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Abstract

“The application of the Poisson miised model s been hampered by the difficulty of compu-

s involve

Lation i evaliating the wmarginal likelihood of the paramete . Many approximate

approaches have recently been proposed for inference abont the generalized linear mixed

model which refers to the Poisson mixed model pecial case, for example, the penalized

quasi-likelihood (PQL) approach of Breslow and Clayton (1993), and the generalized esti-

. We show in the thesis that.

wiating Tanetion (GEF) approach of Waclawiw and Liang (19

hoth the PQL and GEI produce inconsistent. inference for the variance component in the

oisson mixed model. The thesis then proposes a two-step approximate likeliliood approach

(AL) for the estimation of three types of parameters (fixed effect, parameters, random cffects
and Uieir variance component) in e Poisson mised model. In the first step, an approsimate
Jikelihood finetion of comt data is constructed to estimate the fised effect parameters and

the variance component by applying a conjugate Bayesian theorem. In the second step. the

random effeets are estimated by minimizing their approximate posterior mean square error.

Our estimates always consistent. for hoth the fixed effect parameters and the variance

‘hen the actual var 1 zero, our estimates are almost

component.. 1ce component is 1

efficient for both the fixed effect. parameters and the variance component, and are alimost

optimal for the random eflects. When the actual variance component is away from zero, our

estimates are always asymptotically unbiased for the fixed effect parameters, whereas our

estimate is asymptotically negative biased for the variance component, Another desirable

et is that. unlike the existing approaches mentioned above. our estimates for both the



lixed effeet. parameters and the

aviance component only depend on the distribution of ran-

dom effects rather than the estimates of random effects.

Animportant linding is that the

asymptotic covariance of our estimates for the fised effect parameters will become smaller in
general as the variance component. an index of the intra-cluster a

ssociation, inereases, and

can be noticeably reduced by assigning the values of the fixed elfeet covariates as dilforent as

possible among dillerent observations in any cluster. However, if the lixed effeet covariate has

the same or almost equal values among different observations in any cluster, the asymptotic

ance of the estimate for the corresponding fixed elfeet. parameter may inerease as the

variance component, gets larger, This feature may be useful in designing

alid experiment

on mixed model. Unless the vari

or sampling for the Po

wnee component is small, the fi

effect covariates should be de

d o have values as different as possible among, different
observations in any cluster. 1L is further shown. through simulation, the proposed approach

performs better than the PQL and GEE approaches.,
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Chapter 1

Introduction

Define gy as the jth (j = 1.....i) count observalion associated with a p x | observed

or i of fixed elfect covariates for the ith (i = 1,....k) cluster. Here n, is the size

of the i-th cluster and & is the total number of clusters. Lel. g denote a p x| v

of unknown fixed effect parameters associated with the observed veetors #ipe. ..oy, of the

fixed effect covariates, and 5; denote univariate random effects. Given 5, the i, observations

<o) within the ith cluster are assumed o be independent, and to follow the

i U

Poisson disti

ibution. yieldiug

T3 =TT B2 espl=m) (1.1)
=

where [(yil4) denotes the conditional probability density of y; = Win)" Tor o iven

and

pij = 1iy V) = Varlyi |0, (1.2)



inwhich By, | 1) and Var(yq, | ) are the conditional mean and variance of y;; for a given

4 respectively. The conditional covariance of y; given 7 is

Varyi; | w) = p; ili=J
Conlyiy iy | 55) = (1.3)
0 it # .
Let
iy = log(pi;)-
then the conditional density in 1.1 can be reparametrized into the natural exponential family

form:

xp z Wit = st i)} (1.4)

S| %)

Moreover, we model

nij = log(piz) = w8 + iy (1.5)

and assume that random effects 5; (7 = 1,....n;) are identically, independently and normally

distributed with mean zoro and varianee o, that is.
KR R .
5 R N0, 0%) (1.6)
where o i usally unknown. and is called the variance component. Now because

Eexp(y) =

Var(exp(n)) = exp(20?) — exp(a?) (L.7)

it then follows that

Ei) = EEyyi (i |30

2



and

Var(y)) =

Coolyijyip) =

1

1l

= st + 0]

= oxp(afd+ 2

Fos, [(Vary, s, (i | 50)] 4+ Vars,
En[explelid 4 0] + Var, [exple] 4 4+ 4,)]
expleld+ D) exp(2ellesp(20?) - copla?)].

J=lon,. (1.9)

i) = i) B i)

Spla T+

BBy (Wit | 7)) = expla 3 4
fesplel B+ afuid 4+ 20)] = explel 4 ol + 0*)
exp(afif 4 a4 200) —explel A+ o T + a*)

exp(afid 4 ol erp(20%) = expla®)],  §# T (1.10)

The correlation of yi; and gy (j # ') increases when o hecomes larger as follows:

Therefore, 0% may be considered as the index of the intra-clus

Corr(yiy-piy) =

= (1.11)

seintion pavameter of

the observations in a cluster.



d Poisson mixed model. The

The and 1.6 is th

hove model Lo along with

Uhesis deals with tie improved estimation methods for this Poisson miixed model parameters

uding the random effect e

poncnts.

“Ihe nnified approach 16 fitting the Poisson mixed model, based on the maximum like-

lihood estimation of fixed effeets and variance components, and the empirical Bayesian es-

iedon of [owever, it would involve an integral

ion of r:

whieh does not. possess an analytic solution. Many approaches have been proposed in order

Lo avoid this diflienlty, as deseribed in detail in the next chapter.

Recently, Waclawiw and Liang (1993) used the Poisson mixed model to analyze a count
) L

dati set of acquired immune deficiency syndrome (AIDS) cases. More specifically, they
simltanconsly estimated the AIDS incidence growth rate across 12 strata indexed by soven

bhased on the number of AIDS cases collected over 5

risk groups

(1, = 5) consecutive quarterly Linie intervals ducing the period fron January 1982 to March

1983, They also estimated 5; (i = 1,....k) which represented the stratum-specific AIDS

growth rates over and above the average growth rates, which is decided by the fixed effects.

In fact,

developed a three-step iterative estimation procedure

wiw and Liang (1

for th ion of three types of parameters 4, 9; and o2 in the generalized linear mixed

model, whi

b accommodated the Poisson mixed model as a special case. This three-step

n e deseribed as follows:

terative procedure

1. Assuming an initial fixed value for %, the fixed effect parameters § are updated by

z0d estimating equation approach of Zeger et al. (1988). Note that

using the genel



this procedure doos not pr

me specilic values of the random effeets but only the

stan distribution. as in 1.6,

knowledge that random effects have a Gaug

2. Assuming that o and g are flixed, the Stein-type estimators for the random effects 3;

(¢ k) are developed with the introduction of estimating functions,
3. Assuming that i and 5; (i = L....ng) are fixed, the varianee of the random effects
a? is updated by using a moment. method under the imption that the effects of a

cross-product term are negligible. Details about. the validity of such assumptions are,
however. not. known. As shown in Chapter 1. their estimate of o2 is not consistent.
The above three steps of the iterative procedure deseribe a complete eyele. Note that. with

anew updated value for o from the third step, another full eyele is prompted, and the pro-

cedure continues in a cireular fashion until convergenee in o or one of the other paramelers

achieved. But whether si lis nnknown,

cha convergence wonld be achic

The generalized linear mixed model, similar to those of Waclawiw and Liang (1993), was
also analyzed by Breslow and Clayton (1993). lHowever, unlike Waclawiw and Liang (1993),

Breslow and Clayton (1993) did not a

ume specific density fnetions for g; given 7, where

i is a vector of multivariate normal distributed random effe stmed

that for a given ;. the first and sccond conditional moments of y; existed, and Lhe second

conditional moment was a specified function of the first conditional moment. Breslow and

Clayton (1993) first used the penalized quasi-likelibood estimation approach to es

o

and ;. They then generated a modified profile quasi-likelihood fnetion for infe

nee on

a? .

Six practical problems wore discussed to illustrate the wide range of applications of




used the Poisson mixed model to

Uieir approach. For example, Breslow and Clayton (19
anlyzee o count data set of seizres from 59 epileptics who were randomized Lo a new drug

djnvant to e standard chenotherapy during the two weeks before cach

or a placeho

of fonr elinic visits. In another example, they applied the Poisson mixed model to analyze

another count data set of breast eancer rates in feeland according to year of birth in 11

cohorts from 1800 — 1849 to 1940 — 1949 and age in 13 groups rom 20 — 24 ycars to 80 — 81

years. However, their *derivation” of the penalized quasi-likelihood and the modified profile

ikelihood involved several ad hoc adjustments and approximations for which no formal

quas

stimate is also not. consistent for o?.

justification was given. As shown in Chapter 4, this

son mixed model has been hampered by the lack

ation of the Poi

In summary. the appl
of the analytic form for the integral of the joint. density function of clustered correlated count
data and random effects with respect o the random effects in evaluating the marginal likeli-

hood. Many approsimate methods have recently been proposed, for example, the penalized

quasi-likelihood approach of Breslow and Clayton (1993), and the generalized estimating

funetion approach of Waclawiw and Liang (1993). But these methods are found to produce

"This inconsistent estimate of the

inconsistent. inference for the variance of random eff

wee component may further degrade the estimation of other parameters such as fixed
effeet parameters and vandom effects, On the other hand, botls the penalized quasi-likelihood
and generalized estimating function methods need the iteration among the three types of
parameters, and thus wsually involve a latge load of computation.

