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ABSTRACT

Alcoholsare believed to exert their behavioural effects at least in part by a

selective enhancement of 'Y-aminobutyric acid type A (GADA,,) receptor activity.

However, the mceh:mism(s) by which ethanol and other alcohols facilitat e GABA"

receptor function have remained elusive. Historically, alcohols have been thougbt to act

by partitioning into membrane lipids to cause changes in the function of membrane

proteins. However, more recent evidence suggests that alcohols interact selectively with

hydrophobic regions of specific membrane proteins or phospholipids to alter their

function. If a drug-protein interaction is involved in the effectsof alcoholson GADA"

receptor function, it was hypothesized that srereolsomcrs of a simple straight-chain

alcohol might show differentialeffectson receptor function.Alternatively,there maybe

differences in the effects of closely related alcoholsthat are not predicted by differences

in lipid solubility, andlor a significant influence of the subunit composition of the

GABA" receptor itself. To test these hypothesesconcerning the mechanisms of action of

alcohols,cloned subunitsof human GABA" receptors were expressed in Xenopuslaevis

oocytes. and thc two-electrode voltage-clamp technique was used to quantify the

membrane current response to GABAin the presence and absenceof different alcohols.

I-butanol and 2-butanoldifferentiallypotentiated GABA responses inboth Cl1P2'Y2L

and aJJ2'Y21.receptor constructs, with z-butanolbeing significantly more potent than 1

butanol as a modulator of GADA" receptor function. However, 2-butanol has a lower

membrane/bufferpartition coefficient, and is therefore less lipid soluble than l-butanol.



Thus . the structure of the alcohol, rather than simple lipid solubility, was mere important

as a predictor of modulation of GADA...receptor funct ion. In contrast , the stcrcciso rncrs

(R)--2-butanol and (S)-2--butanoldid not differ in their mcdulaticn of receptor function.

l -butano l and 2·butano l were also significantly more potent as modulators at 0,/1' '' 11.

compared to a ftz'Yll. GADA... receptor constructs. Thus. the subunit compos ition of the

receptor protein also torlueoces modulation of receptor function by alcohols. The 1'11.

subunit. which is reported 10 be necessary for ethanol to potentiate GADA,. receptor

activity. was not required for I-butanol or z-butancl to increase GADA-mediated

responses. Low concentrations (20 roM) of ethanol potentiated GABA...receptor function

at crlP2"1L receptors. Ethanol potentiation of GADA" receptor function was blocked by

0.5 14MRoJS-4S J3. a benzodtazeplne receptor partial inverse agonist. However. RoIS·

4513 at concentrat ions up to S 14M did not block potentiation of GADA,. receptor activity

by butanol. heptanol , or the non-volatile anesthetic propofol.

Differential effects of alcohols on GADA,. receptor function in response to

changes in subunit composition or structure of the alcohol suggest specific interactions

of theseOlgenls with the recepto r comple x. In addition. it appears that longcr-chain (~

4 carbo ns) alcohols act at a different site and/or induce a different conformational change

in the receptor compared to ethanol. In conclusion, these data support the idea that

alcohols have specific interactions with the GADA,. receptor, rathcr than simply

disorderi ng membrane lipids. In addition . there may be atlcest two distinct mcchaoiama

and/or sites by which alcohols can act to modulate activity at the GADA... receptor.
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I. Introduction

1. 1. GABA" receptor/ch loride channel complex

j-amlnobutyric acid (GADA) is the major inhib itory neurotransmitte r in the

mammalian cent ral nervous system (eNS) (fanelian et al., 1993). There are two classes

of GABA receptors, namely GABA" receptors and GARA H receptors. GADA...receptors

are ligand-gated ion chan nels and activation of these receptors by GADA is respon sible

for fast inhibitory postsynaptic po tentials. GABA, rece ptors a rc coupled to calci um or

potassium channe ls via o -proreins and mediate slower and longer lasting synaptic

inhibition. The GABA" receptor is the most widely studied of the two classes of recepto r

fami lies and appears to be a primary target for the action of sedatives and anesthetics,

incl uding barbiturates, benzodtazeplnes and volatile general anesthet ics (Macdonald et

al. , 1985; Mody et al., 1991; Nakahiro et al., 1989; Twyman et ol., 1989) . Tanelian et

al. (1993) extensively reviewed GABA" receptors as a site fo r anesthetic drug act ion,

incl uding ethanol. As well , specific classes ofneurosteroids have been found to positively

and negatively modulate GABA.. receptor function (Zaman et al. , 1992; reviewed in

Majcwska, 1992) .

1. 1. 1. GABA... receptor structure

The GADA" receptor/c hloride ion channel complex is a heteropentameric

glycoprotei n of about 275 kDa in size (Macdonald and Olsen, 1994). Jt is made up of



different combinati ons of five gly coprotein subunits which co me together to form tile ion

channel complex . Binding affinitie s and channel kinetics are determined by the subunit

composition of the receptor (Tanelian et at.. 1993). T he exact subunit composition and/or

stoichiometry of native G ABA.., receptors is not known at this time.

More than 15 G ABA...receptor subunits have been characteri zed by molecular

cloning and these subun its have been separa ted into five fam ilies (a. P. ')', 6 and p).

There is 3Q.40% sequence homo logy among the five families . Each subunit family has

multiple subtypes with about 70~80% amin o acid sequ ence identity a mong them. These

subtypes have been designated U I-4' PI". 11- ) ' 6 and Pj .l (Macdona ld and Olsen. 1994).

Two of the subunit sub types, 'Y2and 13., have RNA splice variants to create further

diversity. The 'Y2L splice variant of the 'i'2 subunit co ntains an eight amino acid insert,

which is not present on 'hI! that has a consensus sequence fo r phosphory lation by protein

kinase C. This insert, along with receptor phosphorylation, may be necessary for ethanol

modulation of GABA" receptor function (Wafford and Whiting, 199 2).

Each subunit subtype consists of an amino-terminal on the extracellular surface,

with putative N-glycosylation sites, four transmembrane-spannin g regi ons (M I·M4), and

an intracellular cytoplas mic loop between M3 and M4 which can be modi fied by

phosphorylation (Macdonald an d Olsen, 1994). M2 is thought to lin e the inside of the

channel where Cl- se'ecuvely pas ses through the opening (Tanelian et uf. , 1993).

It is likely that differe nt combinations of subunit subtypes exist in different

populations of neurons . For example , using insituhybridiza tion techniques, a , p, j-an d



6 mRNAs show different regional distributions and are sometimes al tered during different

stages of development. There are also species differences in the distribution of GABA...

receptor subunits in different regions of the brain (fanelian et al., 1993). While there is

evidence for particular GABA... receptor subunits coming together to form functional

GADA" receptors in Vivo, the exact stoichiometry of these subunits is not known. With

the use of molecular biological and e1cctrophysiological techniques, various GABA...

receptor subunit combinations have been expressed in Xenopus ooc ytes and other non

neuronal cell lines to investigate the physiological and pharmacological properties of

different receptor subunit assemblies,

1,1,2, GADA" receptor lsoforms in the brain

Single, double or triple combinations of GADA... receptor subunits can produce

different functional GADA...isoforms (Macdonald and Olsen, 1994). Insitu hybridization

techniques can be used to localize GADA" receptor gene products or mRNA, white

GADA... subtype-specific antibodies can also be used to determ ine GABA... subunit

subtype composition, Miral lcs et al, (1994) mapped out the distrib ution of 'Yu and "(ll .

mRNAs and proteins in the rat brain using both these techniques. They showed that these

two splice variant s of the "(2 subtype show both different and overlapping distribution

patterns in the rat brain. Similarly, Gutierrez et 01, (1994) found colocatization of 'Y2.land

"(l l . subunits in some brain areas (eg. molecular layer of the cerebellum) and differential

distribution patterns in others (eg. hippocampus and cerebellar Purkinje cells). The



functionalsignificanceof this is not known.Poulter et at. (1993) suggest that'Y~ is the

predominant embryonic 'Yl subunit Iscrormand that GABAAreceptor activation may be

importantduring neurodifferentiationand syneprogcncsts.

Severalgroups haveshown, using subunit-specific: antibodies, that Q' h tJ1 and ·11

frequently co-localizein thesame receptor complex throughout the brain(Miral1es et 01.,

1994). Gaoand Pritschy(1994) demonstrated that staining forthe O'l subunit corresponds

to the presence of GABAA receptors. Theyreported that this issupported by biochemical

and immunohistochemical evidence thar uere is a frequentassociationof the UI subunit

with the{J2'(JJand 'YZ subunitsin native GABAA receptors. Fritsehy tt al. (1994)showed

that GABA...receptors present in neonataland adult brain differ in subunit composition,

with aJJu'Yzprobably being expressed by most neurons in neonatalbrain andalnu '"1?

being mostprevalentin adult brain.Theysuggest replacement of GADA...receptorstakes

place in a majorityof neurons duringdevelopment Pcrsohn et ul. (1992) pointout that

a" PIand "1'1transcriptswere the most abundantandubiquitous in tile rat brainand that

a combinationof these three subunits is likelyto code for native receptors in rat brain.

Accordingto Wisdenetal. (1992), Q , andlJz mRNAs are themost widely codistributcd

in the brain and "(2 mRNAoften colocalizes with them. Theyalso state that "classical"

GADA...electrcphysiologkalresponses canbedemonstrated with this tripletcombination.

They pointout thatexpression studieson recombinant receptors showthat tilea subunit

is responsible for the major pharmacologicaldifferences withrespect to bcnzodiazepinc

bindingon thesea{3'Ycombinations, but that the '"11 subunit is required for potentiation



of GABA by bcnzodiazepines, Finally, Laurie et al. (1992) concluded from their studies

on the cerebellum and olfactory bulb that aiJ1'Y2 was a prominent receptor isoform in

these brain regions. Th e receptor isoforms that I will be concentrating on, av11'Y1L.

aJJ2'Y11. and aJJ1' are putatively major isoforms which occur in the eNS. Any effect of

alcohols on them would besigni ficant for brain function.

1.2. Pharmacological modulat ion of GABA" receptor function

The GABA" receptor contains specific binding sites for GA DA, barbiturates,

bcnzodiazcpines, and the anesthetic steroids as well as picro toxin (Macdonald and Olsen,

1994). GADA concentration-response curves are sigmoidal and generally have Hill

coefficients o f about two, suggesting that two GADA molecules must bind for full

activation of the recept or. GADA" receptors are not only activated by GADA, but also

by structural analogs o f GADA including muscimcl , 4,5, 6,7· tetrahydroisoxazolopyridin

3-01 (fHIP) and isoguvacine (M acdonald and Olsen, 1994) . The competitive antagonist,

bicucul1ine, is selective for the GADA" receptor. Picrotoxin , a non-co mpetitive GADA"

receptor antagonist, acts by blocking the CI- channel. GADA" receptor channel

modulation by GADA and other anesthetic compounds has been reviewed by Tanelian et

al. (1993).

Sedative-hypnotic and anesthetic drugs can affect GABAergic inhibition in a

number of ways. Some directly activate the receptor, some enhance GADA binding to

the receptor, while others act indirectly to influence opening of the Ct channel.



Anesthetics may act by more than one mechanism. Much of the evidence for the

involvementof the GABA" receptor channel complex in sedation and hypnosis comes

from genetic studies. For example, mice bred for short or long duration of euunot

inducedsleeping timealso show...d differences inbarbiturate and bcnzcdlazepine-lnduced

sleeping time, suggesting that there may be a common site underlying the hypnotic

actions of these drugs (rancHan et al., 1993).

As mentionedearlier, different modulatory agents use different mechanisms10

enhance OABAergicinhibition. The bcnzodiazcpiocs increase binding of endogenously

released GABA,whereasbarbiturates modify Ole GABA" receptor CI"channel such Ihat

it stays openlonger after the binding of GABA. Whereasthere arc distinct sites of action

for benzodiazepines,steroids and barbiturates, it is not clear whether there are distinct

binding sites for volatile anesthetics and alcohols. Indeed, the cellular and molecular

mechanismsof action of ethanol are not clear and numerous sites of action have been

proposed. In addition to the anesthetic compounds mentioned above, GABA" receptor

function can also be regulated by ions, such as CaH , as well as phosphorylation of

intracellularregulatory sites on the receptor (Tanelianet al., 1993).

1.2.1. GADAand anesthesia

Theeffects of several distinct classes of anesthetics on GABA" receptor function

was reviewed in some detail by Tanelian et ol. (1993). It is known that anesthetics can

influence GABAergic inhibition by a number of different mechanisms. Some agents



directly activate ihe receptor , some faci litate bindi ng of GABA to the rece p tor, some

enhan ce coupli ng between agonist bind ing and receptor ac tivation, whereas others

directly influence CI· channelopening. Man y of these anesthe tic compounds act bymore

than one mechanism, and it is nece ssary 10 look at multiple mechani sms of action to

understand anesthetic effects at the GABA", recepto r-channe l complex ,

1.2.1 . I. Ancsui euc modulation of theGABA",rece ptor

Mibic et al. (1994b) used the Xenopus ooc yte expression system to study the

actions of anesthet ics on GABA,\, receptors IIIvitro and also provided evidence that the

GABA I\ receptor complex is a major mediator of anesthetic action in vivo, Mihie et al.

