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L R o - N pssmer ¢ - e o e
' .4 A study of the relationships betieei various Hotions of "niversal
;vfibrat‘im'." which arise in the literature, haé been dome bR Booth, - °
P. Heath'and R. Piceinin, within the context of @i adnissible category.
of fibrations. This general category, of vhich ‘the sl cavegéries of
fibrations phat arise in practise are pm:cuxar exanples, is defined
within the genofal franework mtradun:ed X;y J. P. May for the notion of
F- fibration, by specifying certain axions. “Using a generalized version
| of the expanemax Law we show that ‘the category of - F- fibrations is

i directly related”to this notion of an adnissible category of Eibraticns.

The result.is that ‘the axioms defining adnissibility can be simplified.

' < The iate notion- 6f equivalence in an admissible category A ..
is an extension of the potion of fibre homotopy equivalence, called

:F - homqtopy equivalence. If p: E -+ B. is.an A- fibration (object of

o), we denote by F(p)," the space of all ‘F- homotopy ‘equivalences

pp over B and'by Lo, the spice of a1l F- hofotopy:equivalences

3 e p +p .over B .which extend’ 1: F + F o distinguished .fibre . F. We

show that if the catogory. A ‘adnits an "Asphericil Universal" A~ fibration

pi'E, +B,  (tliis is the situation in the usual categories of fibrations )
. that arise i practise) dnd ki B'+B, i3 the 'cmsifying nap for 'p,

then F(p) (resp. F(p)) has ‘the same veak Hosatopy type s’

: 9L (B,B,

) (resp.: 6Ly (B, 5 K)). Here, L(B,Bjk) daymtas the path

componeiit of the function space L(B,B,) «which contains. k and. 1, (B n_.k)

is the based version. In particular-we show that'if B, is'an Hogrowp o &
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i

has the) same uexk homotopy type as Ly (s,nB ).

_-condition.on B,

then r(p) Foss! r’(pn has the sane wuk Hopotopy type as
L) resp. 1,0, W35 4 B is an H-cogroup; then F'(p) |
¥ th a connectivity

it is also “pnss'mu to, abtain sone cmlputstions of

the homotopy groups of F(p) -and F.(p) within the stable range.

- In:the case where the admissible category A -is ti|e category, of |

principal Gibundles over mach nanifolds; with ' a’compact ‘Lie

2 grmlp. the’ spaces F(®) ' and F/m‘are the gmups nf gauge tnns—

formations'that arise in thaorstmnl Physxcs The' resuls nbtau\ed in.

the general situation are valid hm w to hmtupy =quxvn1énce
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“the: éoncept of ”Universal E

v Introduction

This thests is divided ‘into tHiree~chapters, the £irst of which
contains a description of the terminology, notation and most of the
machinery neEded‘in the actual research part contained in the next
two chapters, There, we actually deal with two distinct problens.

The first problem treated in Chapter II, is concerned with

categories’ of fibrations. This notion of an’ admissible

 category vas introduced in:[4] to be a general framework in which

bration’ could be studied, s known,

“Universal. fibtations" appear in the literature -in various forns;

thus the need to’set nu these concepts into a unified context and

study their relationships. «/

In [4], an admissible: category of fibrations was defined as a

-non-empty, full subcategory A of the category of all F-spaces over

CW-complexes and Fomaps (previously defined by J. P.'May in [u])

satisfying four axons. The ‘fixst three axions cin be sumarized as

P

the requirement that all F- induced £rom objects of A and all

'spaces hameomorphic to objects of A, are themselves osjeccs of

A The fourth axion mdlrectly descrlbes the objects cf A; it is

stnted as follows .

o~ P
A4 - If qY—vA und TiZ % B are objects of A then

YeZ - A x B is a Serre- flbﬂtlml.

Here, q*r is the f\mctinnal bundle construction given in [4]
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. that all functional bundles .q+f ate Hurewicz fibrations.

Now, it is mot cléar from this definition'what conditions N

Y
are imposed on the objects of A in order ‘that axiom Ad4 be ?
satisfled. Tndeed, it is showi.in [4] that the'usval’catogories
of fibrations considered in p;'nctise, for exanple,” pi‘e category
-6F Hurewicz fibrations'and the category of numerable principal
G-bundles, are examples of admissible categories; therefou‘ one
would expect that in a general admissible catogory. the, ob)aq:s are
some generalized notion 6F 4 Eibrition] Jn fast, tn sbetion\Z,
we see that suuh’ is the case, the generalized nntion of fibration
being that of,a weak F-fibration. This concept-is a general)zatwn
of the nntmn of a Serre fibration, just' as the concept of i

F-£ibration in"

14] is a ge‘nerahzatlnn of. i notion of a Hureuicz
fibration: Bucause th: ob]ects of. the. cntsgones of ﬁbrnmns
we will consider are all Hurewicz fibrations, we choose to deal'with

the concept of F-fibration. In this situation axiom A4 wouljl require

definition of an’adnissible ‘category of fibrations can now be Tedefined

’in temms of F-fibrations without the use of axiom A4, Although this

new ‘concept of admissibility i(s“ not équivalent te the original "
definition, it does imply admissibility in the sense of :[4]. Hence, *
the general-theory of A-fibrationis (objects of AY, aid,in perticules,
the “theory of Universal A-£ibrations developed in [4], r’em.ins
'mmg;d in this new setting. This' fact is used to our advantage

in section 3 uhare we introduce several notions oi n-uruversnlxty,

.
‘iii ,;




i
‘n finite or infinite; the case n = o

b : !

considered in [11: s in

e 15
[4], ve distinguish four typesi_an A-Fibrktion: p, :E; +5,, .

)
n finite or infinite, is said to be (i) Free n-Universal if the

ely defined ivalence classes of A-’ i over 4

* Chi-complex - -8 of dimension < n are classified by the free homotopy -~

classes [B,BJ; (i1) Grotinded: n-Und if the 1y

defined equivalence classes of grounded A-. flbratmns over a cn~cun|p1ex

B of dimension < ni-are ied by the based py-classes’ -
" /
[8,8,],; (iii) Aspherical n-Universal"if the total space of the
: T :

principal fibration is herical (that is, all homotopy
T at 3

groups vanish in dimensions, zero through to, n); and (iv) Extension

f-Universal if for every Tolative CH-complex (3,L) .of dimension <.n

and every A-fibration p:E +B, every.partial map p|L+ P, caiibe

extended to a map p + By ; d i
Now, it. 15 shown Jln‘ (4] that the four notions of -v-Lr'nxversnhty

are not, in genqr,u, equivalent but thers do' exist certain relation- "
i H ¥

ships ‘between them. Indeed, these relationships -also hold for ;.
1 0 o N -
| G ;
the moTe Testrictive notion of n-Universality, n finite, and i give

the corresponding results.  -Of course, in discussing the équivalénce

".of these four notions in'a given adnissivle category one must first

“be sure that they all exist. In fact; for. the notions of m'—Uniyersmxy‘,'

we. show that the problem of existence and =qu1valenc= of the {mu-

notinns can be reduced to jus: the problém of the exxstem:e of an

'Aspner;cal '-Unl\fersnl A-fibration. This result is hsed insedtion 4,
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field is characterized by a differential 2- S F the Faraday tensor,

where we examine the probiem of the existence and equivalence of the
four_notions of =Universality in the category of numerable, fibre
bundles ¥ith fibre F and structure group G. There, our technique

is to use the close relationship between: fibre bundles. and their

- 5 . 4 % ,
associated principal G-bundles, as well as the Aspheriul' =lniversal .

