Multiple-locus heterozygosity, physiology and growth at two different stages in the life cycle of the Chilean oyster Ostrea chilensis

Jorge E. Toro1*, Ana M. Vergara1, Ricardo Gallegillos2

1Instituto de Biología Marina, Universidad Austral de Chile, Casilla 567, Valdivia, Chile
2Universidad Católica de la SSma. Concepción, Casilla 297, Concepción, Chile

ABSTRACT: A random sample of 150 individuals of a laboratory-produced cohort of Ostrea chilensis Philippi, 1845 was taken at 10 and 36 mo of age to estimate physiological variables and individual heterozygosity using 4 loci (Lap, Pgi, Pgm and Ca). Juveniles of 10 mo of age showed a mean D value of 0.134 (p > 0.05) and a positive correlation between oyster size and multiple-locus heterozygosity (MLH) (p < 0.05). Also, there was a positive correlation (p < 0.05) between ingestion rate, absorption rate and MLH. A negative correlation between excretion rate (p > 0.05), oxygen consumption rate (p < 0.05) and MLH was found. The K2 value (standardized net growth efficiency) was positively correlated (p < 0.05) with MLH. At 36 mo a heterozygote deficiency was present with a mean value D = -0.431 (p < 0.05). No relationship between standard dry weight and MLH and also a negative correlation between the scope for growth and MLH were found. The oxygen consumption and excretion rates also showed an increase in large size individuals. The slopes for filtration and excretion rates against MLH were negative and not statistically significant. However, ingestion and absorption rates showed significant (p < 0.05) decrease with an increase in heterozygosity. The results seem to indicate that within sexually immature individuals of O. chilensis, a positive correlation between growth rate and MLH can be found, while in adults the higher energy allocation for reproduction precludes the detection of this relationship.

KEY WORDS: Growth · Heterozygosity · Ostrea chilensis · Oyster · Physiology

INTRODUCTION

The observation that multiple-locus allozyme heterozygosity (MLH) correlates positively and significantly with growth rate and metabolic efficiency has been made for many organisms (Mitton & Grant 1984). Among the marine invertebrates, higher age-specific growth rate has been demonstrated with increasing mean heterozygosity at electrophoretically detectable loci in natural populations of oysters (Singh & Zouros 1978, Zouros et al. 1980, Fujio 1982, Koehn & Shumway 1982), mussels (Koehn & Gaffney 1984, Diehl et al. 1986, Rodhouse et al. 1986, Gentili & Beaumont 1988), clams (Garton et al. 1984, Koehn et al. 1988) and snails (Garton 1984). Demonstration of a correlation between heterozygosity and growth rate depends on genetic structure of the population (Gaffney & Scott 1984), accuracy of age determination, and life stage sampled. When the energy is allocated largely to somatic growth rather than to reproduction, the correlation can disappear (Rodhouse et al. 1986).

Within the context of a balanced energy budget (Thompson & Bayne 1974), scope for growth represents the energy available for growth and reproduction, expressed as the difference between absorbed energy and energy lost through metabolic processes. According to this, the physiological basis by which more heterozygous individuals achieve higher average growth rates may include increasing metabolic efficiency (i.e. reduction of metabolic costs per unit...
weight) and/or increasing energy absorption (i.e. increased feeding rate or absorption efficiency or both). Several studies relate heterozygosity to metabolic parameters. They include standardized oxygen uptake during starvation in *Crassostrea virginica* (Koehn & Shumway 1982) and *Mytilus edulis* (Diehl et al. 1986), weight loss during starvation in *C. virginica* (Rodhouse & Gaffney 1984), protein turnover in *M. edulis* (Hawkins et al. 1986) and density-related stress in *M. edulis* (Gentili & Beaumont 1988). A more complete study carried out in *Mulinia lateralis* included the measurement of several metabolic parameters and showed that 'scope for activity' was positively correlated to heterozygosity (Garton et al. 1984). We describe here an experiment in which size, physiological variables (energy budget) and MLH were measured for individual *Ostrea chilensis* Philippin, 1845 from a cohort produced in the laboratory and grown in the field under uniform low-density conditions until 10 and 36 mo of age.