(1994a) used anesthetic con centrati ons of ethanol (50-400 mM) and butanol (1-20mM )

and observed potentiation of GABA",receptor-activ ated CI' currents (lGAaJin a variety

of GA BA",receptor constructs . Propofol is a sedative-hypnotic drug which h as become

widely usedas an intravenous anesthetic for the ind uction and maintenance of general

anesthe sia (Smith et at., 1994). Recent electroph ysiologic al studies have provided

evidence that clinically relevant concentrations (i.e. 10-50pM) of the drug can increase

inhibition by GABA (Co llins, 19 88; Hales and Lambert, 1991a; Hales and Lambert,

1991b; Orser et al., 1994; Yamamura et at., 1991). Th e direct actions of general

anesthetics, includ ing propofol , on the G ABA", recep tor, were stud ied by Sanna et at.

(199.5), They expressed a tuncttonal homomerlc Cl channel madeup of the PI GABA",

receptor subunit in Xenopw oocytes. This homomeri c recombinant receptor was directly



activated by GARA. prcpofol ana pe ntobarb ital, but Il/JS insensitive to bicuculline.

Moreover, the steroid anesthetic alphaxalone could not direct ly activate homome ricP.

receptors. bu t did po tentiate currents induced by GADA. In addition. they found that

pro pofol an d pentobarbital potentiated currents ind uced by GADA at hetero mcric

rece ptors at concentrations th at had li ttle or no direct action at these rec eptors . From

their results , they co ncluded thai thepotentiation orGADAaction produced bypropofol,

pent obarbital ana alp haxatoneoccurs at adiffer entsite thanthe directcha nnelacti vating

pro perties of theseanesthetic compounds.

There is al so evide nce that GABA ... receptors are modula ted by volatile

anesthetics. Moody el ol. (199 4)demo nstrated significantdiffere ncesinpotencies o f (+)

and (+ iso fluranestereclsomersonG ABA" receptor function. T heysuggestedfrom this,

that prote ins rather than lipids arc the primary sites of anest hetic action.

Pharmacolo gically relevant concentrations (If vola tile anesthetics ac t as positive

mod ulators atGABA" receptors (Mooclyil al . 1994). T heyincrease CI' n uxand cn haece

bi ndingofotherpos itive modumc rs s uchasbenzodiazcplncagc nlsu (Nakaoel aJ., J99I;

Harris et a l., 1993).

Othercompounds, including barbitura tes, bcnzodlazeplnes, ande thanol m ay have

ane sthetic effects as a result of modulation of theGAM" rcc cpror-cb annct com plex.

Tan elian et al. (1993) conc lude from their re view tha t actions on the GAM" receptor

com plex. a ccount for thedomi nant eNS depressant e nccu of several o f mcse distinct

classesof anesthetics.



1.2. 1 .2. Ethanol modulationc f the GABA A recep tor

There are a numberof inconsistenciesin the litera tureconce rningth e action of

ethan o l 011 GABAA receptor func tionand several gr oups have allen'r'ted todeterminethe

actual site(s) and mechanisrnls)of action of this co mpound. Studies h -ve tee n carried out

In vi vo and In vuro using a variety of behavioural/genetic, n eurochemical. and

elcctrophysiolog icaltechniques.

Suzdak e/ol. (1986)dem onstrated that eth anol (20 - 100mM ) enhanced GABA A

receptor-mediated uptake of CI- into isol ated brai n vesicles or sy n aptoneu rosomes in

vuro. Similar ly , Glowa et al.(1989) observedethanol potentiation of GABA " recep to r

mediated CI- ion Oux in vitro using syrepton eurcscmcs. They also observed the

anxlo tytie and intol icating prope rtieso f ethanol in ~il'O an d noted that the effects of

ethanol In vitr o occurred at co ncentrations simil ar to those associa ted with ethano l' s

behavioural effects. In additio n , Harris and Allan (1988) dem onstrated that low

conce nuancns of ethanol enhancemusctmol-dependenCI- uptakeby brain membranes

from mice. The concentrationo f ethanol thet th e y used(t, e. 10-20 mM) is associa ted

with seda tion and mildintoxication In vivo. Simila rly, Allan et al. (1 988) fo u nd that 10

30 mM ethano l enhanced muscimol-uimu latcdCl' fluxinmembranes ofethan ol-sensiti ve

mice (LS) and rats(HAS). Thcir resul ts suggested jlu t genetic differences in ethanol

sensi t iv ity are related to differences in GA BAA receptor cha nnel se ns itivity to ethanol.

They did observ e a correlationbetween behavioural effects of eihan c t and the effects of

et hanol onCI' fluxin the cerebellum and cortex. In addition , theysaw lit~e or no effect



on CI· flux with anesthetic ethanol ccncent rarons (50·[00 mM), suggesting thai the

effects of ethanol on theGABAA receptor are more important atlower concentrations.

Cellular electrophysiology has also been use d to stud y ethanol' s effects . from

the ir Siudy using transfected cellsfrom the mouse. Harris er al. (1995 ) sugges ted the

exi stence of ethano l sensitive and insensiti ve GABAA receptors which may dif fer in

s ubunit composition. They reported that th e 'Yll subunitwas necessary for ethanol to

potentiate loAMand thatthis potentiationwas greatest with10 mM ethano l. Interestingly,

though, the re was considerable varia tion amo ng the cellswith respect 10nclr ethanol

sen sitivity, dependingon whe ther or not the cellswe re grown on polytysinecovcrstlps.

If thecell s were grownon coversllpe coaled with polylysinc, ethanol potentiated GADA

re sponses in these cells, while no e ffect w as observed in cells t hat were grown on

uncoated ccverslips. They concluded. therefo re, that although necessary, the121. subunit

is not sufficient for ethanol poten ti ation of Io.o.M.' They proposed that some post

translational modifications maybe taking pl ace in the cellswhichmay be importantfor

ethanol sensitivity andthatdif ferences inculturecond itions or cellcycle could playa part

in the observed cell variation.

Othe rstudies have also cbscrved ethanol modulationof GABA", rec eptor function.

Eth anol (25-200 mM)enhanced Io"'M in some cultured mouse neur ons from the

h ippocampus(Aguayoand Pancelti.. 1994). Aguayo andPanceui (1994) also observed

potentiationusing higherethanolcon c entra t ions (425 and850 mM). From these results,

the y suggested that ethan ol may be ac ting at several sites, with low ethanol
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concentrat ions activating a protein such as phosphatase or inactivating a kinase, and

hi gher eth anol concentrations intera c ting with the membrane lipid do main. Th eir

pr oposed mechanism of action for ethanol was that ethanol may potentia te 10..,_ by

facilitating dephosphorylation. Low ethanol concentrations (I-50 mM) potentiated loAM

in someof thecel ls from di fferent brai n regions of the chick, mouse, and rat (Reynolds

er ot., 1992). Potentiation by ethano l of the GABA A response wasgreatest when low er

concentrat ionsof GABA we re usedw hich is consistent with other studies. As well, there

was wide variation among animals in the same species with respect to ethano l's abili ty

to potentiate GABA incells of thecer eb ralcortex (Reynoldset 01., 1992). P almer er 01.

( 1990)studied the effects o f ethanol on single human central neurons. They transplanted

hu mance rebral an d cerebe llar cortical tissue into the anterior eye chambe r of rats and

all owed it to develop over several mon ths. They identified two populations of neuro ns,

th ose more ethanol-sensitive and those less sens itive to ethanol, and found thai ethanol

de pressed action potential d ischarge in a reversible, dose-dependent manner. Ethan ol

concentrat ions used were w ithin the range eliciting behavioural signs of in toxication in

hu mans. In rat brain slice preparations, 80 mM ethanol enhanced lOAM in cortex and

in termedia te lateral andmedial septum , but not in CAl of the hippocampus (Soldo et 01.

1994). In this study , it was suggested that there is more than one mechanism of ac tion

for ethanol potentiation of the GABAA response. Ethanol may cause a c hange in CI'

con ductance , alter the sensitivity of the OABAA receptor such that more chan nels would

be activated by the same amo unt of GADA, or sh irt the Cl' equilibrium potential altering
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the amount of curre nt flowi ng throug h the ion channel withou t changing conductance

(Soldo et al. 1994). In contra st, Weiner a al, (1994) found po tentiatio n of syna ptic

GADA" res po nses in hippocampalCA l neurons. In this study, th e effect of (tllanol was

influenced by G-protein activa tion.T hat is, intracellular perfusion with GTP.."S,w hich

wo uld activate G-proteins irreve rsibly, enhanced ethanol porcmtattonof synapticGA8A A

responses .

Low ethanol concentrations hav e alsobeenobserved toenhan ceGABA " respo nses

in a number of stud ies using theXenopus oocyte expressionsyste m . Wafford andW hiting

(1992) injected bovine mRNAs for DI.BI'YlL and alj('/I~ recept or combinations into

Xenopusoocytes and found that ethano l (20 mM) only potentia ted recepto rs containing

the 'Y2L subunit and not those conlaining 'Y:IS' T hey wen t on toalter the eight amino acid

co nsensus phospho rylation sequence contained in the l It sub unit and el iminated the

pote ntiating effects of ethanol. Since benzodiazepine po tentiation was una ffectedby any

of themutations , they suggested a specific ro le of this eight amino aci d insert an d ils

co nsensus phospho rylation site for protein ki nase C in ethano l potentiation. TIley

co ncluded therefore, that phosphorylation of theconsensus site on the 111. sub u nit is

necessary for ethanol potendaiicn o f loAM' An in vitro study carried out in X enopus

oocytes using mRNA s fro m brains of long sleep (LS) and short sleep (55 ) mice

de monstrated ethan ol potentiationof GABA responses in a dose- depende n t manne r up to

60 mM, in OOCytc5 injected with l..S mRNA, but inhibition of GABA responses by

eth anol in those in jected with 55 mRNA (Wafford et 01. 1990). LS and S5 mi ce are
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selectively bredfo r their marked difference in ethanol sensitivity.

Ethanol potentiationobserved inthese studiesby Waffo rd and Wh iting(1992) and

Wafford et al. (1990) representsa low-dose effect o f ethanol according to Mihic etol .

(19943.). They proposeda distinct h igh-Jose o r anestheticeffec t ofethan ol aswe ll , and

suggested thatthe lwoeffects of ethan olon the GABAA receptor likely havedi fferent

mechanism s ofac tion.They tested anesthetic co ncentrationsof ethanol (5Q..400 mM) and

butanol ( 1-20 mM) fortheir effects on ~IUI in Xenopusoocyes. They did ob serve

g reater ethanolpotentiation withlower concentrations of GABA andfound thatthe effect

o f ethanol (100-300 mM ) on Io... llA was not affected whethe r the receptor construct

contained I'll or ')'21.'

Other stud ies havefailed10observe this ethanol potentiationof Io...BA' Sige l et al.

(1993) did notobserve ethanol enhancement of theGADA responsewith 20 mMe thanol

in many batches of oocytcsexpressing various rat recombinant subun it combinations

having the 'Y1.I OT 1'n splice variant. Theyalso tested ethanol conceatratlons up to 100

mM and observed a very small po tentiation «20 %) of IOA IIA with 100 mM in all

subunit combinations tested. Possible reasons for thisdi screpanc y withothe r groups were

suggested, There maybe sequence differences in subuni ts across di fferent species,

d ifferencesinexpe rimental conditions, and/or post-translationalmodificationswhich may

be taking place in different batches of oocytes once the receptor pr otein has been

assembled.
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1.3.Regionalaction of ethanol and specific receptor constructs

En hanceme nt of GABA responses by ethanol varies with bra in region. The

cerebell um appears especially sens itiveto e thanol, whereas the hippocampus appears

relatively insensiti ve to th e effects of ethano l (Wafford and Whiling, 1992).According

toSoldo et al. (1994), ethanol may differcntial1ymodulateGABAAreceptorsin d ifferent

regions of thebrain becauseof d ifferences in receptor subunit compositionin various

brain regi ons. This lssupponedby aniJl~'ivo studyca rriedout byCriswella at, (1993),

inwhich binding ofrolpidem(a type I bcnzodiazcplneagonist) wash igh inareas where

ethanol enhanced ~.AIIA ' suggesting thatet hanol affects specific GAllA" rece ptors in

particular brain regions. They hy pothesize that a specific GAUA" receptor that binds

zolpide m isalso sensitive 10ethanol andis composedof ad3{Yl subunits.The fact that

mRNAfor l1Lan d l u was found in both eth anol-sensitive and emanol-insenstt tvc brain

regions , suggests that the 1lL subunit alone is not sufficient for ethanol's actio ns at the

GABAA receptor which is ccnststcer with what other groups have reported. Instead,

Criswell t t al. ( 1993) suggest that the combination of GAllA" receptor sub units is

important for eth anol se nsitivity . They also reported from otherstudies, that chronic

l.:thanolhad aneffect on specific G ABA" receptorsubunits(t. c. reduced GADA.... receptor

al and Q,subunits andincreased Cl 6 subuni t mRNA le vels). T hisfurther supportsthe idea

thateth anol has an effect onspec ificregio ns ofthe brain.
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1.4. Elhanol and Ro15-451J

Rol5-45 l3 , a benzodiazcpine receptor partial inverse:agonist, hasbeensuggested

to be an a.Icohol antagonist. Evidence: for this comes from a number of studies. This

compound bloclu the effects of ethanol.on 0 " flux:(Glowa et 01.• 1989; Suzdak d oJ.,

1986; reviewed in Tanelian aol. 1993). In addition, behavioural studies show that Ro lS·

4513 antagonizes many of the effects of ethanol such as sedation. anticonflict and

intoxication (Deacon t t 01.,1 990; Glowa tt 01. , 1989; Suzdak a 01., 1986; reviewed in

Tanelian et 01., 1993). In a review by Grant (1994), it was reported that Ro IS-4513

consistently blocked the effects of ethanol in vitro but only blocked some of the

behaviouraleffects of ethanol. and that these effects varied whether ethanol treatment was

chronic or acute. According to Grant (1994), the ability of Ro I5-45 13 to block some of

the behavioural effects of ethanol may be an add itive interaction rather than a

ptwmaeological antagonism at the same receptor.