G-bundle given by the Milnor construction [16].4.[9 give a nmssary 2
and sufficient condition for the =xutence of an Aspherical
=Universal fibre bundlu :nd han:e, for the aquivalum:e of the four

s ’9

notions of wlniversality. " v..: i
our secand problen is dxscusseq.a: Length in Chapter I1I; it

i5 a description of the homotopy properties of the spaces_of F-homotopy

- daivaluaces’ for A-Fibpations. - In sths case-ia which the adelssible

category A is the category of principal G-bundles ovef smooth
manifolds, with G a compact Lie group, these are the groups of

Euge tnnsfor-nms. as described by Atiy:h' Smger and others. This

concept of a gauge ian did not in matic but -

Tether, in theoretical Physics. The notion of a local zauge trans-
furnztwn was first pvun in 1918 by Herlunn Weyl and- txtended in 1929

[21] by the same author to the theory of eleclmmgneti: fields in

.-interaction with chlrged particle finlds. The basic ideas, txmsllted

_ into more nodarn terms, are relnwexy sluph. Consider the trxyul

- (1) -bundle (M XU, By w5, where M' is Minkowski_ space

4 with Minkowski's metri ). If n known that the auctremgnetic
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of ‘rather, by its norm (field action) ., iNow, ‘Maxweil's equations

. - - (2

show that dF = D and so, F is a 2- cycle in the deRham Cohnmolngy

of ' Bur, M being conttncnble. ot = ol m)
3 ;

Oa.nd

" so,, there is a differential 1-forn A on M' such fhat ‘F = A,

This 1-forn A -is called the ¥ector poténtial; one shows that it
gives Tise to & Ehresmann connection of MY x U(1). Thé problem- then
‘is to study the transfomations of this comnection vhich do ot
alter the field action. This, procedure can be generzhzed to more
general physical situations, which was done by Yang and Mills in

1954 [1S]. As.pointed out by Atiyah, Singor and others, the study
of Gauge Theories in these physical situstions can be done Mathe-
matically in the right franewSrk; namely, the Theox'y of Fibre Bindles.
Roughly speaking. the Nathenatical setup is as follows: we have a
‘principal G-bundle piE +B, where B is a saooth manifold end G
is a,m;upaa, cg’m}ectedvvl.ie gro.up. The connections of E - correspond
to the-vector potentials‘and the gauge transformations corresl;orrd to
the G-automorphisns of the bundle. The action of the siife thans
formations on the vector potentials then correspond o the action of
the group G(p) of all G-automorphisms of pon the space UMof
all connections on E. Because this i ek eétective,
the projection map.'m: (i~ WG () is. not a principal §(p)=bundie.
Fogently 1. M. Singer studied this map in [17] and deternined that

if B=5%0r s* . and G =5U(M), n > 1, then' x . doss not have 2

section, (in physics terns a continuous gauge). The proof of this
> (7 ; ! T i

vi : o ;
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o 2 result unca:led a study of the humtopy prupernes uf the grmxp
G@)' and of a based version G'(p). | Thisis.a motivation for

our study .of -the groups 9@. and 9 ). in section 3. Actudlly,

i -, . the results we obtain are. general and not just restricted to principal

G-bundles over a smooth manifold, where the ‘group G. is a compact
Lie grop. Indeed, for any principal G-bundle p- over a CH-complex
5, e show that the Fibration o) + 6 with gibre G¥p) s

Yomotopy equivaleit to'a vell 'knuwn Toop £ibration: " More specifically,

if Bis the HidheibyIng spacsify s ghom B k7 v By s e
H the classifying nap for 'p and L(B, Bgik) - is the conporient of the
funcnon space " L(B, BG) containing the map k; then "‘p is *
o homotopy eqmvalent to fhe luoy fibration QL(B, Bc,k) +@B;  hence,
o L g(p) = SL(B,Bg;k) and 9 (@) = 9L, (B,B;5k) (here, ' L, (B, Bgk) “is

* the based Version of 3L(n,ng,k)). A better characterization of the

s, 1 ' groups Qo) an Sl(p)'\ .¢an be obtained with suitable restrictions

. .. . on B or By specifically, i B s antcor ,,':rnn‘jl‘(m = L, (,6)
) ¥ (see. [17 Thnorem 's]) and if s is-an H-mup.‘ then ol e

g(p) = 1(8,6) -and Gl (p) ® 1,(8,6). We atso show that if the group

G satisfies a‘ connectivity condition and the dilwi\siml of ‘the base hd
( ace is sunahly Testricted, then the' humntopy groups of G(p)

éiesp 9 (@) are mnmnrph)c to the hd!mupx groups of L(B,6)

(vesp. L, (B,G)) in 1gw diménsions. This result is particularly

usful for computations becmist it ‘can be applied to a ;udg Sangaloe.

G-bundles. . %

vii 4 g
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A A
11 these results on the groups S(p) cand G ®.
are-actually, specializations to the category of principal G-bundles .
of corresponding Tesults in a general admissible category A. ey
T X
3 These results on the spaces of - Py of ‘A -
are discussed in section 2 with greater generality, <,
.
. . A
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and is closed under standard operations sich &5, the foration’of’ ¢ ;
" spaces L(X,Y). !These basic constructions in K are pp:ax_ned as

“appropridte topology for the function space M(X,Y) in Top is, of

; Lo 1. PRELIMIMARIES

(€77 §l.- ‘The: category of. k-spades
3 » S

To aynic{ the usual Testrictions ruau{mg for the existence of .
an exponential law in the category of topological spaces Top, we. | .
ok 1 e scoiveRtents catogoTy K OF e spacest™ ) (a1, [T, ieha La,s
spicos, endoned with the final mpéxogy'u{:h respect to all mips. froi

all compact Haijsdorff _spaces, Imy topologlcal space .can be

Tetopologized as such, that 15 k-i 1ed' \md is :alled a k=

As is usual for a convenient :stegary, K is targe. enough to cun:‘a‘m .

many 'of 'the Spaces arising in practise, for exanple, CH-complexes,

cibbriices; protictispucss $0¥; piiback spaces: XY and finction e

the k-ifications of the appropriate cofistructions in Top. The

course, the compact-open ‘topolagy; then, -L(X,¥) ='K(M(X,Y))..

Theorem 1,18, (cxponential lay of k-spaces; {1} Theorem 2.12]).. 1f

XY and ' are k-spaces, then the fmction that assigns to each 5

ngp_’ xxY +'Z the map g-X > L(Y,2),, defmad by gx) () = £(x,¥)s

x € X, yeY, isa natural homeomorphism

BLEY,D) > L)
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" such'that, for each a € A, the réstriction £ |x X 2,

.. .52, F-spaces and F-maps 3 A

The temmmlagy and natation in this ‘section are’ due to

.JPMay[m] T

Lét F bea categnry, with dxstxnguxsherl object F, together
with a faithful underlying space functor  F'» K. Thus each object
of. F is'a k-space and the set F(P,Q. of morphisns From P to
Q in F s a subspace of \L(P,Q). For each object P in F e
agree to.identify the spaces’ Pxs and ‘<P with P, ‘Where/ s denotes

any one-point ‘spacé. 3

¥ Defm;tmn B2l An F~52lce isa moryhxsn Pt X A of K «such

“that, ‘for-each a ¢ A, the fibre 'p_ (az, which’ we shall denote’ by
X, S object of F. Observe that, for any object P of, F,

the projection map Pry:AxP > A~ is an Fspace and, in particular,

. the' constant map P -+ +~ is an F-space.

“ By-anF-map (s

o :
:p +'rf we mean a commutative diagram of -K

(XS] e

a morphism of  F. Obseive that once the map gy, tlm dxagrém

above, ‘is ified,’ fn is &1y deterni hem:e, W deriote




. Fe (p,7) the space of ‘all. F-maps p+ T which cover £
e 5 ; )

by F(p,r) the space of ay F-maps . p +T, ‘topologized as av
Lok

subspace of L(X,Z).. We say that ) covers f' and demote by -,

>3

topologized as a snbsp‘nce'cf LOGZ): I8 B=Aand £o= 1A S A,

_then £, is said ‘to be an Famp over A.
e #
Alpaix of Fonaps (££,) and (gl,gc) from p to r are .

“said to be f—homutogxc denoted (f

l.zn).. if thﬁm
exists an Fonap (H,h) of the form "
, L :
LRz, 0
e i l pxly n l T
A 5B

where I denotés, the unit interval [0,1]," such that (H(-;0), '

(-0 = (£,€) and (H(-,1,h(-,1)) = (gj.y)-  Thus,. for gach

tel, (Hc,h‘)‘ is an F-niap, where “H(x) = H(x,t) -and - h ()= h(z;t),

xeX acA Wecall the pair (H,h) an F-homotopy from . (.

60 (B.8) Tn'the case where B= A and IRAXL+ A s the
projection map, we have - the notion uf an F- hnmntogx over A.

