar domain of 333 residues, a stretch of 17 hydrophobic and neutral amino

acids (potentially serving as a membrane-spanning segment) and four C·terminal.

possibly cytoplasmic, residues. The p.edlcted Nferminat amino acid sequence by

Goyert is in good agreement with that determined directly for one of the soluble
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forms by Bazil et al. (1986) .

1.8.2 Chromosomal loca lizat ion of the CD14 gene

Analyses 01 eDNA and genomic clones of CD14 showed that the gene

encoding CD14 is located on the long arm of chromosome 5 (5q23-q31), a region

known to encode several myeloid-specific grO'Nlh factors or growth factor

receptors, including interleukin-3 (IL-3), granulocyte-macrophage colony-stimulating

factor (GM·CSF), colony-st imulating factor (CSF-1), CSF-1 receptor (CSF- 1R) and

the platelet-derived growth factor receptor (PDGF-A) (Goyert at al., 1988). The

mapping of the CD14 gene to this region of chromosome 5, its exp ression

preferentially by mature myeloid cells, and its delefion in the maHgnant cells of

patients having myeloid leukaemia and a deletion of 5Q sugge~>t that the CD14

antigen may also serve as a receptor important for myeloid differentiation (Goyen

et al.• 1988).

1.8.3 Regulation 01 CD14 expression

CD14 expression on the surface of mcnccytes is dependent on the rates

of CD14 loss and synthesis. Surface CD14 molecules may be lost either through

internalization or shedding process. It has been reported by Bamezai et al.(1992)

that following the addition of specific antibodies, two GPI-anchored proteins, Ly­

6A.2 (TAP) and Thy-1, could be internalized by murine T lymphocyt es via a
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mechanism that is distinct from that used by several transmembrane proteins

which are endocy1osed via clathrin-coated pils and vesicles. But it has been

demonstrated by Bazil &Strominger (199 1) that down-modulation of surfaceCOl . ,

induced by anti.c o 14 mAb or its hagm ent F(ab')" which are known to activate

rnonccytes. is caused by Shedding rather than internalization. Shedding w ill be

discussed in more deta~ later in this section.

The other factor inl1uencing CD 14 expresston is the rate of synthesis of

C01 4 by monocytes. The synthesis of the polypeptide is regulated by nuclear

transcription factors, the stability of CD14 mANA, and by postranscriplional

modification (glycosylalion and attachment of the GPI-anchor). Thore does not

appear to be any evidence avai lable in the literature on teeters affecting CD14

m ANA stability and little is known about the nuclear transcriptioru::l factors involved

in CD14 expression in monccvt es. It was reported by Femero and Goyert (1988)

tha t the human CD14 gene con tains a consensus molif for the SP- l transcription

factor . This motif is located t.' the 5' upstream region of 100 nucleo tides. In the

mouse,more of the 5' region has been sequenced (Matsuura at et., 1969). Here.

consensus motifs for PU· l , INF-yactivation factor. clEBP (CAAT enhancer binding

protein) and AP-l can be identified (at positions -598. -461, -397 and -253.

respectively), and it is possible that similar motifs may be detected in Ihe human

ge ne when more sequence data become available. In mature monocytes and

mac rophages, CD14 expresslc n could be regulatedby nuclear transcr iption factors
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which may be activated or suppressed through physiological activating agents

leading to a directellect on CD14 ant igen synthesis. lL-4 was reported by Laumer

and his co-workers (1990) to down-regulate CD14 expression in human

monocytes, which was first detectable after 2410 36 hours of incubation wnh IL-4,

and was almost complete after 4 days in culture. Further experimentsshowed that

IL-4 dependent down-regulation of CD14 was not due to increased shedding and

lor secretion, but resulted from decreased transcription of C0 14 mAN A.

Stimulation of human monocytes with IL·6 for 48 hours significantly increase d cell

surface CD14 density, as detected by mean fluorescence (MFI) but not by the

percentage of CD14' cells. The mechanism of up-regulation of CD14 expression

has not been investigated. The cytckme IFN-ywas also found 10down-modulate

the expression of CD14 on monocytes and macrophages in vitro after 15 to 45

hour s 01 IFN·y treatment (Landmann at et., 1992). These data suggest that

macrophage responsiveness to LPS may be regulated by cells releasing these

cytokines . Thus, cy tokme-medtated down-modulation of CD14 may be a

mechanism for deactivating macrophages during the late stages of an immune

response to a bacterial infection.

1.8.4 Regul aUon of CD14 shedd ing

In addition to a 55 KDa membrane-bound C014 (mCD14) on monocytes,

soluble CD14 (sCD14) is also fou nd in human serum, urine, and in culture
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mediu m. At least 99% of the CO'4 found in1he bloodof humans is In the soluble

form a nd only '''10 is found on the surface of phagocytic cells (Wright, 1990) . This

evidence strongly suggP'SIS that membrane-bound CD14 could be shed info the

circulation or medium. In 1991.Bazil & S1rominger reportedthat in vitro CD1 4was

release d from human m onocytes spontaneously or rapidly following treatm entwith

PMA. The protein released from PMA-t reated mcnocytee migrated as a single

band, with an apparently smaller mole cular weight o f 48 KDa in 50S-PAGE.

Spontaneously released soluble CD14 frommon ccytestreated with PI-PLC invitro

was shown to have a molecular weight 0153 KOa, which was close to that of

memb rane-bound C014. Soluble CD14 isolated fromurineor serum appeared to

be a mixture 01thetwo formshaVingbands at approximately48 KDa and 53 KOa.

The mechanisms 01C0 14 shedding have stiltto be elucidated. Goyert and

her coworkers (1988) first reported that an in vilro spontaneously released form of

CO'4 lacks enthanolamine. indicating tha t se D 14has no GPI·anchor. Th is raises

the possibili ty that sCD14 is enzymatically c leaved and either released directly

from a GPI anchor or is cleaved from the nascent hydtophob icaUy anchored

pept ide. The metabolic palhway leading to the ettecbment of a GPI anchor to the

protein is not fully understood and there is no direct evidence to pr ove this

hypot hesis. However , Fatemi and his colleagues (1987) did lind that T cell

mutants that havea defect in the GPI anchor attachment release large Quantities

of Th y-t into culture supernatant. Therefore . the mechanism for escaping GPI
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ar tacnmera ca n nol be ruled ou t .

S econd ly , l wa s found th at treatme nt of monocytes with PI ·PLC doe s not

result in compl ete rem oval 01m e mbrane C0 14. So, the P!·PLC resista nt CD14

molecu les cou ld beanchored by a hydro phob ic peptide trans membr ane domain .

This was show n lor LFA·3 (Dust in at a/.• 1987; Seed at ai , 1987; Walln e r at al.•

1987) a nd fo r FC'jAlIl (C0 16) w here both GPI ·ancho red and tra nsmembrane­

ancho re d forms were id entified and two mANA were lsotated for the two species .

However, for C0 14, only one mRNA was found (Goyert ~t et., 1988 ).

Funhermore. a single C014 eDNA transfected lrucneuroglioma cells was foun d

10 result in bo th a me mbrane form and a sma !!er so luble form of CD 14 in th e

supern a tant. ~ t was therefore un likely thaI sC D 14 was derived ent ire ly from a

transmembrane ancho red CD 14 .

Th irdly , sCD14 may resu lt from e nzyme cleavage includi ng such e nzymes

as PI-PLC. PL ClPLD . and prote ase . Ev idence from Baz il and Strominger (199 1)

seems to support a n endogenous p rotease as p art ly respon sible for t he

sponta neous a nd the P MA·induc ed CD 14 shedding. They show ed that th e sizes

of the sCD14 shed fr om the ce ll surf ace spontaneo usly and after m onocyte

activat io n by P MA we re identica l, but c le arly smaller th an that of the me mbran e­

bound o r PI·P LC cleav ed CD14 . Serine protea se inhib ito rs DFP and PMSF co uld

also partly inh ib it PMA -induced C D14 shedd ing . In vitro expe riments seem 10rul e

oul phospholipase cl eavage for the spontaneous and PMA-induced C0 14



shedd ing. but de finitive prool 01 the nature 01 the se enzymes will require the

complete characterization and identif ication of the cleavage sites of the vario us

shed molec ules. In vivo. th e CD14 shedding process mil Y be more complex. At

least, CD14 shedding may be the result of a combination of phospholipase 8ntJ

protease, be cause two m ajor soluble CD14 forms were lound in the serum ol

healthy don ors and in the urine of nephrot ic patients (Ba zil et al.• 1966. 1989 ).

The smaller sC0 14 hasthe same molecular weight as tha1shed invitro . indicating

that the COU she dding which occurs in vivo is perhaps the result of protea se

cleavage. The la rger sC 0 14 form has the same molecu lar weight as that 01PI­

PLC treeted-monccytes or close to the molecular weigh t of memb rane-bound

CD 14 on monocytes in vitro, suggesting that a phosp holipase may also be

responsib le lor cl eavage of CD14 in vivo.

The enzymatic act ivity respon sible lor shedding could be increased by

transductio n 01 an activa ting signal via membrane cn1 4 (tauensr et al.• 1990 ).

It has been show n that G PI-anchored CD16 (Huizinga et at, 1988. 1990) and the

peptide-anchored TNF· receptor (Porteau 8t al.• 1990) lrom the cytoplasmic

membrane of hum an neu trcohns were also shed followi ng cell activation. The

consequences o f TNF-rec eptor shedd ing was shown to regulate the function of

neulrophils. In vi tro stud ies also showed that abo ut ha ll 01the mCD1 4 is shed

from monocyt es within 3 hours of lPS exposure (Bazi1& Strominger. 1991). This

evidence suggests Ihat LPS may initiate a s ignal through CD14 10 activ ate
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enzyme{s) necessary for the cleavage of mC0 14, but it remains to be determined

which enzymes are activated following LPS treatment. Subsequently, CD14

..hedding from the surface of monocytes may function as an efficient regulatory

mechanism, which is able to blunt monocyte/macrophage response to LPS after

primary stimulus, and regulate cylokine production. Moreover, sCD14 was found

10 function as a co-ligand with LPS in the activation of endothelial and epithelial

cells (Hazlet et al., 1993; Pugin et af., 1993).

1.9 Purpo se of th is disserta tio n

Fromthe review of the literature, it is evident that sCD14 plays an important

role in both vascular inflammatory and encctcxlc responses. Consequently,

modulalion of CD14 expression and shedding may regulate the functions of

mononuclear phagocytes andpossibly endothelial and epithelial cell responses to

LPS in vivo. However, little is known about the factors that determine the levels

of C014 on mononuclear phagocytes or what regulates its shedding. The

objectives of this thesis were: i) to study CD14 expression and CD14 shedding

induced by various signalling pathway inhibitors and / or activators, and; il) to

obtain clues as to what regulatory signals may be involved in the regulation of

these two phenomena.

Figure 4 is the LPS-induced membrane signal transduction model as

proposed by Hamilton et af. (1992). Figure 5 summarizes the experimenlal
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strategy to be employed using various inhibitors and / or activators. LPS activates

mononuc lear cells and leads to the secretion of cytckin es through the LPS-C0 14

complex . Two molecu les from th is memb rane complex involved with signal

trans duction are p53/56fyr1, a tyrosine kinase, and a G-protein coupled signalling

molecule which ac tivates a cascade of events involving phospholipases to produce

IP, and DAG. Th e PGE2 receptor is also implicated in the signal modulation.

These signals lead to the act ivation 01 secondary signalling processes involving

prote in kinase A, other protein kinases (such as MAP kinase) , and release

arachldonlc acid metabolites that activate PKC. These intracellular pathways lead

to the regulation of gene expressio n and the activation of mononuclear ceus. LPS

ligation to C014 not only has been shown to induce cytok ine production . but also

has been shown to result in CD14 shedding . A signa l following LPS binding

appea rs to influence the C014 shedding process. Therefore , various LPS/CD14­

signalling pathway in:,ibitors (shaded boxes in Fig.S) and activators (blank boxes

in Fig.5) were used to lnvestlqate the involvement of these pathways in the

reg ulation of CD14 expressio n and shedding .
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Figure 5. The experimentalstrategy. Various compoundswhich either
inhibit (shadedboxes)or stimulate(blank boxes)signallingpathways
were empolyed to investigale the invoivementof LPS/CD14·signalling
pathways in the ,egultion of CD14 experesston and shedding.
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Chapter 2 Materials an d Me thods

2.1 Induc ll on of CD14 expression In THp· 1 cell s

Mal er ials :

(1) . la.2S(OHh 0.:J (called Vit0 .:J or cholecalciferol . Sigma Chemical Co.) was

dissolved in 95% ethanol at SxllJ.:J M (stock concent ration) and kept at ·2Q"Cin the

dark . Vit0.:J was furth er diluted with media to w orking concentrati ons before use.

(2) Trans forming growth Iact or-Ilt (TGF· B1) was purchased from Sigma Chemical

Co . 'l-1g01TGF·131 was dissolved in 0.5 ml of 4 mM Hel conta ining 1 mglml BSA

at 2 IJglml (stock concentration) and kept at ·70°C. Stock was diluted to 1 j.lg/ml

0; TGF ·131 belore use.

(3) Human recombinant tumour necrosis factor -a (rTN F·a) was supplied by

Ce darlane Laboratories, Ontario. Canada. 10 j.lg of rTNF·Q was dissolved in 100

IJI PBS at 100 lJg/m l (stock concent ration). atq uotec and h 'ot at ·7(fC. Stock was

fu rther diluted to a work ing concentration of 1.0 IJglml with fresh RPMI· 1640

m ed ium befo re use .

THP ·l cells

THp·1 cells are human leukaemic ce lls, which were derived from the

p eripheral blood of a one year old male with acu te monocyt ic leukaemia. THp· l

41



cells have Fc and C3b receptors and lack surface and cytoplasmic

immunoglobulin, but THP-1 cells can be induced by PMA or VitD3to differentiate

into macrophage-like cells (Isuchiya. 1980),

THP-1 ceUswere purchased from ATCC and were grown in suspension in

RPMI-1640 mediulT" supplemented with 10% fetal bovine serum, 2x10·5M

mercaptoethancl. 100 Ulml penicillin and 100 Jlg/ml of streptomycin at 3rC in a

humidified 5% CO2 incubator. RPMI-1640 medium. leta l bovine serum, and

antibiotics were obtained from GIBCO BAl (Ontario, Canada). THP-1 cells were

grown in 75 em" tissue culture flasks (Becton Dickinson and Company, NJ, U,S.A).

