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ABSTRACT: A random sample of 150 individuals of a laboratory-produced cohort of Ostrea chllensis 
Philippi, 1845 was taken at 10 and 36 mo of age to estimate physiological variables and individual 
heterozygosity uslng 4 loci (Lap, Pgi, Pgm and Ca). Juveniles of 10 mo of age showed a mean Dvalue of 
0.134 (p > 0.05) and a positive correlation between oyster size and multiple-locus heterozygosity (MLH) 
(p < 0.05). Also, there was a positive correlation (p < 0.05) between ingestion rate, absorption rate and 
MLH. A negative correlation between excretion rate (p > 0.05), oxygen consumption rate (p < 0.05) and 
MLH was found. The K2 value (standardized net growth efficiency) was positively correlated (p < 0.05) 
with MLH. At 36 mo a heterozygote deficiency was present with a mean value D = -0.431 (p < 0.05). No 
relationship between standard dry weight and MLH and also a negative correlation between the scope 
for growth and MLH were found. The oxygen consumption and excretion rates also showed an ~ n -  
crease in large size individuals. The slopes for f~ltration and excretion rates against MLH were negative 
and not statistically slgnif~cant. However, ingestion and absorption rates showed significant (p < 0.05) 
decrease with an increase in heterozygosity. The results seem to indicate that within sexually immature 
individuals of 0. chilensls, a positive correlation between growth rate and MLH can be found, while in 
adults the higher energy allocation for reproduction precludes the detection of this relationship. 
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INTRODUCTION 

The observation that multiple-locus allozyme hetero- 
zygosity (hlLH) correlates positively and significantly 
with growth rate and metabolic efficiency has been 
made for many organisms (Mltton & Grant 1984). 
Among the marine invertebrates, higher age-specific 
growth rate has been demonstrated with increasing 
mean heterozygosity at  electrophoretically detectable 
loci in natural populations of oysters (Singh & Zouros 
1978, Zouros et al. 1980, Fujio 1982, Koehn & Shum- 
way 1982), mussels (Koehn & Gaffney 1984, Diehl et  al. 
1986, Rodhouse et  al. 1986, Gentili & Beaumont 19881, 
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clams (Garton et  al. 1984, Koehn et  al. 1988) and snails 
(Garton 1984). Demonstration of a correlation between 
heterozygosity and growth rate depends on genetic 
structure of the population (Gaffney & Scott 1984), 
accuracy of age determination, and life stage sampled. 
When the energy is allocated largely to somatic growth 
rather than to reproduction, the correlation can dis- 
appear (Rodhouse et  al. 1986). 

Within the context of a balanced energy budget 
(Thompson & Bayne 1974), scope for growth repre- 
sents the energy available for growth and reproduc- 
tion, expressed as the difference between absorbed 
energy and energy lost through metabolic processes. 
According to this, the physiological basis by which 
more heterozygous individuals achieve higher average 
growth rates may include increasing metabolic effi- 
ciency (i.e. reduction of metabolic costs per unit 
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weight) and/or increasing energy absorption (i.e. 
increased feeding rate or absorption efficiency or 
both). Several studies relate heterozygosity to meta- 
bolic parameters. They include standardized oxygen 
uptake during starvation in Crassostrea virginica 
(Koehn & Shumway 1982) and Mytilus edulis (Diehl et 
al. 1986), weight loss during starvation in C. virginica 
(Rodhouse & Gaffney 1984), protein turnover In M. 
edulis (Hawkins et al. 1986) and density-related stress 
in M. edulis (Gentili & Beaumont 1988). A more com- 
plete study carried out in Mulinia lateralis included the 
measurement of several metabolic parameters and 
showed that 'scope for activity' was positively corre- 
lated to heterozygosity (Garton et al. 1984). We 
describe here an experiment in which size, physiologi- 
cal variables (energy budget) and MLH were mea- 
sured for individual Ostrea chilensis Philippi, 1845 
from a cohort produced in the laboratory and grown in 
the field under uniform low-density conditions until 10 
and 36 mo of age. 

