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The main goal of this thesis is to give a complete .

and explicit de:crip_ti;n of Quillen's "+"construction
which yields for each’connected based CW-complex

T . (X,+) and perfect subgroup Ge, (X,») a connected

' based CW-complex (X',s) contpining (X,x) as a

. ' { “subcomplex such that the inclusion 1i:(X,#) S (xX',x) i

has the following two properties P 3
. T 5 i

i LW mdn ) o e o

.) . :
' is an epimorphism with kernel the normal “o.

closure of G in m (X,#) . “+ .

. \ (11) For g11 mx'-modulds A, 1 induges isoor -
phisms in all homology groups with loca} o
# " coefficientg determined by A. 3 i

Studies, of the "+“construction make a fairly

of _#ith local coef -

fidients - Unfor 19, there seems to
be no source available which really suits the’ purpose

of introducing a student into the material needed

here.

ar ' Thus, chapter I 1is concerned with a careful

development of the theory of homology with local

i
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cdefficients and, wherever possibfe, itsé relation to

ordinary singular homology. In particular, it'is shown |,
Y & that hohology with local coefficients can be described. - g
b, - by-functors having properties which are 'azlloqous to

R - the Eilenberg axioms for ir ogy.

¥ ” = i R ;
o We developr two main applications ‘of homology with |
local coefficients both of which’ can be viewed os -
1 nces of a 1 theortm due to Eilenberg i

* i uyinq that for a universal covezim; the’ equlvarxant

homology groupa of the total spxce uith coefficients .

in the m-modyle A (T “denotes the ‘fundamntal group A
of the base space) are -isomorphic to the homloqy . e H
groups of the base space with coefficients in the :
system of local coefficients determined 'hy A.

i : ©_ If in this stuation the bake ‘space is a’ K(M,1)," ’;‘ .

‘the—total space—will-be ble mun}ﬁr-—’_"_

_that the singular chain cémplex of the total space -~

. " forms a free resolution of the inteders reqardedasa ¢
, N-module with trivial action. But them the n-th %
.yhomology group of K(M,1) with local coefficients in

the system determined by the Tf-module A will be

" isomorphic to ‘Tp:: (z,n). 2 ) -
X .The functors Tor can be define‘d in a purely .
i > .
d | Algebraic manner. Thus, homology with local coeffi - 0 F ;
i - . o {
(8 5 . ¢ H
. ( -1 - . Ry "
€ : ’ . :
| 4 .
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cients in a K(n 1) establ.tshes a strong bridge

! between certain qusation,s in Axgeh:alc Topology . und .

Homo qgical Mgeb‘ra.

7. A° This !'r:idge daserves ever more_ attention in the’
light <of a theorem of Kan, and\Thux‘ston which gives .

for eveiy co}mectea Cw-complax X a group M .and a:

n\ap ),K(ﬂ,-1) ='X which 1nduces isomo:phisms in all

mology groups with local cuetficients. Furthe:mo:e,

S 2
" 2 can be reobtained, up t:c homotopy type. by apply\tng

the "rconstricon to the perfect kernel of the homo- "

- morphigm induced by .3 of fumiamental groups. \

. our second main appl].cation is a Whitehead type -+
theoren in terms:of homology.with local coefficients:
. ' map betieen CW-complexes inducing uomozpmsms in all

homology groups with local coeifl.cients and in funda =

It is;the ombination of these results, which - N

allows Baums].aq, Dyer a.nd Heller to reconstruct fopology .
inis, purely Algebraic manner within a suitable calegory
of fractions. Applications in condretd cases are still
o;;en to further investigations, " s & W *
& . .
- In cPapter II‘, we give a full description of the
"+"construction. Certain dﬁtyails are se}:azéted from the

. REEETTR




main £low of thoughts anci postponed witil later in the
) text. It 15 hoped that thi! serves well the ‘more advanced

reader who would not need the- detaixa anyway and the

not quite so experienced reader who might wish to ind

it N . somé supplementacy. information to the main preseitation. .

_‘ S ’

For the ccnvenience of the }uder, I .also 1nclude -

i\ four append‘zces on matezial in category thecry (L) general

abstrfict nonsense”, 1 we follow N, Steenrod's teminclogy);

. K ; e
-and,Homolochal Algebra, the Eundimental gruupo'j.d, cover-

ing spaces and CW-conplexes. These are designed to :

v estab'iish a lnk beween the backgtound a student should :

T & 1dea11y have after one ‘course in Alqebraic Topology

. according to J. F. Adams' 'suggestion 131 and the backgrou.nd -t '
needed in cheatext Also some/focacion 1s stipuhted theré,
X
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CHAPTER I s &
HOMOLOGY WITH LOCAL COBFFiCIENTS
. Introduction - . .

Hcmology with local coefﬂcients 1s a qenetalization
of singula: homolody with (triv:.al/ordinary) Coefficients
x m an ‘abelian: gmup, G ‘gbtained by baking into account
the stxucture of the fundamental groupuid of a’ given space
X .in a suitable way.. This is due ‘o N. Steenroa [st].
i " Instead of working w.u:n ‘a’fixed coefficient group;
we(work wrth a system of ccefficient groups in- X, which,

for, practical purposes, may roughly be visualized as

"follows

Above each."x € X, we have an ‘abelian-group
_.and‘‘each homotopy iclass of paths in< X gives rise to an

isomorphism betweén the groups at its end points. Férmally,
such'a systén is most advantageously desgribed by a functor -

from-the fundamental groupgid of . X into the {category of

abeliaq qxoup.s‘ .
In_sectibn 2, we show how singular simp\lj.aas i x
t can be lgs,ed‘ to'construct a chain complex that also reflects
inf‘armati’:n lcontained in the structure of a given system
. i P g ey

50f local co.e_fficlents in X




* .of abelian ‘groups. These functors’ are sﬂcwn tq sattisfy i Wb

’ deep consequencesdn view of more récent zesults'by, Kan- . ;

/ :
éectj,on 3 is dedicated to syscematie studies of

fundamental pmpetties of the resultiy’\homology grotps &

with local coefficients. The relau_onship between homology ’ &

with Ordinary and local coefflcients is well illustrated
by Theorem 3.10 ‘which enables us to understand Yomlogy - &
with local coefficients as functors from-a-category whose
objects™are triples (X, Q“G); " (X, A) being. a‘pair of
s G ‘a system of éaefncieziés

a Lﬁto the category -

properties analogous to the Eilenherg-steenrod axion\s for
ozdinary homology. Indeed, these Finctors reduce to. ok

ordinary homology functors on Suitable 'subcategories. . - \

In section 4, we deal with results: of ‘Eilenberg °
"[E] establishinga 1ink betweér the homology with local
,coéfﬁc{ents/éf the base spacs of a covering projecuén )
with the- equivaziant homology of the total space tnduced i

by the group of covsring transformations., This link has

Thuxstcn [X-T] and Baumslag Dyer, Heuer [B-D—H]. Using'
Euenberg s theorem, these tesults -allow us-to reconstruct E
homclugy of spaces by algehxaic means within a suitabla

egory.

‘In section 5, we study ‘homology with lccal *

‘coefficients ini’ cw—cmnplexes. In the first part, we shou

that ms ‘cor ng the * homol

of n-cell adjunctiens can be generalized to an/a;igous




'céefficients in’ 6 wmceﬁead's 'ho’ok' : "izlements of

Acc albg: to’ our’ matn :ask' na.lnelyy to provide

background fo tha A"+"’construc\:ion of Quillen the\a
: materzal of Chaptér T has bYen arrqnqed s ds to .

facLlitate tﬂe results of sec:ibns _,s Apart Erom that "

holqology deiived out of ‘1ocal cdechlents whlch are nJc

treated her

nomotopy /b 1ogy of (1ocar1y trivlal) fibre .

blmdles which actually mctivated Bteentod Isy]..”

AThe homo(:opy. motlvation\ﬁctf 1oca1 coefficients u

_dhvmus ) Ry . B

(11) Dbst:uction theory: Lat (Y,X) - be an - hgell -

¥ adj\mctlonwith attachinq maps w,\ : s'}: tixy
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nsame. S0 we get “ A g '

of, (8%,

s“ L 1t teyeanyito see .uh.z..n that £ can

* be extended to amap Fr¥-%z, F|y = f iff for all,

S gn=d
Ao, fou; s 'Sy

+ % 'is homotopically trivial. Let-* be’

a base point for 37", s £ogy (*) =z forall-i,

“then ew)‘ repxesents an elen\ent of Wi 1(z.z ), ‘and

we’ obta/in a well defined e].ement’

D el € om (1,0, w22, IR

Whose vanishing is a ndtessary and sufficient condition

for - £ to be extendable. . c
In general, however, 'fop, will represent an’
2 SEEN

element'of m,_,(4,2)), the, z,' s'not all being the

i) € Hom (1, (4,X), 8w _,(2,2])
zez "7 .

whicp’i‘s an element of the n-th cochain group of (¥)X)
with coeffidients in the system m . (2,6%).°
A "
N
1." , systems of ILgcal coefficients

In this section, we study systems. of local

- coefficients in a space X. Starting with elementary
t

g N . o
hat such a’system il already urtiquely determined (up

. -4 -,

roperties, we work our way up to the point where we see
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e Systems of Local Coefficients . B
T

‘action of (XX, ) fon “Gxy for any" x, € X, provided

“that X 15 path connected. In turn, ehis informatioh is i

ut:lized to derive criteria for systems of local

coeffxaients in a« O-connected space to he natulal

equivalent. - : R

groupom and 4 the category of ‘abelian groups.

‘A ontxavariant’ functor G : MK -+ Ab

of local goefficients in X: «

If .¢ is a’homotopy clagé.qf paths in ~X connecting

X0 y € X, and % ‘is thefnverse of ¢ in, NX, then o

® G(p is invertible in Ab slnce

R P G’“x) =_"é(w$) = (Go) (D)
N o

nenote "by Gmx) the subcategoxy of Ab vhose objects are

the abelian; groups Gg for 'x € X, and whose mxphisms

.‘axe the group hnmomorphisms Go £ Ab(Gy, Gx), for
@ € MX(x,y). As'E consequence of, the previous Shservatlcn,

we obtain{ 9

/
Let X be a topoloqical space, X Lts fundamental B




i % ) v N
g ey e ek 4y e e x
I . L. . ]
it % 4 > !
|+ . }
[ ' Systems of Local Cgefficients !
D A . 3
k H . " W \\ * ‘
I i S (1.2) Remark: G(NX) is a.groupoid. In particular, if
i - N X o
f v X, ¥ € X are elements of-the same path component of X, :
g “then Gx, Gy * are isormorphic abelian groups, and ior each .
: homotopy class @ of paths comnecting x to v :
X * 0 Gp': Gy wGx P T30
: ? S .
' . '
15 an isomorphism. .’ - : J
o Lo ] 3
" (1.3): Example: 'For :'1;’1 > 1 if n (x.x) iig abelian
. " " iforall x € X, let .
bl ;
f Li A« ol . 1
pe N E X ® .
® 3 . ’ b
N ‘ . N >
o on objects and on mo:phisms in_ the following, wuy For a i
i el 7, tphthha conngcting wiEN y(dee. @l0) s uu)-y)- i
B o V. iana £ “, s‘I Yy o (%, y), Wi define a homotopy g R
5 x\la‘(z. t) > al1=t) €°x G‘ |
P ] e 23 N
' : b e
oot i satisfying VI 1 (T . “Since t}\e pair’; o
. o |“‘ |57 x(0) o P -
(B b g : h?s the. homotopy extension; property, ' ¥ can - G |

. be extended to a map; F : p x I'» X such that
=T
I

T PR C U
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systems of Local Coefficients

=" "N 4 (%, x).
.

2 - '
Bt x 01}

Elementary considerations show that for a'ma , £'~ £

we obtain
. auf m 0 f' m ool E .

Thus, if ¢ is a path-class connecting x with ¥, e

obtain a function ¢, : m (X, y) -+ n“(x:x) by picking a

representative a .for .y , and' f for [l € ey,

O, [£] =

= [a,f]

In fact, @, : n L) 2 (Xix) isa groué homomorphism,
vhich “can, be lpen by using a similar versiun of the H.EP
argument gi.van ahcva. Moreover,

\

WL Al = (8] for all [£] € (X0

i
B T R e R nx(y,z)g\)
-

Thus, setting G ¢+ = ¢, for a'morphism o in NX
. i . .

s Ll
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_ Systems of Local Coefficlents :

" Py .
makes G = a contravariant functor .on TX. Example (1.3)

is of crucial importance if it comes to defining the

obstruction cocycle of & map £ : X =+ 2z of an n-cell
adjunction (Y, X) with a non simply connected space 2
and ‘f\oxg a-q 1S not base point preserving for at least
one at\tachfng map x}. However, since we do not intend:to
develop obstruction theory, we shall make no further use’
of Exnple (1.3) ‘and the explanation just given.
> « & AN

(1.4) Example/Definitionc Let A Ye an abelian group.
We define the constant system »' G, in X determined by
A by v ’

A - on objects

1, on morphisms.

More examples. of systems of local coefficients can be

found in [Whl], pp. 257-263. Now let X be a

topological space and G a system of local coefficients

in X

v

(1.5) Definition: G .is simple 4ff there exists
Definition:

\ .
A € |Ab| such that the functors G and GA (constant

systen deternined by A) are naturally equivalent.

st

i
1
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Systems of Local Coefficients

(1.6) Proposition: Let G : MX + 4b be,a system of

local coefficients in X; then,

X 1-comnected => G simple.-
|

Proof: Select an arbitrary element x5 € X and denote

- by H the constant smin X induced by Gx,. To

cém;amicc_a natural equivalence T betweén G and H,
we proceed as' follows. X' is path comnected. ~
CoruGUeEY, Por Sach RIE K, ey a.path’ o
connectipg x ;«tith X, (L.e.: a(0) = x , ?(‘) =x,)
Since 'X is 1-connected, « ‘represents the unigue

. : .,
path class ¢ : = [a] connecting x with %, - Thus,

' is well defined. 1t is a natural equivalence between

G and H, for if X, x' €X and a,a' arepaths conn+ct1ng

x, x' with X, then a'G represents the unique pat}1

class ¢ comnecting x*)with x.

X 1x = Glal
axies x, = Hx
v { ] l Tex
x' ax' ox, =X
' = Gla'l "
-9'-




Systems of Local Coefficients

Because G is a congravariant'fuﬁctor, we have %y

|
ey ‘= 6la'al = Gla'lo GI& 1 = 6la'T o Glal~! .
o
which proves the commutativity of the diagram. Thus,
T :H»G 1is a natural transformation. The samé type of
argument shows: .'w '-: G5 B is also a natural

transforndtion, and our claim follows. . o
L “ ;
Let ¥,Y be topological spaces;/and £'% X » ¥
a continuous map. If a, B are homotopic paths in X
connecting X, with. X, then fod; fof are homotopic
paths in Y -equmecting fx, with fk, "(homotopy is
an equi:lalem:j:elation). Thus £ induces a functor
F : X+ NY. We can use F to pull a given system of
local coefficents G in Y back to a system of ‘local
coefficients ' )

£%G : = GoF : X » Ab

in X, and call it the system in X induced by f.

Evidently # " v

>

(1.7) £: X = Y’, g : Y= Z continuous; H a sységm

L =10 -
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. - .
systematic reasons and, except for theorem 1.9,will not be

i v ;
; .
E Systems of Local Coefficients
3 . - # ’ -
§
o & ¥ - . ’ '
| : . of local coefficients in 3z, then
‘ v ¥ - ~
P (gof)* H = £* (g*H) ° 3
’ - ;
= In the situation where A o is & subspace of ‘X,
i : Acs X the inclusion and G a system of local : —~
% ¢ coefficients in X, we also write G|, for 1%G. )
' The rest of this section has been placed here for - ]
|
I

N needed until the end of section 3. Accordingly the reader

may proceed to section 2 now and come back to the

material here as we refer to it.

« © If p:E-+B is a universal cover of the ¥y

path connected space B and G a systen of local

i
coefficients in B, then (1.6) shcws B that p'G is ’;
a simple system in E. Using a different argument, we . ) l
‘could also get thigsas a special case of the following . .

nore general situation.

Let B. be . O-connected, locauy path ccnnected and
¥ semilocally 1-connected, and let b € B. Let G be a

- : “system of local coefficients ii B, and let ’ §

\\T : =1z €n(Bb) : GL=1g }. Then. X isa subgroup
o .
Lt (B,bv). These hypotheses guarantee the’existence Ve

(see the appendix) of a covering map- p : B » B and a

point B ‘e p '{b )} such that
. . ’ ’ -1 -




Systems of Local Coefficients

4 L E o
~ Pa n|(§, B‘o} =K . e

"(1.8) Proposition: p*Ge \té«simple
i

Proof: THe proof of (1.6) carries over to verify the
following statement: 'If .p"G(nﬁ) has precisely one
“morphism between ach pair of objects, then p"G'. is
sinple. Hence, we show that sp®G(fH) has precisely
one morphist between each pair of objects: There exists
at least one, because B is O0-comnected. There exists
at most one: ' . ) .
“ Let @, ¥ be path classes connecting x with x'

tor sx @ B and o oa pg:h(cﬁgss _cormecting B, with

.

X, ' Then eyl € n, (8,5, and
Glp(uefi) ] = p*cluhin)
= (p*Gi)o (p*Gw)o (p*Gh) o (p*Gh)

This is an equation between group isomorphisms. Hence,

(p*Gi) ™! = (p*Gu) = (p*GM) o (P*GY) o (P*GY)

and- S0

- 2
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Thus : (p*Gy)~

us«o . i a

= -

The preceding obéervationL enable us to get some: -
information’on a given system of local ceofficients in
particular cases. We now furn to a method of comtructing
such systems in a given 0= ronnected space. i

‘ First of all, mum., givendspwe X ,asymafloom
coefficients G in K x \e X then w Ut x; ) acts

E on the abelian group ‘G, \by automorphisms.

(Ga)a, u‘\E n‘(x,xo), La.€ Gx,

p .a
/ ; Laa
! I}

Accordingly, the abelian quup ax, ' is at the, mmm; a

o r zn, (x,x )-module. Co; veuely. we have:

LI \ . »
b (1.9) Theorem: Let X be | 0O-connected and A an
] abelian group on which 'm{X,,) acts by automorphisms’
* e % (X,)-module) . Then thera eXists a system
) % " of local coefficients G in| X such that

@

S
"

>

-3 -
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Systems of Local Coefficients

. < ~ and which induces the.given operation of m,(X,,) on A.

| Furthermore, all such systems are naturally equivalent. '

] S ' AP

) Proof: Let

E ot X IMXwxhdiey ¢+ E() € Mig,x) |

/ be a choice function such that £(x) is the neutral

| element of the group m(X,,). Now define G : MX = Ab

/ by |

/ . &

/ . Gx = A on objects - %

: = (E(x)O(E(X'N)).a on mocphisms’

Gly € Tx(x;x"))(a)
/ R
G is a contravariant functor on [X. .To see this, let

(9 €MX(x,, x,) and Y € MX(x,, ;). Then

= LExepEtg La i

Gley)(x) = .
= TEx )0 ETXT) (E(x )W (ETGT)a
= [EGx )0 EETTIUE () UETRy0) )

= (Gp) o (GY)(a)
' ‘v
If cx denotes the class of the constant path at x, then
(Gey) (a) = (E(x)c,ETX)).a = cpea =2, -«

Furthermore, 1f @€ MX(x,#) = m (X,%)
- 14 -

7
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SYystens of Local Coefficients
o - 1 .
(Gp) ta) = [E(WE()].a .= °

as required.

