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e . INTRODUCTION * A

: - f Fie
= P Since the in ion of Ch-complexes by J.H.C. Wh almost ; 3

thirty years ago, various questions have'been raised’ copcerning the
» A homotopy type of such’ complexes and their relation to homotopy theory.
The structure of such complexes is simple... They are built ‘in stages,

each stage being obtained from the preceding by adjoining cells of a

given disension: . In & scnse, the topology of a Ui-complex is simple too,

-and this suqahcxt[ is often reflected in topola;ic-l invnrhnts of.

i 'hnmmpy type that can ‘be described algehnicnny, Even’ for such spaces

as’ polyhedr(, it is yseful to consider represenu:ions ot‘ them as CW-complexes,

‘Sodiito. such complexes frequently require fewer cells than & simpl:chl

© "+ trisngulation. So it became quite apparant t categoty of CW-complé
¥ (or the category of Spacesfof the. same hoaotopy type as a Ci-complex) would
: “be a moShyseful category ln which to do ho-otnpy theory. Thus the ) =

quosuan ‘imediately arose of what kinds of spaces could be represented,

omplexes. ‘mu led to Milnor's paper [14],

up™to homotopy type, hy on-c
"On Spaces Having the He-ozopy Type of a CH-Complex."” ~The purpose of this
i ELYAN ,thesx_smwmmmwmmw——————

- Chapters I and. II give the for the di Froo

Millnor's work. 1In Chapter I we show how to construct CH-complexes and
give some of their properties mr)‘ results, In Chapter II we introduce

the\:cmcept of a sen&slmuchl'nmplex in the category of sets. We defing

K :u‘n adjoint functors, '___l‘a_-—>ssc and | |:SSC—>Top, and examiné ', . i

sone of tlleh' propertios. “1'he functor § is the singular complex functor %

and H is the gaqn-:rlc re-untion fum:tnr whose construction is due to -

Milnor [15]." However, the prime motivation for Chapter IT lies in 52.

E e e i




& B -
realization of any semiﬁmpliclal complex. can b tnangulated. T

. ‘formation of mapping cones-of its morphisms: Section .ofc of Milnor's

T typists mme Boone and Sandra Crune for ‘their hard work.

Here e givo 2 complepe proof of the result e to Barratt [1] that the

)
/ result plays a crucil Tole in Milnor's paper. ST I -

 Chapters IIT and IV are devoted.entirely.to Munm—'s paer yith the

excéption of the last part Of Chapter IV in which we show that the category °

‘oF Spaces of the )mmmpy type of hased~CW-cumplexes is closed under the

paper is treated in Chapter 111 and section two in Chaptér, IV, o y

we nge*:h&{ollowlng notation:

By a “mxp vie mear a "continuous functior

|By>—ywe fean an. injection

and hy—» a surjection.

In’ coclusion T would like to express.my ‘deep: gratit i tomy |

Qperv:ser nr. R. Piccinini for: Ius help. his m\couragement ‘and the ideas 4

e’ gave me in wrxtmg this t@esis. 1 wnuld also like ‘to !.hal\k Ed Camphell

and br.’s. Nanda' for their it ‘and he1pgul Stions and the -




CHAPTERT . .-

"7 CH-compLEXES

syuces hccnuse ofo, thexr tupolopcal and homntoplcal properues, proved
mnedutely to be ex;remely useful in Algybraic Topology.* m develop her‘e
a more cat:zoncal apptbsch than that originally ‘taken by thtehaad. More
precisely, ve construct these spuces as colimits ui "convenient'! diagrams
in Top. In. §1 e introduce this categnrifal concept of colinit, giving
examples and some related resulzs o bé used, in §2, in r.he development of
soie of ‘the properties and Tesults of OH-complexes. .

“Much of the materisl in this chapter can be' found in [16]."

e
§1.- Colimits '*

.1.1) In"an arbitrary citegory A, let FiX'+ A be a given diagram,

that is, X 'is small ‘and F - is a éovariant functor, and forn the category

JI(AF) . defined as follows: - ) LT

“objects {FOO-LBBA} where X variesin X snd A€ OBA, (read-A

is an object of A). is fixed for each set of morphisms, such

that <@+ £ €X(X,X')) the following diagram commtes

P 100
s F(f) J'A\XA 2
5y Gl

ixn)

Indeed the importance of these spaces was realized by Whitehead himself.
. : . |




“up to isomorphism.

L B \

e \
oghums u {r(x)ix.ln — ) LK) AN given by

W EAMA) such that (¥ X'€ ObX)’ the £ollowing s

agram commutes L .
i i(},A

0 »lu. ‘

\ it N i 2t

\ 7 °

He' define a colimit }:f F in ‘A, denoted colim F, to be an_initial

object of :he cntegory\ I(A, F} Whenever colimits ¢xist they are unique

N~

1) Given a se‘t of objects, Aj 56 of a category A, :

A, j8J,

Ex: EE’ les

form the diserete cntegory % with objects and define |

FiX _.A to be the f\mctuli whiich takes. A; to Aj' for-each §§J.

If colin F exists, we say th*t the set uj}j 3 has a coproduct und

" write ‘colim F = (A —’JL Ay ), where j_j_|_ A, denotes the cuptoduct object
\ )

of the set {A)JQJ /\ 7

-2) Given A, B € mm\ and f, g€ A(A B), form the cutogory
Deﬁna

X withobjects A,'B -and mrphlsms o ] ! £ .and 5.

F:X A tu be the functor which‘tl.kcs & to A and B to B A

cohmc of such.a dugmn, if it exi\sts, is called a coequalizer. ,

T:D—yC, We .

if the fhnc:ors

Given eategoﬂes .Cand. D and func;m-s ‘s:C—D;

" say thht S i left adjoint to. T (untten s -—-|T)
n(s- ') and: C(4,T-) " £rom PP xD tq Set are maturally equivalent’.

n'ne fuumng proposition gives an mponant property nf lef{ nd;omt

func;ars' nmely. they. preserve colmits. |




01.2)

-Proposition:

Let F:X—> C' be'a'given diagran andlet :

s c—-;m T ~»C bé functors with' s =T

S(colim F) - :cﬂn(SF).

P

commutes;
2 ¢

1€ colim F exists, -

Proofi et {F(X)—llﬂc) be ‘an initial object .of the catesory 1(C, #

Given - {SF() 25,

JMb) is anobject of. 1(D,5F) “and

the natural xsomnrphxsm B(SF(X) D) ¥ C(F(X),T(D)),

8(FX), D)J &

T(MD)} is an object of

1CF).

Mo mist show hat - {sv(x) 5100, 5(C)} s an initial object b 1(_,5;)

8(F(X),n) is
we have that the. set

since | (F0) X ¢}

is an initia1’y ject thera- exists a unique morphism a:C -—pT(D) such

: thit (V X e OhX]

By Raturality

E(SF(X);“) _———) C(FO,TO)

- Si(X)

* Hence,

‘the following diagran comtes .

Noiey
F(X)

O(E(X),D)

8(C;D)

4

8(F (X, 03 (02T

o

T_.t_(x)

-, D0, D) ety C(c,T‘(n)).

for_every X € ObX. " the follouing diafram cofmutes

TS|

a(r(x; D)0 = i) = 0(F(X),D)[6(C,D) - s;m] ".and' so,

e A

Ll i

<




T s s, :

s i l '9(CiD) .
ce T P

ol

Given a category A, A is'said'to be cocoglem if any dmgrall in

A hns a coh.mn. '

“Let A apd X bo categorics with X .smll. ' Fornthe functor ‘
category A% which has for abfeiee functors’ X ——A; and for i
norphisns, nuun{‘ci-msfomhum; betueen those functors. . 1€°A s
cucmnpma, then for each F € 0% e can chobse an cbject A, © o
[e0)

- such thnt {F(X) === AF) is an initial nb]ect of I(_,F) This gives

rise o a functor colin A— — A The next Tesult' says, roughly, speaking,

_(1.1.3) . Proposition: Let A, X, Y -bo. categories such that .X, Y

. that colimits’ cunmute‘

i - SNy

are small and A is cocomplete; If F & Ob(A)" such that coltn F

T exists, then : 7
L B

colim(colim F) n_.’mup(coum SF) u L "

XX Yoox '

- Proof: e define a furictor T A—.A! in “such a vuy that colim _-|c.

é X .
Then by (1.1.2) the resuft follows. &
C:A—9AX is dofined as follows:

. for every object: Al in: A A :X—NA sueh ‘that | CAX = A,

; fw.wgn X 606X, m o+ £6 XXX C(A)(f) R




' sphere sy

for avery mrphxsm g i A ) =g

We: 1=pv= to the' reader o shiow qm eolin —C. < //

e " s

52 - CH-comlexes . - . |

We. now show how, to construct CW-complexes.. .

; Consider the fauouing diagran in Top . §

’ G T ) F AT W ‘
.21y’ n-k“—axl-—‘,x ‘z e LA DL S Y B

iﬂhera KO is any discrete space and the maps I . are. 1:1 _and closed. .

\

We assume k"1 fas'been constyucted and show how to construct i

Let An ba any pven 1ndexmg set and to each A € A we associate a.
n-1 i
of céprodicts, this gives rise to a unique map €713 s"‘ —nc“ 1

/nl

For esch 1’6 K, i clused suhspnce of. csh" kg nnd S0 || st

h L
isa closed subsynce of cs . We now define. K" to be the space.. .
. - ¥

obtiined by, adjunction of cs to- K™ via themap. 77, us

Shom in tho folloring diagrm

TN o1 en B
st " ]

and & nap )" 'l‘s" L1, by the universal property




W

N : A ) E :
since’ 1] ST is a closed subspace of || o5 we
AR, i, VLY

map I, s 1-1 and closed. . (see [1631:3.21).

We now defiri6 a OW-complex :K to'b

the lopologiul space;” \lluqu!

up to homeomrphisa, deFined bi-a mhmt‘uf the diagran u 2.0, Vﬂr

spaces xf‘, N0, ..., are “ealled, the n

K18 one éxists an integer’ ng 2 0 suén th-b ¥, >,na) W

ve sly that ks, nﬁ finite.dimension .

finite dimen!hmd aftesets’ A;‘

Pumismre. ,1! besues. \uh\g

H\e f"s :

-uied in the cnnltrut.thn o;

A, are cmmnble, we say’ xh(t eK is a bomublo CN-con_:glex.

_ (-2.1) in Top, there'is a sore iseful fumot. i nasiely; K - o}

with the weak topology. By (he wolk topology we dmt)ut A set F =(
is Slosed if and only if (¥n > o r 0K s closed in B mis 3

just the fh-l topolou \nth respect ‘to &l inclusirms Fesx. Proof
that K can h\aaed be vie-ad in this -forn amounts to sbqulng that

| ey | Ux") 15 an initial object 5 the catogory I(tops »

¥e now give some exarples of a-:oqums. Eu-ple& @, m @
can be found in [17;2.4.1, 2.4.2]. ©  ° s ey

a:z:3) 1vEx les.. - . . B

ST ek buumucuz;nnpm and, \I;'f, its:

gemnetnc nnuntlm ;n

5 S s o
Starting with u\. discrete sp-u |x]°, _ the collectioh of points,in

" realized from the vortices of K, - it is claar that we can donstruct *
* the followinf.diagrin . ‘ 4




"t ‘Hénca,-‘givi‘ng

51

iiore " .[é =i | and |x|’ i gbtained frém [K|‘l'l> by. adjoining &
* Cones oven{ spheres « R ol i

K|

vie not'e that the

is* npt,’ in general, a Cw-complex.

the weak topology makes it'a CH-complex,

e usual ie‘pulngy on

ay. u'

|K| is tﬁ metric wpa]ogy,

€. |x|. vm‘ this tnpolugy, |x|:

'nawu‘vei-,vu K is'a m:nly Finite.

5 sxm'ph,c:la!\complex, thaf is, each vertex of K, belongs to ‘only f)mcﬂy

<many, simplizes-of K;

5. then.on

x|

the weak and métric’ tapolngus

©

coipcide

~“Where' s"

Wo can then regard 's" s ne0,L, e

e cnlxmt of the anm}

VD mén'syhere s"

Stsrting with thc m&«pa&nz dxs:teté space 50

< obtained from. s™

is g CW-complex for all n ;'h 1

we' :ongtnn:t ‘the .

as the pushout of the' diagran

45 a CH-complex by taking it as a’’



Thus, we mist show that for’ n ='0,1,2, .., § 15 homeorigrphic to

.. the pushout, space. of the above diyran. o

| o ,
[ efine maps gl, g24 s ——ysh by i TR

" This-gives rise to:a unique nap g = g}l 18]’

which-makes the Following diagram commute

nuking ‘the :r,u.ngles comute. Now; g™ | sl _]_Lcs" l\s =

L i8 o bijection and so°' hiv'ds a) bxjccnon. Also, ™1 gna
B Vet ™1 ate comact and 50 s“ E1 _LL et || ot
9 LR .

comyact. s s Hausdorff and hence hois & hameomorphzsm, being x

cr.mtinuuus bi;ection from a. comyncl spm:e tu @ Hausdor£f synce

i e e 6

s '(3) m X =R,

+ quaternionic numbers, setively. sxnce. " isnm-;emqnnyq we WElL




-1 L
¢ =
% cénsider only mitiplication én the left. We define on' ™I (0}
the following equivalence relation . Z S
i T fordll x= (xpeeesx)) and L—(yn....,y]\EKnl\W} 2.
s s
& %~ y&Sithere exists A€ KNONF i 2 0,1, oum) xg= Wy
“We then define the projective n-space, denoted P ntl\). to be the space
y S ———— .
V ™I\ (0 / » vith the quotient topology. To show that. B,(K) (n20)
© . . . isa C-complex we will show, analogous to, example (2), ‘that P, a0 i
o Ieomrphic ta the pushout splce of the following dhnam ;
1 ¥ 2 i s
" B e B ko o :
ik VL 7 B ol . A w o g
E Gt . M &5 w
L N P () ; S g L
ol ot . . : :

-1, nk» -1 %
where f“ —)r l(x) is defined by f" (¢ NN l)
[(xo.J, cesxy )] for x; EK and k is the dimension of K. 'as
a vector space over R and then take Pn,(K) as the colimit of the

diagran

Y b I3 (x)___, P, (x)_, _,p (x)_.._)r“(x)._,

Notice that the inverse image by f". L of a point in lfn l(K) is-
“homeomorphic to $*

% 2
4 7 :
., Given the pushout diagram’
kel o w i nk-1. * l
.cs"“‘ v L T B
- , 1““ . ; . v B 3 v' v
o P . T 4 i
y Cin = P, 1K)
® ‘ - \\
W Gy RPRRSS




where g and

n-1 n-1-"

x!‘_l[xn. "x" Sy X

and T

By the universal property of yushuuts. there exists a unique

e 10:)11 R RO

such' that the following diagram commutes.

i

st . L




3 i ) T by
ko1 nk-1
[ ERICRIARG ;

~We'show'that “w- 15 a bijection, for'then; since P, | (K): and

nk-1 . ) B kel X
cs are compact; () 'J'Lf 1e8t s compact 4nd as a con-

 tinuous bijection from a compact ‘space to.a.Hansdorff pace, welis
a homeomorphism. ) - . L

In ‘order to show ' w "is.a bijectfon, it is sufficient. to.show that

R k-] 21 N ‘ 5 A
h 81t e\ .1_”,““0 NP, () ‘and 5P (0 =Py { (O E Py(K)
aze bijections. " This is clear for 4 For 8, e define a map
Yagie § i nk-, nk-1 - / : 1w
Lt PR\ Py g ) S _4\5 as follows:
for a1l [0 9y, soes 3] € RO\ Py (O
o U T (L. T M S PR
F n-1"270 n ]Y"Jr Vs 'r AL i .
2 e, U g ny R el
‘ where' 7. - denotes the .conjugate of, y .and 'r="[ [ |X.,[° . :
o 3o : . 28, sbg @ 5, ety g
: . R o RN
o[ Tt then follows that gy B, m 1o e Bl g T // :
I i ' We now.develop some of the 'nice' properties of CW-compléxes. We .
start by ‘showingthat these spaces satisfy separation axioms Tg' to T,




u- - e

. “inKelly's motation [11]; To this-end, we begin by proving

(1.2:4) * Lemma: Let X be a space obtained froma space Yoby i

o adjoining n-cells. Let C beacloseﬂ subset of X Snd let

7 w8 :‘Y—H. h:CII- (x [0 1]). be maps su:h thst g'mc = h|\('IC
Then there exists a map g': X~ ~such. that glc{h and g' lY =g el

Let X be given by the following disgran =y o Ry 8

s % - ) " %
N " Take x.6-E (@M LISFT. Then F(x) = £(x) because: thie above -
& 0y 5

didgran conmutes. Now, £(x) € Cand £() €Y. Thus, Fx) = & %

£(x).€ vnc and since glmc = h|mc, we have that zflf- (C)ﬂJ_LS" -1 x

h?]f'l(C)nJ_[_S" o O Pl L SN i
)

This gives Tise to a nap hf\) of f“(z:)mu_s i
is closed in X,- #1(C) - is.closed in _u_cs“ L Floy s
. 4

Since C 3

is clésed in the normal space U_cs : ; “Ya . &
x

" Thérefore, by the Tietze Extension Theorem, the'map  hf U[gf extends

to 'a map '+ £' l_LCS" 1.1, By the universal property of pushputs, thére '

exists a \mique Mp & A1 such that the following diaghan commtes




a0 : Thus, e have g'1=g'|, =g aid g'Z = £, "Fronwhich we: got
o Y iy ity
U ' % " Y > e
o= BAYL s : ) T

-

(1.2.5)  Theorem: _Every CW-complex is a normal space.

 Proof:  Let K -Q:" be a CH-cosplex - and. suppose Gos cl are disjoint
closed subsets, of K. Define amp h: CoUC, =1 by K(Cp)<0 and .
@) = 1. Conistruct s soquincs of mips g ; K= 1 suck thit g 'f‘n
cUcy = h md""{r\i-l = a0 by .2, there exists®
“amp g:K—I such that 3|cu‘c =h and gln= g". Consider
: & e
the sets U =gl((0, 3 and v, =¢"((i ). Uy and U are ©
., clearly dis)oi‘nt. They are also open sets since Up = x\ £ ([4. 1)
“and U= k\g (0 z-1) Since h(c)-o and h(C, )‘- 1, 93¢,
“lnd “13° /TR T 1% &

] a. 26) Theorem. Every Cl-cnm'plex is 1'1 & L

L

Wl



- Proof:

* and ultimately iri- K.
:; utvllmateyxn x//

. m? ‘ )\ M \
Let. & U be @ Cw—complex ‘and take x € K7 1£ x €K%,

0

then. {x}. is clnsed (since - K “is dxscrete) and herfce, closed in K",

5 >0, becausé the maps i.: K" S B ‘areclosed maps. 'So suppose,

now, that “x € K%, n > b i %k K1, here K. is given by (1.2.2).
since % £ K1, there exists A" € A, anda unique..y € CsPTEN\ ST

such that P7I(y).« x. Consider the" open set U = (J?Lcs“ I)Ji(cs l\(y))
and form the adjunction space V= KV _U_f“ |

Now, E'? has the’ £inal topology with respect to thé maps I ) and
1 Thes, ve K s open i€ and only 1€ @ N W s open in

and (3,7 ) s open in KL But (f"l‘l(vj =U and

II(V)=K” 1. "$o" V. is openin K. But V= KN\ (x}.