The cells were passaged when their densities reached about 5x10' ceUsl ml. The

THP·1 cells were harvested during Ihe logarilhmic grOWingstape by centrifugation

and used for experimental work, The number of cells and their viabil ity were

determined by light microscopy using a haemocytometer. For viability and cell

counts, an equal volume of cell suspension was mixed with 0,1% trypan blue in

phosphate-buffered saline. pH7,4(PBS). Cells were washed with fresh APMI-1640

medium before use in the experiments.

Protocol for Indu ction of CD14 expression in THp·1 cetls

CD14 is a myeloid dilferentiation marker which is expressed in mature

myeloid cell lineage such as monocytes and macrophages. but not in immature
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monocytic cells such as THP-l and Hl·60 (promyelocylic leukaemic cells).

However, these immature leukaemia cens can be induced to ditferentiate into

mature macrophage·li ke cell s in the presence of la.25(OH)zD)' The

differentiation was au gmented by the addition 01TGF·B1 and TNF-o. (Morikawa

er st., 1990). The following protocol was developed 10 induce THP· ' cells to

express high levels of C0 14 molecules on their surface .

(1) The logarithmic growing THp· , cells were harvested by centrifugation.

(2) The cells were counted and adjusted to 10s cellslml with fresh RPMI·1640

medium.

(3) 2 ml of lOScellslml THp·l cells were added into each well 01e-welttlssue

culture plates (Becton Dickinson and Company. NJ. U.S.A.).

(4) The control wells were set up respectively as followed:

ethanol used as solvent for VitD3 alone;

8x 10~ M VitD3 alone;

8x10" M VitD3 ptus 1.0 nglml TGF·131:

8x10" M VitD3 plus 2.0 nglml rTNF-a:

1.0 nglml TGF-B1 plus 2.0 nglrnl rTNF·a

Above control wells were only set up for the first lime to confirm thai three

of above reagents to gether induced THP·1 cells maximum differentiation.

(5) VitD3• TGF·B1 and rTNF·o. were added lntc each well to concentrations 01

aXl 0 ' M, 1.0 nglml, 2.0 nglmt respectively.
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(6) These cells were incubated at 3rC under 5% CO2 in a humidified incubator

lor 4 10 5 days. Between days 2 and 3, THp·1 cells which were in suspension

started to become adherent with macrooneee-uke morphology. By day 4 or day

5, more and more THp ·1 ceuea suspension became adherent.

(7) After 5 days induction. the THP·1 cells in suspension were discarded. The

adhere nl THp·1 cells were harvested using vigorous pipel1ing and Ihe help of a

rubber policeman if necessary.

(8) Cells were counted and viability determined using trypan blue exclusion.

Viabil ity was always greater than 90%.

2.2 1.929bioas say for TNF-o:

Materials:

(1) 1929 tumorigenic murine fibroblasts were kindly provided by Mr.Shawn Payne.

(2) Medium consisted of Eagle's Minimal Essential Medium (MEM) (GIBCe . N.Y.•

USA) supplemented with 2 mM glutamine. 5% FCS, 25 mM Hepes, and 10 Vlml

penicillin. 100 ~gtml streptomycin.

(3) Actinomycin 0 (1 119/ml) (Sigma Chemical Co.).

(4) Crystal violet (Sigma ChemtcatCo.): 0.5% crystal violet in 20% ethanoVPBS

(5) Sodium carate: 0.1 M sodium cltrare in 50% ethanol

(6) Human recombinant TNF·(l standard (Sigma Chemical Co.): specific activity

2.7x10' unilslml (EC50= O.18 nglml)
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Procedure of L929 bioassay

The L929 cytotoxicity assay was performed based on the m ethod descr ibed

by Meager et st: (1989) with some mcdrtlcatlon. 1929 ce lls were seeded at

1.2Sx104 cells/well in 200 pi of cultu re medi um in sa-welt flal bottom mfcrctltter

trays (Flow, Rockville, MOl and incubated for 24 h in 5% CO2 atmosphere at arc.

Spent medium was remove d and equal volumes of TNF-a containing dilutions

were added to wells. Cont rol w ells contained a known dilution of TNF-o:. Trays

were reincubated for 20 h follow ed by addition of 50 jlUwe ll 0.5% crystal violet

solution in PB S. Alte r incubating 30 min at room tempe ratu re, dye containing

mediu m was removed and the wel ls were washed three times with tap water an d

then 50 jll of 0.1 M sodiu m citra te in 50% ethanol was added to dissolve the

crystal violet. Abso rbanc e of we lls at 595 nm microplate reader (Bio-Rad Co.).

Percentage of cyt otoxicity was calcul ated using the following form ula:

% cy totoxcitv»
negative con tro l - test sample

negat ive control
x1OQ%

2.3 Isolation 01 human monocytes

2.3.1 Principle of Isolation of monocytes

Density gradient centrifugation is one of the common methods lor cell
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separation, in which a discontinuous dens ity gradient or medium is used to isolate

a homogenous population 01celts from a heterogeno us mixture of ceus. Cells can

be separated solely on the d ifferences in density through density gradient

centrifugation. In human per ipheral blood, lymphocytes and monocytes are

separated from granulocytes and erythrocytes by buoyant density centrifugation

over a layer 01 Picou-Hyoaque (density=1.077 glml) . After centrifugation, the

agglutinated red cells and granu locytes sediment to lo rm a pellet, platelets remain

suspended in the plasma and only lymphocytes, and monocytes remain at the

interface between the Ficoll-Hy paque and plasma layers. Monocytes can be

further separated from the other mononuclear cells by using the adherent

properties of monocytes to adhe re to a culture plate plastic surface .

2.3.2 Protocol for monocyte Isolation

Mater ials :

(1) Sterile PBS or saline

(~ ) Ficotl-Hypaque (1.077 ~ml) (Sigma Co.)

(3) APMI· ,64Qmeda (GIBCO. BAL)

(4) 0.1% l rypan blue in saline

Isolation procedure:

The following protocol was used:
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(1) 20 m! of sterile PBS or saline was added to 20 ml of heparinized normal

human peripheral blood. Occasionally up to 50 mt of blood were used and the

procedure was scaled up.

(2) 10 ml of diluted blood was very carefully layered on top of 3 ml of Picou­

Hypaque (1.077 glml) in a 15 ml centrifuge tube.

(3) These tubes were spun for 30 min at 400xg (1400 rpm) at room temperature.

(4) The layer of white mononuclear cells was collected from the interface layer

with a pasteur pipette into another tesltube.

(5) At least 4 volumes of serum free RPMI·1640 medium were added to the

mononuclear celts and mixed .

(6) The samples were spun at 200xg (1000 rpm) for 10 min.

(7) The supernatants were discarded.

(8) The cell pellet was resuspended with serum free RPMI·1640 medium and

washed again as step 6 and 7.

(9) The ceUpellet was resuspended with complete RPMI·1640 medium.

(10) Cells were counted and viability determined with trypan blue.

(11) To get monocytes. mononuclear cell suspensions (5x106 cellslml) were

incubated at 37"C for 1 hour in a 5% C02 atmosphere in 1OOx20 mm tissue

culture plastic petri dishes.

(12) After the incubation was completed, non-aonerent cells were discarded and

adherent cells were incubated for 15 minutes in freshly added medium.
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(13) The ce lls adhering to the dishes were then extensively washed and

resuspended by vigorous pipert ing and use of a rubber policeman .

(14) Their viability was > 90% as assessed by trypan blue exclusion. Peripheral

blood mononuclear cells yield approximately 5 to 10"4 monocytes by this isolation

procedure.

2.4 Im munofluor escen ce technique

2.4.1 Direct and Indir ect Immunof luo rescenc e methods

Generally . immunofluorescence methods can be divided into two types:

direct and indirect. In the d irect immunofluorescence technique, conjugated

antiserum is added directly to the tissue section or viable cell suspension.

Unbound antibody is removed by washing, and the sample is examined by

microscopy or FACS. The indirect immunofluorescence method is more widely

used than the direct method. Here the sample is incubated with an unconjugaled

antibody, washed and incubaled wilh a fluochrome-eonjugated anti·immunoglobulin

antibody. The second antibody thus reveals the presence of the first.

A maier advantage of indirect immunolluorescence Is that only a single

fluorescent ranti -immunoglobulin antibody is necessary to detect many firsl

antibodies; and therefore it is not necessary to conjugate each new antibody

individually to a fluorescent marker. The indirect technique is also more sensitive

as it results in br ighter fluorescence than the direct method. Th is is because the
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anti-immunoglobulin contains antibodies to many epilopes on the immunoglobulin

molecule, the use of fluorescent anti.immunoglobulin amplifies many-laid the

fluorescent signal.

A disadvantage 01indirect method is that the long procedure may increase

non-specific background staining and therefore an isotype matched control is used

to determine the level of backgr ound staining. This is important with cells . such

as mononuclear cell, which natu rally bind immunoglobulin via Fe or complement

receptors.

2.4.2 Protocol for Indirect Immunofluorescence

Mater ials:

(1) Washing buller (standard azide buffer) consisting of;

1%FCS, 0.1%NaN3 in PBS

(2) Blocking buffer consisting of :

1:10 human serum 2% BSA, 0.1%NaN3 in PBS

(3) Ab or Ab-PE conjugate diluti on buHet constsunq of :

O.5%BSA, 0.1%NaN3 in PBS

(4) AnU-CD14 (lgG2a) mAb (IM02), Isotype IgG2a control and B-phycoeryth rin·

conjugated AffiniPure F(ab'h Fragment Donkey anti-Mouse IgG (H+L) were

purchased from BID/CAN Scientific Company; Goat ami-mouse IgG (H+L)-FITC

conjugate was purchased from Sigma Co. HLA·Class r Bw6l32 was kindly

49



provided by Ms.Jane Gamberg.

(5) Pharmacological reagenls:

Ecoli LPS. PJ·PlG. PMA, ouabain. A23187. f Ml P, calphostin C,

indomethacin, and staurosporine were purchased from Sigma Chemical Company.

KT5720, and ckedatcacid was purchased from Kamiya Biomedical Company (CA.

USA).

Procedur e for indirec t Immunofl uorescence method

All antibodies were employed et optimal dilutions, and analyzed In

comparison 10an appropriate isotype control. Cells were incubated at 40Cfor 30

minutes with 10% human serum in blocking buffer to minimize nonspecific binding

caused by the Fc po rtion of the antibody. After washing with washing buffer, cells

were then incubated at 40Cfor 30 moutes with ant i·CD14 monoclonal antibody or

an irrelevant control mAb of the same isotype. After 2 washes. certs were

incubated with 100 IJI of PE4abeued donkey F(ab'h ann-mouse IgG diluted 1:40

for another 30 minutes at 4"C. After 2 wa shes, cells were fixed in 2%

paralormaldehyde and stored at 4°C until analyzed by FAGS.

2.5 Detecti on of C014 expressi on on mon ocytes by FACS

The stained cells were analyzed by a fluorescence activated cell sorter

(FAGSlar, Becton Dickinson) equipped with an al900 laser. The laser was



operated at 50 MW at 488nm and forward and side light scatter signals were used

to gate on monccytes. Fluorescence signals were directed by a 56D-nm snort­

pass dichroic mirror to the green photomultiplier equipped with a 53OJ30-nm

bandpass filter and the red photomultiplier equipped with a 575/26-nm bandpass

filter. At least 1xt0 5 cells were analyzed per sample, and histograms acquired

were analyzed with the LYSYS II software package on a Hewlard Packard 340

computer. If there was overlap between staining of the specific MAb and the

irrelevant control mAb of the same tsotype at the same concentration, a

substraction mode program was applied to correct for this overlap.

2.6 Characterization of the molecular weight of membrane and soluble CD14

2.6.1 Cell labelli ng with ("S)-methlonine and supernatant preper etlcn s

Materials :

P ) Minimal essential medium lacking L-methionine (D·MEM), glutamine and fetal

calf serum was purchased from GIBeD/BAL.

(2) L_135Sj methionine was purchased from Amersham International, Bucks.

(3) 0.22-nm filters were supplied by Millipore, Bedford, MA, USA.

(4) Microconcenlrator-30s were purchased from Amicon, Beberly, MA, USA.

(4) Lysis buffer: 10 mM Tris-HCI, pH 7.4, 150 mM NaCI, 0.5% (w/v)NP-40, 0.02%

sodium azide, 2 mM PMSF (phenylmethyl-sulfonyl fluoride, Sigma).

(5) Protein A Sepharose CL-4B (Phamacia . Sweden).
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Method :

The metabolic labelling of cells was perfo rmed as previously described

(Goyer! at al., 1986). 10' isolated monocytes (see section 2.5) were cultured for

16 hours in 2 ml [).MEM medium lacking l .rnethionine and supp lemented with 5%

fetal call serum, 1% l .gl utamine and 1 mCi of U3SSJ-methionine. The radio labe/ing

was terminated by washing the ce lls three times in cold phosphate-buffered saline

(PBS) conta ining 0.02% sooum azide. The cultur e supernata nt from labelled cells

(labelling media) was recovered for analysis of soluble CD14, filtered through 0.22

nm filler. and ultracentrlfuqsd at 100,OOOxg for 30 rnfnutes. NP·40 detergent and

PMSF were then added at a final concentrat ion of 0.5% (wlv) and 2 mM,

respectively. The labe lling me dia were exchanged for PBSlNaN3 by three

successive volume conce ntrations and volume restorations using PBS-o.02% NaNJ

in Amicon microconcentrators-30, and then exchanged' with lysis buffer three times.

Finarty. the cultur~ superna tant wa s concentrated 10 fo lds using micfoconcentrafor

3 (Amicon. USA) for the immunop recipitation experiments .

2.6.2 Protein sol ubilizatio n an d Imrnun oprec lpltallon

Metho d:

The labelled cells were lysed fo r 30 minutes at 4° C at a ratio 01 l x10'

callslml lysis buffer. TI le insoluble material was removed by centrifugation at

l O.OOOxg for 30 minutes. The cell lysate (solubWzed protein pool) was recovered
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for the lmm unoprec jpltanon experim ents, about 5x' 0 6 labelled ceuswere used for

each lmmunoprec ipi tation.

The immuno precipitationtechnique w a s prev iously described (Goyert e t af.,

1986). Br iefly, labelled ceillysates and co n centra ted cultu re supern atants wer e

incubated with an approp riate mAb for 1 hour w ith continual rota tion at 4 gC.