An F—map g %+ Z over A xs said to be an E. homntm
ngmvalencz over A if there exists an F-map g' Z+X -over' A
such that the composites g-g' and g'ig “are F-hamntapxc over- A’{
to their respective identity maps. We call g ‘an F-hom@ wniverse
Gf 1w wd e deyrhae. 5 Le Fnonolony spivarent. 15 Lover A,

1£, in particular, p is F-homotopy equivalent to ' PriAXF .+ A over A,

|




Proposition 1.2.3: 'let 1Z + B be an F-spaceand let £A+B be

- the following two conditions: =~

z 1 = v
then p is said to be F-homotopy trivial.

An F-mp’ g:X'+ Z. over A" is said to.be an F-homeonorphiss -
over A if there existsan F-mp g':Z+X over A. such that
ggh =1, nd g'-g = 1. We call g* l;'—inﬂ‘fnr g and we

say that ‘p is Fohomeomorphic to T over A. If, in plni:uhr.,Ap

. is F-homeotorphic-to prjAXF >A-over A, then p. is sald %o be

a trivial F-space or equivalently, F-trivial,

By restriction to one-point base spaces, the previous definitions

specialize to giva the notions of f-honotnpios, F—hommpy

equivalancei and F-homeonorphisns between spaces i F.

Henceforth ve shall slways assume that our category F smsms

0 for cach bjece ¥ i F, LGURTY
(1.22)_. (3)..every morphism in_F . is an F<homotopy'equivaleace _|
over a point.

We shall'call such.a category F, a category of fibres and denote

ity e pate (F.F." verve that conditions (i).and (ii) of (1.2.2)

smmediately imply that < F(P,F) # §, for every object P in F, .and
hence, F(2,Q) £ §, . for sll objects P, @ in' F. Noreover, every

{m

morphism in F has an F-homotopy inverse in'&F..

anap. Then the inducéd iap TEARZ + A ds an F-space, and ]

£:irg >t is an F-map, Moreover, if ;piX+Z isan F-space and

(&:£):p > T is an F-map, then the unique map h:X ‘> AM1Z, defined
% ; 4

3
i
{




s S Proof: . For each a € A, the fibre (mz) = uzm) 1.
;fmmm with Zg(,)- But, for each a £ A, Z(,, belongs to

F becauserx. jatan F-space; hence, zy:AMZ * A'is an F—Ipﬂl:e.

Nou, for each pair (a,2) € ATIZ; F(a;2) = z and so : i
£1AN2):2¢ 5 £ (a) *'z!(_)
9 . ﬂn«;c\h belongs to F;.thus, .(f,£) is an F-map. To see that

¢ 16 an Finap over &, observe that, for éach a € A,

- Zl(.) can be ide:n:tfizd with 1:2,

| BIXX * (AT1Z), = axt ) ds defined by hiX, (x) = (-‘,_g(x)) ‘and
, © 80 can be identif:

= R TS ]

vith the map glX X, ¥ Zy(;y Which belongs

Recall that an open covering A = {u Jach of a space A 1s sald to be

‘oymerable if it adnits a refinement by a locally finite partition of unity;

that 15 to say, there. extata 2 f..]uy of maps (A i& » 1} yer such thaty .
) for each X, ‘r%f A& =1 all But a finite number of the A,'s vénish i
e outside some neighbourhood of each point of X and the collection <

A2, 0,11 WeT retines A (every set )V"(c,u 1s contained in some U.).
‘Defisteion 1.2.4. Let piX + A be an F-space and let A = (U,
i = b an open cover aE A. For each cel, let X|U, denote the .ub.p-ca
4 . ® (v )iof X." Then p is said to be locally F-trivial if, for each ach,
pl(xlu )-xlu » u is F—hmomrphic to pr)sUXE + U, over u - If, in

addll:inn, A ls a numerable cover of A; Lhun p'is said to be a mnurahla s

F. Eaca .

Notice that, in view of [7;Theoren 4.8], every mumerable F-space

3y, 25 ¥



X & 'Kas ‘the ‘covering hembtepy. property (CHP) with Tosbes \_‘é’,.to
all topological spaces .and hence, with Tespect to all k-spaces K;
. _in other words, for every map' giW -+ X and every homotopy
CHWeL 4R of peg, g there exists a homotopy  HiMxI > X such that.
pA=H nd Jilweo = g: Hence; munerable’ F-spaces are Hurewicz

mra:mns( ) o £ X

Proposition 1.2:5. Let r:Z 5B be a rumerable F-spacé and let

Let B = {V;} be a numerable cover of B over which T - is .

B BeA
F-trivial, ' Then there exists a refmement of B by a locally

‘finite partition of unity B> 1)y furthersore, for each

‘B eh , there ex:scg an F-] hameomarphlsm b z[v +V xF over vﬂ

Now, 1et A =27y }geq and, for each v e T, define |

‘ 3
T A>T
Y ]

. to be the composite A E ‘ Thén {x.}, . is a locally finite
.partition of unity which'defines a refinement of A; ‘hence, "A

is amnberahle cover of 'A. It remains to show that Te (ARZ > A
s F-mvm over each set f (v ) ‘belonging to' A.

“T6 this end, consider the commutative diagram

HE) Thrnughout this bmx‘k the notion of Hurewicz Fibration is
always reladve to K.

First observe that, by (Lu), TOANZ + A is ’an F-space.




4
|
[, v !
Xt 7 |
| :
i B .
11y ) 5 , ; R
J (v )“%f [\A)
I
|
& |
and observe that, for each ,,L‘,,, 4y induces d ap i
i 1
b 3 M r (vp nzivg > f'l(Vs)nv a8, . = i .
G .
: defmed by 55(' z) = (a,v (z)], which completes the above '
. _ ddagram. Now, it is clear from the definition that 65 isan i
278y ‘F-map, in fact, one’can easily see that,’ since "a is an
: * F-hoscosorphiss over. Vy, 8, “is also an F-hoscomorphism over
! : £, with Fimverse, 2 -

i g (va)rlv XF f (Vs)anVB-

$ 'agfma by &, L, (0, = (-,gg (7). Now Shasive fut




|
i
i
|

£ e F(P,Q), F(e,9)() = *-54. where ¢eF(P',P) and ¥ e F(Q,Q')- ;

Notice that F(P',P) ‘and F(Q,Q') are not empty because of (1.2.2).. ., i

" The distinguished object of G is the object G = F(F,F)..
1 1

i Proposition 1,3.1. (6,6) is a category of fibres: ; 5

““Proof: It'is clear from the comstruction that -G, is a'category.

(rl)f:f"('v,)nzw + (V) can’be identifieq with

) - (vB) ‘and furthermore, ] i,

(pl' )f 3 (Vojﬂvsxl’ + £ (Ve) can be identified wl!h the Lrivhl

F-spice pr i (v!)th (v) "

§3. G-spaces and the functional exponential law

Given a category of fibres (F,F), ‘we vonstruct fiom. F.a

new i:nta;qry G as follows: the objects of G are the function

. spacss F(P,q), where P, Q are objects in F; the morphisms
be’tneen objects -F(P,Q) and F(P';Q') are me induced maps e b
~F(4,9):F(P,Q) + F(P' ,Q) dzfmed by cuq:ﬂsxuon that is, for all &

We must show chat G ‘satisfies conditions. (i) and (il) of (1.2.2.).

To this end, let F(P,Q) be an object of G. Since (F,F) ‘is

a category of fibres, F(P,F) #8 and F(F,Q) #8; so, there exists ) ' i
n e F(P,F) and e F(F,Q)  such that  F(n,9):F(F;F) + F(P,Q). Thus i
G(c F(P,Q)) ﬂ B and condition (i) of (1. 2.2) is satisfied. ¥ i