< Hence, ({x} is closed in K' and consequently in any K, j > n,

« - :
Let A= [Ag|8 €A} and B = (B Ja€A') beopen covers of 4
topological space X.. B 'is said to be a refinement of A if, for each

@ €1'; B & Ay~ for some. 8 € A. Moreover, the refinement B is

sal.d to be 1 m:nllz finite if each point of X has a ne:ghbourhnod which

intnsec:s oniy fuutely many members of 5.
A'topological space X is said to bo paracompact if and only if it
s ‘regular and each open cover of X ° has a Iocally Einite refinement.
We rémark that ‘the‘ definition of paracompactnéss as given in [11], P
requires that each open Eover of X have an open locally finite i}
refinement. However, both statements ‘are equivalent for a reguhr

topoldgical space as shoun in [13; 2.1].
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Y 2 . .

We'are going to show that every cu-c&-pm_ 15 paracodpact: To do
this, we will first show that the rizskeletons of a Ci-complex e g
u-p‘act and then the q-;qln,;itself. % A

(1.2.7) Lemma: Let K= lj";" belCl-coIplax. Then (¥n > 0)

& is paracompact. (

. Proof: We proceed by induction on the n-skeletons of K. For' n= 0, -

K° is a disciete space and, hence, paracompact. - Assume K, i =1, ...,

n < 1 is paracompact. We show K. -is pamnnpuc:.’

By (1.2.5) and (1.2. 6), we have that | K" is regular. So we mst

* show that every open cover of K' ‘has a locally finite rafmement. Let

@ be given'by (1.2. z] and suppose 0 = (0,le € A} is an open cover
of K% Then 0 = (A (o]0, € 0) ana 0" 10, Mo, € 0
are open covers of |[cS1™! and K*Y, respectively.. Now, ||csit

A

is par:colpact and x" BT by the
Hul'ce. there exist nmuy finite refinements A = (A‘Ii €I} and
B= (n' |j €3} of 0' and o",' respec:{v-xy.

 For cach xc]_|_s‘” choose a set ‘A € A sm\tzh.z xEA

A
and, similarly, for £ l(x) € £} (jj_s" "). choose a set afn. o €8
such that £ (x) € Bein1 : .
Consider the fa.llmdng pushwt ;
: RE
A —m——)n o1 i
. fa (x)-u-fn-ll(x)x ]
in-1|m. s Sl PR (¥ n-lIB .
o . g e f" x)
§ ‘1 :
EF—  wme— L S




\ / XGJ_LS;\

. adjunction space 11

and form the collection ° ((iaf,.. (X)J_}_f" 1 AN uu;d co, " A 11
Let V. be the couecr_lnn cnnslstxng of the sets :

s I(A n(JTI_cs"‘ \J_Ls" o @,
sy NI\ A D,

of 0. ‘We claim that v

AJ N0, ‘and 5
(X)u£"'1| ne. !
is clearly a refinement . |
is also lpcally finife. If x € J_Lcs \ |
Ls}™, ‘then, because st L L™ is open, there exlscs a |
. p SURS
Heighbourhood of £ 1(x) € K" “which is contained entirely in

el (J_[_cs“ N Jls “1)' and meets only ﬁmtely hany members of V,

because A ie lal:ally finite, Similarly, if x 6 K'7 1\ £l s™
T 73

thete ‘exists a neighbourhood:of 1" (x) € K which is contained
entirely in I (PPN £ (LUt ) and meets only finitely many
" members of V, .because B ‘is locally finite. ]

, - suppose, now, that x 6 [|s}" and consider ()= 1. i 1)
in- K. s a point of f“' (J_l_cs“ 1),. there exists s nelghbourhood

M ng x€ j_|_cs“ 1 hick meats only finitely many A EA e
point Of I l(K" 1y, ‘there exists a neighbourhood Ha

[x)
ol € k“ 1 hichimeets only fnumy many B, € B okl

xl\ Then “learly; ol I(X)B}fn SYMILE
) =

f“ (x):in K and
intersects only finitely mlny members of v. //

fn-x(x‘] gl %n
is a neighboirhood -of the point

(1.2.5) Lémma: (vn >.0) @1 K€ s piraciapuit.

It.is sufficient to show that evéry open cover of - K"*1\ K"

" has a locaily finite refinenent.

Let 0= {0, 15 )" Bp én open, covek,of k“’l\x"
closed in L, x“*l\ " is'open in KM! and so 0 'is a collection

since K" is




of sets open in “K"1. Lot G' be any cover of K. by open sets of

K™Y Form the open cover GO = (V| either .V'€.0 or VEG) of

K1 since. KM is paracompact, there exists.a locally finite
Cretinement B = {B;]j € J) of GUO. Forn the cover ;N (AN ]
B; € B} jof ™I\ ¥, clearly, this coljection forms a' locally

finite refineient of 0. // )

(1.2.9) - Theorem:”

Every cw—complex K is pnracompncc.

pr RN . Proof:’ Once aga)n, it is suff&cunt to show that every open cover’ of

¢ 7. K nas a locally finite refinement. % .

Let A= (A;|i.€ I} 'be an open'cover of K. Them, for each

f€1, ‘ANK isopen in K (n20). Since; (¥n > 0 Pt W
S isopen in K™, the sets 6 = (a NI\ KYA, | ‘& A) Fom covers
of K*IN K (n > 0) by open sets of k™1 By (1/2.8), [N
is.paracompact (¥n > 0) end hénce, (¥n 3.0) there exist locally
Finite refinements ‘n“ of 6. Také B= (Un )Ua -vhere. B,
.is a locally finite refinement of the c;en cover " TA; nx |A; € A} of

K. clearty, B isa 1ouuy finite refinenent of A. //

Let K = U K. 'be a CH-complex where K" .is given by (1.2.2).
n3

ser -1, g lIcsn-l. Then EN (cs“'l\ sl =o," dsanepen, 7

Jubsat of I (see [165, 1.3.2]).  Also, - 2l h -

_is closed

. in K" (and hence in K) “as-a compact subsét of a Hausdorff space.
d S,

Wecall ‘o™ and 3" an open n-cell and closed n-cell, v

of ‘K. /\, S

o




ey e e e

-20-. k gt

(1.2.10) , Theotem:, let .X. be a compact subset of a CH-complex K.

. © ' Then X intersects only a Eimte nunber F ‘open cells- of X

" Proof: Let K= U K where - K is given by (1 335 Lg’: i g \
a3 -

et

b ! “0EN lxn oy ;e ). For.each A € A, choose a point

) € xl'\ a \Sl,nce the d,"'s"-are open and disjoint, s ‘set Ln

= e A } ‘has the discrete tapology &nd thus 1s,mue being "

<contained .in the compact space X. “Thus ‘G 3 0) An.‘ is finite.

We clain there exists’an integer' N > 0 such that X&.K%. b
Then,, (¥n > N) l\ D and hencc U I\ is finite. Thus X A

e intex‘sects only finitely many open cells of K.
"We_ prove the claim by contradiction.’ Suppose that (¥n'> 0) XA . o D
(K\ K") # 9. Then choose x, € XN (K\k"-), a0, and let P be

the set of these points. ‘If P is finite, then :he;e exists a,

positive integer n sk tnge P&k, But X, € P. Hepce,™ )
; P must be infinite. | Now, if n>p, K\K'€ K\I(P and so x 6 X" o
PN is

finite. Similarly; if Q=P, QN @ ig finite, Bt K Uis T

i Then P M.KP contains at mést .p eleménts; that is

1

- * and.so QM KP is closed in KP and hence in Smu.rly for P.

Thas-any subset of P is closed in P ando P’ is diserote.’ But . .

3 PC X and X is compact.. Hemce, P must be finite, a contradiction. //
s A / i As an immediate consequence of (1.2.10), we have that any ‘tlosed'
f 2 i
n-cell 'sx“v of a Ch-complex K intersects only a finite number of

open cells of K. This property i$ the "closure-finite" property of
J.H.C. Whitehead. p : ) ’ i

st 5 Y




5 \ . : is
Let. A = U AV and X= be CH-complexes. A is said'to i
N n2 3 R . o 5y "
bé a: sub-CH. (zhbrevlated Y of X ‘if and only if‘& i 3
: : o i org
‘> 0) A is a closed subset of X":and X'MVA =A% N o
@ 3 o E £ b4 :
Examples: (1) Let X= bé a Ch-complex.. We can regard X", g
n> 0, .as a Cw-canplex hy takxn,g it as a colimit of the d1agram K i
xc——;x ,L—,»x c_.;___c__.,ix e < : o X
Clearly, X",- n30, isa subcomplex of X. .
: e N 7%
() Let X and Y. .be CW-complexes.By. (1.1. 3), X_U_Y z
'is a Cil-complex and cléarly, X and Y are subcomplexes of X ||'Y.
' (3) . The path of a CW-complex are ; S g il
Let K = L))ﬂx“ be a CH-complex where K. is given by (1.2.2) and
n
“'let’ X be a path conponent of. K. For each A€ A, alesth s - ;
o ! . < i
path connected, being the continuous -image of the path confected set "
-1, - . n_ an-1 . on-1 ] ' !
CSy . For each n >0, define X' = AGA,.f: ™) where: - . ]
3 5(“:“ |xnf"‘ (cs} )#n]. 2 9 d
8 Nou, X" is a closed subset of K' if and onty if (?“ )t > -
s closed in cs“~l and © (1 7M™ is closed in K7L

e (EH)" x")'ijaLcs"‘ un!ir (U*J.Li’““')
is a closed subset. of x" Cleuly,, x"nr utgh ”

Hence, @'z 0) X"

and so the puth of K aré
O] Analogonsly to (3), we Have that' the connected compomients’

of 'a Cw-complex are subcomplexes.

= T e



plexes, . - ¢ .o B ¢
Let (r |u €M) bea colle:tlon of suyca-plexas of , El-c_plu

K and let x-ﬂxu: For each n 30, X" l'\x‘I “Since, fot
> ¥ a€A - !

: i
is a subcomplex of K, X" is closed in. K" “and
so. X ﬂ '_' i closed in K 'for each n.. Also, K" M}X =

. K"n( ﬂx ) = f“\ (x"n)() - ﬂ = =vx A Hencel the. interse mm g
. Q@

%

of suhcmﬂplexas HaH subcmplex.- & 3

Similarly; take the collection’ (X,[a e A} and Tt °X = U b3

" Then, for'each ‘n > 0, X" U x" since,’ forr nch o x is
# subcomplex of K, X", s, uvsea k" and hence. x" X"
open in K. " Thus, U(x“\x )=|<"\ Ux isopm in

4y ctosed in x".' Also, K®'Ox =

x!s

- G

and s0° (¥n > 0) X" = anu
f‘n(UX)- Uu"nX)
subca-plexes isa subcn.pl:x.

\

Note that xf L isa sumnx of a O-complex x, then L is”

closed in K- since  L-AK" = is closed in ¥ _for each n>0.

(1.2.11)  Theorem: Let K -be g cl-coqzllx. "Then K is.comnected if

dnd only if it is path cmmecud. S - .
s / 8 o

; = - o ' & el =)

“Proof: 'Path x-pues < e {s cleax. -Assume K

U %, ‘where, for

s cormected but not path :unnnctnd. Write . K =

each a € .A- X, isa pnh component ‘of Ko Nou. the path compnnants

a

‘of K are subcomplaﬁs.l!ld so closed in’ K. Also, :haﬂmtnn ‘of subcom

Plexes is again a subcomplex. So'choose. @' €'A and rewrite K as

(5) The union and_intersection of subcomplexes afe subcom- .
A S 7




a Then K 16 the unlon of two.disjolht closed subsets and hence i5.
dxsconnected l:nntrary to our nssumptinn. // R A ok

The x‘ender shod 18 riow recall that a- space. A is said to be

“doninated by-a space X 1 there ‘exist maps - £ ¢ Ao and g X v P

l g §uch that gf A

1£ é\‘space A "is dominated by . Cn-complex °x,

(1.1.1'2) . Theorem:

b - thén the patﬁ\cﬂptxim of A “are’ open. . : g 8

Proof:: Let £ ! A, ‘g i x—»A be niaps such that gf =

U be a p-’lth component of ‘A “and, for each x € v consxder £(x) € X.
Since X s locally path con}\ecced, there exists an open neighbourhood
b W of f(x) in X such that. 'V is path connected. By the :untinuity'

ot £, £1(v). is an"open neighbourhood of “x in A.°‘We show, that

) o £lW)@ U Then, for each x €U, U. is'a neighbourhood of X in 5

A" ‘and hence, U. is open in - A.

Ferens Take. y. 6 £Fv). and consxdet f{y) € V. Since V. is' path S
cannected, there exists.a mapA s 1=y (1= [6,1]) such :hn - X

A(0) f[x), \(l) = £(y)- Fom the ‘Composite mlp B l—»g(V)c A.

Then /gA(0) = gf(x), -gA(1) = = g£(y). Now,: gf = lA aq so, there -

Cexists Wi A'x IzyA such thit He 0 = 8, H(-, 1) = 1,. Define’ "
hi 1A by h(e) = Hxs t)‘ Then ()’ t H(x, 0) =gf(x) and
h(1) = H(x, 1= x. Smumy, define "k :'I—A. by k[t) = Hiy, £) - 5

. gnd. so- K(0) =gEy)s k(1) = y.". Now, define T : T-+A 'as follows: 'v

- RIS el :
T(t) = gh(3t - n %2 te % .
. B QETT P EPS | 2
2 e 4 !
= . T T ———T

o



i (1213) Theoren: ' Let B'= UB and Xo= )

: o Lo I I
ool el Xty oy
-5, A £,

et

24~

Clearly, T  is continyous; and hence. there exists a path in - A 5

joining _x- to.y, Thus;.y €U. / 2
¢ r W o &

candy 8. Us" a2 map LR Y

2
£:A—B is'said to be cellular if (¥n > 0) f(A“)CB s (

be CH-complexes

Giyen CW-complexes” A = y
n

130 5
and let A U A be a subcomplax of X, If #:A—B is a cellular

map, ‘then Bu_fx s, a‘CH-cumpléx.

Proot:  (The following is just'an outline. . For & more detailed prodf,
see [16; 1.5.7].) ! H
Tlet j Ay

the inclusion maps. &7

i, Al X" and Jam Aleya™ G > 1) - Be
A

e

Consider the following pushout for each n > 0. .

e L i z

i

n

j . N8

"£rom which we, get the following diagram

. a S ) . "
where, £or ‘éach n:> 0, i, is the obvious inclusion map. By a.ad,

B[ X
1L

s homeomorphic to a colimit of diagram D. From a series of




‘appropriate! pushout diagrams involving the cellular structires of X

Jand ‘A, one can show that (¥n >.0) laj_|_f ~X" is obtained from

n
an_|_f o1 gy the adjunction of nycells. Now, Tet K

Jn-1 n
BJ_|_ x" and. let K“

stand fpr the ‘T-skeleton of K“. Since -the

inap f is cellular, we have the following diagram:

) . ;
- where  Ki's n*l 1 °1 £ and each square is commtative. . Now,

. Kg is.a h;scre:e space_and x" 15 obtatiied ron K =L by, the

- .adjunction of n-célls: _Hence, a coliit of

i{g-_q,xi.'—y : (_-_.q e

s, .2 CH-complex. , | By (1.1.3); this, colimit is homomorph;\e to

sy g
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CHAPTER ‘T1

Se plicial Complexes

s < RS : E
The concept of a_ semisimplicial complex .(abbreviated ssc) has meaning
) ] % A
in any category C. Howevér, we will be interested only in semisimplicial
f sets. . .In this ategory a-ssc can be regarded as a generalization of an

ordered simplicial complex. Each element of a ssc has a dimension; one of

W : dimension n is called an n-simplex and, like an ordered n-simplex, has

n + 1 faces of dimension n - 1 and n + 1 degéneracies of dimension’

T +°1. Milnor has associated with each ssc X, a CW-complex |[X| - called its
geometric realization, which is a %enerali:atiw from the case of an ordered
simplicial complex. For each non-degenerate n—simplex x of X we

associate an n-cell of '|X|. 'However, in contrast to the ucuaum

for sunpucm complexes, 'the: c;us «of |X| need not be hmeome!jphl‘c

to. E", because of 'the ‘equwalem:e relatian put on the undeti);ing set - 2

of |x|. 4

T e Wil see. that some of the se‘nlsimplu:lal ‘theory déveloped in ‘this
chapter enters into the. study of CW homotu'py type in Chapter V.,
'

51 - There are several equivalent. defxlutlons nf a ssc hut we qu give

only tWo. Both will be used e th this
chapter. <. : W .
‘ g o . oy

(A) Let A be the category which Has for objects the set of integers

from 0 to n . inclusive, n =.0,1 2 i3 e denote the set (0,1, ..., n}
-

“by [n]) and for morphi i tion u'(‘ “slql; that is; -

‘whenever "0 < i< <'p,. a(i) < a(j). Weshall hereatter Tefer.to




i o

montonic functions as operators.
. We define a semisimplicial complex "X to be a contravariant functor

X:A _jSet and'a semisimplicial msp (ss msp) £:X—3Y to bek natural

ion from the iant functor X to the contravariant

fanctor Y. Elements of the set X[n] =X  are called the n-simplices
Of X. An clement x € X, ‘is called degenerate if and only if there
exists an operator 8 6 A ([n],[q]),.q <n,B# 1 and yE€ xq such that';
b e 2 - i

x = 'B%. (B* = X(B)): One not of this form is called nondegenerate.

“(B) A'sémisinplicial complex X consists of a sequence of disjoint sets. - |

P 2 Xb.Xl, e+ »¥ together with a collection of functions in each dimension |

L \
= ]

i=0;1,...,n41 . the ith face operator 7.3 §

o © S0 n the ith dégeneracy operator
\3
\ . ¥ -
subject to\the identities - o ¢ = . \
s : 5 7
M agdy= dg 4 i<j 3
i 5 B sysy = sps i) Y
@ 55193 i<j 3
dgsy'= 41 ; A= 4,54 . *
g gy T L .

The elements of X, are called the n-simplices of X. If X 'and
'Y are 'ssc's, a semisimplicial mdp £:X—4Y. is a Sequence of maps . ¢

R RS E. ez

=t



havethe folloumg distinguished morphisns '

nd . W) —s[al . 0<icn

 defined by

£:X 3, commiting.with the face aid degenerfcy operators. A <,

simplox of the forn  s;x is defenerate; one not SE this fornis non- .
degenerate. . ; '1
To sée.that (4) 15 cquivalent to (8). ve first; notice that-in -4 e

= 1] 0 i

Mae1 T
defined by ~ ENEI O SN

Lol L Paly
Yay=4d, 33

nm-{,il 354 iz o Mot Y

subject to the identities

J (Sau :

Any wperator in A is composed ok‘ these mtphxsns A

[17;1.1.4]). - 'In fact, any oparntcr a in, 4".can be written un(iqualy as -
I

.= v.u where u is a surjective operator and v is.an in;g;:xva operator. *




If X:4 —$Set - is a contravariant-functor, then by defining.