In the thesis. we propose a two-step approximate likelihood approach to estimate the fixed



effect parameters. random eflects and their variance component in the Poisson mised maodel,

based on a well-grounded fact that the logarithm of a ganima random va

iable is nearly
normally distributed when its variance is near zevo, and is more peaked around its conter

than the density of a normal curve with the

ame mean and variance when its v

from zero (Bartlett and Kendall 1946). In the first. step, the conjugate Bayesian theorem is

applied Lo construct an approximate likelihood lunetion of clustered correlated connt data y;

+..k) in order to estimate the 4 and ¢%. The resulting approximate score lunetions

for the fixed effect. parameters are surprisingly the

me as the ma

ginal estimating fanetions

used in Uhe GEF. As a result, if o wore known, this approach wonld yield the same estimates
for the fixed effect parameters as the GEI. When o itself needs o be estimatod as in sl

cases, this approach produces the approximate likelihood hased consistent estimates for hoth

the fixed effect parameters and the variance component, and any aceuracy of the estimales

can be achieved by increasing the number of randomly selected clusters in principle. For

small a2, onr estimales are almost. efficient (in the sense that they tend to be efficient as

for

the o* goes Lo zero) for both the fixed effect parameters and the vaj

ance component.

large 2, our estimales are asymplotically unbiased for

e fixed effect, pavametoers, whereas
our estimale is asymplotically negative biased for the variance component. [n the second

step, usi

g the estimates of #and o from the first slep, we estimate 4 (i = 1,..., k) by

minimizing Uheir approxima

post,

rior mean squa

ervor based on the empirical Bayosian

procedure. The resulting estimates are almost optimal (in the sense that. they tend 1o be

optimal as the o goes Lo zero) for 5 (i = 1,..., k) when o
g

small. Another desi

wble merit,




s that, unlike the previous approaches, our estimates for both the fised effect parameters and

the variance component only depend on the distribution of the random effects rather than

e estinates of the random effects. Furthermore, the proposed approach is demonstrated
that the asymptotie covariance of the estimates for 3 will become smaller in general as o?,

x of the intra-cluster association, gets larger , and can be significantly reduced by
using the valies of the fised effect covariates ryj as dillerent as possible among different

any cluster 7. llowever, if the fixed cffect covariate has the

abservations (j = 1,...,m;)

same or almost equal values among different observations in any cluster, the asymptotic
varinnee of the estimate for the corresponding fixed effect. parameter may increase as o?
pels laeger, This feature may be useful in designing a valid experiment or sampling for the

Poisson mixed model. Unless the actial o2 is small, the fixed effect covariates should be

designed Lo have values as different as possible among different observations for any cluster.
The above results for the proposed approach are presented in detail in Chapter 3. Chap-

ter 2 introduces the historical background of the Poisson mixed medel. In Chapter 4, we

spell out. the estimation formulac of the GEF and the PQL, for the Poisson mixed model,

and also show that. these two methods produce inconsistent. estimation for the variance com-
ponent. ‘Phe performance of the proposed twostep procedure is further compared with the
GEF and the PQL through a simulation study, in Chapter 5. The proposed approach ap-

pears Lo perform better i estimating all three types of parameters than the GEF and the

PQL. for small as well as lagge o2, Our approach can he used in the clustered count data

studies, which usually have a large number of elusters but relatively a small number of cluster



sizes. provided the assumptions of the Poisson mixed model are valid. Chapter 6 gives the

conclusion and some suggestions for further rescarch.



Chapter 2

Historical Background of the Poisson

Mixed Model

2.1 Poisson Process

Consider a Bernoulli process defined over an interval of time (or space) so that pis the

probability that. an eveut. may ocenr during the time interval. If the time interval is allowed
to becotne shorter and shorter so that the probability, p, of an eveni occurring in the interval
getssmallerand the number of Lrials, n, increases in such a fashion that np remains constant,
then the expected mmber of ocenrrences in any total time interval remains the same. It
can he shown that as 2 gols large and p gets small so that p remains a constant, i, the

binomial distribution appronches (he Poisson distribution given by
) "
Sln) = Ll,-l‘xv(—n) r=01,...ip>0 (2.1)
ol

10



The mean and variance of the Poisson distribution are both sr.

The Poisson distribution possesses the additive property that the sum of two independent

Poisson random variables with parameters gy and gy is a Poisson random variable wi

parameler p = gry + prg.

A Poisson process for a continuous time scale can be defined analogous to a Bernonlli

process on a discrete time scale. Fhe Poisson process refers 1o the vecnrrence of events along

a continuous time {or location) scale. For an empirieal backgronnd take rndom events

phone calls, and o

such as disintegrations of particles, incoming

under harmful irs on. All occurrences are assumed to he of the same kind, and we

of occurrence

are concerned with the total numbe inan arbitrary time interval of Tength /.

Bach occurrence is represented by a point on the Lime

is, and henee weare really concorned

with certain random placements of points on a line, The underlying physical assmnptio

that the forces and influcnces governing the process remain constant so that. the probability

of any particular event is the same for all time intervals of duration £, and is independent of

the past development of the process. In mathematical terms this means that the process is

a time-homogencous Markov process, that is,

. The probability of an cvent in any short interval £ o L+ AL is pAL (proportional Lo

the length of the interval) for all values of £. This property is known as stationarity.

The probability of more than one event i any short, interval £ 1o €+ A1 is negligible

i comparison 10 jtAL

3. The number of events in any interval of time is independent of the number of events

I



i any other now-overlapping interval of time.

I'he probability mass Tnetion of the number of events y in time £ for a Poisson process is

given by
(pt

y
/‘) oxpl=pt) §=01,...;0> O3> 0. (2.2
P

Slwipt) =

where [(y: ut) is the probability of y events

2.2 Models for Clustered Count Data

Under idealized experimental conditions when suceessive events occur independently and at
the same rate, then the inference for Poisson count data is relatively casy, and the traditional

log linear model and maximum likelihood estimation can be used for this purpose. However,

even in well 1 1 lal v i dey from the idealized Poisson model
are Lo be expected for several reasons. For example, in behavioural studies involving pri-
mates or other animals, incidents usually occur in spurts or clusters. The net effect is that
the number of recorded events is more variable than the simple Poisson model would suggest.

Here, unless there is strong evidence Lo the contrary, we avoid the assumption of Poisson

on and assume the appearance of overdispersion in Poisson count data. In biomedi-
cal applications it is also rarely the case that Var(y) = E(y) as is implied by the Poisson
assumption. Typically. the variance exceeds the mean (Breslow, 1984). This over-dispersion
can be explained by assuming that there is natural heterogeneily among the expected re-

ions. I the means are assumed Lo follow a gamma distribution, the

sponses across obso




marginal distribution of the counts is

the negative binomial distribution. Specifically. this

distribution arises (rom the assumptions that

1. conditional on yij. the response variable yi; a Poi distribution with mean g,

2. the g are independent gamma random variables with mean  and variance g,

Then, the marginal distribution of y;; is negative binomial with

Eyi)=p  and Var(y;)=p+ by,

The use of the negative binomial model dates hack at loast to the work of Greenwood and
Yule (1920) who modelled over-dispersed accident counts. Breslow (1981), Brillinger (1986),

Lawless (1987a,b) and McCullagh and Nelder (1989, See.

.2) discuss the analysis of connt

data when extra- Poisson variation is present. [t is desirable to use a model that allows for

the possibility of extra-Poisson variation if we are interested primarily in inference concerning

regression parameters and if the situation is one in which ovordispersion routinely occurs,

Recently, Dean and Lawless (1989) develop tests for detecting extra-Poisson variation in

ing count, data. Dean (1992) further develops a unifying method for obtaining tests
for overdispersion with respect to a natural exponential family which vefers o the extra-

Poisson variation as a special ¢

"The simplest extension of the negative binomial model is to assume that the ji, depend on

covariales «; through some parametric function. The most, commion is the log-linear model
for which
log(jri) = «ifd. (2.3)

13



Usingg the log-linear model 1o analyse indepondont count, data with overdisporsion is also

diserssed by Clayton and Kaldor (1987) as well as by McCullagh and Nelder (1989). Actually,

Clayton and Kaldor (1987) used the loglincar model to analyze observed and expected

mimbers of lip cancer cases in the 56 connties of Scotland with a. view toward producing a

> that would display regional variations in cancer incide t avoid the presentation of

unstable rates for the smaller connties.

Oneimportant limitation of this log-linear model for application to clustered data is that

the explanatory variables in the regrossion above do not vary within clusters. 1t is unlikely

red count data are independent. The responses within a cluster are generally

. the elust

ted. When regression is the main focus, this dependency is a nuisance, for example

cor

tudics, the dependency is the

when testing the overall efficiency of a new drug. In otl

orhow a disease tends Lo progress,

main foens, for example, whether a discase runs in famili

e Lraditional fon ass

tions that the responses are statistically independent with

cons ability about their expected values are not satisfied. As a resull, the classical

Lent and invalid

standard regression methods such as the log lincar model may give incon:
inferences. Kxtensions of the log linear model which account for dependence are necessary

in order to obtain valid inferences,

In general, the analysis of discrete correlated data is difficult partly because their joint

distribution is hardly specified well. 1t is usually reasonable to assume the clustered re-
sponses from distinet. clusters ave independent, but within a certain cluster, the clustered
the clustered data from other types of more

response data are correlated. "This distinguish




complicated correlated data. and thus simplilies the inference.