To see um (ﬂ) of (1 2.2]) is. unsfml. let d



F(6,9):F(P,Q) "+ F(P*,Q') be a morphism of 6, where

s FIP,P) 30d- b ¢ F(Q,Q'). “Since ) isa i 1

fibres, ¢ and y are F-holotop)' equivalences over a point and

o
s thm-ly_st nps . .. ¢ F(P,P') ..and ' € F(Q',Q) s\uh that

S 2 e N F“q and 97t o 1

h:PxI + P be an F-homotopy from ’.{ to" 1, let h':

be- an F-homotopy from % ll¢ to 15,5 I8t K:Qel 5Q be an

F-homotopy from y .y to 1p wid let KiQix.+Q' beian
5 4 i & e

F-homotopy ‘from ' jy-L' to ‘1q,. Then dogine AL
“H:F (P, Q)-u - rw«m’n--r(v'.q I« + F(P',Q" )/
///

t) = kt'!'hz and H'(g,t) = k'l'l"h". Since the ld]omts

of. H_and ‘H' <an be identified With the composites

) 1pp, % 1'“, @y ety k.
F(P,Q)xPxI —— F(P,Q)xPxIxI F(P,Q)xPxI—s QxI~»Q
® o e, e Teeer,q') s
and F(P',Q")xP' xI ~————> F(P',Q")xP! xbe

e'xl K
1 .
F(P',Q')xP'xI—> Q'xI—>Q', respectively (here a:l + L' is

£ dlagowal g e 554 (6% are evelmtine:mene)i i H el B

‘are continuous; furthermore, because Vutn F(h".k‘) and

= F(h’.k"). for each t eI, H and H' are G:homatopies
over a ,;om. Now observe that H(-, i ;'l v -
L Fou, HE-,0) - F(l 19 ep, o and. W (-,0) =
Fo ™) = GG AP Fllpuslgd = Tprigey; .
hence, F(4,4) and r(.'},y")' are invexse G-homotopy cquivalences. //

}
{




Observe' that'if we restrict aboveto . the

s full subcategory, withiobjects F(F;P); for r'aq"objué of F,.0

. then ve again get a

tegory. of fibres,’ denoted. (6*,6), which we
call ‘the as i S i
We now cmsn‘uct an’ mpnrcmt‘ type of 5—5pace, as glven in [4],
and sxamme _some* uf its: prdyernes

=% 5 . Let 2 "be's space and def: ,z’ to be the set 2 U (=}

c:z‘

“*topologlzed a5 the k ificdtion of the following tapology

is closed if, and iy if, C=2" or C is closed in r Then,

identified with djiap | F:Y 2" défined by,

L £y); if ye A%
£ly) =

k =, otlerwise:
H N i ' - - . S
Let q:Y+A and T:Z+B be F-spaces, where A is/d

Tl-spece (every singleton set is closed). thm the set

j e ‘ : ; oy i
8 y 5 g . o
U fvas U or g AT
LA g g § “  aehgbeb. H P il

® Bl b . and define a function J:¥eZL(Y;2")" by 15(579) - £y, if

fzya’» 2, and J(H) = ® otherwisg!. - The copdition that

A s 'Tl ensures, that each £ e Yoz nas' closed domain when
considered as'a pnrual pap from ¥ to 2,/o topologize’ YaZ with

'th; k- lfxcauon of the initial topology wifh respect to ; and the

furiction’ qari¥+Z.> AxB, defined by qur(f:Y, +2.)'= .

b

!

any map. f£:A ¥ 2 defined on a closed subspace A of Y can'be .o




Notice that, becatise L2 ") and AxB are k-spaces, the k-ified

initial mpalngy nrn Y'z is )ust‘ the. injgial- topology in ~ K with ST e

rospect b0 ] .kl qer. " Purthernore, TF for cach. e:A “ad- B 5B ¥ 4

ve consider:the’ constant F-spaces a|¥:Y, +a and r|Z,:z;+b,

L then the fibre of qur “over the'point (a,b) ¢ AxB is the’ space
Y,*Z, of all'F-homotopy. eqmvalences Y, + 2, over a poine,

5 * )

topslogized with the initial-topology") With respect m,‘v.he, function

Pz L2, b : R

: " Proposition 1.3.2. quriYaZ -+ AxB

.
Proof: - For eich point; (a

"y | * homeomorphic to FY,,2 ) Nov, the-identification of" the undeuymg

sets is clear.’ To see thit hq topulog)es are the 'same. ohscrve thac,

o - for any space Wy a furi >V ez, s mntxn}wu{xf

and only if, the same’ function gJI + FOY zh)/ is continunusV//

1 . Pry e

1 . R and q-zr tﬁp composites v.z-—> AxB_SA and il
i QT N 8
i : j—;l % u.__pn, respectively. - . ¥

2 coren 1.3.3. " (Functional Exponential i) [4; Lemma 1, 2])

y:X-vA,"

Y+ A and 1:Z+ B be F-spaces, where ' A is Hausdorff.

The function that assigns to each’ F-map (fl,fn)‘:qp >, the fibre




" preserving map’ g AT over A, @uﬁnéd by - _(i)(yJ = £,y

is a hmeomntphlsm N

BV:F(gp;r)' &L (P;qr't) 5
Here: L; (p,4,7) denotes: me space’of all Fibre ‘preserving maps’

p + QT [hat cover. LA * A, tupolagued as.a subspute of

Lk Y2y, he ’l'heo’rem s illustrdted by the following

Observe that each. g:X + Yoz ‘over A defermines the

carrespa'nd;ng £:X * By las the cnmposxtE qu,reg. o

"Proof of 1.3:3. Let (f fu) qP 1 be an F-mp. Then

CEIXAY 42 ds such nm, for ‘each " x e X, £ [(xm{]x p(x) B zf )
belongs to T'(Yl,(x).zf (x)) Thus) fot each x'e X, 3 g
_e;f OB AR fu(") belongs to Y4z “and.so OCE)iK ¥ e

is a function over A. - Becaise’ Y+Z ‘has. the initial topology with

réspec{t to qsr ‘and 3, the conunulty of ' B(f ) is equivalent to

the: continuity of :he composites - T 8(f)) aﬁd i e(f ). But,
. since for each x ¢ X, B(fl)(x) ™ zf @
Cgare e(fl)(x) = (p(x) fo(x!) =(pf, )(x) nnd herice, - oz~ S(fl is

continuous. “To;.

see that J20(£)) is conunuons, ‘observe that the
: e :




;i3

LXIR Y Blld )lBllce, f X'HY -~ Z can- be xdent1£ud \ﬂth the m‘p

: if (xy) e XOY

otherwise.

et m)

g & Bl EEGILEOR,
Now observe that ' 8(f)) i=

s b fh
'l'he injectivity of 6_ is imediate.

urj ecuve, et

|To see that ‘0 is
+ YaZ ‘be amap over A

Then, the composite .
LjegX ml.(Y 7 ]

is cnnt)nuaus and cattespunds by a.x Jito.
(J 8)1XY Z 5

o

defrned by

OO 1F ()

a

-, othervise

. g “But, LRc] g) can be identified to'a mp £XY N
SR W B "s(X)(y)~

s e mF—mlpwlth e[f]

defined -

The’ fal:t thlt G

commutative diagran '




! respect to J.. VA - =

map: s:A + X such that p-

H(-,0) = 5; H(-,1) = 5" and H(-,t) € secp, “for all teI.

we' Dbtﬂ.n

Fla,m _-—“E—Ml (a7

Xero ot i PR

. B - ;
'L(‘X’SY»Z’)—.»L(X.L(Y.Z‘)) o

“where A: F(qp,r) - L(XxY,Z) is defmed by ACE) = £ and *

Jut 1tp.qtlr1 S Lo,z st defined by " j;(g) =3s 2 ‘and

the observation that F(d,,r) has the initial topology with

respect 0 A and L (p a*) ). l|as thf l'nltxal toyulogy with -

let p:X+A bean F-space. By'a section to p wemean a’

We denote by secp;  the space of

all 'séctions to ' p, topologized as a subspuce of L(A,X). Given

two sections s and s' to, p, 'We say that' s is vertioally

* homotopic to s' if there exists a homotopy H:AXI > X such. that

Taking p to.be the identity on-A _in (1:3.3.), we obtain

borollarl 1.3.4.. The function that assigns to each F-map

(£,£):a 7, the section s to qur, defined by’ @O = 50

ye Ya’ “is a homeomorphism

3 e;r(q;r) > sec quyr

: 'l'nku\g 5 oy the projection map. prAXI YA in'(1.3.3:)




Proof: Observe that Y «Zs sec cx\r, where cx

‘.Co‘rollu'[ 1,3.5."A pair.of Fmps . (£),£0) ‘and”, (gj:g) from g

to,. ;" are-F-homotopic if, and only if, their corresponding sections

to axf ‘are vertically homotopic.

Corollary1.3.6, [Givén a A, the fibre Y v Z of aqur over
@ is a subspace of mra Z). -More precisely, it is the subspace

F(c,x), - vhere c:Y_ +a.
=g £ B 2 9

T2 izgt

1

by (1.3.4.3, sec ewrz Fle,m) € LOULD.