MATERIALS AND METHODS 

Oysters. A cohort of Ostrea chilensis, collected dur- 
ing December 1987 from a natural spatfall from the 
wild population of 0 .  chilensis at Quempillen River 
Estuary in Chile (45"52'S, 73"46'W), was used as 
parental stock. In September 1990, after 3 yr of growth 
under uniform conditions at Hueihue location (Chile) 
(4 1" 58' S, 73" 30' W), 800 randomly chosen oysters 
were taken as brood stock to produce a cohort in the 
laboratory. By using mass spawning it is not possible to 
determine how many individuals contribute genes to 
the offspring obtained; however, some estimation of 
the female contribution was made by the number in 
each brood of eyed larvae. The brooding oyster 0. 
chilensis presents an average fecundity of 60000 lar- 
vae per season (Toro & Chaparro 1990). Thus, from the 
amount of larvae released, more than 8.2 X 106, we 
assumed that at least 130 female had contributed lar- 
vae. This estimation of the female contribution may be 
an underestimation because in this species some of the 
eyed larvae released will set in as few as 5 min (Di- 
Salvo et al. 1983). The male contribution in this exper- 
iment can be assumed (about 300 to 400 males) by the 
percentage of males found in the field site during the 
spawning season that fluctuates between 45 and 60 % 
of the population. The brood oysters were placed in a 
fiberglass tank and warmed from an  ambient water 
temperature (around 12°C) to 18°C over a 4 wk period. 
Salinity during conditioning was 27 to 28 ppt, corre- 
sponding to the average salinity for the months of Sep- 
tember to November in the estuary. The salinity varia- 
tion in the Quempillen Estuary throughout the year 

ranges between 14 and 32 ppt with an annual average 
of 26 ppt, while the temperature fluctuates between 9 
and 22°C with an annual average of 13°C. The water 
was filtered through a 5 pm filter and before heating, 
passed through an ultraviolet (UV) sterilizing unit. The 
water was changed daily and a mixture of Isochrysis 
galbana, Clone T-iso, and Chaetoceros gracilis Schutt 
was added continuously to a final concentration of 
50 cell pl-l After 5 wk of conditioning, clean plastic 
plates (15 X 15 cm) were placed in the tank. The larval 
release and settlement occurred within 24 h.  Each col- 
lector was labeled and transferred to a common rear- 
ing tank for 5 wk. Individually tagged juveniles were 
grown in the field under uniform low-density condi- 
tions (150 oysters m-2) following the procedures of Toro 
& Varela (1988). Samples of 150 randomly chosen oys- 
ters were collected at 10 mo of age (live weight: 0.104 
to 1.570 g; shell height: 8 to 23.8 mm] and at 36 mo of 
age bust after the spawning season; live weight: 8.65 to 
47.2 g; shell height: 34.6 to 66.9 mm) in order to make 
direct, individual measurements of growth, energy 
budget and MLH. 

Energy budget. For each individual oyster, after a 
period of 3 d of acclimatation in the laboratory, the fol- 
lowing physiological variables were estimated or cal- 
culated, with 3 replicates each, in order to describe the 
energy budget at  13°C and 28 ppt salinity. 

Filtration rate: This rate was determined indirectly 
by quantifying the rate of decrease in algal cell density 
in the experimental medium maintained in darkness 
(10 and 2 l for each oyster of 36 and 10 mo of age 
respectively). Initial algal concentration was 15 X 106 
cells of Isochrysis galbana per liter (Navarro & Winter 
1982; Vergara et al. 1992). Every 2 h, algal concentra- 
tion was measured by Coulter counter (ELZONE 
180XY) and the initial concentration restored. 

Organic ingestion rate: The amount of organic food 
ingested per unit time (mg organic matter d-l) was 
calculated as the product of filtration rate (no pseudo- 
faeces were observed) and organic dry weight of Iso- 
chrysis galbana (Winter et al. 1984). 

Assimilation efficiency (%): This was determined 
according to Conover (1966). Faeces were collected, 
washed and dried immediately at the end of each 
filtration rate experiment in order to avoid decom- 
position. 

Absorption rate: The product of ingestion rate and 
assimilation efficiency was expressed in joules per day 
(J d-l) (1 mg of organic material of Isochrysis galbana = 
18.75 J; Whyte 1987). 

Excretion rate: This was determined by measuring 
g ammonia nitrogen produced per oyster per hour 
(Solorzano 1969). Juvenile oysters were incubated in 
100 ml and adult oysters In 300 m1 of 0.45 pm filtered 
seawater for 5 h. Controls were filtered seawater from 
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the same batch, without oysters, incubated at the same 
time. Amount of ammonia nitrogen was transformed to 
energy (1 mg NH,-N = 24.8 J) using the coefficient of 
Elliot & Davison (1975). 