Reynolds et 01. (1992) demonstrated thai RoIS -4SIJ (100 nM) blocked ethanol

potentiation of ~u in cullured rat cerebral conical neurons. EIhanol' s ef fects were also

found to beantagonized by RoIS·4S13in vitro at human central neurons (Palmer t t oJ.,

1990). In an ill vivo study, Palmer t t al. (1988) found thai Rot5-4513 antagonized the

e1eclrophysiological ef fects of locally applied ethanol on Purkinje neurons in the

cerebellum. In Xt nopusoocytcs , Ro lS-4SI3 (114M)had no direct antago nisticeffects on

GABA current, but did antagonize ethanol' s potentiating effect on GADA" recep tors

expressed from LS mouse whole brain mRNA (Wafford et 01. 1990). From these RoJS-
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4513 studies, it has been suggested that the abilityof ethanol to enhance 1cu.llA appears

10 involve the benzodiazepine binding site, in particular, an increased efficiencyof

couplingbetweenthe benzodiazepine binding site and the CI"channel.

1.5. Ethanolmodulation at other receptors/ion channels

The GABA...receptor-channel complexdocs not appear to be theonly site which

influences genetic sensitivity to ethanol (Allanetal. 1988). In fact, the selective effects

of ethanolat a numberof other ionotropic receptors, including NMDA and 5-HTJ , has

been extensively reviewed by Grant (1994). Grant (1994) stated that it is evident from

the literature that ethanol is not a specific receptor ligand and that it alters a number of

neurochemicalprocessesby acting at different classesof receptors.

1.5.1, NMDAreceptor

Severalgroupshaveshownusingbiochemicallcchniques (Hoffmanetai., 1989a,

b; DildyandLeslie, 1989),brainslices (Gonzales and Woodward, 1990; Woodward and

Gonzales, 1990), in vivostudies(Simsona al., 199{), and behavioural methods (Grant

et al. , 1991;Grant and Colombo, 1992;Sanger, 1993), that ethanolinhibitsthefunction

of NMDA receptors. Lovinger et al. (1989) showed ethanol inhibition of NMDA

receptor function in hippocampal neurons. This inhibition by ethanol (5-50 mM)

increasedin a concenrrauon-dependent manner, Ethanol also inhibited NMDA receptor

mediated responsesin conical and hippocampal membranes of the mouse (Snellet a/' ,
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1993). Anothergroup showedthata homomericNMDAreceptor was sensitiveto ethanol

blockade in Xerwpus oocytes (Treistman et ol., 1993), However, no agreement

concerning ethanol's mechanism of action at this receptor has been reached. It may be

possible that ethanol is acting at only a single NMDA receptor subtype (reviewed in

Grant, 1994). However, there isevidencefor the NMDAreceptor involvementin ethanol

intoxicationandwithdrawal. In a study by Grant et al. (1990), it was demonstratedthat

an up-regulation of NMDA receptors in the hippocampus following chronic ethanol

treatment maymediateseizures associatedwithethanolwithdrawalin dependent animals.

Furthermore, ethanol may producean interactive effect at GABA...and NMDA receptor

complexes, which may be responsible for some of its behavioural effects (Grant, 1994).

For example, following chronic ethanol treatment, GABAergic neurotransmission is

decreased, whereas NMDA receptor activityis increased (Lovinger, 1993). This down

regulation of GADA... receptor function may contribute to the induction of ethanol

withdrawal seizures.

1.5.2. The 5-HT) receptor

The 5·HT) receptor is believed to regulate behavioural and physiological effects

of ethanol, such as tolerance, ethanol consumption,anxiolytic effects and temperature

regulation (Sellers et al. , 1992). Recently, there was evidence for a direct interaction

between ethanol and the S-HTJ receptor using patch-clamp techniques.Ethanol (2:5-100

mM) potentiated the effects of S-HT at the 5·RT) receptor and this potentiation was
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blocked by a spectnc S-HT) antagonist (lov inger, 1991; Lovinger and While, 1991).

Potentiation of the recombinant S-HT) receptor-mediated ionic current was abo

demonstrated in a humanembryonic kidneycell line (Lovinger and Zhou, 1994). Machu

and Harris (1994) observed ethanol potentiationof S-HT)-mediatcd current, with greater

potentiation at lower concentrations of 5-HT. Butanol also enhanced S-HT) recqttor

function witha greater degree of potency. However, as is the case (or ether ligand-gated

ion channels, the mechanism(s) of action at this receptor is not known.

1.5.3. 0 protein-coupled receptors

Sanna etal. (1994) recently reported that ethanol (25·200 mM) inhibitedbolh S

lIT and AChat S-HTlc and M1 cholinergic receptors respectively. They suggested thai

ethanol inhibition of S-HTlc receptors requires protein kinase C-mediated

phosphorylation. Ethanol may activate PKC responsible for receptor phosphorylation,

which in tum, results in inhibition. Another possibility is that ethanol may act dtrecuy

on the receptor protein, but to do so the receptor must be phosphorylated. These:two

hypothesesareslmllar to those proposedfor ethanol effectson ligand-gated ion channels.

In fact, O-protein-coupled receptors may be as sensitive 10 ethanol as are ligand-gated

ion channels (Sanna et aI. 1994). It is possible that ethanol interacts directly with the

effector systemsassociated with G proteins (Grant, 1994),
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J.6. Site of alcohol action: membrane vs. protein

For a long time, it was believed that alcohols and anesthetics had their action on

the membrane lipids of neurons in the eNS. Hence, the lipid theory of alcohol action

emerged which held that the action of alcohols on neuronal proteins was secondary to ure

action of alcohols on the perturbation of membrane lipids (Peoples and Weight, 1995).

As well, according to the lipid theory, as carbon chain length increases in n-alcohols, the

lipid solubility of the alcohol increases (i.e. increased membranelbuffer partition

coefficient), and the potency of the alcohol for disordering membrane lipids increases

cxponentially with this increased lipid solubility (McCreery and Hunt, 1978; Lyon et al.,

1981). Howevcr, as the number of C atoms increases from 6-8, a cutoff effect for

alcohol intoxication occurs, even though the potency for disordering the membrane lipids

continues to increase (McCreery and Hunt, 1978; Lyon ecal., 1981; Franks and Lieb,

1986; Huidobro-Toro a 01., 1987). In fact, different cutoff effects in alcohol potency

have been observed with receptors including ATP-gated ion channels (Li et 01. , 1994),

5-HTJ reccpror-lonchannels (Fan and Weight, 1994), GABAA receptors (Nakahiro et 01.,

1991; Peoples and Weight, 1994), and NMDA receptor complexes (Peoples and Weight,

1995). Li et ill. (1994) demonstrated a cutoff effect for inhibition of ATP·gated ion

channels by a series of aliphatic and halogenated alcohols. They observed increased

inhibition from 1·3 carbon atoms. Peoples and Weight (1995) also observed a cutoff

effect for inhibition of NMDA receptor function by a series of straight-chain alcohols.

Both of these groups suggested a direct interaction of the alcohols with a hydrophobic
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pocket on the receptor protein. They speculated that when the volume of the alcohol

exceeds the volume of the hydrophobic pocket, the alcohol is probably not able 10 bind,

and therefore can not exert its effect.

1.7. Kenopus oocyte expression system

The Xenopus oocyte as a model system was reviewed by Snutch ( 1988).

Electrophysiologic studies using this model system. have providcd insight into the

mechanisms underlying modulation of GABh" receptor function by alcohols and other

anesthetic agents.

The injection of mRNA lnto Xenopus oocytes results in the functional expression

of various neurotransmitter receptors and voltage-gated ion channcls. Before injection,

cocytes are defolliculated to eliminate endogenous receptors for catecholamincs,

gonadotropins, purinergic agonlsts, and acetylcholine, as well as GTP-binding proteins

and adenylate cyclase that mediate these responses (Snulch 1988). The mRNA to be

injected is isolated from a neuronal source such as the brain or prepared In vitro from

cloned DNA, and nanogram amounts are injccted into individual oocytcs. Receptors and

ion channels which are expressed are characterized using clectrophysiological techniques,

typically the two-electrode voltage-clamp.

Dascal (1987) described the Xenopus oocyte as a useful model for studying

molecular mechanisms of second messenger-mediated neurotransmitter responses and

concluded that the oocyte may become the model of choice for studying signal
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transduction. At present, this expressionsystemis used by many groups to study both

neurotransmitter and voltage-gated ion channels. For example, Sanna et 01. (1994)

studied lhe functionof 5-HTIC and muscarinicM1 cholinergicreceptors, both G protein

coupled receptors, after injection of whole mouse brain mRNA into Xenopus cocytes.

SincecocytesexpressmanyendogenousCaH -activatedCI"channels, they areconvenient

to studymelabotropic receptors whichare linkedto a commonsecondmessenger system

which releases CaH from internal stores. According to Sanna et 01. (1994), these G

protein-coupled receptors (.5-HT1c and MI) maybe as sensitiveto ethanol as are ligand

gated ion channels.

Knoflach et 01. (1992) injected cRNAs into Xenopus oocytes to determine

structure-activity relationships of recombinant GADA... receptors, and compared the

results urey obtainedin oocytes with those from transfcctedcells. They found that the

a JPI'Yl subunit combination produced similar GADA sensitivities in oocytes and

transfcctcdcells, but that modulation by nunitrazepam of the GABA responsewas much

weaker in oocytes. This might suggest somedifference in post-translational processing

or assembly of subunits in different expressionsystems, making it difficult to compare

functional properties of recombinant and nativereceptors(Knoflach et 01., 1992). Ebert

a 01. (1994) expressed recombinant human GABA...receptors in Xenopus oocytes to

investigate the pharmacology of GABAA agonists on various or, P, "I subunit

combinations. Wafford et 01. (1993) used the same expressionsystem to compare the

functional role of different "I subunits and obtainedresultswhich were similar to those
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reponed in transfected cells. Properties of different 0: subunits on the GADA... receptor

were investigated using oocytesby Levitan et al. (1988). They reported that expressed

receptors shared many properties with native GADA...receptors, but were not identical.

Hadingha m et af. (I993b) expressed recombinant human GADA" receptors containing

differe nt P subunits in XelWpus oocytes to determine the influenceof the p subunit on

GADA... receptor pharmacology.

XeMpusoocyteshave also been used to study modulation of the GADA receptor

by ethanol and other alcohols. Sigel et at, (1993) expressed various GADA receptor

subunit combinations having the 'Yu or "r'l L splice variant isolated from rat brain in

Xenopusoocytesto dete rmine the effects of ethanol on IflAilA • Wafford el al, (1990)

injected mRNAs for the GADA"receptor aswell as NMDA receptor from brains of LS

and SS mice into Xenopus oocytesto investigate the molecular basis for the difference

in ethanol sensitivity between these two strains. As well, anesthetic concentrations of

ethanol and butanol were tested for their effects on Io"'M in Xenopw oocytes injected

with human eDNAs (Mihie a 01., 1994a).