Tet' T:Z +B -be an F-space and let £A+ B be a map. By )

!
alift of £ over T wé mean amap giA &% suchthat r.g = £

We denote by Lift(£;r), the space.of all lifts of £ over =, '

“topologized as ‘a subspace of L(A,Z).~ Given two 1ifts g and. g'

of f over 'r,we say that g is vertically homotopic to g' = if -

there exists’ a-homotopy H:AxI »-Z such that H(-,0) = g,°

H(-,1) = g' .and .H(-,t) € Lift(f,r), for all- t ¢I.

Proposition 1.3.7. Let r:Z+B be an F-space and let £, g:A + B

be maps. Then there is a honeomorphism betycen (i) the space Gf

" all 1ifts of (f,g) :A +'BXB  pver rir:ZsZ ~B¢‘ and (ii) the.

space ‘of all Femaps from xgiAMl Z + A "to TATZ > K over A

‘Here (£,g):A DX _is.defined by (£,g)(a) = (£(a)}g(@)) -

e : sl A v

s



 Proof:. By setting q = B, e £:A B and gy <k >3 in
(1.53. ), ve'obtain 3 homesmorphisu :

e o:F (rf,r) + Lm((f 2, rﬂ‘)‘ Tt ° &

as illustrated by the fqllnwin'g diagram: " P 1

. : . Now, consider the following pullback diagran. Yog - e

¢ i -vAnz‘v-—-r.__.\ 5 = )
. . oS g N i 4 A -

A—— 3B

+o7 77 vand obsérve that, by the universal property of pullbacks (see (1.2:3.)),

théde éxists a homeomorphisi i (rpT) + Fy(rgix). The.required

Homeonorphisn is now given by the composite ¢-67%. // . -
$ As an ‘immediate consequence of (1.3.7.) we have the following —
Tesult: * !

Corollary 1.3.8. Any two F-naps 207 x‘~g over A are F-ﬁumotuplz Y
'1f and only if, their corresponding 11fts of (£, g over Tar

are vertically hmlutnpu:. &
: . :




Y
a'eA!.b'eB'

17
. v L. £ 2 i (l
In the remainder of this section we shall discuss Some results,
| hich i1l be needed in the sequsl, about finctional G- spaces and,
in partn:ular, about induced functional G-spaces.
Proposition 1.3.9. let q¥ + A i »'B be.F-spices ‘and let
EAV+A and giB' + B be maps.%tnthe induced F-spaces
. qffA' .Y > A'- and rg:B'I" Z +B en the functlonal G-spa:e
Ag@r (NI DAEI M Z) 5 Ak i3 G-lomeomomphic over A’ to
the G-spice induced from qsr:YsZ + AXB by the map £xg:A'xB! + AxB.
Proof: Recall that (A FLV)+(BM2) = U F(?'va(a-)'b'*zg(b')’ =

a'eA’ ,bieB!
avaH'w(“ B a1y Zy ) B .

J(ADBY) T Yez = L0 ,6") W jasrm) = v(f(i'],g(b‘))k

(a b’)XF(Y hence, as' sets (A'H.Y)-(B'I"\Z)

f(a')’zs(b'J"

o 3
_and (ATXB'Y)F YaZ coincide, T see’ that the topologies are the same,

observe that it is sufficient to show that, for any space W, ‘a E
function W (A" F\Y)«(B'MZ) is continuous if, and only' i, the

same function W > (A'XB')F YsZ is continuous.® ‘S0, let

YW >(A'HY)#(B' M Z) be a function ‘and assume that ¢ is’ continuous.

Then, by (1.3.3.) and (1.2.3.), o obtain the following commutative

- diagran jof F-naps

5 Coat i
‘((—f—k'r\Ye———Wr\(A‘r\Y)—‘—) B'MZ—>2

e ,qu % 1(“5% J,g l
lf Ky " 1%y

Aetine—F — W % spE,p




Ay ‘

Where K| = (9T Ky = (4T v md ¥, (@)

‘y(at,y). Applying (1.3.3.) to the F-map (g-v',g-k,):(ag) 1* T,

Ve now obtain a map ~¢:W + Y+Z Which factors as the composite

LW g
W—> (A'xB') M Y42 ————> Y+Z. But, since (@1) gy

={kiiky)s
the f61lowing diagram commutes )
(APBN M Yaz Yozo-
() @ g l i > Py
: BRI 70 IR <. S QY A

;and hence, by the universal property of pullbacks, ¥:W + (A'XB')M\YsZ

1s contiruous. This®argument is clearly reversible. //

k Proposition 1.3.10. Let qi¥ & A,.q" Y 4 A, T:Z 4B ol
SEET BE e Fleacis SutHERGE b s homntopyesdutvaiant o q
over A and. T is F-homotopy equivalent to r'. over B. .Then
Q¥T:Y#Z + AXB 'is G-homotopy equivalent to ' q'#r':Y'+Z' + AxB over
; . By \ )

AxB,

Proof: Let f:Y +Y' and g:Z~+ 7' be F-homotopy equivalences over

A and B, respectively. Them there exist F-maps

£y 5y and g7liz' %2 over A and B, réspectively, sich that
-1

. = P . = 'l. 3
£ =ply over A, B2 s, over A, ghg %l over B
and g-gl &l over B. 6, let (hpr)iaxip+q bean

: : 0o
F-lonotopy from £1-£ to 1, let (h',pr,):q’xl; + qi (be mn




|
/i

/
F-homotopy from £:£7 to 1,5 let (kipr))irxdy »T be an . - -
Fhomotopy from g g to 1;; and let. (k',pr):r'xl b
o Ehosotopy from. gigiF “to 12._; Now, define a function
FEL,g)¥ez + Yh2! over A by the rule F(El,g)(9:Y, +Z) =
8l2,-9-E ¥, . - Then, for each pair (a,b) < AxB,

Fee L |Forzy) = r;f“[v;,slzb) which belongs ‘to
6(F(Y,,2,),FOY,7)); hence, F(£™,p) "is u G-function over Ax,
Since 'Y's2' has ‘the initial topology with respect to ° :

QY - A and 30zt > LY, 20Y), FEL g s

~ chatimdous if; snd caly 32, the'composites '(q'sr')+F(f ;) and.

5F(E),g) are continuous. But, (q'+r').F(€71.g) = qsr which
is continuous. . To see that *j'-F(£™,g) ~is continuous, consider-

the following' comutative diagram

=3 s

F(£ .8) .
Yol —————————3¥taz' - -

Le g N

j 5 LJ'
LY, 2y ——— i, @0 Y-

where g':z" + (2')* is the map induced by g:Z+ Z' and =

LE%,g") 15 defined by composition of functions, and observe that
the composite (£ L,6%5 is contimious; hence, F(fLg) is
“a.G-map over AxB. ‘In a similar mamer, we show that” F(f,g”):
Y'uZ' +YeZ i3 a G-mep ober. KxB. “Noy dnf{!;e y

HiYsZxI > YeZ. :lnd H':Y'a2'T Y"vtl'




“

by Hp, )% Flhy,k)(9)  and - KUy 1) = F(h kD (') ' Sincef for

each t'c I, h. and hl are F-naps over A and k. Riri_‘k; are’
Fenaps’ over B,. F(h ,k ):Y+Z »¥sZ and F(hLkD:Y'aZ' + ¥'s2! are

G-maps over AxB; hence, the following diagrams commute

; T
Y*ZX[#Y'Z g, e YT LA e Y42
qerer - qur BER qrrt
(axB)x1 2515 AXB (AxB)xT P’—l. als 7

and so; (H,pr;)iastdly > @i and  (H',prp)iqiartxly s qler! are

G-finctions, Now, because of the topology on’ YsZ, H is Comtinuous ...

if, and only if, qsr-H and. j.H are continuous. But,
qur.H & pr)-(qatxl;) which is continuous;  furthermore, since (

the adjoint of j-H can be identified with the composite

" Jx1,xp * exly k*
YAZ0UXT Y > L(Y;Z%)¥¥xIxT .WL, L(Y, Z¥)XYxT —> Z*xI-5Z*

i ; ;
(here,: A:T + IxI is the diagonal map, ¢ - is the evaluation map and
k* ‘is ‘the map induced by k:ZxI + Z), j-H is continuous and hence,
(H,pr)) is a G-homotopy: In a similar manmer, we show that H'

is continuous and hence, [H‘ ,prl] = is’also a G-homotopy. Now

observe; that H(7,0) = < Feetog g ) F(f'x“')-F(f'l.g), u
H(-,1)- = r(xy,/ =ly,, and H'(-, o) Fe-£! =
Fee ,g) F(e,g™Y), B (-,1) = F(y,u15) = Ly, 05 hence

and F(f,g 1) are inverse G-homotopy equwal.ences

over -AXB.