@
Notr;'(;hat the construction of a syiiton BE local
‘coefficients G in the proof of*(1.9) depends crucially
on the choice function § . Thus,it seens plaugible that
we Gould g'et many different systems of local coefficients .
in X satisfylny the requirements given in the state-
ment of (1. 9). However, thi! iS nnt s0. Iﬂ Eact, if
H:NX - Ab were any other system satisﬁyinq these
requirements, then . ) %

%% » T(x) : = HE(O € Ab(A, Hx)

is a natural equivalence between G. and H:

= A —HEGEE g

a Ga . Ha
x' A ———— Hx' :
HE(X") _
' -
5 f
aopg &
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g ) ¢ ] i
..
i B ) 4 i
H g ' - . . i
i ! ‘Systems of Local Coefficients 5 " . ;
X i By assumption; we have . B¥ = A 4 o ?
| ) o v i
L . i Lo : 3 i
: e L o € . 3
i S e Gaa) = GGG = : ¢ A Sl
i . i Ll : E ) i o
d = B(E(x')aETD) (@) = (HE (x*)o (Hi)o (HETR) (a) 5
) T ¢ A
! * . Furthermore, Since E(x")E(X'] is contractible; ¢
i 5 7

; § o Joai
Thus, all systems of local coefficients inour, T oo,
consideration are naturally egiivalent; to' G, #nd °
consequently pairwise naturally equivalent. .- ' . g . i
P f ' S ¥ N - L A |
',' o Given tu;o systems, of local :‘oe\fnc'ien‘ts. in“a -sp'aloe '.‘x, . ‘4. o z
i : we. can use. Theorem (1. 9) to reduce: the ‘question of ‘whether ‘.%
i s ‘they are equivalent or not tc a quesﬁon of purely gxoup ¥ "
: " theoretic’ nature. Moxe.préciselys . | . . | g
. ¥ : ' i T
<. *1.10 Corollaxx' Let G/H be systems of local S
i ' coefficients in the o-conneetgd sbace % % s€ X. et
g & m(x, %) = Aut Gx;"h o om(X, xn) -i,ngc,,xue. be the '+
i " induced actions of m (X, x,) on &, Bx, 1 then: . - ",
3 0. ‘ ] .



: ¢ e s B -~ ‘.'_ e : -
. A = s/ B .
. [y g : i
; N
~ Systems of Local Coe(ficients
- . . 5 2 . s 16 o
i G, H "c\e naturally equi.vz‘l.ann EE. . : 3 -
S e " . g 4 p .
i o i i . . . 3 ¢
. “ ! ‘@) There exists an ‘isomorphism | & Gx, » HX  .and, .
J <h ly, g i et 8 Awk Gx e T
. A 5 ; :
A L e :
e I . .
R 5 g .
e \{i1) The restriction of ¢ to d(m,(X, x)) isan 2N
4 : . . - » S
isomorphism. é' : g(mw.(X, x )) = I.I(VI(L xo”,_j‘ AN
and & §=h." . : " .. r .
¥ b FO 4 % % .
 Broofs "= et 7t GAH be a hatulal equivalehge. ' .
:‘*'l‘han ©: = Tx)': Gx ~ Hx,. is an isomorphlsm, on cha » :
" 1 other haxﬁ, the, a-umg property of T, shovs i
. '-. : e
v L s - 3 L
P I e / S Teands e
' B > 3
=3 = e . -
s i % L g

7




T<=" ‘As in (1.9) let £ :

choice function and denote by G', A'
local coefficients in X * induced b

Systems of !.o_cal"cc:fftcxent: .

X+ (m((xo,x)._)xex bea "

the systems of
g/h and £ .

and an abelian group A, then: . . . =

. ¥ 7 : « N
E,(i.s) ¢ is equivalent to .G' and H is.equivalent,

to H'. But t' : G' > H' defined Tx) Ze is -
a r_la.tiuxal‘equiv‘alencm :ap the following diagram shows. o
o et - 5 3
e g Vo .
: ) : C
. X=GX  ———F Bxa Hx .
T v ” - e &
: E(E(x')ut-‘iSTi . h(E(x")oE (x)
N ’ : > |
o2 T e "
x* . TGx* =Gx | ——— Hx =x' AR
; ‘ ¢
— *

Tbaorem (1 9) and Coronary (1.10) nay ‘be interpreted
T 23

as” fono

(1.11) oflng~ Given a o-cmnect‘d %&ce.vx, X, €X
e e XSOSIE

(1f kach lystnm G of locallucetﬂcl.emts in X with

Gx oA’ can bq represented by an equivalan

“ 3 ay-tam G' such that G'x =R




(ii)

t =

e

% . 3s

H
'
i

@ homomozphlm!, ca].l s' R conjuqlte ifE there
exlus 0 € Aut A sucli that. fo: all @€ W (XX, )
(q’a)w holds. Denote by, g the .
.conjugacy class uf .§..and, dxeﬂne k [ o o g
e : N =
; B
i ) s = ) .
¥ 4 ) " Then ‘thére i5 a 1-1° cdrxespondeus bét\iéen— e =2 v
i : anﬁ s Ip"puxticu;.ar, s, 1s a\ pxopet set. " K B &
i g ‘gLo_og’ 1), (u.i :unow airectly, ftom . 10). (114) 6 . 1 5
i “ a rastatement o (u). bty . f.» . v" o
{ iy ; %4 . $ A 3 "
B A "(1'?|2) !xalnglm ‘Let. X be q-ucnnecta‘d, X, €X. i ) o B 3
; N ‘

(1ii) A

. - e kY w2
; . \\[
Systems of Local 'Coe'fgiclenta . L L s,
o PR S %
Let G, H be local systems in X such that
Gx, = Bx <A ) ana let q.,'h be as.in (1.10). .
Then, G 15’ eq\ll.valent to H 1ff g(m(X,x)) 2 ; k

jand - n(n x,- %, ). dre Cun]ugate nanrcups o;

mn:.A.'-' 5 By

Let 'S -a:. tha r:ias,s‘ whose exements are: .




‘Systems of Local Coefficients’ . -

i
3
: . Let A'be an abeliap group such that Aut A is abelian; i
tiaen each conjugacy ‘l‘:lass of K 'conusts of ptecisely L \ -
: . :  one elément, and (1.71) (111) tells us that, the set S H
is in 1- 1 correspondence wxu: the set of honomorpmsms o " .
= & of m (x._xav into Aut A. <l . we” b
.t Note that, since Aut Z & 2z, 1is abelian, “(1. 12)'
‘ : ) applies in particular gin’the cise Awz. We use theo!em T

1.9)° one’ more ti.ma to qive a local condition for the

existence of a natural transformation af one local system ‘
e ; ! intg another. .- g Ve g, B ’!"
3 " (1.3, choxrggx Let "X be O-connectéd, x, € X, G; H

systems of local coefficients in x then, a homomorphism

& o Bx which makes the diagrn

,
g ’ 4 b1
i ; N
" v = ¢ . -
ol gt ; 4 ;
i o ; L ! ,‘. %
bl : ' . s " i
. » ) > ) -
’ g




Homology Groups with ‘Local coeff.tcients’ : l 3
: f ; 2 Y i
“ ¢ o ¢
N commute for each o € m,(X,x ), deternines a natural
> transformation t ' G % H. . . ?

Prdof: Proceed as in (1.10) (ii) » (i) and define

R TE . ) % . @

'rakmg ) o bé_the o-map, we see that hatuzal

transfornations always exist1

" . \theory, we deﬁne ; . . .
! - ; |

. P o
xp)snl’*‘ Tk = 1, x> O &2

T B

- C % o be‘.t{:e ‘standard p-simplex. For p > 1 the subset
4 ‘. ”Ai:=‘ SRR
K o Tixg, 4 €8,

% ” ) .
3 of 'Apv is theﬂi-th face of ,Ap. A: is ﬂnea:ly'

homeomorphic to 4,_, by the' £ollowing. map
iy 3 ’ . L 3 ’ 5
_v‘a(fco,.. . ,xp;\‘)—n Txgreentty 10%pyes .V,XPAEA:,

. . 1
- = -2 . . 7




Homology Groups with Local Coefficients

. . | )
For the nppucuu\?s we have in mind, it will be

convenient to call/ e

= n,o,...,o)'sAP the preferred
vertex of 4, and S:(ep'_‘i the preferred vertex of
the i-th face of A . Note that ’

{P(ev_|) 0,7,0,...,0) ar.ud fp(ep_‘) ep >

let X be a space, G a system of local
coefficients in X! Let g, 4= {u': (MRS continuous},
and let i .

C_(X:6) : = @ Gule
S a o sy
N\
"The abelian growp C,(X;G) can be thought of as the set
©of all functions ¢ : o - T Gx such that
. g P xex

(1) for every singular, p-simplex u : 8, X,

+ c{u) € Gu(e ) E
P .~
7 - :
(2) for all but finitely many singular simplices,
S e

cfu) =0, .

A relationship between C,, (X;6) and cpx 1= @

-2~ . v !




|

L T T

Homology Groups with Local Coefficfents
3 |
|

the free abelian group generated by op is given by

C (x:6)'= ® (z® Gule))
L3 © uEg 3
X P
The elements of C_ (X;G) are called singular p-chains
with coefficients in G.. We call c€C, (;G)™ elementary
iff c(u) $ 0 for at most one u€g, , in which case we

may write an arbitrary cscp(x;s) " as a finite sum

'

s Fely) u
where‘ cluy) € Gnk(ep). . .
The groups C, (X;G) form a graded group, which we
up,
make into a chain complex by defining a boundary operator
3 = (a_p_: CP(X,-G) - L‘p_‘(x;G]}. By the univeral property -

Of weak sums, it suffices to define 3,(g:u)  for all | .

elementary p-chains g-p . N
. é\ R
" Proceeding as in ordinary singular homology, we
might attempt to define 3 (g-u) = (-1)*g-uu:: . Thi 3™
is a futile attempt because in géneral g tounf;(ep_‘) i
so that'the righthand term in this equation is not an
element of Cp_‘(X;G). This obstacle may be surmounted,
-23 -



e

AR o [ueal € l'lx(u«f; (ep

G .
- Homology Groups with Local Céefficients
however, by observing that the edge of 4, determined

by fy(e ) and e can be interpreted as the path

5 P o _¢0 X
a:lodll 3tw (E(e, ) + tle~f2(e, ) €4,

Taking the composite with u, a ylelds a path class

o1

B oy _,,/
Gau H Gu(‘e?) -v.(j:uofp (e

This gives rise to the following mddification of our

original attempt

P + 2
= o I g &
Bp(gu) s = (Guu)g-?mfp & i§1 (=1) g uufp

" We want to show that o {geu) = 0 . So we must find

43
pivp
out where the preferred vertices of faces of faces of

A are. i
® .

_|),u(ep)) which induces an isomorphism

i
{
H



e,

Homology Groups with Local Coefficients

i 4 .
£ el e 0
re i1
) » 5
4 3 =
Ep(ep_') j_>j_ =<
' l(on.n,...,o) 1=0
= <
. [(0,1,0',4..0) 12
0,10, e .
P X
i L40,0,1,0,040,0) 10 v 1e1.
"
Thus 5
K
Byt p(q w - . '

= a’ ‘((Gu )g-uof; + 1_‘( 1) guof )=

§| 351( 1) Jq~uaf oEJ oy ¥ ) i

:z( 0t (Gu NED uof ofp (o-faces of uof; 1>2)"

-l

+-11' (6o, fl)gnnuf o (o-face of uot))

p-1
"mz (- 1)1(<;u LRI ofl {j=face of uaf; 321y
+(Ga‘mf;)o(Guu)q-uof;uf:_‘ (o-face ‘of uof:)
Now, the preferred vertices of wot! ofp _y and uof:of‘;_.

ware the same, as”ve saw above.: Fur wra, the edge path

1,g0 o
1 p,fpova_'(Erz).fp(ep_”,ep] is pontractible in Ay -

S . -m. '

§
H



Homology Groups with Local Coefficients

Hence its image under u is contractible in X. This
shows that’ ot

.)/4»/// _
(Ga, E:k 0 (Guuof;) o (Gay) = 1Gu(ei’)

and consequently

Gay gl = (Gay g0) o (Ga)
P P

Furthermore; observe that

: . it1
LT ¥ .
(xa,....xp_zl—_"—*‘(xa,...,xi_l,‘ou g

i+ i£2
¥ ¥
0 XjreeeiXs qe 0 ,x; »
. o
'

: "‘i"""‘j-z' ] ,xj__1

i+

L : o<i<j<p
; . By

o E;:| ¢« ogigj<p

e i et et



e AR e mresiras

Homology Groups wit:}l.ocal Coefficients

Writing

? i g0 Pob g j+i0
(LT tea gt of] 2 (SRR WERS A

and using Eé”of:_‘ = | losisp) we see that

.the lower four lines in the equation 2,3y (gem = L,

cancel out. Thus we are left with Y e

3 (gew) =

p-' P

P
=g X ! (- |)“Juoflof P

-l i=1
4 Pl

=g-|.I e |)“"uof“nf R I - 1)‘*Jueflaf <
j=2 i=1 i=1 j=1

pet i §
o T ”nlt-.,fl T4t 1 (-nitigegisd
=1 S O et pp-t

e .—'\ p-1
=g | I (- 1)"3"unf of’ Ly E T |)"Juaf f’ Ly
=1 imt IR 2

=g.0=0 o NG

-27 -
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Homology Groups with TBocal Coefficients
This proves

.
(2.1) Lemr(a:/ (C, (X36),3) is a chain complex. o

It is now a standard procedure in homological algebra to
derive homolgy groups out of this chain complex. (See for

instance [H-S], pp 117-118)%

(2.2) Definition: Fgr p > 0 we call the p-th homology

group of the chain complex (Cy (X;G),d) -

H(X:6) & = Hp(Cy (X:G)
CN ] 3
the p-th homology group’ of X with local coefficients p
in G. The following proposition shows that homology
groups with local coefficients are a-true gemeralisation

of ordinary homology groups. . .

(2.3) Proposition: If X is a O-cennected topological .

space and G a simple system of local coefficients in

X , then
Hy (X36) 5 Hy (XiG,)

- 28 -




Homology Groups with Local Coefficients '
where G, : = Gx, for some x €X .

o o

Proof: G s simple if and only if the functor G:MX - Ab

15 haturally equivalent to a constant functor,$:mx = Ab.
By the uniqueness part of (1.9), we may pick any X €X
and assune that F Aty e consmr:s/ys;eg.;n x .
induced by G, : = Gx, . Let . . s

"t :ieSF «

: ¥ T ¢

be a natural equivalence. " :

To show that Hy(X;G) = H,(X;6); it s sufficient to
.construct' a‘chain equiva’lenc‘e l.aetween (C, (X;G) ) and
(c,x96,2'). Iet g-u be an elementary p-chain in
cp"(x;c) and define (£or each ‘ueal', s Gl denotes ‘a copy

of G indexed by u) L4

~

H CPIX;G) s (CPX) e Gﬂ

Il N
? Guley) e G
€a, & ueo °

i
]
I

e



S

s

-~ /

‘wP(g-u)

= ITG(Ep)lg-u

Homology Groups with Local Coefficients

the universal property of the weak sum this extends to' . <

/
\Bi ‘
e homomorphism LS

, which is easily seen to be an

isomorphism between abelymxps. It remalns_co check’

N
. ,  that “tre o,

this, we compu'te

gu 56k Ny + ?El [

¢

ne

i

combine to define a chain'map ¢ . To do

[n-f.u.-i Guew Ygoudy + f ‘“f['-hn]a whi

frusdyi »———a———>[m-i: i“"‘ wit

are equal:

K(e»)
P I~
nfp(ep_

)

The defining property of Tt
i
in the right bottom corner of the previgus computation

i

shows that the two terms °

Gu(e ) ————-—-——aG

Ga, *

- i &
o
Guo£d (e, )

- 30 -

m(e )

£0
Tuo, p (EP‘

I i
G .
o .
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Homology Groups with Local @Befficients S E
. . -
t 2 9 e .
v “We conclude that ¢ is a chain equivalencey o
v (2.4) & subspace ACX gives rise to relative homology :
be a - ;

groups wl.th local ceeff:.cients. Let . G:TIX"> AD ,

‘system of lacal coeffitients dn X' and i A, X ; thep T ~

% : . F 2 g

= £ e k: .
i B .u. b Ig. (L C.(X;
147C, UR1G|) 3 Zggu; K Zg; (Lou; ® 5 (X:6) g
i . )

. " v 8 ' > . . :

is a well defined monomorphism. THis allows us to P
- <1nterpret c, (A Gh] as a subgroup of _cp(x;(;). Since’ - T - i
"the xxmna,\zy opetatot 3% .of the -‘chain‘eeﬁpgi, 5w el ‘I’

is the restriction of 97, we'may reqard

B IR

N X .
; the chain complex (C, (A;6,) /2" ) ‘as a auhcomplex of

(Cy (X1G) ,3)-4

‘. - Y ... “ Defining~ e Ui -
i = ¢ e /. ¥ . ) d
4 L e s P e - B -
. C (a;G[ ) ;B :
: AL s B v e L A |A> 7 .. .
P « 3 R B - e,
B . \ie obtain a short exact ‘sequence . 3 ;
hr 3 o T g N i
02 CulniG|a) 2 64 X;G) > Cu(X,B06) =0 . .
o i > ’ . Yoy & '
"of chain complexes. As ugual in hemological algebra, . i
N g i ; ; i
v . P
. " 31 - s
. e - P
* v N




i

" we define

and 6btai,n a long exact seqpence

'Fungtorial Properties of‘Homology with Local Coefficients

H, (x,Arq) i Hy (Cy (X,A;6) Y,

o X RIG).

\ " 2 o
P LE

B i

3. Functorial Properties of Bomologx with Local °

Coefiicients < E : off

" ‘The :eader wul doubtless have realized that’

om:!leqy qtoups with* 1oca1 coefficients behave analogously

ot \o or&lnary singulax homology groups ‘with respect '€o

subspaées. Fpor practical purposes, thie most: important
property of ordina: singulnr homoloqy qroups 1: that
they can be ésoribdd by functors which satisfy che
EllanJex‘g-Staenrod oms. Thus we may ask whether .
homology groups with local ‘coefficients can be: descrxbéd‘
by functors;swhich, in turn,. poses the question for'a °
bultable domain category. We shall exhi\big such a
category L . Contrary to ordinary singular homology it -

will not suffice to pick a subcategory of pairs of

B ij A; G)—P—~—v--ﬂ /(B GlA)aH (xiQ)h, (X2; IR

o=




" Functorial Properties of Homology with Local Coeffieients

tppological spaces and coefficients. When we define
.moxphisms in L., we 'want them to respect both of these.

structures and they, should give rise to chain maps between

" the cor.rgspdnding singufar chain complgges with local
< Lo
. coeffitients. This wilf enable us to interpret’ . - .

“Hy:l o Ab as fuflotors. After defining the notion of

2
homotopy in we shall'be in a position to stdte .
analogues of\ the Eilénberg-Steenrood axioms for homology

with local cosfficients and proceed to'verify thatthe

‘H\s  satisfy these axigms.

Let £ be the category whose objects are triples.
(X,A;G) with (X,A) a pa.t: in Top and G, a system of

~
local cnsificients in X .'A morphism ¢ X,A;G)-(Y,B;H)

is 4 pair (¢|,¢2 such that

§y2 (X,R) » (¥,B).

g N\ S -~ N
Jis & contindqus map,of pairs, and

g ~

= d .)

o N 9,6 3 otn

is a natural -transformation. We define composites:of

mo'rpﬁisms in 'L in the following way:

- B s N ‘ .

cpy

~
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Functorial Properties of Homology with Local Coefficients ﬂ}
; . “
"1 | . . , ’
Let §:(X,A;G) ».(Y,B;H), ¥:(¥,B;H) » (2,C;K) , then . !
- - : .
/ i )2 = v,
o i
is the\composite of ‘maps, and (W) is obtained from: /’\’\'
the followinig considération. If x,x'ex,aenx(x /x), then
the diagram . : “ o
: 4 - o : . 1
s i o e
. ¥ 1 i
N
. Ox V0% - |
X et (¢;u)x=ﬂ(¢1x)¢l—»w m‘x)—w PiRx |
.~ 1
L3 Ga
X' X . )
s b, *
X' G () H)x'=H (X" ) ——> e w R(O,x‘l (¢ w K)x' l

s
conmutes and, since (H}V})X = (¥P)}K , Ve may define

0

e (Wod)y % = = Wy (%) ofyx’ |

. . «

. i . PR | w Moy |
We also write ~(¢;v,) (x) for' ¥y (B, %) . With this .




L \ L P

Functorial Properties of Homology with Local Coefficients
N \

\\_\ ‘ '.-,

notation: (¥9), =, (97¥,) 00, -

- .

(3.1) Proposition : £ is a category. ! -
Proof: Identity morphisms on ‘objects of * £ obviously ‘

efst. We show that composition of morphisms in £ .is

assoclative. Let (X,2:6) & (v,5:m) ¥ (2,050 Lv (0,0:1)

be objects and morphisms in £ . We want to show that . .. ¢

(TY)é = T(¥e).

For the first coordinate this follows from: associativity
of compositions of maps. For the second coordinate we

calculate

-
[T (4od) 1,=1 (¥od) {T;lod vgo, + - .
2 1217570 .
B 8 v
=10, (¥,T,) o ¥, 100,=0, [¥,T,0¥,]00,=[(To¥)$],

Now let ¢ : (X,A:G) » (¥,B/H) be a mofrphism in £-.
We want to%how, ) ) . i
i

v

(3.2) Proposition: ¢ gives rise to a chain morphism.‘ .