MATERIALS AND METHODS

Oysters. A cohort of *Ostrea chilensis*, collected during December 1987 from a natural spatfall from the wild population of *O. chilensis* at Quempillén River Estuary in Chile (45°52'S, 73°46'W), was used as parental stock. In September 1990, after 3 yr of growth under uniform conditions at Hueihue location (Chile) (41°58'S, 73°30'W), 800 randomly chosen oysters were taken as brood stock to produce a cohort in the laboratory. By using mass spawning it is not possible to determine how many individuals contribute genes to the offspring obtained; however, some estimation of the female contribution was made by the number in each brood of eyed larvae. The brooding oyster *O. chilensis* presents an average fecundity of 60,000 larvae per season (Toro & Chaparro 1990). Thus, from the amount of larvae released, more than 8.2 × 10^6, we assumed that at least 130 female had contributed larvae. This estimation of the female contribution may be an underestimation because in this species some of the eyed larvae released will set in as few as 5 min (Di-Salvo et al. 1983). The male contribution in this experiment can be assumed (about 300 to 400 males) by the percentage of males found in the field site during the spawning season that fluctuates between 45 and 60% of the population. The brood oysters were placed in a fiberglass tank and warmed from an ambient water temperature (around 12°C) to 18°C over a 4 wk period. Salinity during conditioning was 27 to 28 ppt, corresponding to the average salinity for the months of September to November in the estuary. The salinity variation in the Quempillén Estuary throughout the year ranges between 14 and 32 ppt with an annual average of 26 ppt, while the temperature fluctuates between 9 and 22°C with an annual average of 13°C. The water was filtered through a 5 μm filter and before heating, passed through an ultraviolet (UV) sterilizing unit. The water was changed daily and a mixture of *Isochrysis galbana*, Clone T-iso, and *Chaetoceros gracilis* Schutt was added continuously to a final concentration of 50 cell ml⁻¹. After 5 wk of conditioning, clean plastic plates (15 × 15 cm) were placed in the tank. The larval release and settlement occurred within 24 h. Each collector was labeled and transferred to a common rearing tank for 5 wk. Individually tagged juveniles were grown in the field under uniform low-density conditions (150 oysters m⁻²) following the procedures of Toro & Varela (1988). Samples of 150 randomly chosen oysters were collected at 10 mo of age (live weight: 0.104 to 1.570 g; shell height: 8 to 23.8 mm) and at 36 mo of age (just after the spawning season, live weight: 8.65 to 47.2 g; shell height: 34.6 to 66.9 mm) in order to make direct, individual measurements of growth, energy budget and MLH.

Energy budget. For each individual oyster, after a period of 3 d of acclimatization in the laboratory, the following physiological variables were estimated or calculated, with 3 replicates each, in order to describe the energy budget at 13°C and 28 ppt salinity.

Filtration rate: This rate was determined indirectly by quantifying the rate of decrease in algal cell density in the experimental medium maintained in darkness (10 and 2 l for each oyster of 36 and 10 mo of age respectively). Initial algal concentration was 15 × 10⁶ cells of *Isochrysis galbana* per liter (Navarro & Winter 1982; Vergara et al. 1992). Every 2 h, algal concentration was measured by Coulter counter (ELZONE 180XY) and the initial concentration restored.

Organic ingestion rate: The amount of organic food ingested per unit time (mg organic matter d⁻¹) was calculated as the product of filtration rate (no pseudo-faeces were observed) and organic dry weight of *Isochrysis galbana* (Winter et al. 1984).

Assimilation efficiency (%): This was determined according to Conover (1966). Faeces were collected, washed and dried immediately at the end of each filtration rate experiment in order to avoid decomposition.

Absorption rate: The product of ingestion rate and assimilation efficiency was expressed in joules per day (J d⁻¹) (1 mg of organic material of *Isochrysis galbana* = 18.75 J; Whyte 1987).

Excretion rate: This was determined by measuring g ammonia nitrogen produced per oyster per hour (Solorzano 1969). Juvenile oysters were incubated in 100 ml and adult oysters in 300 ml of 0.45 μm filtered seawater for 5 h. Controls were filtered seawater from...
the same batch, without oysters, incubated at the same
time. Amount of ammonia nitrogen was transformed to
energy (1 mg NH₄-N= 24.8 J) using the coefficient of
Elliot & Davison (1975).