By adapting the proof of (1.3.10.) to the notion of

F-honeomorphism we have " the:following result.

‘Proposition 1.3.11. Let q:Y >4, q':Y' + A, r:Z + B and -r'%

be F-spaces such that q is F-homcomorphic fo q' ‘over A’ and ' T
is F-homeomorphic to r' ‘over B, Then qur:YuZ -+ AxB is

G-Honeomorphic ‘o qUer':Y'+Z" +AxB. Over . Axb.

‘Proposition 1.3.12, If q:Y.~ A and 1:Z +B are trivial F-spaces;

then g#r:iYsZ + AxB is a trivial G-space.

Proof: Since q is F-homomorphic to prj:AxF > A over A and
. is F-homeomorphic to pri:BxE+B over B; by (1.3.11), qir
is cihemgomorphic to pryspr; . over A< The result fow follows
£rom (1.3.9.) and the Observation that both yrlexF +A and

PT:BxF + B’ are induced fiom F o+ by constant maps. /

Proposition1.3.13. Lét q:Y % A and riZ +B be nunerable

F-spaces. Then qsr:Y+Z + AxB 'is a numerable G-space.

Proofi Let A= (U} ., be a nurerable cover of A over which

_trivi = v
@ isF-trivial and let B = {Vy},
overiwhich r is F-trivial. Then there exist refinements of A

be a mumerable cover of B

and B by locally finite partitions of unity “V:A + 1} and -

Yel
{ngiB+ T)g s respectively.. Now, Tet C = (uﬂxva)[ms) chxpt 20
for each pair . (y,5)elxT', define 7 : ‘
Ty, B > T

{

1.
|
1
|

P e




2
% 3 oA v Vs
to be the “composite 'AxB——— IxI—>1; - where v ‘denotes .

maltiplication Of real numbers.. Then {r( o) o op IS

- locally finite partition of unity which defines a refinement of “(;
hence, C -is a numerable cover of AxB.
To see that - qer is G-trivial over each set Uxy, i G

‘observe that since q|(Y|u ):Y|u, +u_ is F-homeomorphic to

o
S PryF vy, over y ad x| (@[ izl + vy is Fliomeomomphic

. to. prx:vaF~vE over va, by {1.3.12“). \ -
q| (\{|un)v.x-}(z|vﬂ):v|uﬂ-.z)vB % UV is a triv.is] G-space and heice,
i HOR U V. oti
G-homeomoxphic to pry: (U ) xFeF + U xV, over U xV,. Now notice 4

that 'an-ZIVs = \r.z|uﬂxvﬁ and q](Y[llu)-r(Z[V!) = an|(VoZ|Uﬂ,VB). Vi
Notice that, if .¢_:UxF = Y|U . is an F-honeomorphism over

: 3 i e v n
U, ad ygVF T2|V, dsan F-hosomorphism over V,, thena

G-hoseonoxphisa (6 .. (Ux¥)xFsF + Yaz|UxV, can be eplicitly

given by. the formula
— gt
s(u'"((l.b).f) = ¥ £4

where ¢7!, deriotes the restriction ¢ '|¥,:Y 4 F and vy,p demotes

the restriction y |F:F + 7. Hence, as a consequence of (1.3.13.),
(i

we have the following result. K

Corollary 1.3.14. If q:Y+A and T:Z+B  are numerable F-spices,

then the -initial topology on YwZ "with respect to the functions

§i¥sZ+ L(Y,2*) and Qsr:YsZ > AxB coincides with the final topology

on YiZ withrespect-to the-injections 0 o:(U XV IARE > Yoz, -




|

"to those of fusctional G-spaces, More precisely, if q:Y>B and

to be the G-spate induced fron QwriYaZ - BB by the diagonal map

(a,8)eAxA' . Here, the notion of final topology is relative to K.
By considering F-spaces with-the same base space we can construct

2 very special type of G-space whose properties are closely related
T:Z + B, are F-spaces, we define

(qr) ) g + 8

£ 8 s o, - gr(\'h.ih). topologized With the initial 5, &

w?ology with ns‘?ect to . Ji0Z) g LY,z and dlﬂ::ﬁja:tion map : |

(‘I’J;mllp +B, Notice that (YZ); is a subspace of the fibred i

mpping space (YZ) defined in [2]. We shall refer to g ;

(@) ,_;:(vz)F +3 as s functioal G-spice. "o : ¥ J
If've set A =B and £ = piA+B ‘i (1.5:3.) we get the

follawing particular yersion of the Functioial Exponentisl Law.

Theores 1.3.15. Let P:X =B, g:¥+8 and r:Z+B be F-spaces,

vhere B is  Hausforff. The function.thet assims to each F-map

(£,P) qu + r, the fibre preserving map gip + (V’F over B,
defined by g()(y) = £(x,y), is 2 homeonorphisn '

iR @) + L)y - ; S e
éminﬁ_ p= 148 dn (1.3.15), we obtain

Corollary 1.3.16., The function that assigis to eich F-sap
the section S to (qr)y, defined by

fiq > over- B,
*




s = f(y).‘} e Y, is a honcomorphism .
8:F)(q,T) + sec(ar)g

Setting p = :BxI'+ B in'(1.3.15,), we obtain - ¥

Corollary 1.3.17: A pair of F-naps. q +T. over B are F-homotopic
if,and only if, their corrésponding sections to (ar)p are

Vertically Homotapic.. o ¢ * w2

! The fnllowmg result is a consegiunce of (1.3. 9

. Proposi fion 1. 3.8 JLet "q:Y +B and 1:Z +B..be F—spnces and

let £:A+B bea map, Then the f\mctional G-space .
(9g) e (ATY AHZ)F > A is G-honeomorphic over A ‘fo the G-space

induced from (qr)F by the map, £:A > B.

Proof: Consider. the fnllnwx_ng ‘commutative diagram
) » o p
(ARVY AF1Z) s (AT Y) 2 (ATV D)5 Yo'
(QgTglf i | eetTe” =
g = *f E
A Axp BB

and obsérve that, by (1.3.9.), the right square is a pullback’
diagrdm and by definition, so is the left squue; hence, the
composite square js.a pullback diagram. But, chserve that the

following commutative diagram '




i
i

POy . SIS Y

i

= ano, o Yz R
j (R @g _lq-r 3 i
A £ B BB

is also a composition ‘of plllblck diagrans and A<£ = (£¢6) - 1
hem, by \lxiq\lanus of induced G-spaces, (*9,, is G-ho-eumq:hi:

.t (@r)p, over A. / o . -

The mext result is proved in the same -mamer as (1.3.10.), - .

Proposition1:3.19.  Let Y +3B, q IR B, mZ B lnd" A
<be ‘F-spaces. such that q is F-mmmpy oquiVlhnt to” q', ovgr B’ :
and T istmnpy eqnv-xemm T wer B. ‘Then ('qr)F(YZ)F-‘B
is G-homotapy gg..m;m: (@) (v-z-)F 8 over 8. >

The following result is a consequence of (1:3.12) and the

_definition of ‘(qr); as the pullback of dqer over the diagonal map

al

Proposition 1.3.20, If g Y-8 and iz -8 are wivial Fspaces;

then @n)p(YZ)p+ B s :nmx G«spua. 5

From (1;,3.13.) and (1.2.5.) ve ohuh:/th‘ folloving result,

Proposition 1.3.11. If q:Y =B and TiZ + B are nuur-b)e F-spaces,

uwn S [vz)F» B is a numnbxa G-space..”

Bancq. as an immediate consequence, we have-~

Cornl]arz! .22 1F qXBoand 248 are nusersble Fospices,”




tial wpology on (17.)‘F nch rospsc: u: the ﬁmc ions

o> m,z) -u @ mr;*; cotncides nth the final




- are ébjects_and ‘of ‘the

Definition 2.1.1. ‘ﬁ Fospace

1F-':n\/engg homotopy. Erogertz [ahbrwmted F.