Op + ColX,B16) » C, (¥,B;H) . 4

-~ 35 -



Functorial Properties of Homology with Local Coefficients {
. e S = {
A\ I3 .

) - /‘ . .
Proof: We first dirive A ohain morphism §:C, (X;G)+Cy(¥i)

and then use 6# to\define 6y 1n a purely algebraic

mafner. Define

% 6, (Q.u) : = (ozu(ep)q)-Q eu
P », 5

- Since
$aute,ifs Gule) » (¢;n)u(ep) - H@uE)

." is a 0 sm 6,‘,_1-: ;
summands Gu(n’) of CP(X,A:G). By the universal

6,\ : Cu(X:G) = C, (¥;H) | defined as above 1s actuxlly
a chain morphism. To see this, let g.u € <, (X:6)

be an elementary Bingular p-chaim. We compute




|
’ 3 R e s . B
|
!

Functorial Properties of Homology with Local Coefficients

. )

o ey

(=)

[

Af, ) e l(;‘Gun))G.‘;tax-t*'lﬁ *2'“‘“":"-«%*‘“4?

$
d

el g Wb by b
i (] )

and we wish to see why the two terms in the bottom right
' )

- corner are equal. For the summdnds of index 1<i<p we “
e ) need ‘merely observe that ule ) = uoé;(ep_‘)A For the
summands of index i=0, we apply the natural . 0
3 . ;
_transformation property of ., : G > ¢jH as in the i
i . following diagram. . i l
H 4 - L4 L i
. , N . |
. ) 0 .
. - 37 - -
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Functorial Properties of Homology with Local Coefficients

$ . - ¢1u(eP) " AP .
= ule ) G(u(e_p)l,—————* ¢‘H(u(ep)) :
2 i t

g Glay) 038 (e )=H(§oa ).
.
: g & o
. o s o . o
" wl e, ) Gluofhle, 1)) T dtH(uoL (el )
3 2 P op-1)

¥ -

Now observe that ¢ on, = u;p‘w by definition of a, .

on this it follows that §|,f c.'iA:c_:I'A_) ~ Cu(BiH)p)
is a chain mo:ptum; since ¢, (3)cB ‘we see that the
composttion ql‘,o“p maps cp(nichi‘f into O.. We now
define ;o be the unique map making the following
diagram commute.
P2

A . X6 —* C, (YH) E "

; i
. % . Ty

#p -

= 38 &

} ) © G XANG) e =, (v,‘n'm)
!
¢
k]
?
£




Functorial Properfies of Homology with Local Coefficients
P

We must show that ¢, is ifdeed a chain morphism.
All faces, except the bottom face in the following cube
diagram are known to commute by what has been done. Since
g_ is onto, vqe,ca‘n use some element Cc€ Cp (X;G) to trace
its residue class C alongthese commuting faces to see

that the bottom face alsp commutes.But this means €hat -

¢4, 1is a.chain ).l\crphism.
. - it .
o #p-1 . .
CP_I(X,G)‘ - C,_y (:H)
c, (%:6) - J( > € (YH) 9ot
N .
q, Cpuy (X/B3G) i > Gy (4,BiH)
#p-1 -
CP(XVA;G) > CP(Y:B;H)

O o
Let M pe the category of chain complexch of abelian

rd
' groups..~Then, for each ' (X,A;G) €L, .(C,(X,A;G),3) can be,

v

regarded as an element of M* by defining: g (X,R:G) = O

for q < 0.
L

) -39 -
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Functorial Properties o/f/nomloqy with -Local Coefficients

/ /
(3.3) Leg_p.gt —>/u‘ be defined by i
/

(X,A;6) —> (C,(X,A;G),3) on objects
[6: (X,h:G) = (¥,BiH)] > Cu¢ := ¢, asin (3.2) o

then C, is a fuhctor. .

Proof: id(X,A;G) —=> id is obvious.

€4 (X,4;6)

Now consider i " \

x:ar0) 4> (v,3s > (2,£1K) ] N

. in’ £. We want to show that (y9), * ¥,0,. Using the same

epimorphism argument as in (3.2), the following diagram
vith\cemuting side fages shows, that.it suffices to

establish commutativity of the top triangle, which we pro-

ceed to do.now. -
4
Cy (2:K)
(¥8) /‘\9 "
W h
C, (Xj6) —————————————>  C,(¥;H) ”
. ¥ $ ’
5 #
B
i 4
qu

Cy (2,CiK) Y

: /(w,,/_ ‘x '

€y (X,A16) -

B > Cy(¥,B1R)
. '

- O



Functorial Properties of Homology with Local Coefficients

since  (¥)y, $”, @,“ are homomorphisms, it suffices

to verify this for elementary singular p-chains. S6 let
g.u € C, (X:G). We obtain: > C
| Bppobyplem) = 0, 14, (aCe 9)g.00w) ; L

=1y, (6;0ule N ¢lule ) 190, (4,u)

= (419,000, 1ule )g. (4,4,)u

= (W)v,“(epM-(‘b\M,u s

2 @,p(g-u)

—> Ab is a

(3.4) Corollary: For all p € N,, H
covariant f\;nctar. . . N
Proof: We adopt the following fact £fom onorogLeEL.
algebra (see e. g. [R] p. 169): ‘The assignation

1 :M* —> Ab; defined on objects by
(C,3) > p-th homology group of (C;3)

is a covariant functor. Recalling how we constructed Hp, ¥

we see that K is the composite of two covariant functors:

» s,

e it b 4

e et i e e o
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Functorial Properties of Homology with Local Coefficients

We proceed by deﬂ.ninaha notion of homotopy ig I.

If ¢, ¥ : (X,A;6) —> (¥,5:H) are morphisms in £, a
homotopy A Of ¢ to ¥ (if it exists), should firstly be
& a homotopy of pairs of ¢, to ¢, and secondly, it should

respect the natural transformations ¢, :G*> ¢3H and

> Y3E * in'a way which allows'us to establikh the

[
. ‘equality of the homomorphisms

2 . t =Yt H,(x,A;GﬁH.(Y,B{H) 4
© R .

"As an auxiliary concept we define ) e
S % B |
(3.5) Definition: The prism over (X)A;6) € £ is

o
(X,A;G)XI := (XxI,AxI;p*G) € |c|

where p:jyI—> X is the projection. °

\ 3
? . | We also need the following technical observation.

‘Every map 1.: X3 x> (x,t) € XxI gives:zise ko ai <
morphism (4,,3,)7(X,A16) => (X,A;G)xI in ¢ );y letting
3,:G £ 1¥(p*G) . be the identity transfornation. This makes
sense because | poi, - is the identity on X. )

' * d i

. .
Again, let ¢,y: (X,A;G) —> ' (Y,B;H) be morphisms

I L S
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in .

(3.6) ‘Definition: A:(X,A;G)xI'—> (¥,B;H) is a homotopy
of ¢ to y iff . . 'S
Aoliyidy) = ¢ and  Aoliyd,) =y
—
This means that ), is a homotopy of pairs of ¢,
to ,f add A,:p*G'2> AfH is a natural transformation
such that 1A, = ¢, and if), = y,~As usual, we say
that ¢ - is homotopic to ¢ (¢ =) Liff there exists a

homotopy A of ¢ to 9. . //
Of course, we should like to know how to construct
homotopies in £ out of the familiar construction of

between c maps. We shall not tackle

Y]

this question in its entire generality. However, we prove™

the following. * .
" <

P
(3.7) Lemma: Let, (X,A;G) be an .object ih £, ¢:(X,A;G).
—> (X,A;G) a morphism, ¥,:(X,A) —> (X;A) a continuous
map and . X 0.

-~
Ay @ (XXI,AXI) —> (X,A) . ',

& .
a homotopy of ¢, to ¥,. Then there exist natural

Sdy=
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' . ' / ~ i

. =T o’ Fos 1

. transformations . i

: _ . 1 |

i d [ ‘ i
! . }
¥,:6 L>' \U:G and Az:p*G => vX:G ;‘

[ L

| Iy :
| ,such that | y := (wl,w ) {Ki210). — [X,850) s norghism i
! in ¢ and - \ i
1 . . @ A 1
I . ’ | )
| . N Ly A

. Aot= (AA,) 2 (K,RIG) KT —> (X,2:6)

4s a homotopy.of ¢ to .

w 3 {1 3
! . § o 3 i a
- Proof: For (x,t) € XxI,.let p(x,t) be the pat& class ]

in XxI represented by u(x~,.c) I3 s}—) (x,(1—s)\t) € XxI.

| For | o €M(XxD)[(x',t'),(x,t)], consider’ \

3 \
| 5 \ . ~
P . ox G, () | )
g Gx Go, (x) — G\ (x,8) | i
| . . ~ a i
. e T . . i

i . 1
1 . . . 'y =
P G(pa) Go,op () | 6x, (a) Rl
i’ 4 : i i s »
) ! . o : %
GxYy —————> G, (x") e | o~
¢5x' - (u(X',t')) | TN
5 ¥ \ [N
! .
| The left rectangle commutes, because ¢,:G > 96 .
4§ natural transformation. ’l‘he z'j.ght rectangle commm:es,
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because ¢,0p(a) = A, (P(a),0) and pla) = TR ;€ Ty (x,%) -
Furthermore -, all maps in the above diagram are grovh
iggmorphisms. Hence, we may define: 2

) d o . :

S~ :

b Ay lx,8) 2= [GA (uix,t)) Jod,x
ol - ¥,x = A x,1) o .

“Clearlyd ¢,, A

: guciaf;-th‘e réquiréd properties / !

Homotopy in : ‘has the following two properties:
(3.8). PruEsiuon. Homotopy between morphisms in £

'Viu an equlvalence relation. . :
H N T 3
(3.9) Proposition: If ¢mp:(X.A16) —> (¥, s,m and

'S (EBIE) —> (2,CK), then  §'oomyiop: (KiA7G) —>

— (2,C;K). . =
- 2

. e i
Pxoof of (3.8): Bef].exivity is r_uvial. To check sylmetry
let ¢ ~y
* Definea homotopy 1 of 'w to. ¢ 154

(X,A;G6) —> (y,n n) and, A- a homotopy of 4 to {,.

© M, PXXT 3 (x,£) —> A (x,1-t)"€ ¥

HpiXXI 3 (%) &> A, (x,1-£) € Ab(Gx,HA, (x,1-))

Tn‘order o Bhow that. y, is the desized:natural
& o - .3

LY T : Ay
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. s - 2 : . N
Q . & :trmiomulon, we observe the following: .
If '¢'= (9,,0,) + I'+ XTI 1is a path connecting
) to (x',t') and o = (0,170, I X1, /
then - ' g

- o - i -
- . P*G(xat) = PAG(x,1-t)
T %5 s i :
~ 7 .p*clel “o| preter

- ’ & PAG(x',t') = P*G(x',1-t') .
- P . 5 e TR '

thd two igomorphisms are the same. From
' i, % e o

, (%)

bl V) u I
(x,t) N G R l}mm-t) = uiHE,E)

S L
tthis, 4:!: is immediate that., ", ,. .1 - . ‘

. S 3
L L N A . o
a p*Ga’' | = p*Ga P vl W

A ~

(O L ARG 1€ S8 .
. ® 4 % e B s

2 Halx',t")
)Y LIS . .

commutes. Furthermore

F oy . o ;o e, »

% o » ‘ ' * o gl & 2 & s
ShEs 9 I Aol Wijdg ¥y and ‘*:!‘z_f',*;“,a"-f' 4
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Transitivity: Let' $,9,T : (X,8;6) -#%,B;H) , and let
! .\ be ahomotopy .0f ¢ to ¢ and u a homotopy of

: ¥ to D We defime a homotopy v of ¢ to T by’
setting Vg

to be

' .
( A Tx, 26) "b;gtié € x

) [ R P ;
P i - lu‘(x,zt-ﬂ %5(:51 u

and a natural transformation. v,: p'G A ViH by

[ A, (x;2t) ost<t

42
l HyIx,2t-1) 2<t<1

We certainly have . = N

* * - * * e )
! & ek 1.9 Pl =0, Aol 4 iy, & Ly, 0Ty
i 0 . In order to check that v, 1s the “esired natural '
¥ L ., transformation,. e obsarve the following: J

1f ,w = (w‘,wz) P I XxI' is a’ path :onmtinq‘ (x t)

to (,5:,‘;-), then ¢ is homtopxc to a path @' = lo,,«o)

’ - 47 - \ Sy




*.homotopy is given by

Functorial Properties of Homology with Local Coefficients &
» . -

. -
whose second coordinate function 4s linear. A suitable

/

£ :IxI 3 (5,0) b (9, (5),9,(s)+0(t+s(t'~t) -0, (5))) € XxI

3 > -
From this, ugThg the naturality of A, (respectively u,),
the naturality of v, in the cases 0st,t'sj
(respectively » 3<t,t"<1) is immediaté. In all remaining
cases, the above }‘\on\otnpy shows that - \-\
o € TM(XxI) ((x,t)x',t')) is the composite uqu =a of
two classes’in XxI__such that :

a, doims  (xt) to D

a, Joins ~(x',%) to  (x")') %

Y

and g, is represented by a path 8, in ix[n,%] (ox "x[%,ﬂ)

; .
G, is represented by a path B, in Xx[},1] (or Xxlo,3])
. :
Wj then obtain (suppose ost<i<t'<l)s

¥
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{

: — i
= U G y26"-1) 3!
| [N Gx! ————> pE(x' ;26 -1) = VRHGx' ') N i
b . v, &', ") . .
o, prGa, [prch, WAES, = viHo,
wp . Auz(x ,0) ;;:u(x:: D~ e, b
~—>M(x"-‘) H(x'' 1) 2
A ™ 5 . -
~, a prca, [prch, Wi, = viHa,
| . : .
/ 1 A, (x,2t) 3 5
x,t) Ox ——————> ME(x,2t) = ViE(x,t) . 3
. i
v, (x,t) - H
: i

o Where 8; 1is represented by ‘8, (s) := (xg, ()2t ()],
with xB . tB the coordinate functions of the previous—
" A 1
1y mentioned function B,. Similarly, & is represented a

by B,(s) := (xsz(sllztaz(s).-n, B, = (sz,th).

Commutativity of the whole diagram %follows now from \
i % . |
N commutativity of the upper and lower rectangles and ’
H the indicated equalities.
o

Proof of (3.9): Let A be a homotopy of ¢ to ¢ and
“ A' a homotopy of ¢' to y'. KH in the.case of homotopic

maps of pairs, we show tnae -
o T ] 1
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L4
() o' ™ by ¥l
W ¢'y myry ™

and, using the transitivity of "s~", we infer that

o0 m Yy . . N

Pro6f of (1): ¢'od : (X,A;G)XI = (2, C K) is a homotopy
ofy ¢'¢ 'y .

Proof Of (11): We observe that ¢ gives rise to a prism
mo:phian (¥x17) : (X,A;G)xT » (Y,B; H) xI
in the follwing way': \

(x1g), : (XxI,AxI) 3 (@ 4y (0 ,) € (0T B1),

TxTEy (). o= Y, (x)

This is indeed a morphism in L asgthe followiry diagram

shows . )
@0 pro,e) = oYX sy < BGEx,0)
a Gpa) - i) = B

(L") RO ET) = Gx! ———> YR’ = Bl )
- X 0 = &



-
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. i r

Now )"OWX‘I) is a homotopy of ¢'y to Y'y..

\ In the following theorem, we record scme fundamental
properties of homology. with local coefficients! These
are in analogy with the Eilenberg-Steenrod axioms fof

ordinary Homology. More precisely:

Each abelian group G gives rise to anlimbedding

«i® of Top?, the category of pairs of topological spaces,

into a full subcategory of f. We define an imbedding

3 X
“functor E; on objects by (X,A) —> [K,A;Gy) the system
of local coefficients G in X being defined path com-

se to be the system determined by G .

The resulfing system is unique up to natural equivalence

by' (1.9). We define E; on morphisms

[£: o2 vm] L, [('f,wi:.(x,mcx) - (v;n;c;)]

where @ 1s the uniqué natural equivalence between the

simple systems G,, f£*Gy in' X,Y respectively. .
.

The Eollowir} properties of, homology A ¢ reawe,
when restrict&B\to any of the subcategories E; (Top?), ¥
just to the Eilenberg-Steenrcd axioms for ordinary N

« homology ‘(use 2,3 to see this). For a statement and

N “ 51 - B
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development of fundamental consequences of these axioms,

we refer the reader to [Hu].
!

First some notation. An inclusion 1,:(X,,A,)S> (X,A) .
in Top? and.a system of local coefficients G in X -give
Tise to an inclusion = i:(X,,A, ;136> (X,A5G) "in ¢,

by setting’ i,x := g .
(3.10) Theorem: (1) H: L ->4b.1s a covariant °
\ .
functor for every p € N,.

(11) Exactness: For (X,A;G) € |f|; 1=(A,G|p"—> (X:G)

j: (X;6)=> (X,A;G)- inclusions, the sequence
e > KPH(X,A;G) - HP(A;GlA) Hy(X36) <5 H (X,A50)=>...

is exact, where 3

Bpet = 054y (XiB3G) is as in  (2.4)..

(iid) Commutativity: For p € N, 03:H,, *> HoR isa
natural transformation, where R:f —> £ 1is the functor
defined on objects by (¥,BiH) = (B,8H|;) and on

moxphisms by ~
[erceamm > aimsun] i [ s > @]

hj), =01y @A (W), 1= g

- 52 - .

&
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¢ For. c
4" 2 (KA6) + [Y,B3H) in £
" s
= H$ s H XK i
B,O HPO BP (X,A;6) - IIP(Y.B H)
for-all p .

Excision: Let

(X,A;G) be an object in £ , and\\
N
let .B < A such that .B < A .Then the inclusi:

o
i3 (X-B,A-BiG|y p) =+ (X,A;G)  induces 1snmrpthms

on relative homology groups With local coefficients

Lo ¢ Hy(X-B,A-BiG|y_p) =, B, (X,A;6)

Dimension: Let X = {x} "be the singleton space,

(x;6) € Icljmn I

Adaitivity: let X be the union of a family of

5G) = 0
B, (X;6) P21

® i
ED (X;G). = Gx

A2

& -

mutually disjoint sets X, such that for all

b T "z‘xi'z » MX(xyx,) 4§ -implies.




AP ——__

A o= X Let Ar:x,‘,\.A t=ANX, ;G a 'system of local

coefficients in X , G)‘ z: ™ Glx . Then the injgctions
E A

H,(X)‘,A)\;GA) » Hy (X, Z\'G) give rise to an lsomq hism

Proof:

/*—‘ s !

@ “*(XA'A).‘\' —> H,(X,A;6)

(1) {ms been shown in (3.4) ©
(11) has been derived in(2.4) o
(1114) Let ¢ : (X,KiG) » (¥,B;H) be a morphism

in £ . We.want to show that the fau:;wing
diagram commutes. »

S

o (X/A56)
H,pﬂ(x A:6) —1’——-——- H (#:6)5)
Sxpet RO, 4
+p (¥/BsH)

L 4q (€/B7H) —-1’———» H (B:B(B)

{ ; i

. We.know already that each of the maps in this

diagram is a homomorphism and furthermore that
each map is obtained by applying the corresponding

chain op to an arbit ive of

&
the homology class in consideration. For exmp{;“‘

I T P

£ e T \
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/

2,4 (XKIG) ((24C | (R5G| ) )4B_ (Cy (X,A1G)) =D, 24B C (AIG,)

ey ’ t
3

where 3 on the right hand side is €the differential

p+i
operator of the chain complex CgX;G) . This observation S5
reduces the commutativity calculation in the abn‘ve diagram
to the calculation on page #37. o

v

(1v) We imitate the verification of the homotopy

propert®% in the case of ordinary singular homology.

”’ (see e.g. [V] pp 15-18). We shall treat the non N ¢
. relative case ¢,¢"' : (X,#:G6) » (Y¥,@7H) £first and

then derive the relative result from that one. | L
-

We remind ourselves of a concept in homological

s algebra. Let' (A,d), (A}3') "be chain complexes of \

A -modules and ©,4 : (A,3) » (A',3') chain maps.
A chain homotopy of © to y is a collection of
module Homomorphisms (D : A ~Ja) nez such that
CRIE i LM
ﬂ-o A L X, oo wa “
n n-1e,

B cer A -

AT

o -1
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~ ® R
‘for all n € Z: @ - ¥, =04,,D +D_ 3 . Itcan be shown
(see e.g. [H-: SLpp 124-126) that Qup = Vap3H A 11 A'
if @, ¥ are chain homotopic.