= x'o-x[o),-xl-xm,...
and b

: a'.‘ e ‘“mx) :

nel -
L iR X(nnq) :

it'is easy to see that this construction yields a ssc.. Conversely,

starting }-ith (B) we get a contravariant functor . X:4 =3 Set in the

obviaus Hl{
Ll
We denote by SSC, the category of a1l senisimpuchl complex's and

semisimplicial maps. LA

nyés. (1) standard n-sisplex A[n] e

' For each integer n > 0, A[a] is the. Sac definedas follows. A
q-simplex of “Afn] * 1s s opecaive o [di—=s[a],. For oech pperatit e
U slp) ], the pisisplex o8 is defined as the composite T 2

(el [a] 5[]
Given the ssc's [n) and A[n], for each operator a:[m]—[n]
we define Sa:A[s] ~—b Afn]® to be the ss map which uslgn:&n each

q-suplex T € A[m] - the. cuq)osite

| la1=55 [a] 2 n) :

In particular we define the ss maps




dy tin) —sa(ne1] : P .
3 i Al —sal1] s
by means of the operators

3 94 cat: [n)=—a[nel] , G i3=0;1, ... 041

Al . i=00,

k& * " 3 " 5
: “If - 6i[p] —> [n] is an operator of A[n], . then d;(0).= Alu..
] T Ky 'smlmy, i(a) =l o 55
£ We call di the ‘ith face map ‘wd ’1 the ith degéneracy map.
*One should note- that the ¢ ical ion of
a[n] reqmes that - Afa]. be, & covariant functor fron 2% o set.
@) Singular Complex 5
Let ®™! be the (n+1)-dimensional real vector space with orthogonal
: g ;
Lt basis Aj= (0, ...50,1,0,...,,0) ith vertex = 1,4 =0, ...,n
: n R
Define 4 = {u= 1):0““‘ lu; 20, _'{ u; =1). A is called the
% “L . HES 4=0
* geometric n-simplex. Z S B
Given an operator a:[n]—— [q], = o infuces a linear map Inl:An—-"Aq
defined by ! :
R n
. l" x"x) = E“i“u(i) ¥
i I than fdllmvs quite easily that . lag] =|a||8] and |1] = 13 ,
% "Givena wpolngicu ‘space X, - we define the singular complex of X,
Ay denoted X, to be the ssc defined as follows. A ge-simplex of SX is & .

q

N

llp’x:Aq—bX. If a:[n] —[q] ~ is an operator; .we define P S




SX(a) :muq,x).__.mu“,x] 'F,y 'gx!‘)(x‘l) = qual-

. If £:X—3Y is a continuotis function, then £ induces a semi-

simplicial 'u'p': SE:SX —3SY given by SE(x) = £x,, where 3
L EgiB—>X. It is clear froa the sbove definitions that S isa

q
functor fron Top to SSC.

‘In fact, this func “has some very nice properties, as we will
“see shortly: oy

A Given. X, Y € ObSSC, we. define the cartesian product X x Y to he
v v the sanismphcul cwplax defmed as founus. For uch n>0,
X1y =X X, Y1 ai [q]-—.[n] 1s.an operator; then KXY (@)
(X x V), — (X x ) is defined by ; X(a) Y(n)’Xn x Y"—§ X x'?q.

"(2.1.1) Proposition: S(X x Y) = SX xS

Proof: Using the categorical definition ofsa ssc, it is sufficient to"
show that both contravariant functors coincide on the objects and
morphisms of A.b - - e

For each n > 0, S(X x Y)([n]) = S(X x n, -\M(An',l x Y) -and

(SX x SY)([n]) = (SX x SY)_ = (SX) * (SY) = Top(s .X)  Top(s,,Y)

.But, by the universal property of products, there exists for each
X i —>X and y.:A =Y a-unique up. x
_the following diagran commute

- R 54

*y,i8,— X x Y making




Heuu buxh functors - cohu:ida on the ob;ects of a.

Now, let a:[q]— [n] be.an operator. Then a gives rise to the

;3
limxnpllﬂ—)ﬂ. l.gth—'lX!Y. Thembytheunxvmll
‘property of pmcs there exist inique nps X181 —v X, y,i8 0}
sugh that the fgumun] diagran commutes. .

"'- oy B g T
et —xxy—T 0y - W,
o A n | i B
,‘ . o i .
"We' can write" £ as’ £om Xy x‘y . Them S(X'x V) (@)(E) =fla] =
< Yplel = x;lal x ¥ Ja| = (0@ G, D% (S0 (7)) = (% xSV (%, % 3)

= (5X x.SV)(a) (£))-
Hence, both f_umtors coincide on the morphisms of A //-

(2:1.2) " Proposition: ~For each n > 0, there is a semisimplicial msp

is8[n}—Sa . % ) -

Proof: Using the categorical definition of a ssc we show that i isa

natural transformation. [
/ Foreach [q] 6'0bd define 1g:afal ——(s8,), # foliows: -

STE o-,[q]—oln]. then” i (o) = ]ul:A —#8,. We must show that:
for every. [q] € oa and operator a:[q]— lr] the foilmdng

diagram commutes: S . 2 . i a




1.1 A[nl —J—ﬁ(sn = Top(4.8)
am@ | : 8)()
" ami, —»(sa) = Top(s,.8)
Consider t:[r}=—3[n] - belonging to A[n]. Then °

[aBI @) = 3q(0) = [ = [ello]
But  [(S8) (@)1, 1(x) = (SA, )(n)lrl

Ix 11al. Hence, the, sbove diagran

|

commutes and so iisa nlturll transformation . //

let X, Y€ ObSSC and let' £, g;x_—n be senisimplicial maps.

We say'that f and g are semisimplicially homotopic if there exists a. -

semisimplicial map F:X x 4{1] —Y such that for each [n] € Obd,

Folgxo= fn_a'nd Fo | gy x i 8y vhere 0:fn]——[1] - is

defined by 0(i) =0 (0 ¢i<mn) and 1:[n]——d[1] is defined by
J1E) =1 (Fo<i<a). i :
(2.1:3) Proposition: Let X and-Y be topological spaces and let
£, g:X—>Y. If £ and- g are homotopit, then Sf, SgiSK—3SY. are
semisizplicially homotopic. .
Proof: First‘ notice that the ggo-;tric 1-simplex, yby> can be ide;ntiﬂed
with the unit interval I. e o *

let h:X x I~Y be a homotopy Bainsn 2. Now,

SX x50, S(K % ) = S(X X D and by (21.2) there exists a selisimplicial-
map ‘i:{1] —» sE Consider the followln; composition of senisiaplical

maps. "

i




SX'x A[;]l_"‘_.,sx X 88, = s_(x}-ni‘-"isy :

: This is a’semisimplicial homotopy betwéen . Sf and Sg.. //
.- We'how define ‘what we mean by the geometric realization of

simplicial complex. This concept, as earlier stated, is due to Milnor [15].

Lot X € 0bSSC. If a:fn] — ] is an operator, we denote by  af,

the function X(& 4

q—»x.l.etx xxA" anc\llet'\z

equxvalence relation on X ' generated by the following relation

(o*x,11) R,. (x,[efu)

,where. x€ xq, uEn, ]uI:A!——) & R

 Thus (xyu) ~ (7,v) if thereiis a finite chain of sich relations
;

| given sbove, beginning at (x,u) and onding at (y,v).
We define the geometric realization of -X, denoted. [t|,

_the quotient ¥/v." We denote the clements of |X]|, by 'Ix ul

X — [X] - be the quonent function defined by n(x,u) = |x,ul:

a semi-

be, the

Ry

to be

Let

giving to each -X_ " the diserete “topology and to each A the sibspace

topotogy of l“” 1X| becores a topological. space vith the quotient

tnpolugy, that is, the fma—\mpolngy with fespect to. w.

Given a saqisxmpi;cxal mp £:X—3 Y, let EX—>7 be the map

defined by. F(x,t) = (£(x),t), Then this induces a function
J£1 : |X|— |¥] on the quotients, defined by~ |£]|x,u] = |£(x)

such that the following diagrin commtes

?' S

al,”

Then,

]



sifce” mF ‘is’ contiruous and n! i5 an identification map, < |£| is

B * " ‘continuous. . B B
Thus || isa covariant functor from SSC to Top, called the,

gemtric‘rm‘iznm functor. In fact, || isia covariant functor: - -

4§
Fron ssc to CW -(see [17,4.2.5]) and - ] is 1eft ud;om to our functor:
. ! " S earlier dofiried (see - [1734.2.3]). ‘ b SO X4
[ From'the definition of ||, we have,
| (214) Proposition: (03 0) [aln]] =8, (7427 ) S ¢
’ (2.1.5) Prugositian: If "X € -0bSSC, . [X| = Inx- where ‘X runs over
. al] nondegenerate sim'phcus OF X and for each x €X, |
Inx = {lx,:[ € |x] |t €} (g = interdcr of A“J. {17;4.1.9
Let X, Y 60bSSC and let X x Y be the cartesian product. Let
PiX X, Y=3X and p':Xx Y=Y be the projection maps. Then ' i
Ipl = 1Xx¥[—X| and |p*[: [X % ¥[——>[¥[.- Define e Tn Y

n Xl % Y by a'e el x [t

g @.1.6) Tweorem: n: [X x Y|—3[x| x [¥| .is's bijeition. - S, R
. Proof: By (2.1.8) |X x Y| =_||'In (x xy) | wheré *x xy runs over a1 o

nondegenorate simplides of X .x Y: , To show that n 15 a bijection we
must show that n is bijective on all simplices |x xy,t]  where -
¢ 4 XEX YO, t6 Inby and xxy i$ nondenerate e el s

{ E 5

Nou X, and Yy  can be written \miquely as x = u'x‘ and "y '= gry!

where a, B are surjective .operators, x' € X ,y' € Ys’ T, s <n ad |

% ©-.x', y'" are nondemerate..- Then = 5




.

“ Clearly there exists a: [Ml;)(_r]. ”l:[r*l]'—.)[!] such

Drom Jalw and s s s, - o

ek il = Il x lpHas vl
R e PR

R Pt I P

[l Jale ] x Iyt Ile]

How; et |x,¢) € x|, ly;s] & vl vith x€X, {€Ins)

YEY, s 6Ib, b (t "i""")‘ s= (s

T

vGA =hy N L

s;- Lt 20,--]s. = ):z.<n foruul j-
szq" xgo*' 1£o.’

No\v, dofuu i |x| x. |r]——;]x KY[ by

lLflx.tl x |

)
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wclst] %oly.sh) = nlaskox bey,u)

O R IE Ft I LR

o Tedalel < 1518wl

= lxt] % |y.s|

Thus' , "\ 5 P . o . et Y
m = 1|x| 5 IYI and sinilarly = ‘|x . YI Hencd,” n isia

bijdction: /7 . V5 ; !

© Given two ss.};\; and Y, we know that their geometri¢, realizations

“|X| and |Y], " re: ively," are CW-comp But the cartesian product

Sf two CH-complexes need not be a CH-complex (see [51)- Howevez:, if

K] % m, in the above thieorem;is a CH-gomplex. thén in fact 7 45

s Jicontinuous (See, [17,p.n]) and'so n_ is a homeomorphism. - We then have as

" ‘an immediate consequence s T i ¢ e e

’1.7) “Corollary: .A senisimplicial homotopy h:K ¥ A[L}—>K! - induces
" an ordinary Homotopy ’|K| * in,l{_—)[ﬂ ;o I A ’

Since ' [0,1] “is compact,

ByE18 )A[‘l]] = A 001
Ikl = Do, 1] is'a CW-compiex. The hohotopy ‘is-Tow given by the £ollow ngr
compcsitioﬁ. I ; 5 i ot

W IK| 0. 1}7£>|xéA[11|Ji’+lx-| X ST

T52 - Bafratt's Result Bl

e The remnnder of ‘this clup:n »uu be devoted to. the devalopment of |




reslilt is due to M. Barratt [1]. Sllbsequ:nt papers on this subjact were

written by S. Ieinp’ll (:a. RS Fntsc.h (8] and R. Fritsch and D. Puppc
ety | heavily on the proofs given by Fritsch ‘and Buppe.

s 3 [ON "e,
-nm'tegmque of proof is as follows.

We define;-on the Category of ssc's, a functor Sd which we call the
_ba!zcentric subdivision functor. . We.show that, for any ssc X, SdX. belongs.

to a class of'ssc's, which we call regulated ssc's, with the property e

v > thu the realization is a régular CH-complex. By a regular CH-complex,
L We then stiow =, - :

for ‘any regular CH-complex, and in partxculu' for , Isaxl. there exists a

# n ve mean that each closed n-cell is hmomorphic to "

P
semisimplicial complex K and ahoneomarphism k; |K|—>Isdx|

‘Using the pront by Fritsch-aid Puppe, we show that, for any ssc X, th=r=
< is a homeomorphism? h : ]sdx|—)|x|. Composing h with.k; ~we get

% the desired result.

. Let 4fn] be the'standard n-simpléx. We defing the barycentric

- subdivision SdA[n], denol’.ad 4'[n], to be the ssc given as follows.

A g-simplex of A'[n] is a sequence (g, .- 5 aq') where a;'s ’
y are non-degenerate simplices of A[n], (that is,. the operator ‘ 4
3 ldim o ;J—>(n] is a monomorphism) and o} = Ma, for some . 5 ;
R oo & Yor uch operator 8: Ep)—b[q] and q-suplex ("o' Neiy o ) we define
¥ sthe p-sﬂ-‘plex a'(v sese s 00 T (Og(0)s e 1 Tg () Fnr any

ad [-]—j{n], the :ubdivnion of Au is tho $s map A'u.A‘[m]-—-) A'[n] "
-given'by - A* (ro, ey T = (uu. fpeu o ) where o ‘is the unique non-
|

degmerate siaplox of A[n] for which ﬂmn exists an opinorphism |
[din ri]_.[ a0, “such ‘that the following ﬂ-mn commutes: -+ .

e

o




Hin 5] >~ fa) i B s T
Ty . & y Lt
SO dim e e ] S S
5 bt e : » .
In particular this defines . . o
sa‘ay 8 i e} | i s L 3
. o g e

a2 Sd'sf £80 [e1 ] & [n].

[n}——>8lin] ' is the ith face nip and si: A[mu—-—-n[n]

e
where d

1s the nh degeneracy map defined earlier:

(2.2.1)  Remark: Notice tpa: we can also define  A'[n])’ with a réordered” .

structire; that is, a q-simplex of, A'[n] - would now be a sequence ’
(635 +++1:0g) Where o is still @ face of "oy, but with the
appropriate changes in the morphisms. - Both definitions are equivalent. . . - § .
For convenience We will-adopt this reordered structure on #'[n] “when :

we' come to talk about raguhr,ed smpuces.

Given a’ssc X, we define the ssc’ SIX as follows: - o '\ :

et Xx|| x'x A'[dis x]. Then a q-simplex of -X: is a pan' & "

where “x s x and o€ 2" [din x]" such that. dim & = q; - that _;s,. G ‘\'

o= (g i g Given 'the ‘operator” 8 fpl——lal, Bx,0) is the

p-simplex. defined by B(x,0) = (x;8%), If ((x,0) ‘and (77 §x
we: define- - (x,0), v (y.‘) if there. exists an_operator , a: fain y]—-)[dim x] !
sud\ that " y.= a*x and | o § m; We then define- sax = X/'a.. The s~




N

. -a0-, g = :
opemmns axé given by d;(x,0) *(x,d;0) “and - 'sj-{x,o) = (x50 <
where we let (x.ﬂ] stand for the equivalence class of ‘the .element

% x o of xxA'[dlmxj . i s

1z ~—>Y is a ss map, then Sdf SdX—> SdY- 'is defined by @

Sdf(x,0) = (Fx0). : . .
CTnis clear from the'above definitions that Sd isa functor from,
"thé category of ssc to itself. Sd  is called the bagcmric subdivision
“Einctor. ' i '
‘Given any simplex o-€ A'[n], a has a unique. representation. :

St where a:[pl—p(n] is some injective operator and < is an.
interior simplex of A'[p]." By.an interior simplex of . 4'[p] we mean a :
 sinplex vhich has for its last vertex, the vertex corresponding to the. .

v g

_simplex A[p]. itself. For example. if, the q-simplex -t = S

“then 1: [pl—> [p]. ' If ve

is an interior simplex of AMp]

q 5
view A'[p]+ with its Peordered structire, then 1:[p}—[p], would

‘appear as the zerot" vertex. ; . 4

", 4 -
In the equivalence class of each element '(x,0) of ‘X 'there exists

.'a uniqué irreducible representative (7p1) whore 't is-tnterids ta
" 8'fp]  and Yp is a nondegenerate simplex of xp.' We détermine this.

irreducible. representative. as followss . . -, o %
O T N T TR IR O RN

‘and ' is an interior simplex. Then

T w %,0) = (x,A%at') v (atx,70) - |

Now we can write “a*x uniquely as 8y, whers 8 /is a surjective operator
(possibly the identity) and 'y, is nondegenerate. Then T " )
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f
(a*x,1') = (B*y, ;") v (yp,A}sT') Set T = A'gr', Since ‘§-is surjective, !

i

l
;}.
|3

“A*8, is a simplicial map and so maps the interior simplex' t* ‘to an

interior simplex.’ L (yp,r) is an i point of . X.

1 ©  Notice that any simplex (x,7) Where X is a nondegenerate simplex.

= of X, ‘and < is an interior simplex of A'[n] is irreducible and any
% ; Tl
two such simplices represent distinct equivalence classes.in SdX. We .

call, such simplices nondegenerate simplices of .SdX. -

_ For'any n-simplex x of a ssc. X, there is a'ss map '

- R
¢X:A[n]-—-\x defined by ¢x[1{n}] = O is called the characteristic

map of the simplex x. Note that ¢, is completely determined by its
: 3

- action on the fundamental n-simplex 1:[n]'——b[n]} for'if ai[p] =y [n]

: . belongs to alnl, then ¢,(a) = a*(4 (D) = ok

o
" Using this characteristic map ¢, we can definé the corresyond1ng ’

; N characteristic map for the pair (x,0) of ~SIK. In this case the
ch:r.ncnti.stxc map ‘(x ) ‘of (x,0)  is the cumpositmn “of ‘the mclusmn .

«of o into A'[n], follnwed by the ss map Sd@. °(x ) carries

the siiplex o - of A'[n] to'the equivalence class of the irreducible

representative of < (X, o). Natice, that if 'x is nondegenerate and

i1t are intdrior sinplices of A'[n] with T #.x} then

S o Sdy (1) # sao ) that is, sao lis beecnve on the mtarior simpuces

of ‘A'[n]. :
Given x . an n-simplex of the ssc X “and ¢ :a[n]——IX- its.

characteristic map, -we say that ‘x is regulated if the restriction of

’x to A[n]\d‘; (A[n-l‘]] is, injective. X is sn}dv to be regulated if

each nondegenerate simplex of .X :is regulated.’ Geometrically, this
)
« " concept of a' regulated simplex means that whenever you have ‘two distinct




faces 5, o' “of A[n], vhichiboth contain the zerot! vertex,
4,(0) # 4;(a") For ‘example; consider the characteristic map .
421 —3 X, where. x is a 2-simplex of X. e

‘“Then . is regulated if ‘¢ is injective on all faces of the triangle

except the faces <1>, <2>, q,zr
""" Consider 4'[2] and order its simplices ds' shown in Remark (2.2.1).
Let ,0(:") be the characteristic map for the'simplex (x,7) of SiX,
vhere’ %= (Lpy),wi0s Tg) is an interior simplex of A'[2] and -4,

i the characperistic mp given sbove.