“to'an P spudaigiyis A/i or evcry Fenap, (f 8

6 3 p and
5 ><1 -*(B of £ there e)ﬂsts a. homntﬂpy ,

ew’léry homotopy

HiYul » E of f such that (H h) is @n F- holutnyy. 1f]

" has the F~covering homotopy pruperty wu:h resyect to ali F
then p. is ,caned an F-fibration [14]..

gmsltlm\ 2 15 z E\'rery'F—fibiar.iun is'a Hl‘zuuicz»fih‘ratinn. 2




"and.gea = f. This gives rise to the following diagram

8:(WE)XT + E Such that B(-,0) =

very useful in this' regard. *

" To this énd, consider ‘the following pullback diagram.

" and observe that, by. (1.2:9), py: NNE > W is an F- -space and

(2;8): Py p is an o ~map. Now, 17‘ MW s not, in general an
F-space but nnnetheless, by TG ntvarsal property oE ol et

in K, there’ does ‘exist a unique map N + WIE such - that Pgd =

Wel . B A
8 oxly 2 - i

Which'can be completed, because p is an F-fibration, by an Fomap

Now set H = B (axl;) -and
observe that H has. the required properties. //
Although the notion of an F-fibration is, by @12, a

generalization of the covering hodotopy property: 1 { the categozy "

. of k- spaces, it is difficult, i general, to Tecognize whick

F-spaces possess this pmpeuy. “The following theorem will px‘ove

W




Theorem 2.1.3. The'following stitements are equivalent:

-(;:)‘psu

e Lliere exists a homotopy G

triangles commite: :

w1 $ pa g mdhe is the composite #xI § BxB PI28.

aeh.‘.m/w\ '

“is an. F-ﬁmﬁm. -x

(4 phas the F-eoveting huotopy property with respect to all

“F-spaces. induced £rom p.,

i) p-p EeE = BxB is a lluxaucz fibration.

) Pmuf, (i.)ﬁ(uz)- Let W be any spue. Givm a map

£ ll + EsE and a hemmpy G Hxl -+ BxB of rp we must show chn

T EE. suck: m-c “the fouuumg

. ma-—_—_;a-z gt
1 S = [ psp
A uxx’——:{ha

T8 this end, let E )n'), Vhebe! b 13 the soRposita -

By (1.3.3.), the ‘completion of the sbove dnm. is eqd\m!en'.

to the ‘completion of the fnllwi:lg dhml -

E<_L_mxxmf-4.€._f_, By

(3 n)ns




whete hy = h(-,0) = p'lp~f higi= hi(+,0) = py, p.f.a}.d £60,0,y) =

£60,0007), ek, yeB. .Now, ‘since p'is an F- f)btanon, the homotopy

, h':WxI+ B of h'g can be’ le‘ted tn a homota‘py H"(NﬂE]x[ - E of f' =
such’ that H',h) ¢ ph x 1y pis an F hmlntopy. ¥e shall show . :
%ihat there exists an F-mapu (WXI]HE > (WﬂE]xI over wxl such that’
' af (Wx0)nE

(WXﬂ]ﬂE Then set.8 < H'-a and ohserve that 8 has the

S o
required propertles. Y o oy i N g
We: construct the F-map a’in ‘the followmg Way. . Consider™ the

piiliback diagran- ke o

2 " 4 & . i !

3 ¥ ) S(WXDAE ——————>E

wone,s) = (hon, 8, e 2 0

e i he, s <o

Sincs p is an'F- ﬁbrauo‘n t.he “homotopy h* of h can e nfud Yo

7~ a homotopy e (UDEXT > E ot f such that (A,EY: ipyxly +p is an's
F-homotopy. Now, define -an F-pdp ¢: (WxDE > E by the Tule

5 . g, t,y) = H(W.t,y.t), where p(y) = h(w,t). Then P g(w t,y) =

PHGGLEY, ) = bR (P ) (wit,y,t) = h*(w,t,) = h(4,;0) and S0

the following diagram commutes: “




§

But the composite square is, d pullback diagramof F-spaces and
hence, by (1.2.3.), there exists a unique F-map a: (xINTE +

(WE)xI'over WxI such that @ = (p,g). Now observe that a(w,0,y) =

: \
Ay 050,¥), 80,050 = 4, 0,(4,0,y,00) = ,0,(w,0,7)) = (,0,y). -
e : :

(£d)=P(id): .Given'a space W and a u;ap £iH B, Let (8):8)):P¢ +P.
be an F-nap, and let g:WxI'+ B be a homotopy of g We. mist gho; ’
that there exists a homotopy G: (WAE)xI + E of g suéh that, )

is an F-homgtopy. . g

Tothis end, consider the following commutative diagram

i

[ Lo
1
B g e qunE)xI- -~ & -
lp Boas g . '[,vgly £
e £ pIy WXL Al A

and observe. that the existence of the required homotopy G

* completing the above diagram is ‘equivalent, by (1.3.3.), to the

‘existence of a homotopy G':WxI + EvE completing the following 4

diagran: _

& 31




=

\

!

Hord, g',(450) () = g, G¥). . But G cxists from the assumption
on pp. : 2 o

(L) P (&) Lot qi¥:> A be an F-space, (,f‘l,fu):g + p an F-nap
and h:AXT » B a'homotopy of £,. We must show that there exists
a homotopy H:YxI -+ E of £ such that (H,h) is an F-homotopy.

" To this end, .cohsider the follawing pullback diagram
. :

‘ . ) . o . ;o
and observe that, by (1.2.3.)) there exists an F-map o:Y > ANE
such that p; -a-= q and fom = £). Now, by assumption, P has

0 . . :
F-CHP with respect to all induced F-spaces and so, the: homotopy

RAXT > B of £) can be lifted t3a homptopy K (ME)XI » E of )

such that' (R,h) is an F-homotopy. Set H = fi:(ax1;) and observe

that H'has the. required properties. //

\

|
|
I
{
|
i



~Notice. that the proof of (4)=D(i

ldapted ta the more general situation of twp different F: thrat)cns,

: y)eldmg

Proposition 2.1.4, If q:Y 5 A and 1:Z'+ B are F-fibrations, then
QUEYaZ 2 ABLis 4 Hurewicz fibfation. . 3
As a consequence of this result we have the fouwmg

generamed version of the relative covering horotopy property in

the categoty of F- ﬁbruuons

Cofollary 2.1,5.° Let/a:¥ +.A snd r:2.3 B be F-fibrastors and let

(f], £)):q + 1 be an F-map.: ‘Let W be a 'closed subspace of A
such that the inclusion W > A is’a cofibration’ and let .(f,h):

qix1; + T be an F-homotopy such that Fg = £, 1CY W) and 1 = £ |w.

“Then, for every homotopy H:AXI =B of £ with H|WXI = h, there is

@ honotopy :YXI'™> Z of £, such that (R,H) is an' F-homotopy and-’

A vwery = e g = ,

The “result is' illustrated by the following diagram: . o

YUY | Wx T
qu‘q]Hxli o'
- AX QUK

© 33
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Tyt e ".,Axoum—_;v.z e st 4

w= __EIL_..,A )

vhere £(,0)(y) = £,020)} ye¥, and g(,0)) = v, %) yeu. o
H - That the latter disgram can be completed follows from (2:1.4.)

and lzv Theoren 4]. /l 3 5 e 5

Proposition 2.1.6. Let p:E * B be an F-fibratien 'afm. let £:A+B °

= “be .l‘_p’.» mn'p AME + Acis an F-fibration. | =

Proof By (2.1.3.) it is sufficient to show that pepes (ATE) (ATE)

s Hurewl:l fibration: 4 WESENE Y

! Nw. 'smr.e p is, by assumption, an Fyfibration, PHD:EAE + BxB
PO is a Hurewicz ﬂbmm " But, by (1.3.9.), Pgwp; is G-homéomorphic
‘over AXA to the G-space ‘induced from pep by the map BcfiAxA > BxB;
hence, pgp; is a Hurewicz fibration. //

2 ¥ The x;ext result i5 a generalization of Dold's fibre homotopy
equivalence theorem ([7; Thgorem 6.3]) to the category of F-fibrations:
¥e refer the reader to [14; Theorem 2.6] for the proof; Tecall that