We now construct a chain homotopy D of ¢y to ¢4,
Where by 0jCe (K:6) — C,(¥:H). Let A be a homotopy of
$ to ¢'. As' in (3.5), let i,:X 3 x b (x,t) € XxI, for
t € [0,1]. Theén (L, 41g)s (X,B56)— (XxI,@;p*G) is a mor-
phism in £ which we denote again by i,. Thep, by aefi-

_nition of A as a homotopy, the following diagram commutes

i, i,
(X,8;6) (XxI,B;p*G) ——— (X,8:6)

“~
(Y78 H) . °

By (3.3), the‘corresponding diagram of chain camplexes
- 3
comiitbs. We show that LogrdiyiCu (X,B:0) =+ C, (XxI,B:P¥G)
are chain homotopic, and it is then straightforward to see
= K = '
thal: Aﬂi 0# and .).“L”' 0# are chain homotopic.

e
Let " uwiA_ + X be a eingular n-simplex and considér
the following diagram.

- 56 -
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Y

c. (An:\l"G)————-’ C, (X;6)

Jop| : i

o
s
c, o =1iprura) 5y e (xar;pre)—F—c(vin)
3up ‘ by %
cn(An,u*G)—————c‘ = L (X36)

First of all observe that piu*G = (ux1)*p*G, where

p‘:Aan - A“, p:XxI » X' are projections, so that

(ux1,1ﬂ“*c) is indeed a morphism in . Since LI

are contractible, hence 1 the ng

system;f'of local coefficients u*G, pru*G are simple
(1.6), and the proof of (2.3) - shows that the ordinary
singular chain complexes of A, A xI with trivial coeffi-
cients in’ uw*Ge, PutGx (x € a,) are chain isomorphic
to the corresponding singular chain complexes with local .
coefficients in u*G; p';uﬁq. Sine 3;, j,' are homotopic
(in Top), there exists a chain homotopy D' of ' j,, - to
3,, (the chain mozp(h\iﬁ for trivial coefficients induced

by 3,4 3,) which, making use of our chain isomorphism,

- 5] <

|
]
i
H
i

TN
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] . #

carries over to a chain homotopy D' of j,, to 4. ;
To.get a chain homotopy D' of i,, to i,,, we define . .
5 & . Q:
D_(g.u) := (ux1) D!(g.1, ) ‘
gl #ast Pn S0 la

where 1 , is the identity map on 4 . A quick check shows .

n
that the coefficient groups in u(ep) and, e, are the
same, so the above equation is well defined. By the uni-

versal' property of “"weak sum", tHis extends to a homomor-

phism D ’c (X;6) - Car 1 (x2z p'G) D, is a chain hometopy

Of 1,4 to i,,. It suffices to check this on gencrators Gt

i
i

-g'u (dimension indices are n_if,not otherwise indicated).

1p49-u 1490 = dyuylet, ) - 1“‘ ACH 1A ) \

. = (pn),,j,,,,(w - (un),,:,,,(w D

P 3 91 “] ‘
un ‘“"”ﬂ @, o) oy "n""-1An] ’ -
= Baey 95y Dy lgedy ) ¥ .
+ (ux1 (dileat, ) L

s b)) @

ssa D (g.u)oua (qu)

'
Here d v dnﬂ v B . anﬂ

O ¢, (8,,u%6), Cyy (85T, BUrG), C, (KiG), C,,\ (XxLypA)*

are the diffetential operators -:

respectlvely By our previous remark we infer that in the H

nonrelattveqtuation 0# and ¢” are ‘chain homotupic. ! . |

It is now a purely algebraic .matter to g&tablish a el




.. C4(¥,B;H) are obtained by taking, the quotient of C,(X;
©Cy(¥iH) amhg\suhcomplexes C, (a5 <;|A1, CuBiHy) (;ee

Functorial Properties of Homology with Local Coefficients

chain homotopy. in the relative situation. But let us first
recolléct where we stand.and, in doing this, simplify” '

notation a little bit. * . .

Let 3, 3', d, d' be the differential operators of

the chain complexes C, (XiG), C,(¥:H), Cy (X.A.-G)..c/".nmi.

()6;6)-\,

,,01:C (X,R7G) + C,(¥,BrH) ‘induced by ¢, ¢' and want-
N i

We have a chain homotopy D of h’ to ¢”, ¢”r¢“.

= Cyu (Y ‘H), By (3.2), we also have chain morphisms

a chain homotopy. E of ¢, . to ¢]. Since C.(x,'A;G),

2.4) we obtain the fullcwlng diagram:

-
LY4&R /
) s e e e - T
4y e, wEm—— | —Dc (mm | e wEm.
‘ / RN // & °’ 4»: L
‘ ’ - - Bl
- C (X,ﬁ G) -T' C (X,A;6) —asr C (X:A G)‘ f
. nHl’




®

, 4 ‘ - "
Here g, : C,(X;G) =+ Cu(X:M;G) , @} t Cy(Y,H) + C,(Y,B;H)

“of a chain homotopy. = . ; £ 1 K

vThus. B 0 o v s

¢ v R S L R }
s S R s G A8 Towm o " SR
* This concludes the proof 8f (iv) . e 8.

P o . i
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are quotient maps. If we ‘chase ‘a generator -g. kY 'of o
CaRiG) ) thrcugh the varfous chain, groups, ve find that
64+ ¢ and D map it ‘indos c, (B; H|g). ‘thus  c, (As N .

1s.contdlned in the kernels of g "y + @'04 0 a'D . In

(3.3) e used this observation to derive_the existence of . i

unique maps ¢, , ¢ mak% the side rectangles of, the
= y : . ~
above diagram cgmmute? {Aalsu .guaréantees &, the: exigtence -

since q >7.s onto,~for zeq‘\ﬁ;s) there exists some: &l
WEC_ (XiG) such that, qw = z .’ . . e

Tl T 03)E Wy - dldw T

= Q) (byn = Sjalv . _
LT % Pyt P I St
B o 20 TPV R B |qn i%a¥:

< a ; . . x
1By * By gdaafv + T B

Proof “of (v) (exc,u;on)x kguxn purts of thé pto

.

excasian in cralnury singulur humology are of help 4~
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in aqm‘xmam In this ye follow Vick: V) pp54,55
and appendix I. Renote by | LU . the coverings of X,A
gl.ven by (x—a A, (hn,n) Note that, by hypothauis, e
have A,X c S(_ ] A = (x-B) U 2% Danol:e by
« K ) . \’

. L i R il
€C, (X7G) :u{.elementary ul!d u; (8,)eX-B or u; (A,)cA}

- - & ]
the subcomplex °£. C, (X;G6) all of whu.se gene,rating’
singular simplices map 4, entirely in at least one of
the sets of . Similary we qefme'-_'c‘."(mdlA)cc.(A;Gh) 3
Let ¥ : €y
iclue) ».ciixs) and 31:cHmiey,) » Conie) s
o~ e ~ V S
be the inclusions. Both 3,3 induce isomosphisms i~ .
homology, nruch‘k—'ue. going to show later. For now, + %
ve assume that 3j,j' 4induce imnx'p)g.smn to verify the
‘excision property. Now, '3;3'. are ubvlously chain maps,
and we qet a- commutatl.va diagnm of long exact’ hmclugy
’equences. y " " . . i % "\

R m,r.h =+ nlinie) o.n“ ¥ A Sl |‘”Gh) ~Bn ! i

R
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since "3} . J, - afe isomorphisms, the five-lemma telys us
PN - R
that . h'. is an isomorphism. )

K}

z
We can ‘write CE(X;G) as the sum of two subq:ou.p.s

»: ° »
u < i " s o
C4IKIG) = Cy (X-B7 G|y g) *+ Cu(A1G)3)

7
but not necessarily as a direct sum. Similarly
) ) o s

CH{AIG| ) = ColA-B; Gp, o). # Cy (KiG)2)
|a S|a-B 1A

. .t -
~as a subcomplex

Accordingly we may regax\d C,'(X-B:Glx
of clx;6) Yana c,(a- 16|5p) 88 a subcomplex of -

v e = ¥
o (8:G],). This yields an isomorphisn betveen the. *

= zel:stive homology -groups

: . . v

. .
: #'(x,a16) = H, (X-B/A-BIG|y )
i = 5 . RN
in the following way. .(we delete coefficients for
7 . ; :

simplicity). - ¢ . v %

e,

.

i i A
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2 -~ c,a—B) + chk Cu(A-B)

i}

|

|

i

' oy e i .
na Cpmy B) + R »7ic, A =B

‘\ / - LT R = = L lw—

i =17, — BA— B)

i

3 °
By(X —B) + B,A E,(x,—k})
et

i
B = -
)= -B,(X-B,A -1)

c,m—a) 3 ch.C,(A-B)

Here ® is the differential operatar on c{xandza' its restric-
tion to €, !X—B).mindicahedismnrpm.smsfollwupmlltd.e

of group and set nature which is

Gestred isomorphisn .

B . .
Hn(X—B,Iv\ - B;G|XLB) ——' Bn (X,A;G)

2 Bz .We now. verify that 3,:HY(X;6) - K, (X:6) and

spenl” (86| ,) |+ Hy (WG| ) are dsomorphisms, We actually

i prove a slightly more general result:

.

)

. 4 hftm;dzmader Now,combine this isamorphism with h #o get the

1 - .
lf - (3.11) Lemma: lLet X be a space, G a systen of local
: | coefficients in X. Let U be a famfly of subsetgyof X
& ) , such that .o
H - . i \ .

= X

- .

: . v U S .
. /\\(\ ven ;
v - . ve

i

\ .then the chain nap 1l (x,c:) +C.{X;0) induces iso -
i morphisms ) | ¢
v JarH (X3 6) o B, (X:G)
! N
- ' -6
IR
’ v %
' @ - - N ‘
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. —_ -
Again,” Cj(X:G) 1is the subcomplex of C,(Xi6] whose
gemrating singular sinplices mep a, entirely into some
elenent of U, and, #(x:6) isthe n-th hosology group
of this subcomplex.
Proof: Compare the gualogous proof for ordinary singular % 3

2 .
homology in Vick [V] appendix I. -
i

We construct a chain map Sd:c\, (X;6) = C,(X;6) of *

degree 0, which is chain homotopic to the identity, by

sending each elementary p-chain into a p-chain whose
sx\'nqua'z simplices have smaller range. Applying’ Sd to
each elementary p-chain separately f£initély often,’we

eventually obtain a chain map  y:C, (X;G) =+ Ch(X;G) which
we show to b_e a houétopy inverse gf j. Furthermore, yvj
_will be the identity. Thus j 4is a ‘chain homotopy.equi-
valence, and our claim follows. o y ; i
. 1
Breliminaries for the proof of (3.11): For a bounded
subset Ac R", we define : .
mesh A := sup{|x-y|: x,y € A}
As a consequence of lebesgue's. nunber lemma we obtain
(see e.g.. [M)pp 179,°180). - \ \ R

~(A) ' Given an gpen- covering of the 'uonpq.gt' metric space -

| A, there exists a Lebesgue number ‘X 3 N .
-6 . L
& §
8" 3 1l




Functorial ‘Properties of Homology with Local Coefficients
each gubset Ac A satisfies: ‘If mesh A S X, then RN
A is fnurely contained” in one of the covering sets of

A,
L}

f
(B). ZBarycentric subdivision™ divides an affine p-
i .
simplex in RP into'p! simplices -a', ... , 2% of
? N\ aimension p, and wephave the estimate

o o mesh ol 5 §,p+—rmeshﬂ

L
for all i=1, ... , pl. —

N

! . ¢ ~ i
; % (0 Subdividing barycentrically the domains of singular :

R . 5 .
1 @ p-simplices in A , wi obtain a chain map of degree zero
. (G, a giffen coefficient gloup) ’
- " 0

_ O se 816, — Cu(a,16,) i
which is chain‘homotopic to the 1dent£ty.__benote this J
i . chain homotopy by D'. - T ‘. ’ %

b " . 5 5
LI | For (B), (C) see Vick [V], appendix I.

We use 8d' t&’construct 84:C, (XiG) + C, (X;0).
Using the same technigue as in_ (3.10) (iv) , let g, - X

be a’singular p-simplex, and let . . s

! u,.cp(_Aﬂ.ut’G) T G (xi6) §

®
be t‘)e induced )wn;mqrphim. iy -,
N 5 e g
5 g A . 4 . .
L ’ * .
¢ £ 5 = 65,- -~
-
» - L .
] , T f"\ S 4 i
} 8 i
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Now define

y
Sd(q.‘u) = Sd(u'g.?Ap) 'Sdﬁu(e )(g.iAp)

Again we surmount the d.tfﬂc\aty of assigning the 'right!.
. . . » e %
" coefficients to the neuly appearing preferred vertices
by going back to the simple pull back system of Iocal

coedfsc:.enta in Ap. Similarly set . t

D(g.l‘x) = "“0‘9'1,5,,’ = u”n'(g.up)

To he,preg‘ile‘, ‘when deﬁéni.nq D,\we really should ,
compose D' with the chain equivalence induced by the

isomorphism in £, (!Ap,’r):(Ap.GxG\:(op)) = (4;,85u*G)

awhere ‘K:G\I(ep) #'u*G is a natural equivalence between -
- 8 :

the constant system Gufep) on &y and the simple pull

back system with rébpect to 'u, according to ,(1.6). We -

O —

.77 gmore this fact ingour notation. v
Let us prove next that Sd is a chain map, and that.

D is a chain homotopy of Sd the identity. In fact, -
* since uy is a chain*map, we see _that 84 4is a chain-

map on el p-chains and cor equently. al.so on

Cy (x;G) bly the unj.ve’x'nl property of waak direct sums.,

To see that D .1.5 a chain humctopy of 8d to the xden -

tity, we ‘evaluate 2 . L

- . L - 66 -
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R ) .

(sd-1)g.u = ISd—I)u’?.!AP
= “‘,(Sdén(ep) (g‘?A‘p’ = 9'1Ap)

= g '
ug (D r‘*‘ap- n*'nv'q‘1tp

= Dp_‘)x'a")_‘ (9"Ap"a,u“l°;(9“np)
= pP'_‘ apu# gg.1Av] ‘apn“llpﬁ (g. 1Kp). 3
RIS SLINE RE RN ;
& & - =%,
Here 3,3' are differential operators on C, (Xi6),
o (Ap‘;Gu.(ep)), and 1 1is the identity on €, (X;G).

we are now nldy‘io constuct vy . '

3

fet uim, -+ X be a singular pesimplex, and let
9:={v"' (U):0et}. By assumption X §s covered by
Interiors of elements )nl 1 , and by captinuity of u

i ‘ 3 A = UV

L ) P ven )
According te. (A), let:) > o be a Lebesque number for [
this open cover. Using (B), we .s;ze that, because (ﬁ)"
converges to o' as Vv approaches ‘s » .there ex;uts a
least inteder m 1 & m(y) ~such that all simplices obtained
" by the m-th tterated bagentric sudiision of A have

mesh less. than or equal A =

4 a & mesh (%8, < ; "

- 87"

|
!



{
i
i
i
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By conStruction of Sdy this “ifplies

B (udy

g

3 (x;
€ Cp (Xi6)

‘
A\Since D +°D3 ='Sd -1 , we have for Kew

S

r

apsak 46356“ = sat! ~gak

and conséqﬁeniiy

2 P(10...+Sﬂ) + "p FEME

Since Sd is a'chainmap, this is equivalent to

ky . ggkt!
apﬂbﬁ(1+...+sdp) —sdp - 1—D lH...oSd )a
o

'
. .

For an elenentary p-cheln g.u € € (X;G) , define

; '
T§-u) i = pjlis. .¢s§:(“)) (g.u) €.C)5:G)

?
We obtain By
AT R B0 (gu) = B, D (1Y sd“““))q.n o
D (1+...+sd"(“'fl’))ﬂ(u“( )g UGt .
: Cuoth) ) v
+ 1&, (=1)% np_,u_ -+sdp 2300 g.uofp ’
SebE L -

+8a%) = sak*t! -
P P

1

3

»_4‘
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= O g - DP_‘(1+‘..'sd:_(‘|")ap (g + ...

Since for ogi<p , m(u) 3 m(unf;) , we obtain
: N o - 0. N
(if aofy) = miw) , the expression s™°fP) s .o -

‘hamonor phism)
. ¥ §
Ld
. - m Cu)tt
(awlrva_'ap)g.u = (s -1)gq.u N .

- BwoE+1, im(u) o

R LB IO EREE 4
By au:(‘uofi)wl ¥ st i

- = P+ 2
bRt +..+85a8 i) g nog)

Hence we may define

.‘ —— % . -
; ylg.u) : (BPHTVVIP_‘BP)q.u - g.u

e

Whiéh s an element of Cp (XiG) , as inspection of

shows. By on, T is'a chain homotopy
N v
of joy . to the identity.. On the other hand, if
L :

g-u € Ch(XE), then, m(@) =U. and yo) is the identity.
5 .

] j
Ihis concludes the proof of (3.10) (v o
L ) . B
-
- 69 - 5 .

o
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To. verify the validity of the dimension axiom (3.10) (vi)

we need merely  observe that a system of local

Goetficients in a one point space is constant, which by
(2.3) reduces homology with local coefiicients to ordimary

singular homology. ¥ ) N o
’ N S

The proof of "additivity” (3.10) (vii) s the same as in :
;rdinary singular homology: By assumption a singnlar P
p-simplex in X maps the O-connected space 4, amd g i
its boundary 1‘nto precisely one x)‘ . By definition of 3
the chain complex of X with Local coeffictents th G, L }:'
i

we obt&in the following direct sum ﬂecmmslitfongl.} *

Cy(X:G) "5 ?C, (XtG_A) /

’ .
. . ZF(X:G) -:;Zp (X,G,) -

Bp (X;F) £ :Bp (X%GA)

Ouf clarin follows since &
s -

:Z_p (X16y) -

LS
R 6

This completes the proof «of (3.10) . : o
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Punctorial Properties of Homology with Local-Coefficients *
— '
{3: 12) Corpllary .(homology ladder of a triple) : -

- let (X,A;G) , (X!'A";G')e be objects in £/

4= ($1,62) : (X,A;6) = (X'.,A";G) a morphism in

let Bc A, B' cA'besuchthat ¢:1(B) ¢ B', then , by
taking suitable restrictions of ¢ , we obtain morphisms
in £ :

¥ 2 AABiG) (A'“,B‘;G'r,‘a.)

These and the inclusions

3 . .
i: (B:BiGM) -+ (X,Bi6) , i' : (A", 7G'|7\".’ (x',B';G")

5t AKBiG) s (KAIG) 4 3': (X',BG) 4 (X',A';GY)

give rise to a commutative ladder of long exact homology

sequences

TR s N 2 wis
Hramno 2 READ — h W30

r k.
i By BiGp)

; Voo
. i i a ’

ot BB (e <m0, a6 S B ) 3 '

e
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exact sequence o ¥
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-

4 . 0
Proof: This can be shown uslng the axions only. Since the
prwni of the analogous statement in ordinary. homology -
presented by Hu [Aa] p%,l\ 38 eazries over word ‘for uard,

we omit it here.

. . By .
We also have a Hayer-vietoris sequence for homology,
with local coeffi’cxents. s ‘ &, ) i . :

(3.13), Theorem: Let " (X:G).be an objeut u : ana

A, n c x ,\subspanes ‘such that

Lndwce isumorphisms

* i, (a,nnscur_.rﬂ (AUB, a,clA“

j,.n,(B,AnB GIB)——Q B, (AU B,A; GIA“)

in homology with local coemcxents. Theﬁ there 15 a'long

.- HP(AnB,_ “”) —'HP‘A'GIA) 3: (s Gll) —

— n,,(x 6 —s np_‘ (AOB;S““B) —

" Proof: - Agal.n, this: can be derived £rom the Muomg as;

in [Hul pp 1054112, -




&

Remark: * Using " "excision”

"Functorial Properties of Homology with Local Caefficients
. . w ‘

-

(3.10) (vl + we see that -the

assw;iétions of [3 13) a;e in pa:ticglar satisfied xf
§

= fuB and Ank#ﬂ e L
. . - -

As -another, corollary of (3.10) 'we"dbtain

3.14) Corollat! Let (x A:6), (x,As;H)? be .objects i
E with equivalent systems of-local coefﬁcxenﬁs G, lj,» F
then % i ’

4 ' » LI v
T Hy (XA E B KA #

aar -

\Proof. Deﬂ.ﬁe PR nx,m

'% w"”_ are inverse to each other m- J: ng use the fact

that K uafunc:oxon £ o 0 "ol 5 g e

Corollary - (a 14) ‘poses the q'u;‘st!.on" How can ‘i, .
decide whetl;er twu systems of loéal coeffiuients in X
are equivalent? Theorem A1, 9) and its corollatiea glve
* - the genex‘al key hcw to L‘Lduce this problam to a P:cblem
of pu!ely gronp theoxetic nat\lxe. In pa:ticula:, we, :eier

the- reader back to coxollary (1. 10 now. ", N
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! The- 1n£nmauon of (1,9) can also be utilized to

4 - compute - H, . for path connected spaces.