Respiration rate: This was measured in the appara- 
tus described 'by Rios (1979). The oysters were starved 
for 3 d in filtered seawater before the experiment 
(standard or basal metabolism). Values for oxygen con- 
sumption were expressed in m1 O2 h-' and transformed 
to energy using the coefficient of Thompson & Bayne 
(1974) (1 m1 O2 = 19.9 J ) .  

Scope for growth: This was calculated as the differ- 
ence between absorbed energy and energy loss to 
excretion and respiration, expressed in J d-l (Warren & 
Davis 1967). 

Net growth efficiency (Kz): The efficiency with 
which organic material is transformed into body tissue 
was the dividend of scope for growth divided by 
absorbed energy (Winter et  al. 1984). 

Electrophoresis. After physiological evaluation, oys- 
ters were placed in liquid nitrogen until electrophore- 
sis. Starch gel electrophoresis was used to score loci for 
leucine aminopeptidase (Lap,  EC 3.4.1.1), glucose 
phosphate isomerase (Gpi, EC 5.3.1.9.), carbonic anhy- 
drase (Ca, EC 4.2.1.1) and phosphoglucomutase (Pgrn, 
EC 2.5.7 1.) following Shaw & Prasad (1970), Selander 
e t  al. (1971) and Ahmad et  al. (1977) These 4 polymor- 
phic loci were chosen because they have been already 
used in earlier studies on Ostrea chilensis (Toro & 
Aguila 1995). 

For each locus, observed genotypic distributions 
were compared with Hardy-Weinberg expectations 

(G-test for goodness of fit) (Sokal & Rohlf 1981). Het- 
erozygote deficiencies were expressed as D = (H,- He)/ 
H,, where H,, is the observed frequency of heterozy- 
gotes and H, the expected frequency. 

Observed MLH distributions were determined by 
counting the number of individuals heterozygous for 0,  
1, . . ., k loci. Because sample sizes varied among MLH 
distributions, weighted least squares regressions were 
employed for physiological variables on MLH. 

Statistics and weight standardization. Weight- 
specific rate functions were calculated in order to elim- 
inate the differential weight of oysters on each physio- 
logical rate and quantify only the genetic effect 
(Packard & Boardman 1988). The weight standardlza- 
tion was carried out using analysis of covariance 
(ANCOVAR) with dry tissue weight as the covanate, 
physiological rate as the dependent variable and the 
heterozygosity classes as the treatments. The appro- 
priate regression coefficients were then used to adjust 
individual physiological rates. 

RESULTS 

The percentage mortality of experimental oysters, 
between settlement and 10 mo of age  was 6"& and 
between the ages of 10 and 36 mo it was 27%. The 4 
enzyme loci studied were in Hardy-Weinberg equilib- 
rium in the 10 mo old juveniles (Table 1). However, in 
the 36 mo old oysters of the same cohort Lap, Pgm and 
Ca differed significantly from Hardy-Weinberg expec- 
tations with a deficiency of heterozygotes (Table 2).  

Table 1 Ostrea chilensis. Observed number of genotypes Table 2.  Ostrea chjlensis Observed number of genotypes 
(Lap.  Pgj, Pgrn, Ca)  in the cohort at 10 mo. Expected number ( L a p ,  Pgi, Pgm, Ca) in the cohort at  36 mo. Expected number 
for Hardy-Weinberg and x2is also shown. Numbers in paren- for Hardy-Weinberg and x2 1s also shown. Numbers in paren- 
theses correspond to observed and expected genotypes. ns: theses correspond to observed and expected genotypes. ns: 

not significant; N = 110 not significant; N = 142; ' p  < 0.05 

Genotype 
p-- 

Lap 100/100 
100/90 
90/90 

Pg1 100/100 
100/90 
90/90 

Pgm 100/100 
100/95 
95/95 

Ca 100/100 
200/100 
150/100 
200/200 
200/150 
150/150 

Observed Expected. X' P Genotype 

Lap 100/100 
100/90 
90/90 

Pgi 100/100 
100/90 
90/90 

Pgm 100/100 
100/95 
95/95 

C a  100/100 
200/100 
150/100 
200/200 
200/150 
150/150 

Observed Expected x2 P 
-- 

0.438 ( 7 0 )  ( 6 2 )  
0.448 ( 4 8 )  ( 6 4 )  
0.114 ( 2 4 )  ( 1 6 )  8.50 

0.690 (100)  ( 9 8 )  
0.281 ( 3 6 )  ( 4 0 )  1.35 ns 
0.029 ( 6 )  (4 1 
0.702 (108)  (100)  
0.272 ( 2 2 )  (38)  26.171 
0.026 ( 1 2 )  ( 4 )  