<0,1,2>

e

1 Y el e 2 . ks

Hote that. the barycentre '<0,1,2>" corresponds to the operator

1‘:121'_—’,'_121. ; Yoy e ;
" Now, the simpleX (x,7) . is regulated if, whenever two £ )

A o ol e T




%

such that the subcomplex <x> of X which is generated by X -is /

")) T *:’["'”—’[“I ¥ ) =g

et — s ja i
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‘6, 0" of A1[2] which both contain the barycentre as'the zero™l vertex, :

thatis o x (g ) 0l Ay G b LA 8 60

that is, .must be, injective on all faces except those on the

Yy
Sondaey,” mie, Whaw o wnd @ avedntertorstapiices of (a1 and
Soif 'k is nondegenei'at:;‘ then] since §4¢, is bijective on the interior ;
simplices of A'[2], Ay 46 segatated. Now, Sd¢, is bijective on

e interinroainpiiecs of AVEa],. Sorshy nomlsfenerere nusiwiex x

and so - SdX -is regulated. .The property of being regulated is the only

" property of SdX we will need. * el

(2.2.2) Lemma: Let X be a ssc and x a nondegenerste n-simplex of X

regulated. . Let #338(n] =X -denote.the characteristic map of “X. , Phen
there ‘exists an integer ‘p  and a face operator F such'that [¢,] is
> ; .

injective on all open cells outside the p-dimensional face Fray of

. On this face there is a face Frasuch that the Testriction of

loxl to R, s Ivl-n- where D is the identity operator of a
suitable dngenem:y oparntor, F'x a nondegenerate simplex of X and ¢!

its r_hanctenst;c map.

Proof: ‘Since x is ragulated ¢, -is injective on A(n]\d"';un-lj)

x
Now, if dnx is non—degenernte then it is also l'egnlated since it belungs

to <x>, .which by assumption is tegullted. Thus if ¢' is the, chiracter-

‘dstic map.for dpx, then ¢ s injective on A[n-1] \dg(4ln-21).: But




N ) s 0,5 5550, e
S T 40 = XODE) -

diagram commtes.

is injective on ~A[n] \d (An- 1]) and " ¢' 1s,uuecuve on *

Sirice .Qk

A[n 1] \d (A[n- z]), #,  must ‘be mJecnve on’ A[n]\(do)"(A[n-Z])

“This conclusion. can be cont inued uncil either
(1) "¢, - is-injective.on'all simplices 6f ‘A[n]. - then there is
-nothing to prove . " '

or (z) mue'isanintege'r p' such that @'x ' is degenerate.
; :

™ thzs case let 7. denote the smailest such integer. and let p.

Cand A dl’ siice al’ % is nondégenetate,’ ¢ is injective o |

x
A[n]\p-(A[P]) and, hence Ie‘l is in)actxva on A \ F"A . Now,
Fx 'is. degernzr-te and so thare exists'a unxque nnndegenerete smplex
Y€ Xq. qs g and a umque degeﬂcracy .operator D "such.that /' Fx = D,~.

VR,

Let F" be Any face opantur such ﬂmt F“D =1 and deﬂna F' =

Then:" F'x = F'Fx. = F'Dy = y. T Let $'.be the chntncteristlc map of

CFxey and let "t € &, ‘Then IC l. m v (x, m) and

|'].D*e = (P;:.n-:);‘ But . (x,F*t) ~ - (Fx t) = (Dy,t) (! D't) = (Px.h't)

“Hence |4, |Fa "= o] s




Lo I8 —3|x] - makes the following identifications (and no others):

(2.2.3) Corollary: If - x iis a nondegenerate n-simplex of X 'such that ° o =
the o of X ed by x 'is lated, then

Sis 3 e o F .
;- There is a sequence of faces of ‘A @ g

: |
3 . - ; i
=T D9 BT 20, DT, D DO DT S |

i

of ‘diménsions dim o = py, " dim 7 = q;, and degeneracy maps -D, . such \
that ; iy S

5} |@'R|lTi is, humivu o all upenl:ells outsids of LREN

0<icrl’ .

@ ol - ("llf Wiy s 05k ‘ st

(3) “I4,| is bijective on the interior of 14 0¢ e e o e

We now-prove that if x is a nondegenerate simplex such that, the Sub--
lex aE X generated by ‘x -is regulated, them x ul:l.xxa.i to a

regular n-coll of the CH-complex [X]. : 2

(2.2.4) Lemma: Lt Teo s, be proper faces, let D*:0—3t bea

- *degeneration map, let , L be the quotient of A by the identifications

of D* and let Q:A“-—-H. be the quotient map. Then there is a homeo-
morphisn . hid— L such that ‘|t = §|.

. be zh- face of An opposit- o that s, if B, has,

;i x' TN ) and. o. is generated hy the set* (°o""' .\op!

then o' u zenentod hy the sat {e 1' Py a ], If P is-a pnint of

tlwn Y cmhlwﬂttanlmiqualyls P= )ja“ where Ay >0, ¢




= ; ;
¥ xgoxi'ﬁl' Lot Ag ¢y s d =1t and Ag, el d =t

+.0%2e) +(A

S Al g1 Pﬂo...o A“en)

Then P ='(,A°=° + lla

. t :
N(Jua Pt e v T g et et Ae)

'p+1%pe1 2
A P s 5
- a9 ((r“!)‘o" o '(i;: .P) . :« 2 oy € 5% (T“)n)

Notice, this is only true if 't # 0, t #-1; that is, if P§ o, P § o's"
A g i
Since 5 on_—‘- =1 and

= e = LB e
I_' | o ana (“‘r‘)ﬁ,.](T"

then ‘P can be written uniquely as P = (1-t)Q +1Q whers Q6 a,

Tiqed, teo,1].

Define a function pidg—rt, s follows:’

R o Cif Werea ] ’
= t(@Q") o'(x-@rq HE o<t <k ’
3 SR ten P oua) = e ¢ (1-1)D'u ‘and 50 p is continuovs. {

The following aan- is meant to give some xnswnt into.how this
map p actson a pmsculn subset of A
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“Let ,,-f123>,1=<z 3 u.nd at= <, Abov\e;c'-q_, p ds.the .

| faéntiry. This) region 1 hlded by wa'hantnl lines. - Consider the

‘mpozium in u\e( face. < 1, 3  détermined by the points'a, b, 1 lnd 3.

“The mge of the tupeﬂ undcr p s shldod by the verti:al unes. ]

i Nnuce that’ thxs plune cnts/thrnug): dne interior of, the' tetruhedm mesting -

thg face <0,1,3> in the line _sepgne‘deumined by.'a imkb. Notice ' i




e

Vand'so P = p(®) = (') = PUL This (P) £ ¢(PY). If PG o, then.

“P' €0' and so D*(P) = p(P) = o(ﬁ')_ SO s, dgain, 6(P) = 0PV

BB £ (@) ¢ (1-200D°Q. but- p(P) = o(P) and 0.,

that is, - "(T‘s‘” +

. = =qQ S35 Lol
umqua, Hance, s=t, R' Q nml s R’(l D*R = 1—q;(

‘(ii)Image p is a compact. subs_ot of A

Cidentity on' vl So, $(F).= P for all €T,

S ; gl
also that. the image of thé tri;pezimiu under o i3 not convex since the
initerior points of ‘the crossed 1ine segmant jolmnz the ‘points 3 and-
b do ot belong to image p...

p has the following propérties:: v . - . 5§

() Suppose 5(P) = p(P') where P, P €4 IE P € g'; thei P! €'

Suppose mow that P, P' § o and P, P' ¢ 0'." Let P = (1-s)R #'sR'
where R.€ 0, R'Ea'; 0 <s <1, and.Pf = (1-t)Q + tQ' where' Q €0,

Q' 60',:0 < t< 1. Then. p(P) = s(RsR') + (1-25]D*R and -

SR 4 sRY.+ (15 25)D'R =tQ + tQ' '+ (1-2)D*Q.

)D'R) » s = a-nf; Q+(l :) n'o)uo' B s
11_5),).“, s (12:)[,.“".‘

Since t 40,1 and s 40,1, the above expressions are defined and
i-25

where =R »(

£rom which it follows that R = Q. 'ﬂms e Pl and so $(P).= 6(P1). 4
Conversely, if #(P) = '(P'). bope A then'sither P ='P'; in :

which case . p(P) = D(P'), or, D*P = D'P' ,where P, P' € 0. I;I this case
we again have p(P) = p(P'). i, s
Honce; op) = o(P') if and d only if np) KILOR o .

(ii1)° 1f P67, -then P =-1.P and _n(Pi‘-‘D'?; But -D*
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~Properties (i) md () dmply that image o is homeomorphic to L
-by means of a hmmry\lu h'-xnge p—>|.

Property. (141) gives us that 4’|« = 4| . [

For each triple (Q,Q',%), where Q6 o, Q! cotE ‘{c 1, let

“1w(Qs q .:) ER RN E DR N R e Notice that |if
PE wia, Q'8 then p(P) = P. Thus w(Q,Q%) < image b and so
WQ,ELD E W@, N inze\'r

L w(Q,Q', / N image ¢ is connected.”

Wé show that fox ali |Q €', Q' 6 of,

We/can write w(Q,Q',0; n inage p ‘as w(Q,Q', ',U image p M. X) '
where X = (P = (1:6)Q ¢ tQ' [[0 <t k).  Now, “W(Q,
! : b,

' and ‘w(@,Q'k) -is connocted. So, it is sufficient to show that image’

oM X is connected. Notice that image pfM\X = (P €'X|| P = p(Y) for some '

[ Y€8).. Let t; bethe smallest 'ppir_;e of [0,1] such that

Py = U-tg)Q + £ Q' & inage o: Si;cq %(Q+Q') € image p N X and
Q¢ image o NX, wo have that 0 <) < k. We show that for all

t'€ [0,1] such that tyctic ¥,P'=(1-t')Q + t'Q' € ima p. Since
I.P’E image p, P, = s(IOR'] + (1-25)D*R for some R € o, R' €o',

s €[0,1] Thus (1 :o)q + TR = SR+ (1-25)0°R + SR

- A Byl -(ls)(—lvb lzs)nn).sn'

since tg 4 0,1, u.. representation (1~ )0 + £ que and so-

q'=n'.tu=s-ndq-Fu.. -2\ per
l-tn l-—tc ‘_ . . °
wymg D* ‘to Q e hive that . :

0 - 1-2¢ ) . : ; ;
; AMQ-—é nfko( )fﬁn-n'n_. . . 4 o

', N\ (image p NX)




-7 Take,H €0 ill:h that 'H. bel(mgs tc the lxne segnwnt in o ﬂetarnnned

.7 by the points bR and’such that *

tgctls IS If t' =%, then:

t D*Q.= D*R; so D {p*‘R. Hence,

(1-t)Q + t

i@ ;
( ' 3
ek
€'+ (1-26 )00 + Q! !
7 s " _“where ‘Y = (1-t')H + t'Q' i
w i BE L Thus ,P' \s 1mge 0 amj s0 image o N X ‘is connected. ..t .

P Nw, 1et W denot thé convek hull'of image . p.' Then-H .is a

5% compant; sibset oF. i,

belg closed in A . "We'claim that, H Mo =t

cuarly 1€ HfNa. Taks

Gﬂnu. As'd pnmt of 'H, 'P ‘caribe

written’ uniquelyu P = XAiP nheu 'P € inage P 3 °\

. 121»* x.‘ Sxm:e.‘ p. Gna, 2 ;ipi €0. MNow, if By ¢ o t‘qr some

o Tnt %
then ). = 0; ‘otherwise pqw._ Reurite P as P= ‘{,Aip i dhere i,
et e N ST B e o oy AT




] . ETNRCINE (e
e ¥ 552
P Ea 30, L7 L sincs P o) Pi Gisags o, for cach;
. ;

So :-n mdso, foruch 1‘1.\...l.

,u(q,q’ on inge pohs pnm of w(Q Q',o). P un b...n—mun

252, .00 ,., Pi = z(w-) + (14200-(1 “ar some Q€ o, Q' €a,
e [o"u lf the :oefﬂ:inm t of Q'.ds nmhuro, then Pi $o

-n-qs:. Hence . P € 1.

For en:h @Q") €0 x o' we dm.ne

s i

Lt -(o.&mm-—»wm.w.om tnage 5"

to ba the hnmmrphism vluc_h Baps 14 domain I\nen-ly onto its nng-.

Q- z)q +H e 0, 1] “The "\2 q'(’) -‘t)Q" B tQ'




homegnorphisn Q remains fixed, " Wlso, if Q“a 1, t,hen'

-(Q.q',o)n Ho= w(QsQ", 0) = w(q Q' o)n image p

o1 fornu Q€. gy, o

. We can now 4efino 2 map By £ H—)inage' o by .

T "Q.u

'T" hy(P) Q,(PJ if P ¢ domain nqq o K E

® Lo p 3

Q,
It is clear that Iy defu.es a honeomoxphism provided it is well-
‘defined. Ve know Jm: PG G or P¢o' then P has aunique
reyresentatinn as P'= (1-t)Q +tQ', Q €0, Q' € u' t€'10,1], e
only trouble that could: ‘occur is when P € o Dt ‘P €a’. .. )

e PEG!, then hy ,(P) =P for all q €a and 0 Ty -

‘single-valued on points of ‘'. I£P-E o, then PG T sxn:e ‘PEH

cand HMo= T But hy o) = P forall €¢' andso hy is
simpl ;

Furthernore, for all Q 6.1, hy(@ = Q.

“valued on points of..c." Hene, y s a well-defined ‘map..

A'—>H be any o ism which is by

a ndml contncuon to tha harycentre of. ¢'.\ Each sucl\<hnmeomr]iusm

is the identity on' 7. Pum the cnnposne hi= « .. Then a

B A pis & ism and fu h"l

Let h=h' . b Then K “is nhommorphisw fron 4 onto L

such that hl|; = olx. //
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(2.2.5) Propesition: Let  x 'be'a nondegenerate n-simplex of the
| . ssc X such, that the subcomplex generated by x is regulated. Then
! ; 4 " y

“Hence, if X is@a

Ix|.. is a regular n-cell of the Ch-complex |X.

Tegulated ssc, then |X| ‘is'a regular CW-complex.

3 " Proof: - Suppose. x is the simplex for which ¢, has the form described

“in (2.2.3). Let Ly “be the quotient of ‘4 by the identifications of

, Df and let ¥;:8——>L; be'the quotient map for each i. - -

Siipposeé’ for.some k. wo have a homeomorphism hy iA=L such that

% Irk,,l hk ltgs1 . This is true for k=1, by (2.2.4). Consider
t_he follwingv diagram. i
~ . . Y

"ku‘_"‘k("ku)‘_"k ’ : : . *

i
o
J -
el hk(Tkollcl'k : PR

Since hy " is a homeomorphisn, the map induced by D},  on
® h.k k*l)c Lk :omsponds to Dk‘l on ﬂk'lC A. 'n“ls by (2.2.4)

there is a homeonorphisn iy Lk-—) Lt such that if ’k"‘—"‘m R o
is the quotient map, then Py, = Tl set by, = Fin and

Then iy Itirs = %ke1 |5, and so after. r steps've arrive
at the honeémorphism h:Az——aL . But, from (2.2:3), ‘L '=:|x]|. 5 i




il T : £ e g

Hence, - |x| isireg{y-ceu of -|X|. 7/

Let X be a tegullr CH-complex. Then 'each closed’cell of X

is'a subcomplex. Moreover, each .closed n-cell of X is-homeomorphic
to! E" Define. T(X) to ba the smpmm “complex whose vertices

are the .cells-of X and whose s:\mplxces ’nre_defmed as follows: A

fllnte collection of cells' of X form the vanices of a simplex of

N T(X) “if and’only if the cells:of the couecum can be arranged-in

order S0 that ‘each is a proper face- of the mext. We topologize
It by glving it the weak topology with respect to the closed
i . simplices. 'Notice that T(X) —UT(X)

(2.2.6) Lema:- If o is a cell of a regular.complex, then' |T(@)| is

- the join of the vertex |o] - with the sucomplex . |T(3)[:

Proof: Let T bea cell of |T(3)]. Then' 1= |<ao,..;,t1k>] . wherd
ui's are cells of X  and div is a pr@r face of vin. NW;!, e_itl\er 85
o =0 or T isacellof |TG)|. I G =0, then T, asd closed

. cell, is the join of the vertex la[ with the cell  [<ag; ..o\ o 32l
unless k'= 0. If k.= 0, ‘then © = |o|. This the éells of .|T(@)]

are those of the join of the vertex - |o| with the sibtomplex |T(3)|.7/

(2.2.7) ' Teorem: 'If ' X ‘it a regalar OW-comiex, then X is
i |
homeomorphic to |T(X)|. - e e J

se o U Proof:. We défine a homeonorphism: h: |T(X) X by step-wise extension

over the-sibcomploxes ' [T(X).-For k% 0, ®="T(t") and sowe have .




" -55-
a the obvious homeonorphisn hy:|T(%) |—>x°. Supposs we have extended. |
. " by to a homeomorphism i i 110Ky l—>x*). Let o beak-cort v ;

. Jof X. .Then, by @.2.6, T@| =

- |T()|- Choose a homeomorphism

£:835 - EX .is honconorphit to thé join of the origin with sK~!

By hypothesis, “hy_;:|T(5)|—¢ 'is a homeomorphism and so. thie map

#2711 116) =85! is 2" noncomorphism. We extend £ 'hY

" a homeomorphism ‘g mapping [T(3)| onto EX which.sends the vertéx

el " g - Ja| -into'the origin

ol : [ -
@1 = lol |1 === ==X w0 - 1.

e e s
¥ £y |

We define 1Y on |T()| tobe fg. Then on’ |T(3)] e .

have that Y.< fg = EFMNY | = b0 and so hY extends hY . We ;

. proceed in this manmer for every k-cell of - X. The-resulting/map

b o i " 3

by .= clearly extends h,_,- and is a homeomorphism because its 1

Py UJJR-SX L extends Iy i i

¥ ! inverse h“: is confinuous. Continuity of h'kl follows. £ron the. s /

L “fact that: X has ﬂla weak topology and hk is com‘.muous on each -
closed K-cell. ;The collection of maps ihki asfmes a mjecme ‘Furiction. )
hrlteo |—ex. b1 s continuoys beciuse it is ‘continuoiis on each e
skeleton of X. h. is ulso continuous because it is cmtinunns, in the

weak topology, ‘on “each’ subcomyle; ['r(x M. Hence.‘ h' is a hame_ormrphvxsm.‘ "
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(2.2.8) Theoren: . For each ssc'X -there is a homeomorphisa’ .

h: [sax|—>[x|.