Parallel Iysates co ntaining an kre tevant monoclon al antibody and an anti·H LA·

C lass I (W6I32) mAb were include d as a n egative and a posslve c ontrol. Th is

incubation was con tinued for a further 2 hour s lallowing the adOrtion 0150 ~I I 50%

protein A-Sepharos e CL·4 B. The resulting im mune c omplex es were washed thr ee

times with lysis buff er an d the fmmunopreclpltated antigens vee eluted { t h at

50gC) in lsoelectnc focusin g buller (see later).

2.6.3 2-0 -SDS-po lyacry l amlde g el electrophore s is (2D-SDS-PA GE)

Mini-Protein 11 2·0 cell (B io·Rad) was used for tt us experiment

First dimen sion-capillary isoelec trlc focusing (IEF)

Solutions 10r the first d im ension :

(1) Acrylam ideJBis (30%T/5.4C)

(2) First dimens ion samp le buffe r: 8 M Urea (reduc ed lrom the Bio Aad

specifications of 10 Ml, 2.0 % Triton X·tOO,5% G·mercaptoe thanol, 2 .0%Bio-Lylelll

pH 3.9/9.2 ampho lyte.

(3) First d imensio n sam ple overlay buffe r: 6 M Urea. 1% Bio- Lyte" 3 .9/9.2
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ampholyte, 0.1% Bromophenol blue.

(4 ) Frst d imension gel m o nomer solutior: 8M urea . 4% ecryemde, 20%Trit on X·

100,2% B io-Lyte- 3.919.2 ampholyt e, 0.01% ammon iumce rsutate , 0.1%TEMEO .

(5) Upper chamb e r botfe r: 100mM NaOH

(6 ) l ower chamb e r buffer : 10 mM H;'O.

Pr ocedure tor IEF:

Fo r 20 gel el ectroph oresis. pH gradient elect rophore si s (soele ctrc focusing)

w as used for the first di mension according to the Bio-R ad Instruction m anual.

BrieUy,th e capi llary lube s were carefully cas! wit h firsl dimension gel monomer

solution and sub jected to pre-etectrophcresis 10 form a pH grad ient After pre­

eiectroph o resls. e luted antigens we re load ed at the catho d e in th is capillary tube

g el with 6 J.l120 - S 05- PAG E stand ard marke rsas a intern a l contro l andsubjected

to scelectrc foc u sing for 6 h at 7 50 volts . During IEF. p roteins are separa ted n

terms of their pi values. Capilla ry tubes w ith gel s were stored in a polysty rene

c ooler box at -20 "(; until subjected to 2D-S 05-PAGE.

Second Dimen s ion -50S-PAGE

Et e cuopn c res's in 10% polyacrylamide ge ls wilh sodium dodec yl sulpha!e

(50S ) was performed as origina lly described by L aemmli (1970).
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Material s:

(1) A crylamidelbis ac rylamide (30%.T , 2.67%C).

(2) 10% 508

(3) 10% Ammoni um pe rsulphate (Sig ma Chemica l C o.)

(4) N ,N,N', N ', Telramethylethylenedia mine (T EMED). (GIBCO BAl.)

(5) 1.5 M Tris·HCI, pH 8.8

(6) 0.5 M Tr is .HCI, pH 6.8

(7) 5X Runn ing buffe r: 9.0 9 Trts. 43 .2 g glyc ine and 3.0 g SOS were dissolve d

to 600 mt of d eloolsed water and sto red at 4°C . 60ml 5Xstock was dilut ed with

240 ml distille d wate r for one electrophoresis run .

(8) 2 X Samp le buller: 1mt 0 .5 M Tri s·HCI buffer, pH 6 .8, 0.6 ml glyce rol, 1.6 m l

10% 50S, 0.4 mtz-merceptc ethanot. and 0.2 m l of 0.0 5% brom opheno l bluewere

mixed togeth e r, and made up wilh d elonseo w ater to a linal v onme of 8 ml.

(9) Molecular weigh t marke rs: prestamed high rang e protei n molec u lar weig ht

stan da rds (G IBCOBRL).

Method:

(1) For preparation of the se parating polyacryla mide g el (lower gel), 3 mJ0130%

acrylamidelbis.2.5 ml 011.5 M Tris -HCI, pH 8.8, 10 0 III of 10%50S, 50 III of

10% ammo n ium pe rsu l!ate and 4.35 ml of deionised water were mixed a nd

degassedfo r 10 minutes. 5 IJI TEMED was added to the m ixture im mediately
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betc re thege l waspoured in to a vertical mini-slab gel wilh 0.5 mm sp acer (Bio ­

Rad l aborator ies). D ecntsed water was layere d onto p of the gel 10fo rm a leve l

gel surlace. Polymerization was allowed to proceed for 30 to 45 min utes afte r

which the wat er layer was poured off and gels rinsed w ith deicnlsed w ater.

(2) For prepa ration of the st acking polyacryami degel (upper gel ), 1.3 m l of 30%

acryamidelbis, 2.5 ml 010.5 M Tris·HCI, pH 6 .8,6. 1 ml of distitfed water, 100 IJ.I

0110%505, 50 111of 10%ammonium pe-eultet e were m ixed an d degassedlor 10

min utes. 10 IJ.t ofTEMED was added to the m ixturebefore pouringove r the lowe r

gel. A plastic combw ascare 1uttyinse rted into theupper gelto formsam ple wells .

(3) Sample pr eparation and gel electro phoresi s were performed as follows: Th e

cap illary tube gel fro m IEF w as extruded from the tube by using a gel ejector.

equrnorated with 50S sample buffe r and lo aded on top o f the stacking gel.

Presta inedprotein markers were diluted 1:20 wit hsamp lebuffer to0.05 Jlg/IJIand

boiled for 5 mtoutes. Then 0.075 fl9 o f prestainedp rote in marker were loaded into

the well. Ele ctrophoresis w a s carried out at co nstant voltage 01t25 volts for 45

mtnutesto , hour at room te mperature. Alter 2D·SDS ·PAGE , theslab gelswe re

silver stained. The approximate molecularweight of the examined pr otein spot s

W5 SI·melhio nine labelled)w as determ inedfrom theorestaned highrange protein

molecular we ight standa rds and 2D-SOS·PAGE prote in standard markers run in

pa rallel and internall y.
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2.6,4 Au toradIograph y

When radioactive material was run on 50S·PAGE , the protein bands were

visualised by autoradiography after drying the gel onto a piece of 3MM filter paper.

Gels were dried at 60°C under vacuum in a gel dryer, then expo sed to a Kodak

XAR·5 X-ray film (Eastman Kodak Co., Rochester,NY, USA) al-70"lor 1 or 2 days

or longer when necessary. Exposed film was then developed in an automatic X­

Om at processor .

2.6.5 Sliver staining

Silver staining is a highly sensitive method for detect ing proteins in

polyacrylam ide slab gels. After 20·SDS-PAGE, the slab gels were stained using

a Bio-Rad silver stain kit according to the instruction manual. After silver staining,

the protein spots were visualized in the gels.

2.7 Cha racterization of apoptosls

2.7.1 Detecllon of apoptosls by lIght and electron tran smissio n microscopes

Cells obtainod and treated as described in the experiments were examined

morphologically by light microscopy or fixed by Karnovsky fixative before

examining chromatin changes by JEOL JEM· 1200EX electron lransmission

microscop y.
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?7 .2 Flow cytometr lc analy sis of apoetcsls

Materials:

(1) Di methyl suttoxde ( DMSO) (Sigma Chemica l Co.)

(2) Calphost in C (Sigm a Chemical C o .), a photo-act iv ated protein kin ase C

inhibito r. 1 mg of calphosfn C was dis solved in 1 ml ste rilized DMSO to a linal

stock concentration of 1 mglm l and dis pensed in small aliQuots and sto red at ­

2rtC . When used , il was diluted with fr esh RPMI ·1640 medium to the required

working concentration.

(3) PMA (phorbc ! t z-my rtstate t a-acetate. Sigma Chemical Co.) 1 mg PM A was

dissolved in 1 m l of DMSOto stock a concentration 011 m g/ml and dispense d Into

small euquctsand stored at·20°C in the dark. It was dilut e d with fr esh RP M1·1640

medium to the required working concent ration as needed .

(4) Qu inidine. a cav-oepenoen t K"channel blocker (Sig m a Chemica l Co .) Fresh

workin g concentration of quinidine was made wi th APM I-1640 medium prior to

each experlmer.t.

(5) 4-Aminopyridine (4 - A P), a K' channel blocke r (Sigm a Chem ical Co .) Fresh

working concentration of 4·AP was made with RPMI·1 6 40 medium every lime

before use.

(5) Wa shing buffe r: PBS conta ining 1% FCS and 0.1% NaN3

(6) Ethanol: absolue

(7) RN Aase (Sigma Chemical Co .)
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(8) Propidium iodide (Sigma Co.): 5 rng propldlum iodide (PI) wasdissolved in 1

ml 01PBS to a stock concent rationof 5 mgfm l. Befor e use,PI wasdil utedto the

requ ired wo rkingcon centration 01 50 IJglml.

Method:

Conventional methods usedfo r ident ification of deadce llscan not beus ed

to determine thepercentage ot apoptotc ce lls or recognize th e apoptotc cells in

a heterogen eous c e ll population. A flow cytometnc method was used lor

inve stigating cell DN A conte nt during apoptosts. Th e exten t 01apc ptosls was

evaluated by lollowin g chang esince ll DNAc onten!. T hechangesin DNAcontent

of the cells during apoptosls were du e toDNA fragmentationand loss (Alanasyve

et et; 1993). This lo ss ofDN Acan be measured by u singfluorescent DNAsta ins

such aspropldlum iodide. Cells at differen t stages of thecell cycle can also be

observed. A shift in the fluorescence spect rum to th e lell (loss of DNA) can be

quantified by FACS analysis .

(1) About 1ctcells fromeach expe riment were pelleted and washed once with

standa rd azide buffer (t % F CS, 0.1% NaN;) in PBS).

(2 ) Theywere resu spende d in150 IJIstand ard azide buller and fixed byadding

20 0 ~ I abso luteethanol for 1 hour or overnight at 4°C .

(3) Cells were then centrifuged. washed in 2 ml standard azide buffe r twice and

resuspended in 150 IJl0f s tandard azide buff er.
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(4) T o elimina1e RNA fluo rescence arti facts, 150 IJIRNAse {1mglml in P BS) was

added 10 150 ,,11 01eac h samp le and inc ubated at 3TJC lor 30 m nutes .

(5) Aft er RNA. ..as d ig ested. 3 00 111o f 50~glml propidium iodide in PB S was

added andin c ubated at 37"C fo r 20 m inutes.

{6} A fl er incub alion,lh e eels w ere kept a!4mc in lheda rk until analyzed by FACS.

2.7.3 DNA e X1ractlon

Materials:

(I) Cells: THP · l cells. HL·60 c ells and human periphera l mono nuclear cells.

(2) HYPolonic detergen t buller

10 mM Tris-HCI . pH 7.5

2mM EDTA

0.2%Trilon X-10 0

(3) R NAase A (Sigma. Co.). D N Aase's freeRNAase A was prep a redby d issolving

!he e nzyme at a COf'I c e ntration of 1 m G'ml il PBS, Ihe n healin g 10100"C for 15

minutes. Healed RNAase Awas allow ed tocoo l slowly t o room t emperat ure, the n

dispe nsedin10 aliquot s and stored at -2O"C.

(4) Safurated NaC' (6 M)

350 9 N aC! was d issolved in 1 litre distilled water at room tempe rature.

(5) Ab solute ethanol a nd 70% ethan o l

(6) TE bulle r consisf ing 0110 mM Tris·HCI. pH 7, 0.2 mM EDTA
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(7) Pronase (Sigm a Co.): Pronase is a mixture of serine and acid proteases

isola ted from Strepfom yces grlseus . To elimina te contamination wi thDNA ase

and RNAase, pronase was used fo llowing self.diges tion. Se1f·digested pron ase

w as prepared by di ssolving 20 mg powdered pronase in 1 m l of 10 mM Tris-Hel

(p H 7.5), 10 mM N aCI lo a f inal concentratton 0120 mglml. and incubate d at ar c

for 1hou r. Aftereen.ccesncn. pronasewas dispense d in small aliquots in 1ightly

capped tu bes and stored at ·20°C .

M ethod :

DNA was extracted f rom ce l ls based on the method described by Faustino

M ollinedo st al. (1993 ) and Miller et aL (1988) with some mod ificatio ns.

(1 ) About 4 to 6x10' THP· 1 cells lor each exper iment were washed wlih

phosphat e bulle red saline .

(2) Cells were lysed with 300 ul hypotonic detergent buffer at 40C for 30 min .

(3) Cell organelles were removed by cen trifugation al12,OOOxgfor 20 min, and

the supe rnatant, c onlainin g the DNA released into the cell cytoplasm due 10 DNA

fragmentation, wa s incubated with RNAase A (75 jJglml) at 3flC for 1 hour.

(4 ) Afte r this incubation , 200 J.lgl rn l pronase was added in the prese nce 010.5%

5 0 S and the Incubation was cont inued at 3i'C for 1 hour.

(5) Afte r digesl ion wascompleted . toprec ipitate proten. 1501-11of satu rated NaCI

(approx im ately 6M) was added to each tube and th e tubes shaken Vigorously for
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15 second s. rollowed by cenlrilu galion at 2500 rpm lor 15 minute s .

(6) The precipitated protein pe lle t was lett at the bottom of th e tube and the

supernatant containing the DNA IragmenlS was transferred 10 another 15 ml

po lypropylene lube.

(? ) To precipitate DNA, exactly twice the sample volumes of abso lute ethan olwas

added and the tubes inverted several time and sto red at ·20oC for 24hours.

(8) The DNA fragments were recovered by centr ifugation at 12.000xgat rIC for

1 hour.

(9 ) To wash out remaining protein, pellets were washed with 70% (v/v ) ethanol

twice and resuspended in 20 ,II of 10 mM Tris-Hel, pH 7.5, 0.2 mM EDTA.

2.7.4 Electrop horesis of ONA In agarose gel

Electrophoresis in 1% agarose ge ls with 0 .5 ~glml ethidium bromi de was

performed as described by Sambrook st sl. (Molecular clonin g , a laboratory

ma nual. 1986).

Mate rials :

(1) Agar ose

(2) TBE buller (electrophoresis buffer): TBE electrophoresis buffer 1rom 1Oxstock

con centration ofT BE buffer (54 g Tris base. 27.5 9 boric acid. 20 m10.5 M EDTA,

pH 8.0 in 1000 ml distilled water) .
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(3) Ethi di um bro mide (Sigma Co.): To visualize DNA in aqaro se gels. the

fluorescent dye ethidium bromide (Sharp a/ et, 1973) is added. This agent

c o ntains a plana r group that htercalates between the s tacked b a ses of DNA.