A number of studies have described reasons why the Xenopus oocyte expression

system is a useful model for studying the physiological and pharmacologica l properties

of various receptors and ion channels. Xenopus oocytcs consistently synthesize and

assemb le a variety of neurotransmitter receptors and voltage-gated ion channels after

injectio n of foreign mRNA and arc capable of undergoing elcctrophyslologlca l recordings

which are used to el ucidate structure-activity relationships (Snutcb, 1988). Expression of
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several different ion channels and receptors can be seen by Injecting mRNA isolated from

whole rat brain, whereas injecting mRNA for a particular receptor or ion channel allows

the study of a specific receptor construct in isolation {Snutch, 1988). The large size of

the oocyte allows the microdissection of single cells. penetration with two electrodes

during voltage-clamp or other electrophysiological recordings. and the injection of

substances into the cells , thereby allowing regulation or control of cell contents (Dascal,

1987) . Mihic a 01.(l 994a) described the Xenopus oocyte as a useful model system for

studying the modulation of GABAA receptors by various drugs using recombinant

GABAA receptor subunit combinations. They suggested that there is excellent agreement

among studies carried out using the Xenopus oocyte expression system as well as between

studies using oocyte models and other systems including whole cell preparation s, cultured

cell lines, or brain slices. Also, the oocyte allows one to look at the direct actions of

various drugs on specific ion channels without the interference of neighbou ring cells or

compet ing processes. which is often the case in neuronal preparat ions (Machu and

Harri s. 1994). They suggested that investigation of these cloned recepto r constructs may

provide insight into structure-activity relationships and infl uence of subunit requirements

for the actions of various drugs including alcohols and anesthetics. The Xenopusoocyte

model is useful for studying the actions of anesthetics on mammalian GABAA receptors

(Mihic a 01., 1994b). According to Mihie et 01. (1994b), other studies have reported that

modulators of GABAA receptor function, including benzodiazepi nes, barbiturates,

steroids, and l ine, appear to have similar actions in oocytes as they do in other systems.
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They also suggested that the compounds they studied in oocytes acted similarly in spinal

cord prepara tions in the tal . Finally, Sigel and Baur (1988) reported thai voltage- and

ligand -gated curre nt respon ses expressed in the oocyte remained stable over a long time

period.

Despite the apparent usefulness of the Xenopusoocyte as a model system, there

are al so certain limitations . The ooc yte may only selectively express some receptor

subtypes or ion channels in mRNA preparat ions containing mult iple mRNAs, perhaps due

to post-lransla tional modification carri ed out by the oocyte (Snuteh, 1988) . Sometim es,

post-tran slational modifications proceed incorrectly (Dascal, 1987). As well , differen t

batches of oocytes and diff erent RNA prepara tions contribute to the diver sity of results

obtained. Finally, an obvio us concern is whether or not results on the function of an ion

chann el or receptor synthesized in oocytes are comparable to the elcctrophy siological

properties of these receptors or ion channels in vi\'O.

Apart from some limitations, it would appear that the oocy te is an excellent model

for studying the physiological and pharm acological properties of ion channel s, includ ing

those regulated by second messengers , This model system has been used extensively by

several groups to study pharmacolog ical pro files of various receptor constru cts using

recomb inant eDN As or cRNAs from a number of different species.

1.8. Rationale and hypolheses

The purpose of this study was to look at alcohol modulation of GADA...receptors ,
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in particular, to assess subunit requirements and structure-activity relationships for this

modulation by various alcohols. It has long been believed that alcohols and anesthetics

produced their effect by disordering or "fluidizing" membranes of neurons in the eNS.

However, more recent evidence has shifted the emphasis 10 the icea that specific

membrane proteins or lipid-protein domains are selectively sensitive to alcohol. Since

findings in the literature are so controversial with regards to ethanol potentiation ofloAllIr.'

we scI out to study the effects of ethanol on 1o...IlIr. ' comparing pharmacological profiles

of different receptor constructs. For comparison, the effects of 1- and 2-butanol on loAM

using OI dJl'Yll. and OIJJl'Y21. receptor constructs were examined. If there is a direct action

of alcohols at the GABA" receptor, then one might expect that stereoiso mers of the

simplest chiral alcohol, z-butancl. would vary in their potency as modulators of GABA"

receptor function. Using this pre mise , we decided to compare the effec ts of the two

stcrcoisomers of 2-butanol on GABA" receptor function. In addition, while it is believed

that the "I'lL subunit is required for ethanol to potentiate leAD'" it remained to be

deter mined whether the same was true of butanol. Furthermore , to help in our

understanding o f the mechanism of action of alcohols at the GABA"receptor, we set out

to exa mine the effects of RoI5-4S13, reportedly an ethanol antagonisl, to determine if

this compound altered the ability of different alcohols 10 modulate GABA" receptor

function.

The pharmacological properties of different receptor subunit combinations were

characte rized using the XeIWpus oocyte as our model system and the two-electrode
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voltage-clamp recording technique. For these experiments. human cloned RNAs for

GADA" receptor subunits were made from cloned DNAs. In addition. tt was necessary

to characterizetheoocytemodeland to bet the oocyte!.to expressGADA" receptors. The

following hypotheseswere lested:

I) Ethanol potentiates iaA. .... and hence enhances GADA" receptor function.

2) 2-butanol ls more potent than l-butanol at each receptor construct.

3) There is a difference between theeffects of the uercolsomcrs of 2-butanol on GABA"

receptor function.

4) The 'YZLsubunit is necessary for the simplest chiral alcohol10 potentiate 1t1" H4'

S) RolS-4SI3 blocks ethanol potentiation of lo... l14 as well as the potentiation of GADA

by other simple alcohols.
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II. General methods

2, I . Maxi plasmid preparation by alkali lysis

2. 1.1. T ransfccticn o f cDNAs

eDN As for human all a l' (3l and 'Yl l . subunits of the GABA... receptor were

obtained from Dr. Paul Whiting (Merck, Sharp and Dohme Research Laboratori es) . Each

subunit was cloned into Ihe pCDM8 vector (invitrogen). cDNA stocks of the various

GAIlA/I recep tor subunits were resuspended in Tri s EDTA (TE) to a final concentration

of I Ilgllli. An aliquot of the stock was further dil uted with TE to make a final

concentration of 5 nglll !. At this time, the stocks o f competent cells were removed from

the ·70 · C freezer and placed on ice. The cells used to take up the human eDNA for

GADA receptor subunits were the E. coli strain MC10611p3 (Invitrogen).

To transfect the plasmids, 10 III of 5 ngllli cDNA was mixed with 100 III of

competent cells. The mixture was left on ice for 20·30 minutes. After this time, the

cDNA and cell mixture was heat shocked at 42· C for 50 seconds. Immediately afte r heat

shocking, prcwarmed LB at 37 ·C was added as quickly as possible to a final volume of

I ml. The tube was thenplaced horizontall y on a shaker for 45 minutes at 37"C to allow

proper aeration and the eDN A to be taken up. The suspension was spun down at 6000

rpm for 10 seconds. the supernatant discarded and the pellet resuspended in 100 ,.,.1 sterile

LB at room temperature. The microorganisms were then plated asept ically on agar plates

already prepared with antibiotics (tetracycline and ampicillin) with 2 %, 10% and 88%
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of the 100 1£1 suspension divided into 3 separate plates. T he plates were then incubated

overnight at 37 ·C .

The following day, fresh agar plates containing tetracycline and ampicillin were

used to restreak a single bacterial colony from one of the three plates for each subunit,

so that there was now one plate for each of the subunits. Again, the bacteria were

incubated at 37'C overnight.

2. 1.2. Maxi plasmid preparation

For each individual subunit , SOO 011 of LB was placed into a 2 L conical flask and

the media was autoclaved. The broth was then allowed to cool to room temperature and

antibiotics were added as follows: 750 ~ I tetracycline (5 mglml) and 250 ~I ampicillin

(50 mg/ml) . At this point, the LB was inoculated with the desired organism. A metal

loop was flamed and then cooled by touching the aga r and the broth was inoculated with

the loop a fter it had just touched a single bacterial colony. The inoculate was incubated

overnight at 37'C with shaking.

After 17·1 8 hours, when the cultures were well saturated with cells. they were

transferred to pre-cooled 250 011centrifuge buckets and placed on icc for 10-20 minutes.

The cells were then centrifuged at 4000 rpm for 10 minutes. The supernatant was drained

off and the insides of the buckets were carefully wiped to remove excess medium. For

250011cultures, the pellets were suspended in 6.5 ml of solution I and transferred to 50

011 polypropylene Oakridge tubes. The tubes were left to stand at room temperature for
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5 minutes. Solution 2 was freshly preparedat this time and 13 ml of this solutionwas

added to each tube. The suspensions were mixed gently but thoroughly to ensure

complete lysis of the cells and were placedon ice for 5 minutes. Then 6.5 rnlof ice cold

solution 3 wasadded to each tube, which were thenmixed by swirlingend over end. The

tubes were again placed on ice for 10 minutes. After lhis time, the precipitate (protein

and chromosomal DNA) was spun down at 12 000 rpm for 30 minutes and the

supernatant was poured into fresh 50 ml Oakridge tubes. The supernatant was

precipitatedwith 0.6 volumes (approximately 15 ml)of iso-propanol, mixedwelland left

to stand at room temperaturefor 5 minutes. Plasmid DNA precipitate was obtainedby

centifugation at 8000 rpm for 10 minutes. The supernatant was drainedoff and discarded

and the lubes were invertedon paper towel and allowed a couple of minutes to dry.

PlasmidDNA pellets were resuspended in 3.0 ml of solution 4 and transferred

to 15 ml CoreJt ~ centrifuge tubes. If necessary, the pH was adjusted with NaOHto be

neutral to alkaline. The volumeof each tube was then made up to exactly 4.2 ml. 30 ",I

of 10 mglml RNAase A was added to each tube. CsCI (4.7 g) was added and was

completely dissolved by inverting the tubes which were covered withparafilm. Then500

",I ethidium bromide stock (10 mg/ml ) was added. The lubes were cenlrifugedat 8000

rpm for 10 minutesto removeany precipitate. The supernatant was placed in quickseal

ultracentrifugetubes, balancedand heal sealed , Samples were spun in the Vti vertical

rotor at 4S 000 rpm at 20·C for> 18 hours,

Tubes were then carefullyremovedfrom the rotor . Plasmid DNAwas sometimes
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visible iii ordinary light. To facilitate removal, the plasmid DNA band was visualized by

exposure to long-wave ultraviolet light. The top of each tube was punctured with a Icc

syringe tip 10 allow the entry of air and this was left in place, Plasmid DNA was

collected by carefully inserting a Icc syringe needle just below the plasmid band and

withdrawing as much of the band as was possible. This was usually bctwQtn 0.5 and 1

mi. Once the bands were extracted, they were each placed in 15 011polypropylene tubes.

2 011 of solution 4 was added to each tube to make up the volume. Then, 10 remove

ethidium bromide, each sample was extracted with an equal volume of butanol (2 ml}.

The extract ion process was repeated 3 times or until no ethidium bromide was extracted

into the organic phase. Each time the samples were voncxcd for a few seconds, Ole

aqueous phase (bottom) was retained, and the organic phase was discarded . The samples

were then placed in a dessicator fo r a few minutes 10 get rid of excess b 'mol.

After the butanol extractions, the samples were extracted twice with an equal

volume of phenot:ehloro form:isoamylalcohol (ratio 25:24: I) and once with an equal

volume of HlO saturated chloroform . Again, the samples were vortcxcd each time and

in each case, the upper aqueous layer was kept and transferred to clean polypropylene

tubes. After the chloroform extraction, however, the the aqueous layer was transferred

to a 15 011 Ccrex" centrifuge tube . Sodium acetate (3 M; pH 5.2) (1110the volume of

the sample) was added , followed by 2 volumes of I(}()% ethanol to precip itate the DNA.

The samples were covered with parafilm and placed at ·20· C overnight.

The sample containing the precipitated DNA was centrifuged at 15 000 rpm for
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30 minutes.The supernatant was removedand the pelletwas washed withapproximately

5 ml 70% ethanol at ·20·C . The pellet was then dried in a dessicator for about 10-30

minutes. A micropipette was used to resuspendthe pellet in 500 ftt TE. At this stage, a

spectrophotometer was used to estimate the concentration of plasmid DNA in each

sample. Double stranded DNA generally gives an optical density reading of 1 per 50

JLgfml at 260 om. Typical yields of plasmid DNA were 8()()"1600 ~g from a 500 ml

culture. The dilution factor used was 1 in 500 or t pI of sample in 500 pi TE.

2. 1.3. Separation of substances by electrophoresisin agarose gel

The purityof the plasmid preparationwas checkedby running a 1% agarose mini

submarinegel. The agarose gel was measured out and placed in a conical flask to which

the required amount of 1 x TBE buffer was added. The solution was placed in the

microwave for 2 minutes, after whichtime, it was checked for any undissolved particles.

If any particles were present, the solutionwas swirled and reheated for 30 seconds until

thoroughly dissolved. Care W2S taken to avoid boiling in the flask. Once the particles

were dissolved, the solution was cooled down by gentle swirling to a temperature of

about 6O·e. At this point, 3.3 ftl BDr (for 50 ml solution) was added and mixed well,

avoiding formationof any air bubbles.