Proof: Recall that |X| is formed by taking the coproduct

X ='J.'1Lx“ x8, (x‘l discrete)

modulo the identification @'y;u) & (y,|salu) for all y 6 Xy

u € 4 and operators a:(ql—>[p]: Corresponding we form - [SdX|

from X modulo the identification = | Sty i’

@, & 0, lavalw) i

For each x s'xq and each q 20, e construct a map ‘hidi—>b, N
such that the following hold: ;

—4/‘\

(A) If a:[q}—>[p] is an operator and x = a'y, then the following
diagram commutes: f

h i e
Aq——)A

el

T

c I

1a'a] }

v 3 s B . hy' " 2
dg——Ltpa, R

“Jaaf ; ) : N

&

B) If “x_is nondegenerate, then- h, .maps the interior

Tytq = (6.5 wgpn s ug) €81 ug > 0 for an1

bijectively onto itself.
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Then the svsts- () yields amap'of X into itself defined as "
3 follws'

i e Xy X 0 B (R = (o ()

This xives. rise to a function h: [sde—)lxl in the obvious
manner. We must check that h -is \tell-deﬁnod. It is sufficient to .
/ show. that if two elements of ‘|§dl[ differ by a single elementary
i equivaluinc.e, then h maps them to the same equivalence ciaes i Ixl,
Cons:dcr (a*y,u) v (y,[d'alu) in |sdx|. Now

byl = laty,hay

@1 ad nly, oiolul = lyh (nalwl. Bue

i
(@b (@) % (7 (8 0, () and from. (M), Oy IA'uh) = (y.IAth (W)

Hence, )llu'y,ul =hly,[8'clu| and so h is well-defined.

: Consider the fonmng commitative Hagrint

"I

T

> .

Sdx

Isdll_’l

Since rg. is an identification sap and ny(h) is continuous, h i
contim;ws. B L " Y e
From'(2.1,5), x| -_lL}n; whére ' x runs over all nondegenerate
simplices of .X: and, by (B), hy ‘takes ignq bijectively’ onto ?,ts‘el_f,‘
for each riondegenerate simplex' x of 'X. Herce, 'h 'is a bijection.

" Because-of (8); h

is a surjection snd this an identification map, as'a’
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continuous’ sutjection £ron a compict space o a Hausdorf£ space.’. We
claim that h is sn'identification map. Then h being infective,
we have immediately that' h isa homeomorphisn: )

»Since h is a continuous bijection it is sufficient to )lml that
|X| has the final topology with Tespect to the map K that is, for

all spaces’ Z and maps - 'g:[X|—>Z, g is continuous if and only if

‘gh is continuous. s A '

g is continuous impliés gh'is cantinuous is cbvious. . So, suppose

g is cont.mueus. Then zhlln is i for each’

simplex x in X. But g;|m = gy and for/each nondegencrate x in

X, h s an identification map. - Hence, g|y . is contimmus\fi
.each nondegenerate simplex x, and So g is continuous.

Construction of h .
Construction of h,

 Each point u€ B, ='|at[q]] can be written in the form -’

‘ »
(2.2.9) N us= )t
s=01 3

; @ n "
Hh.ere' t. >0, jzot 5 =1 and ‘the uj's- are’ injective operatorsywith

“range " [q]. Which define an m-simplex (ug,u;, -, ) of At[q):

<> is'the barycentre. of the gace |u;| of 4. (Ir.is also the
0-cell which cnﬂ'espunds to the O-siplex (1)) uf~ atfql).
For eunple, consider 4, = |arg21f, which isa fun m-ngle in- "




llsil\g the form (2.2: 9). e can write the pomt P. ‘above as

P - ‘0(“2) + !‘.1<u4 “ ul\era

write P as P = t <u,> + tl<u2> + tz‘"a nlgerev 'o + tl = to,

o'tl >0, cn + cl 1. Eut we cguld -ls’o

"

: Soom .
y .or P= tofuf f_-tl<u4> + tz<u6> wheru- Ty =ty t‘ =ty Y

€)= 0. Thus Gne can_see that in the gineral dimension q,_a point of

may have many ‘distinct upreszntltxons of t.he !om (2 2:9] ) However,

W N
| it'is clear that va can go ﬁ-mn one :apresenf.ntion to’the nthcr by,

luving out L J<uj> uhenevex' tj =0 ‘and rcpl-cmg
s ~t3<uj> + tjd«uj'l by (. “ju) <uj> whamver nj pj“. L

¥e duﬁne injer.ttw opsntots Yeye B o
?




"Nnti:ethat dmuk>r >rj . din dunuj>rkj

that T

‘;{J:, oy j;' and nondegenerate’ simplices -z, “of X by nearis of the following
formulas. . Fa e ) 1 e g
; ) i = ejay . J
S@210) @)y G <k
OF
. ™ NN P % 4 % N

sin;e uj‘ and by are injective operators; we have from (2)
that g s alse injective. .

From (3] B, follmdn; computative, ol | g

B

RS, 1 RICABERCIE S IV ;
B e 1 RE R
/

Also, if!

‘j.a.k, then u” =1 1un.d_ so,‘v‘j = "jj’jj" But ] i.§‘surje:vtxv§ and .|

e mst also be ‘sirjectiv

since ;. is. injective wo conclude |

33 S T T R B
Nm, ﬁvvn a surjectivo opernmr H [pj—-—o [r] we dnﬁnc a .

=L mdso pj

ruht invarse 8: [r]-—)[p] 8s follws.




By 4 <Y le1-

ESETID S 0 Se T e
icfaa 1R 7

to( Siemta )
ong..a g o<§<k<.. bl
'¢tq(t1"z+_ Jc')f..._ A R

fa-1%n ey A 5 1

L7 tat - tl(tootl) + Taopleghoac # Ty he _tu(t1~ RS ) L

0(t°+t oo ) e e e e Y L e Gt ) "ty

"a’trf""tn

So (u) is indeed s poxnt o o Now we know ‘that -esch “u €

can huve ‘more than one d}sthu:t represent-tian of the: form (2.2.9).:,

‘Hwavat. by gom; from one rapresentatxon ‘to the other in the way enruet "

delcnbad, it is clear thlt the value of  h (u) remins unchlnged ‘and.so_ " .

h; is weu-defxmd. % In fnct, hx(“) s uniquoly determined nnd is -

‘clearly continuous. = .

‘Proof of (A): Let'u & I ‘be: représented as in’(2.2,9): Given an’

operater

s




2™

~
le2- -
diagran commutes: :
lain'u, ]>—J—-> Q="
<
?, S 28
[dim v >—T-> 1)) . i

We now construct injective operators vy i ij; surjective operators

95+ Giyi and sindegeterste siiplices. zf of X fromoy ‘and

ey (¥gs <2+ V) N the same way we comstructed . oy, otc., from x ind

35 nccording to (2 2.10). Thus we have '

ujx = wja'y T
\ “‘l“u’ XA i
- _ukju, x = (vj P 'y
T :
b g Yy e Gy
o Gygppyd 5y = ’;“;j";’ s
L -xm [P g 4
R T R
= 755 I:j)“k J L4y & 3
e e T T

B Since lk and 7 pnmlqennnn ‘simplices of "X, it follows that'

2% (ukjnkj) = ﬁkjukjj and 5o ukjpu
injoctivn ap-utors md pkj, ’kj j are” :urj-ctivt opentns. sinc-

By gy B T By b




‘the ' Composition of a surjective gperator followed by an injective operator

ique, We Have that . .0t U .
2 i [
ij - ﬂkj‘(j: -
.. From. this We obtain NEET A .

Ry oty Sty Ny

(Notice that vg- ds injective). -\ .70 T
: (s e o
s 3 s :
Ths, - 1t wjhyg> = <alpy s = <“j°kj’» s =
"“/on the other hand ° i i
2N T T s B
tal = T - p
la uljzdt,j(“f .jgo‘j-l_A. al > _’32@‘3 ij, - :

L O:Jgk:nt_i'i"fi"kj”

£ (-t ... c,‘q)_l,ml;gjajjnT

<§<';mtjt};|ﬂulmiﬂ!j> o

dag KT e




2l T e ik

Proof of (B): For eﬂc‘h u€ Aq, Eix u to he of the- fam (2.2.9)

with- #“= g apd uj to  have ‘domain T[], for each - ,.' In this _case, B 4

g N ug s the'identity on [q]. It is alweys possible to write u. in - .
this forn hecause we allow the possibility”for t; to be zéro, - With

gy B u “in this form, there exists. a permutation ¢ of /[q] so that |

¢ <

S image iy 7 (0, 6Q1, ey 4G -

i nondeganarate From (2.2.10) we-havé that e
. 5 . R u;x = p;,zq-: “But u’ = 1 * and since X,.z__ are nondegeneraté and
{ X A o

Suppose that * x € X

. - "
3 R w )
and:s0” pq ® Pag = 'fq]

'Nmf p i “jp 7] byv(‘zv.z_'.ro). Sa‘_‘l[q]ulu Fu "U] = qup“

; oy ; .B'f‘ 'u‘ij,v Wi wo injective ipair‘at;rs and 1 gq; are sn‘xjg‘cém L
' ,\\\ ﬂpef\ltors.‘ Hence, | ugyim Ty -nd",qj = 1y vf‘ron hich vi gt that :
O By is the. xde..myun 051, for each 5. ' * v B 2

We:denote the ith ‘co-ordinate of a point of .‘1" by ‘the suhscrigt




5> and reca1l |, - - . :
’

1.t = ... -t ¢ * ] t,t, <u.p, >l
g o1 30557 ’,(ﬂjgkqu it

! then hy)

. Thus“h tu)i > tq mqsqq Fl for all i =0,1, .00,
" But ug ‘x,ﬁA “and'so. to 2.0. Hence, HOK mq‘. L e e
Tn.vshw that IL‘ ‘is in;yect:ve on nm fa take u = §‘; <up> 4nd

- E :;-m;.-) belonging to lnAq Bnd suppnse that ' h (u) = h (u')
=0 k:

. 4‘ ' % * 3
. ‘(Z,Z.].J) sithér ¢y =t) =0 or ug= Uy

For'j-aq: 1£71% innge'.\lj: ¢ ‘t:hen‘ ‘ijﬁj’i '= 0. S0 we Nave that -
: G o
. C = PR . L ~ s
B O )wcq By e ln o

" and so ‘:q 3 'tq._, similarly, if; ¢' is a permiitation ‘of [q] Suchithat -
im‘a’ge-u;awm)_,vm_.. e ten T T
o i ' Mot

g T
p— ey, (q] =My @25,




220, e e . ot

tit) <
ojee I K
j<k<q g

<u ko

)

B
lleJq 1 AN ki’

j<E< i

<t ar)" Z z 'k‘“]ﬁkj

et

Hlpwedet Ta Y £ (1
0<3"<l 3 EAR

e j<k<q
the .corresponding expressibn for’-u/, then, since-

4 = s B 7 up.J # ul 5 ~then theru axuts an ig xmge uz uhich does not

‘helong!o mgeu So <ulp) 3120 for j=c,....L and this
L: kji

b . Buty: TJT"mdso -ri='r P o B
“ Thos we lmvs “that %
- - E A . - . &
o ,L.‘l-:ﬂqfux" .

4 L L A% v -
But w6 Ind, snd so 1 > 0."Hends,' %, =0 and by symetry, ty= 0.

3
]

S st M e




i
¥

H
*>

Suppose now that up = uy . Then, by the induction hypothesis, the

expression S s
S=(1-t. -...-ty.) <uyb + <u >
q 201) e Mgk:q‘k ‘2Pl
is equal to the corresponding expression S' for u'. Let 1= 4(8). .
Then, for.each 0%j<t, <wjB g = 0 and so 3
=tp(l =t -...=ty J<upfy,>. + tyt, <upb, o>
2 q 201 e’y vtugqu“ 2P’y
A o b g i
So' we'have' that A% ‘e O
S.=T, 515 ths! =18 ? 3
b Sl Tl T A Tl
- b . % t 3 .
But S, 2ty <ugopy = toupy =g >0 ;
- b
Tyt tyt 2
Henes - 2—9 > £9° gngso tp2ep o
2 L - \

X

By symmetry, :"::L and thus t"'i;" Hence (2.2.11) is true for
j=2 andso forall j=q,..., 0. Therefore, u=u' and h_ is

injective.

Me now_show that h,(Tnb))"= Indo. 1 %

i 'h; is-injective on mAq', .45 @ bijection from Ing, “onto

|
!

w5

Tt it Ll

Bi(Ine). But, Ind,: is compct and ,(Inag) is ausdortt. Thus
x:lnAq—-))‘lx(!flAq) 'bis a hv\mowrphisn." n.,;_.. K ""’q ¥ 5"\' and
v
z 2 )
J & 1
- g .
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Ini s open. llence, by the "theorem of invariance of domain" (seo
[7;p.303]), hx(anq) is open in S" -and hence in Inbg. " But |
h;(mq) = anqr\ hx(Aq)' f;nd hx(Aq) is f:losed in B Asa compagt
. subset of a Hausdorff space.; Thus h (Ind ) 'is closed in . Ind_. p
41 - “H

“Because' it is non-empty, n, (g ) musfbu oqual to Inb. //

(2.2.12) Theoren (Barratt): The' realization of any Ssc X can'be’

triangulated.

Proof: Composing the homeomorphism of (2.2.8) with the homeomorphism
of (2.2.7) for  |SX| :gives us the required result. // L .

& 'Recall that ||:SSC—3Top " is left adjoint to S:Topr—»SSC,
= .

-)——Top(1-1,-)

where S i the fumctor earlier defined. Let 0:SSC(-,
be'the natural equivalence. For every X.€ Gblop, let

“jx:|SX|=——>x | be the map defined by:

iy = 8(S%,%) (1))

As a_consequence Of (2.2.12) We have that the map jy. induces -
isomorphisms of homotopy groups in all dimensions. ' This result, is needed -

‘in Chapter IV and so its proof will be given here.

(2.2.13) | Lomma: Let. K € ObSSC, X € ObTop ‘and £:|Kl——3X be'a map: L
¥y | . >

" Then there exists a unique ss map £':K——»SX " such that J,|¢'[ = £.

]
E
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g Prooft ' Let' £':K~—3SX be the unique morphism oi‘ssc such that e B

' BGX)(£1) = £ The naturality of © and the morph)sm £' ‘give rise Ak }
e ] i

to the commutative dingmm - 7 X &

' (K, X) oy .
‘ .  88C(K,§X) ——————>Top (|4 ,X) ; :

i 4 o |f|‘;

8(5%,%) ¢
SSC(SX, sx)*» (|sx| XJ 4 )

Hence, (S, X) (Xgy) €] =" 8(K,X) (1gy ") = 6(K,X) (£'= £ and so’
i ler] = £ 3 : !

iglel = £ 2y

Notice that it is possible:to hive the actual form of the map jy;

| )
"namely, . . "

wix,tl e |sx]) jxlx.tl = x(t) where (x,{) €SX: x4

N : (2.2.14) Theorem: -For every topological spa';:u X and every integer

n>0,. the induced homﬂmutph!sm Gygim st —s 0 5 an

isomorphism. 4

_P_r;Lf: Let - ) € X be the base point of  X.~ Because of the way. in which

‘jx is definied there is one 'md only one s, € |sX| such that it -
ix(sg) = k. - ‘(namely; if x; is the map xo.n—ax such that ¢
%(0) = xp, take |;g,o|_§ |sx1)'. Take so . to be the base vertex of-. |sX|: ,‘
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(), is epic: Let -[£] € m (X) be the base-homotépy class|of .the map
i:(s“,-)—-)(x,xo), where + is the bas.e[point of s". We can regard
s" as |K|,  where K .is a convenient simplicial: complex. .By (2.2.13),
there is'a unique ss map £':K—»SX such that Jjy « |£'] = £. Notice

that 5y [£](9) = £() = x,. and s0 | £1](2) € 53} (xg) =PIE'[(9)

)

Ten [[£]] €' n (ISX]) and Gy (€)1 = [£].

Uy, _is monic:, Let 8 (|X|,)—>(|sX],5;) " be such that

3y ™ clxg) where e(xg):[K [—#X is such that c(xg)(s)'= xp, . for ‘every

! § € |K|. By (2.2.12), there exists a simplicial complex 'Kg, whose
S B - 3

ey e
geometric-realization is. homeonorphic-to_ |SX|. Let 0:|SK|e——s|Kgy| ",

be such a homeonorphisn. On the other hand; by the-simplicial approximation .

theoren, there is .a sinplicial map of & convenient barycentric subdivision
k@

‘of K into ‘Kgy; say g (v)v_’xsx' such that ™ |g'| ~ og
; 1 G

(reca1l.that  [KV| .. 0{K]). Hence 307 (ep) v iye”e'| =D

30 lg'| & c(ig)i in other words,. there is a homotopy .

i AT e 1 ¥

H:iK] x I ¥ |Kx a[1]|=—>X such that Hllx' o ixe et

)

| x 1= cCxp) “and ",lxl 1" clxp). By (2.2.13) thero exists unique’

"ss map H'iK x 5[1]-—>sx such that H.= ;xlu'l Thus
Hhklxo. "]"jxlﬂlllxlxn !
ol - Bl e by \miq\ienes‘s (see (2.2.13)).
On the othe hend, c(xy) = 1:1| et 3xiH‘ i e

. )

8




¥
H

T since. o(xg) = jye(sg), where c(sg):[Ki—[SX| is the constant

\qmr sg € IsX|, again by uniqueness we have |nv|||‘|,'l'-:(;u)

e, st ~e(so)g. ‘\v:(s ) amd so (5,0 is monic. 7/




CHAPTER 111 oy 5 |

MILNOR'S WORK [14] - PART I ° ° B K8 B

" Milnor's paper, "On Spaces of the Same Homotopy Type of a CH-complex",
is & classical paper in homotopy theory which is frequently referred to.,
In'this chapter, and the one to follow, we give a detailed analysis and ¢

| clarification of that work. Conditiops for a space to be of the same ¥ ;

-homotopy type of ‘a countable CW~complex is the topic"for this. chapter.

¢ " This is section one of Milnor's paper. Thé more general §ituation for

Git'n-ads is discussed in Chapter V.. DU g gd
: oy e NS SR B AR i Gaipten 6 spates hLoh AoTAs Kav6 Yhe ¥
k homotopy type of a CW-complex. .Thd Fourth cxawple is an’interesting

éxanple: due to Borsuk [4]. It is a locally contractible, compact metric

space whose homology groups are nontrivial for every integer 1’ 0.
5 (1) Cantor Set ' | T . 4

Let. .C be a cantor set and suppose C .'is of the same homotopy

2 . typé as a C-complex. X. “Then, in p . X C and: - T
hence, by (1.2.12), the path components of C.iare upg;x. e thie 7 ’

X path bomporent’s of: € wre tne‘siﬁgmo'n sets. But C is‘a T -space - . - b
“and 'so’ the singleton sbts are aifs& closed.” Hence,  C ‘is & discrete

\ ] space, a contradiction. _Therefore,  C canriot be of the same homotopy -type

as o’ CH-complex. . y f ' .
v ) . |
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“@2) Let x'=' graph of il Loecxer,in v and

A= (0, em?| ¢ ¥ < 11" Forn the set 'B'= XUA andgive to it
the subspice topology in ‘B’. Notice that B favcombeted ut notidith
connected! Suppose B is of the same hol‘lntopy‘ type as a CH-complex K.
Since connectedness is a homotopy type invariant, K is connected:and
thus path connected by (1.2.11). But path connectedriess is. also a i
hobotopy type- invariant and so B .mist be path.connected. ‘This is a
cont_radiction"to the fact that. B is not path connected and so -B

cannot be of the same homotopy type ‘a5 a’CH-complex.