Respiration rate: This was measured in the appara-
tus described by Rios (1979). The oysters were starved
for 3 d in filtered seawater before the experiment
(standard or basal metabolism). Values for oxygen con-
sumption were expressed in ml O₂ h⁻¹ and transformed
to energy using the coefficient of Thompson & Bayne

Scope for growth: This was calculated as the differ-
ence between absorbed energy and energy loss to
excretion and respiration, expressed in J d⁻¹ (Warren &
Davison 1967).

Net growth efficiency (K2): The efficiency with
which organic material is transformed into body tissue
was the dividend of scope for growth divided by
absorbed energy (Winter et al. 1984).

Electrophoresis. After physiological evaluation, oys-
ters were placed in liquid nitrogen until electrophore-
sis. Starch gel electrophoresis was used to score loci for
leucine aminopeptidase (Lap, EC 3.4.1.1), glucose
phosphate isomerase (Gpi, EC 5.3.1.9.), carbonic anhy-
drase (Ca, EC 4.2.1.1) and phosphoglucomutase
(Pgm, EC 2.5.1.1) following Shaw & Prasad (1970), Selander
et al. (1971) and Ahmad et al. (1977). These 4 polymor-
phic loci were chosen because they have been already
used in earlier studies on Ostrea chilensis (Toro &
Agulla 1995).

For each locus, observed genotypic distributions
were compared with Hardy-Weinberg expectations
(G-test for goodness of fit) (Sokal & Rohlf 1981). Het-
erozygote deficiencies were expressed as
\[D = \frac{(H_e - H_o)}{H_e} \]
where \(H_e \) is the observed frequency of heterozy-
gotes and \(H_o \) the expected frequency.

Observed MLH distributions were determined by
counting the number of individuals heterozygous for 0,
1, ..., \(k \) loci. Because sample sizes varied among MLH
distributions, weighted least squares regressions were
employed for physiological variables on MLH.

Statistics and weight standardization. Weight-
specific rate functions were calculated in order to elim-
nate the differential weight of oysters on each physio-
logical rate and quantify only the genetic effect
(Packard & Boardman 1988). The weight stan-
dardization was carried out using analysis of covariance
(ANCOVAR) with dry tissue weight as the covariate,
physiological rate as the dependent variable and the
heterozygosity classes as the treatments. The appro-
priate regression coefficients were then used to adjust
individual physiological rates.

RESULTS

The percentage mortality of experimental oysters,
between settlement and 10 mo of age was 6% and
between the ages of 10 and 36 mo it was 27%. The 4
enzyme loci studied were in Hardy-Weinberg equilib-
imum in the 10 mo old juveniles (Table 1). However, in
the 36 mo old oysters of the same cohort Lap, Pgm and
Ca differed significantly from Hardy-Weinberg expecta-
tions with a deficiency of heterozygotes (Table 2).