S ince the fluoresc ent yie ld of eth id iumbro mide: DN A com plexes is muchgrea ter

than that 01unbound dye, small am ounts of DNA can be d e tected in the pres ence

of free et hidium b romide in the ge l. 10 m g eihidtumbromide was dis solve d in 1

ml distilled water to a final conceraraticn of 10 mgfm l, and stored at room

temperature in da rk bottles . The dye w as inco rporate d inlo th e gel and the

e lectrop horesis b uffer at a concen t ration of 0.5 ~g/ml.

(4) Gel- load ing bulfer:(6 x)

0.25% bromophenol blue

0.25% xyle ne cyanol FF

30% glyce rol in distilled water

This was m a de up as 10mt and stored at 4~C. When used, it was dil uted 10

the appro priate c oncentration as required .

Meth od:

( 1) The edges o f a clear.dry , glass plate were sea led with autoc lave tape so as

to torrn a mold. The mo ld was set on a h orizontal sectio n of benc h.

(2 ) Sufficient TBE electrophoresis buffer was prepared to fill the e lectrophoresis

te sarvoir.
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(3 ) 1gpowdered agarose was added into 100mlof TBEbuffer inan E rlenme yer

fla sk and healed to dissolv e the agarose.

(4) The so lutionwas allowe d to co ol to60°C, and ethidium bromide is adde d to

a fin al concentration of 0.5 Ilglml and mixe d thorough ly.

(5) Thec omb 0.5 to 1.0 m m was p ositioned above theplate.

(6 ) The warmag aroseso lutionwa s poured inlo th e mold. The gel slabs we re

between 3 mmand 5 mm th ick. Be s uretha t noair b ubbles a re unde r or betwe en

the teeth of thecomb .

(? ) After the gel was completely polymerized (a round 3 0 minutes at room

temperatur e), the comb was care fully removed and Ihe gel mou nted in the

e le ctrophoresis tank.

(8 ) Enough TBE elsctrop horeelsb uller was added to cover the gel t o a depth of

about t m m.

(9 ) Samples of approximately 6 j..I9 of DNA were mi xedwith 20 ~l of gel·loa ding

b u ffer, th e mixture was loaded in to ihe sloreof the subme rged g el using a

m icropipet te.

( 10) The lid of the gel tank wasclo sed an d aneche d to the electrica l leads , The

g e l wasrun at 75 vous, allow ingthe DNA to migrate toward the anod e (red le ad).

( 1 1) The gel was run until the b romoph enol blue and xylene cya nol FF had

migrated to 0.5 cm from the bottom al the gel (usu ally 6 em migration).

( 12) The electriccurrent was turned off,and lherea dsand lid were removed from
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t hegel tank. Gels were ex amined using u ltr aviolet light an d photographed to keep

as a rec ord.
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Chapter 3 CD14 Studies

3.1 Intr oduction

Most of the data presented here, were obtained using human monocyte

derived rnacroohaqes (MOM) from fresh peripheral blood from a number of

volunteers (see methods for isolation procedure). Initially several human cell lines:

HL-60. U937, THP·1 and Mono Mac 6 were also explored for their suitability as a

CD14 shedding model. This proved 10 be rather fruil/ess as CD14 expression by

these celf lines was found to be too low for this type of study. Although CD14

could be induced by treatment with vitamin 03' phorbol esters and lFN·y (Rigby et

al.• 1984, 1985; Rossi et al., 1987; Trinchier et et, 1987; Ball er al.• 1984), they

were still found unsuitable , because THp·1 cells could be induced to di fferentiate

and to express higher levels of surface CD14 only by combined treatment with

VilDa, TNF-a and TGF·B1• The numbers of cells required for these studies was too

large to maintain an adequate supply of cells at a reasonable cost. Therefore, it

was decided to use MOM.

Some of the preliminary data and the apoptosls studies wereobtained using

the human THp·1 cellllne and we draw your attention to this tact. Wher ever THp ·

1 cells were used. suitable reference \0 the cell tine has been made.
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3.2 Blocking of TNF·a production wit h ant l-CD14 mAb

Preliminary studies were made to establish that previously reported

phenomena could be reproduced in our hands. One of these was the dependence

of TNF-o: production on CD14 at low LPS concentration. This study was made

using THP-1 cells.

THP-1 cells are monocytic leukaemia cells which express a relatively low

level of membrane CD14 compared to normal human monocytes. When THP-1

cells are treated with 10 ng/ml LPS for 3 h, TNF·o: is produced and this can be

detected by L929 bioassay. TNF·a production by these cells was shown 10 be

completely inhibited by pre-incubation of the cells with 10 nglm l of anli-CD14 mAb

(IM0 2) for 30 min. TNF·a production was not blocked by an irrelevant tsotype

matched control mAb (Fig.B). These data confirm the model 01 CD14 as a

receptor for LPS and i ts involvement in the production of TNF-a.
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Figure 6. Inhibition 01 LPS·induced TNF-a production in THP·1 cells by CD14
anl ibodies (IM02). 10 ng/ml LPS with 10 Ilglml of IM0 2 (black bar), or irrelevant
isotype matched control antibodies (striped bar) or without Ab (blank bar) were
added to TI-IP·1 cells . Supernatants were harvested after 4 h and assayed for
TNF·a level by the L929 assay. Data are presented as mean values ± SO of
triplicate samples (0=3).
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3.3 Establi shment o. op ti mal conditions tor Immunonuorescence atalnlng

3.3.1 Direct labellin g stud Ies

In prelimi'la ry stud ies . direct immunofluorescence staining was tested lor its

suitablity to detect CD14. as it is less time consuming compared with indirect

labening. The results using phycoerythri n-C D14 mAb conjugate. shown in FIg.7

(A.B) could nol dist inguish betwee n specific PE-C0 14 binding and nonspecific

bind ing (PE-McA690 . an isotype match ed Rntibody). In contrast to direct labelling.

indirect labelling gave a measurab le ratio of speci fic 10 nonspecific binding (Fig.?

C,D ).
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Figure 7. Ccmca rtccn of direct and indirect labelling. THp· 1 celts were incubated
with a 1:10 dilution of human serum at 4QC for 30 min, then labelled with
phycce rythnn-anti-Cn 'ta mAb conjugat e (histogram B) or phycoerythm-lsoty pe
matched control antibody (PE·McA690) (histogram A) at 4QC for 30 min or direct
labelled with anti·CD1 4 mAb or ieotype matched control antibody, foHowed by the
additlon of a 1:40 dilution of PE-Iabelled donkey F{ab'h anti-mouse IgG at 4QC for
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3.3.2 Block ing of no n-spec ific bind ing by human serum dilu ted 1:10

Alltibodiesmay bind non-specifically to mooccytes and macrophagesviathe

Fc receptors on these celts. In the experimental system. the second antibody

used was PE-labelled donkey F(ab' )~ anti-mouse IgG . Theoretically. blocking with

donkey serum would be the best to minimize non-specific cross reactivity.

Unfortunately, donkey serum was not available. Therefore, in preliminary

experiments. mouse and human sera were screened as alternative candidates in

an antibody blocking experiment. Human monccvtes were pre-incubaled with the

serum (GIBCO, SAL. Canada) in BSN PBS at 4°C for 30 min. 01 the Iwo species

01sera, the human. gave the highest ratio of specific to non-specific binding to

human monocytes. 96% C014 ' cells were detected with human serum blocking.

only 17"10 C014' cells with mouse serum blocking (Fig.S). Subsequently, it was

found that a 1 in 10 dilution of human serum was the optimal concentration to

block non-specific binding and thus a 1:10 dilution 01human serum was used in

all the following studies.
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Figure 8. Comparison of mouse and human sera in blocking experiment. Human
monocytes were blocked by mouse serum (Histogram A and B) or human serum
(Histogram C and 0) at 4°C lor 30 min, followed by adding anti·C014 mAb
(Histogram B and 0 ) and isotype matched control (Histogram A and C) and 1:40
donkey anti-mouse PE·labelled IgG(Fab')2 at 4"C for 30 min. 96% CD14· ceUs
were detected with human serum blocking (0), only 17% CD14+cells with mouse
serum blocking (B),
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3.3.3 Selection of antibody specifi c for C014

Two clones 01 ant}.C01 4 mAbs. IM0 2 (lgG 2a) and 3C10 (lgG2b) were

tested to identify cell surface C01 4 on isolated human monocytes. After

comparing specific anti-e014 mAb binding with isotype matched control mAb .

IM02 was found to give the highest ratio of specific to non-specific binding (Fig.9).

Therefore. the IM0 2 monoclonal antibody was used In subsequent e. periments.

The working concentration of IM0 2 chosen was 2 J,l9per 5.'OS' isolatedmonccytes

as recommended by the supplier.
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Figure 9. Comparison of specific binding of two clones of all:i·C 01 4 mAb. Human
monocytes were blocked by 1:10 human serum as described in materials and
methods. followed by adding IMQ2 (anti·C014 mAb, IgG2a isotype) (B), 3C10
(anti·CD14 mAb, IgG2b isotype) (0 ), or lsotype matched control (C for IgG2b, A
for IgG2a), respectively. Finatry, samples were labelled by 1:40 PE·labetled
donkey F(ab')2 anti-mouse IgG at 4°C lor 30 min and analyzed by FACS.
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3.3.4 Selection of nuc rescence-anubces conj ugate

FITC-Iabelled rabbit anti-mo use IgG (Sigma Co.) and PE·labe lled donkey

Flab '), anti-mouse IgG (BiG"Can Sci. Co.) were tested. The PE-Iabell&d donkey

F(ab '}2 anti-mouse IgG was found to give the highest specific and relatively low

non-specific fluorescence intensity (histogra ms C and 0 in Fig.10). Due to the

high FITC-lgG non-specific binding to THp·t cells, even after blocking, FITe­

labe lled rabbit anti-mouse IgG was not used. Several studies (not shown) were

made In order to seiect me optima l concentration of PE-F(ab'k ; 1:40 was used as

the working concentrat ion lor all further studies.

In addition, isotype-matched cunlrol antibodies (lgG2a) were set u~ in each

expe riment to determine backgrou nd binding.

75



1J3.~ 4llZ')2A9B2'<A.. I-foN'ITC H.l ght

, A rl TC-llI!! onl y

1 2 I I

U3.Z9II'!lIE e63'\FL2-IN't«COEIrt'THRIH

, 0 ..,u-ro32. ""'*'. PE-f'I ..' 12

Figure 10. Selection of f1uorescence-Ab conjugate , THP-1 cells (lOt/sample) were
blocked with human serum, followed by treatment with anti-Fc RlI specif ic mAb
(anli ·CD32j (Histogram B and D) or without antibody (Histogram A and C), Finally,
cells were stained wilh 1:40 FITC·labelled rabbit anti -mouse IgG2 (Histogram A,B),
or 1:40 PE·labelled donkey F(ab')2anti-mo use IgG (Histogram C,D) .
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3.3.5 Analysis of FACS data and expression of FACS result.

Cells were analyzed on a fluorescence activated cell sorter (FACStar.

Becton Dickinson). Forward scatter (cell size) and side scatter (granularity) were

measured to distinguish lymphocytes and monocytes. The gated human

mon ocytes and macrophages were then analyzed lor their lIuorescence. Two

maj or parameters were studied. These were percent positive cells and mean

fluo rescence intensity (MF1). The first of these was calculated as percentage of

cell s with fluorescence greater than the isolype control. The second parameter,

mean fluorescence intensity (MFI) is an indicator of the level 01CD14 expression

by cells. This is a variable dependent on the efficiency of antibody labelling and

lase r performance, and can only be compared within batches analyzed on 1he

same day. Because of the variability of MFI, intergroup variation in CD14

exp ression levels could not readily be made. This must be kept in mind when MFI

data from different donors are presented. Percent positive cells is therefore the

best parameter for inter-batch compar ison, while MFI and % positive cells areboth

good indicators of intra-batch variations.
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3.4 C014 expre ssion by normal human monocyte derlved macrophage.

In this study, blood from 14 heallhy volunteers was used to investigate

C014 expression. Of lhe recovered rnooocytes , 60% to 91% exp ressed C0 14

wit h a mean ± SEM of 78.84%± 2.37 (n=14). Ind ividual dono! variation in C014

expression by mOnocyles was also determined in twoof the donors, these values

were 72% ±7.69 (n=5) and 80 %± 6.11 (n::::.3) respectively, M(lStvolunteers in this

study had approximately 85% C01 4 positive monocytes, as shown in Figure 1' .

The majority 01 primary blood monocytes express a high leve l of CD14

(CD14 " ). However, recent studies identified a novel subset of blood monocytes,

which expresses low levels 01C0 14 and high levels of C0 1S (F~lII) on the cell

surface (Passlick 81 al. , 1989). These C0 14'IC01 S· cells were also lound to

produce lower levels 01 TNF-a, Il -1 and IL-6 in response to LPS stimulation

(Z'IeQ'er·Heitbrock at al., 1992). It was reported by Ziegler·Heitbrock et aL (1992)

that about 13% 01the monocyte popula tion were weakly COl.· cells. Association

of CDl4 withC0 16 was not evaluated in this the sis.
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Variat ion of X CDl 4 posi t ive cells In PBM

Figure 11. Variation of %CD14' cells in PBM isolated from 14 donors used.
Human monocytes were treated with monoclooal antj ·CD14 Ab (lM02) or isotype
matched control (background), then labelled with phycoerytll rin {PE)·F(ab')2 as
des cribed in materials and methods , followed by FACS analysis. Background was
subtracted from all the data presented above. The number of volunteers versus
%CD14' cells is plotted as a histogram .
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3.5 Down-modulation of surface CD1~ after mon ocyte stim ulation by PMA

Both % positive cells and MFI decreased rapidly after incubation with the

phorbol ester , PMA (pnorbol-t z-myrtstate-t a-ecetatej as assessed by indirect

immuno fluorescence analysis (Fig.12). Two different PMA doses, 10 nglml and

100 nglml. were used in preliminary studies. 100 nglm t PMA only gave a slightly

higher CD14 loss than that caused by 10 nglm l PMA (data not shown). 10 nglml

was selected for all subsequent studies. Data from the lime response curve for

one volunteer {Fig.13) show that CD14 loss had reached a maximum by 3 hours,

and lhal 10 nglm! PMA was s 'uclenrto give a 70% loss of C014 from the eel!

surface. o\s a consequence at this finding, a 3 hou r exposure was selected for all

subseq uent studies with PMA. USing a single time point, data were gathered from

a number of individuals. loss of %C0 14' cells following PMA treatment ranged

from 2% to 74% with a mean 0122% (Table 2) . CD14 density as indicated by MFI

on rnonocy tes also decreased, following PMA treatme nt. with a mean fluorescence

intensity (MFI) loss 0123%. At the same time , the expression of HLA-Class I

(W6/32) used as a positive control in all studies was not significantly changed after

PMA treatment, about 90% of the cells were positive and MFI was approximately

500

Evidence from Bazil & Srrcmlnoer (199 1) previously confirmed that the

down-modul ation of surface CD14 induced by PMA was caused by shedding rather

than interna lization. They also showed that PMA-induced CD14 shedding

80



appeared 10 be the resun of proteolytic cleavage "ather than a phospholipase

cleavece. as soluble CD14 isolated from the media had an apparently smaller

molecular weight than membrane bound CD14.
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Table 2. EHec101 PMA on CD14 express ion on human monocytes

cell surface molecule untreated PMA' P value'

CD 14 positive % 70.78±3.9 5515.3 P<O.OOOl

MFI 204 ±3S 157±27 P=O.0 128

HLA· class I positive % 91. 212.73 87 .212.72 P> 0.1
(W6f32)

MFI 537± 129 509± 127 P=O.38

._-

* : The data represent me mean ± $E M of 14 excenm ents for CD14 and 10
experim ents fo r HLA.