(3) Lot X .be the subspace of 'R consisting of the points 0  and L
_for all integers n > 1. ‘Since each point /2 is both open and c16sed,
the path confonents.of X aré just the. single points.\ $o if X was
Of the same homotopy type as a Ch-complex K, then K \«\mld have ‘to

have an infinite number of path components. This is becduSe, under a

hémotopy equivalence; the path components are in a 1-1 correspondence

(see [6; Ch. 18, 2.2.1]). But, if £: X > K were a honotopy eduivalence, |

£(X) would be compact, since X is,-and’so, by (1.2.10), wojild e,

_ Ccontained in a finite subcomplex'of K. Thus, f£(X) ‘would be containéd
v ; B :

in the union of 'a finite number of path compon

i contradicting the

u &
+ dssumption that £ ‘isa homotopy ‘equivdlence.

.(4)" ‘Borsuk has constructed the following-space. .
2y iy

Let. Q= .1 [0, 3] with'the metri¢ “d(x; y) = / I &
. o m=l . . w1

P

i

B




e

Note'that this metric is well-defined since the infinite sun converges.
_ g . . 1 14

Let. Au—(xGle1=0) andvAk (xGQ|m§x1 R For 'k > 1,

defined by (x ER"|» =0, i >k} "Then

the boundary of A - in’C, is the (k - 1)-sphere, S*- 1, Borsuk has
Y

let '€, be the subspace of

]
|
!

| shown that ‘the space :B = & \j sk is connected, compact metric

o | and locally contractible. Furthermore, for every k 2, ‘there exists
k-1,

a Tetraction of ‘B onto S that is, there exists a map

sk«l

| #3851 such that ri=1g |,
| SRE

inclusion map. Thus, on the homology level, ie have that r,i, = 1

where + B is the

) sk~ 1, 23,
[ >0), where r, ‘andi, are the inducéd humomo hisms
[ Gn > . rpl

Hn(s ) R) — H (8, z) - Hn(Sk/‘ z) -
¢

Since- i, is injective and Hos* 1, 2) ana Hk 165 2y are
; L

non-zero for all k > 2, we have that i{,|kﬂ, Z) 'is non-zero for all i

i | n 30, e Will see shortly why this space B camnot be of the same

homotopy type ‘as a Ch-complex (page 82). g v
We denote by W ‘the category of all spaces which have the homotopy S

* type of a countable CW-complex.. We will see that this category contains

& | o wide vantiey 40 spases; Ane i Absolite GaIENBOUIRGSS TETEECES.

An’ absolute neighhaurnood retract (abbreviated; ANR) is a separable
: |- "metric spaco: X "such that whenever X . s itbedded a5 a closed subset
3 of ‘another separable mee}ic space Z, it'is a‘retract of some neighbour-

hood-in’ Z. .. wahi ® E whs BT RE :

We remark that the above (of ah ANR is. Kuratowski's

modification [12; p, 270] of Botsuk‘s original defamtxon [s, » zzz] in
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that it Fequifes the added condition of separability. The proof of °

Milnor's first result depends partially on some results on ANR's, found

- in Hanner's paper [10].- Here, Hammer uses Kuratowski's definition of

ANR.

.(3.1) Theorem: For a space A, the foxlming are eéuivum'::
(1) . A “belongs to Wo- ]
(2) A is dominated by a countable CH-complex.
(3) A has ‘the honotopy type of s countable, locally finite -

simplicial complex. |,

1 (4) “A -has. the homotopy. type of ‘an absolute neighbourhood retract. -

Proof: ' The implication. (1) = (2) is obvious. The implication
(3) = (1) follows immediately from the fact that a locally finite
simplicial complex is a CN-complex-(see example 1 of a CW-complex).

(2) = (3): ‘Suppose A is dominated by a.countable CW-complex ‘X.

If A is path connected, then the result foliows £rom the following

theorem due to Whitehead. [19; Theorem 24]:

. (3.2) A path connected space A, which-is dominated by a countable

CH-complex, is of the same homotopy type as some locally finite polyhedron,

We claim that it is sufficient to consider the path connected case.

So suppose A is not path connected and let P be @ path component of
A.. Since X dominates A, there.existmaps f i A+X,g:X>A such
. gl 1 o

that gf *-1,. Now P is path connected.and hence £(P) is path.

and thys | in some path TCeE X, We




‘pondence wlth the path Congonents of X..

- conplepes §TELS %

claim that. C dominates P. Cléarly, this is true if g(C) =P. "So

let a 6P and take x to be an arbitrary point of C.. Consider x

}d "f£(a) 'in C. Since C -is path comnected, there exists a map

AT C such that AQ) = x, A(L).=£(a)  (Here, I+ [0; 1)

Form the comyosxte map g : L'+g(C). Then "gM(0).= g(x) and gA(1) =

g€(2). Since gf ='l,, there exists a homotopy. H : A X I+ A with.
HC-3 0) = g€, H(-, 1) = 1, Define h: 1+ A by h(t) = H(a, ).
Then h(0) = gf(a), and h(1) = a. Now, define ‘T : I+ A by

i LB, 0t <
i r(t) = i.
" i ~hee <), Ysraa

R R - - " M By ol %
Clearly, .r -is continuous and defines -Pth in A joining ‘g(x) to a.

s ~|.-

Hence, g(x) € P .and thus. g(C)C P. . A:

A consequence of the' above
argunent, We have that the path components of A are in a 1-1 corres-

since X is a countable:

CW-cumplex. it can ave.only countably sany pnth cnmpunents and, hem:a,_’ ;

the same for. A. (l 2. 12), the path- cwponants of Alare open and .
so; we can \ﬂ'h‘.e Aas A= OP whare, foredch i'=1, 2, ..., B b
is an open pnth component of A. Applying (3.2) to each path 'comb'e‘nent
of A we get a’countable collection of lecluy finite stiplicial .

., such thnt for uach i, l(. has the

same homotopy type as . Py. “Let K. 5_”1‘ X< Then ‘K isa cnuntlblp
locally finite simplxcnl c(mplex. _We claim that A is of the same’

homotopy type as K.

e

e

R

iy -



N

< and k are continuous, then kh =

K"P be

For each i =1, 2; ..., let hy: Ptk ki

maps. such that khy = Ly and hikg =L Défine h:ASK m\d’
= h),ca-);

It is clear that if h

.
.kt K= A in the obvious way: If a€ Pi" define . f(a)

‘Similarly, if b€ K

.. define  k(b) = K ( )

and " hk” So it remains to

4 1A
show continuity of these functioms.

Consider h : A+ K and let ‘U ‘be an opem set in K. ~Since . K

* has the weak tupu)n};y.' UNK, s open in. K,

Thus, (unx) isopcn in P fnrea:h i=1, 2, ., ., But,
:or each 1=11, 2, .‘, P is open in ' A+ Henee, - hy l(unx) is
npenm A, for each i'=1, 2, ..., -and so Wi@W) = Uh“cunx)

is oper in A T‘\us, his cm\tmueu: and in a sinilar Tashion, ons

can- show thnt k.is conunuous. . *

mlews frnm Hanner's Tesult [10; Cor. 3.5] cm‘: veiy

® = @:

locally fmxte polyl\cdrnﬁ Ls an ANR 0, .

Fuuows frpm anmer's rzsult [10; Theore 6.1} that every

m»-» @):

ANR is doninated By n (cmmcabla) lnculy “finite s‘ulphcial complex. ,//

Recall chu a toEoloElcll n-nmxfold is a Hmlsdorff space. X such
’ :

* that ‘for each’ x € X, of 'x which-

there is'an open‘neighhnurhood 2

is honeomnrphic to* an opei suhset of

As a. cnnsaqusm:e oi (5 l). we hnvu

(3.3) Om‘olli;l_'x:

for each i =1, 2,"...




P ; 4 . wall
Let 'X..be a separable topologica} n-manifold. Then

. . \
v, where, for esch' x € X, Vy 'is open nughbuurhwd of

5 X, )mmeomnrphm “to sorie open su‘hset of R™. N {, l" is.an ANR and 5 s 2
P © hence, every open subset of, 2 s an ANR' (see, [xo Lorma 3. 1),

*. Thus, for each x€X, V, is.an ' ANR. | Bt the union ‘of opén ANR's e

; is an AR (sné [10; Théorem 3.31). Hence, X 'is an ANR and, by (3\1),,

© .X. belongs to Wy ¥

g £ is com:)nunus). For eﬂch subset K of X and ench subset A of: 7/ -
ST T denote by WCK, U3 the set of a1l mpg £ x + A" such that . ¢
£(K)S U. - The family of all sets of ‘the form w(x ), f(_?r X.a :
L :owpact subset of X and U “open in A, is4 subbase for the' ' . . :
+" compact-open zugnxogx for ot ‘ . : : : 18
As another: cnnsequem:e of (347, we have that cart.m function 4
,' . 3 sl;ncss I;elong to "a More precisely = S g :

R Coréllary: If‘ A belotigs to wu‘ and Al: :is compact metrig,

" then the funcr{iox_. space. AC " (with the compact-opén topology) belgngs . - .

< to W,. i (! o [
gt g k 5 P ) (e

< ¥ P o
Proofs . By (3.1), we may assume that; A is an ANR. Let Cj be s

‘'subset of the’ compact metric spaca

et a'o be’a point pf A.
‘W spow <hat the functton space * (A, 7 o) “is.an ANR. ﬁa proof

_is due to Borsuk (2; 4:5. 1} and is bnsed npon the fnuowsng resitt: b




el SO

X separability.

o

“Ih order ‘that'a metrizable space: X be an ANR, it i necessa‘ry' LB

(3:5)

*that’ X be an'r-image of an opert subset of a convex set lying in a-

vhere' U is an‘open subset of some_corivexset ,Q,

“norned 11near space;

. .
.6f Bdrsuk apgd thien shiow that the added sondition of separabilicy s

it 'is sufficient that X be an: r- xmage of an

subset of a‘convex set lyingsin a locally convex linear space.
By an r-map between two spsces X and Y, we mean a map

o

£ x +¥ such that. there exxsts a mﬂp g Y -+ X wnh fg = 1,{- i
| The definition’of "ANR used in (3. 5) 4555 not require the conduxm\ of

However, we«v{ill pl‘ovo that A. 5 is an ANR in the’ sense

carried through to the function sp!cm % 3 . y
Since *A i an ANR, there ex]sts, by (3. s), an r-luae: £ 1 u Y
lying in.a Sl

e n nght mversaof ‘f and se! 5
(c, G,

linear space 2.

2 = glag).
J T a : 1
as ‘fol1dws: B #g by T )

et g:A+U

define X¢ + W.

Given &, v € (2, zy A UER,

004 () = A6(S) -+ Wble) + (e A = adzg

is linear:
5 (€ Cg)

"Since,'C is compact,’'we

ble since 2

can define for each .¢.€ (2, 2, _its norn 6] ‘as foilows

sup ach’). K
.c68C " «

Thus, \

Cunsidar me f\mctinn spncn

linear space.

O,

s




B » (W * (1 - t)¥)(c) = to(c) + (1 - t)'l'(c) s@-t-q- )z,

e tele) s (- Bete)

But . Q is convex and. 50 t¢(c) + - c)w(c) € Q
is a donvex subset of (Z, z, )[C' C

S w, 2@ o

Hence, (Q, =
O). Also, sinca e Q is open,
O )‘C' C0), pefine’

" (€, Cp)
DRTERICEL

46 U, z)(C. Co),

.39 €0 by 0.1 = b4 foran 7

., Sinilarly, define

)(c..co) (A

o 4 O, )(c. <

by, o W =

gh, forall v & (A ag )(C' Co]

We clain that LA og B b

I . »nre,continuous. We show continuity for d! - The proof for 0g' is (
£
b analogous. R Vg g
g Gy A A, 5(C, Cp) K 1
v 3.6) et § €.,z and let VE A be dn open set contain-
fo ., g ay A suchthat £(C)CV. Consider the clement W((C, Cp),
: (), 'ag))" of the subbasis of :(a, ao).(c' €0d-. since CSIERN ‘and

0= 8(8g)s 0(4)(C
WIE, €y (V) 3p))

neighbgurhood V!

£6(Cg) 2. £Gg) = falay

sgiand 50 o¢(4) €

Since f is cnntinuws. there exists.an open E
of $(C)c .U such ‘that f(V')C.V. Corisider, the 8

© Ll set 6= (n €W, 2 o)(c, Co) |h(c)cv'}. len 6 15 an-element of

o the subbasis of (U, sz)(C' o) ‘ana w €. To show o is conunuous, .

it is sufﬂumt co sncw that eg nkss G 'into w((c, no). o, :o)). E
NﬂH Eh(C) =£(h(C)):f(V')CV lnd

Hence ¢4 (H) € WG Tyl OV on as ..

If .h € G. thm Of(h) = £y,
fh(c,) =

£(z0) = fz(ua) =ag.

'raquued

'y ; i
—Now. PR ) co) then (of R BIOH fgo- 40 Thus,.

Lo 1)
@, an Cﬂ) is an ro!mnga of the open subset (u, )(C Co) of




© . the convex set (Q zy) (© C0) " 1ying in-the normed linear space .

20 %0, agd so; by (3.5,¢ (A, ag) (€ €0 i an ANk in the
-

sense of Borsuk. Setting Cy='f;. we'have that A°. is an ANR.
Sinée' C 145 compact, the space. AC. becoes separable metric
, . _ by'defining the distance beiween. its elenents ds follous
S { . | 5
I£ - gl = max J£00) - g)|
" Uk EX

: \ ‘where’ |£(x)‘~-g(x)] ' denotes the distance in the :separable metric -

“space” A. The result now follows :£rom (3.1). //- . i

" We ’remrk\that‘t)\e condition of :mpu:mess'nn € in (3,4) is:

A be any two-point .discrete splce nnd let 'C ba a countable
S 5

.| diserete space, which is. certainly hot.conpact. Then the function
dpace AT is'a Cantor set, which we saw earlier, isfot of the same
homotopy ‘type nL a Ch-complex. . . ° o

turn our attontion, to compict spaces and spaces s Which have .

the ‘Lindeltf ' pruperty. By the. Lindelsf ErcEenz we mean that; every

open covenng of a splce hls a counnble sub-wvenng.

©n Frog' osmcm:. If a cowplét sya'éa ‘A ‘h;s the. honotopy type of
1 Cw-mmplex x.‘ then & “is donthated by’ a fa}nm Ch-conplex::

N Proof: Leti£} A-v)(, -'g:' »A be maps - such.:lut gfnxA and

£ 51y, Since A xs‘cmb'u:. £ is. compace and, hence} by (1.7.10),
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is contained in some finite subcomplex K of X. Let h = g[x Then
' hf =1, and so X dominates A..// .. 7

As ‘an observation of (3.7), one could ask: Under what conditions

will & Space, which is doninated by a finite complex, have the homotopy"

type of a finite complex? From (3.1), all we can Say'is that such a
space has the. homotopy type of a Gountable CW.complex. It turns out;
that in the simply connected case any ‘space deminated by a finite
/ complex, - has-the homotépy type of a g complex. The complete .
salutlon to this problem can be Eomﬂﬁlnlr [20].
We now return'to aur space B of exxmple (4). and, shgw why it
cannot be of the same hmmopy type as.al CN-complex.
- Assume the contrazy; that is, assuie B .18 of tho same « hémotopy
type a5 a Ch-complex. Now (B 'is coapact™and hence, (by 3.7), is-
; doninated by a.finite CH.complex K. Lot EiBrK g K be.
haps such that gf < 1., Then, on the homo10gy level, we have that ~

(%4

OO H (K, z) = 0} “here i dingnsion of K. Bit. £, is
“injective at all dimensions,and, hence, -.(¥q > 1) H 0, Z). =0, This
is a contradiction to the fact that the homology groups of B are }

non‘trivial for all “n > 0, Hence, B'‘cahnot be of the honotopy

‘type ofa CH-complex. ' '

g ¥ g - . ’ N "‘.
« (3:8); Propositioni If'a'space ‘A has the Lindeldf property

A hds the same Homotopy type as'a CH-complex, then' A- belongs Jo Wy

(B,l) (Vn > n) Now, X, isa ‘finite' Cw-cunplex. and ‘so 2
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Proof: “Let £ : AxK bea homotopy equivalence, where K isa
@uplex'!ﬂ let L be the smallest subcomplex of K which. contains
£(A). (Clearly, L dominates A. We clain'that L s a countable
submplex of K. The result then follows from (3.1). )

To show 'L is countable, we slwu that £(A) meets only a
countsble ausber of open cells of K.‘ Let K be given by (1.2.2)
and let, A, =00 6 A | FW oy #9). For cach A 6 A, | choose a
point x € f(A)Mo,". Since the o,™'s are open and disjoint, the

Haet 6= (g [ A €A} has the discrete topolagy and, hence, is
closed in' £(A). Bt £(N) is Linde18¢, being the continuous inage"
of a Lindeldf space. Thus, G is Lindeldf and so, Yoing discrete,

n

must be countable. Hence, A is countable..(¥n > 0); that i§;

£(A) meets only countably many open cells of ' £(A). //
3 Ty ] 3 €
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“Byan n-ad

ad A= (»\. s +++s Aj_))s - We mean an ‘n-tuple consisung'

of a space P "subspaces Ay, .., A . For example, by a
H-ni-ad K = (K5 K, ...y K ), we mean a CH-complex’ K together with ... -

n - 1, subcorplexes Kyarvies Ko

e £ A= (A5 AL ey A ) end

B, ;) are n-ads, then a ri-ad ‘map £y A+B is nge'n ]

by amap £:A~+B suchthet (k1< <n-1) £A)C B The product. © - ;
r . ¢-of a space. C with an nead __A:’ Wi o ALY dsthe mad o
_A_.x C= (A% CiAx C, vees A % C)- and an nead hcmntogx‘ HiAXI>B)

is'a homotopy! H : A x T B that Testrigts to a homotopy on each A e

.thntés, (V-lfifn-l) Hi:.A‘ XI"B isg)\:unhy Hi‘“h\i"!'

i ion’ and ion are defined analogously.

We denote by w“ the cltegory of all n—uds which have the

homotopy, type of a (:w-n»ad., We are going to examine cowdz.tmns foran |

& n-ad tq-belong to W'. . In particular, our basic objective will be fo

show that certain fu space ¢ : which ‘are_imp w e

% | Homotopy-theory, do not lead us outside ‘the category. W. For example, we
Inow that 1€ X is 'a Cn-complex; then the space of loops' in x based”: *
X at %, denoted A, "'is got in general a'Ch-complex. However, we Wil

v “see that there does exist a CH-complex K such. m: K and oX. 9 nfyé

“the sme homompy types. CR T e % %

We start umx a churanarazntiun thanmn for the c-mgory vl“ winE




R .

), the following

(4.1] Theopen: For an n-ad A= (A A, iy &

'n-

i ¥ % are equlvalanr. e v

% (1) A belongs to w"

@ A 15 doninated by a C-n-ad. ! '
. © (3 A has the homotopy. type of a simplicial n-ad in the weak
“topology: . 3 .
; (4), A has the homotopy type, of a simplicial ‘n-ad in the metric

.topology.

. « . Note that the metric topology on a simplicial complex K is the

sane as the’coarsest topology on.’ K - for which the. barycentric co-ordinates,

cu'nsidared as’functions from- K to [0, 1], are’ gontinuous. This 1§

- what Munox calls the !strong topology" and 18 st the initial topology

mth respecc o the 2 di de i § :

Lol . ™ Py v
.Proof of (4:1): ‘The implication , (1)~ (2)  is clear. For (3)'= (1),

B \
recail from example (1) Of a CH-complex, given in Chapter I; that every
simplicial complex and hence every sitplicial n-ad, in the weak topology,
5. CH-complex, respectively, CH-n-ad.