0.338 (48)  ( 3 3 )  
0.099 ( 1 4 )  ( 3 8 )  
0.197 ( 2 8 )  ( 3 3 )  40.788 . 
0.169 ( 2 4 )  ( 1 1 )  
0.113 ( 1 6 )  ( 1 9 )  
0.084 ( 1 2 )  ( 8 )  
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Table 3. Ostrea chilensis. Average values for D in each locus 
(Lap, Pgi, Pgrn, Ca) and weight class category and their corre- 
lations [r) wlth the oyster log d.ry we~ght .  'p < 0.05; "p < 0 01 

A 

m 
10 months 
Locus Oyster dry weight class (g) 

0- 0.014- 0.027- >O.O41r 
0.013 0.026 0.039 

Lap -0.659 0.181 0.310 0.384 0.837" 
Pgi -0.206 0.005 0.390 0.396 0.613" 
Pgm -0.321 0.211 0.198 0.486 0.784" 
Ca 0 . 1 2 7  0.264 0.231 0.415 0.921" 
MeanD -0.328 0.165 0.282 0.420 

36 months 
Locus Oyster dry weight class (g) 

0- 0.361- 0.721- >1.081 
0.360 0.720 1.080 

Lap 0.200 0.150 0.074 0.060 -0.940" 
Pgi 0.124 0.119 0.217 -0.213 -0.579" 
P9m 0.054 0.096 0.099 0.083 0.358' 
Ca 0.353 -0.430 -0.645 -0.357 -0.292 
Mean D 0.182 -0.016 -0.063 -0.106 

The relative viabilities (Alvarez et al. 1989) between 10 
and 36 mo for heterozygotes were 0.347 (Pgm), 0.364 
(Ca), 0.710 (Lap) and 0.379 (Pgi). 

The 2 age classes were divided into 4 subgroups 
each, based on individual dry weight. Table 3 shows 
the distributions of D for each locus and averages over 
loci in 4 weight groups. From the data it can be seen 
that the deficiency of heterozygotes is not equally dis- 
tributed over weight and age classes. The higher 
weight cl.asses are not deficient in heterozygotes in 
10 mo old oysters, showing a positive value of D and a 
negative value of D in the smallest group of the cohort, 
while the opposite can be observed in 36 mo old oys- 
ters at 2 loci. 

A positive and significant relation between standard 
dry weight and MLH was found for the 10 mo old juve- 
niles of the cohort (Fig. l a ) .  After adjustment for the 
regressions of energy budget parameters on estimated 
somatic dry weight, there was a significa.nt positive 
relationsh~p between scope for growth and MLH 
among 10 mo old oysters (Table 4 ) .  Regressions of 
ingestion rate, absorption rate, net growth efficiency 
(K2) and total energy gains against MLH were each 
positive and significant (Table 4). Respiration rate 
(weight-specific metabolic costs) showed a negative 
and significant relationship with MLH, while excretion 
rate a.nd total energy losses showed a negative trend to 
heterozygosity, but not significantly (Table 4 )  MLH 
explained 17.9% of the variation in weight-corrected 
metabolic energy gains and 8% of the variation in 
weight-specific metabolic costs (Table 4, Fig. 1). 

1 = Energy Gain (p c 0.05) 
0 = Energy Loss (p < 0.05) C I 

MEAN NUMBER HETEROZYGOUS LOClllNDlVlDUAL 

Fig. 1. Ostrea chllensis. Regressions of (a) dry weight, (b) scope 
for growth and (c) energy gain and losses on multiple-locus 
heterozygosity in 10 mo old oysters. Values are means * SE. 

See also Table 4 

The regressions after adjustment of energy budget 
parameters on est~mated somatic dry weight presented 
a significant negative relationship between scope for 
growth and MLH among 36 mo old oysters (Table 5). 
Regressions of ingestion rate, absorption rate, net 
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Table 4 .  Ostrea chilensjs. Analyses of weight-spec~fic energy budget components on multiple-locus heterozygosity (MLH) in 
10 mo old oysters. OM: organlc matter; ns: not slgnificant; N = 110, 'p  < 0.05 

Parameter 
- 

Filtration rate ( I  h-' oyster-') 
Organic ingestion rate (mg  O M  d.' oyster-') 
Absorpt~on rate (mg O M  d.' oyster-') 
Excretion rate ( q  NH.,-N d-' oyster-') 
Respil-ation rate (m1 O2 d.' oyster-') 
Scope for growth (J d ' oyster-') 
Net growth efficiency (K,) 
Total energy gains (J d-' oyster-') 
Total energy losses (J d-l oyster ' )  