II : P value wa s assesse d by a tw o-tailed Stud ent's t-test

PMA: Human mcoccvtes were treat ed with 10 nglm l PMA in 5% COl incubator
at 3r'C for 3 hours.
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Figure 12. PMA·down mOdulation of CD14 expression on monocytes . Monocytes
were treated with 10 ng/ml PMA at 31"'(; for 3 h (6) or medium only (C), forrowed
by th e addition 01 monoclonal ant i·CD14 Ab or iSOlype matched control mAb and
labelle d with PE·F (ab'h . The positive CD14 cell s and MFI are presented . There
is no significant change in lscty pe cont rol (A) before and alter PM A treatment.
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Effect o f PMA exposur e on CD14 excressrc n by monocytes
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Figure 13. Time course curve of monocyte respon se to PMA . Monocytes were
treate d w ith 10 nglml PMA for diffe rent l ime periods , labelled with antibodies and
PE·F(ab'h as de scrib ed in material s and methods . CD14 and HLA-elass I (W6I32)
expression were analyzed by FACS .
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3.6 Sensitivity of CD14 to phosphatldvllnosltct-specttlc phosph o!ipase

C014 is a membe r of t~. ) family of GPI·linked membrane glycoproteins. In

order to determine the sensitivity of membrane bound CD14 10

phosphat'oylooshcl-speclnc phospholipase (Pl-PLC) cleavage, isolated monocytes

were treated with Pl·PLC from Bacillus cereus, as described in materials and

methods. Besufts of one representative group from lour independent experiments

are shown in Figure 14. PI·PlC treatment led to the removal of 60'% 10 a

maximum of 80% of the CD14. A similar result was also found with induced­

differentiated THP-1cells. indicating that 20 to 40% CD14appeared to be resistant

10 PI-PLC cleavage. These data are consistent with the data reported by Goyert

et al.(1988). Increasing the concentration of PI·Pl C and I or the length 01the

incubation had no further affect on COla loss. However, it did lead to a decrease

in cell viability, as determined by trypan blue exclusion (data no shown).

Interestingly, a previously unreported observation was made. The treatment of

monocvtes with PI·PLC in the presence of 10 ngl ml PMA resulted in 100% loss

of CD14 from the monocyte cell surtace (Fig.15). Expression of HLA-Class I

(W 6J32) molecules, which are anchored to til e cell membrane through a

transmembrane domain ralher than a GPI anchor, was not significantly altered

either after PI-PLC or the combination of PI·PLC and PMA and remained at 85%

of cells positive for Hts-ctass L The MFI shown in Fig.15D is lower than controls.

because PI·Pl C can also remove other PI-linked antigens including C0 16 (FC'yRIII)
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that may be involved in some 01 the noo-sceciuc binding also.

It is believed that the major reason for GPI·anchor resistance to PI·PlC is

a modification ot the inositol ring (R). For example. two GPI·anchored proteins,

the humanerythrocyte acetylcholinesterase (AChE) (l ow et et, 1977), and human

alkal ine phosphatase (ALP) (Wong , 1992), were reponed to be relatively resistant

to PI·Pl C cleavage due to the esterification 01the 2·0 H on the inositol ring witt.

palmitic acid tnobe ns et a/., 1987) and the resulting acylation 01 the inositol ring

in the GPI anchor (Wong. 1992), respectively.

It would appear from the data obtained (Fig.14) that approximately 20% 01

the CD14 molecules are resistant to this enzyme and, therefore, may be in this

acylated form or may lack the GPI· anchor. In mree out 01lour studies. PMA alone

was found to be less efficient than PI-Pl C at inducing CD14 loss. In 13 ....ul of 14

studies, shedding was usually only 20% 10 40% 01 the membrane CD14 following

PMA treatment, although in one study, a loss 01 75% was detected. The above

data suggest that the PMA and PI·PLC treatments may result in the cleavage 01

duferent species of CD14 or that PMA treatment results in the conversion of a PI·

PLC resistant to a PI·PLC sensitive term of CD14.
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Figure 14. FACS analysis of Pl-Pt.Otreated human monocytes. Peripheral blood
monocytes. isolated by density gradient centrif ugation and adherence , were treated
with PI·PLC (2 units/ml) for 3 hour. Control monocytes were incubated under the
same conditions without enzyme. Cells were treated with antibodies as described
and analyzed by FACS. The CD14' percentage and mean fluorescence intensity
was 70% and 120 respectively for the untreated cells (C) and 14% and 90
respectively for the PI·PLC treated ceus (8). The fluorescence intensity of the
antibody control (A) and Class I HLA (W6I32 ) (not shown ) did not change
significantly after PI-PLC treatment. The x-ax's shows log fluorescence and the
y-axls shows cell number. The frequency 01positive cells and MFI are presented.
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Figure 15. Addit ive effect of PJ·PLC and PMA on CD14 expression loss on human
monocytes. Monocytes were incubated in medium with 10 nglml PMA (8). 2 units
PI-PLC (C), PMA plus PI·PLC (D) or 10"/0 FCS RPMI·1640 medium only (A) at
3rC lor 3 11 as 'Jescribed in materials and methods . CD14 expression was
measured by indirect immunofluorescence using monoclonal anti·CD14 Ab (IM02)
(soJid histogram) or isotype matched mAb (outline histogram).
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3.7 Additive down-modulatio n effect of A231 87 with PMA on CD14

exptesslon by mcnceytes

The eHects of thE!calcium ionophore A23187 were invesligated on CD14

expression by human monocyte s. A23187 treatment 01cells induces the release

of Ca~' from the endoplasmic reticulum into the cytoplasm. It is known that Ca~'

plays a role in the activation of PKC and acts through a separate binding site 10

PMA. As shown in Figure 16, treatment 01cells with A23187 alone was found to

induce CD14 loss Irom PBM membranes. This eftect was also found to be

additive to that observed by the addition 01 PMA (F ig.16D). n meretcre appears

that PKC isoenzymes poss essing both PMA and Ca" binding sites. may be

involved in the signalling pathway resu~ing in loss of membrane CD14.

Ssnilar results were also observed when differentiated THP-1 cells were

treated with A23187. It was observed that 83°k of C0 14 was lost from the THP-l

cell surface following treatment with 500 ng/ml A23 187 lor 3 hours.
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Figu re 16. Additivedown-modulat ion of CD14 expression on monoc ytes by A23187
wit h PMA . Monocytes were treated with the indicated reagents or medium only
at 37"C for 3 h, then labelled with monoclo nal anti -CD14 Ab (solid histogram) or
isotypa control antibody (outline histogram ). %C01 4 positive cells is dramatically
decreased to 4% after combined PMA plus A23187 treatment (D).
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3.8 Down-modu lation ot monocyte surf ace CD14 expressi on by LPg

Regulation of C014 expression by LPS was investigated in the following

studies, II was found that incubation of monocytes with 10 nglml or 100 nglml

LPS for 3 h resulted in loss of surface C014 as shown in Fig.17. A time course

study, Fig.1B, showed that stimulation of monocytes wrth10 ng/ml LPS for 3 hours

resulted in a maximum of 22% reduction in CD14' cells. CD14+ expression

gradually started to recover after 3 h. While percentage HLN cells remained

unaHectedby LPS treatment.

We also observed that the reduction in MFI duetoCD14 shedding induced

by LPS varied form donor to donor and in some cases was hardly delectable. This

may reflect differen l sensitivities of donor's mononuclear cells to LPS in vivo.

Furthermore, our data show that loss of CD 14 did not occur immediately but only

after a delay of 1 h following LPS treatment, then CD14 expression started to

recover by 4 h. Factors influencing CD14 loss after LP$ exposure therefore must

be slowly induced and be transient: lasting 2-3 h in these studies . Kinetics with

PMA lnnuced loss 01CD14- cells in compartaon (see Fig.13) lacked this delay.

However, maximum loss of CD14 still occurred at 3 h. It was shown by Bazi! &

Strominger (1991) that surface CD14 loss induced by PMA or LPS is due to a

process of shedding. Evidence has also been published showing that LPS

act ivates PKC in rnonccytes and macrophage.')(Catley et st., 1992). One may

speculate thai LPS-induced C0 14 shedding also occurs through activation of PKC,
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The delay-phase observed with LPg Induced shedding may reflect the slower

activation of PKC or lime delay due to tho release 01the secondary 01' ter1iary

messenger molecules or cytokines. To investigate a possible feedback

mechanism of regulation, PBM were incubated wittl TNF-o.. The data obtai:'led

indicated that it was very un:ikely thai the loss 01cell surface CD14 by PBM

following l PS treatment is secondary 10 me secretion of TNF.o., but does not

entirely excluoe the possibility. The resul tsshown in Fig.17 s~ow that the addition' : I

01 TNF-a to PBM increased, !lQ1 decreased the expression 01CD14 under the

conditions used in this investigation.
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The effect of LPS and TNF- a on COl " expression 00 moeccvtes
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Figufe 17. T he eflec t of LPS and TNF-a on CD14 expression on monccyte s.
Monocytes we re treated with or without 10 ng/ ml LPS . 100 nglml LPS or 1 ng/m l
TNF-a respect ively for 3 h at 3rC, then blocke d, treated with anti·CD 14 mAb or
isotype matched control and labelled with PE-F( ab'h as described inmat erials an d
methods . Non-specific binding is subtracted born each value. The data a re
presented as mean ± SEM (n=4)
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Eff ect o f lPS e ~ pos\lre o n CDl4 ,:: ~ pr es s,on by monoq tes
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Figure 18. T ime cou rse resp onse curve of m onocy1es10 LPS. Monocytesw ere
exposed to 10 ng/ml LPS ove r a 4 h period t ime, follow ed by blocking, antibody
additio n (ann-cotem Ab,ant l·HLAclass I or isolype m atched control) a nd labe l ling
with PE·F(ab 'h as d escribed in mate rials and methods. C D14 exp ression w as
analyzed by FACS. Non-sp ecific bind ing wa s subtractedfro m specif ic bindin g.
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3.9 The ettect of a prote i n phosphatase Inhibit or on monocyte CD14

expres sio n

The data above haveshown tha t PMA could induce C0 14 shedding from

the mo nocyte sudace. indicat ing that PKC may be involved in the shedding

process. The action of PKC may be e nhanced by preventing dephosphorylation

mediated by phospnatases. Okadaic acid (OA), a serecwe inhi bitor of

serine/threonine protein pbosotiatases (PPl and PP2A ) fSugan uma et a l., 1988 ;

Haystead et et .. 1969)wasused to study thero le of the se oboepboprotetns in the

regula t ionof PMA·induc edCD14 loss. Treatm ent 01 m cnocytes with 10 nM OA

only, a concent ration known to augmen t TNF-u product ion in response of human

monocyte to L PS (Coffey et et.. 1992), in 5% COl at 3rt for 3 hoursresulted in

a decrease of 41% (MFI) CD14 on human PBM anda 10% decrease in %CD14

positive cells (Fi g.19). Theupper right panelsolid histogramin Fig.19also shows

metthere are two peaks alter OA treatment T he pres enceof thesetwo peaks

suggests that the remay betwo dillerent populat ionsof CD14 positivemo nocytes.

that res pond differently to OA. When rnonocytes we re treate d with OA in the

presence of P MA, on ly a sing le popula tion of CD1 4 positive monocytes was

observed as shown by the presence of a single peak (lhe bo ttom rig ht solid

histogram In F ig.19). Slight augmentative effects on CD14 loss were o bserved

when monocyt es were treated with O A plus PW,A (Fig.19, the bottom right

histogram). Th eseresul tssuggesl that PKCactiv ity, stimu lated by PMA. maynot
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be the substrates lorse rinenh re onit1e onc spnateses 1 and 2A.
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Fi gure 19. Theettect ofokacac ac id onCD 14 expression o n human rnonccytes.
M on ocyte's were treatedw ith 01withoul 10 nM ccadac acid or 10n g/ml PM A , or
ok adaic acid plus PMA at 37"C for 3 hou rs. So l id histog rams represent cell
su rfaceCD 14express ion. Outline histograms are b ackgro und cont rols.
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3.10 Effect o f f MlP o n C0 14 erpre aelc n by human monocytes

Formyf..methionyl-I eucyl-phenyla lal'line ( f MLPj, a compon entlrom bacteria l

cel! wa lls, is a monocyte chem otactic peptide. Monocyt es and oewophlls have

been reported to possess a f MLP·receptor (Mu rphyet al., 199 1). The treatment

olhuman monocytes fr omthre e different donors for4ho urswith 100ng/ ml fMLP ,

a con centration which is known to enhance L PS·evoked TN F-ll prod uction by

monocytes (Coffey et 81.,1992), ledto maximum of a 28 % red uctionin % CD14'

cells and 23% loss in C 014 d ensity on the monocyte m embra ne surface (Table

3). Th ere was no eff ect on HLA-class I (W6/32) . Th e mec hanism of f MLP ­

induced CD14 loss on human monocytes is unknow n. Ho wever, in huma n

neutroohns. f M I.Phas beenshown 10stimulate receptor-media ted activationof G

proteins wilh G orotefn-rneciated activationofcncsccucasee (P t.Cand PLO) (Koo

81st., 1983), an d Pl~ (Murphy elal., 1991) and subsequen t generation 01second

messengers, such as DAG,Ca~', arach idonic aci d,all 0 1which can act ivate PKC .