2.3 Mixed Effects Model for Clustered Count Data

Although the use of mixed models to the last contu

a long history dating b

1 is only

| research

in recent years that these models have attracted much attention in the stat

literature. The simplest and well developed mixed models with assiwmed continous Gaussian

responses are the lincar mixed model, in which the response is assumed to be a linear

function of explanatory variables with regression coelficients that vary from one individual

to the nest (seo reforonces. for example, Prasad and Rao (1990)). ‘Tlis variahility reflects

jon

natural heterogencity due to unmeasured fictors. A example is a simple linear regy

for infant growth where the coefficien

vepresent birth weight ane growth rate. Children

obviously are born at different weights and have dilf

rent. growth rates due to genetic and

o

vironmental factors which are difficuit or impossible to quantify. A mixed effects model
is a reasonable description if the sl of coefficients from a population of children can he
Uhought of as a sample from a dlisteibution, Civen the actual coelficients for o Fawily, the
Jinear mised effects model further assumes that, e observations on children for that family

are independent. The correlation among different observations arises hecanse we cannol,

observe the underlaying family cffect, that is, the true regression coeflicients, but. have only

imperfect measurements of weight on cach infant,

A unified approach to fitting the linear mixed model, hased on a combination of the

empirical Bayesian and the maximum Tikelihood estimation of model parameters and using



the M algorithmn was discussed by Laird and Ware (1982 ). Searle, Casclla and McCulloch

(1992) presonted a braad coverage of the linear mixed model.

sion models for discrete and non-Gaussian continuous

This idea extends naturally o »

responses., 11 is assumed that. the data for a subject are independent observations following

fon coefficients can vary from person to

a woneralized Tinear model. but that, the regr
person according 1o a distribution. . To illustrate, consider a log lincar model studicd by
Waclawiw and Lizng, (1993) for the probability of the number of the AIDS incidence across
several geopraphic regions. We might assume that the AIDS incidence growth rate varies
actoss geographic regions. reflecting their different cultures, living habits and unmeasured
influcnces of e ronmental factors, This simplest model would assume that every geographic
vegion as its own AIDY incidence growth rate but the effect of the average annual income

o this probability is the same for every geographic region. This model takes the form

log(E i | 7)) = Bo + i + % (24)

where g, and @, represent the number of AIDS cases and the average annual income in the

aphic region at the jth year, and 4; represents the hic region-specific random

ith peog)

elfee

. Although not very reasonable, Waclawiw and Liang (1993) assume that given 7, the

repuated obse iy i) for the ith geographic region are independent of onc

another, Finally the model requires an assumption about the distribution of the 4; across

seagraphic region in the population. Typically, a parametric model such as the Gaussian

e, o

with mean zero and unknown varia is nsed, This ve

nce represents the degree of

heterogeneity across geographic regions in the AIDS incidence growth rate, not attributable

16



to xjj.

The general specification of the generalized lincar mised nodel is as follows:

L. Given ¥;. the re

SPONLS

Bitee -+« i, are mutually independent and follow a goneralized

linear model with density [(

i |20 = expiliiti = ¢/ - elyije &) b where 0,
and ¢ are unknown parameters. and ¢ and ¢ are known functions. ‘The conditional

moments, jii; =

(i 1 3) = ¢'(03) and e = Var(y; | 30) = "(03)d. sati

hip

w4 diri and e o= e(p)é where hand e oare known link and variance

functions, respectively, /4 is an unknown parameter vector, and dy, is a subset of 2.

2. The random effe

82900 i = Loy are mutnally independent with a conmon wnder-

Iying multivariate distribution, .

The model that is the focus of the remainder of this thesi

the Poisson mixed model

with univariate random effects as follows:

1. log E(yij | %

2. Given 73, the resy Biteeees lepend

 Paisson variables with mean £(y, |

i

3. the 5 are independent realizations from a normal di

ribution with mean zero and

2

variance

The basic idea underlying a mixed effects model is that there is

across individuals in their regression cocfficients and that, this het

crogencity can b repre



sented by a cluster effect which has a probability distribution. Correlation among observa-

tions for one eluster arises from their sharing unobservable variables, 7;. In the mixed model,

s al given different subjects belong

the conditional probability distributions of the response

. with a common distribution

subject

Lo i single Tamily, b, the random effects vary acro

cond stage. Therefore, they apparcntly

or the first two common moments. specified at the s
reflect heterogeneity across groups in the regression coclficients. and association within the
saane gronp in the observations. Such mixed models have several desirable [eatures. There
is no requivement, for balanced data in different groups. They allow explicit modelling and
analysis of between- and within- gronp responses. The random effects parameters have a

maaral interprotation whiel is frequently relevant to the goals of studies, and their estimates

vsis. These models also facilitate the study of fixed effects

ploratory anal

on response variables,
The mixed effects model s most. useful when the objective is to make inference about

individuals rather than the population average. In the above AIDS incidence growth rate

example. the mised effeets model would permit inference about the AIDS incidence growth

rate for a particn! phiic region. The regression coefficients, B, reprosent, the effects

" o

ables on an individual child’s chance of infection. This is in contrast

of the explanatory v
to the marginal model cocellicients whicl describe the effect of explanatory variables on the

population average.



2.4 Methods for Estimating the Poisson Mixed Model

e generalized linear mised model w

s proposed by Stiratelli, Laivd and Ware (1981) for

the analy:

of serial dichotomous responses provided by a panel of study | ch

ficipants

subject’s serial responses were asstmed (o arise from a logistic linear mode’, but with regres-
sion cocflicients thal, vary between subjects. ‘The logistic rogression parameters wore assunied

e model,

1o be normally distributed in the population. A unified approach to fitting the mis

based on the maximum likelihood estimation of fixed effects and va

e componens, and

empirical Bayesian estimation of random effects was used. They found that exact solutions

were analytically and computationally infeasible, and thus proposcd an approsi ased

on the mode of the posterior distribution of the random parameters, implemented by mears

of the EM algorithm, "The main dilliculty here encountered with cither maximum likelihood

or empirical Bayesian approaches is that the closed-form expressions lor nec

ary integrals

This computational difficulty appears in other generalized mixed models sueh

as the Poi

on mixed model, and it has become a current statistical researely topic with a

high lovel of interes

Zoger and Kavim (1991) cast the generalized Tinear mised models in a fully Bayesian

ramework and used the Gibbs

wpling technique to overcome the lack of closed-form ex-

pressions for necossary integrals, Compared with carly used numerical integration methods

that

s a long history (for example, Goodwin 1919

Sroneh and Spicgelman 1990), the

sampling-hase

approaches are conceptually simple and easy Lo implement for users with

available computing resonrces but. without mime

| analytic integration expertise. Poten-

19



include the intensive computations and questions about when the sampling

tinl drawhacks
ieved equilibrinan (Ripley and Kirkland 1990), and the requirement that con-
t density distributions for all fixed and random cffects, as well as variance
components shonld be subjectively (bt maybe not properly) assumed (Gelfand and Smith

1990). Zeger and Karim (1991) assumed a noninformative prior for variance components,

an o flat. prior for fixed effects. The validity of such assumptions is in need of careful jus-

tilieation for cach certain case. Morcover, both numerical and sampling based approaches

L results, Therefore, strictly speaking, both of them are approximate

may produce differe
inference approaches.

Breslow and Clayton (1993) and Waciawiw and Liang (1993) proposed two different but
related approximate approaches to estimate the generalized mixed model in order to avoid

the computational difliculties. However. as it is shown in Chapter 4, both methods produce

inconsistent estimate for the iee component in the Poisson mixed model with univariate

random ellects.



Chapter 3

The Proposed Two-Step Approach

This chapter presents an approximate likelihood approach for the Poisson mixed model,

ba

| on the fact that the logarithm of a gamma random variable is nearly normally dis-

tributed when its variance

small, and more peaked around its center than the density of

a normal curve with the same mean and variance when i

s varianee is large (Bartlott and
Kendall 1946). "This approsimate likelihood approach consists of two steps. In the lirst step,

the conjugate Bay

jan theorem is applied 1o yield the approsimate likelihood for the fixed
clfect parameters and the variance component. In the second stage, we deduee the approx-
imate empirical Bayesian estimation for the random effects by minimizing the approximate

posterior mean square error of the random effects,

21



3.1 Likelihood Approximation

Althaugh Bages theorem can be applied o combine any prior distribution with any like-
Voo, i, is convenient 1o s conjugate priors for the unknown parameters because these

lead Lo simple answers. For example, a Poisson likelihood and gamma conjugate prior can be

combined to produce a marginal likelilood with the closed-form expression for the necessary
integral, whereas Poisson likelihood and normal prior can not. But the application of such

a conjugate prior needs careful justification in each case.

have been widely used in time series and regression problems (for exam-

Conjugate pric

pley Weet | Harvison and Migon 1985). Harvey and Fernandes (1989) applied this approach to

strnetural connt. data niodels which describe only oue correlated serics of count data. Clayton
and Kaldor (1987) applicd it to analyse independent count data with overdispersion.
For the Poisson mixed model with univariate random cffects, the gamma distribution for

the exponential Tunction of random effects would be a conjugate prior distribution. On the

other hand, the Jog fanetion of a gamma random variable is found to be nearly normally

distributed for the small variance, and to be more peaked around its center than the density
of normal distribution for the large variance. These interesting properties are used here to

construet the approsimate likelihood for clustered count data in the Poisson mixed model.

For the present model, the likelihood function for 4 and o has the form

1) o 1y [ ™ exp (——-) v, (3.1

i
202

where [(]3) is the conditional Poisson density as in 14, 1t is well known that the integral

above does nothave an analytic solution. Hence the likelihood inference requires numerical




evaluation, which s not only difficult to use . but also yields approsimate inference,
reniedy. we now propose to construct. an approsimate likelihood function as follows.,
Rewtite the couditional Poisson model 1.4 in the form

1

J
St (T

T+ log ) — wi z'j.-.\-p(.r;'l'_u)} . (3.2)
=

where w; = exp(3;). Then the likelihood Runction in 3.1 is equivalent to

[ Haitwidgtionydo (3.3)

where g(iy) is the probability density of w; = exp(y). In general, g(iy) is ot known,

because the distribution of 4; is not. known. 11 i is assumed to be normal, which is the

in our Poisson mixed model 3.1, then g(w;) may he computed, which by 3.3 yields the
exact likelihood function. But, as it was mentioned carlier, the integral in 3.3 does not have

the analytic solution. "To overcome this integral problem, we suggest a gamma. ‘working

distribution for ;. More specifically, wo nse

2 i ex=a) (3.4)

glwy) = DO

as the ‘working” probability density of w;, where the parameters a and A are

nated by

equating the first two moments of this ‘working’ distribution to the respective moments of

the correct distribution of w; = exp(7:). That is.

% = (-xp(% (.5)
and
% (3.6)



After simple algebra, one obtains:

| 1
T -1 A exp(F)oxp(a?) = 1] 61

Note thiat, corresponding to the “working’ density 3.4 of wi, % = log w; has the probability

density function given by

() = [—%ﬂl—

(3.8)

yielding the monent. generating function

Mo +1)

(1) =

AMP(a)

and the cunulant. generating function
ko (1) = log (1) = log I(a + 1) — tlog A — log I'a).