Meanwhile, both ends of a clean plastic cast were taped wilh autoclave tape. The

comb was aligned for the formation of wells, which must be parallel to the base. The

agarose gel was poured slowly into the cast, which was on a level surface, avoiding air
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bubbles. The gel was allowed to polymerizefor 20-30 minutes, If the gel was kepi a

longer time, 1 x TBEbuffer was addedon lopof it to prevent it from dryingout. Aflcr

adding thebuffer, the comb was takenout verycarefully, withoutdisfiguring thewells

formed, The excess buffer was drained off and the autoclave tape was removed,The

marker and the sampleswerenow addedinto thewcllscarcfully witha rnicropipcue. The

marker contained: I ~I of 1 Kb ladder(Gibco), I .ttl lOxBlue Juice and 8 ~I dHP for

DNA samples. Eachsamplecontained: 1 .ttl sample, I III lOx BlueJuk e and8 ~1 dHp.

The sampleswcre made up in separate microcentrifuge tubes.

Once jhe gel was ready to run, I x TBE was placed in a clean electrophoresis

chamberand the castalong with the gel was placedin the chamber very slowly untilthe

buffcr coveredthesurfaceof the gel entirely, The wellswere placedclose 10 the cathode

(-ve electrode) sincecDNA, an electronegative molecule,will migratetowards the anode

(+ve electrode),Thecounterwas setal frequency 100and the setupwas allowedto run

at a constant voltageof 100V for 30-60minutes. After thege l run, the gelwas removed

from thechamberand was placed underUV light 10 checkfor theproper bands, Insome

cases, the plasmids were linearized with the appropriaterestrictionenzymes prior to gel

electrophoresis, This avoids the problem of supcrcolllngorplasmid DNA. which can

adverselyaffect migration in the gel.

2.1 .4. In vitro transcriptionorRNA

The RiboMAXTN Large Scale RNA ProductionSystem was used to produce
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milligramquantitiesor RNA for in vitro translation in Xtnopus cocytes. Berore in viJro

transcription, the DNA templates were linearized to produce RNA of defined length

(Prumcga Technical DuJletin, 199 3). The DNA was lineari zed by digestion with

appropriaterestrictionendonucleasesrcHowedbyextractionswith phenol/chlororormand

chlororormand subsequently by ethanol precipitation. It was important to use enzymes

which gaveblunt endsor S' overhangs, since 3' overhangs may cause the enzyme to

"double back- on the DNA, leading to the synthesis or RNA from the complementary

strand as wcll. However, in somecases, it was necessary10 use restrictionenzymes that

did generate 3' protruding ends, and in these cases, T4 Polymerase was used to fill in

theoverhang and to give bluntends to the linearized DNAtemplate before transcription.

Therestriction enzymes used for each subunit were: Bam HI for human UI eDNA, Pst

I for humanU2 eDNA, Sea I for human112eDNAand ZOO I for human "rJL eDNA.

2.1.4. J. DNAtemplate linearization

Ilt lorrestrictionenzymewasadded 10' ·10II I or plasmid eDNA (concenl1alion

approximately 2 pgl,..1) to linearize thetranscription vector containing the geneof interest

3' or the insert . lOx incubation buffer (in which the restriction enzyme has 100.

activity), 1.5-2.0 pi, was added to theabove mixture, and dH20 was used to makeup

thevo lume so that ihe concentratio n dthe buffer in the final mix is Ix. In other words,

ir 2 pi of butfer were used, u e final volumewas 20 Jolt The mixturewas then incubated

in a 3T C water bath for at least 2 hours and sometimes overnight.
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Aft er the incubation period, dH jO was added to a final volume o f 50 Jolt The

mix ture was extracted once with an eq ual vol ume of p henol/chloro form and once with

an equal volume of chloroform. It was then ethanol p recipitated by adding 1110 tile

volume of 3 M NaO Ac pH 5.2, and twic e the volume of 100% E tOH. The mixture was

placed at -20'C for 30 minutes, afte r which ti me, it was centrifuged at 12 <XXl rpm for

10 minute s. The supernatant was thrown away andth e pellet was washed with cold

20 'C 70% EtOH, taking car e not to distur b it . The pellet was then dried un der a vacuum

for 15·30 minutes and resuspended in TE such that the concentration of the plasmid was

approximate ly 1 JoIgfpJ.

2 .1.4.2 . Conversion ofa 3' overhang 10a b lun t end using T4 DNA poly merase

5 ",I lOx T 4 DNA polymerasebuffer wasadded to 5J'I eDNA, a long with 39.5

JoIl dHlO and0.5 p i T4 polymerase. This mi xture was kept at mom temperature for 2

minutes , and then 2 ",I of d coxy nuc leotidcs (2 mM d Nrps) we re added. The mixture

was incubated at 37 C for 15 minute s. Fol1owing inc ubation, ex tractio n with an equal

volume of phenolJehloroform was carried out along wit h EtOH precipitation as o utlined

above.

2.1.4.3. In vuro transcription of RNA

Typi cally , a SO loll reaction for 17 RNA po lymerase was se t up at room

temperature and reaction components were added in the following ord e r: 17
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T ranscriptionSJI Buffer, 10 Ill, rNT Ps (25 mMATP , CTP, UTP), 11. 2SIll. rGTP(I

mM) + m7G(S' )pPP(S')G cap (3 m M), 6.0 ~I, linear DNA template (i lig/fll) , S "I,

Nuclease -Freewater, 12.75 pl,efIzymemix, Sill. Th e useof cappedRNA is suggested

for use in tileX~nnp/lS oocyte transtaucr system. The Gcap analol: present at the S' end

o f most eukaryotiemRNAs , is impo rtantfor the bindinl:of translation initiation factors

and contributes to mRNA stability (Promcga Technical Bulle tin, 1993) . As well, it is

important 10dissolve the DNA templates in nuclease-free water before theyare added

to the reaction. The reaction wasge ntlypipettcdup and down to mixand was incubated

a t 37"C for 2-4 hours.

2. 1.4.4 . Removal of DNA template foHo wing transcription

Afterperforming the in vitro lrallSCri ptiOll, RQ I RNase-freeDNase was added10

a concentration of I U/llg of template DNA (in this case, S ",.1). The reaction mixture

was incubated for IS minutes at 37"C . and then extracted with I volume of

phcnol:ch1oroform :isoamyl alcohol (2S:24:1) pH4.5. At this point, it wasvortexedfor

I minute andcentrifuged at lop speed in a microcentrifugefor 2 minutes. The upper,

aqueous phasewas transferred 10 a fresh tube and I volume of chloroform:isoamyl

alcohol (24:1) was added. Again, the mixture was vortexedfor 1 minute andcentrifuged

as above . The upper, aqueo us phase was transferred to a fresh tube. Now , the RNAwas

dirccUyprecipitatedbyadd ing 1110 the volume of 3 M NaOAe or KOAc, pH S.2, and

1 volume of isopropanol or 2.S volumes of 95% EtOH. After mixi ng, the reaction
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mixture was placed on ice for 2-5 minutes , and was then spun a t top speed in a

microcentrlfuge for 10 minutes. The su pernatant waspoured off and the pellet was

washed with 1 ml of 70 % EtOH and drie d under vacuum. The RNA sample was then

resuspendedin TE buffe r ornuclease-free water 10 a volume identical to the transcription

reactio n, 50 loll, and sto red at -70 ' C,

2.2. Surgeryandtreatme nt of oocytes

Oocytes were ob tained from Xenopus laevls frogs kept individually in large

holding containers. Each frog was givena number anda record was kept of the dates the

frogs underwentsurgery . There was usually a 6 week period between surgeries on any

one frog, and no frog had surgery more than once a month. Frogs were anaesthetized in

500 m l offiltercd water containing approximately 1.25 g 3-a minobcnzo ic acid ethylester

and some e rushed ice for abo u t 15·20 minutes. The hind foot pad was pinched to

determinewheth er the frog was an aesthet ized. The surgery was perfo rmed with the frog

on ic e. A small incisio n was made in th e SKin an d abdominal W'J.II wi th a sca lpel and

surg ical scissors, and a couple lobes of ovary we re remo ved. Oocytcs were placed in

stora ge mediumcontaining (in mM): 88 NaCl, 2 KCI, I CaCI1, I MgCr]> 5 Hepcs, 2.4

NaHCO j , 2 pyruvic acid, 0 .5 theoph ylline, 100 U/ml penicillin and 100 pg/ml

strep tomycin. The pH was 7.4 , when adju sted wi th NaOH, and the solu tion was sterile

filtered.

Theoocyteswere then m anually dcfcllicul ated with fine forceps, and were then
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placedinlarge Petridishescoatedwithagar. Agar media (1.5%) was preparedby adding

50 ml steriledistilledwaterto 0.75 g bacteriologicalagar in a polypropylene tube,and

boilingfor aboutIS-30minutes,or until tileagar was dissolved. The mediawas poured

into thePetri dishes and allowedto dry. This agar coaling helpedpreventstickingof the

oocytesto the bottom of the Petri dishes. Storage solution was placed in each of the

dishesand waschangedon a dailybasis.

2.3. Injection of oocytes

The oocyteswereinjectedonthe sameday as the surgery. Injectionneedleswere

beveledto makethe impaling of theoocytes smoother so lhat minimaldamagewasdone

to the eggs. The needlewassubsequently filledwithlight mineraloil and was readyfor

injccting. Selectedcombinations of cRNAs for GABA",receptorsubunitswereprepared,

and small a1iquols wcre drawn into the injection needle. The concentration of each

subunit wasapproximately 0.8-1 nglnl, and smallvolumes (10-S0nl) wereinjectedinto

the vegetal pole of oocytes using the Drummond "Nanoject" Automatic Injectur

(DrummondScientific Company) loadedwiththe micropipette. Theoocyteswere placed

singly in wells formedby a plastic mesh gridduringthe injections, and after injection,

were placed in groups of 20-30 cocytes in the freshly preparedagar coatedPetri dishes

containing storagesolution. The oocytes were left at room temperature and usually

expressed GABA", receptors a couple of days after injection. Oocytes wen; used in

elcclrophysiologicai recordings for up to two weeks after cRNAinjection.
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2.4. Electrophysiologica1 recording

Occytes rested ina well formed by a plastic mesh grid i :\ the recording chamber

(bath volume approximately 0.5 ml) with the animal pole facing upwards. They were

impaledwith twogtess elcctrodes filled with 3 MKCI and clamped at -70 mVus ingan

Oocyte Clamp (Modell OC·72SBj Warner Instrument Corp.). If GABA...currents were

very large (in p.A range), the holding potential tended to fluctuate, and so theoocyte was

clampedat -40or -SOmV, which was more stable. Cu rrents were continuously ploucd

on a chart recorder. Oocytes were perfused with a controlsolution containing(in roM):

88 NaCl, 2 KCI, 1 CaCl1 , 1 MgCl2 and S Hepcs. The pH of the control solutio n was

7.4, when adjusted withNaGH.

Drugs were dissolved in thecontrolsol ution, and placed in reservoirsattachedto

a series of valves, whichallowedmultiplesolutionsto be applied to the sameoocyte. All

solutions were gravity-fed at flow rates of 6- 8 mllmin. Drugs were applied for up to a

minute or until the peak current amplitude was obtained. Whenever alcoholsor other

drugs were applied, they were co-applied with GAGA. During experiments, the control

GADA solutionwas frequently applied to monitor the peak current responsebefore and

after drug application. Awashoutperiodwasallowedbetweendrugapplications, and this

time varied dependingon the concentration of drug used(3-10 minutes).

2.S. Data analysis andstatistics

Data from eachexperiment wereobtained from 4-7oocytcsisolatedfrom at least
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twod ifferentfrogs. GABAconcentration-responsedatawere fitto the Hillequation:

I = IlAAx[C"' (C"+ EC 50' j)

where I and' MA X rcpesem theCUTTent ampli tudeinducedby the GABA concentration, C ,

andits maximum amplitude, respectively, EC lO is the concentrationof GABA givingthe

half-maximalresponse, andn is the Hillcoefficient. A non-linearleast squares regressio n

analysis (Inplot4 , Graphpad Softwaretnc.) wasused to"fit- to the e xperime n taldata.

Theeffects of alcohols on ~8A were comparedby plotting the ratio of thetest current

to the comrol (I ....LC011m! IC!JI(fROJ versusthe concentrationof alcohol. Linearregression

analysis (Inplo14) was used10get anestima te of the affinity (in mM) of each alcohol fo r

individ ual receptorconstructs. This analysisassumes thatdifferental~hols wou ldhave

thesame efficacy 10potentiateGABA,\. rece ptor function.Previouswork byothe r groups

(Nakahiro it al. , 1991) suggests that different alcohols do have equal efficacies to

potentiate GASA,\. receptor function, and differ onl y in potency. Wh ere appropriate,

either a paired t-est or ordinary one-way analysis of variance (In stat2, Graphpad

Software Inc.) was used to test for statistically sign ificant differences among datasets.

Post-hoctests were done usingthe Bonferroni lest for multiple comparisons. Two sets

ofdata werecon sidered to besignificantly different whenp < 0.05.

2.6. So lutions

2.6.1. Preparation of liq uid broth (LB)+ 1.5%agar

LBmedia foragar platescontained 5 g BaetoTryptcne , 2.5 g Bactoyeast extract
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and 5 g NaC I in 500 ml dis tilled wate r. The p H was adjusted with NaOH 10 7 .0.