B) em-(@): Lot K= (K K,

*. denote by ._lgm, the simplicid]

LK) bea si}npucinx n-ad. Ve

n-ad .K in the metric topology and by

\
\: Ky the same n-ad i the weak topology. We shnu z)m:' a

X [ . '
L. (@) The 1dent1ty map i': PR K s conunuaus.

EEEVRE isnhenotvpy aqm)nme. i E

K+ [0, 1] denote the. pth bafycentric

/Proaf of ( !: Let fg

co-crdihate function, vhere B -1s ‘s vertek of 'K." Siice K -has tho




- initial topology with respect to all the barycentric co-ordinate functions,

i is contimuous' <= the composite K $x —"»[o. 1] is continuous for
evary barycentric co-ordinate function f BEK:
< r\,—o[o. 1] is continuous’for all f ‘BEK.

i £
g > the ‘tosgosite x“ix —£ [0, 1] is continuous for all f5,

BEK and all - 4, n=0,1, ..

£5 .
<= k"B [0, 1] is continuous for. all £, BEK

Landall ‘m=0, 1, ... . s ' o

Since the bary 3 di i are cc on'a

4 | . 3 % <
simplicial complex and hence an',ny finite dimensional subcomplex, i ‘is .,

3 o continuous and so the n-ad map| i is continuous. //

We remark that if K is a locally finite simplicial complex, then
S / i is, in fact, a homcomorphism since the weak and metrig topologies-

'caincide. However, if K is n locally finite, then &' is not a
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Take'a 1-complex whose 1-simplices have one vertex at the centre
7i:

0" of a unit circle and the other vertex at: the point. ez m, m=l, 2, ...,

i
On the 1-simplix with vertices 0 and ‘e2"iF, take a point at distance

L fron the centre of the unitscircle. The set of these points is.

called C. They are denoted in the diagram by small circles: In the

" topology on this 1-complex is finer than.the métric topology.
: .

“denoted Sty to be (s € ’xmlé(s)'f 0). “For every vertex & of K, B

" st

weak topology, the set’ C. is closed since it meets each cell in a
single point.. Whereas, in the metric.topology, .C is not closed since »

0 isa limit'point of C 'which does not. belong to C. Hence, the weak

Proof of (ii):'Given- B a vertex of K, we defihe the'star of 8,

i : . el _ !
St is'open in K, becauso Sty = £ ((0, 1]) = K \'37 (0). 4 )
Thus, (Sx:‘,)“K forms an open cover of Ky indexed by the mllcction e
{s] of vertices of K, ﬁnu, Ky is mutrunhle'und ‘hence paracompact:

Thus, there exists an npen locally finite refmement (UY|1 € A} of

ek and’a partition of unity subordinate to the cover w, |y € A},

By a partition of unity subordinate to (U Y €Al

tplre A} : of contimuous functions By kg [0 1] such that o 7

we mean a collection

© @ (a6 K) thereexistsa nexghhourhood N, of’a such that /)

% y=0" i “piis i
pY(Nu) 0 for all but finitely many p'y s £

EAPV(B) =1 'forall vertices 6 € K st
(©) for each ys'n.p(k\u)=o.' o Bl e i B % g
We claim that ‘we' can ¢hgosé this open lucally Emm refinenent so

that’ the. m;laxlng set A =‘(s) oE vmim of K and; for cach B e.ah Tk




is contained. in SLB. In fact, for each vertex B°6€ K, define -

Us

3 :
1 Uy = {a 6 Kyla(®) >} Max (v} Wo then clain thet {Ugly ¢y has
4 : the Tequired Properties. . N » o - 4
(W) 1€ 8 €Uy, then a(8) # 0 bocause’ a(8) > 5 Max a(v). Therefore, 3
; o : ;
for each vertex B € K, uﬁc StB and so {UB)BEK is a refinement :
: . ) of, (StB)BGK' 3 ‘ . } 8

H (B) Since, for every vertex B € K, Sty is open in ‘K, Ug is open

in K if and only if Sty\Ug. is closed in Sty -um; that' .

6 €5St;\ Uy if and only if s(s)\l 0 and §(8) < —-mx 8(v).
Suppose Uy - is not open in Kn thut s, Stg\ Uy~ is mot x:losed
. in Sty Then theré.exists a sequence ot points {a;} in scé\ g

such.that fo;) ‘converges to ‘a4 G UG Now, fo;} . converges to

: @ <->l [0 - a(N12+ 0 as 44, "
i veEK e

= log() - aty)l > 0" as. i+ forall vertices v& K.
Set a(B) - —Mu n(v) =t>0 (: € [0, 1]) and chnose €>0 3

such that € < I'- Now. since |a ™ -aW)| >0 as el for all’

vertices ' v € K,'. thére exists some positive integer- N such that. !

T OF 13Ny (%€ Klay,(v) # 0} = {¥ E:Kla(y) # 0}.. Hence, there exists Ho D8

. | some positive nteger Ny > N such that (% 12 N) |2 Max oy (1) - .

§ -r[r“ Fraxa)] <6 £ o :
o ) S Thus, " G >N) a®)-> —m 5, “since, 1€ a(®) s ~2~Mnx qi(vl. :
: / L e [dax o) - Max sl 2 Iacal L ey | =t > 6. Now, for i "
each i, 0,6 scﬂ\ Ug end.so (v-x > N1) CHOR —-M-x “1(”) < a(B),

£rom which we got -a(B) - d;(B). > a(B) - iﬂex ag(v).  Hence," (¢ i >N). ™




‘naizhbouﬂwod v, ot a which P ls conunuous. :

8-

i |o(8) = ag (B)I’_’lﬂ[u) - —Mu as W]
=] e - —m )+ G Max o) - ——Mlx ay (v))I'
7 =it-(—Mnxn(v)~fMuu(v))I '
e e s < faex ]
5t.- 6
/ = ok o

This contradices the fact that {s;} » a. . Hence, for cach "5 € K, U

is open in K. G iy

BBy S K

(C) For any infinite subesllection ), i=01, .. of’
Welgeir iQu Uy = singe, if | 4 6 r\ o Uy then, afg) # 0

for infinituy many vertices B8; of "K' which is inpossible. Hence, ‘the

only non-empty intersections of members of »(“e)e ¢ x ore Finite’

intorsections. For each 6 K, let %, U, u; -be the

ORI N

n
maximn number of members of ma}a K such that o € "s; 10

foreach 1= 0,1, «.v, my Uy is open in Ky

0

g ¥ o Sice,
hﬂ 3

intersecting on]y finitely nany medbers. of ms}a gk This, ~(U )

is locnlly ﬁm.te. s b2 u So g

Let (?B BeK pe a pn‘txtian of mmy sllhnrd:mlte w0 gy o x‘

LS
1s open in' K, and, hence, isan Spen nedghddurhond of * a, |

BGK

. and dofine p: K, > X, as follows:

'g : ":(V'BGK)(VGGK)p(c](B)=p,(ﬂ) e

Wo clain that -p s contimuous.

It is snfﬁxciant to s)mw r.h-t fax- e

G ‘there’ exists a .




b T ST+

Sirice (B4l g x 15 a partition of unity subordinate to (Ug) ¢ y»

mé{ exists, for each a € K, a neighbourhoad V, of a such that °

= v b ot .

ByVy) =0 for all bue fMiFelx many Bg's. Let By, ..., py b the

* - members of (Ps)s g K Such that pai(vu) # 0. Then y(\lu? lies in the
finite subcomplox of - K -with vertices’ 8y wws.Bo. This finite

. . subcomplex is locally finite,and, hence, on this subcomplex, the weak

and metric topologies coincide. Thus

ely - f . o |
8, 4
X:mxmwus < the composite V.. —“»x i S

harycentuc co-ordinate function f =1y eas, e .

is continious for e

n g - = andthel’ s arecon- . i
B3 P[Vu Pey 8y - -

- tinuous. Hence, ply is\continuous and S0 p  is :nnnnuws. "

¥ s But, for each 1=

We must now show that, for each j : 1. wes n -1, p carries §

k), into (x’)u, for then, p will be 'an’ n-ad 'map.

Lot a € (K), » :
2 on which o ° is non-zero, - So, @ lies'in ‘the n-simplex with vertices
3 . Vis »-e» Vpo . Since, for each vertex B £ {vl, wenn vn).' a(8) =20,

v .o U, md hewe pye) = 0. Thus,’ p(@) (8 = py(@) = 0, for all q o i

vertices B [} "1‘ canvde nnd p(u) lies in the n-simplex with * §
) vertices Vv Vg Thus, p maps each simplex into itself and’ g
- - hence (xj) Into: (K}, for each. j = 1, ..., n - 1" :
. Since  ip and p: nap gach simplex into icself my convex com-
5 bination of puints of K is -gnin a point ' of K and S0 tlm-e ezxsts a

e L g
lineu honotopy. t&'s (1 -t) p(a) ‘of p . .with the.identity 1 vhich © - -

ls continuous d.n,either the metric or: !elk topulogies. Hance, A, is -

s homntopx equivllenen. //




iy

for all n>'0 and for all a e IS Hm, j . denctes the set of :path

. induces "2 maps £

=quivnenc=. £:A+B is an, brdimu'y hnmotnpy eqlﬂvnlence. ; Y

By (1.2.13), M. is a CW-n-ad. (Hore, % = (u M

for eich 1<i o~ 1, M, is the mapping cylinder of ‘£

: Given'spaces A and ‘B, amap £:A B is calledia singular«-

homotopy equivalence if f; k(A, a) + Hk(B. f(a)) ‘s an xsomorphxsd . Vg

R N

‘campments. Ve nioy genennze ﬂus notion ‘of singulrar hemotopy =qu1va1ence

to nads, A P
‘- Consider the, nead A= (A3 A, <o A y) and for each mon-empty

set § Gf integers botweer 1 - and' n : 1, define Ag =, --ﬂs A
For the’ empty set, definé ‘A = Al Then 'map*
s Ay + Bg. We define £ to boa singilar

A »B of 'n-ads

homotopy - egmvalenca if each f 'is a singular homotopy cquxvnlence

‘The ‘proof of the 1m'phcnt1on (z) - (3) vill now be based hipon the
fnllwmg Tenna: W 3
E 1

and B belong to' W', | ‘then -every singular homotopy

(4.2) Lemmai 1 A

Proof: We my assune that A and B are cw-n ads nnd hy the cellular

pppermgenm theorem, that . £ is cellular. . Fom the mapping cylinder

of £ AR B

M 5) where

AL B)




L
i ’ T -92- ' : z
7 e w i ’ . s
N TR T . b
v To show that £ 15 a Homotopy suiviace, it 1s sufficierit-to show !
o N
Jf oo Tthet & s strongideformation retract.of M. Thus, W6, Wil construct B
" ey SR
“ta homotopy H i M x'T R snisfying 2 ]
% t g § :
- 3 ) H(k; 0) = x forall x€M 7 . £
e T BT DEA Ll xENT .
i X . 'H(8, t).=a’ forall a €A, forall t €I\ R A
1 i . R |
o the inllnwing“pushout % iy ¥ i
v e s % LT E ‘
S g 1——«—79 Mg P S
s . £ = . .
s ‘
Ag——2— B, 4
e B 8 . x
ch Set 5, M Mg '"xs the mapping tylinder of £5. -Now, - * :
5 is. a hohGtopy’ eqn@,alence and, henc: a singular. homntopy TN

squivalence. "But frnm the hypothesis, each f£g : Ag> By is a\singum iy

hnmutnpy g_quivnlence, Hence, for each Set s, the mclusion is A, «MS

is a singulnr lmmc:opy equlvnlen¢a. Conslder the exnct honompy swqync‘e i
. ‘ofthacrlple (Ms,’A;. a)., e ow 'W‘\( g

Smce igr s d singulnr hcmotnpy equiyalence, (is is an isomorphisn

5 4y ] # .
N k>D and for all- AEAs Herce, Ty Oig, Ag, 8) =0, for' "

v ok .'Anll nndfox—nu k>D fi R ., e




&

m:n,tns As) But (\Hoﬂ)

L LuD 1, ln Vi thenp [ (F. xo\JE

K, Bk deﬁned s follows: - f

P1f L (x, 0) _ﬁ'E- x o,. “then” B(x?b)'

.. s - > P
ME (x, 1) €EXx I, then 8(x, 1) = 3+ DX

Hece, ~ . . e : P : ] q

16 bl sty Sitsor tne pii
a) =0 if only if;every map oftthe pair

P S 0
SE % oUER « 1B x 1) dnto

(g, Ag) can-be extended to'a

-*. keskeletons of ‘M. let "
define Llo F + M tobe the'ldent)ty en~M % 0 _and the pm;ectlop
““Bap of - A% 1 onto A Assuse that B hubrndeﬂnedon ¥oad

O -
' that H ' extends H, . .let o beany k-cell of M\'A andler s - -

M:hesetofintegns L<i<n-1 such'that u“aﬂsmus.smﬁ. 2500

+that ‘15, there does not exist any other sét S' suéh that Mo, Elgs iy

< Now H." has llraldyb n. doﬁn on. (% x u)U(a x and maps. this

into \A Ny =

Nd %1 o "Ags Continuinzl this mlnner, we_extend - HY " over 7

f: 1 k- calls of Hs and then over all k-cuns of lll milul intersec- "
tim;. ¥e then extend B, over the next largest lnteruc After

ns.




“The’ resulr.)ng map gml W11 thén nap 0 0) (A X 1) U o <y,

trito M and’ will send Mk L mm A md each M “1 into' the

ve get nu{requnad map ﬂ

ISA‘I and |sk| Henate the geome:nc realizations uf ﬂ-e\
nzulnr .complexes of A and K, respecl)ve\}u and consider the
following commitative ‘dagrai
|

] T e I I
L SA sk —— 5] 2

. Now. s(gf) = SgSf ngd ISgSfl = |Sg||5£|. ‘rhus Is;ﬂsﬂ s\\'
<
‘.Since K is a CW-m-ad,. (4. z) together wm. (2.2.14) implies that *
: {
;s a )mmqtoy_y eq\livnlmce. Let' k -bé a homotopy ‘inverse ‘to - j'.’

i




Hence, j|isa ‘Tomotopy equivalence. 'nu: by (2.2:12), |SA| “can be :
o }..uuea as( 2 swcqmplex inthe welk cr:npology‘ Hence, the Tésult ~ -

g T bty P

fnllcws o

It should be noted ‘thateBarratt's result, that the realimtionof .

. any semismpucnl complex can be triangulated, is essential to the

proof of the nnyumtxon @' @) above. Thus, i is essenually

- ** this result, that enables us to link up statement (4) with statement (1)
b L of (4.1). He will see shorrly that it is'the replacemm of 1) by ()
el ). that enables us to Show that certmn function space ccmstructmns do not

N R lend\us outside the clas_s L
X ( E ’
Let)(= A A,. e m-l) and"c 4 (c Lis 23 Cpy) ‘_be"_ n-ads.

all maps g + A By A e mean the nimd oow

S a, A)(C S A, 1)(9 ‘n-l))

\\"T- We denote by AC 'the subspace of the function space A® consisting of

If

.4). -n.m _A_ belongs to- W wnd € U5 cpacty iy, St

" ‘the function space. AC belongs to W. Moreover, the n-ad AC.. belongs
- % Al B H
Vot

§ 177 Assiming (4.4), we have as mn ‘immediste consequience: -

“belongs to’ W>.. ‘let C.be the compact triad. (I; T, 1) . 'where ~T.='[0, 1]

"\ .5 Corolary: If the pair (A, ap) h'ex'éngs_ to ‘W, then the pair -
@i vg) belongs to v‘o: Gere, wy_ denotes the constaiit toop Bt “agi)

Proof: 'Since the pnu-\‘ (, ag) belongs to W, the triad A= (A3 ag ag) -

s




vK‘ nnd W,

. ELCX; if there zxists a\{\eighbwrhond U of the diagonal in, A x A,

« such that e -

¥ @.n Mo aled A R ‘\.-1’ is said to be m.cx if,. for e-t:h
e !

‘conditon holds |- ., B

and 1 =40, 13, By, (4.8), the triad & = s &, ap® D5 ;e @ D

TEQY = ag

belongs to W Now, (A, ap) ¥ D=,<E DL AL£O) # ay

L and (A, an)(‘ I)= (€ I*Alf(t)

: (i

= (AT A, wg)e Now, A” ‘hast :n homotopy type of some
e 3770, = S oL
CH-triad (x; i vj) “In puri ular, nA\ has the homutopy ty'pe of
o the' hnmntnpy type.of " K\ Hut 0 € BAa Hence, the

_pair (ma ) o) has the hnmutopy type of the pair (xl. KN Kz) /)
\ ;
. e) A'topological 'space A is'said to be équi-locally dgi'lvex, wx‘i'tte\n

acontinuous funcmn AU % I+A andan open covering V) of7A .

1) A(a, b, o) a, ) A(d, b,.1) =b, forall (s, b) €U.
(2) ‘Aa, &, t)

for'all a €A, forall el .\
@y forant 5 ko .

ecu and A(Vg *V nevg.

of ELCK to n-ﬂs.

1gi<n-1, A is aclosed sibsot of Ay if condmons W @ and-

(3) of .(4.6) are satisfied. for. the space’

and £, the f£o1lowing

@) if a, bEA

ith.. (3, b) € U, ‘then A(a, b,.t) € A, “for - .-
all t 6.1 e S S ‘




e mow prove (4.4) using the foliowing ! Lemmas,

will be given later: -

(4.8)

- -Lenma

(4.9) Lemma: If iA's [

" Every siiplicial’

"'.is cofipact, then thé n-ad A'
2

- S

_n-ad" ip,the metric topology is

,the proofs ‘of which >

ELCX.
pep) i ELOK. and € = (G
@oap© T e © Gy

Cyitennn Bay)

.gs ELCX.’

4.10) Lemma Every pnracnmpact Eééx n-ad’ belongs to",W". Taaly I

3 Proof of (4.4 ¥

dssertion; namoly, the

¥e clairi dheitidt is sifficient to'shovanly the second

n-ad AS belongsto WP

suppose “AC has the hqmotapy type of the Oh-n-ad K= (K LR S
In particulas, each: (k, b )(C Y9! "has the honotopy. type of K, .

mac  2Ci= a, 4 OO L A, A, e Lk
._ﬂ_xml

A “has ‘the homotopy type _

1e1, o T
““Hence, ; AS

las ‘the-homotopy type of &0

“and 'so belongs to- W. .

73 A belongs-to W', then, by (4.1),

of s J simplicial ‘n:ad K =
By (4.8),

‘the metric tnpnlogy on” K is metrizable and smce cis compact, - the

(K5 Kooy K

Gt 'in the metric topology. - i

K is Ell:stnd 50, 7By (4:9), the n-ad” KE 'is_ ELOC. Now -

fFunction space KC 15 metrizable (sed [6; pi 2701 and hence yarncompnct.