“Phus the first four indexes of the shape ol the distribution of y;—mean, variance, skewness

and kurtosis have the lollowing formulac:

E(w) = la)—log A

Var(y) = ¢'(a),

"(a)
aglyi) = Ty
and
ail) =3+ :;:,(532 (3.9)
where () is the digamma function
oy dlogla) _ L& o 1 y
) = === ‘—E-:+§|j(a+j] =dla+l) -~ (3.10)



in which £ = 0.57721.... I s constant. Let (). #(a) and ¢"(a) represent the first,

second and third order derivatives of #(a) with respeet 1o a rexpectively. the

dpla) &1
o Elatir

#'(a) =0+ 1)+ "'—‘ @3.11)

s _r)]o l(n) 3 o 2
#la) P 'Z(nﬂ Wa+lg
and
' log1{n) : s G
o)== t-g(nﬂ), #o ) + =

These results can be found in any standard textbook such as Johnson and Kotz (1970,
pages 196-198) and Van der Laan and Temme (1981, pages 17-120). They show that the

‘working’ density function 3.8 of ¥; usually follows different distribution from the normal one

of real random effects. However, eresting to observe that when the actual vaviance a?

is near zero, one may use Taylor’s series expansion Lo aj; i the y density

of 3.8 by a normal density with the mean zero and variance %, which is the same as the

v function 3.8 of 5,

original density function 1.6 of 7,. In fact. in such a case, the de
be approximated by

h(w) = T explayi — A1+ +

From 3.5, we have

% ~expl) =1,

that. is,

%5



Therefore,
A” exp(—=2)

(7)) ~ expl-A2

Ia)

From 3.7, one gets,

1
AR =)

|
==

My, we have

2, and the same as the density of

whicl is the normal density with mean zero and variance
i in L6, Thus, for small o, the gamma. ‘working’ density 3.8 for 4; reduces almost to the
true distribution of 4;, and we can expect that our likeliliood inference based on the ‘working’

density 3.4 of w; would be almost efficient (in the sense that they tend to be efficient as the

real o goes Lo zero). On the other hand. it follows from 3.9 that, when the actual ¢ is not

small, the kurtosis of the *working” density 3.8 of v; is larger than 3, the kurtosis of normal

random effects, because §#*(a) > 0. as shown in 3.13. Therefore, the ‘working density of %

in 3.8 would he more peaked around its center than the density of the normal curve with

the same mean and variance, ‘These properties sufficiently justify the use of the ‘working'
density 31 of w; in computing the apy likeliood function for the Poisson mixed
model,

Now. by using g(u,) from 3.1 in 3.3 and integrating out. w;, we obtain the approximate
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log likelihood function for 3 and o as

k " ",
(3,0%) = Y.{alogA—logl(a) =Y logu;! + 3 wjeld
i=l =t J=t

Hlog [T A+ 3 expleTANlni)
=

gl

+ g,’g”""lj‘:” - i' Hn +§ .'/;,,} log (A + ,\L;. -'xp(-r',‘_;ﬂ))]

+halogA. (i.14)

“The above likelihood function is exploited in the next subsection 10 obtain the estimates of

the fixed effect parameters /4 and the variance component o2, the variance of random effects.

3.2 Two-Step Approach

1. The first step

Let = and 0% be the likelihood estimates for f# and a? respectively, based on the

approximate likelilood function given in 3,14 Tn step 1, these estimates are obtained

by solving the score cquations

ara s
i = M)

K [n ik
ZLZ;,,,.r.,— (Z—")Z.r,j(-xp(‘l-;';ﬂ) =0 [3.15)
=1 =)

i=t

and

o Ol(H0?)
IJZ((J) - da*



s A
= ole?) Sltlu) — plo) + IOg(/T.)I
i=] '

e )
+() Yl5 - (3.16)
b

where

“
gr=ot Y m m=A+Y
=l J=1

o
W) = 2=
il
p o Bexplo?) - 1
Mot = Ao sl -1
) = 5 = T fexp(eB) = 1T

Note that the score function 3.15 for 4 is the same as the estimating function for 3 in
Waelawiw and Liang (1993) which will he further dicussed in the next chapter. Thus

for known @, hoth the present approach and the estimating function approach yield

2

the same inference for A, But. in practice, o? is rarely known. For unknown o2, the
two approaches yield different inferences for # and o2, Unlike Waclawiw and Liang

(1993), the present approach provides the joint approximate likelihood estimates for §

and .
The second step.
I step 2. we deal with the prediction of the random effects ; (i = 1., k). Let 7} be

the minimmm mean square error prediction of 4;. 1t then follows that 77 = E(7:ly:).

Now, by explaiting the conditional desity 1.4 of y; for a given 7, and the ‘working’



probability density 3.8 of 7;. one obtains

(o 1) = i k()
il = T T

| 90)h(2i) i
expila” + Tyt g = V4 oL expleud ] exp(i)}
Texp{(om + 5z, i) — [V + ey exp(eg A exp(ai) i

Therefore,

3)h(3:)dri
i | i) h(3i)dni

= <n' + fu.,) — 68 (,\' +3 esp
=1 J=

g .
i )) (17)
where o and A" are computed from 3.7 by roplacing o with a**. When the actual a*
is near zero, this estinate s almost optimal (in the sense that it tends to be optimal

as the real o2 goes (o zero) .

3.3 Computational Aspects

The traditional Newton Raphson iteration procedure may run into convergence problenss in

solving the score equations 3.15 and 3.16 simmltanconsly. Fven if a2 is known, the score
function 3.15 may lead to a local maximum or minimum. When o is unknown, as in the
general case, the solution becomes more complicated hecanse of the restriction of houndary

for

More specifically, the iteration procedure may yield negative estimates of a2, when
Uhe true maxinum occurs near the boundary of the parameter space a? = 0. T avoid
this convergence problem, we solve 4 and o? by jointly using the modified Newton Raphson

iteration based on the log-likelihood 3.14 and the general form of the BM algorithm as

follows:



. Decide the initial values of 4.

B

0. then the score funetion 3.15 hecomes

Assume o

(i) =0,

Therefore, we approximately have

o
32 llogyij — By = 0,
pr

and
ko ko ny
A = (Y i T Y i log i
i=1 =1 ==l

Decide the initial valnes of o2, o and A, s

Masimizing the conditional likelihood 3.2 with respect to w; yields

(0 _

wi

Then the moment method is used to produce the initial value of o2

2o _ Sheallog ol
o201 Dl T

Using 3.7 yields:

I
U}
\ T
‘ xp(a O = 1)
A = i

esp(a20) - 1]

Note that equations 3,18-1

and A These initial estimates may e inac

steps.

30

o0, ) and A pespectively.

(3.18)

(3.19)

(3.20)

(3.21)

(3.23)

2 ave only used to yield the initial estimates of g, o2, o

ate and will be improved in the following



3. The modified Newton Raphson iterative algorithm 3.

We solve the score equation 3.15 for 4 by using the well-known madified Newton

Raphson iterative algorithin (¢f. Seber and Wild (1989, p. 599-600)), as follows,

(a) Solving the score lunction 3,15 by wsing (he fivst-order Taylor espansion, we e,
T, (A0
A0 = g (A oy (.21
i
where
D () T o, o
L) 5o i (T _ st 305
a |/1,“"‘( i )
with
1 = 3 i explalB).
&
o 3
g = 0Oy
=
L = 5 explalid )il
=
and

15 =20 4 Y el p).
=l

(h) We compute the log likelihood 3. 11 for A and g 1100, a®) > 0(p1), o),

ive estimates of 4 in this

then the 31 are the modified Newton Raphson it

stop: Otherwise. we return to 3.21 with half an original change size of 40, that



. -

0 = 0 — 0.5 LA g o, (3.26)
In this way. the change size of 3 hecomes shorter and shorter until the log
likelihood ((AM, a4 > (A, 62%). This can guarantee that our estimate g1

st lead to the maximum likelihood ones.

of A

4. The general form of the EM algorithm for o

mates A for f from last stage and solve the score

At the present stage, we use the es
cqnation 3,16 for a% by exploiting the general form of the 1M algorithm of Dempster,
Laivd and Rubin (1977).

Wi (1983) explained that if a likelihood is unimodal within parameter hounds and
Iias only stationary point, then the EM algorithm estimation converges to the unique

maxinmm likelihood estimate. The solution is unique here due to ihe well-known

al families. As Scarle,

eliliood for regular expon

s property of the log

la and MeCulloch (1992, pages 296-305) pointed out, an important advantage of

the EM algorithm is that the iterations will always remain in the paraiaeter space, since

it is performing the i likelihood estimation for the plete data. M

the EM algorithm usually simplifies the direct. caleulation of the maximum likelihood

hation.

Following the idea of Stiratelli, Laivd and Ware (1981), we also think of the in-

complete data as heing the observed data g;; and the complete data the unobservable
random effeets 9, But the application of the EM algorithm here is slightly different

4



from theirs in the sense that the gencral form rather than simple one of EM algorithm
is used.
For the present model. the E-step of the BN algorithm involves finding the expee-
tation of ‘i log glwilyi, 0. 0. where gulyi. a®,40) is the conditional density
i=l
function of w; with the gamma *working” density given in 3.1, conditional on the oh-
served data voctor y; and given the initial estimates e and 40 A straightlorward

algebra yields
i
I {L log g(wilys,a*®). «'1“’)}
=

= kalogA+ (o — )" = Al = Flog '(e1)
1

where
I3
S = 3 Elog w; | i o™, V)
= Llta® + 2 uii) = oAk L explai) ) (1.28)
= =t J=t
and
&
A=Y B | gy e @, 40
b=
- (3.29)
Next. the M-step of the EM algorithm requives maximizing 3.27 for o2, Let g% be

the solution. The above iwo stages of computations constitute a eycle,

The computation involves the function log I'{ev) and its derivatives. They are not casy

to be direetly caleulated from their formmlas 3.10, 3.1, 302 and 3.13. Van der Laag

33



and Temme (1981) listed the following convenient approximate formula for log Ia):

log (o) = [n——(),»"l)lug‘n—n+(],-"1|ng(2ﬂ)+-[%;

| i | " i
“360a7 T T2E0a7 ~ Teswt T O (2:30)

Wit @ is o, less than 2, the formula 3.30 can be used to compute log I'(a) with very

high accuracy without. last term O(a™). When a is less than 2 but larger than 1, the

30

same high acenracy can be guzranteed by the combination of the above formule.

and the following, recurrence formula,
log P'(0) = log I'(@ + 1) — log(a), (3.31)

as o | s larger tnan 2. Vhat. is,

gl (0) = (0+05) logla+ 1) = 0 = | +0.5log(2r) + 1 \I+ 5
| | 1

360(0 +1)* * 1260(0 +1)*  1680(a + 1)*

—lag(a) + O((a + 1)),

Similarly. when o s less than 1 but Jarger than 0, then

log'(0) = log'(a +2) — log(a + 1) — log(a)
= (a+15)log(a +2) —a — 2+ 0.5 log(27) + IZ(++-’)
! N 1 1
360{a +2)° * 1260(a +2)°  1680(a +2)7
—log(a + 1) = log(a) + O((a +2)7"). (3.33)

(o) e(a)e () and ¢"(a) can be computed from the derivatives of the above

formulas of 3.30. 322 and 3.3 of log ) for different values of a. For example, when
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a is larger than 2, one obtain

)
(o) = # log I'(a)

LG 1
- 5
w T TR
| i |

e —— 1 O(a™"), (:8.34)

210a%

Wat

In order to obtain the improved estimates of 3 and a2, @ from the lirst eyele is used

for o* in the score equation 315 at the first stage to obtain improved estimate g2 for 4.