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Observed</th>
<th>Expected</th>
<th>(\chi^2)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lap 100/100</td>
<td>0.516 (56)</td>
<td>0.567</td>
<td>0.12</td>
<td>ns</td>
</tr>
<tr>
<td>100/90</td>
<td>0.405 (46)</td>
<td>0.445</td>
<td>0.12</td>
<td>ns</td>
</tr>
<tr>
<td>90/90</td>
<td>0.079 (8)</td>
<td>0.087</td>
<td>0.02</td>
<td>ns</td>
</tr>
<tr>
<td>Pgi 100/100</td>
<td>0.478 (50)</td>
<td>0.525</td>
<td>0.13</td>
<td>ns</td>
</tr>
<tr>
<td>100/90</td>
<td>0.426 (52)</td>
<td>0.470</td>
<td>0.22</td>
<td>ns</td>
</tr>
<tr>
<td>90/90</td>
<td>0.096 (8)</td>
<td>0.105</td>
<td>0.02</td>
<td>ns</td>
</tr>
<tr>
<td>Pgm 100/100</td>
<td>0.515 (60)</td>
<td>0.567</td>
<td>0.13</td>
<td>ns</td>
</tr>
<tr>
<td>100/95</td>
<td>0.405 (38)</td>
<td>0.445</td>
<td>0.22</td>
<td>ns</td>
</tr>
<tr>
<td>95/95</td>
<td>0.080 (12)</td>
<td>0.087</td>
<td>0.02</td>
<td>ns</td>
</tr>
<tr>
<td>Ca 100/100</td>
<td>0.226 (22)</td>
<td>0.265</td>
<td>0.13</td>
<td>ns</td>
</tr>
<tr>
<td>200/100</td>
<td>0.290 (32)</td>
<td>0.275</td>
<td>0.13</td>
<td>ns</td>
</tr>
<tr>
<td>150/100</td>
<td>0.290 (32)</td>
<td>0.275</td>
<td>0.13</td>
<td>ns</td>
</tr>
<tr>
<td>200/200</td>
<td>0.063 (8)</td>
<td>0.071</td>
<td>0.02</td>
<td>ns</td>
</tr>
<tr>
<td>200/150</td>
<td>0.063 (8)</td>
<td>0.143</td>
<td>0.13</td>
<td>ns</td>
</tr>
<tr>
<td>150/150</td>
<td>0.063 (8)</td>
<td>0.071</td>
<td>0.02</td>
<td>ns</td>
</tr>
</tbody>
</table>

Table 1: Ostrea chilensis. Observed number of genotypes (Lap, Pgi, Pgm, Ca) in the cohort at 10 mo. Expected number for Hardy-Weinberg and \(\chi^2 \) is also shown. Numbers in parentheses correspond to observed and expected genotypes. ns: not significant; N = 110

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Observed</th>
<th>Expected</th>
<th>(\chi^2)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lap 100/100</td>
<td>0.438 (70)</td>
<td>0.438</td>
<td>0.00</td>
<td>ns</td>
</tr>
<tr>
<td>100/90</td>
<td>0.448 (48)</td>
<td>0.448</td>
<td>0.00</td>
<td>ns</td>
</tr>
<tr>
<td>90/90</td>
<td>0.114 (24)</td>
<td>0.114</td>
<td>0.00</td>
<td>ns</td>
</tr>
<tr>
<td>Pgi 100/100</td>
<td>0.690 (100)</td>
<td>0.690</td>
<td>0.00</td>
<td>ns</td>
</tr>
<tr>
<td>100/90</td>
<td>0.281 (36)</td>
<td>0.281</td>
<td>0.00</td>
<td>ns</td>
</tr>
<tr>
<td>90/90</td>
<td>0.029 (6)</td>
<td>0.029</td>
<td>0.00</td>
<td>ns</td>
</tr>
<tr>
<td>Pgm 100/100</td>
<td>0.702 (108)</td>
<td>0.702</td>
<td>0.00</td>
<td>ns</td>
</tr>
<tr>
<td>100/95</td>
<td>0.272 (22)</td>
<td>0.272</td>
<td>0.00</td>
<td>ns</td>
</tr>
<tr>
<td>95/95</td>
<td>0.026 (12)</td>
<td>0.026</td>
<td>0.00</td>
<td>ns</td>
</tr>
<tr>
<td>Ca 100/100</td>
<td>0.338 (48)</td>
<td>0.338</td>
<td>0.00</td>
<td>ns</td>
</tr>
<tr>
<td>200/100</td>
<td>0.099 (14)</td>
<td>0.099</td>
<td>0.00</td>
<td>ns</td>
</tr>
<tr>
<td>150/100</td>
<td>0.197 (28)</td>
<td>0.197</td>
<td>0.00</td>
<td>ns</td>
</tr>
<tr>
<td>200/200</td>
<td>0.169 (24)</td>
<td>0.169</td>
<td>0.00</td>
<td>ns</td>
</tr>
<tr>
<td>200/150</td>
<td>0.113 (16)</td>
<td>0.113</td>
<td>0.00</td>
<td>ns</td>
</tr>
<tr>
<td>150/150</td>
<td>0.064 (12)</td>
<td>0.064</td>
<td>0.00</td>
<td>ns</td>
</tr>
</tbody>
</table>