Therefore, the n-ad XC s puncompact, Lo topather with' BLCK,
“.implies by (4.10), " that 5“' betongs ‘v thie cn‘e&ory w" We clain

that A s of the sane houotopy type as' KC. B oue g oL
v Let £:A-X and 1~K*A be . n-ad mapssuchthatx_ ~
and" fg = 1. Define g : Af ¥ xc by. .4(h) = fn, for all maps X € A .




Sinilarly, define v €3 by ‘y(h') = gh*, for ‘all maps h' € KC./ -
?m ¢ ‘and .y are continwous (see (3.6)) and cieariy, for ean
1L -1, s © Dy x )(C- Ci) G .t e

o G Em, 4 C . ence,

BT

.. Now, gf ='l, and so, there exists an n-

such that - H(-, 0) = 1, and H(-, 1) = gf. Define G : A% % T+4" by

R : S : A
c(h, 0 = u(h(c), :) forall c6C, forall tel : 3

Then G is an n-nd hnnotoyy Vecaise B is. Ao, " sy o)#ikc

and - G-, Dixidh. Hence, igh = g and sinitariy,.we can’ show. that

40 = 1,c.  Therefore; A 'is of the same, homotopy type as 1:_ and s\ )
oy . :
AS beloffgs to- W j/ B Do . ; oy

By the product of an ‘m-ad - A= (A; Apiier, AL)) With an m-ad |

B= (B B,.})s Wesean the (nem-1)-ad x i

Rxp=axBA%E dly x'l.Axn,....A*B 5 g
. t L . k]
(4.11)° Lema: If the n-ad A and the mad B are m_cx then the

¢ ,’-um:n:uu\. T

Proof: Since A" and B are ELCK, " there exist neighbourhoods U and
V. of the diagonals in A x A and B x B, -respectively, naps T {
C AU X I A.and 3, $V X I'+'8, and open covers (v (j') :

of ‘A and B, respactiv:ly, snmyxng (1), (2) and (3) 4. ’Am.
'fm-ear,n i=1, ...,n- 1, and qaép = 1, e m s DA 15-

closed subset of A, By dsa .c:loserl subset of B and condition (4) of

. 7) holds for both- smes A and B




L et s (U B G, b'))so\xs)x(uaﬂa a)GU mA

(b, ') V). Then W 'is cléarly a nesgmurmd GE the di gnnal i

- Ti(A % B) X (A x B). Deﬁne A wxl*A*B Asfollcws

fnr ali’ (B, @71 W

NG, ;@0 B, ) = 0y G, .n,_t,), L b, ‘c)‘) Ty
A el . .

Since, N And A, ‘are continuous, N

contil uous. It is éasily

w, let = "
50

venfxéd fhat X mﬁ/fus ¢} and (2),0F (4.6)

R 2
& - -=(uxv|u s(u)ve(vl.} Thenﬂisanopzncoverof

LA and cleaxly snnsms (3)of @. 6): Ths A x B is ELCX.

«se»n =1 and for: nll

“Now, For'all i =

i s A
B are closéd jubsess of A and'B, :espeqnmy? “Hence,’ for au*\ oy

R ia

1 andfor.all j = 1; wou, m='1, A KB and.
e et A

- A'xB; are closed substs'of A'x B Algo, if (3 b) ‘and(a’,’b

& b'el'{mg to A X8, 1o 1 with e, b), Gt B9) € W L

Cthen ACG, Y, (LB ) € Ay X B, since’ (a0, ©) €

”~s:mun1y for~ AxBj Hem:e, Ax n is ELD( //

i
; stng 4.8) and (4.10) ) we. can fiow. prove the fnllowing.

Proof: By (4.1, has, thn hnmntcpy type of a smpucm n-ad x in v *

" the metric topology.

Amilnﬂy, ‘B. has the homotopy. type og a

2 simplicial ‘m-ad L-in the metri¢ topology. By (4:8), K -and L are
ELCX and hence, by (4.11)," Kx L i3 ELCX. Now, K and L are

- ... nmetrizable and so, K'x L is  hence;,




& o8 iy sdme homotopy, type as, K x'L.. e i
T et £i AWK giKoA and £ :BLi g iL B be nad

* ' maps such that -gf =

the n-ad .maps. . " W S ST iy

Thed (£ % £)(g X ) - g x B

T L L f
Ta LN EIE R £) =s£xx'£"@ e f :
e 3 r.' ) : Fs
" We now prove (4.8); (4.9). and (4.10)." -

Proof of (4.8): Let K be a simplicial 'n-ad in-the metTic topology
and let (s‘s’sex be the covering of K by.the open star, neighbbur=

“hoods of the vertices. 8 € K. lLet- U= \UJ St %Sty Then U, is'a
N BEK i )

neighbourhood of the diagonal in K x K. Define w: U > K’ -as follows: §
e i | E

Min(e, ), a,®) -

for all: (ag, a;) €U, ufa, @)(8) = MinG@,; (V) , 0,(v))
§ % % . VEKD p

o hat 3s, for each pair (3, ap) €U, ii{ay, ay) s the point OF K .

with barycentric-co-prdinates -, = Min(a, (B), o, (8))

! e —E_—‘TT Min(e, (), 9,0)) |
: . vk
! : # e
: _:uau,- G55 ap) e'u_u-o appdy € szea for some ‘vertex' 8 € 'K

cm e @) £ 0,0 ay(8) £0

= Min(a, (8),ay(8)) # O e c:s




|
g

" Thus; the denominator Of the quotient s never zo‘m.‘

“Also, since ‘there” = °

is non-zero,

are only a finite nunbex' of vertices ‘at which each’ a €K,
e 2E <l

the sun Z Mx'n(u (v), nz(v)) is well- d=f1ned’ Hence, ' u s well-

‘defined. \ 7

L v e\ L £, E
Now, "'u is continuous\<=> the composite u-“»xm».iux is continuous
\ :

for every barycentric.co-ordinate function £,.
Min(e, (8), 0,(8))

But E Chgaag) = < =y
] e (v)._‘T(v) CEE ey
“VEK 1 2 ! 2 %

for every vértex 8.6°Kand pair (ul, nz) € U. .’ Since ‘the barycentric |

dip ions are i ‘\ and the of taking min and : 4
suniin R are continuous, the quotient is continuous and. hence, 1 12
\\ 'y ‘ 5

continuous, \

v
Notice that 15 Wy, S vgd \xs the set of vertices of K om i

«luch @, is'non-zeto and . (wpy ...; )i~ is_the set of vertices of Kl
‘on which s, ' is mon-zero, then, ‘since | Mln(al(v), a, ) # 0o ajv) 40

and “2(") f%’ the set of vertices of \X on which u(ul, nz) is

non-zero is the set- {v;; ..., v} N {w) that is,: (e, uzf\

and the -

lies in the intersection of the smallest s%mplex containing o,
smllesc\simplax containing a,. " Note, further, that vy, ... v} M

Guy, ooy W1 ds mover empty since” a;, a, € Sty ' for some’ B.. Thus, ..

we can define Al:'U'x 14K as follows:

| foran te [n, RIFCY

( . S AGys 8y —z) - (1 - '.)u + th(ul, a)o

1

) atuz

R /A(u‘, G 3R = -ty a




v R s
e X S
Then A is'a linear path from ai to u(ai,,'uz) and then. to. a,,
coveting the £irst’part during the time interval 0 < t! < L andthe -

" second during the tine inferval T dae 4 s clearly’ continuous
ke iy, €o

Y and saiisties (1) and (z) ‘of @6, S E s

Now, if (ul, a, ) E St St ‘then _li(ul, ﬂz) (B)#0 and‘ so,

h

s " Sty

X for all’ t €I the | co-ordinates of t{le §nints a.- t)ul * .

4

By, ) | aid (1 3y :)u(ul, a3) + tay are }lan»zetb'._ Therefore, . thé

wholé.path A Yigsdn - Sty that is, Aty x Stg X DCS
' ™ “ g N
11 sfied.

¢ (3) of (4.6) is |

Supposaa uZEK ;BJ.A..,n

. anrl (g, a3) €U
* Theh, S:ln}ce a and #oy, u21 lie in a'cloded s:ln'plex of Ky any
convex corbination ?of the points @ ‘and u(a; "z) again lies in K.

Sxmxlnrly for 2y | mnd p(ul, ay ). Hence, for Bll te I

a0 Ay KL =1, L, np 1] e (4 of (4.7) is sausfo o

For .each i =

: X
subcm'lplex. Hence, " K “is ELCX. // :

n'- 1, K, is élosed in ; 'K, being a

Proof of gu); Let u¥bea naighbourhuod OF the diagonal in A% A, —
ATEU K TAA ‘a map and {V,} “an open cover of A, satisfying (lt)L
(2)'and (3):of (4.6) and (4) of (4.7): oo e
Lot W= ((£ g) € A % AC | (60D, 5(e)) € Uy for svery c'€/Ch. "
Sitice U is a neighbourhood of the diagopal in ‘A % A; there.exists
an ‘open- set 0 x.0 in, AxA such that ‘nco‘x ocu. Now, 0%x o
is an open set in AC (m the. com'plct—opcn t‘oyology) uhich clearly

contlhls the dingonll in A x! A md is such: thnt D X 0 CN. Hence,

W isa neighbuuﬂwm‘l of ths dugann i A% xn®

¥
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‘Define themxp A':w‘xx»Ac by -
J " .

AT (E, g, “£) (l:) = A(f(:), g(c), t) for. every..c € C.

N Cleatly, sltxsfxes ) “and (2), of (4 .

Since’ c.is comynct, theré exist ﬁmcely many compact subsets;

: chvering G andso, for every £ £ Eein vB i Yy )(C Dis E
for somé VB (V 3 and compnct subsets D, - Dy unvanng C; We .
denote the' neighbourhood - (A, vﬂ P )‘C' Dl’ P oE £ by iz,

c
[ Then (zf)f“c forms an’ open cover of " AC. " Now, for all o6 Dy
i=1, ~--.‘k, Bnd @ g€ Zf‘ * Zg (809, 8 8 reNE Vsi ",Vric u.
Because Dy i Dy cover €, this is trefor all ¢ € C and so.

Zg x ZgCW: Also, “(¥1.< %K) w(g, 81 67 X L) (e eD)).

l'(z, g', t)(c) = A(g(c).-"g-(c), eV,
- e ! ! A

Thus’, A'(Z X2 % DE Zg wdse (3) of (i6). 48 satisfled.. Ttiis

easily verified ﬂm: @) of [4 7 15 satisfied, and so it. renains’ to

‘show ‘€HE, For -u E LN =9, (AsA, )(C Gy

is closed fn’ A ¥ ni .t
For each x'€ € dxdois compact.._ Let Hos (£ e nSlE00 € mll. '
: Cunsider the set aC \n =71 6 AC |#(x) € AN A}." Since A s

closed in” A, A\A is open in A ‘and: so the st ANn i's_apen’

A

m A , -being an olemem: of the subbasis of A - Hence, H . is

‘closed in AC for each’ x €. But (A, o) &) = ﬂ H, . Therefore;

@ A C0%s closed 1n 1€ foreach 121, .., n- 3 7,

I£ ' -is'an open cover of a space X and x 6X, . then thestar at
x_ of " is the union of the members of U. to which -x belongs.

"




n-ad mp P X+'N - according to the formula p(x) = ps(x)ﬂﬂ. Giving

ot : - - o ! I
. Furthérmore; a cover 'V is a star Tefinement of ‘U if the family. of ki i

star Tefinement.of - U," we et « “be the collection of ‘all séts |

AR VR LY, [il;

stars‘af V- at points of | X is-a refinement of U, - o

Recail ﬂm 2 space’ X ' is ALl nm.zi it nnd nly if slch oper

cover af X hed'm open star reilnement. T
“The.| folluumg ptouf can’be found in [zx 4 5A3] 2
Proof of (4.10)¢ Let <. (X; % l) b} 2 paracompact ELO . . ..
n-ad.. Let V. bea neuhhourhmd of the dugonal in x x x, 0'
a'map, and U = (U a €} ‘anopen cover of X, satisfying . @
*and (3) of (4.6).and (4) of (4.7). Now, every paracompact. space is ! $ i

fully nommal (see. [11, p. 170]). So 1«: u"s ug fs € Aybe 2 sm—
()

refinement of . U with the added property that if a set /U €U’ - ‘meets

" each of the subspices Xj , X; ... Lof X, . then"!

u n[ﬂx H 6 Uy ey 4 M A4 This s possible since £ U'” 15 ahy

i 1) where U’ n(l\x ] z{il, s ik))#

ol a

. iz0
n u # o). called the ner!(a of ne covering and ‘let
I, veyn=1 a‘a the subcomplexes of NeU'y with simplices
i3y “1 > -uhm Xinml!,.b € {dy,
)

»i))f@'l-st T

‘, v Ney)e The partition . (pa sEAt determines a canonical-

N(") " the weik topology makes. p continuous (sée [21; p. 1301). “Me

will construct an |

ad map 3:54\5 such that . gp = 1,

The result

then” £oliows  fron (4.1).




5

s cucu. If'xeoua,.

Choose an’ order:\ng [oF thé sm’pllc;\ﬂ- cumplu N, and, " for

U € i ch £ lswen, that, i Uy [
6 ,—\c ooselpoi,nt us such, that, if Uy

6, Define q u(u')»_x a5 follows?

e, define g : ind#ctlvely

Bn’

Dafina (x) = G(q(U

Uy 1) q(xl '3

T must belung to Vi.':We show thnt ‘there’ ehsts

Since

" isg star

£or, sn‘na @€ A

x st uBl + (1 . :)uB and. so .q(x) = ’(“B since

(ll.e1 ) € U x U Silulirly, if - x € % Uﬂ H l‘!gl .Uﬁz %, thm .

x-tua «(1-:)x1, where .xiE<U!, Uy 3. But q(x]:n .

“and 4o, ak) = 0(!151 q(xl): c).e u_. Cvntxmdng dn th

‘way, " We have

tlm, i xe < u,o./ saay: l.vBk than q(x) € U,- So is ua‘nl:v,

defmed and llso continuous.® We mst now shw thlt for each 1

.4 mps ﬁ i.nto x'..




> " &

Ta Ry . " . ‘v
o 1.“,4 U\Bo, gt g;k >-be a sinple <i<n-1. Then
[ xnmu [jS(E,A.,,B)))‘QAand S0, Wyl le., ) | belong to X, . -
b Y13 ¢ {8 au oo gy i
) Pt i vl ot
£ SR It’ BT PR WA T A than'x:tu ¥ (1-t)x~ where, .
R Bl i TN
P L €<l Ay s, Using'the Sane m‘gument as the one used in
Lo -8 5 R
‘ A e shuui:ng Qs well- defxned, we have that g(x;) € X, . nnd so q(x) 2
i e “uak(v g(x‘), 6%, by (4) of (a7 Hence; ‘fof each 1% i 5 n
2 . . & - = . -8 e
qngps imto R T G S By
PN | siice U isa star refmeﬂnem: of i, there axists £6r. each x,€ x : 3
i set. U Y such that ey pair (s, @))€ u x U, cv. Hence), thé ol
map HExy ) =4 (x, qp(x) t)! i5'a Homotopy ‘of ap ith 1 vand'so

K b W s
2, 5 al\ongs to‘ h“‘, // VA

. ue conclude t)us :hnptar witha, Tesult on mnppmg cornes...

g Top, be the cateznty of hased topological spul:es ‘and base voLl

p>' ;-es;;rva;g nba]':s. We denote by H,, the ‘cauzory of all objects ‘- ’
uii;_, “having the. hamatopy ‘type'of Based Ch-compiexes. W are going

~"to show-that: W, .is closed under the constiuction of mapping cones ‘of

its morphisns ) L
¢ Given'a pair of spaces . (X, A), f ere ACX; - (X, A) is.said to

h-ve the_homotopy extension property, written ; (X, A) =/HEP, if and only

',f cvzem:_g)(vu Axi»Z)wg:xfz such that g, = H(-,'0)),, =

© -theré éxists G :x'I 2 making.the fo'ncning triangres Commte.

N W-.-muw g




\/ K useful ax’mpu of- such a paix is (@, V), for every YeEob 332

IS

mr

so thit. H(y; o)-;o. n, for every ey Now define - c ovxuz

e mn denote the. ¥

(x. s) ecx (rather thln by m_y)

sand: f(X. s))
'Let-..




" that a5 0) = f'o aind. o=, 1")'= -bf."Sinc: pfw(— 0) ="'f'coi and
. B

(e, 0 = Hep, the. )Iomntopy PEV 05 X x g, can be ex:e’nda‘x o

homocopy H c'u 1 * Cg, 'such (hnt H(-, o) = fco nm:l Hp x| 1)

C4,. ¥, 0) &To ; Ce» cﬂ) v‘such that' Q(w, w, o)z = H(-, 1) an v
C(4;'¥, 9JPE = PEWY.: From . 13], we\can give'a preciu form toi

EE RO “namely ) S

mh honotnpy mverses 0 | respeetively. Ler.. 0' o | x' xI+Y

S Lbe such-that - o'(-' '1 e 1 ", o
: ;”x"x as £ollowss bt
o g BRI 11710 R ST P .
e (.41 hEE S

e '-'m.‘z-‘\ N i
Ry e(x.z:-n %< 2D A

from ta 15), e, N, 0 RERY cf is d‘ei“ihéd-by_:

(’HGY) (9~ 4 & Ty, 0'~0)(y3=w o(y) ,’:

(Ch ‘[x). zs)

),s"ckn.«:(’_o“o.:w RO Ot 915




Cand: cTh

(67 0), 450
e (p(x), 45 1)

v lock, 25-1)

_One sasily chécks that this is the reuired Nomotopy. //:

1+ Y.’ be maps Such that .
sl



Loz - ¢ SE-

‘x,l-4t)

N o(x. :

e 6

VH‘(f(x), i 4 o 4:) 3

#x

L, s

(.47 Leama: €74, 7N, 8e0)

- proof: .. Defie .6

§ -. S
ful : One usily checks that this 'ives cho uquired I\mw'py . In.fact, G

- precise]y Lhe

" (a1e) - oma ctv,

B @e), C iyt
1my; ches ¥
IRUNCRRL
L o'J oy, o

Proof:

(lx. 1\., ¥ cux. 1,, :D We ¢laim that
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R e

EpOEY=D Rasy o G0 i 4]
CH((x, 5), D). € CEx T) F((x, 5), ©) =

gt St)
3wt (x, 45 % 3¢ - @)

yix, ZS )
i N
vOne casily eh clgs that F has th¥ requ:u'ed propertles // .

. unugshaum note. that C(#, ¥, #) - is, in facta . homotosy éauitvalence

(see [16; p. .se}). Hoviever, e need only the weaker version of- (4.18).
: ' : .

‘(4:19) " Theorem: Let ‘X, Y € Ob W, “and 1t £ X > Y be-a base-point. -

. preserving map.. Then cgeon Wy
> A

_:Proof: Let o' X+ K(X), ©'Y = K(Y) :be homotopy equivalences with
K0 ,7KQD based Cw-camplexes‘ Let “xg
"By, the cellular approximation théorem ¥£  is homotopic rellxg} toa = H

be.the base 0:cell of . 'K(X)..

| cellular map €' :.K() + K(V). By (1.2.15)} Cgy . is 2 based CHicomplex
and by’ (4.18), C(é, ¥ @) has a 1et homotopy inverse. Thus; Cg .-
doninates  C, and 50 by" (4:1), " Cg G My //‘_ . PR -
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