__\5 5 (3.;15) Theorem: Let X be O-connected, x,€X; G a

. o .
. system of local coefficients in X: Let. h:m, (X,x,)=Aut Gx,

-

¢ "gescribe the action of mlXix;) on’Gx, {nduced by * G,

¢ ana let H:=im h. Then . ~
: 2 . T - . ‘o = e .
Lo Fol 8 HD'(X;G) s / R TR,
Ny <{¢g-g:g €0x,, 0 EH}> ~

" Proofrsas in (1.9), let E:X - {nx(x,,x)}x“ bea )

iAokt o it te

‘e’ choice nmction; and let G' be the systgm of Jocal
9 | & coefiiclenn m b & deteminhd by h and: E. By (1.9),

S

L ¥ T . ‘. G "and' G' are naturally equivalent functors. By (3.%4),
T . H.(X:6) = B, X:6'). conaequenuy, we may verify our clailm
»* ' \ul.ng cneAys:a- .

S -

l 4 B ipgl " : Now let x)_‘x €X, \nd conuder npzannu.uq paths

s d : fox the path clauas Elx )aE(x ). ﬂEn,lX X,) . Usis

a rapruenti.nq path as a singular -uim’!.ax wit!
% bping the image of the prefeirgd vertex ey of A,. Then '
&

'l‘-(q.u) - h(E(x ) atlx, ) ETE, T )g.x, - q.x, Y B o

* i " . .. (hu)g-x, - g.x‘ w . v

g gl g ',.mtﬁn"maxa, 1f o' is a sindular 1-simplex in X m‘{ .

/
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g g e e g . "

TS ghat wA(L) € X, w001 =Tk, then '3,ut = (halg.x,

X, . for JSone o €MyHX X, ) n Consequently, .

X;G!) = <od.x, = 9.2, 10 €H; GEGKy: Xy, %y EXIS

et

The. map '
— : . (s :
i . . \
. hi 4 i
:2,(X:6") 3% I gj.x; — Fg; €Gx, -
L Finite 5 2 :
‘- if-an epimorphism.. Now consider- the diagram . ?
} Z, (XiG') | L . Gx,
. \ '\ )
e N 4
.. [
) 2y (X:67) R ]
& SR H,(X)G)—-I\——<Gl°/1. R

B, (x:6')
’

- ¢
’ T:=<{¢g-9g:g€Gx,,$ EN}> and q,,q, are the

f‘ ¢ . caftnical quotient epimorphisms. It is'then a strhight -
N % % forward procedure to check that ‘\
- L 3 . [
: - b %, (X3G') Gx
5 o : t————3.2 + B (XiG') b—qg,T2€ "0/,
i\ . By (X2G!) .- . gy

39 a Well defined isomorphism. . §

; : . H
. . te T T

< ; ’ sty

. i B 5.2 =i
ST . .
== : -8

e * o LE L E SN . L

S 5d , el )
P I ] . : 3

I
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~ (3.16) Example: Let’~

RRRI , N L
/v . "v-‘ ! .

5 Ly , s
23 .‘Pupctorial Properties of ‘Homology with Local Coefficients

be.a system of local coef@ieignts

_in '8!, then there are, up’to natural equivalence, exactly ~

' “two’possibilities for 'G. (see’. 1.12): Furthermore, using
- - . ’

(3.15), we compute (G, PR I gk S 4
o - = o . ¥
(1) H,(#:G) ¥ G, . 1iff G. is simple -
(1) B, (s%;6) ¢ %0/  4£f G is mot stmple . ¢
. 0 BN .
' In particular, 1f3 G, ® Z,.we obtain .

s A

N : :
© B, (s'i6)-= z, i1ff G 1s }m simple. V.

12 '. 3 o S

‘. ‘ . .
< * ” - W .
- q. ) ey "
. .

/ ! ‘\ ,

i . : : :

s Y ) v
2 . ] !




/Hith cperators’ [B] in ‘944. Ez |

K

“that M’ .acts on X , (by homeomorphisms).

o

(4.1) Definition: Given a homomorphism

.Iet X be g space, 0 ag’roup.

Fauivatiant Homology and.Homology'with Local Coefficients

ivariant Homolk
‘Coefficients

w 3 ~

e
The, ey result of this section is que to Samuel

Ellenhe g and publiehed in his paper "Homclogy of spaces

% : N - Homeo .X
n A 2

>

of M into the groyp of homeomotphisms of X., we say

Iet x be a, space onwhich n acts by @0 Hnmeo X.

(I.Z) oba\rvution: ¢ turns (C,X,3) into a.chain

complex of ZN1 - modules.

Proof: Since for each ae€m, : % &

v (nENa) and. fu:r.hemore for zEC X

¥ Cpa)y 2 CuX s CuX

4 is a chain ismorphum, we see that n‘ acts on C X

' v
- .

9 _(a.2) =3 [>(w) 2]~ (:au) [a:
o' n ¥ ﬂn—l/‘g‘

® which shows that ? ux al zn - y:odulaerlem. a




3 ‘ -~ 2 '
B
. N E ' "
, i . 3
a7 . . \
N _Equivariant Homology ard meln}y with Local Coefficients ;
s 5 .
4 © ' We shall continue tc il\terp!’et this ‘action on' Cuk. %

' PN

N \

H . al 3) Definxtion. The' :esultl.nq hon\ulbgy groupa : T

are called' equﬁrariant homology grodps with coefficients |
4 »E am x i H
e X ,1:hen ,mB acts on E .by coverinq trunsformationa.‘ .

‘ of covexlng

_the nppendix). . e .

. a left action. f isa right ln -module,. wé may -

fom the chain complax a@mc,,x with houndaty ope:ator
| 02 .

H,(GO,CuX)

o i P
; ?EP()S,G)

in the 2N - module G ./ If p:E » B',is’a éovering map, -

If E_is a universnl coverlng space, then the group.” ' ¥ '

Lt

ions is 1 c to "mB (See

A

Now'let X bea0 - connected looally path connec:ed)

v

und aemuocaﬂy 3 = connected space with base point PE

-apd let G:TX =+ Ab be a system of local coefficients in

R X . Tpen there. exists a unlvarul caverl.{*’ e
2 2 X,ep” {x ¥, b tha banes pal.nt of ¥ ’ &

LI ™ (x,x ) . The action @ = Homeo ¥ can’Be chosen

to be a homomorphisn such that, 1f @ € T and wI =%

“is a path from X; to 'o(a)xﬂ ' thén prut (I.aI)j(Xlxal

is a xiptanantn‘tiv& of a. .

T T




, Equivariant Bowlogy and Houology with Local Coefficients
]

We convert the left action of T on G,:=Gx, intoa

s r!.ghi: action by g\! 1= (Gul" i
A

T .
s

-
(4.4) Theorem (Euenberg). H X;6) = B & Gy)
“Proof: 'A complete proof of, tnis theoren can b!found in

\ . E 'G. Whitehead/s book "Elements of Homatopy Theory" [wh1]

o ., 'Pp 278-280, 50 we contept ourselves with a mere outline

v ;
\ : * :Of the ided. ol 5

Since R' "is simply connécted, a choi‘ce function as

i _1n (1.9), is a mniquely defined bijection
. s ot ‘
§i¥3 51 R, 50 ¢ {6, Dy g

Let w:d,+%_ be a singilar simplex, g€G,, a€W ‘and
define a map : s,
» ; ¥ .
9eoBy b GIp,Elwa(wiey))) lgpw” -~ »

i T

he image being an element of C,(X;G). This map can ba

b " proven to extend to a bhain isomorphism-
i

| ’ . We use theorem” (4.4) to gain some !.nsight in the
homloqy of path connected splcea. We need the followlng .
’ lemta. *.

F g K "




: ing,-with X path connected. Then C,X is a chain com - -

" W(ep) =%, Denote by 'p*{u} the set of liftings obtained

g e v
Equivariant Homology and Homology with Local Coefficients
. ; P

. $ 5 e
(4.5) Lemma:' ‘Let p:(¥,#) + (X,x) be a \mlvax_sal)cuver -

plex of free M, (X,#) -modules. a

Proof: For pEN,, let o, 2= (’uxAp - X continuous}.
We claim-that o, 1is a basis for CPSI as a ZM-module,
fimm(Xees o o = & T
’ : A
L -~ .
.. Let u€op, ¥ €p*{ulep)}. Since Ap is T-comnect-
ed, the li.ttiné lemma for covering projections gives us

a unique lifting' ¥:Ap'+ X of u such that u=pd and

as ¥, ranges through p~'{uf(ep)}, and let G, be the .
set of singular p-simplices in X. Then &, 1is the |
disjount union .

N 2
9, = u p*u} / < )
. : P uegy o . '

g s . =

Now let i:uP — (p*lultu€ oy}, tlw e p~*{u} be a’

choice function, A’ a M-module, and ©:0, = A "a fynction.

In order to show that C ¥ i a free M-module, we must P
- :

£ind a’unique module homomorphism such that the following

triangle commutes.
i ‘ o
C¥ — - ——-= == A v B .
‘I 3 .
0
o -
gd s ;
- 80 -



Equivariant Homology and Homology with Local Coefficients

This'is ‘accomplished by defining .
o~ . Y
‘ I n{uwa(u).z(u) — n(u)a(u).e(u)
2 finite .
where a(u)€ny(X,x) =10, i € z, weop. kA
i WL
/ ’ 4 (Y ' =
Now Jet T .be A group, X:=K(T,1) .the Eilenberg-

S

Mac Lane CW-complex satisfying
: . {0 4f n £1
14 X = .
. moif.no= 100
Then (X i O-connected). the lorg exact homotopy™ sequence ’
of the Serre-fibration.X » X yields mX = 0 for all
\ . LN . 5
n € N;. The Hurewicz-theorem implies S .
Y, .
. “fz £ n=0 )
. % 7=
- = B X = :
- 0 iff. nz21
’ Thus C,Y is a projective resolution of Z - regarded as
a M-module with trivial action. For a n-mo"éu‘le Gy, We
v . ¥ b W g
& .then obtain .
. ‘ - b i
. . i ) *
: Ep(X:6,) = Torp(z,.6,) o
' P S N
i {For & development of the functors To;'the reader is
referred to Hilton, Stammbach [B:5] IV,11) ' - "
. g o 3 o
' ot ¢ \ ) » [}
: 81 ~
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Equivariant Homology and Homology with Local Coefficients

o Consequently the?rel (4.4) ‘yields immediately

(4.6) Theorem: If T is a group and G a system of

’ local coefficients in K(H,1),(i¢ :'Gxo,xnil(n,“, then:

= : . s (xmn);s) Tor z, c.,) . .

; 2 “ “ >
From this theorem we conclude the following.

(a) Computation of homology with local coefficients: of

K(m,1)'s. can be nduced to puraly group theox:etic
i conndenﬁons. o % v
i

y (5) The resulting homology groups depend solely on G, <

and the action of ‘M on™-G,.

Note that- (b) is remipiscent of (1.10), for we siw there

i tha’t a systen of local coefficiends in a O-coghected C( !
space is, up to nltux.nl' cq\livahl&ca;’ uniquely determined

i “by G, and the action of N on®G, . Furthermore,
i \\..\ We showed in (3.14) that K, (X, A)G) % B, (X,A16") for_
|

|

equivalent systems G,G' in x-. : -

» . Aa .we just saw, this u axactly the Lnfomation one‘
N naeda to conp\lta homology of R(rl ‘I)'l. In order td [ S
< St el Noonventing ) i to o 4 "

. ve. !

; v
5 o - Spacen other than’ mn 1) 'es, we might attempt.to puuua
& R g

- one'of-the lnua\dng two.! ponlhuniqn "
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e Equivariant Homology and Homology with Local Coefficients

starting with X O-connected, we ask:-

| '
| ‘ . (&) Is there a growp T and a map £:X = K(M,1) - such
! that each system in X is naturally equivalent to a
'1 pullback system £*G and-the morphisms:
H . ¥ g % 5
. 4 o .
: ; Sy " .
i v7'=H.(x;f's) s 1, (KK, 1)56) X
dte isomorphisms? - . .

that . v .
b . E o .

“£]1H, (K(N',1);£'*G) — H, (X;G)
SN

E ; s B

: / ;
are Lmrph{nl for ‘all systems of local coefficiénts Y

' i, 8 dm X¥
‘ I know of no answer to guestion ‘(A). Question (B),
| - [ however, has been answered pou.ltlvcly.fo? 0O-connected *
| . :
1 o e spaces of the type ot:, pl in 1976
- 1 @ i :
o by D.M.Kan and W.P.Thursten [K-T]. ' - ’
! - ) E
$ . { ‘
1 s . ; a8 . . X
. ' el N 8
v Dy =83 =

(B) Is Ehe;'M group T' and a map f£':K(M',1) » X such

s ook
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B
b

As| in ordinary singular homology it is possible to

‘ make use of the cell structure of, CW-complexes in,a
. ke

systematic way.
et
v

N L
.(5.1)" Theore Let (¥,X;G): be an obJect in’ £ such

that (¥,X) 1is an n-cell udjunction (n>0) with n-
cells ,{e"'}‘ ¢y and characteristic maps 2,527 -

W, =[x L) 62,8
2 TErt e \

)} » (¥,X). Then
X

1) Hy(Yi%:6) = 0 for p#n

.
(14)  For all VeI X 4Hy (8] 5! iX{6) = Hy (Y, X56)

t.

is a monomorphism

Wi e = @y 8 H, (a ,s““ x46) B By (¥,%;:6)
E v

is an isomorphism. i Y

Proof: Compare Massey [Ma2] pp 78,79.

- )
Let L s® = s ot
€Y ) €1, 1

W ", T Al i
DY:={x €B: D¢ [JD} |
1€J

E = |[{0:0 €D}
[

. - 0
and consider; the’ foll&wing diagram. %
@ * il X
. . i
| F v ,
| -
.. 5 N
s / 84 - B
4 i Ciede . e ]




.o o Local Coefficients in CW-Complexes

. B X k- : >
om0 1. 1 a . e
‘:Jnn(o‘.n\ {0, }ixie) ) ‘:Jn_n(x\(n‘),xl (0} ‘Pl)!"“"
- ) B : ! f« 2 L

¥ . . ‘ X

! y (D, D-Ey* i 1, (x (D) % (D-E) 1) o d
‘} H,‘lz,nzyG). == H, (x (D), x 16! .
! " }
Pl .

1f = 3 ‘
f
F N e SR gy
Hy, (B/B-Eix*G), ————— H_ (¥,¥~x(E) ;)

BT
!

X L& 7
* H, (%,:6) /
10 -

' L H, (B,S:x*G)

; | ) .
In order to simplify nug‘tiun; we did not write .down
4

the obvious restrictions of the maps X.r X, and the |

various local systems. .

'Eh{ diagram con\mute. because the corresponding

diagram of maps in [ commutes. We claim that all maps : #

are 1somo:phlama .

. 2 i .
For the maps 1,2, this fouous from "additivity" £

el ¥ s iy

{3.10) (vj.“. The map 7 is an J.somorphium because x‘|D v
.is.a homeomnrphism and ‘thus 1neuces isomurphiams on each

» - direct. summand. Hapa 3,4 are isomnrphim hyu"diq -ﬂm'\

: H
’ uané)'(w uap.u.s.smmu
'bd!.z (B,B-E1X*G) 'is i
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‘Local Coefficients in CW-Complexes’ ' . .

hc\motopically equivalent t5. {B,S:x*G), and” "(¥3Y-x(E) 16). ~

s homacopically equivalent €6, (¥,X;6) % ’l‘his is: clea: m A -

e

i
i
i
i

w0 Top' and follows in £ "from Lemia (3. 7)
5 i Lenm .,

This proves (Li) and “e(1id) .LTo see’ (1), we: need A

merely . chserve that n 1s shllply bﬁnecceﬂ. Hem:e .

o

Xie 15 a s:l.mple sy.stem of 1ocal coeiflcients ot a eBy R T w

1y T 42.3), we mays pex any element xoeﬂ}, and get -F
: qe .
B, (a ;80 :Gx\(x N "‘“p"’ shixte)

.
he group on the left hatd side being an ordxnary smgular

/homology- group with trivial cogificients, in the group:. .

. . .G)(‘(x‘a). This implies ‘U.).

” Since the only non trivial part of the Wt; exact homology

'? " 'sequence of the'p§1r~ (Y,x;G) is the following: .

0= un(x«!lx) - un(x c) - nn(x.x G) =+ n(;.‘a{ Glx) B L (56) » 0 .

. . # e B .
j- we obtain: ‘- : . : . 3 b "
A . - o I
. —
|
|

v

< s Co:ollux

" o Ay T

-
(x:6)* he zn objeoct in J:, ?
beinq a cw-complax with n-skeleton X" (n'z O).~ Théen

* | Mor p>nx L ul,(x 'ule') ] o,
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Local Goefficients in Ci-Complexes Lo g AE
e B A . Tde
LR Y 1 - L —-— "
2 Proof: Induction on n, For n=0, thi.s Eouows’ f:om. X \ .
"dimensi.on and "addittvity" (3.10(vi), (vil)), bacause the Q8
0 skeleton 15 discrete. !.'or n>0, use the 1ong exact 2 O

hmology sequance Of the pair b.x (’\Glxn) .and (5.3).
. < £
" E p A(S_;‘,,{)‘ . Corollary: Tet ?X;G)‘ be as'in (5. 3]. Then'foz‘ .

p>n2m20. (or for nz'mzsz)- ‘j‘ . o o
; mepe . L

n(x,x-sl n)=0
—_— e ) i 3 =
Proof: By idduction on 0% k--n-m <n- (or 0sk:

and th: long exact sequenctﬂ;-' of the fripla (x"x"¥,x"k)
: = 7 5 « 3 & & n W E
L (5.5) Theorem: Let  (X;G) be as in (5.3). Thén for (5 :

nzp20, the' 1nc1usmn = +X induceﬁ an isomorphism -~
R ’ i g ks

: Wy B

¢ Ty n (x%; G]x“"‘“ (X G) T

.

, to lulno:. [un] Lemma ‘ﬁ T ahmf that: s

» .
* B up(x o= “"["v(xl'clx" -+ up(x’-clx,) -o\!,(x’,sl -»...) .
v #

o the maps. belng 1nduced by anlusions.r By' (5. 4) .’

H X2 thxn) “ Hy (x’“’knGlxmg) As g uomarphism for "

nzp and k2 0, whieh yields what wa wun\:- (sr arg,



Faow 15.6) Corol Let _ (X;G) be as'in. (5.3). Then for - 'i

i : A

: nzp:  H (,X%:6) = 0. - s . = i i

3 . w, o Fa 8, S @ i :
Use (5.§) and the long-exact ‘sequénce of - e p

; x,x";6)." e, s ¥

o g, L 5 . i

I.owe statement and a sketch of the proof of ‘the

followiig Whitehead type theorem to. X. Varadarajan

?  (oral communication). - o T o s ! i
) 15.7) Thecremi. tet Xi¥. be .bised catnadted: HN-senpiezes) H
4 . £ (X,y) - (¥,#) ,a continuous map such t)git n,fi tsan . 3
b g , . isouicrphism and’ # ‘Lndvoss isomorphisms o < & 1
‘

£y tHy (K E%ZT, (Y,4)) — B, (Y327, (¥,,))

3 <
" . then £ is a homotopy eauivalence. o
Proof: Let ¥,¥ be universal covering spaces of .X,Y =
P and %:¥ » ¥ be the map induced by £ guch that R )
i : . ; f .
i @
e i) :
: v k] Using Whitehead's theorem (CW 17), it suffices to j '
' show that £ is a weak homotopy. equivalence. By assumption,
- 88 - ’
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we are lefd to vezify that. f induces isomorphisms m

homotopy q\mup- of auensxon 22. Using the exact sequence

of a Serre fibration, we see that 7,p and-w,q are

i sms for nz2. ly, 7af 1is an isomor -

simply connected, so_(CW 18}/ it suffices to show that

. are isomorphisms. ] e

o
To do this, consider

(n22) 1ff° 1% 1s an isomorphism. But ¥, are

P N )
T, iH (CR) Hy (C,Y)
-1 .
Hp(c,X @ zmX) 5
X .
. e
2

s Hy(C,X 8 zmy)
. 0BT e
x 3 I

el X (Xizm,v) Y Y@y

[ i f

iwﬂn (x; f-z-,y)

which yxeldn vhm: we want. A feu mlnﬂt things must

be justified.