This is done by using the modified Newton Raphson iteration procedure

in the lirst. eyele.

&
Then al the second stage of this second cyele, we magimize /,{Zlugy(uv,\y,.ﬂ"“). /1”')}
{

ions

to obtain the improved estimate o™ for o2, These two-stage hased eyeles of comput
contimie wntil convergence is achieved. The final estimates are 4% and @ for g and o*

respectively.

3.4 Remarks on Asymptotic Theory

3.4.1 When ¢’ is Known

By exploiting the score equation 315, we have the Tollowing result. when @ is known,

Theorem 1 [ Sy(Li — ) s positive defivite: and o

4 is known, thew the approsimale
likelihood eslimales § of B are consistenl. asymplotically wnbiosed, and VE(H =) is asyp-

lotically (k = oc) distribuled as mullivariate vormal with wen zcro and 3 x p covariaee



malriz given by

Ve = hexp( %Z)[i”ﬂ_%:)]_, (3.35)
wilh
= gvruvxpimi’;ﬂb l;"=§;-n;‘}uxp( TA
Zwm'.,mu, Lol =N Yosp(al).
=
Proof:

I is apparent. that the first-order derivative of {7, (/) is continious. Therefore, using the

ghoepaitors s lgwoehig o ingasder s, VR ) e dlicupptoxhnated By
N . ”"'“”/A]—'[n(u)/w*] (3.36)
By wsing 1.8 1.9, 1,10, 3.5 and 3.6. we have

LU(3)

L{Z[“l’(’u“*'” 2)e; ],_.;_M,

i=t "

Zu. espl/2) = 1)

P
3 llesplo® /2) - 2\] =0
i=1 g

and

k. " Ty
Varth(d) = 21'.,,-(Z(y,_,.,-”)_"_+£1__

Z'm!Zu.,- L
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Z(ZZ'(M— —Hup( 20%) = copla®erp(alid + o) ,,,»-)T
f

i=1 ==

I li
= 7)<'U!'(!r._,~!/y‘,']l»"-'_w - 7) }

4 ;
+ ;«:-n(.z-xw %)m = ey = 7»*)

caple] 4)1 T
"

Y
= exp(Z) (k- <4,
E =

which is positive definite, "Thas according to the central limit theoren, S5 has an asymp

totically normal dist ribution with mean zero and covarianee “ZE - yyifferentiation of the

score lunetion 315 leads to

ais) OB
i - o

A[espleTA)eg] Shmlexp(rl )]
L((MZ'/.,H i [\+jz"’_ exp(el ’

) (3.37)

T

and
o .
LU ()RS Sy O —m— = ﬁ))
i ~ =
& Wy
= 1‘x])(?'§(lﬂ'?)

(8.3%)

= Var(lh(#)).
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According o Targe immiber theory, we have

=)
A

d’h(/’)

kS (=) [k (3.39)

9 with 436 yields the proof of the theoren. O

Therefor, combining

esti-

Theorem | indicates that. the ssymptolic covarianee of the app
mates f dependson the ariance of random effects 0%, which is theindex of the intra-cluster
association within the same cluster in the observations, as explained in Chapter 1. When the

actual a? is zero, the approximate likelihood estimates 3* are exactly the classical maximum

likelihood estimates for fully independent count data, and are asymptotically efficient, with

the nplotic cova

(3.40)

When the actual o is away from zero, and so large that A is very small compared with

yexpla) L) the asymplotic covariance 3.35 can he approximated by

T

) 3

e & expl e
a ez [explr T8 + 0 503) (o — wip)xi — i) 7] |
= --x|’(~72'){§ L I cxp(l,-l-/;.)J LT ]) 1

(3.41)
The last equality 3.11 i rom the following lenmma:

Lemma U Forany n x| vecloru, and its positive scalar function a,.

o " . . |«
Sty = Ylaju) Y laj)) = 5 ¥ lajapln;— upy —up)T] =0 (3.42)
a=t =l = = ==t



Proof:

[ajap(uy =) (=)™ = 3 e = ajojuiuly = aju ] +a g’

= 2 (wju]) D ay =2 () Yo (u])
=1 = d =
and
ST iy = i) ;= u)T) =0,
i
which yield the proof of the lemma. a

The approsimate formula 341 of the asymptotic covasiance of 4 for large * reveals the

following fact. As the actual 0% gots larger. the asymplotic covariance of 4 will hecome

smallerin general, unloss the corresponding fixed elfect covariate has the same or wearly oqual

values (r; ) amonyg different observations (j # j*) in any clust

i

oo k) 10 the actual o should be infinite. the asymptotic covarianee of 4* wonld hecome

zero, and we would haveacenrate inference for 4, This conelusion at the livst instanee

1o provide conflicting inferenca whe

compared tothe vraditional analysis where o is thonght

1o be adispersion or i I only. In T

o the present model, o play;

an

intra-cluster association role which is simila

o the role played by the intra-cluster correlation

i the fincar mixed model.  Consequently, as the intra-cluster association iner

ases, il is

reasonable to expect. that 4= will have smaller and smaller asymptotic covariance,

Ou the other hand, the asymptotic covari

ice of (1

an be reduced by inere

g e

number of distinct clusters and cluster

size. as well as by increasing the dilference of fixed

elfec

covariates among different observations in any cluster. For highly clustered correlated
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count data (@ is large), the asymptotic o ce of B will significantly increase by using

tiie same or similar values for the fixed effect covariates among different observations in any

clugter. In another words, the asymplotic covariance of #~ will get larger, especially if

1eev o) are very close to each other for any i, as apparently shown

and i (£ Jind =1

in 301, On the contrary, for nearly independent count data, (o is near zero), the asymplotic

covariance of 4* will not. Le affected much by nsing the same or similar values of the fixed
elfect covariates among different observations in any cluster. Therefore, unless the actual
ot is small, lixed effeet covariates should be designed Lo have values as different as possible

among different observations inany chister, The simulation study in Chapter 5 supports the

above findings.

3.42 When o? is Unknown

When a? is unknown . by exploiting the score equations 3.15 and 3.16, we have the following

resull.

" () P ) | .

Theorem 2 [f the rank of 1] 10 is pt1, Var is pos-
(h(a*) a* Uy(o?)

itive definite, and a* is unknown, then the approzimate likelihood estimales 3* and o are

both consistent, and




is asymplotically (k — 00) distributed as multivariate normal with mean oo for #* — 5 und

mean below zcro for a* — o2, and (p+ 1% p+ 1) covariance matrir
-

RO gt VarhB)  Conflse?
B Dt % T

X
Wala?) 7. 2y (a2 (Corla(a?) 11T (1) Var(Uy(o?
AN e A (ot iT ) alifo)

R OUA) 1), ot ia(a?) 1),
| e —mEy s
~ESIA B
whosc clements arc specificd in the following proof of this theorem.
Proof: It is apparent. that the first-order derivative of (7;() and Uy(a?) is continuons.

Therefore, using the Taylor expansion and ignoring the high order torms, we have

3
Al (,, L N AT

(3.1)
\ —(Yy ke Uaa?) /1%
By using 1.8, 1.9, 1.10, 3.5 and 3.6 as in the prool of Theorem 1, we have
EU(A)=0 (3.15)
and
(3.46)
Because

_ oo o+Fh expla;

TN I
o«

= 5-35=0



we have

4 L2 A
BUx(a?) = o'(a) Z1ED(7) ~ dle) + |ﬂg(”—.)]
= i

ilii)

+X0) Yol -
k.’:l
= rv/(ﬂ")glkwm,‘) —log e = (¥(a) —logA)]
=0 ifd’is zero
~0 ilo*is nearzero (3.47)
<0 ifg*is away [rom zero.
s according to the central limit theorem,
Ui/ 1P
Uy(a®) M2
has an asymptoticaliy normal distribution with mean
0
E(l7a(a?)

and covariance

Vary ir, () Canfly i . Us(e?)
('u"(l’)(ﬂ:)v”'(!‘l)] Var| (ix{v‘
where Var(7y(6%)) and Cov(Uy(B), Un(a?) depend on the expectation of the funclions of
(e +TjLy wij) which ustally does not havesimpleexpression. On the other hand, according
to the large number theory, we have,
oty ooy ) (gt _pt

[ — e /e B[Rk B2k

(3.48)



where

(- ‘”')‘/g‘”) = Varlih(8)). (1.19)
s

-
k(o) = X(

i=l "

k.
= 0hay -1 (3.50)

o2 .
and £2(~224g2) depends on the expectation of §(a -+, gi) which usally does nol have

simple expression. Combining 3.44-3.48 yields the proofl of this theorem. [u]

Theorem 2 indicates that the approximate likelihood estimates of # are almost asymp-
totically clficient (in the sense that they tend to he efficient as the a2 goes to zero) for

siall %, and are always

rmptotically unbiased no matter how large the actial o is. As
opposed o case for 3+, the behaviour of o, the approximate likelitood wstimator of o

is quite different. For swall o2,

s alnost asymplotically nbiased and almost, efficient,

for &% (in the sense that it tends to be asymptotically unbias

and ellicient as the o goes
to zero). As the actual o? gots Targer, the ‘working' distibition of the random effects

deviates further from the normal distribution, leading to larger lurl than that of the

normal dis

ibution with the same mean and variance. Thal is, the ‘working’ distribntion

of 7; is more peaked around its

center than the density of a normal curve with the same
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mean and varianee when s varianee is far away fron zero. Consequently. for large o2, o

syiptotically negatively biased for o2,



Chapter 4

Two Recent Approximate Methods

of Estimation

We niow spell out in detail the formulae for the estimators of 4, 5% and 5, (i = 1,....k) in
the Poisson mixed model based on the estimating function approach suggosted by Waclawiw
and Liang (1993) and on the penalized quasi-likelihood approach sugsested by Brestow and

Clayton (1993), and also point out their main drawbacks.