Bacteriological agar (Sigma)was added in thea mount of 75 g (1 ,5%) to the 1000 ml

conical flask co ntaining 500 ml t il and the broth .....as stirred. The to~ of th e flask w as

cove red with tinfoil and autoclave tape was placed snugly around the neck, holding the

foil in place. The LB was then autoclavcd and allowed 10 coo l to less than 50· C,

Antib iotics were added asepticallynear a bunsen name. T etracycline, 750 1'1(5mg/m l).

and ampicilli n , 2501'1 (50mg/ml), were added to 500ml LB. Stocksolutionsof th ese

antib ioticswere stored at-20' C andtetracycline wascoveredwith tinfoil because of its

sens itivityto light. The media wasaliquotted(10-15 ml) into100 mmPe tri dishes and

allowed\0 dry overnight in a darkroom.

2.6 .2 . Solutio ns for maxi plasmid preparation

Four solutions were prepared and used for the plasmidpreparation. Solutio n I

contained50 roMglucose,25 mM Tri s pH8,0 and10 roMEDTA pH 8. 0, Solutio n 2

contained0.2 MNaO H and 1% SOS. Thissolut io nwas made fresh foreac h prepara tion

just before i t wasread y tobe used. Solu tion3 con tained 5 MKOAc pH 4 .8 and gla cial

acetic acid (6 .26 ml per 100ml), Solution4 con tained :50mM Tris pH 8 .0 and I mM

EDTA. Solutions I, 3 and4 werestored atroom tempe rature.

2.6 .3, 1% ag arosemini-submarinegel

Three solutio ns IIad to be prepared \0 separate substances by elec trophores is in
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an egeo sc gel. The firstsolutionwas lOxTris borate EDTA buffer (rBE) containing:

108 g 'rrtsbesc, 55 g boric acid (HJBO~),40 ml O.5 M EDTA pH8.0 and dH20 to a

final volume of I L. This solution was autoc lavcd. Fromthis solution , a stock of I x

TBE was prepared when req uired.The second solutio n was lOx Blue J uice containing:

0.42 % Bromophenol Blue, 0.42% Xylene Cy anol FF and 25% Fico ll (fype 400;

Pha rmacia) in water. The thirdsolution was 1.0% agarose gel. For 8 samples, 0.5 g

agar ose gcl was used to make 50 mt of solution. For 15 sam ples, a larger volume of

sol utionwas used (epproxtrnardy ISO ml).

2 .7. Sources of chemicals

The fol lowing c b e ml ca t s were use d: Gum agar,

rrtsjhycroxymemy tjaminomethane, eth ylcncdia mbte te traacctlc acid, dime thylsulfoxide

(DMSO), bovine serumalbumin, DL-<litltiothreitol, ca f feine, theophylline , pyruvicacid,

.J·aminobe mAlicaci d ethyl ester, GADA (obtainedfrom Sigma) ; BactoTryptone, Baeto

Y east Extra ct, sodium dodecyl sulphate, diethyl pyro carbcna te (obtained from BDH);

Agarose e lectropho resis ge l, Bam H I, Pst I . Sea I , Xho I , T4 DNA Polymerase,

penicillin, streptomycin (obtained fro m Glbco) : rATP, rUTP , rCTP, r GTP (obtained

from Pbarmaclaj : RNAase Inhibito r, m'G(5')ppp (S')G (obtained from Boehringer

Mannhcim); Bromophenol Blue (ob tai ned from Bio-Rad): xyle ne cyano l FP (obtained

f rom Kodak); propofot (ob tained from lei Ph arma); Intralip id (obtained from Kabi

Pharnucia Canada, Inc.); flurazepam and Ro1 5-4513 (obtained from Hoffman La-
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Roelle). All ethe r analytical grade bbora tory reagents were oouincd fmm Sigma

Chemical Company or Fisher ScientificCompany.
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::.1. GABA...receptor characterization

GABA...receptor subunit cRNAs were transcribedin vitro from humaneDNAs

and were injected into Xenopus cocytes in various combinations. RecombinantGABA...

receptorswere functionallyexpressedin the oocytes after 1·2days. Before the effectsof

different alcohols were examined, it was necessary to characterize the propertiesof the

GAllA...receptorconstructs(al,6!l'21., al1(121., and azf3J to be used in theseexperiments.

PerfusionwithGABA producedconcentration-dependent increases in GABAcurrents for

all combinations of GABA...receptors tested(Figures 1-3). For ad3{Y1L' al1 2"'11Land the

Ql{jl receptors, the respectiveECso values were 63 ± 9 ~M, 43 ± 3 ~M and 2.58 ±

0.08I-'M. The corresponding Hill coefficients were 1.26 ± 0.09, 1.15 ± 0.26 and 1.0 1

± 0.22.

To characterize the pharmacologicalproperties of the GABA...receptor, theability

of the GABA...receptor competitiveantagonist, bicuculline, to inhibitGABAcurrent was

studied. This antagonist almost completely blocked GABA responses at the 0l1.B2'Y2L

receptor (Figure4). As well, 10determine allosteric modulationof the GABA response,

the effect of f1urazcpam was examined. Flurazepam potentiated the current induced by

30 ~M GABA (Figure 4). The vehicles used to dissolve various drugs (Inlralipid,

DMSO)had no significant effect on currents activated by GABA.
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Figure t . GADA eonccntreucn-response curve dctl'nni ncd ill Xenopus oot ) lcs

Injecled with a ,6z11L hu man rcecmbln ant cRNA.

A, Membrane:currents activated by increasing conccu rattons or GAllA in an oocyte

injected with 0' 16 J'Yll . cRNA. Calibration is 25 nA for first three traces and 50 nA for last

three:traces. n, Normalized current amplitude plottedas a function or log {GAllA) and

Ilt to the logistic equation (see Methods). Data points in this figure and remaining figures

are the mean ± S.E.M (n = 6).
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f1e;ure 2. GADA ccncentrattcn-response curv e dctermlncd In XenopllS oocytes

Injcctcd with a~trJl. human reec rnbtna m cRNA.

A, Membrane currents activated by increasing concentrations of GADA in an oocyte

injected with a-Al a cRNA. B, Normalized current amplitude plotted as a function of

log [GABA} {n :: 4) .
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Figure 3. GAllA concl'nlralion-rt'Sponse curve determi ned in Xe" opus OCK'yll...~

injected wilh 0 1tl1 human r ecombinant cRNA.

Normalized current amplitude ptoucd as a function of log (GAllA] (n = 4).



1.5
....,
c
OJ........

1.0 !:J OJ
U" •:J
"O~
OJ -
N 0-.- s

0.5c;<
S....
0
z

0.0
-7 -6 - 5 -4 -3

log [GABA] (M)

49



Figure 4. Cha racte rlzntlon of GABA·aclivalcd CI" cur rents expressed III Xenopu s

oeeytcs .

A. Represe ntative trac ings YlOW the effects o f 30 ",M bicuculline and I ",M Iluruzcp am

on GADA currents evoked by 30 pM GABA. measured in oocytcs expressing DlfJ,-yu.

receptors . B, Cumula tive data (rom 4 separa te occy tcs. Similar resulu were obtained in

oocytes injected with alJfY u. cRNA (data not shown) .
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3.2. Effects of butanol on fo...lIA

3.2.1. l-butanol and 2-butanol

To investigate the influence of subunit composition on the modulation of the

GABA"receptor by alcohol, the effects of t-buranot and z-butanot on GABAA-activatcd

CI' current were studied using the OIdJl ')'ll.and a .j3lY ll. receptor constructs. Concentrations

of butanol (5-80 mM)were co-appliedwith 20 p.M GAllA by bath perfusion. Butanol at

concentrations > 100 mM alone produces only negligible currents « 10 nA). Beth

alcohols potentiated GADAresponses in a concentration-dependent manner (Figure 5).

However, 2-butanolwas more potentthan l-butanol over the entire concentration range

examined. Linear regression analysis was performedto compare the potentiating effects

of 1- and 2-butanolon GABAcurrents at the ctdJlYll. receptor (Figure5). Representative

traces showthe effects of 20 and 50 mM each of I- and z-butanoi on membrane currents

induced by 20 p.MGADAfor the 0IJ3a2Lreceptor construct (Figure 6). Again, linear

regression analysis was carriedout using a range of butanol concentrations (Figure 6).

Estimates of the affinity of l-butanol and z-butanot (or the OtI{J Z'Yll. ar.d the OtJ3Z'YJI.

receptorconstructswere calculatedas the reciprocal of the slopes of the linear regression

(Table I) . The affinity constant for 2-butanol was significantly lower than that for 1

butanol for both receptorconstructs.

The effectof l -butanclon theGABA,,-activalcdCI"current atthe Ot.PJ'Y21. receptor

construct was comparedto that at thea,palLreceptor construct. Figure7 illustrates that

the degree of potentiationof GADAcurrents by l-butanol wassignificantly larger at the
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Figure 5_ t'orenttauon or GABA-aclivated currents by t -bumnct and 2-butnnolln

occytcs cxpr csstng the a l l3iYn. receptor construct.

A, Representative curre nt tracings show the effects of20 JlM GADA control and GADA

plus l -butanol or z -butancl. n, Linear regression analysis of potent iation of GADA

responses by I-butanol and 2-butanol. The degree of potentiation of GABA-evoked

current (n = 7) by butanol is plotted versus the concentration of butanol.
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l<lgure 6. Potentiation orGADA-acti vated currents by t -butanot and 2-butanolln

coeytcs expressing the 0'1131)'21, receptor construct.

A, Representative current tracings show the effects of 20 $1M GABA control and GABA

plus either l-butanol or z-butanot. B, Linear regression analysis of potentiation of GABA

responses by I-butanol and z-butanol (n ;;: 6).
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Table I . Estimates of am nity Imean ± S.E.M. ) of t -b utencl and 2-butnnol for

Subunit
combination

t -t nuanot

204.30 ± 54.76 (J)

47.S3 ± 8.67 (6)

119.49 ± 43.33 (7)'

32.42 ± S.74 (6)"

Currents wcre elicited by 20 J'M GABA. Numbers in parentheses represent number
or oocytes. ", p ""0.001 compared to l -butanol; b, P ""0.0 072 compared to 1·
butanol (paired t test).
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Figure 7. I-but anol and 2-butan ol diITcrenlially potentia te GAUA respon ses 01 the

(X.f31'YIL and the a JJ I'YIL receptor constru cts.

Experiments were carried out with 20 /-1 M GADA. A, Degree of potent iation of GAllA

currents by l -butanol (n c: 3 to 7). ", p<O .05, "", p < O.OI and "", p <O.OOI,

Bcnfcrroni post-hoc test. D, Degree of potentiation of GADA currents by z- bumnol (n

"" 3 to 7). " , p <O.05 and ••, p < O.Ol , Bonfcrroni post-hoc lest.
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a.JJ1"llLrecep tor construct than the degree of potentiation at the 01/32''1'11.receptor with 1

bu tanol con centration s of 20 , 50 and 80 mt\.t. Similarly, 2-butano l showed a greater

deg ree of po tentiation of GABA current at the afll''I'l1.receptor compare d 10 the 0. 1(31''111

receptor , at 20, 50 and 80 roM concentrations of 2·butano l (Figure 7).

3. 2.2. Effects of (R)- and (S)-2-butanol

The effects of (R)-2-bUlanol and (Sj-z-buranol on IUAlIA were compared at a .llll'll.

and QJ3iY2L receptor constructs. Figu re 8 shows the linear regression analysis for the

ste rcolsomcrs of 2-butanol at the QI{Jl"l'n, and the a .j3l"l21. receptor constructs. T he slopes

o f the regression lines were not significantly different for each isomer at each receptor ,

al though the slopes differed between receptors (Figure 8, Table 2).

3 .2 .3. Effects of 1- and 2-bu tanol in the presence or absence of 1'11.

To test the importance of the "1'21. subunit in the potentiation of IU Al IA by butanol,

th e QJ3iY1L and o..J31 receptor constructs were examined. Butanol potentiation of I."'M

oc curred both in the presence and absence of the 1'21.subunit (Figure 9). However, the

aJ3alL co mbination displayed greater enhancement of the GABA response (3 p,M) by

l -butanol and 2-butanol than did the aJ31 receptor construct. Howe ver, since the aJJzl'21.

and aJJz receptors have very differen t sensitivities to GADA (EC w = 43 ± 3 JIM and

2 .5 8 ± 0.08 JIM respectively), this is an expected observation. Co ncentrati ons of GABA

y ielding equivalent responses would give a more accurate compa rison of the effects of
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Figure 8. Compnrison or (he effects or (R}-2-butanol and (S)-2-butanol on GABAA

rcecptur-uctlvated currents in oocytes expressing human ad~1·hL and a lJ 2'Y21, receptor

construct s.

A, Linear regression analysis (n = 3) for the alJ 1'Y21. receptor construct. Currents were

elicited by 20 p.MGAllA. B, Linear regression analysis (n =5) for the aJJ2'Yll. receptor

construct. Currents were elicited by 3-5 p.M GABA.
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Table 2. &1lmates orarrin ity (mean ±S. E .M.) of (R)-2-butanol and (S)-2-butanol

for a.I1I'Y2I. anda:JJfYtLreceptor constructs.