C,Y @ zm )
Y

Hy (Y327, ¥)

- us .

(a) _ The above diagram cormutes. This can be seen éasily

by locking-at ‘_thn corresponding diagram of chain complexes

. - 89 -




and using the Ghain fsomorphism in the proot of Euenbexq s

theorem (4. 4)
Qe

(b) If R 1.5 a ring/énd - M a Tright - R-module, then we

] - .
RRBmQr + mIre€M

have an isomorphism ) . . -
19)

of abelian groups.

(€) If <,> is a complex of right R-modules, and R'

1s a ring isomorphic £, R via hiR - R', theh R' is a

left” R-module by r.r'.:= h(r)r'. Furthermore the chain

" compltxes CoR and COR' are isomorphic. The prook 18" oy
straight forward. 2 - :
= . = R |

Since (2.3), we know that ordinary singular homology
is a special case of homology with local coefficients, But
up to here we have not seen that we really Jain information ¢

by paying attention to the extra structure of systems of

local ‘coefficients. We shall eliminate 7.15 deficiency now.

' Fizst of all, the reader is rominded that'a weak
homotopy equivalence f£:X - Y between CW-complexes is
actualiy.a‘ homotopy equivalence. If we assume £ to be
a' (ordinary) ho?ngumgy equivalence, then £ will in

general not be a homotopy equivalence. One way to find

es is to ict spaces. X\Y witH non‘iso-

morphic perfect fundamental groups, (which implies

<90 -
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" Local Coefficients in CW-Complexes®

» . s
H X = HY = 0) and'still permit an £:X -+ ¥ which is

Inspired by the hypotheses of theorem (5.7), we

might vondof whether requirfhg in.addition that mf be

X = K(2,1) = (1) - . . :
M(z,,3)
which aYe comnected CW-complexes satisfying the following,

H)X =2z, HEX=mX=9, for n>1: HyX=mX =0

¢ HY'=2, HY¥=2, mY=mY=0, for ng{03kH¥=0

' Furthermore, ' X,Y¥ have precisely one 0-cell X,,y, which

we use as base points to define

. (G,y,) if gEX
L:(Xox )viY,yy) 3 € XxY
. (%, /8) 1f TEY

Recall from the definition of the wedge product that
L]

-9t -
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. * .

we may regard 4 as an inclusion.
Claim: (i) %41 1s an isomorphism.
(ii) .  For any abelian group A, i indyces isomorphisms

< in ordinary homology with coefficients in A.
(1i11) © 4 is not a homotopy ‘equivalence.

e conclude that there exist systems of local coefficients’ .

' 2 - .
G in. X x¥, such that for some hEN P

.

i 1)iH, (XxY74%G) » Hy (XxY7G) - "

is not an isomorphism: This follows frém (5.7).

Proof: (i) Using the Seifert-Van Kampen theorem (se? the / 5

on the 1 » we see that the
following adjunction square .of based path connecteéd spaces

®,x,)

7

(g7 ¥y

¥y 24

4 .
(Xx¥, (% .55 ))

gives rise to the following diagram of fundamental groups:

¥ . 5
' - . / Py




!

, Local Coe;.t

e P L.

XY, (%, 03, 1) % \

. From the proof of the fact that'
#m] (X% )87, (¥, ¥, ] ,. we fAfer that homomorphitm 1 'is
éumnrphism.

an 1s.omrphism. By commutativity: mi is an .

) (11) We iirst compute the homology groups of Xv¥, Xx¥

- with 1ntegzal coefficients sesarately. XvY is a CW—com -

plex; hence has a contractible neighbourhood U ot‘
{x, iy, Define X':=XuU, ¥'}=¥UU. Then -X,¥ a;e ‘'strong
deformation retracts of X';¥'. The Mayer-vidtoris . 2
quence of the triple (XvY,X'/Y') yields the’follbwing

exdet sequence in reduced homoldgy.®

I T heE

vy » B ﬁnx'oﬂl;:;' -§;xw’- ): ST

wees By ] J

since U is contractible, ﬁ‘"x'o?{ ¥+ H XvY is an

ucmozph:.sm for all né€N;. Consequent].y P .
. 4 i e ¥
HXvY = Z u,xvx @
HXVY =2, . HyXv¥ =0 ngwn-(1,3}

The homology groups of * Xx¥ can be calculated using

the split exact sequences.of the Kiinneth theorem
- 93 -




0— I Hy¥0H Y — ] KXY = 1 Tor (H; X,H; ¥). — 0
< itjn ; . i+jen-1 1 .

which yields ;

\ .
for afl nEN/ { In order to check that 1 imdeed induces
such isomorphisms, it only remains cq congider dimensions’

1 and 3. Let p.-XxY -+ X be. the proj n and c nsider
XY

: xS x A xvy 4

We have seen before that the maps 1,2 induce iso -

norphisms in homology in dimension 1.
homology functor H, to the above diagram, we aré left with
; iy =5

tOHXV R @ s @@ B XxY _
Py . Lo

' ' Jﬁ:ﬂlx'v H -

.. i
From this, we see that i, is injective. But a

™ homomorphism ®=+@ is either the O0-homomorphism or an

isomorphism. Thus ‘i, o 18 an isomorphism in dimensioh 1
The same type of argument, applied to :‘pe'.equence g
¥+ ¥' 4 XVY + XY + ¥, shows that’ 1. induces also ‘an E

- 94 -
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_ Local Coefficients in CW-Complexes .

i sm in ) 3. Thus 1 _induces

umzpmsn}a in integral Homology.
-
Now let A be an abelian group and consider the
long exack sequenca -

o By (ZXVYiR) -H (xvy;a) u,,(zm R RCE s

where q is the mapping cylinder of 1:X¢Y » Xx¥ and .

" 34 - is induced by 3:XvY3 g - (5,0) € . s &
/ . %

i * Tt suffices ‘to show that j, 1is an iscmorphism,

becauseé in the:following combuing“triangle

XxY

* i @ XvY =
g £ . "

. the, retraction

EExxY‘

LTiZ3g —, € xxy

T=(st) € Xv¥xI
can easily be extended to a strdng deformation retractiom
of % into. Xa¥:'Hence i induces isomorphisms in

ordipary homology with coefficients in A iff 4 un -

duces isomorphisms.

To see this, we show that H,(Z,Xv¥;A) = 0 for all

«
. ‘- 95 -
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n €N, For A z, this follows from the exact sequence
i and the fact that' i induces isomorphisms in integral
L ?

horiology. Now-apply. the universal coefficisnt theorem.
» v}

: (i{i) XvY¥,Xx¥ are 'CW-complexes (although we don't show

| . it here), and consequently have universal covering spaces’
o~~~ . \ : Ls
‘ XvY,Xx¥."But since Y=Y and ¥ is contractible, we have

P (ol
N N ~ N
| XY m ¥ = Ruv my

. 5 i ‘
} Up to hamotopy type ye can also simplify the space ol

. XVY . by the follcwing considerat].on. Let p:X + X be the

)

i

H
3
K
i
i

universal covering prnjection. then, using simple connec -

|

‘ A tedness of Y,'we see that a universal covering of Xv¥ |

i can be constructed by ‘attachin\g a copy of ¥ with its Y oz T

| bdse point y, : to each elemen;:‘ of p"[x,,i c¥. since ¥ |
is contractible, and slace p"v(xu) is in *1-1 corres =

pondence with. m (X,x,) = @, Xv¥' is homotopically equi -

|

!

| 3, Y » \
| «valent'to a wedge of countably many copies of Y. V.
{ f - e \

‘ To see this, we first observe that theMoore space

" ¥ is finite dimensional (see e.g...[G] p159) and, there - | I°

, ' fore, we may apply the technique Lllustrated in J. Milnor's |
l "Morse Theory"; (2] pp 20-22, to verify the stated | S
¥ ‘ ﬁmotopyfequivalenée {the facts of i‘nteree‘: are collected = :
! " in the abpendix on CH-conplexes). . : ;
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-

{
{ . Using Ehe Mayer-Vietoris argument of the'proof of Ty
L0 . iy

(5.8) (11) - once again, incombination with a simple cat -.

egory theoretical limiting argument, we see that d =4
. / Y i . :
HyXvY = 9 T ¥ 2, = BXE i
| . 3
. | ‘-

denoces the k-th element in the ﬁ.\mixy N

where Z,,

1z, heen™ © capies of - Z,. . i b e

i

3

. : {
We use tms on to ct the on " ;‘
h

' that 1:XvyY 4 xxY be a homotopy equivalence in the fol -

.+ . lowing way. éonsidez the caummtacive square .

T XxY .

' 0T,

U 1> XxY ;B .

whe ToglLRasE isequancs Bf Serre PIBCAEIARA EALIETGE! 1

+ " that the covering projections ‘1,2 induce isomorphisms %

in homotopy in dimemsions 2. If i is a homotopy H

equivalei-xce,'n“'f are alsojisos for n22, by commutat,lvvity. ’
0%, ‘are simply connected. Consequently, T is a'veak

homotopy equivalence and hence a Homotopy equivalence. !

But “then - B, Xv¥ = B, %37, 4 contradiction. £ % e

o
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. CHAPTER 1

The "4"&hstru‘ctlon

In this chapter we give a detailed proof for the
3

‘existence and uniqueness fup to homotopy type) of the

- _"+"constructioh dus to D. Quillen [Q]. In-doing this,

.
we follow a very condensed suggestion. in a paper by

J. B. Wagoner [‘ia].

In order not to dis:upt the main outline of “ideas

behind this construgtion. oo often, e fxrst give a semi

. candenaed version, defetrinq details and refexencas t111 7

latex. Thus nmn.bers assigned tc statements in this semi
condensed version indicate the number under which the
reader can find details and/or further references if

he teels inclined to do so.

Throughout this section we shall be w'o:xi_ng in the.
category of ‘péth connected topological spaces having the
homotopy. type of a. CW-complex. All spaces ar.e.base&, X
and all maps and homotopies are base point preserving.

In the proofs of the Eo’llowing four statements, however,
we shall tacitly assume that the spaces we aze woiking
with are actually CW-cbmplexes. More general statements,

concerning spaces that are only of the homotopy type of
Cor '

- 98 - x>




The "+"Constrwction <.
. ‘ A .
a CW-complex will follow eastly from axgunen‘r.s that_are
at least .muu to'the one given In the appendix on
cw-cmplexea (19). - :
An . : o
Lét X be a space, HcmX a perfect Sub -

‘rheozen

group (H 4is equal to its commutator subgroup). “Then there

" exists a space X' and a nap 1:x » X" such that

L
(1) mx* r"l"/ﬁ whére H . denotes the normal clusuxe

of H in mX (the 1ntezsec\uoq of all normal
.  subgroups of mX containing H).. e
. ¢ g é /
(11) For any zm X'-mgdule A, the map 1:X » X' induces

isomorphisms e "

« . 5 .

of homology groups with local coefficients in 1*G,

G. Here G denotes the system of Jocal,coefficients .

in X' induced by the action of ZmX' on A.
e, e

Theorem

let 1:X -+ X' be as in theorem A, "

X -+ H a map such that Hcker wlf,‘then there exxati o =
P
amap - £':Xx* 4+ W such that.the fnl].md.ng c:inngle comnutes:

xot

AN

1,:H, (X;£%6) - H, (x';6) - _ - .




| : 5 * Gy T af g
-4 LT T L The *Construftion
942 0 - i . By

' : ,! e Corollary’ C: “In the situation of thegren 3;. the upaca :
i K Xt s wnique up to huwtopy type: i
¢ : AN Ot
v i - - . v %
d. Theox&n zjc \Fxo z beannp -uch r.nac ﬁ(c)ca
L . where. Gm are. ngect s\l.bgroupu of x',nlz. Tet "i: x-x ,’

iz 2" _sat.lsfy (1), (1) of theoram \A.: Then 'there is

a‘map £hx* 4zt s that, gives a cmuuuve asaqu

L ’ nmtal gxoupl el
R . g R | .
. . L —-f-—'. W

. e TLANEE A ¢ 1)
e weCanpute .
- k) = 0 = (@)
g %




The - "+"Construction
e

This obsgfvation gives us a clue how to take care
< 2
of requirement (i): There exists a path connected cover -

ing Projection. p: (¥,+) + (X,+) such thaj {(K‘Y) = H.

. (see the appendix on cw-conplexauf
V

(2) Now attach ' 2-cells te‘ Y& k111 Y.

Denote the~xoau1t1ng space By ¥i. Sthce' (y',¥) is a
2-cell aajuncmm, the 1nc1nslon Yo v? s a closed
cofibration. Consequently the spage ' X’ in the following
pushout »dilgt‘am satisfies requirement (i) of theorem, A.

. \ 5

'_ We take care of requirement '(ii) as follows. Since
¥? . is simply connected, the pull back system P'*G in
¥ is simple (1.7.6), consequently the systen k*p'*G
in ¥ is also simple. We shall attach' ‘3-cells to ¥* to

. obtain-a map j ¥ e ¥ auch th-t

(1k).:H,,(v;z) H.(Y'm

. _‘lxe 1.mmor15h1vu in all- dimensions. Then defing x" by

. i

the follmdng p\uheu_t dingrcm

N

C

- 2. - ._-.

gy

e e b e S i i
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ik
y —2E Ly,
., ] ; |
P i i@
v
'  oa
X— - — = X

According to (1), we have m, (X',
and the comimuting homology ladders of the triples (Y*,¥%,% ”
respectively - (x*,X!,X), combined with a univéraal coef - i
ficient theorem, will help us to verify the isomorphism . i

properties of 1,. . T i
5 - ’ 5 . ..

So let's analyse the homGlogy situation of the map

Kk tH Y + Hy¥?. According to (I.5.2), k induces isomor - ,
* 5Py P ¥
1 and 2. The only -

5 . . ~
phisms except possibly in dimensions
“fion trivial.part of the long exact. homology sequence of

‘the pair (7,9 being J . .

10 BY e B Y (YY) e HY S K Y40

X

Using the Hurewicz isomorphism theérem and the:fact

(3)  my=w which is perfect, i

e .

we see that MY = HY' =0. | s : !
. 'rﬁrn;ng oir attention to homology in difnsion - 2, )

We_ observe that W, (Y',Y) is free ahellian by 115.1) i |

which gives us a split exdct portion of the above sequence )
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t
0 — HY — HY v H (YY) — 0
s I B
: ' < HYeH, (¥ ,Y) g T, ¥
Since m,¥! = 0, the Hurewicz hlcmomorphisr;\ h is

1
an isomorphism. As in (2), attach 3-cells to kill the

direct. summand h7'H,1¥?,¥) of =,¥Y’. Dehote-the resulting

space by ¥' and 3j:¥? = ¥'- the resulting inclusion.

Then another exact sequence calculation shows:

L4 (3K) 4H,Y » B,Y’, *are isomorphisms.

As announced) weidefidé X' to be the pushout of
xRy 3%y, -ana proceed to verify that X' .and i:X -+ X

satisfy conditiéns (i) -and (ii) . of theorem A.
(i)" has been jugtified above.
. ({1) Let m (x',x) act on the abelian group: A, i.e.

.- A is'a zm (X',;+)-module. According to (I.1:9), there is
N ; > 9 1

“&"system - G:TX* » Ab of local coefficients in X", unique

: : v
up to natural equivalénce, such'that Ga'= A and G’ in -

i ' @uces the'action of m (X',s) on A. We want to show

that i,

4 (X74*G) - Hy (x*;G) aré isomorphisms.

: : s |
' The .systems gq*G, (3k)*q*¢ are simple in Y*;Y.

. By '(I.2.3) and the universal coefficient theorem, we

have




»
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(5) Hy (¥, ¥:q4G) & H, (Y*)Y;A) = 0
. 1

Now. lodk, at the following portion of the commuting

exact homology ladder of triples (I.3.12):

0= B (Y2,Y;q*G) » By (¥,¥%,q%G) — H“(Y',Y;q'G)' Hn(‘l’.‘i;q‘G) g

11 : zj
W0 — B (000 —p 00 -1, &0

* ¥y 3

(6) Arrows 1 and 2 are isomorphisms.

By commutativity, arrow 3 is an isomorphism, whxch

*ahows u-m—. H, x* ,x G)'=. 0. Now the long exact sequence of

(x",%)6) shows that

4, tH, (X:1%G) — H, (X%;6)

are isomofphisms.

Proof of theorem B: According to the proof .of theorem A,
we know that 1:X+ X' 1is part of the following pushout.

diagx‘am & ~

Y — ¥ _—jfw
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.
where p:Y » X is the govering projection satisfying

mpimY) = H.
\
As indicated in the above diagram, we shall construct

amap F:¥’ » W such that fp = Fjk, which implies the

existence of £' using the pushout property.

Since immpc ker m£, it follows that' m (fp) ' is
the O-map, whence there exists a lifting 1:Y +® such

that the rectangle fn the following dlagram commutes.

3

N

X2 |5
1

% =, ¥
z vy .

In this situation, ve shall employ a plece of classical
obstruction theory to extend 1 ‘évex the 2- and 3-
sk;g}eten of ¥ toamap Li¥® » # such that the above
di;gxm commutes. Defining F:=p'L, we see that this

indeed satisfies the required commutativity properties.

Turning to the question whether 1:Y.- W can be

- 105 -
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The

extended to L:Y® -, we first observe that

(7 because W is simply connected, 1 can be extended
to a map v? oo . t .
®). 1 can be extended over Y if the obstruction
cochain c?(1') is-a coboundary in the cochain C
L1 Tcomplex . (Hom,, @y n ), where ¥lis v, <
. Yk 1

o , for kz3.
To see that ¢’(1l') is a coboundary, remember that
2(1') = (m,1')3h™! in the following diagram .

“h ¥ F w7 ;
VH (X2 ,¥7) e Ty (Y0, Y2) — 1, ¥ — W R

H,(¥?,Y) N
ere h denotes the ate Hurewicz m {

e/ GLEESTERELAL bpaTator Of theexact: Honotepy. sacianas,
‘=t f the pair (¥’,¥?) and-d the boundary operator of [the
hain complex R ; ¥

R | P

i 0 H (Y, !‘)—~H (¥2,¥) » 0 /

N

. - 106 -
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i ..
which coincides with the isomorphism d in the long exact
sequence of the triple (Y’ ¥%,Y):
) a
0 = H,(¥’,¥) » Hy (¥,¥%) » H, (¥",¥) » H, (¥’,¥) =0
: . ' of .
Consequently, c’(1')a~* € c?(¥?,y;n,®) -
and 6(c? (1')d7%) = ¢ (1")a~'d = e (1')°
which shows that o (1') is a coboundary, and'the exis -
tence. of L:Y’.~ #, such that Ly =1 £ollows." ] .
Proof of Corollary C: Let-j:X + X be a map satisfying
the requirements = (i),(ii) of theorem A, and let
13X > x* be as in ‘the construction in the.proof of theorem
A. By theorem B fhere exists'a map 3'ix* - X, ‘such-that

the following triangle commutes.
o,

. But then we have from the hypotheses in theorem A

g i
¥ + ) - ) |
FyiH, (X' 13%G) =+ Hy (X756) \‘

N 3 : -
m3tem X" e mxT
are isomorphisms, where & is an arbitrary system of

- 107 -
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local coefficients in X . Now a Whitehead type theorem
in terms of homology with local coefficients (I.5.7) im -

plies that 3% is a homotopy equivalénce. =
% o

Proof of theorem D: Construct 1:X - X' as in the proof

ofstheorem A. Now apply theorem B Yo the map 3f.

Before we proceed to supplement the indicated parts
in the preceeding discussiop, let us digress momentarily

to high light a certain technique in the proof of theorem A.
3 :

There ve-started with a space ¥, killed its fundp -
‘mental group by attaching 2-cells and compensated for the
resulting change ‘in homélo\qy dinension 2 by attaching <
3-cells, which -did not take any influence on the homology

in dimension 3.

This turns out to be a special case of considerations
due to K. Varadarajan [Val 1966, concérning the existence
of Moore spaces M(M,1) (a CH-complex X is called a
Noore space 'M(M,n)’ iff mX = T, mX'= 0 for k<n,
BX = 0 for k>n). In this paper it is shown that, given
an abelian group T, M(T,1) exists if and only if all
homology classes of the 2-skeleton K(M,1)% . of the
Eilénberg-uac Lane space K(m,1) (mK(m,1):= T,

= 108 -
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7 . . p
Y

o o WMD) =0 for .k'# 1) are images of the Hurewicz

| homomorphism u,x(n,1)*"‘-¥’x,x(n,n'. It is exactly then

possible to attach 3-cells to K(1,1)? to obtaln M(Tm,1) .

In our case, when proving theorem A, this presuppo -

sition was granted by the Hurewicz isomorphism theorem.