4.1 Penalized Quasi-Likelihood Method

For the Poisson mixed model defined in Chapter 1. the random effects 5 (i = 1,..., k) are
assumed to be normally distributed as in LG, ‘Fherefore, the quasi-likelibood function is

the same as the likelihood function of yi; ((j = 1..... ig)eb =ilyaias k) for (A, a%) which is



dofined by
. k .
(B,a*y) = H/H.N:h,‘l'r;)f(%)lh;
il i
¥ 5
= oIl [ oY ustelf +3)
i J=1
=3 el
=

where e = 1/[(2x)2 1, T, g5 Breslow and Claylon (1993) applied Laplace’s method

P’

T+ = g (1)

for the above integral approximation. Denote

n n 2
Bw) = = X o+ 3) + 3 explel + )+ o (2)

Lot B(;) and B”(;) represent the first- and second- order derivatives of h(y;) with respect
10 ¥, then
5 1 SCTTIN .
W) = h(3) + 505 = 50 + o(ln = i)

~ D)+ (o = ) (3)

where §; denotes the posterior mode of 9; computed from

Hn) = = Bt 4 L osplef ot )+ =0, (4)
and
o o
W) = Y exp(afi +4:) + =2 (4.5)

Ignoring the multiplicative constant ¢, putting 4.3 into 4.1 vields the approximate profile log

likelihood
3 k
log(e®) — Y {A(5) + & log(i ()}
. 3

I(#,0%) =~
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Py =
S logll +a* Y explelid + 3]

+ 3 i 30 = D esplal )~

& 1y &
Ylogll+a® Y esplelid + 30 = 3 ). (1.6)
J=1 i=1

Differentiating 1.6 with respect 1o 02 gonerates the score equation of o

mlo?) =

T Tt sl

.
- 52 _ oot 4 g2
= YAt -ko*+o §[|+”-‘Er\.

——=— =0 17
it explel + 7.-]' Gl

After further approximation, Breslow and Clayton (1993) suggestod to estimate 4 and 7

jointly by maximizing Green’s (1987) penalized log likelihood

. B
3 togl /(i | ) ()] o AD pislelit ) = el +71) = 5 (4.8)
i=1 i=l =1 = -

Differentiating 4.8 with respect to 4 and 5; leads Lo the score equations

koomy T
(B =303 [ij — explalp + 3wy =0, (1.9)
s
and
a0y = Yl = explalt + 1)) - 2 =0 (1.10)
=

for #and ¥ (i = 1,..., k) respectively.

Breslow and Clayton (1993) proposed solving the score Tunetions 4.9 and 1,10 for 4 and

% jointly through the modified Fisher scoring algorithm. This requires one to compute the

a7



inverse of the (k4 p) x (k4 p) Fisher information matrix, and is usually very difficult to

compute due o large k. Moreover, the Fisher scoring algorithm usually converges slower

than the Hessian scoring algorithm. Breslow and Clagton (1993) further suggested making
degrees-ol-freedom adjustients through the modified restricted maximum likelihood. But
for larger . Uiis restricted maxinmm likelibood has little difference from the usually maximum
likelihood.

Therefore, one algorithm is slightly different. from Breslow and Clayton (1993), although

we follow their main idea. We nse the Newton Raphson iteration with the llessian rather

than Fisher scoriug for the above score functions .7, 4.9 and 4.10 in the iterative way. Let

3 G20 be the estimates of A, 5; and 6% at the mth iteration. Then the improved

are obtained at the (i + 1)st iteration by using

ol these parameter

. . e
ok = o _ (D00
! ! )

estima

o
=

-1
) il pem o,

and

S o ;Tl(m)_(

i
) 93l pmiiom,

o

where the Hessian matrices ave given by

iy LI i
= = S exp(l A + 50 e

A =1 =1

= =D explefipt 44 -
J=t ; ¥
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and

3o 4 3m)

;
= kY [+ F exp(
= =
respectively. 'The eyeles of iteration continue nntil convergenee is achioved.
Note that by using the actual 4 and 4; in the approximate profile likeliood based score

cquation 4.7, one may obtain the simple form

M-

"
gl g
2 +k§I+n‘*z;';.v.\p<.r‘,‘;/i+v) (111)

for the estimation of 2. Now. for large k. the first term in the tight side of the equation .11
converges Lo . But. the second torm converges Lo a cortain positive value rathor than zoro.

Consequently, the penalized quasi-likelihood approach yields an inconsistont. estimator of

o Furthermore, the inconsistent estimator may cause instability in Uhe estimation of other

parameters, especially in the prediction of the random effeets y; (7

4.2 Generalized Estimating Function Method

Assiuming an initial value for o, Waclawiw and Liang (1993) used the marginal estimating
equation approach of Liang and Zeger (1986) [also sce Zoeger, Liang and Albert, (1988)] to
achieve estimates for the fised effects /3. More specifically, in this approach. 41 is the solution
of the following marginal score equation

koo T
it = 1}7; T . il = 0 (1.12)

19



for 4, where u, {3, a%) is the marginal mean vector of y;, and V;(3.0?) is the marginal covari-
) ! 8

ance matrix of g,. 1t then easily follows from 1.8, 1.9 and 1.10 that

u(fo?) = E(y)

explali )
5 R (1.13)
exp(r], )
and
Vilpa*) = Var(y)
= Coo(li(y; | 30)) + E(Cor(y; | %))
exp(afy )
= [exp(20?) = exp(o?)] : (explafiA).....expl], B))
esp(e, )

exp(r]A) 0 0 o 0

0 exp(eid) 0 ... 0
xplriph) 1)

0 0 0 .. expla]B)

The following Lemma is useful in order to compute the inverse of the above marginal

e matrix.

Lemma 2 et A be o nonsingular p x p malvie and lel q and v be (wo vectors with p

components, Then
A= T A

T
TForA- (418)

(A+uw")yt =47 =
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Using Lemma 2 leads to the following inverse of the marginal covariance matrix

exp(=efd) [ 0 ... 0
0 0 wes 0
Vilha?) = exp(
0 0 0 expl=at )
wn(o?) ~ |
cxplo’) O, L . (1.16)

1+ exp(g)fespla?) = 1] ThL, (-x.,(..-ml

where

lnxi =
1

Substituting -1.13 and 116 in the marginal score funetion 4.12 yields the estimating inetions

U(d.o®) = {3 (i) = Solexplefe)} =0 (.17)
sS4 =

for 3, where

! .
= T (1.18)
and
! (1.19)

Z)esp(a?) = 1)
Combining the concepts of estimating functions and linear Bayesian theorems, Liang

cal framework

and Waclawiw (1990) then extended the Stein estimator ontside the clas
to the more general situation such as where unbiased or even finite moment. estimates of

parameters may ot exist. Waclawiw and Liang (1993) used this approach for random

A1



effeets 4. Considering the conditional score lunction of the Poisson mixed model 1.4

T A e EL =)
Sk

they introduced a class of linear estimating functions of the responses for 45, that is,
il i B) = Yllaiini, + bi — explal;s + )] (1:21)
=

Following the optimal eriterion of Godambe (1960) and Ferreira (1982), they determined the
aptimal a;; and b; by winimizing

) = R

o 1«:(2[",-,_,,,»,. + by = exp(al + v (1.22)
=1

jon of the above equation 1.2 with respect Lo b; and a; yiclds

i u,
% = 2B{Y [aipi; + b — exp(«B + )]}
= =1
" - - o
= 23 {(a; ~ NexplelB+5) + b} =0 ()
= 2
and
i o
ﬁ? = 2b{u Zl«.,y.-, + b= explald + 2]}

v(r../H—HZ[(u.,—I)up(r ﬂ+—)}+n,k+n‘b) 0. (4.24)

Combination of equations 1,23 and 1.21 leads to

L ealel)
s M 1 . A L
ik = X ¥ T expla ) ta:z)

o
&



and

ana
by = B2 196
= (1.20)
where a and A are given in formulas 4.18 and .19,
The Stein-type cstimator for 3; can then be computed from
3 = Doleiyi + b = explalp + 9] = 0, (1.27)
=
that is
of =
= (1.28)

Further, Waclawiw and Liang (1993) suggested the following approximation for the esti-

mation of o*

ot x B Bl )

it

st
+F’<{ﬂ./n(()7‘

12 k 2
_hal expla?) = |
el S D A o e e T =)

) [exp(a?) ~ 1fexp(o?) + 1]
T+ (exp(o?) = 1) Sy exp(af + a22)]2

). (1.29)

The approximation involved in the pro

of deducing the variance formula 4.20 may
1ot he suitable for the Poisson mixed model. One main drawback of this estimating formula

for o is that as 4 approaches Lo true i, the right side of 4.29 does not converge Lo o2

Py
This is because Y~ 72/k converges to o? for large k, but each component of the second tern
=1
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converges Lo certain positive value. This shows that the right side of 1.2 converges to a

quantity which is more than o%. Thus, similar to the penalized quasi-likelihood method, the

estimating function approach also yiclds inconsistent estimates of o2,

Ciiven an initial value of o, the estimating cquations 4.17 for B are solved by using the
Newton Raphson iteration procedure to obtain A, One then directly computes the Stein-
Lype estimators 7} (i = 1,...,k) by using A and the initial value of o? in 4.28. Next, in

leted from the

e load of computation, the ion for o2 is

order to avoid
following approximate formula of the variance 4.29 for o

explo?) = | )
2 T Texp(o?) — 130, exp(eiB + 07/2)

(4.30)

E:]»

1 by wsing the Newton Raphson iteration procedure. In this approximate formula of 4.29,

aga
the ignored term is always positive. Thus the estimate of o would be a little less from the

approximation 1.30 than from 1.29 which would yield more inconsistent estimate for o?.