Simila r signalling and act ivation 01PKC mayexist inthe monocytes and maylead

to C D14 loss. Eviden ce to support this was observed when monocytes wer e

treate d with f MlP plus PMA. The amount o f C014 lost wa s only ju st slightly

highe r thanthat observed from PMA a lone (data not sh own), in d icating that f ML P

had no significant aug mentat ive effec t wilhPMA on CD 14 loss. This could b e

expla ined by P MA and fMl P working through a shared common mechanism.

Recently, it has been shown th at stimu lationo f human neutrop hnswith f
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MLP induced tyrosine phosphorylati on and activation 01two distinct m~ogen·

activated prctee-k o a ses (MAPK I and II) {Torres et at., 1993}. MAP K wasalso

show n 10 be phosph orylate d on tyr osine foll owing LPS t riggering 01 muri ne

mac rophages (Weinst e in ef et; 1992) . In our st udies, it was found that treatme nt

of hu man monocyes with f MLP ted to greater CD14 loss th an that observed

following lreatmen twith LPS. However , only thre e volun teers w erescreened usin g

fM LP and furt her studies wo uld help to support these findin gs .
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Table 3 . Effect 01' MLP on CD14 expression on human monocytes.

source treatment % Ag positive cells/MFI'
donor

Isotype anti·C 0 14 anti-HLA
control Mab Mab -

N12 untreated 1.0 69/138 91/2 61

fM lP i.a 50/106 8812 96
128t1231)

u ntreated O.B 68(7 7 99/120
LAIB

f Ml P 0.5 66170 99/139
(3.1./9 .1.)

untreated 0.3 60/37 96/6 4
SR19

fMLP 0.5 7313 5 96/6 1
(91/5.1.)

f MLP ; 100 ng/ml for 4 hrs.
' . Values in parentheses are the percentage change from original

values.

Monocyteswere treated withindicated reagents for 4h at 3rC. CD14 expression
and MF I were dec reased after f MlP treatmenta s indicated above. There was no
change inthe HLA Class 1(W6/32)expression afterthe addition offMLP.

100



3 .11 Th e effect o f Indo melh acln on monocyte C014 e xpression

As reviewed Inthe introduction, it is knOwn lhall P S induc es activatIonof

C 0 14·as socialed protein tyrosin e kr,ase p53J5~ (Stetanov~ et al.. 1993).

H ertlimyCin A blocked L P 5-indu ced cytokre pr oouctcn . CD14 stledding and

p rostagla ndn prcouc tcn (Weinst e in et a l.l 99! ; ~telanova et al.• 1993). These

o bservations ted u s to in v estigat e thein d irecteffect 01p ro staqtan dos on C014

expression byusin g indomethac in . acycroxyg enase inhibit o r. The re suts ':--omlwo

e xperim e nts both s howed some re duction 01C014 MFI,16% and 15 %respectively

(Ta ble4). The result from one of two exp eriments alsosh o wed a .25% red uction

in % CO, 4' cells . II is not cle ar trom these d ata as t o wha t role, it any,

p rostaqranooe have, inthe regula tionof C014loss andfurther stu dies should be

p e rformed to obta in more convincing evidenceof their effects.
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Ta ble 4. The effect of in d omethacin on CD14 expression by m coccyte e

source tr eatment % Ag posaive cellsIM F I
d onor

isotype a nti-CD14 antj.HLA
contro l mAO mAO

N 12 n one 1.0 6 91138 911261

In dometha cin 2.' 52/117 911219
(25U' 5.!. ) (OI19!)

V20 n one 1.5 86/157 991319

In dometha cin 1.5 87/132 991308
( 'fi16! )

Indomethacin: 1 ~M 'or a h incu b ation.

V alues in parent hesesa re the p ercentage chan ge from o riginal values.

M o nocytes were tr eatedwith indic a tedrea gents for 3 h at arc.% C0 14 p csnve
ce lls and MFI we re decre a sed aft er indom ethacin neeun e nt as ind icated above.
Th ere wa s no chan ge in HLA C lass I (\'\'&32) expression after th e addition of
indomethac in.
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3.12 The effec t of protein k inase Inhibitors on human m onocyte CD14

expressi on

Three protein kinase inhib~OfS were stud ied for their e ffects on C014

expression. These were: staurosporine, calphostin C and KT572 0. Stau rosporine

has been sho'M1to inhibit the proteolyt icalty generated catalytic domai n of PKC

(Tamaoki et at 1986). It is also known 10inhibi t other protein k inases induding

phosphorylasekinase, cAMP-dependent protein kinase, Ca~·/calmodulin ·depeOOent

protei n kinase and tyrosine kina se (Reugg et et.. 1989). We lound thaI rnonocytes

treated with 10 ng/ml PMA tog ether with 20 nM staurospoune for 3 h, did shed

C0 14 indicating that staurosporine wa s not able to prevent PMA activated

signalling (Fig.20). This may be expla ined by slow effects of sta urospo rine on

prevenling PKC activily or by staorcspcnne's broadly active in hibitory eftects.

Compared with staurcspc nre . calp hostin C is known to be a more specifiC

inhib itor 01PKC. Alter light activation, it interacts with the regu latory d omain of

PKC (Kobayashi et st., 1989). The effec ts 01 calphcstm C were studied in both

PMB and THP·1 celts. Almost 100% of the CD 14 expressed b y PBM was lost

loHowif:9 3 h o cubetion with 50 nM calphostin C in the prese nce of ordinary

uvcrescent light, but HLA·class I molecu les (W6I32j were a lso dec reased

significanlly (Fig.21). It was ditliculttc in terpret these results as the activ ationof

PKC, t.e.by PMA. LPg or Ca" rather than inhibition of PKC was bel ieved to cause

loss o f CD14. It now appeared tha t the inhibitio n of PKC could also lead to a more
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rapid and greater CD14 loss tha n PKC activation. Ce ll viabilit y in the se studies

as determined by trypan blue ex clusion, was nol affected, but bolh ce l l size and

cell qra nuarity were found to be reduced greatly alter treatment with catphostin C

(Fig.22 ). Subsequently, this phenomenon was studied in much greater detailand

it was dtecoverd Ihatloss of CD14 was the resu lt of induction o f epcptcsts in both

THP·l cele and PBM. and the subsequent sheading of accptotic vesic les (see

chapter 4).

KT5720 is a cAMP·depen dent proteinkinaseinhibitor (Yamada et al., 1989).

Treatm ent of d ifferenti ated THp· 1 cells with 40 nM KT5720 for 24 h cau sed only

a sligh t losso f CD14 expressio n. dropp ing 7% in % CD 14 positi ve cells and 11%

in MFI. However, this observatio n was following a24 h incubation time ratherthan

the 3 hour used for the othe r studies . Data from these experiments should

therefo re be vi ewed with this lim itation in mind.
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F igure 20. The effect of stewospome on PMA -modulated CD 14 erpresson.
M onocyte s were exposed to medium on ly (A), o r 10 ng/ m l PMA (8 ), or 20 nM
stau-ospo me (C) or both (0 ) lor 3 h at 3r C fl the 5%CO 2 atmosp h ere, foll owed
b y the add ition of isotype control an tibodie s or anti -CD14 mA b (IM0 2 ) and st ained
by PE-lgG F(ab' h . CD 14 expression is represented in solid h ist ogram s and
b ac kground cont rol is rep resented in unshaded hi stogram s. % CD14· ce lls and
th e level 01CD14 expresacn (MFI) are gi venwith each hi stogram.
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Fig ure 21 . Theeffect of catphcstin Can m onocyte s. Monocyles we re incubated
with medium only (shade d himsto gram) or exposed to 50 nM ca lphostin C
(unshaded histogram) in the presence of lig ht for3 h at3t'C . followed bybloc king,
an t ibody addfon: isolype con trol mAb (A) , anli·CD1 4 mAb (8), ant i· HlA class t
(C), and lab elling whhPE-F(ab'); as descr ibed in materials and methods.
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A: un t r l?a t ed

D: ca l phost in C

Figure 22. The ettect of calphoslin C on ceu size and granularity. Monocytes
were incubated with med ium only (A and C) or with 50 oM calpbcs tin C (B and D)
at 37'C for 3 hours. Cell size (A and B) and granularity (C and OJ were analysed
by using forward scalier (FSC) and side scalter (SSG) FACS, respectively.
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3.13 The effect of ouabain on C014 expre ssion on monocytes

Ouabain. a cardiotonic steroid. is a well known inhibitor of Nao/Ko·ATPase

(Seader et af.• 1930). It acts primarily on the K"-binding sites located at the

extraceltcer side of the plasma membrane to inhibit the enzyme competitively with

respect 10 K' (Chol at al.• 1977; Oishi at al., 1991). Ouabain has baen reported

to enhance TNF-a and IL·1 production in monocytes through transcriptional

mechanisms (Ohmori at al.• 1991) and it was this observation which led us to

investigate the effects of ouabain on C0 14 expression.

Normal human monccytes were treated with ouabain at varc us

concentrations au shOwn in the dose response curve (Fig.23) and for different

periods of time as shown in the time course study (Fig.24). Cell v iability.

determined by trypan blue staining, was always more than 90%. Flow cytcmetnc

analysis showed that ouabain caused a rapid loss of CD14 expression on human

mc nocytes. but did not significantly affect HLA·Class I (W6I32) expression except

at high dose (Fig.25). The kinelic studies show that a 3 hour treaiment with 1roM

ouabain caused maximum loss (100%) of CD14 expression on human mcnocytes

(Fig.24). Dose response studies showed that the lew value for ouabain was 200

Il M and that 1 mM was the optimal concentration required 10 obtain maximum

CD14 loss from the cell surface (Fig.23). It was also found that 1 mM ouabain

affected HLA expression (Fig.25). Changes in cellular granularity as determined

from cytcmetric analysis were also noted (FIQ.26). but no cnanqes in cell size or
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apoptotic vesicles could be observed by using m icroscopy.

II has been shown by Bazil & Slrominger (1991) that treatment with P/-PLC

leads to the shedding of a 56 KDa MW CD14 species while treatment with PMA

leads to the shedding of two molecular weight species 56 KOa or 48 KOa. II is

believed that the lower molecular weight species is shed through a proteolytic

cleavage of the CD14-GP/ anchored molecule. II is unknown how the 56 KDa

species arises but this may be due to phospholipase cleavage of the GPI-anchor.

To help elucidate the mechanisms 01 membrane CD14 loss and the

molecular weights of the CD14 molecules shed lol lowing ouabain treatment, cells

were labelled with e~S I methionine, and both the membrane and the supernatant

were investigated using anti-CD14 mAb immunop eectoitat'on. Shed C014

molecules were analyzed by 20-S0S-PAGE as described in materials and

methods. Membrane GD14 was readily immunoprecipitated from cytoplasmic

membrane preparations of untreated cells (Fig.27A), but could barely be detected

in the membrane fractions from ouabain treated cells (Fig.27D). CD14 could still

be detected in the membrane fractions from PMA treated cells (Fig.27C). Cells

incubated with PI·PlC had little or no membrane CD14. All these data agree with

the FAGS analysis. The culture media from 3 h treated 13~S I labelled monocytes

were also analyzed for tmmunopreclpltabte CD14. There was no detectable

sC 014 in the medium from control cells or ouabain or PMA-treated monocytes

under the conditions used, but sCD14 from the medium of PI-PlC treated
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monocytes was readily detected. This sCD14 had a molecular weight of

approximate 53 KOa and a pi between 4.5 to 5.0 (Fig.28). The data from FAGS

and 20·S0S·PAGE show that there is no mC0 14 on the PBM cell surface

following ouabain treatment. But sCD14 molecules were also nol deteced in the

media from ouabain treated cells. There are three possible explanations. First,

C014 on monocytes may have been internalized inlo the cytoplasm and if this

were the reason , electron microscopic analysis using gold labelled antibody or

FACS analysis of permiabilized cells could provide more direct evidence.

Secondly, C014 could have been shed into th e medium . but destroyed by

proteolysis. such that anti·CD14 mAb could not recognize the C014 epitope and

thus failed to immunoprecipilate the protein. Third ly, the quantity 01sC014 may

have been too low to detect. The letter exptanaton is not suppo rted by the

detection of spontaneously shed G01 4 from overnight 1»5] labelled monocytes

with approximate molecular weighl of 53 KOa and a pi of 4.8. in which more

mcoocvtes (2x lO') and a longer incubation time were used (Fig.29). It was also

possib le 10detect PI·PLC cleaved C014 after a 3 hr incubation and therefore the

immunoprecitation had worked for Ihis control. Thus interna lizat ion and or C014

distruction are the only possible explanation.
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Figure 23. The effect of ouabain dose on CD14 expression by
monocytes. Ouabain dose response curve (ICso""200 J.l.M).
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Effect of Ouabain exposure on C014 expression by monocyt es
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Figure 24. Time course response curve of monocytes to ouabain treatment.
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Figure 25. The effect of ouabain on monocytes analyzed by FACS. Monocytes
wete incubated with medium (A and C), or treated with 1 mM ouabain (8 and 0)
at 3rC for 3 h, then labelled with an{i-CD14 mAb (lel1 panel, A and B) Ot anti­
class I HlA (W6/32) mAb (right panet, C and 0 ). CD14 molecules were
dramatically fest after ouabain treatment (B), HLA class I molecule were not lost
but were effected by ouabain treatment (0).
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Figure 26. The effect of ouabain on monocyte size and granu larity. Monocytes
were incubated with medium only (A and G) or with 1 mM ouabain (6 and D) for
3 h at 37"G. Cell size (left panel, A and B) and granUlarity (right panel, G and D)
were analysed by using forward scatter (FSG) and side scatter (SSG) FAGS.
respectively.
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Figure 27. 2-0-505-gel electrophoresis of mC014, Monocyte derived
macrophagesfrom untreated(At the left upperpanel), 1 mM ouabain treated (B.
the right upper panel), 10 nglml PMA·lrealed (C. the bottom left panel) or 2 units
PI·PLC (D. the bottomright panel) treated cells were lysed. mCD14 was prepared
and subjected to 2D·SDS gel elect rophoresis as described in materials and
methods. After electrophorest r.• gels were sltver stained 10 indenlil y internal MW
and pi markers, and subsequev.ny autoraocqraphied. mCD 14 MW and pi value
were determined from the 2D-SDS-markers run with samples. mCD14 had
disappeared after PI·PLC treatment (0 ).
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Figure 28. 2-0-S0S-gel electrophoresis of sC0 14. sCD14was immunoprecipitated
from the med ium from untreated (A, the teft upper pane l), 1 mM ouaba in treated
(B, the right upper panel), 10 ngfml PMA·lrealed (C. the leh bottom panel) or 2
units PI·PLC (the right bottom panel) treated monocyte derived macrophag es and
subjected to 2D·SDS gel elect.cphoresls as described in materials and methods.
After electrophcresle, gels were silver stained 10 observe internal MW and pi
markers and subsequenlly autoradlocrapbled. sCD14 MW and pi values were
determ ined from the 20 -SDS-marke r running with samples,
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Figure 29 . 2-0 -505-gel electropho resis of spontaneously release d C D14, 2X107

monocyte derived macrophageswere labelled with IJSSJ-methionine overnight, the
medium was collected and sCD14 prepared and subjected 10 20 -505 gel
electrophoresis as described in materials and methods. Top panel, silver slain
pattern shows 20-SDS·PAG E markers; botto m panel shows autoradiographic
ima ge of the 2·0 gel. Arrow indica tes sCD 14. MW and pi values determined from
20-snS·PAGE marks .