We shall now give details to the proofs of. the pre -

ceeding discussion in the indicated ordering.

. (1) 'Let G,H be groups; p:G~+ H a homomorphism.

- According to the appendix on general nonsense, the follow-

1
]

ing pushout dlagram exists in the category of groups and ¥

—

group homomorphisms. -

T claim: K ® »

Hr.
imp

r
Here E denotes the 1-element group. a
Rroof: | Consider the following diagram: v
: |

¢ ————— 8
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Here q is defined to -be.the canonical quotient homomor =

phism. Since E is the ' 1-element group, the unlabelled

arrows are unique and, by commutativity of the square, we
' infer

impc WP = ker g < ker ¢

| Tt follows that Gp is trivial; the outer diagram commités
and the pushout property yields a unique homomorphism

| ek “/m making' the whole diagram commute. q is|

onto, hence o' is onto. Furthetmore ker r c ker g and
‘ ; .

thus ker r = ker q =

im p. \a standard theorem of qzc%xp
theofy gives us an isomorphism y:f/

Tp v im T ek [swn
r. Now consider thé following diagram.’

that - yq =

The outer diagram clearly commutes, giving rise to a:
unique map v:K + K such that yr = r, It follows y= 1y

- 110 -=°
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On the other hand, we know that triangles 1 and 2>
commute, which implies
. - g=er and r=vg
thus '
(W)r =r

and by uniqueness, we have % <y

K" But then ¢ is

a monomorphism. "

5 We have shown that ¢ is mono and epi>

(2) Let (Y¥,x) be O-connected, Kemy(¥,+) a sub -
group (nz1).

<_:1a1m=- If n =1, ve can'attach 2-cells to 'Y to ob -
taln a space (Y',4) ‘such that - (x',x) & (¥l

where K. denotes the normal closure’of K in m (¥,#).

If nz2 and (Y,s) simply. Connected, we can attach -

(n+1) -cells to Y  to obtain a space (Y',s)' such that
Y, .
Ayt w Tl

Furthermore, in either case, (Y',x) contains (Y,x) as
a closed subspace. If TI:(Y,%) = {(Y',4) denotes the

inclusion, then -m;I is an epimorphism with kexrnel ' K.

In the construction of ¥, we make essential use of

t t!’lﬁ following fact.
.

=1 =

gt N e
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(2.1) et :(S",%) » (¥,s) be a'map and define (Y',4)

by the following adjunction squaré. .

> ' -
(8" —————— (8™, M ow
wl x -
(¥,4) —————— (T',%)

= e _
Then T:(Y,+) S™Y¥',4) is an inclusion and Top is
homotopically trivial.
Proof: Since i 1is homotopically trivial,.xei = Iee

is homotopically trivial.

Accordingly, we can kill 'K as foliows. Let § be
a set of generators for K. For each s€s choose a map
w‘:(s",,) -+ (Y¥,x) representing the homotopy class s.
Now define (Y',%) by the following adjunction square.

V st V@)

s€S ses
Vo, ‘ -

Y i )
We clain that LA AP T'“(‘f,fr)/i
.For n =1, this follovs fron (1) above, because.

-

- 12 -
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V(s ,#) is contractible. y

For n22, consider the following commuting diagram.

h
Ly =, o ,'{)—onv—«nv'—un(v' Y)

I

o
U
K

- E 1 T l

p+lony = n+1 ol

Hoy M ’Ss);‘—,"nﬂmn ,‘s!) V Q"nws ;50

ey

The top row 'ts—exact, hemg a portion of ‘the’ exact se -
quence of the, pair- (¥',¥). By the cellular approximation

theorem, nn'I ‘Ls an epimorphism and consequently:

LT (Y, %) /7 -
g letaakim Ta /ker L% &

By construction, the image of homomorphism 1 ‘is K. By

cpmmutativity of the middle square: . .
Keker nl=ind ) '
, The horizontal 'arrows in the left square are isomorphlams
by the Hurewicz 1somo:phlsm theorem (here we use the
assumption that Y is simply connected). since ‘the left
yertical arrow is also.an isomorphism, e infer by commu. =
3 kY

tativity that k is an 1somo:pmsm. But then m*k’l

which implies, K = im 3 =.ker 1l T and our clAim follows.
a

-113 -
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3

s

in(#,p) = H. Using the long exacf' .

(3) By constructiun
* $squence of a Serre £ibratidn (see the appendix on cover -

Py

: ing spaces), m,p is a monomoz'phism. This shows that

mp is an isomorphism. ] )

T

(4) Let us recollect our situation nsom‘grecisem."
According to (2), we chose a bésis’ 'S of homotopy classes

© ' for the free abelian direct summand nmh(H, (27, Y)

- ! ]
~ . b

m,¥? ' due to the diagram

‘y S h e “
HYeH, (Y7,y) = Byl & a0
v . o ) et
where ch denotes the Hufewicz isomorphism .(¥? ‘is simply .

] cobnectell’ Th~tuin veuEsa OO each s€S A represen - . N

i - " . tative @_:(s?,%) + (¥*;4) as attaching map”for:a 3:csll X o
to Kill s. Now, ve want to, show that, the inclusion -
ke (¥,%) = (¥, %) induces, %somorphisr;\s In integral’

homology in all dimensions., . Lot
.

and 3-cells to ¥, a

Since ve cnly'a_ctache(%!
theorem concerning the*homology of a cell adjunction

M1.5.1) tells us that we need only check dimensions '
1,2,3. v . . ;
B Dimension 1 ‘is.trivial since H,Y = H,¥’

Dimension . 2: We know' that - o=

e - - .
g 114 ’
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Dimension 3: We Tw that k,:H,Y » H,¥? is an iso =
e

* an’isomorphism. To @0 this, consider the following commut - -

.ing diagram: P

' ' : ’ . i
/ S0 The ""Construction : H

KiH,Y = H YOH, (Y?,¥) = H,Y* . .

is an isomorphism on' the direct summand H,Y Of H,Y¥?. i

“To ‘See the éffect of j:(Y¥,x) = (¥’,%), consider the .

following: commuting diagam of the Hurewicz isomorphism: *

. 7% . ¥
(X2, %)
. . . hi= ' : & .
. g . + .
e - Y ——— gy

The result in (2) tells us that . m,j is an -epimorphism. '+ -
with kernel' h-)(H,(¥?,¥)); which implies that 3k in :

duces an isomorphism in dimensions 2. 7

|

norphism and are left to show that j,:H,¥* - H,¥’"'is
: -

. 1; 1 : H ) .
0By " ¥ ——n by —mys L e

b T

0 = B,V (827%) 5 H,V (B2, u) » H,(VB,VE) 3 g, Vodr 20
ses ° s€S " eS8 s€s
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In this diagram the vertical arrows are induced by the
attaching maps ¢, and the resulting characteristic maps

and we have:

3, is an. isomorphism <-> arrow 1 is the O-map
<> 3 is a monomprphism

‘ E PG aqu’ 2 is.a monomorphism.

Again the vertica.]. atrows’are’ indiced, by at‘tachinq nmaps.
By construction, arrow T i% Lnduced ‘hy a biaeccion between

the bases of . the. fiee abelian groups * n,VS- and

(H, (¥?,%). Hence 1, and consequently 2,; ‘are i y
A

monomorphisins.

- (5) The’ indicated éjuivalence’follows from 1.2.3. To see

H, (Y?,Y;A)”= 0 , we first consider the long exact sequenge
S n g b . %

s § -6 -
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of the pair (1Y) with integral cofficients. Since the
inclusicn Y-y induces isomorphisms in all dimensions,
Hy(¥?,Y) = 0 . Now the uni.versal cuefficser!t theorem
implies H,(Y*,¥;A) = 0 . N N a
(6) We show that arrow 1 is an isbmoxphism, then arrow 2
will be an iscmarphism for-exactly the same reason._

' Now, the pair (¥?,¥) isa 2-cell adjunction, and
frow the following diagram wé see that. (X?,X) 1is also
a 2-cell adj\n{ction. For the lower rectangle is a pushout
didgran by construction. In this situation lemma 4 in

the appendix on general nonsense implies that the outer

rectangle 'is also a pushout diagram and hence an adjunction

square.
Uslem——b I 8 ‘
AEA " OXEA ¢
i i =
/7 @ X !

A . =147 -
'
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Here ® denotes the coproduct of attaching maps, x the
coproduct of characteristic maps. But this means that the
coproduct of characteristic maps/)for the 2-cell adjunction
(X*,X) is q'ox , giving rise td the commuting triangle of

morphisms in £ :

=Sn (2,446 ya)

(@', 1)

(X% /%3G a)

By I.5.1, arrows 1 and 2 induce isomorphisms in homology

with local coefficients, and our claim follows by

commutativity. C T

(7) This is an application of the fundamental idea of
obstruction theory, which is most advantageously explained

by verifying the following

(7.1) I.emn:s Let X be a space to which an (r#1)-gell is °

attached (n>o) by the map w:S" =X and characteristic

n+l

map x:B%*'a xUe™', Let' £:X + 2 be a map. Then:

- 118 -
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£ can be extended to a map 'p:xuwe“" + 7 satisfying

Fix = £ iff fop is homotopically trivial.
Proof: "=>" Let F be an extension, then

$:S"xI 3 (s,t) & Fox((1-t)s) €2
is a trivializing homotapy.

W

Given a trivializing homotopy ¢:S™xI » Z, define

£(z) " tex’ . d

) &) ! : .
Faxge™ s om (oIEEL - 0]) cee™, o) ez
. 1 tee™, x i@ =0 0

which is easily seen to be a continucus exteénsion of f.

Returning to the situation in the main text, we are
facing the question whether 1:Y » ¥ can be extended to
amap 1':¥* - . By the previous lemma; this is reduced
to the qu.estion as to whether or not 1og:S’ = v7i is
contractible, where ¢ denotes an attaching map for some
2-cell of ¥*. But this is granted because W - is
1-connected. ' .

3 .
8) The idea just explained.can be formalized as fol -
lows. Let (¥,X) be an ({n+1)-cell adjunction with

b n
characteristic maps (‘D)‘= ‘SX".) - (X,t)])\ €A Bnd' let

- 119 =
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£:(X,%) » (2,%) be a map. Then @, % £4v, defines a
function from the basis of the free abelian group

Hyy (Y,X) into m,(Z,x) which extends to a homomorphism
™ (£) tHyyy (¥,X) » 1y (Z,%)

) ot
We interpret c{E) as a cochain (the obstruction cochain
. <

to extending f over the (n+1)-cell adjunction) of
™ (X (2,%)) = Hom(Tg,y (LX) ym (Zox)) - "

. o s .
Here we make use of the fact that (Y*= k-skeleton)

ket (gkt k) J rk(yl‘,Y“‘")
B

o a I a a )
Hk“ (,{k‘I 'yk) k+1 Hk(Yk,YkT‘) k Hk—' (Yk—i ,Yk_z)

~7 e

B
[ — .

is a chain complex satisfying
.

PRttt kel

C e
B (v,x) = B(r*(1,%) ,a%)

For more information on this, see G. Whitehead "Elements
of Homotopy Theory" [Wh1] chap.II sec. 2 .
i

. With thig informatygn, we cgn understand the theorem

.

that was used in the main text: ' I ~

r 3

’ %

- 120 - J 7
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Let (Y,X) be a relative CW-complex;
= 2 amap. Then f£|yn-i can be extended over

¥ ief ™' (£) is a coboundary.

For more information on obstruction theory, as well

as a proof of (8.1), see [Wh1] chap. V sec. 5 .
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N APPENDIX I

General Nonsense and Homological Algebra
We assume the reader to know what a category and a functor
is‘and to be familiar with elementary concepts o§
Homological Algebra, such as chain complexes and the
(co)homology groups of a given chain complex with
coefficients in an abelian group G. On this basis we
collect material out of Category Theory and Homological =
Algebra that is needed in the main text. For more
detailed information,  we refer the réader to. S.MacLane
"Categories for the Working Mathematician" [ML1] -
S.MacLane "Hor;mloqy" [ML2] and P.Hilton, U.Stammbach

_"Homological Algebra" [H-S].

First some notationi~ We write

a € [C|

to denote an object a in the category C , and ‘
\ Claa’) )

to denote the .class of morphisms with domain a € IC| and

codomain a' € ICl.

-~
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If C,D are categories and F,G:C » D functors of
the same type (i.e.either both covariant or both
~ contravariant), we denote by T:F % G a natural
transformation of F into G . Frequently ve express the
defining property of a natural transformation T:F 3 G

by ommativity requirements of the following diagram:

a p
a Fa —— Ga - a
veec(a,a’) | . vEec(a' ,a)
in the £ £ va,a‘'€lCcl| Gf - £ in the
covariant #oim | contravariant,
case } : case
a'  Crate——s Ba' | at

Ta
(1) pDefinition: Let C: be a category. A commuting

.
square ; = 7 of objects (in vertices) and morphisms
[ =7 B s

(connecting the vertices) in C is called a pushout

diagram (in C) Lff for all a€lC| and pairsr\ of arrows

such that ; ' . s
- -
L —— ... commytes, there —_—
. exists a unique < g
+ ° arrow f such ’
hat .o
I —,
] \ . . S
a Sa
commutes. : ’ ’

N




General Nonsense and Homological Algebra

(2) Proposition: Pushouts exist in Top, the gategory of

topological spaces and continuous maps.

Proof: Starting with - ¥ «f_ A —9 » X in Top, we

define P€|Topl by

~E' <=> g=f'v3a€A: (fa=Efaga=E')v(ga=Eafa=g')

with the quotient topology. If q:XJ¥ + P is the quotient

map, then -
s
9
A——+ X § x:
/
£ 9x .
{
Y————p
9,
o . -
1s a, pushout diagram in Top. o

3) Propcsition:l Pushouts exist in Grp, the category
of groups and group homomorphisms.

Proof: Starting with Hy % G - H, in Grp,
we define P := HisgH, (the amalgamated product of

JHi,Ha along G) as follows. . -

- 124 -
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Let F be the free group over the disjoint union of
the sets Hi,H; , and let N be the intersection of all
normal subgroups of F containing all elements of the -

following types

a)  (aB)B™hT' - if a B € H
b) fuv ) \)ul if" p,veEH
<3 i
e hi(g) (3 Vi ogee
. .
Now define P:=F/N . o
p : P .
- — a————+ b \
(4) Lemma: Let l l 1 J be pushout
. 1 b 2
a——b —_—

-
-diagrams in ' C , then the outer rectangle of

is also a pushout diagram in C.

- 125 -
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Proof: Suppose

2 t ' -

-

- 126 -
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—

commutes. Conseﬂuently the pushout property of the upper
rzeéngle yields a unique arrow b -» c such that

. T
_ P

commutes. The existence of an arrow .- c , such that

commutes follows. This.arrow also makes the whole diagrim

l:omnSeI, s0 we are left to ‘show the uriqueness of it. But »

each such arrow gives rise to an arrow b - ¢ making

- 127 - |
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!

. diagram (*) commute. By uniqueness this must be the a:row,
we already found. Then .» c makes diagram %) commute, ’
hence must be the arrow ve constructed above. This shows

uniqueness » . . a

(5) Definition: Let c be a cateqory. c 1sa gxoupoid S
iff all arrows in C -are invextible As", “an lmmedia.te

consequence, we .observe: I1f ‘£ € Clajb)., for'a groupaid .
¥ . N g v o” g 4

C, then £ is an isomorphism. .
Eurthermore: If claja) ls}a propex set, then IC(a,a),n) N
is a group,’ where o denotes’ composition of m}phisms. -l
. e : z = y] o
= . o Py v ot (SR

We turn to some material in homdlogical algebra. e, *

(6) 'rhe im:eqral qmup ring. Let ,G bBe a g:oup written
multiplicatively, The integral group ring: Z6 of G b g '
definedas follows. Use the sét G as the basis for the .
free affelian group G wWhich has a multiplication,, i -
derived from the multipIication of. i_és'hasu elements, »
turning it.into a ring: 5 i
-~ ) v
p m(g)g)-(,: n(t(r)i’:)
gec - ./ Vhee ¢ .,

9.




For more details, see alse [H-S] VI.1 ., -

General Nonsense and Homological Algebra

According to the definition of a free abelian group,

‘these sums are actually finite. The group #ing, is charac-

terized by the following universal property.

(6:1) et R be a ring, £:6 »-R such that flgg') =

= f(g)f(g') and £(1) = 1,. Then, there exlsts a unique

ring homomorphism £':ZG -+ n Such that the following

triangle commutes

£

26 S R

- -t

where the inclusion G - ZG maps g into .1g.

(7) \Agtions of a group on a ‘set: Let G be a -group,

1e£t actNon of G on X Aff - - -

and  g.(g'.x) =.(gg'V.x

for all x€X, g,g' ™G. Equivalently, such an action can

be y a groug sm @:G s(x) (where

s denotes the symmetric gz‘oup of x), by aetting

Y . guxi=lelg)Ix . W

oy : : .= 129 - 3




. Note that a left ackion cdp be converted into a right

action by setting’. x.g

' (8) Modules:

General Nonsense and Homological Algebra

Certain structures on D give rise to certain subgroups

of S(X), such as the group of homeomqrphisms if X is a
topological space or the group of automorphisms if X is
an algebraic system. Often one restricts the image of ¢

to such'a subgroup to act on X.

similarly, we define a right action'of G on X.

Let H bean sbelian groups R & :mg

thh unity. M is a left . R—mudule iff there is a scalar

multipllcatiﬂn RxM » M on the left satisfying

(r#x")_m-rm*r'm r(m+ m') = rm + rn’

(rr')m = r(r'm) §

similarly, right R-modules are defined hy a scalar 7
multiplication MxR = M. B . \ 9

‘One way to visualize modules, is as generalized vector
spaces,, The §;<iars are ring elements rathekr than field
elements. Yet,

R . U ppem————— occurs,
frequently. 5 % (‘ :

Let, G- be.a group acting on the abelian group A

by awtomorphisms (on the left), then A is'a (left)
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General Nonsense and Homological Algebra

*
zG-module in a canonical way: N

[ ] miggla := 3 mig) [g-al
9€6 g€a 5

(8.1) Let M, M' be left R-modules. A function h:M-M'
is called a module homomorphism (or linear) iff w

h(m + z'n') = zhim) ¥ z'hn') ' .

far all r,x‘ €R, mm'EM. Thus, lyt R-mudules and

module humomorphisms form a category.

(9) Tensor Products: .‘Let N be a right R-module, M‘

a left R-module; A an abelian group.
(9.1) A function f:NxM + A is called a middle map iff *

£(n+n',m) = £(n,m) + £(n',m)
£(n,m#n') = £(n,m) + £(n,m') LY
f(nr,m) = £(n,rm) S R "
for all n,n'€N; m,m' €EM; re€R.
(9.2) Let F(N,M) he the free abelian grglp having the
set NxM as a basis. Let R(N,M) be the shbgroup of

F(N,M)  generated by the following ex/auﬁ's
=

fatm) - (%) ¢ (',m) - (mmem') - (agm) - (mme)

(n,rm) - (nr,m)
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. Gene‘l Nonsense and Homological Algebra
P

for n,n'€N; m,m'€M; xe‘x{. The tensor product of N,M
over R, denoted by NeyM, is defined to be the quotient

. FANM)
.NORM : ) /.

rRONM) S
-
The canonical map NxM = F(N,M) » NORM is then

.a middle map.

(9.3) With respect to the above map q:NxM -+ NO M, the
tensor product has the following universal property.
Given an abelian group A and a middle map f:NxM = A,
there exists a unique group homomorphism F:Ne M = A

such that the following triangle commutes.

% NxH

(9.4) Let N,N' be right R-modules, M,M' left R-.
modules; £:N - N', g:M -+ M', q":N'IM' -’N'DRM’.

q'otExglsNxM 3 (n.m)\n £n®gn € N'O-M'
‘ R

‘is a middle hap, giving rise to a unique group homomorphism

% . NYOM
£0,9:NO M + N'@M

This follows from (9.2M®and (9.3) - and thé fact that the
composite of a middle map with the product of two
module homomorphisms is again a middle map. |
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General Nonsense and Homological Algebra
N d
: . (10) Homology with (left) R-modules: A chain complex
(M,3) of (left) R-modules is a sequence @
¥ a 3
coam M =P w BN
pH1 P -1
of (left) R-modulés M and module homémorphisms ¥
satisfying ' 9,,3 = 0. The définition of the n-th homo-
/ . -

logy group of such a chain complex is formally the same

.as the definition of the n-th homology group in a chain

\/ complex of abelian groupd. Furthermore, the homology af
(4,3) with coefficients in the right R-module N is the

homology of the chain complex - .