Table 2: Ostrea chilensis. Observed number of genotypes (Lap, Pgi, Pgm, Ca) in the cohort at 36 mo. Expected number for Hardy-Weinberg and \(\chi^2 \) is also shown. Numbers in parentheses correspond to observed and expected genotypes. ns: not significant; N = 142; *p < 0.05
Table 3. *Ostrea chilensis*. Average values for D in each locus (Lap, Pgi, Pgm, Ca) and weight class category and their correlations (r) with the oyster log dry weight. *p < 0.05; **p < 0.01

<table>
<thead>
<tr>
<th>Weight class (g)</th>
<th>Locus</th>
<th>10 months</th>
<th>36 months</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean D</td>
<td>r</td>
<td>mean D</td>
</tr>
<tr>
<td>0 - 0.014</td>
<td>0.013</td>
<td>0.026</td>
<td>0.039</td>
</tr>
<tr>
<td>0.013 - 0.027</td>
<td>0.013</td>
<td>0.026</td>
<td>0.039</td>
</tr>
<tr>
<td>> 0.041</td>
<td>0.360</td>
<td>0.720</td>
<td>1.080</td>
</tr>
</tbody>
</table>

The relative viabilities (Alvarez et al. 1989) between 10 and 36 mo for heterozygotes were 0.347 (Pgm), 0.364 (Ca), 0.710 (Lap) and 0.379 (Pgi).

The 2 age classes were divided into 4 subgroups each, based on individual dry weight. Table 3 shows the distributions of D for each locus and averages over loci in 4 weight groups. From the data it can be seen that the deficiency of heterozygotes is not equally distributed over weight and age classes. The higher weight classes are not deficient in heterozygotes in 10 mo old oysters, showing a positive value of D and a negative value of D in the smallest group of the cohort, while the opposite can be observed in 36 mo old oysters at 2 loci.

A positive and significant relation between standard dry weight and MLH was found for the 10 mo old juveniles of the cohort (Fig. 1a). After adjustment for the regressions of energy budget parameters on estimated somatic dry weight, there was a significant positive relationship between scope for growth and MLH among 10 mo old oysters (Table 4). Regressions of ingestion rate, absorption rate, net growth efficiency (K2) and total energy gains against MLH were each positive and significant (Table 4). Respiration rate (weight-specific metabolic costs) showed a negative and significant relationship with MLH, while excretion rate and total energy losses showed a negative trend to heterozygosity, but not significantly (Table 4). MLH explained 17.9% of the variation in weight-corrected metabolic energy gains and 8% of the variation in weight-specific metabolic costs (Table 4, Fig. 1).
growth efficiency (K_2) and total energy gains, against MLH were each negative and significant (Table 5). Respiration rate and total energy losses (weight-specific metabolic costs) each showed a positive and significant relationship with MLH, while excretion rate showed a negative trend to heterozygosity, but not significantly (Table 5). There was no relationship between standard dry weight and MLH (Fig. 2a).

DISCUSSION

Deficiency of heterozygotes in marine bivalves is a well-known phenomenon. Laboratory studies (Mallet et al. 1985, Gaffney et al. 1990) and studies using wild populations (Gosling & Wilkins 1985, Gosling & McGrath 1990) in *Mytilus edulis* have found this deficiency. In oysters, several studies have reported this phenomenon (Singh & Zouros 1978, Zouros et al. 1980 for *Crassostrea virginica*, Guinez & Gallegillos 1985 for *Ostrea chilensis*). The results in the present study, however, are not in accord with those reported by Singh (1982) where the average observed heterozygosity increased and average D (over loci) decreased with increasing age in wild cohorts of *C. virginica*. In laboratory studies with mussels an overall deficiency of heterozygotes was found at the juvenile stage but not at the spat stage (Beaumont 1991), suggesting selection against heterozygotes as the most probable cause. Such selection would also explain the results found in the laboratory-produced cohort of *O. chilensis* in this study. Alvarez et al. (1989), working with *O. edulis*, report a strong negative correlation between heterozygosity and viability with a mean viability of heterozygote oysters for 1, 2 and 3 loci of 0.51 ± 0.12, between 18 and 30 mo of age, a value that is close to the one found in the present study (0.46 ± 0.17).