117



3.14 Summary and co nc lusion

Sum mary:

The experimental results are summarized in Table 5. The two

pharmacological agents act ively involved in regulating CD14 membrane expression

were calphoslin C and ouaba in.

Ca lphos tin C, discussed later in this thesis, was found to ind uce apoptosis

and lead to sheddi ng of epoptotlc vesicles and a 100% loss of CD 14 expression.

Oua bain was also found to induce 100% loss of membrane CD14 within 3 hours.

Upon examin ation by light microsco py and 20·S0S· PAG E, ouabain-induced

mC 0 14 loss did not appear 10be du e to apoptosis or sheddin g 01CD14 jntc the

media and may therefore have been dueto CD14 interna lization . Although no loss

of viability in ce lls was observed. changes in the FACS pattern observed with MHC

Class I and granularity 01the cells lead us to believe that profound membrane and

cellular ch anc es were taking place under the ccoctcns under wh ich CD14 loss

wa!' coserved. Smaller effects on C014 express ion were observed with both PMA

and calcium ionopl1ore. These ellects were shown to be add itive leading to almost

100% loss of C0 14 by 3 hours . Only slight chang es in % CD 14' cells . less than

25%. were obse rved w ith indomethacin, okaoal c acid and the PKA inhibitor

KT5720.

The natural ligands investigated were TNF·u , LPS and fM LP. TNF·(l was

found to increase CD14 expression. while LPS induced a me asurable loss of C014

118



and fMLP induced up to 30% loss of C0 14 positive cells. More work studying the

CO14 loss induced by f MLP cou ld conlirm if this was due to shedd ing or nol o
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Table 5. Summary of effects ot agents on CD14 membrane expression

Agents Decrease in CD14" cell lncerease in CD14" cell
number number

TNF·a +

LPS +

f MLP ++

--
Staurosporine 0 0

Cafohosun C (+++)

PMA ++

Okadaic Acid +

KT5720 +

A23 187 ++

Ouabai n +++

PMA+A23187 +++

--
Indomethacin +IPI·PLC +++

PMA+Pl-PLC +++ (100%)

"+": 10-25% change of CD14 positive ce ll number
-++'; 25·75% change of CD14 positive cell number
"+++": :> 75% change of CD14 postive cell number
·0·: no change of CD14 postive cell number
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Conclu sion :

II appears that the major effectors inducing loss of membrane CD14 from

rncnocytes are regulators of PKC (PMA and calphoslin C) or cytoplasmic calcium

levels {A23187). PMA induced shedding has been shown by others 10result from

the proteoryttc cleavage of CD14.

F MLP appears to cause a rapid loss of CD14 from monocytes. FM LP also

looks as if it may be an interesting model to investigate further; no direct

conclusions were reached as to hew er why f MLP was able to result in CD14 loss.

Indirect evidence may implicate some shared signalling pathways between LPS

and f MLP. perhaps involving Ca" or PKC activated pathways.

TNF·£.( does UQ!. appear to act as a negative feedback inhibitor regulating

CD14 shedding under the conditions examined. However. it does appear that

TNF·o:act as a positive feedback regulator resulting in an increase in membrane

CD14 expressio n by monccytes . This phenomena would have to be studied

Iurthor in respect of aqents that are known to regulate TNF·a release.

Ouabain induces a rapid and complete loss of CD14 from monocyte

membranes at concentrations previously used by others to enhance l PS induced

TNF·o: production. LPS and CD14 may be internalized and perhaps enhance

TNF·o: production.

The small euecte of okeoatc acid, KT5720 and indomethacin may be the

result 01cross talk between signalling pathways As such these pathways appear

'2'



to play only a m inor pan in the signalling leading to CD 14 loss.

Staurospor ine was ineffect ive. but was n ot tested over a wide range of

concentrations. Thus. its lack of activity would have to be sludi ed furthe r to be

verified.
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C hapter 4 Apop tosls S t u dies

InlroducUon

4.1 Programmed cell d eath (p e D)or apoplos ls

P rogramm ed cel l death o r apoptosls is a widespr ead, m orphologically

d istinct process o f cellde ath. It occurs during no rmal em bryonic development 01

vertebra t es and invertebrates, as well as during metamorphosis. ho r mone­

d epende n t alrophy of tissues (Kerr et al.• 1972; Wyllie e t a1.• 1960). and d eletion

of auto-reactve T cells in the lhym us (Duvall etet.. • 1986). Kerr an d Searle (1972)

propose d theterm 'apop t oss' (from lheG reek: fa Il ingolf) to name th is form ofcell

d eath. The term epoptosls is some times conside red syn onymou s with

proqram med cell death a nd il impliesa le thal genetic pro g ram. F or example, as

B ccell oc pulauons develop , about 95 cells out of e very 100 cellsw ill die for anyof

a variety of reasons such as faulty gene rearrangement. setl-destruct ve receptor

expression, or lack of stimulation (Deen en at al., 199 2) . Ap o ptcs's is also

o bserved in mahg nant tumours(S arral er e t., 1986 ) . Anumberof agents in c luding

q amma-raclaion (Skajca et al., 1976), to x ic chem icals (McConke y el al., 1988),

cytotoxic T cells (Liepins el al.. 1978 : Moss et et. , 1991) a lso kill t he ir targe t cells

by programmed cell death. pe o is widely regard ed as a suicidal cell res ponse

si nce cell dealh app ears to result f romthe in duction of an activebio logical p r ocess

within the cell (Wyllie et e t., 1980; McConkey et al., 1990 ) .
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4.2 Morp hologic a l chara CIr.i::;tics of ap o plos ls

peD r:I apoptos is can be recogn ized by chara cteristic c:hange s n

morphology roud ing membrane vesicle formation (ceU s urface b lebbi'lg) and

sh ecking fr om !he c ej surf ace, a markedre du e:tion in cell volume. lo ss 01 plasma

membrane microvi l li . and nu dear DNAcon d ensation . Finally. cell s break d own

in to memb rane-bou nd epoptc tcbo diesinwhichcytoplasmic organe llesappea r10

be randomly distrib u tedan d mostot memhave enu c learco mponen t (Wyllie et al .

t 980). Th e seapcptotc bodies are sealed and mai ntain their osmot ic gradient s.

Therefore . there is no spill ing of in tracellula r contents, and thus no inuammatlon.

Tbere tsevidence wh ichsuggest that theap o ptcic cell strp.n gthens its membranes

againsl the riSk of lysis by t.!;e activation of cro ss·linkin g enzy mes suc h as

tran~lutam inase (Fesus. 1991). Apopt ot ic bo d ies are elimin ated thro u!ll

phagocytosis by neighbou ring cells . S igMlca nt alteralions in memb rane

compositi on occur s fl apoplO«ic c el ls 'Wh ic h may a lso aid their recClgIition am

e ng ulfmen t by the phagocytosing cells (Wy llie et al., 1984 : Dwall ef at, t 985~

Macrophag esare thought 10 play a major role " the remo v al 01apoplotic bodies

(Kerr et al.• 1987).

4 .3 Biochemical ch aracte ristics of apop tos ls

The best defined b iochem ical even t in apoptosrs involves nuclear DNA

f rag menlati on. W hen the morph ological ch ange s of ap o ptcsls are obse rved,

124



ntemuceosomar DN A fragmentation is almos t alway s detect ed by a ga rose g e l

electroph ores is where it appears as a typical la d der pattern (m uhiples of 180·200

base pair SUbu nits) (Wyllie er al., 1980; Arends el st.. 1990).

Most s t udies indicate th at lhere is an intracellula r elevat ion in Cal . which is

requi red lor apoptosts (McCo nkey et et; 1990) followed by th e actlvattonof a

puta t ive endo nucleas e respo n sible f (., 1 the ln t emucte o somat c leavage of DNA

(Are nds et et . , 199C) . McConkey e t st. (1990) have shown that a Ca2
' , Mg l

- ,

dependent e ndonuclease act ivity in thymocyt e nucle i is rap idly lost following

treatment of c ells with either a ctinomycin Dor cy cloheximide. Recently, Arends

al a l. (1990) demon s trated th at lreatm ent o f isolate d nucle i with m icrococcal

nucle aselead s tome patterno f chroma tinconde nsation associa t ed with ep optosts,

thus supportin g the view thatan enocqe ncusen do nccteeee is respon sib le for both

DNA fragmentation and ouciee r condensation. H owever, a specificend onuclease

with tnteroucte osoma! c leavag e activity has no t yet been purifi ed Irom eukaryot ic

cells.

In apop tosts. th e cells act ively pa rticipate in the sell-de structive process ,

which require s metabo lic energy (Aliso n and Sa rrat. 1992). 11 h as been reported

that th e proce ss 01 c yt otoxic T cell m ediated tumour target ce ll killing occurs

lhroug h an a pc ptctrc mecha nism a nd is a s sociate d with elevate d oxyqe n

cons u mption ra tes (Na than et a l.1982 ).
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4.4 Possibl e signal transdu ction pathways for apoptosis

The Ca2·!ph ospholipid.dependent prote in kinase (P KCj has been

demonstrated to part icipate in intracellular signalling processes in many cell types

(Nishizuka et al., 1984). PKC-mediated phosphorylatio n 01 numerous protein

substrates is associated with a wide range of biological ettects, including induction

of cellular proliferation and differentiation (Craven at al., 198 8), activat ion of

nuclear transcription factors and cell-surface receptors (Brach er al., 1992), and

tu mour promotion (Rahmsdorl at al., 1990). PKC is expressed in mammalian

systems as a family 01diverse serine-threonine klnases. consisting of at least 9

iso forms dilfering in both substrate specificity and dependence upon Cal.

avai lability . Differential activation of PKC isoforms has been postulated to account

for the divergent actions of dilfe rent enzyme activators (Nishiz uka at al., 1988).

PKC not only plays a physiological role for cellular regulation (Pe losin at s t.; t987),

it has also recently been reported that this protein kinase is involved in slgnal

transduction pathways that lead to apootose. The role 01PKC in the induction

of apoptosis is not clear due to conflicting reports. For example, Tomei et af.

(1988) was able to show that the PKC activator PMA can prevent apcpt osls in

C3 H·10T1/2 cells after serum removal or exposure to ionizin g radiation. This

result supports the idea 01 suppression of apoptotic cell death through activation

of protein kinase C. However , the observation from Mercep et et. (1989), showed

that PMA, either alone or in conjunction with Ca2
• ionophore, induced apoptosls
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in cells 01 lymphoid o rig in, and Ihat inhibaion 01 PKC by exposure to H7, an

inhibito r 01PKC, prevented glucocorticoid-induced apoptosls in murinethym ocytes

(Oieda at al., 1990), su ggesting that PKC activa tion promoted th is process . It is

conce ivable tha t these c onflicting findin gs on the role o f PKC in the regulation of

apcptosis may reflect c ell type-specific response s or, a lternativ ely, the influence

of undefined lactors or perhap s different isoform s of PKC.

Several l ines of evidence indicate that PK C also modu lates cell surface

membrane ion cond uctance by phosphorylating ion channel pro teins, ion pumps

and ion exchan ge proteins suggesting that ion channel functi on may also be

involve d in the a poptos te process (t evttan. 1985 ).

Ion chan nels ar e integ ra l membrane p roteins th rough which ions can

passively flow do wn the ir electroc hemical gradient at rates exceed ing 10&ions/sec

(leca r et sl, 19 85; Gallin et al ., 1986). Shifts in the resting potential 01cell­

surface membranes ma y result from the activation of specific ion channels which

are thought to be invo lved in a variet y 01 ce llu lar fun ctions includin g nerve

conduct ion, mu scle-cel l ccotracuon and relaxat ion, cej proliferation, protein

synthesis (DeCoursey er aI., 1964; Panel et a/. 1985; Deut sch el al . 1986;

Meldolesi el at., 1967), a s well as in processes asso ciate d with cell injury through

apoptosfs (Trum p et a/.• 1979 ; Schlichte r el al., 1986; Li epins e t al., 1987). K'

channel activity ha s been reported 10 be involved in the d elivery of the 'lethal hit·

by cytot oxic T-lym phocytes (Farber et a/., 1981 ; Fukush ima e t a/., 1984 ) and
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human NK cells (Sch lid'lter et al. , 1985). Otherstud ies using tarqet cells loaded

with ~b. have suggested the presence and function of K ' channels il tumour

ce lls lJ'Idergoing T -cell mediated lysis (Henney et al.,1973: Ferluga st al.• 1974;

M artz et a l., 1976 : Sanderson et al., 198 1). Liepi ns et s t. il 1985 and 1987

d emonstrat ed that incubating cells first at rt and then warming them to 37"

ind uced apoptosis . In terest ingly, two clas sic K' channel bloc kers,

tetraethylammonu iu m(TEA ) and 4 -aminopyridine (4-APJ, a lso inhib ited,in a dose

dependent manne r, Iheme mbrane vesicleformation andshedding p rocess as well

as nuclea r DNAfra gmenlati onand membranepermeabilil y c hanges . Furthermore,

they show ed that the temperalure shift indu cedmembr ane vesicle formatio n and

shedding was in d istingu ishable from that occu rring d uril g a lloimmun e T­

lymphocyte- media ted inju ry 01 tumour cells . This eviden ce suggests that the

tunc tcn of K' channels are req uired for tencur celt susceptibility 10 the low

te mperature induced apcptoss. Th us, K' chamel activ~y a ppears to berequired

for both Hi e triggeri ng or de~very ol lyt~ sig nals from thee ttector ce lls, as w ell as

for lhe tarcet tumo ur cells to initia te a self-destructi ve casc adeof events.