Su bunit
co mbination

(R)-2-butanol

70.80 ± 22.62 (3)

18.54 ± 3.54 (5)

(S)-2-bulanol

68 .0 1 ± 19.9 1 (3)

17.36 ± 2.81 (' l

Slo peswere obtained {rom data in Figure8. Numbers in parenthesesrepresent number
of oocytcs .
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Figure 9. Comparison oflb e effectsof I-butanol lind z-buunot on GAnAA reeepfer

aettvatcdcuercnts In eocytes expressing human a:filllnd a:fi{,I:u . receptor- construc ts.

Control curr e nts were obtained with 3 ~M GABA . A, Li near regression a nalysis (n '"

4) for the 0lJ3 2 receptor constru ct. B, Li near reg r ession an alysis (n = 4) for theaJ:32"Yn

receptor construct.
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1- and 2-butan olon ImllA at these two receptor constructs. Estimating theaffinity of I

butano land 2-butanol foreach receptor construct fromthe slope of the linear regression

(Fig ure 9) re vealed that there wasa significant difference between l-butanol and 2

butano lat the a.fll"'I2Lreceptor construct (f able 3). whereas attheo:J31 receptor this was

not statistical ly significant (Table 3).

3.3 _ Effccts of RolS- 4513with tlurazep am, butanol and ethanol

To show the e ffect of Ro15-451 3 on the action of bcnzodiazcplncs, Ilurazcpam

was cc-appfied with Ro15-4513 andGADA. Ro 15-4513 (500nM) reduced Flurazcpam

potentiation of GABA curren t (Figure 10), To compare theeffec ts of Ro15-4513 on

alc o hol mod ulation o f theGABA respon se in the same oocyte, butanol was co-applied

with GABA and RoI 5-1513. Current tr aces show that Ro 1S·4S13 (SOO oM) docs not

affec t 10 or 80 mM 2-butano l potentiat ion of IoA'1A (Figure 10). Ethanol potcnuatlon of

the GABA response wasobserved in so me, but not allo f theoocytes tested. To test the

effects of protein ki naseC on ethanol potentia tion of IUA,lo\' l ,2 -olcoylacctylglyccrol

(OAG) was usedto determine if activating endogenous P KC in the occytcs would alter

ethanol sensitivity. It was fo und that OAG (2 5 /1M) , which a lone produced 50 %

reduction in GABA response, did not p roduce an y increa se inethanol sensitivity 10 the

GABA~ receptor (data not sho wn). Hen ce, dif ferences in ethanol's ability to enhance

GABA~ receptorfunctica were notdue to differences inP KCdependentphosphorylation .

Seasonalvariationin theoocytcs, however, did a ppear to playa rol e inthe lack of effect
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Table 3. Estimates ar am nii, (mean ± S.E.M.) of t -butanct and 2-bulanol tor

Subunit
combination

a,/l,

I·butanol

8.42 ± 0.76 (4)

14.61 ± 1.79 (4)

' ·bulMol

S.48 ± 0.S2 (4r

9.39 ± 1.34 (4)'

Nembes in parentheses represent number of oocytes. " p "" 0 .0072compared to I·
butanol; . , p = 0.0785 compared to l-butanol (paired t test).
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Fig ure 10. P otentiation of G ADA-activated C I' curre n t by rlu razepam and bu111llol

IIIX,nfJpu s ooeytes ex pressing the O'I/1,'YJI. receptor construc t,

Representative current tracings show the effects of 5,liM GAM (clII,trol) , and

modulation by flurazepamand RoI5-4513, Ro15·4513 (500 nM) eliminates uurazcpam

potentiation of the GABA current. By contrast , in thesame oocy te, Ro15-4513 docs not

affec t the ability of 10 or 80 mM butanol to potentiate GA BAcurrent.
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of et hanol, since cocytes obtained from the same frog at different times of the year

showed different sensitivities to ethanol (data not shown). Oocytes show ing cthanol

potentiationo f GABA c urrent wereobtained(rom twodonor frogs. Asexpected, cmanot

potentiated the responsetoGABA.Thus, ethanol at a concentration of20 mM produced

a 34 ± 8%inc rease (p < 0.00 1, n;; 4) in the response\0 IOJlM GAllA at thead3lY21

receptorconstruct,

Curren t traces produced by the co-applicat ionof 100 mM ethanol and 10 /-4 M

GABAarc shown in Figure 11. Figure I I alsoshows the interactio n of Ro 15-451J with

ethanol.Ro15-451J, a benzcdiazepine receptor partial inverse ago nist,had littleor no

effect oncontrol GABA current , but when co-appliedwith 100 111 M ethanol and10/-4M

GABA eliminated the ethanol potentiation of GAllA current (Figure II). As a

comparison, 10 mM butanol wasco-applied with GABA in the same ooc yte, Again,

Ro 15-4513 had noeffect on butanol potentiation of the GAllA response (I:igure 11).

Fig ure 12co mbines data from S cccytes anddemonstrates that Ro 1S-4513 significantly

reduces100 roMethanol potentiation of theGADA respo nsebut hasno effecton the

butanolpotentiation. Similar results were obtained using 200mM ethanol and20 mM

butanolin 4 oocyes (Figure 12),

3.4. Effects of Ro15-4513on other agents

To investigate the site and mechanism of action of Ro15-4513 at the GABA"

receptor, diff erentconcentrationsofbutanol, hcptanoland propofot, were co-applied with
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Hl::urc 11. Pctemlatlnn of GADA·activntcd CI' current by eumnol and butanol In

nocytcs expressi ng the &.lJl'Yli. recep lor construct,

Representative current tracings show the effects of to j.tM GADA (control), and

modulation by ethanol and RoIS-4SI3. RolS-4SI3 (0.5 j.tM) eliminates ethanol

potenti:!.tion of the GABACo1ITCllt. 8y contrast, in the sameoocyte, butanol potentiation

of the GADAcurrent is not blocked by Rol :i-4SIJ .
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Figure 12. RnlS-4513 redu ces ethanol, but not butanol polentlaUon or GAllA

curre nts at the lXIlJa11. receptor construct.

A, RoI5-4513 did not change the control GABA response. However , Ro15-4513

completely blocked potentiation of the GADA response by 100 mMethanol (#, 1'<0.001

compared to 100 mM ethanol, Bonfer roni post-hoc test). In contrast, Ro15·4513 did not

affect potent iation induced by 10 mM butanol (*, p<O.OOI compa red to RolS-4513

alone, n :: 5, Bonferroni post-hoc test). B, Increasing the concentration of ethanol to 200

mM and butanol to 20 roM yielded the same results as in (A). Significance levels as in

(A) (n . 4).
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Ro 15-4513 and GABA. Figure 13 illustrates that Ro15-4513 (500 nM), when co-applied

with increasing concentrations (5-80 mM) of t .,or 2-butanol, had no effect on the ability

of' ibcsc alcohols to potentiate loAIIA'

To determ ine the ef fect of di fferent concentrations of RoI5-4513 on the GABA

response, 500 oM and SliM RoI5 -4513 were co-applied with 10~M GABA. TheGABA

response was not affected by either concentrat ion of Ro 15-45 13 (Figure 14). Figure 14

also shows that the same concent rations of Ro15-45l 3, when co-applied with 20 mM

butanol or I mM heptanol, did not affect potentiation of loAuA by these alcohols. In the

presence of increasing concentrations of propofol (0.5-40 ~M) and 5 ~M GABA, I JIM

Rol5-45 13 did not significantly affec t rOAM (Figure 15) .
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Figu re 13. R ols.4S13 docs not block butanol potcntiat ion or C ,\.R,\. currents at th e

0'IPfY2L recep tor construct .

A, Ro15-4513 (0.5 pM) did not affect potentiation of the GAllA current by any of the

concentrations of I-butanol (n "" 3). B, Similarly, RolS -4513 (0.5 ~M) did not affect

potentiation of the GABA current by any of the concentrations of 2-bulanol (n "" 3).
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Figure 14. Concentreuons or H.o15-4S13 do net block potenttntlon ofGAnA current s

by butan ol or hcpt anc l at th e ctI I1J'YlI, receptor construct.

RoIS-4S 13 (0.5 and 5 J.'M)did not change the con trol GADA response. Similarl y, RoIS

4513 did not block potentiation of the GADA rcst onsc by 20 mM butanol or I mM

hcptanol (n = 4) (The open bar represents potentia tion of~....by C3Ch alcohol, the first

hatchedbar in each group represents 0.5 ItM Rol S-4513 ± the alcohol a.'ld the second

hatched bar in each group represents S ItM Ro IS-4S13 ± the alcohol),
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F1gure 15. Rol 5-4S13 docs not block pr opofo! potcnrlar lon or GADA eurrc uts li t th e

adJ 212L recepto r construct.

RoIS·45IJ (I p.M) did not affect potentiation of the GADA current by any or lhc

concentrations of propofol (0.5-40,."M) (n '" 3).
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IV. Discussion

4,1. Charactcrization of human recombinant GABA/\receptors

GABA/\concentration-responsecurvesshowingconcentration-dependent increases

inGABAcurrents for ad3i'Y2l' aJJ1'i21.andal3 2 humanrecombinant receptors, expressed

in Xenopusoocytes, weresimilar to what othcrs havereportedin different systems.That

is, the receptors which were expressed in the oocyrcs had EC)/,I valuesand Hill stopce

similar to what has been reported for the same receptor constructs (Amin and Weiss,

1993; Levitan et al., 1988). In addition, ihc GADAcurrent was blocked by bicucullinc,

a competitive GABA" antagonist, and was potentiated by Ilumzcpam, a bcnzodiazcpine

agonist. This demonstrated accepted pharmacological characteristics for "ctasstcar"

GABAA receptors and confirmed the expression of recombinant GADA" receptors in the

Xenopus oocytes.

4.2. A two site model of actionof alcohols:ethanol versus longer-chain alcohols

As outlined in the introduction, there arc distinct sites of action for

benzodiazepines, steroids, and barbiturates on the GABA/\ receptor channel complex.

However, it remains uncertain whether there arc -'tstlnct binding sites for volatile

anesthetics and alcohols. A number of groupshave attempted to elucidatethe silc(s) and

mechanism(s) of action of ethanol on the GABA" receptor. Howevcr, there remain a

number of inconsistencies pertaining to ethanol' s effectson GABAcurrent (Mihic et al.,
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1994a; Sigel et al. , 1993; Wafford and Whiting, 1992).

From a review of the literature, and from the present work, it seems reasonable

to hypothesize that alcohols act at two distinct sites and/or have two mechanisms of

action at the GABA... receptor. Il appears that longer-chain alcohols (~4 C) act at a

different site than ethanol and/or ethanol induces a conformational change in the GABAA

receptor which dirrers from the longer-chain alcohols and anesthetics. In the present

study, support for a two site model of action of alcohols is based on the observation that

butanol enhances 10A 11A in oocytes expressing a{J receptors as effectively, if not more

effectively, than ImIlA in oocytes containing a{J"( receptors. The same is true of

barbiturates, which effectively potentiate GABAA responses in the absence of a ')'J subunit

(Valcycv et al., 1993). In contrast, ethanol docs not potentiate Ia,,1lA in oocytes

expressing the a{1combination (Wafford et al. , 1991; Wafford and Whiting, 1992). It

is possible that in the absence of a "(J subunit, ethanol can not bind to the receptor.

Similarly, the ')'J subunit is necessary for benzodiazepines to modulate the GABA...

receptor (Macdonald and Olsen, 1994; Wisdcn et al. , 1992).

In a study by Wafford and Whiting (1992) , ethanol potentiated the GABA

response only in oocytcs expressing receptors containing the 'Y1L subunit and not in

oocytes expressing receptors containing the 'Y1S subunit. They found that altering the eight

amino acid insert, present only on the 'YlL splice variant, eliminated ethanol potentiation,

suggesting a specific role of the insert in ethanol enhancement of GADA.... receptor

function. Similarly, Harris et al. (1995) reported that the ')'11. subunit was necessary for
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elhanol to potentiate Io... M. in transfectcd mouse neurons. Ahhough ethanol can poieuiarc

Io...IA. in oocytes expressing the 'Y13construct, much higher cooccmranoos of ethanol are

req ui red (Mihic et 01. , 199401; Sigel ~t al. • 1993). Clearly , it would seem th."1l

potentiation of 10....... by ethanol is not an all or none phenomenondL'fll'nding on wbctber

'YZL or 'Y13is present. II docs appear though. that ethanol enhances In"ll.O. more crfl'Ctivc1y

in the presence of 'Y1l versus 'Yu - Perhaps there is a difference in the aflinity of ethanol

for the GABAA receptor with 'YIL or ethanol may be more effective in inducing a

conformational change in Ihe receptor in the presence of" 'Yn, subunit. Regardless. other

findings as well as those from the present study imply some specificity of action or

ethanol with the GABA" receptor protein.

lon ger-chain alcohols may act at a site which is associated with barbiturates or

anesthetics such as propofol. In contrast, ethanol, because of its physical and chemical

properties, acts at a different site which is associated with effects at lower concentrations.