A form of a balancing selection proposed by Singh (1982) could explain the increasing deficiency of heterozygotes with age, by genotype-dependent mortality after settlement. *Ostrea chilensis* broods its larvae within the mantle cavity until the eyed larval stage, with a very short planktonic period that ranges between 5 min and 48 h (DiSalvo et al. 1983). The fast growing heterozygous spat will have higher food (phytoplankton) requirements after their settlement during the last week of December (summer), when the number of cells l⁻¹ of natural phytoplankton shows a marked decrease in the Quempillen Estuary (Toro 1985, Senn 1993). These heterozygous individuals will then face starvation and mortality, producing the heterozygote deficiency in the later stages of the life cycle of the *O. chilensis* cohort (Toro & Vergara 1995). Another alternative hypothesis to explain the increasing
Ostrea chilensis. Regressions of (a) dry weight, (b) scope for growth and (c) energy gain and losses on multiple-locus heterozygosity in 36 mo old oysters. Values are means ± SE. See also Table 5

The deficiency of heterozygotes was not evenly distributed among the weight classes within each cohort (Table 3), with negative values for D in the smallest group and positive values of D in the heaviest group for the 10 mo old cohort. The opposite was found in the 36 mo old cohort. This was reflected in the energy budget correlations, showing that the lower scope for growth was found within the more heterozygote deficient oysters (Figs. 1c & 2c).

A lack of a strong single-locus effect between metabolic costs and heterozygosity does indicate that the influence of heterozygosity is additive across loci in the 10 mo old oysters, resulting in heterosis for genotype-dependent growth rate (Fig. 3). This heterosis for growth rate has been observed in other mollusc species (Singh & Zouros 1978, Garton et al. 1984, Koehn & Gaffney 1984).

These results are in accordance with those carried out in older (>2 yr) individuals by Foltz & Zouros (1984) in Placopecten magellanicus and by Beaumont et al. (1985) in Pecten maximus. These authors failed to show a growth rate/heterozygosity correlation. The reason suggested by Rodhouse et al. (1986) is the increasing allocation of energy to gamete production in these older individuals. In bivalves the somatic growth exceeds gamete production in early life, reaches a peak in intermediate age individuals and then declines in later life, while gamete production is null or low in early stages of the life cycle, but increasing throughout the life of the bivalve (Thompson 1984).

The relationship shown in Fig. 2a corresponds to standard somatic dry weight after spawning (during the brooding period), thus there were no gametes included in the weight. As stated before, Ostrea chilensis broods its larvae for a period of 5 to 8 wk, requiring higher energy costs during the brooding period that may contribute to weight loss (Chaparro et al. 1993). These higher energy costs can be reflected in the negative scope for growth shown in Fig. 2b and also the higher oxygen consumption reflected in the total energy losses in Fig. 2c.

Although this cohort of oysters was produced in the laboratory using mass spawning, we calculated that at least 130 females had contributed larvae. Thus, this
cohort cannot be treated as a product of restricted matings to explain the lack of a positive heterozygosity/growth correlation in the presence of a significant deficiency of heterozygotes (Beaumont 1991).

Our findings are consistent with other reports that have demonstrated energetic advantages of more heterozygous individuals. In sexually immature juveniles of Ostrea chilensis produced by mass spawning in the laboratory, a positive correlation between growth rate and MLH can be found, while in adults the higher energy allocation for reproduction precludes the detection of this positive relationship with growth rate.

Acknowledgements. This paper is dedicated to the memory of our dear friend and colleague Dr Jürgen E. Winter. This work was supported by FONDECYT 91-0897, the Dirección de Investigacion y Desarrollo UACH Grant S-94-18 and the International Foundation for Science IFS grant A/621.

LITERATURE CITED

Senn CM (1993) Influencia del *b*roplancton y de las variables ambientales asociadas sobre la tasa de crecimiento en *Ostrea chilensis* (Philippi, 1845) en cinco localidades de la isla de Chiloé, Chile. Thesis. Universidad Austral de Chile, Valdivia

Sokal RR, Rohlf FJ (1981) Biometry. WH Freeman, San Francisco

This article was submitted to the editor

Revised version accepted: November 9, 1995

Manuscript first received: August 22, 1995