- p p  P 

Equation 

0.067 - 0.014(MLH) 
0.615 + 0 192(MLH) 
0.712 + O.l44(MLH) 

36.876 - 0.521(MLH) 
0.456 - 0.0851MLH) 
2.748 + 0.842(MLH) 
0.211 + 0.162(MLH) 

10.537 + 1.269(MLH) 
6.741 - 0.564(MLH) 

Table 5. Ostrea chilends. Analyses of weight-speclflc energy budget components on multiple-locus heterozygosity (MLH) in 
36 mo old oysters. OM: organlc matter; ns: not slgnificant; N = 142; ' p  < 0.05; ' ' p  c 0.01 

Parameter Equation r P 

Filtration rate (1 h-' oyster-') 
Organlc ingestion rate (mg OM d.: oyster-') 
Absorpt~on rate (mg O M  d-' oyster-') 
Excretion rate (g Nf I,-N d.' oyster ' )  
Respiration rate (m1 O2 d-' oys t e r ' )  
Scope for growth (J d-' oyster-') 
Net growth efficiency (K2) 
Total energy gains (J d-' oyster-') 
Total energy losses (J d-' oyster-') 

growth efficiency (K2)  and total energy gains, against 
MLH were each negative and significant (Table 5). 
Respiration rate and total energy losses (weight- 
specific metabolic costs) each showed a positive and 
significant relationship with MLH, while excretion rate 
showed a negative trend to heterozygosity, but not 
significantly (Table 5). There was no relationship 
between standard dry weight and MLH (Fig. 2a). 

DISCUSSION 

Deficiency of heterozygotes in marine bivalves is a 
well-known phenomenon. Laboratory studies (Mallet 
et al. 1985, Gaffney et al. 1990) and studies using wild 
populations (Gosling & Wilkins 1985, Gosling & 
McGrath 1990) in Mytilus edulis have found this defi- 
ciency. In oysters, several studies have reported this 
phenomenon (Singh & Zouros 1978, Zouros et al. 1980 
for Crassostrea vjrginica, Guinez & Gallegillos 1985 for 
Ostrea chilensjs). The results in the present study, 
however, are not in accord with those reported by 
Singh (1982) where the average observed heterozy- 
gosity increased and average D (over loci) decreased 
with increasing age in wild cohorts of C. vjrginica. In 
laboratory studies with mussels an overall deficiency of 
heterozygotes was found at the juvenile stage but not 

at the spat stage (Beaumont 1991), suggesting selec- 
tion against heterozygotes as the most probable cause. 
Such selection would also explain the results found in 
the laboratory-produced cohort of 0. chilensjs in this 
study. Alvarez et al. (1989), working with 0. edulis, 
report a strong negative correlation between heterozy- 
gosity and viability with a mean viability of heterozy- 
gote oysters for 1, 2 and 3 loci of 0.51 + 0.12, between 
18 and 30 mo of age, a value that is close to the one 
found In the present study (0.46 * 0.17). 

A form of a balancing selection proposed by Singh 
(1982) could explain the increasing deficiency of het- 
erozygotes with age, by genotype-dependent mortality 
after settlement. Ostrea chilensis broods its larvae 
within the mantle cavity until the eyed larvae stage, 
with a very short planktonic period that ranges be- 
tween 5 min and 48  h (DiSalvo et al. 1983). The fast 
growing heterozygous spat will have higher food 
(phytoplankton) requirements after their settlement 
during the last week of December (summer), when the 
number of cells 1-' of natural phytoplankton shows a 
marked decrease in the Quempillen Estuary (Toro 
1985, Senn 1993). These heterozygous individuals will 
then face starvation and mortality, producing the het- 
erozygote deficiency in the later stages of the life cycle 
of the 0. chilensjs cohort (Toro & Vergara 1995). An- 
other alternative hypothesis to explain the increasing 
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MEAN NUMBER HETEROZYGOUS LOClllNDlVlDUAL 

Fig. 2. Ostrea chilensis. Regressions of (a) dry weight, (b) scope 
for growth and (c) energy gain and losses on multiple-locus 
heterozygosity in 36 mo old oysters. Values are means * SE. 