‘I value of et is further applied to obtain improved estimates of 4. Next the improved
estimates of 4 as well as the value of ¢t? are used to obtain the improved estimates of 7

(i

..oy k). Purther application of the improved estimates of 8 and 4; in 4.30 yields the

improved estimate of o2, These eycles of iterations continue until convergence is achieved.

In summary, the application of the Poisson mixed miodel hias been hampered by the

difliculty of compntation in evaluating the marginal likelihood of the involved.

Many approsimate approaches have recently been proposed, for example, the penalized

kelihood approach of Breslow and Clayton (1993), and the generalized estimaling



function approach of Waclay

and Liang (1993). But these methods, as we have just

shown, produce inconsistent inference for the variance component. thermore, both the

and estimating function methods need the iteration among the three

Lypes of parameters, and thus usually involve a large load of computation.

&



Chapter 5

Simulation Study

5.1 Simulation Design

In the simulation study, we used the Poisson mixed model 1.4 along with log{ £ (y;;

Py +

+ arijn Bavija 4y where p =4, fly = 2.5, f = —1.0, f3 = 1.0 and f; = 0.5,

and forall i =1,..

I forj =1,

i = Figg =

0, for j=241,...,n;5

J= e and ag

Tijs

Turther, taking & = 50 and 100, the 4;’s were independently generated from a normal
distribution with the mean 0 and variance o Five o* values: o® = 0.1, 0.25, 0.50, 0.75,
1.0 and two cluster sizes n; = 4 and 6 were considered. The responses (¥igs ..., ¥in,) for
cacli cluster i were generated from realizations of the Poisson mixed model 1.4 with the
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mean and variance equal to exp{dai + Beri + daris + dariga + b The simulated

data yig, j o= Loy i= 1

u =
s

oik, and the covariates

i

oani

L,... & were used to compute the estimates of the lixed effec

parameters A e varianee

component o of the random eff

5 and the random effects 9; (i = 1.... k). based on all

three approaches discussed in Chapter 3 and Chapter 1. The simulation was repeated 5,000

times in order lo obtain the mean values and standard crrors of the parameter estimates,

5.2 Estimates of 8 and o

‘Tables 5.1-5.4 report. the simulated mean values and standard errors of the estimates of g,

By s, B and o2 computed by: (1) the proposed two-step approximate likelihood approach

(AL), (2) the penalized quasi-likelilood approach (PQL) of Breslow and Clayton (1993). and

(3) the generalized estimating function approach (GIF) of Waclawiw and Liang (1993).
It is clear from the table that the proposed method performs extremely well in cstinating
s the absolute

o as compared Lo the PQL and GEF approaches. The standard error as well

value of the bias of the AL estimate are much smaller than those of both the PQL and the

GEF cstimates for o, These results confirm the fact that the AL yields co nt estimates

for 2, whereas both the PQL and GEF do not. When a? is near zero. the standard error as

well as the absolute value of the bias of the AL estimate are very small for a | supporting

that the AL estimate is almost cfficient for small 62, Morcover, for all three appronches, the

standard error as well as the absolute value of the bias of the estimation of a2 get larger

o increase: male of @ will hecome

reflecting the fact that for all three approaches, th
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the

wore and more asymptotically biased I 5% becomes larger and larger.

O the other hand. all three approaches perform very well in estimating 5. 3 and

Ay, revealing that the estimates of the fised effect parameters are usually consisten. and

mating

. W

ymptotically b near zero. the AL performs very well in

4 with ve wor bias. hoth the PQL and GEF do not. indicating that for small o

nation for the fixed effect parameters. whereas both the

the AL vields aliost efficient o

1QL. and GEF may not. Furthenmore. for all three approaches. as the actual * increases.

for 2. 3y and gy, and increase for 4y in

 error of the estimate will deer

the st

general, This is becanse the (= 1.0 .. k) miformly have the same value

... These simulation results

1. whereas

2oy and gy are ot same for all j = 1

demonstrate that the asymptotic covariance of the estimates for the fixed effect parameters

nd s

naller in general as the variance component o2, an index of the

will hecome simalier

os. anel can be noticeably reduced by assigning the values of

the fixed effeet covariates as different as possible among different observations in any cluster.

However, if the fixed effeet covariate

the same or nearly equal values among different

iptatic variance of the estimate for the corresponding

T s i any cluster

lixedl elfeet parameter m se as 7% gets larger.

+ for all three approaches, the simulation results display that the estimates of the

lised effeet parameters and the varianee component hecome better, in the sense that their

standard errors as well as the absolute values of their bias decrease. in general as the number

of elusters k and the elnster size n; (7 < k) incronse,




5.3 Prediction of the Random Effects

Table 5.5 lists the simulated total me:

square crror (MSE) of the random effect predictors

based on the AL. PQL and GEF approaches. Let 47, he the AL estimator of the random

effect 5; in the sth (s = 1.....5000) simulation. Then the total MSE of the AL predictors
& (suo

is defined by Y {Z(',,; - -;,}‘/-“xl)l)ll}. where & = 50 or 100 is the muber of indepen-
=

dent clusters . Similarly. the total MSE of the PQL and GEI predictors are delined by

k(5000 k(00

> { = |‘/:‘:Unu} and Z{Z(m’« - )"/:'m(]l)} respectively. [Lis elear from the ta-

i=1 Ls=1 =t Ls=1

ble that the GEF approach is inferior to the PQL and AL approaches i the prediction of the

random effects. Between the PQL and AL approaches, the total MSE of the AL predictors

are generally much smaller than those of the PQLL predictors. for small & = 50, Thus, the

proposed AL approach performs much better han its competitors in the prediction of the

random effects. For large k = 100. the AL approach performs better than the PQL for small

. but the PQL approach appears to perform better for large o Thus the proposed Al

appronch is always best for small a2,



As well, Table 5.5 exhibits that the AL yields extremely good estimates for the random

elfects when the actial g2 is small, but both the PQL and GEF do not. reflecting that when
the actual o is near zero, the AL produces almost optimal estimation for the random effects,
that, for all three

whe both the PQL and GEF may not. The simulation also displa

approaches, the estimates of the random effects will have smaller total MSE in general as

the eluster k) inereases and the mumber of clusters & decreases. That is,

the estimates of the random effeets will become more aceurate as the relative clustered size

(/1) inereases. Al these simulation resulls are coincident to the analytic ones which are

pointed ot in Chapter 1
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Table 5.1: Comparison of Simulated Mean Values and Standard Frrors ($1) of the Regrossion

= 1.0 and 3y = 0.5: 5000 Simulations.

k=50 =1 Estimates of Parameters
Actual 02 Method L T T
0.10 AL Mean | 0.130 507 -0.986 1001 0.531

SE[0.0100 0.017 0075 0.035  0.221

PQL Mean [ 0.178

0991 1001 0517
SEC[0.015 0.088  0.075 0.085 0,222
Grr Mean | 0379 2.122 20995 1.001 0516

SEC[OLH 0071 0075 0,035

0.25 Al Mean | 0.302 2./

S8 -0.996  LO00  0.514
SE[0.015 0.010 0.169 0.033 0217
PQL Mean [ 00122 2387 -0.998 1,000 0511

SE[0.026 0 0.037

0169 0.033  0.214

GEF Mean | 0.398 -1007 1000 0.493

SE[0.035 0055 0069 0083 0.215

Gl



=50 n = Estimates of Parameters
Actual o Method at I By
0.50 AL Mean 2519 -0.993  1.000 0.520
SEC0.01 0,002 0,050 0.030  0.189
PQL Mean | 0871 0.997 100D 0.512
SE 100460 0.032 0050 0.030  0.188
GEF - Mean | 1358 2258 0990 1.000 0.516
SECJ0251 0075 0050 0.030 0.189
0.75 AL Mean | 0681 2636 -0.99T 1,000 0.512
SEC[0.015 0085 0037 0027 0.171
PQL Mean [ 1378 2750 -1L001 1000 0.506
SEC[0.070 0,029 0,037 0027 0.7
GEF Mean [ 1572 2212 -0.999 1000 0510
St {0390 0451 0137 0.0 0.73

1.00 AL Mean [ 0812 2817 <1000 1.000
SECO00I6 0039 0027 0025 0159
PQL Mean | 1932 2926 -1.000 1000 0.504
SE| 0091 0,027 0127 0025 0.158
GEF Mean | 1821 2051 -0.999 1.000 0.507
SEOJ03760 0013 0127 0025 0.158