1,8,
s NEM M—E'—ausu 1%, o
Pt Rp"

’ . 5

(1) The functor 'Tor®:"’ From (9.3) and (9.4) we cak
deduce bthat ﬂ is ; bifnnctor from the product of the
category of right R-modules with the categarf, of left

o R-modules. into the category of abelian gro)l 5 which is
covariant in both variables. It is of crucial Lntexest in
hcmoloqica). algebra that N@,. does not necessarily yield

exact sequences of abelian groups out of exact sequences

ol of left R-modules,.
° : b

¥ In the special case of: applying N@,. to a positive

! exadt sequénce of free left 'R-modules L
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General Nonsense and Homological Algebra o

...-‘Mya...-u‘»n(]'ﬁ-o-o...

it can be shown that the deviation from exactness of the
resulting sequence depends only on N and M and is

7 measurea by

o ® Ryt Bv on
i Tqr“ (N,H) := Hn (NORM)
. ;
where M denotes the chain-complex "'Hp - . - Mn- 0.
- The sequencé M is also called a free resolution of

If M' is another free resolution.of M, the above

statement says that Tor® still ylelge,the same groups.
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L APPENDIX "

The Fundamental Groupoid

In this section, we briefly introduce the concept of

fundamental groupoid which cap be used to formulate a

very sharp version of!the Seifert-Van Kampen theorem. This

«
material and much mot?, is extensively .treated in R. Brown ~
9%

"Elements of Modern Topology" [B].

Let X be a space; X,x' €X;j oy¢:I + X such that

‘g(n) =a'(0) = x and a (1) =a'(1) = x'.
(1) Convention: We call a- homtop!.c torat- fed
there is a homotopy rel aI le u to a'.

Thus two paths a,2 in X are hclmctopic 1£f the start
point Df‘lu is the start point of a', the end,point of
a is the end point of a' and a can be deformed into
@' the boundary points being fixed throughout the
hmotopy.

B //(2) Notar_ionx For a space X and x,x' €X, we denote

. the sat of homotopy classes of paths starting at x and

ending at" x' by n,y (X,x,x" ) or also by ﬂl((x,x }o X

x ='x', we write for short m, (X,x) t= ngX,x,x'), which is

nothing but the fundamental group of X based at x.

: / ¢ Note: #,(X,x,x') = @ 1ff x,x' belong to different path
{ components of X.

i

i
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The Fundamental Groupoid

(3) Observatjon: If x,x',x" € X, we have a function

XX, x ) xmy (X,xt,xM ) = ow (X, x,x™) -

by taking composites in the following way. For ¢ €m, (X,x,
x'), ¢' €n,(X,x',x"), represented by a,a':I - X, let
tg' € m, (X,x,x") he represented by
1
o (2t) ostsi
ag' = y:I3t — ) ex
a'(2t-1) Jdsts
In doing so, we -actually hold the key for defining a
(small) category MX whose objects are the elements of X
and whose morphisms are homotopy classes of paths in X.
Clearly, the identity morphism on an object x€ |NX| is
just the identity element &f the fundamental group of

X based at x.

(4) Observatign: Each morphism in NX is invertible.

For, let ({E€TNX(x,y)  h be represented by a:I- X, then

@It m all-t) €X

represents a motphism: T€ TiX(y,x), which is an inverse

of . This means that the category NX 4is. a groupoid.

(5) TX is called the fundamental groupoid of X.

. o =136 -
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i The Fundamental Groupoid .
. g
Making systematic use of the notion of fundamental

groupoid enables one to obtain the fundamental groupoid

of a pushout of spaces as ‘a pushout of fundamental group- -

oids, provided some reasonable assumptions are satisfied.
See [B] sec. 8.4. As a special case of these results,
we obtain a sharpened versioniof the classical .

Seifert-Van Kampen theorem.
,

(i seifert-van mpen\\’r{xec:en;: Let (A,%); (X,%),

. (Y,#) be based path connedted spaces; i:(A,2) = (X,s) a
closed cofibration, f:(A,#) » (¥,+) ~a map. Then the
following pushout of spaces and base point preserving maps
givas \fiae to & pilshout of Findamental gicups under the

functor w,.

(A —E & (x,n 9
N sl push
(¥, %) ———— (XLL¥,%) ,
yields
-
5 ;
m(A,x) — m (X, x)

nE ‘(puah 7 .

LM (Y w) > (X || g¥n)
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APPENDIX m

<Covering: Spaces

]
We assume the reader to Qkamuiar with the concept of &

" covering space. Here we merely collect some of the material

that is used frequently in the main bbdy of the text. For
more informatidm, the reader is referred to the appropriate
sections in R. Brown "Modern iopology" [B], J. Munkres

"Topology" [Mu] 'or .E. Spanier "Algebraic Topology" [Sp].

Let E,B be topological spaces, p:E » B a continuous
surjective map. T et .
(1) Definition: (i) The qpen set UcB is evenly
cdvered by p iff the inverse image p"(IU) can be
written as the union of disjoint open sets V, in E
such that for each A the restriction of p to v, is

3 s

(i1) E is called a covering space for B and”Zp a

a homeomorphism of V, onto U.
covering map (or covering projectioty iff every point
bE€B has an open meighborhogd UcB such that. U is
evenly covered by p.

(i11) E is a universal covering space for B if E is

simply connected..__; E

. Ié order to formulate conditions for the existence

P- 138 -
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Covering Spaces
!
of covering projections, we need the following:two con-

nectedness concepts. %

(2] Definition: A space X is locally path conmnected
iff given any point x € X and open neighborhood UcX

of x, there exists a pa open ne.

7
VeX of x such that x€V<U holds. \

(3) Definition: A space X is semilocally simply con-
nected 1ff every -x€X has an open neighborhood U of
x such that the hamomorphism w,(U,x) » w, (X,x) induced
by the inclusion is triviall —

-

(4) Theorem: Let B be path connected and locally

path connected. Lej b, €B. Let” Hem, (B,by) be a e
subgroup. Then the following two statements are equivalent
(1) B, .is semilocally simply connected. :
(1&1) There exists a path connected covering space

p:E » B, and e, € p~l(b,) such/;mat

mplm (Be)) = 5.

E -
(5) "Lifting Lemma": Let p:E + B be a covering map;

pleg) =Db;. Let f:(X,#) ~+ (B,b;) be a based map, X a

_path connected and locally path conriected space. Then the

following two stitements are equivalent.
(1) W E(n (X)) € mypn, (Be,))

- 139 -
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3 Covering Spaces
(ii) There exists a lifting of-£, %:(X,s) = (E,e,)

such that p¥ = f.
Furthermore, if such a lifting ¥ exists, it is unique.

y Of particular intereSt is the case of p:¥ » X being
o
\ a universal covering. If pX, = pX, = X€X, using the
. simply connectedness of X, the 1lifting lemma gives us the
existence of a unique map F:(X,X,) » (X.%,) such

. that p% = p. 1

This observation gives ride to the\following

(6) Definitil Lét p:E +B be a covering map, B
path connected. Let f£:E » E be a map. We call £ a

.
covering transformation iff %f =p.

(7) Theorem: Llet p:X > X be a universal covering, X
path connected and 1$ca11y path comnected. Let T denote
the set of covering transformations. Then
‘(1) T is a group whose elements are ‘homeomorphisms

of X. .. ‘.

C(44) T = omx

The lifting lemma implies in particular that a cover-

ing map, piE+ B, B path comnected is & serre fibration ,
W (i.e. p has the homotopy 1lifting property with respect

to the cubes ,I%, n€ N). Thus the long exact sequence of

-'140 -
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Covering Si
B P vering Spaces

a Serre fibration yields:

B

e

k n
o
er (BiBg) =+ 0 = m(Ereg)

— 0 om (Eeg) 4 o

For more information on.this matter, see

"Homotopy Theory" , [G] pp 79 - 85.

- 141 ="

P
— n (B,

(B,by)

O-connected, then the following: sequence is |

’exact.

5g)

\
. Gray

: |
(8) Theorem: Let p:(E,e,) —» (B,by) be a cﬂvering map,



APPENDIX IV

% - » .
CW Tomplexes
[The notion of a.CW-complex,is due to J. H. C.
Whitehead and was ii'fst published in his famous' paper

"Combinatorial Homotopy" in 1349 [Lzl Here,. Ve give

a moxe modern def}nition (sti1l destitibing the sane spaces)
and give a collection of definitions and thearem.! that
are needed 'in the main body of the text. For more én‘fe;—; \
mation on this subject the reader is referred to J. H.(C?,
.Whithehead's original papét [Wh2], B." Gray "Homotopy
Wx"y’

Piccinini on CW—complexes . - .

[G] ‘or a book to appear by R.Fritsch and R. -

It is a pleasure to use the opportunity to exptafs
my appreciation ta the latter author, R. Piccinini. Mnch
of e undexbtandlng of CW-complexes has its provenancg.

» o * th a cwiEe taught by Min at Memorjal University .of New-

- foundland fall . 1982, 5 . - Lo

# . Y »
An n-cell e (n 2 0) is-a.space homeomorphic to

B, the interior of the con':pac: pail, o~
s —~

= {xew® ~|K|s1)

\
with respect to the surrounding space R°. B®, 8% have

. ~. ) - £l

v -
= 5 -~142 - <




CW Complexes ¢
_the (n-1)-sphere $"”' as a common boundary.

" S : 2
"Attachmg n—ceus to a space X", means the follow-’

ing: Given a space X, a family (S“") dt coples of

A€R
s (nz 1) and a family of continuous maps '

1 . N )
(w)‘/‘s)‘ - X}AEA ( nttachi.ng maps") , we deﬂne_a spacs Y,
- obtained from X by attaching a family of n-cells

{e}}epr to e the ‘quotient space

x |J il /.
Uxﬂv“/n- N

X

where  "||" denotes thé disjoint union of spaces with the
_appropriate topology and "~". denotes the following

et
gquxvalen‘ce relation on X[ (uxg) generated by the re:-

: lqtion . 3 . W

X~y if there exists A€A such that

n x5! Z
) x€ 1‘ and y "’A“" %

Thus, Y can be visuallzed as’ tha space "X with
B

n-cells e,‘ attache® to it by gluing, the boundary points -

c 8ot n)‘ to X by mesns of the attaQ‘hing naps 0y (

The space ¥, 5o defined, makes the following d.tagrum
into an ad:lum:tien square, i.e. a puahaut diagran in the

cntsgory of topalogical spaces. such ghat the tnp ho:Lzon -

.

i

i



" agjubction. Dencte % i

Pl CW Complexes

. - .

tal arrow is a closed cofibration.

O .
€A

AEA

Ue, | X

The. continuous maps 1, are the obvious restrictions of
the quotient map X| | (L] s;) +'Y .’The picture describes
the situation in the case of attachirg one aell of

dimension 1. The pair (¥,X) is also called a n-cell

Xy EE x|t s
:A T Xy}

- 144 2 . .




B .
CW Complexes
then X is also olled the characteristic map for
. - °
. n o . fn n
the n-cell e Xa|BD * By e, is a homeomorphism

(See.e.g. [D] chap IV, sec.6).

Informally speaking, a relative CW-complex is a
pair (Y,X) of topological spaces, where Y is
obtained from X by iterated cell adjunctions of

strictly increasing dimension. To make this idea:

. precise, even in the case of an infinite iteration

of cell adjunctions, we define:
A

=
(1) Definition: (i) A relative CW-complex is a pair
“¥,X) of topological spaces such that ¥ is the

colimit bf a filtration of Y of the following type

XY e ¥ ey Ve e ¥ e ¥ L

n+1

where each pair (¥"'';¥") isan (n+1)-cell

adjunction. We allow ¥"*'=¥",y" is called the

n-skeleton of Y .
/s

(i1) A space Y isea CW-complex iff there
exists a dx:préte space X such that (Y¥,X) isa
relntivo.\cw-com'plex. In this case the elema(uts of

X are also called the O-cells of Y. We collect

- 145 - -



W Complexes

.
some of the fundamental properties ;f CH-complexes.

So let Y be a CW-complex.
g .

(2) Each y€Y 4is an element of precisely one cell

of Y.

. 3

(3) "Closure finite": If e} is a cell of ¥ and

Xy 1its characteristic map, then x}(s}') is con -

tained in finitely many cells of dimension at Jmost n-1.
(4) "Weak topology": Let Y be the colimit of
Yy S Y, Sy, S

then Y is homeomorphic to the“urion Y,UY,UY,U...
having the weak topology with\respect to the in -

clusions Y S» Y.

. 0 .
(5) The universal property of "weak toplogy" yields:
Let f£:Y - 2 be a function from the Cw-cumple‘x Y
ifto the space Z, then the following three state -

ments are ‘equivalent.

(a) £ is continuous.

(b) For a1l nEN, flyn is continuous. 5 .
(c) For all n€N, and for-all A€A , foxy is

continuous, wljﬁrg A, denotes the indexing .

- 146 - N
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CW Complexes

set for the n-cells o¥ Y.
°

(6) ¥ is T,, normal and paracompact.

(7) The path components of Y are the same as the
connected :omponei-nts with respect to the usual

coverihg condition:
(8) Y is locally contractible. .

Since local concract’ibllity implies local connected-
ness and semilocal éimple connectednesy, we have

() \If Y is conmnected, H < m,(¥,y,) a subgroup,
then there exi}ts a covering gmjection p:(E,ey) =
(¥,y,) - such that

’
m,pin, (E,e0)) = B .

.
Furthermore, E cAn be given the structure of a
“CH-cogplex such thit P maps any n-céll of E onto

an n-cell of B. This holds for all dimensions.

(10) Definition: Let Y,Z be CW-complexes,

£:Y » z continuous, Then £ is called cellular iff

for all new, %% )
; ; s

£(¥") < 2°
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CW Complexes
! Thus, the map p inm (9) is in particular a

cellular map. !

(11) Cellular approximation theorem: Let Y,Z be
CH-complexes, £:Y - % a map. Then £ is homotopic
v B

to a cellular map.

(12) Let (Y,X) be an n-cell adjunction, X a CW- *

complex. Then Y: is homotopically equivalent to a

Ch-complex which containg X as-a subcomplex.
+ N 3

This yields by induction: .

(13) Let -(¥,X) be a relative finite dimensional
CW-complex, X a Cw-comple;t. Then Y- is homotopically
equivalent to a CW-complex which contains X _as

a subcomplex.

.
Statements (12),(13) can be derived from the
following two lemmas in J. Milnor's "Morse Theory" .

[Mi2] pp20-22 .and the ‘cellular approximation theorem.

- . . .
(14) Let .©,,0,:5™!+ X (nz1) be attachiig maps
for n-cells e},e] such that ¢, is homotopic to .
Then the iderkity map of X. exténds to a homotopy

equivalence »

Il" .
s x1
HiXU, e} = XU, e}
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(15) Let ¢:5™' 4 X be an attaching map; £:X » Y
a homotopy equivalence. Then £ extends to a homo -
topy equivalence

o n
F.XUwe —_ YU(we

One of ‘the main features of CH-complexes is

that there is an algebraic condition for a map to be

a homotopy equivalence. We need -

(16) Definition: Let X,Z he spaces, fiK 2 a
map. Call £ a weak homotopy equivalence iff for

all né€Ng »
\
mEIm (X %) > W (3,E6)

is -an isomorphism.

(17) Theorem (J.H.C. Whithehead): Lef, ¥,Z be
CW-complexes, £:Y -+ Z a weak homotopy equivalence.

Then £ 15 a homotopy equivalence.

(18) Theorem: Let Y¥,2 be simply connected CH- @
complexes, £:¥ -+ %2 a homology equivalence. Then -

£ 1is a homotopy equivalence.

On many occasions (e.g. the section on Quillen's,
\‘ construction) one works in a category whose:objects
ixa"of the homotdpy type of a CW-complex, and it is
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CW Complexes

’
convenient to point out here that some results for
CW-complexes can be extéhded to' such larger catego -

ries. A typical example is

(19) Proposition: Let (X,x),(Z,) be path connec-

ted spaces having the homotopy type of CW-complexes.

‘Let £:(X,x) -» (¥,x) be a weak homotopy equivalence,

~
then £ is a homotopy eguivalence.
Proof: ' By assumption, there exist CW-complexes

X',2" and maps

BT AR
. x 2% L=
v v - v
which are mutual homotopy inverses. Now consider
« .
Wil oy

Il ol

X' —m— 2
®'fY

Since ¢',f,} Yare weak homotopy equivalences and
m is a functor, @'fy -is a weak homctopy equiva -
lence between Cw-complexes.‘ By (17, w‘év is a
ha.ot;py equivalence. Thus X,%Z are of the same
homotopy type.. With littlesextra consideration, we
see that f is indeed a homotopy equivalence.
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W Complexes

We proceed to give a proof for the local con -

tractibility of CW-complexes - not because this

proof is exceﬁ
a proof seems,

o be hard to come by in the English

literature. As'a side effect, it provides various

ionally difficult, but because such

opportunities to observe, how the cell structure of

CW-complexes)can be used efficiently.

The following lemma gives insight into the struc-

ture of open sets in CH-complexes.

A . .
(20) Lemma: Let *Y be a CW-complex, UcY. Let A, be

an ‘indexing set for all n-cells; x‘{ the characteristic

map - for ‘e')". Then

(1) U open in Y iff forall new,, UNY" is

open in

(11) U open in ¥

s

n+1

iff

(a) uny® is open“in bad

(b) For all s, € (xf;'l‘sn)" (Uf" there exists an open
§ A E
subset  ¥(s,)

n+1

G wis) cul

(c) There exists an open subset Ve ( U
X A€M

such that

un

Pk

of By

n+l

= [uny*1uw

n

such that

sy EV(sy)

o+l

uwv-

e

and

1+
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CW Complexes

where K3 wisy)

u
AEAR
5 € 06" g7 )
Proof: Use (4) g
- : s e
Proof of (8): Compare also H. Schubert "Topologie"
[s] 111.3.6 .

Let y,€Y; YoU be open such that y,€U. We.want
an open neighborhood V of y, suchithat y,€veUSY
and such that y, -is a strong deformation retract of V

! .

inside U. ; : ’

BY '(2), y, €e} ‘for precisely one ‘n€N,, AEA .
According to (20), we are going to construct V recur -
sively in Y™ for k20. If n = 0, define Vv, := {y,},
a O-cell of Y. If n>1, there exists (by (20)) an open
ball B;CB; such that y; €V, := X‘;(E;)éu. In either
case, there is a strong deformation retraction H, of WV -1

to.(y) in. UNY® (constant if _n=0).
(] /l'l

o -
Now assume we hav@%constructed V,S...cV,, where

Vv, isopen in Y™™ and w,;cUNY" such'that Vv, isa

strong deformation retract of V. inside uny™*i*!

w2th homotopy Hiﬁ' We arfa going to construct Vkﬂ 'Hkﬂ *
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tion, VH‘—n ¢
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CW Complexes <
. e S
with analogous properties..’ ' -
By (20.b), for each s, € (A™M)THV,)  there extsts
an open half ball E(s,) =B}™' centered at s, such that
N -
“
S X Es,)) < vy

X B (s,) 083K < v

Now define . -

- itk

gy 2 U (U R0 )
1 25y

By (20), is'open in Y™ and by construc -
<'u. Furthermore, s}’

Vi
Vit Viy is a
n+k+1

strofig deformation retiact of By -{0}. With no harm, we

may assume that the open half balls E(Bx) ‘are small
enough not to contain 0 of é‘;‘k".

Then, by rétriction,
GA**1)=1v,) 15 a strong deformation retract of )
§™*) =3 (v,,). By (5), these strong deformation retrac-
tions composed with the x}™*'ts Combine to a continuous

strong deformation retraction Hkﬂ of »J:ﬂ into Vk

inside U 'and constant on Vk.

This completes :he’recursion‘: Define V i= UV,. We
shall now turn to the construction of a strong deformation
retraction .H,of V to {y;} inside u.

-
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/7 \
CW Complexes

Define Y
. v for telo,;
4,5V, xI3 (y,t) w €V,
H, (y,2b) for te€l},11)

jand assume ‘that ' ¢, contracts V, to {y,} being con~

stant on [°’k+|) Now define

N
Y - - te0,47]

. ) ,
By Vi K122, 8) (B (il e Ae ) € € kit

Oy By (¥,1),8) te )

@k is well defined and.continuous by (5). Note also

that . F k. =
' - v T v a
for 1$k,j. Using (5) -again, we see that )
v for t=0 ;
HiVxID (y,t) » € Vi
. o tv,t)  for tagh

is also well defined and continuous. From the construction

it is cledr that . ccnt:a\:ts V to {y,} inbide V

and henck also inside U.. \.

- ¢ o
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