In a genetic study, Allan tl al. (1988) found that 10-30 roM ethanolenhanced muscimot

stimulated CI- flux in membranes of ethanol sensitive animals, but that 50-100 mM

ethanol had little or no effecl on CI' flux in membranes of Ih..-scanimals. suggC!JinZ th3t

actions fot ethanol on the GABAA receptor arc more important at lower ethanol

concentrations. Mihie et 01. (1994a) suggested thai the potentiation seen by Wafford ~I

01. (1990) and Wafford and Whiting (1992) by ethanol (20 mM), represents a low-dose

effect of ethanol requiring the 'Y21_subunit. From their own data, Mihic et ufo (1994<1 )

suggested a distinct high-dose or anesthetic effect as well for ethanol and that the tWO
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effects likely havedifferent mechanisms. Similarly, Aguayo and Pnncctti (199-1)observed

ethanol potcntiation of fo...lIA in some neurons with low ethanol concentrations (25-200

mM), while potentiation was observed in all neurons at higha ethanol concentrations

(425 and 850 mM). They also suggested that different mechanisms may he respollsible

for this potentiationof GABA by ethanol and that ethanol mayact at several sites. Per

example, low ethanol concentrations may affect a protein, such as phosphatase or a

kinase, whereas higher concentrations of ethanol may exhibit less specificity in other

interactions in the membrane lipid domain.

4.2.1 . Ro15-4513selectively blocks the effects of ethanol but not that of other alcohols

Further support for a •NO site model of action of alcohols is the finding that

butanol and longer-chain alcohols arc not sensitive to RoIS-4513, whereas the

potentiatingeffects of ethanol are blockedby this compound. In the present study, Ro15·

4513 blocked f1 urazcpam as well as ethanol potentiation of GAnA current but did not

affect the action of other diverse chemical agents. Plurazepam served as a positive

controlsince Ro15·4513 is known to block the potentiating effects of bcnzodlazcpinesor

GADAcurrent. To compare the effects of Ro15-4S13 on ethanol versus longer-chain

alcohols, equleffecuve concentrationsof the alcohols were used. In this case, 100 and

200 mM ethanol were roughly equivalent to 10 and 20 mM butanol concentrations.

Ro15-4S13completely blocked the potentiatingeffects of )oo and 200 mM cthanol, but

had no effect on the potentiating effects of butanol and bcptancl. Even concentrations of
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RO"15-4513 ten times greater than that needed to block ethanol had no influenceon the

response to butanolor heptancl.Since Ro15-4513 selectively blocked ethanol's actions

at 100and 200 mM, this would suggest that ethanol has a selective effect. In my work,

I did not sec evidencefor a low versus high dose effect of ethanol in Ud:J!"IlL receptors.

However, very high concentrations of ethanol (> 200 roM) were not used in my

experiments.

RoI5-4513, a bcnzodiazcpine receptor partial inverse agonist which acts close to

the bcnrodiazcpine siteon the GABA" receptor,has also been suggestedto bean alcohol

antagonist. Ro15-4513 blocks the effects of ethanol on CI" flux (Glowa et 01., 1989;

Suzdak et al. , 1986; reviewed in Tanclian er uf. • 1993). Reynolds et 01. (1992)

demonstratedthat Rol54513 (50-100 nM)inhibits the ability of ethanol to enhanceIo...",

in culturedrat cortical neurons. In an in vitrostudy in human neuronal tissue, Palmer et

at. (1990)suggestedthatRo15-4513antagonizes ethanol's effects by interactingindirectly

with cthanol through some allosteric mechanism. In an ill vivo study, Palmer el al.

(1988) demonstrated a noncompetitive antagonism of RolS-4513 on the effects of

ethanol.Waffordet 01. (1990)showedthat I I'M Ro15-4513 had no direct antagonistic

effectson GADAcurrent, but did inhibit ethanol's potentiatingeffect on Io...BA expressed

from l.S whole brain mouse mRNAin Xenopusoocytes.

A numberof studiessuggest that t heability of ethanol to enhanceGABAcurrent

involves the bcnrodiazepinebindin.~ site. Theability of ethanolto enhance loAu" maybe

due to an increasedefficiency of coupling between the bcnzcdiezcplnesite and the Cl'
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channe! (Reynolds et 01., 1992). Low ccnccuranons of Ro15·45l3 can antagonize the

effectsof ethanol at the GABA"receptor by binding to bcezodtazcplnc rccogntuon sites

associated with the receptor (Glowa ct af. • 1989). Suzdak et 111. (1986) suggested an

interactionof Ro15·4513with thebenzodiazcpincreceptor since theeffectsof Ro15-4513

(in vitro and in vivo) are completely blocked by bcnzodiazcpinc receptor antagonists. In

addition, Ro15-4513 blocks the behavioural effects of bcuzodiazcpinca, partlally

antagonizes the behavioural effects of ethanol, but docsnot blockthe behavioural effects

of barbiturates (Deacon el aI. , 1990}. The effects of Ro15·45 13on behavioural responses

to ethanol (including St:lf·administration) can be reversed with the benzodiazcpme

receptor antagonist Ro15-178B(Deacon et 01., 1990; June a at. , 1994). again suggesting

that these effects are mediatedthrough the benzodiazepine rece ptor complex.

It has been proposed that bcnzodiazcpines affect the rate constant involvedin the

binding of the first GABA molecule to the receptor (Macdonald and Olsen, 1994). In

their review, Macdonaldand Olsen(1994) staled that several drugs modify the GAllA...

receptorat different steps in either the binding or gating processes of GAllA...receptor

channel activation. Again, they propose that bcnzodtazcptncs affect the arnnny of the

firstGABAbindingsite tor GADA which ultimately causes an increase in the frequency

of channel opening. In other words, all increased association rate or a decreased

dissociationrate at the first bindingsite would account for increased open frequencies of

the GADAreceptor channel. Il is possible that ethanol affects the same rate constant as

benzodiazepines, but there are no published reports on ethanol's effects on GAllA at the
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single channel level. In conclusion, it appears that ethanol and benzodiazepines share

some part of a mechanism of action or induce some conformational shift which can be

blockedby RoI5·4513 .

4.3 . Variability in ethanol potentiation of ~"M

In this study, ethanol potentiated Io"M in some, but not all of the oocytes tested.

In fact, t hevariability with ethanol appeared to be seasonal. That is, ethanol failed to

potentiate GABA cur rents in oocytes from the same donor frog and injected with the

same RNA preparation at di fferent times of the year. It may be that the oocytes process

GADA" subunits in slightly different ways. However, this appeared to be critica l only

for ethanol since butanol always enhanced 1o...1IA' This idea of seasonal variability may

explain some of the discrepancies contained ill the literature concerning ethanol's ability

to modulate GADA" receptor function in oocytcs. Sigel et al. (1993) and Mihlc et al.

(:Q94a), using the same subunit combinations, were unable to replicate the results of

Wafford and Whiting (1992), who demonstrated potentiation orGABA currents with low

concentrations of ethanol (10-10 mM). Differences in subunits across species, different

experimental conditions, or posttrnnslational modification of the receptor channel in

di fferent batches of oocytes , were offered as possible explanations for the discrepant

results (Sigel et al. , 1993).Indeed, perhaps some posuranslauonal modification, such as

phosphorylation of the receptor or receptor subunit assembly, is different in oocytes at

different times of the year. The GABA" receptor complex h subject to phosphorylation
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via several protein kinases (Tanelian t't al. , 1993). According to Wafford and Whiting

(1992), the 'YIL subunit, which has a consensus sequence for phosphorylation by protein

kinase C, along with receptor phosphorylation may be necessary for modulation of

GABAA receptor functionby ethanol. However, we found that phosphorylation of the

receptor by PKCis not sufficientto cause ethanol sensitivity, since treatmentof oocyrcs

with OAO, which would activate endogenous PKC in cocyrcs. did not restore ethanol

sensitivity of the receptorcomplex.

4.4. Further evidence for protein theory of alcohol action at GABAA receptor

According to the lipid theory of alcohol action, as lipid solubility of the alcohol

increases (i.e. increasedmembrane/buffer partition cocfJicient), potency of the alcohol

for disordering membrane lipids increases exponentially (McCreery and Hunt, 1978;

Lyonet ai., 1981). In the present study, however, membrane/buffer partitioncoefficients

for l-butancl and 2-butanol did not predict their potency10potentiate GABAresponses.

In fact, 2-butanol was more potent in potentiating GABA currents than was l-butancl

even though z-butanolhas a lower membrane/buffer partition coefficient (l.c . 0.815 for

2-butanol comparedto 1.52 for l-butanol). Some groups have observed different cutoff

effects in alcohol potency as the number of C atoms increases with different types of

receptors (Li et al., 1994; Fan and Weight, 1994; Nakahiro el at. , 1991; Peoples and

Weight, 1994; Peoplesand Weight, 1995). For example, the cutoff for inhibitingNMDA

receptor-mediatedresponsesis 6-8 carbon atoms (Peoples and Weight, 1995). However,
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these longer-chainalcoholsare still able to Insertinto membranesand disorder membrane

lipids (increase fluidity). It has been suggested that alcohols interact directly with

hydrophobic pockets on the receptor proteins, and that bigger alcohol molecules are not

able to bind to the sire-specific hydrophobic pocketsand thus can not exert their effects

(Li et ul. , 1994; Peoples and Weight, 1995).

Wood ec ul. (1989) reported relatively small changes in membrane fluidity

induced by pharmacologically relevant concentrations of ethanol. Thus, levels of ethanol

which arc reached in the brain may not be sufficient to produce significant changes in

membrane fluidity. In addition, Harris et al. (1984) demonstrated that membrane

preparations preparedfromselectedlinesof animals(LS versus SS mice) showed sihlilar

changes in membrane fluidity when exposed to ethanol in vitro. Since ethanol-induced

changes in lipid fluidity were almost the same in the two lines of mice, this cannot

account for the striking behavioural differenceobservedin the two lines. Furthermore,

there is a strong argument for a specificaction of ethanolon the receptor protein versus

the membrane lipidsince there appearto berelativelystringent requirements for specific

subunits andlor pcsnranslauonal modifications of the receptor complex.

There was also a difference in the degreeof butanolpotentiationof GABAcurrent

expressed in oocytescontaining a ll3f'r'nversusaiJttll. receptorconstructs. In fact, there

were significantdifferencesin the receptors withrespect to their responses to both 1-and

2-butanol. Current responses with both alcohols were greater in cocytes expressing al

containing receptors. These results certainly supportthe ideaof an interaction of alcohols
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with the receptor protein. Similarly, effects of bcnzodiazcptucsvary dependingon subunit

composition, thai is, whether the Q'l or the Q'l subunit is present (Hadingham el ol. ,

1993a; Pula et al., 1991). Like benzodiazcpincs, it appears that alcoho ls va ry in their

affinities and efficaciesdependingon the type of I)" subunitpresent. Differential effects

of modulatory agents in response to changes in subunit composition suggests specific

interactions of those agents with the receptor complex.

4.4 .1. Effect of stereoiscmers of 2-butanol on ~ "'Il"

Moodyet aI. (1994) observed significant differences in potencies of( +). and (+

Isonurane, a volatile anesthetic, both in vilro and ill vim. They suggested from their

results, that proteins are the primary sites of anesthetic action. In contrast to what was

expected, (R)-2-butano! and (S)-2·butanol did not differ in their modulation of GAnA"

receptor function. A possibleexplanation for the observedsimilarity is that the structural

differences that do exist between the two molecules arc not great enough to significantly

alter drug effects. The stereolsomers are still relatively simple molecules. Even though

they are the simplest chiral alcohols, the molecules arc not sufficiently bulky or

complicated enough to have strict structure-activity relationships. Clearly, there is no

strict requirement for these molecules to interact with the GAllA" receptor.

4.5. Future research

The findings in the present study raise a number of new questions which should
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certainly be addressed in future to further our understanding of the structure-activity

relationships of alcohols on the GABAA receptor as wen as the influence of subunit

composition on these alcohols. One additional experiment would be to combine alcohols,

such as ethanol and butanol, to determine what effect this combination has on loAM

potentiation. Depending on whether the effect is additive, enhanced or attenuated

compared to their individual effects on lUAU'" it may be possible to distinguish if there

arc two closely linked sites on the GABAA receptor for the binding of different alcohols,

Another experiment which should be carried out is to determine what effect methanol has

on l..lAll'" 10 sec if there is a linear relationship between carbon chain length and its

effects on the GABAA receptor. In other words, it would be interesting to see if there is

a similarity in the effects of alcoho ls with j ust a difference in potency as carbon chain

length increases, or ifcthan ol is in a class by itself as a unique alcohol molecule because

of its size and physicochemical properties. In addition, equicffcetive concentrations of

GARA should be used to give a more accurate comparison of the effects of 1· and 2·

butanol on IUAM at 08 versus oIly receptor constructs.
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