Table

stimates and

ni=6(i

Ay=1.0 and dy = 05

Vs k) True Values of the Regression Paramel

5000 Simulations.

Comparison of Simulated Mean Valies and Standard Ervors (SE) of the Regression

nee Components of Random: Effects for Selected Values of a*: & = 50;

erss o= 26, Ay = L0,

f=50  np=6 Estimates of Parameters
Actual * Method ot " A M i

010 AL Mean | 0,129 2507 -0.9836 1000 0532
SE10.0060 0.030  0.153 0011 0167
PQL - Mean [ 0157 2191 -0.996 1000 0.513
SE [ 0.008 0.025  0.153 0.011 0.166
GEEF Mean | 0.601 2301 -0.997 L0O00 0513
SEC|0.198 01100 0153 0.011 0,166
0.25 AL Mean | 0.300 20188 -0.991  1LOOO 0517
SE 10.009 0.028  0.110 0.013 0.154
PQL Mean | 0395 2310 -0.997 LO00 0510
SE [0.015 0022 0134 0.013 0.0152
GEF o Mean [ 0880 2.211 -L.006 1000 0495
SE [0a1 0169 0,140 0.013 0.153
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50 o, =6 Estimates of Parameters
Actual a? Method at h P2 3 fa
0.50 Al Mean | 0511 2521 -0.991 1.000 0517
SE|0.000 0.028  0.124 0.012 0.136
PQL Mean | 0.837 2,501 -0.999 1.000 0.508
SE [ 0.026 0,021 0.121 0.012 0.135
Mean | 1.745 2,023 -1.001 1.000 0503
SE {043 0068 0.125 0.012 0136
0.7h Al Mean | 0.677 2,600 -0.995 1.000 0.511
SE | 0.010 0. 0.116 0.011 0.125
PQL  Mean | 1330 2.681 -1.000 1.000 0.505
SE | 0.038 0.019 0.116 0.011 0.125
GEF - Mean | 169 2175 -1.000 1.000 0.505
SEJ0A98 0079 0.117 0.011 0.127
Lo Al Mean | 0.809 2,782 -0.998 1.000 0.507
SE {0011 0,135 0.107 0.010 0.116
PQL Mean -0.999  1.000 0.505
SE 10051 0018 0.106 0.010 0.116
GEF - Mean | 1787 2,198 -0.997 1.000 0.508
SEO| 0402 0,119 0.106 0.010 0.116
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‘Tabled.d: Comparison of Simulated Mean Valuesand Standavd Errors (SE) of the Regression

Estimates and Variance Components of Random Effects for Selectedd Values of o & = 100;

nio =4 (= Lo k) Teue Values of the Regession Parammeters:

Ay = 1.0 and 4 = 0.5:5000 Simulations.

4

k=100  np=1

stimates of Pavamed

Actual 0 Method o? # h i A
0.10 AL Mean [0.102 2,68 0987 1000

SE {0007 0031 0029 0025 0.162

PQL - Mean | 0.1:10 20995 1000 0510

SE10.009 0028 0028 0.025  0.161

GIERF Mean [0.311 2396 0995 1000 0.510

SEC 016 0.055 0028 0.025  0.161

025 AL Mean (0211 24220993 1000 0519

SE{0.009 0.033 0026 0.024 0156

PQL Mean | 0.320 D997 1000 0.510

SE [0.016 0026 0126 0024 0.156

GEF - Mean [ 0372 2300 1004 1000 0498

SE 007 0051 026 00210 0156

— 10,



f= 100 ar, =1 Estimates of Parameters
Actnal a* - Method ot A h By By
0.50 Al Mean | 0436 2410 -0.992 1,000 0.517
hil} 0010 0.031  0.117 0.023 0.147
PQL Mean | 0619 2400 -0.997  1.000 0.508
S o0 0025 0417 0.02 0.146
CGEF - Mean | 0871 2365 -1.000 1000 0.499
SE | 0099 0458 0.7 0.028 0.147
0.75 Al Mean | 0591 2435 -0.995  1.000 0.512
S 0010 0020 0.109 0.021 0.136
PQl Mean | 1020 -0.999  1.000  0.504
S [omi0 0.02 009 0.021 0.136
CGEF - Mean | LI66 2035 -0.99  1.000 0.5%
sl fo0t6 0071 010 0.020 0.138
1.00 Al Mean |0 2,602 1000 0.510
S {001 oM 000 0.0 0.058
PQlL Mean [ 1129 2675 -0.997  1.000 0.508
SE[05T 01 0000 0.020 0.1%
GEF Mean | L65L 2069 -0.992 1000 0.517
b1t 0200 0159 0001 0.020  0.126
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Table 5.4: Comparison of Simulated Mean Values and Standard Frrors (S12) of the Regression

Estimates and Variance Components of Randon Elfects Tor Selected Values of o

n= 06 (i= 1,...,k); True Values ol the Regression Parameters:

A= 1.0 and Ay = 0.5: 5000 Simulations.

k=100 ;=6 Estimates of Parameters
Actual 6*  Mothod a* M h A By
0.10 Al Mean | 0.101 1000

SE ] 0.000 0,022 0.109 0.010 0.118

PQL Mean | 0119 2038 -1.000 1000 0.506

SE | 0.005 0.017  0.108 0.010 0.117

GEF Mean | 0.508 2201 -1.000  1.000 0.506

Sk 0.166 0.007  0.108 0.010 0.117

0.25 Al Mean | 0212 2425 =099 1.000 0.518
SE | 0.005  0.02  0.1038 0.010 0.112

PQL Mean | 0.290 2207 -0.99  1.000 0.509

Sk 0.000  0.01T 0103 0.010 0.112

GEF Mean | 0812 2228 -1.002  1.000 0.502

Sk 0272 0.4 0401 0.010 0.112




k=100 n=0 Iistimales of Parameters
Actual 0*  Method at M fh P P

0.50 AL Mean | 0431 2412 -0.994 1.000 0.513
SE | 0.006 0.021  0.098 0.009 0.105

QL Mean | 0.615 2337 -0.999 1.000 0.503

SE | 0.015 0016 0.098 0.009 0.105

GEF - Mean | 1260 2,082 -0.997 1.000 0.507

SE | 0.256 0.068 0.099 0.009 0.105

0.75 AL Mean | 0.588 2437 -0.991 1.000 0.515
SIE | 0.007 0.019  0.091 0.008 0.098

rQL Mean | 0975 2470 -0.999 1.000 0.505

SE ] 0.020 0015 0,091 0.008 0.098

GEF - Mean | 1.629 2,068 -0.989 1.000 0.524

Sk | 0.035 0,103 0.091 0.008 0.100

100 Al Mean | 0.718 2568 -0.990 1.000 0.511
S| 0.007 0112 0.086 0.008 0.093

PQL Mean | 1371 2604 -0.997 1.000 0.505

SI10.028 0014 0.086 0.008 0.093

GEIF Mean | 1821 2078 -0990 1.000 0.519

S [ 0.086 0071 0086 0.008 0.093
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"Table

: Comparison of Total Mean Square Errors of the Random Effect Predictions for

Selected Values of o k= 50 and 100; nj = 4.6 (i = 1,...,k); "True Values of the Regression

Parameters: ) = 2.5, lp = —1.0, Ay = 1.0 and gy = 0.5; 5000 Simmlations.

Number o Size of Actual Varianee Component o

Clusters  Clusters Mcthod — 0.10 0.25 0.50 0.75 .00

50 A AL 0.600 0.688 0.812 2308 T2
PQL 350 L3O L0222 3986 9.8

GEF 9.628 1260 20709 18.651  17.558

6 AL 0.221 0245 0311 0978 5355
PQL 4.898 2016 0.277 L.o11 G.576

GEF  20.309  22.5041

26.479  16.995

100 4 AL 1266 1899 2305 2098 LG46
PQL 8971 6145 2435 LO12 4421

GEF  19.725 11156 33.773 65470 57.546

[ AL 0.531 1039 1290 Lo 2402
PQL 13537 9.6 3240 0.723 1.768

GEF 40450 55662 75170 86.011  70).518
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Chapter 6

Conclusions and Some Suggestions

The proposed tyo-step approximle likelilood approach is de | to produce consis-

tent estimates for hoth the fixed elfect tersand the variance in the Poisson

mixed model. When the actual variance component is near zero, our estimates are almost
ellicient for both the lised effect parameters and the variance component, and are almost
optimal for the random effects. When the actual variance conponent is away from zero, our

estimales are always asymptotically unbiased for the fixed effect parameters, whercas our

tale is

symptotically negatively biased for the variance component.

Results of our limited simulation study also support that the two-step approximate likeli-
houd approach nsually performs better than the penalized quasi-likelihood (PQL) approach
of Breslow and Clayton (199:3) and the estimating function (GEF) approach of Waclawiw
and Liang (1933) in estimating the three types of paramelers of the Poisson mixed model,

Spereally, the proposed appronch performs slightly better than the PQL and GEF ap-



proaches in estimating the fised cffect parameters and at the same time leads to substantial

improvement over the PQL and GF

approaches in estimaning the random elfects aud their

variance, especially for smiall 2. Betwoen the PQL and GEF approach, the PQL approach
was found to be superior fo the GEF approach in estimating all the parameters.

Note that the arbitrary use ol the Poisson mixed model for clustered count data, lowever,

may yield invalid inference. It is very important. to think through whether the assumplions

of the Poisson mised model, such as the conditional independence, are ble for a
specific problem before using this model. Sometimes. it may be necessary Lo inelude previons
responses or time variables in the fised effect covariates and for make special bransformations
for some fixed effect covariates in order to use the Poisson mised model well. Not all elistered
count. data meet the assumptions of the Paisson mixed model.

Scveral models for discrele clustered data have recently heen propused, for example, the
mixed model (Stiratelli, Laird and Ware 1981), the marginal mode 1 (Liang and Zeger 1986)

and the “mixed parameter” model (Fitzmaurice and Laird 1993). But all of these models

hiave some ks. The ad and disadvantages of these methods are discussed in

detail in Liang and Qaqish (1992) as well as Fitzmaurice, Laird and Retnitzky (1993).
Most models for clustered data studies may require one to do a large amount. of compu-

tation, and/or may even be impossible to produce good inference heeanse of the diflienity

of computation. For example, the generalized Tinear mixed mwodels have been hampered by

the need for numerical integration Lo evaluate the marginal likelihood. ‘Fhis thesis proposes

a lwo-step approximate likelihood approach for the Poisson Mixed Model with univariate
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vandom effects. This approa

) produc

s the consistent estimation for both the fixed effect

mete

[ nd the variance of r:

ndom effects. and has

been shown by theory and simulation

to be snperior to two competitor

in estimating all three types of parameters. However. this

approach may be difficult to develop for the Po

son mixed model with multivariate random

efl

eets, and for generalized linear mixed models.

Owen’s empitical likelibood approacl in nonparametric models v

as generalized into semi-
paraetric wodels by Qin and Lawless (1991). This approach may be further developed for

clustered data stadies when the actnal distribution of data i diflicult to specify well.
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