The observ ation that cal phostin C led to CD14 loss from monocyte

membrane and the subseq uentobservation that this mibflt be anapop totc process

led to the present siuotes to eluc idate the role of PKC and also ion channel

function in the pro cessof apcotcs ts. Our findings de monstr atedthat calphos tinC,

which is a highly specific inhibitor of PKC, was su fficient to induc e epcptcsts in
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hum an monocytic leukaemia THP·1 cells as well as normal human peripheral

mononuclear cells. S iaurosporine, a potent, butless s pecificPK Cinhibitor, fail ed

\0 in duceapoptcsls in these cells. F urther studies fo und tha t quinid ine, a Ca 2' .

dependent K' channe l inhib itor, sig n ificantly preven ted catp hcsun C ·mediated

THP-1 aoootose. ind icating th ai Ca2°.dependenl K' channels are inv o lved in th e

regu lat ionof apoptcs!s .
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Re s ults a n d Discussion

4,5 In ductIon 01apop tosls by a PKC Inhibit or, calp hoslln C, In THP-1 cells

4.5.1 Morpho logical f e atures o f calp hostln C - medlat ed THP-1 cell apo pto s!s

Cellsof the human monocytic le ukaemia cell line. THP. 1. were exposed to

calph a stin C, a light ac itlv ated a nd hig hly specific PKC inhibitor. Concentrations

ranging from 10 nM to 100 nM a nd dif fe rent tim e period s were used. The results

from one representative experiment of several independent experiments are shown

in Figu re 30. THp· , cells sta rt to ble b alter 1 hour in t he presence of 100 nM

calpncsm C o nly when exposed 10 light. Controls treated with ca lphostin C in the

dark d id notun dergo b lebb ing. In parallel studies . nucle a r condensation was also

obse rv ed using transm ission m icrosco py follow ing calphosnn C treatment in the

presence 01light , but not in the dark.
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Figure 30. Morphological features 01THP·1 cells undergoing ap optosts . THP· 1
cells were exposed to 100 nM calphostin C for 2 h in the absence (A,C) or
presence {B.D) of light as described in materials and methods. Cells bleb bingare
observed in B but not in A when using a lightmicroscope . Apo ptceis cells were
fixed and examined by transm ission microscopy. Nuclear co ndensat ion was
observed ;,j 0 , but not in C.
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4.5.2 Dose and ti me dependent e ffect o f w:,lp hostln C -medlat ed THP-1

apop t osl s

Becenuy, ucw cyI0me t ric analysis h as been widely used in qu antifying

apop tos is. Normally. !hehis t ogram o f DNA lIuoresc ence in cells resem bles th at

show n in Fi g .3l , in which A and B peaks re p resent ceDs in G jG , pha se and in

G/Mphase , respect ively, the plateau a rea betwe en two peaks represents cells in

S ph as e (S h apiro, 1988). C e lls undergoing epopcto se will show as a discrete

peak (/1.,,) in t hearea marlted M , onFigure31 d isplayi n g reduced l1uorescence w ith

respect 10the Gj G I (peakA on Fig.3 1) (Telford et al ., 1992) .

By us ing llow cytometnc analysis of p ropob••m iodide-stained TH p·, cells,

rtwas found thai calphcstn C mediated aoo ptcsis in a dose-dependen t manne r

over t he range from 3~ nM to 105 nM . Resu lts of one reorese r aauve e xperjment

Quan t ifying eel DNA ccne nt using the propidium io dide stai ni ng tectmrqce and

flow cytometric an alysis. is shown in Fig .3 2. Th e percentage of apoptosis

reco rd ed in the A". or apcotostspeak. was ob served 10 increa se with increasing

calphostin C concentrat ion from 34% to 51% . Figure 33 shOw s that caipocsn n C

mediated apoptcsts increased with the lengt h 01lime (2·6 h ) in Ihe pr esence of

ordin a ry fluorescent light. The percen tage of ce llsundergoing ap oorosts increased

up to 28%. Figure 33 also shows tha t THP- , cells w ere more subject to unde rgo

apoptosis in sewn free medium, where a 4 h incubation of c ells with calpho stin

C lead to 34% aooptosls.
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Figure 31. The histogram ot DNA l1uorescence in THp·, cells. Under norma l
circumstances, all non-replicating normal diploid cells in the Go and Gj phases of
the cell cycle in the same eukaryolic organism have the same DNA content as
shown in peak A (this quantity is sometimes exp ressed as 2C). DNA synthesis
during S phase of the cell cycle results in an increase in cellular DNA content as
shown in the plateau area, which reaches 4C at the end of S phase and remains
at this value during the G2 phase and during mitosis (M) as shown in peak B.
Apoptotic cells are found in the Ao region having less than 2C DNA content as
shown in M1 area.

135



B

c F

Figure 32. Dose-dependence of calphostin Omeclated T HP-1ce ll apoptcels. THP ·
1 ce lls were expose d to different concentrations of calphosun C ranging from 35
nM (el, 70 nM (0), 105 nM (E) to 140 nM (F) or DMSO solvent control (B) or
media only (A), for 3 ho urs. The n THp· 1 cells were fixed with 70% ethanol, stained
with propidium iodide. and analyzed by FAGS. Apoptosis increased with the
calphostin C concentration as shown in the histograms .
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Figure 33. Time-dependence of THP·1 cell apoptosls induced by calphostin C.
THP-1 cells were exposed to 10 nM calphostin C in the presence of ordinary
!luorescent light lor dillerent periods of time as indicated in the histograms, then
fixed by 75% ethanol and stained with PI as described in materials and methods,
and finally analyzed by FACS. Apoptosis increased over the time period, 14%
epoptosfs for 2 h (B), 18% apoptosfs for 4 h (C) and 28% apcptosls for 6 h (0) .
Histogram E shows that apoplosis also occurred in serum-tree medium with
calphostin treatment.
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4.5.3 Detection of DNA cytoplasmic rrag l1lents by agarose gel

el ectr ophor esis In calphostln C treated THp·1

Another crit ical event in apoptosis is the activation of Ca2°-dependent

endonucleases which cleave DNA into muhiples of 1eoto 200 bp intemucleosomal

DNA fragments. Figure 34 shows this typical ladder.l ike panem of DNA Iragments.

extr acted from the cytoplasmic fraction, in the light-activated calphastin C·treated

TH P-1 cells (lane 4 and 5). and this was not observed when celts were kept in the

dar k (lane 6) or in untreated THP-1 cells (lane 2) and DMSO Ir-::ated THP-, cells

( lane 3).
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Figure 34. Oliqonucleosome-slzed DNA fragmentation following calphostin C
treatment. THP-l cells were incubated with medium alone (lane 2) or with solvent
control (DMSO) (line 3), or with 50 nM (lane 5) or 100 oM (lane 4) calphostin C in
the presence of light and 100 nM calphostin C (lane 6) in the dark . Cytoplasmic
DNA was extracted and subjected to 10% agarose gel electrophoresis as
described in materials and methods. 123 bps ladder sizes of molecular weight
marke rs are applied in lane 1. DNA fragments were observed only in calphosti n
C and light treated cells (lines 4 and 5).
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4.6 Induction of apoplosls by calphost ln C In paM

In view 01the fact that THP· l is a transformed ce ll line. it was decided to

also look at PBM. In the lite rature. there have been no repo rts on the effects of

calphostin C on normal PBM . Our studies found that calphostin C can effect ively

trigger nonnal human PBM 10 undergo apoptosts. Isolated nonnal human PBM.

treate d with ca fphostln C in the presence 01light (33 watts) lo r 2 hours. underwent

apoptos is. Because norma l human PBM are contaminated with platelets, it is

more difficult to observe PBM morphological changes by ~ ight microscopy.

Consequently, the DNA conten t 01calphc stm c-t reated cells were evaluated by

FACS analysis following staining with propidium iodide. PBM treated with 50 nM

or 100 nM calphoslin C showe d significantly less 2C DNA co.uent than that of

control PMB (Figure 35). Arte r lour similar experiments , it was confirmed that PBM

were more sensitive to calpho slin C induced epop tcsts than THP-1 cens. The

DNA cootent of these cell as measured by FACS. showed that trealment with 100

nM calphostln C induced 78"10 apcptcsts compared to 48"10 apoptosfs in THP· 1

cells in the same period 01 lime and under the same experimental conditions

(Figure 36). The character istic DNA fragment ladder was also found in catphostin

Octreated PBM cells as shown in Fig.38. lane 8 after agarose gel separation.
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Figure 35. DNA content of normal and epoptotic PBM. PBMs were treated with
50 oM (B) or 100 oM calphoslin C (e) or medium only (A) in the presence of
ordinary fluorescent light for 2 hours in 5%C0 1 at 3rC. then fixed with 70%
ethanol and stained with PI overnight as described in materials and methods.
DNA frequency histogram s analyzed by FACS show 48% apoptcsls for 50 oM
cao hostln C treatment (8) , and 78% apoptosls for 100 nM cafnbostin C treatment
Ie).
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Figure 36. Different sensitivity of THP·1 cells and PBMs to calphoslin C.
THP·1 cellsandPBMs wereincubated with or withoutcalphcstln C for 3 hours in
the presence of light. After 3 hours, cells were fixed and stained with PI. then
analyzed by FACS. PBMs showed 78% apoptosls (0). THP · 1 cells showed only
48% apoptcsls (8) .
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4.7 Effecl of PMA, 4·aminopyrld ine and quinidine on calpho stl n C·lnduced

THp·1 apoplosls

THP-l cells were pre-treated with PMA. a PKC activator, quinidine.

a Cav -dependent K' channel blocker or a-amtnopyrldlne (4·A P). a classical K'

channe l blocker, respectively for 1 hour, prior to 50 nM calphosnn C treatment tor

3 hours. The results from one representative set of 3 independent experiments

are shown in Fig. 37. Flow cytometdc analyses (Fig.37) showed 16% apoptcsls.

1-1% apoptosts. and 28% apoptosls in PMA, quinidine and 4·AP pre-treated cells

respectively versus 61% apoptosts in THp· , cells treated wilh calphostin C alone.

These results oorcate that PMA and quinidine and to a lesser extent 4,AP could

significantly delay calphostin C·induced apoptosts in THp· 1 ce lls. Cytoplasmic

DNA from treated cells was extracted and lhen subjected to 10% agarose gel

electrophoresis. After electrophoretic separation, the ethidlum bromide stained

DNA gel was photographed using UV illumination. Fig,3Bshows that the degree

of DNA fragmentation correlates with percentage induction 01apcct csts from the

FACS analysis in Fig. 37.
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Figure 37. DNA histograms of THp ·, cells treated with the ind icated reagents pre ­
treatment, followed by 50 nM cetpbostin C treatme nt for 3 h in the presence of
light. Percentage of aooptosfs is 2.9% lor untreated THP·' (A); 4.7% lor solvent
(DMSO) controltreatment (8); 61% for 50 nM 3 h calphostin C treatment in the
presence 01 light (c): 15.6% for 1 h pre-trea tment with 50 nM PMA (0 ), and 27%
for 1 h pre-treated with 10 nM 4·AP (E); 17% for 1 h pre-treated with 0.5 mM
qu inidine.
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Figure 38. DNA fragmentat ion in THP·' and PBM: THp·, cells with no
pretreatment (lane 3) or with 1 h pretreatment with 100 nglml PMA (lane 4); with
1 mM quinidine (lane 5) for 1 h, followed by 3 h 50 nM calphostin C treatment;
untreated THp· , cells (lane 2). PBMs were treated with 50 oM calphostin C (lane
8) or without calphostin C (lane 7) for 3 h in the presence of light. After 3 h.
cytoplasmic DNA was extracted and subjected to 10% agarose gel electrophoresis
as described in material and methods. 100 bps ladder sizes of molecular weight
markers are applied in lane t . The degree of DNA fragmentation in lane 5 with
1 h pre-qu inidine treatment following 3 h calphostin C incubation is sign ificantly
less than in lane 3 with calphostin C treatment only .
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4.8 Discu ssion :

Calphosl in C is a specific inhibijor 01PKC. II interacts wijh the regulatory

dom ain 01the PKC and inhibits phorbol dibutyra te binding to PKC (Pelosin et al.,

1984). The present findings demonstrate that exposing THP·1 cells or PBM to

calphos tin C was sufficient to induce DNA fragmentation, which is characteristic

of apoptc sts and cell death. The data also con firm that the inhibition of PKC

activity by ca!phostin C, in intact cells, is light-dependent (Bruns et al., 1991;

Kobayashi et al., 1989). The pre-treatment of THP ·1 celts with PMA resulted in

significant inhibition 01caipnostin Ccmediated apc ptosfs. Staurosporine, however,

failed to induce apoptosts in THp ·1 celts and human PBMs. Staurosportne not only

inhibits PKC. but also inhibits PKA CaM·Kinase II (Ruegg et al.. 1989). It is

reasonable to assume that eaner different isotypes 01PKC are affected or that the

non-specltc inhibitory activity of steurcsporine may account lor this finding. In the

literature, the re isno previously reported evidence lor PKC inhibitor·med iated PBM

apoptosis. The data also demonstrate that no rmal PBM are more sensitive to

induct ion of apoptose by calphost in C than THp ·1 celts under the same

experimental conditions. These results imply that there is a different PKC

requirement for the survival 01 leukaemia and normal cells.

PKC has been shown to activate the Na'/H ' anliporter (Rosati et al., 1984).

Allhough there is no direct evidence showing that PKC can modulate K' ion

channel function through phosphorylation, it has been repor ted that di fferent ion
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cha nnels could be phosphorylated by different kinases in several cell systems

(Levitan. 1985). Our studies demonstrated that pre-treatment of THP·1 cells with

quin idine, a Cal 'dependent K' channel blocker. significantly inhibited calphostin C·

med iated apcootosis in THP·1 cells. indicating that the cas--oepercera K'

channels are involved in the regulation 01apcotosts induced by ca lphO$tin C.

In summary, the results suggest that PKC activity is required lor the

suppression of eccotosrs in THP· l cells and PBM and that K' channels are also

invo lved in the regulat ion of PKC inhibitor·mediated apoptosis.
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