See also Table 5 

deficiency of heterozygotes could be that multi-locus 
heterozygotes are victims of their own efficiencies at 
later stages of their life cycle. Reproduction is a very 
energy demandi.ng process and many oysters succumb 
to dlsease and/or are metabolically spent after gameto- 

genesis (Chaparro 1995). It could be possible that these 
very efficient oysters overproduce gametes and then 
attempt to brood more offspring than they can care for 
and still remain healthy and/or continue growing. 

The deficiency of heterozygotes was not evenly dis- 
tributed among the weight classes within each cohort 
(Table 3 ) ,  with negative values for D in the smallest 
group and positive values of D in the heaviest group 
for the 10 mo old cohort. The opposite was found in the 
36 mo old cohort. This was reflected in the energy bud- 
get correlations, showing that the lower scope for 
growth was found within the more heterozygote defi- 
cient oysters (Figs. l c  & 2c). 

A lack of a strong single-locus effect between meta- 
bolic costs and heterozygosity does indicate that the 
influence of heterozygosity is additive across loci in the 
10 mo old oysters, resulting in heterosis for genotype- 
dependent growth rate (Fig. 3). This heterosis for 
growth rate has been observed in other mollusc spe- 
cies (Singh & Zouros 1978, Garton et al. 1984, Koehn & 
Gaffney 3.984). 

These results for the 10 mo old oysters are in accor- 
dance with prevlous reports on the relationship 
between MLH and growth rate (Singh & Zouros 1978, 
Zouros et al. 1980, Fujio 1982, Koehn & Shumway 
1982, Garton 1984, Garton et al. 1984, Koehn & Gaff- 
ney 1984, Diehl et al. 1986, Rodhouse et al. 1986, Gen- 
tili & Beaumont 1988, Koehn et al. 1988). 

These results are in accordance with those carried 
out in older (>2 yr) individuals by Foltz & Zouros (1984) 
in Placopecten magellanicus and by Beaumont et al. 
(1985) in Pecten maximus. These authors failed to 
show a growth rate/heterozygosity correlation. The 
reason suggested by Rodhouse et al. (1986) is the 
increasing allocation of energy to gamete production 
in these older individuals. In bivalves the somatic 
growth exceeds gamete production in early life, 
reaches a peak in intermediate age individuals and 
then declines in later life, while gamete production is 
null or low in early stages of the life cycle, but increas- 
ing throughout the life of the bivalve (Thompson 1984). 
The relationship shown in Fig. 2a corresponds to stan- 
dard somatic dry weight after spawning (during the 
brooding period), thus there were no gametes included 
in the weight. As stated before, Ostrea chilensis broods 
its larvae for a period of 5 to 8 wk, requiring higher 
energy costs during the brooding period that may con- 
tribute to weight loss (Chaparro et al. 1993). These 
higher energy costs can be reflected in the negative 
scope for growth shown in Fig. 2b and also the higher 
oxygen consumption reflected in the total energy 
losses in Fig. 2c. 

Although this cohort of oysters was produced in the 
laboratory using mass spawnrng, we calculated that at 
least 130 females had contributed larvae. Thus, this 
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cohort cannot be treated as a product of restricted mat- erozygosity and growth. Biol J Llnnean Soc 44:273-285 

ings to explain the lack of a positive heterozygosity/ Beaumont AR, Gosling EM, Beveridge CM. Budd MD, Bur- 
nell GM (1985) Studies on heterozygosity and size in the 

growth correlation in the presence of a significant defi- scalloa Pecten maximus (L.). In: Gibbs PE led) Proc 19th 
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clency of heterozygotes (Beaumont 1991). Eur Mar Biol Symp, Cambridge University Press, Cam- 

Our findinqs are consistent with other reports that bndge, p 443-454 

have demonstrated energetic advantages of more het- Chaparro OR (1995) The brooding process in the Chilean oys- 
ter, Ostrea chilensis Philippi 1845. PhD thesis, Memorial 

erozygous individuals. In sexually immature juveniles University of Newfoundland, St. John's 
of Ostrea chilensis produced by mass spawning in the Chaparro OR, Thompson RJ, Ward JE (1993) In vivo observa- 
laboratory, a positive correlation between growth rate t ~ o n s  of larval brooding in the Chilean oyster, Ostrea 
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and MLH can be found, while in adults-the higher chllensis Philippl, 1845. Biol Bull 185365-372 

energy allocation for reproduction precludes the Connover R J  (1966). Assimilation of organic matter by zoo- 
plankton. Limnol Oceanogr 11:338-354 

detection of this positive relationship with growth rate. Diehl WJ, Gaffney PM, Koehn RK (1986) Physiological and 
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