' L Jessn wrmken st F 1 dnesaty ... F-homotopy equivalence over a

point. G5 3 I ¥ 3 . : : 7




S let gi

Theorem 2,1.7. Let-p:E~+ B and p':E' + B-be F-fibrdtions and

# E' be'an Fonap over B, ‘Assume thit B adnits a
numerable cover B such. that the inclusion map V-+ B is pull-
homotopic for each VeB. 'me,n g is an F~l|muotupy equivalence
over B. iy
Nouce that the assumptmn on.B is mvnrunt under hmnotapy
eqmvalence and ‘is - satisfied by sich spaces as CH-compllexes and’
‘ more’ gensrally; by spices which are paracompact and 1eca11y
contractible.
Now recall :'na':,« i£'p and p' areé, Fospaces’ over B, then
Fi(p,p') is the space of a1l Fomaps §+p" over B, 12 B isa
vCF’-complex and both p and p' are F-fibrations, then, by ‘(2.1.7.),

the space F, (p,p") coincides with the space of a1l F-homotopy

_eqiiivalences p + p' over B} hence, as a consequence of (1.3.7.),

we have the following resmi; X . i
PrnEl;sitiSn 2,18, Let p:E > Bbe an F—fiiamxpn end 1ot
£,g:A >B be maps, where A is a CW-complex. ..Then’ mere' isa
homconorphism bobwoen. (4) ihe space of all 11Fts of (F,g)iA~ BxB
over psp and (id) the space of all F-homotopy equivalences
§ Py over A L T 9 o B
. The next result follows umnedxstely from (1.3.16] and the

prévious observation,

Proj bsitinn 1.1.9. Let p:E +.B and p':E' » B be F-fibrations, '
| Eeponation o

where \B i a CW-complex. Then there is a homeomorphism between




J - <
5 36
b t
. B (i) the space of all sections  to (pp JFE(EE')y + B'and (id) the space,
g =y '
. of 311 F—homompy equivalences p + p' over .B. - 5 I
, R Proposition 2.1.10,  Let p:E + B be an F-iibzutln\i’ and let:£,g:4 + B v ) }
. "be homatopic maps, where A'is a CU-complex.” Then pf,Ar\B + A and : |
%, H
] AME +°A ace F-homotopy equivalent over A. 2
roof: 'Let H:AXI-»-BxB.be'a homotopy frem (f, ' (f,g). By . l
(2.1.8.), the F 0y dval L Pg wa, 4
i

iu:ing Qin E4E of (.t avbeowp: Buc, stnce, p daan
F-fibration, by @i PApIEXE + BxB-1s a Hurewicz fvﬂi!atiun;
heticey thers exiits a. homatony, HeAKT-+ Ehitigbdh Einpopegslion B
and B Ax0 = 8. ” The rostriction.of  £6 A¥L now*borresponda;

by (2.1.6.), to an F-homotopy equivalence P + Py over Al /]

2.  Adufestble caregories
5 ] e < ]

'rh'e n’o:ﬂm of an admissible category of fibrations was introduced

in [4] a8 a genm:al franework-fn.which various notions of "Univemul
i fibracion” could be discussed. The specifit problem of existence of
Free Universal fibrations in a general theory is taken P i [14] within

the context ‘of F-fibratios: In this section we give a u.mpuﬂ:d

{ > uuned to the ori ginal }encept”l’he gener.ll theory’ oE A‘fibr.l:lans »
,naw-ricruces to r.he general theory of Foftbrations. . £

Definition 2.2.1. An-admissible category of fibrations is a-mon-empty,
full subcategory A of the category of all F-fibrations over CW-complexes

and F-maps, satisfying the following axioms:




A If £2.+ B belongs to -A; A isa Ol-complex-ghd
g a mip, then the induced F-spice s
TgiMIZ > A belongs to A
A2 - 1£ 1:2 > B belongs to A .and q:Y + B is an
F-space such that q is F-homeomorphic to T over :
) B ’th‘en q belm’\gs to At s
We call the .objects of A, Afibrations. Notice that,
because. of (2.1.3.) and*(2.1.4.), an admissible category of
_ fibrations can equivalently b dekinied as-a non-empty; £l «

subcategory A" of the category .of all F-spaces over CW-complexes

m;d F-maps, satisfying axions AL, A2 and an addiEiondl axion:
A3 IE YA el Brase A-Ebrations, then
GeTIY4Z + AxB is a Bureiics fibration. s
This i essentially the dstiateion of winissibitity in (4],

i the slight difference being, that in [4], the functional G- s‘pacaS//

air: YsZ = AxB'are required to have the. cévenng hg\mtﬁizy prnperty N
with Tespect’ to all ‘CH-complexes ,mzqsﬂ say, qur is 4 Serre T
fibration. In fact, /ubseﬁe that if the notion of F- f;hra:)on is P

bration, that is to say, the

g!ne/a.hitfd to one of weak F-
/ F-cuvenng homotopy. property with respect to all F-spaces over
Cw-coﬁplexes. then (2.2.1.) with this new concept 4% actually
cquivalent to the definition of adnissibility in [4]. “Indeed, ;
one can casily verify-that the statements of (211.3.) and (2.1.4.)
remain valid if the motion of F- fibration is Teplaced by weak

‘va)hratlon and the notmn of Hurewicz f)l;ratlon by Serre fxbraticm




" fh any uvenr,, it is elear that (2.2.1. ) imltes adnissibility i ] 3
‘the 5ense§ruf u]A
In the remamder nf this section we present some examples,

both general ‘and specific, of admissible categories of fih‘mtions.

The specific examples we consider are the usual categaﬁey, 5,
‘fibrations that arise in practise. " o
Ganerg)/ﬁnmpl%
! D ]

1, “F3 Lbratjn Let’ A denote !he category of all F- thranm\s »

over Cl
P

-complexes and F-maps." AF is cléarly the largest admissible

cxtegury of fibrations. -- i s

« t -
2. ‘Trivial F-spaces - Let AT denote the category of .all trivial

14

F-spaces over CW-complexes and F-maps. A_T clearly satisfies

axioms Al and A2, and by (1.3.12.) and (2.1.3.), every trivial . —

F-space' is an F-fibration; hence, A is adnissible:
v & L E R i«
: ce " 3. Numerable F-spaces - Let Ay denote the category, of all mmerable
F—spnces over Cw complexes and F-maps. If p:E + B is an object of

“Ays then, by (1 3.13.), prpiBak + BxB is a nimerable G-space argd

Ve " consequently, by [7;. Theorem 4.8, a Hurewicz Fibration. ' But, then;

p is an F-fibration, By (2.1.3.). Now axion A2 is clearly satisfied

(
|
»

|

and the verification of Al follows from (1.2.5.); hence, ‘N is

adnissible. | o2 '

.0 i 3




» et o =g 8 i :
y % The Category AP ~ Givén an F-fibration p:E * B, where B is

a Ci-complex, let. A, demote:the category consisting of all the

F-spates ‘over’CH-complexes vhich are induced from p and all the

Co F-spaces over CW lexes which are F- Sor

to a F-space

i induced from p; Then A is 'c1en1y an admissible category of &

£1brations with dxsnnguuhed object p. Notice that if p s a trivial

: 3 - Fospreny then A 18’ the sua11sr "aduitan b1  category of |

¢ Specific Examples / o

. (- 1

rewicz Fibrations - Let (F,F) be he category whose objects
are all .pu‘g. of the homotopy type of. a‘fixed space F ‘and whose
g g NEE . ncrphismu are all homotopy equxulences. Let Ay denate the

e
category of all-Huréufcz fibrations over cu—camplexea vl:h fibrés

| pEe
" tegory (F, F). /£ p:E> B 15 an object of Ay then, by

Corollaty 71, prpi E’E + BxB is a Hurewicz iibu:mn and so
© by (2.1.3.), pis a F-fibration. Now Ar cleurly satisfies axfoms

Al and AZ; hencu, AF 1s adnissible. E ]

Numerable Fibre Bundles [7’] - Let G be a topological group

‘and let.F'be @ left G-space on which G acts effectively; that 1s

¢
to say, there exlu:- 4'map. 1:GXE > F such r.hat

i i L@ (g'-g,y) = u(g',u(g,y)), for all’g,g'eC and all yeF.,

(673} @"‘e-” =y, for'e = identity of G:and all yeF
&4y, () = 1ge',y) 1f, and only if, g = g', for all

,8'€C and all yeF.

2




i mdicm @id) is the that G is an

(nf functions. < Now, it is easily verified that the map y' is a group
homomorphism and horeover, because the’ action of G on F is -effective,

. W' is-injective; hence, as groups, G and F4F are isomorphic.®

ons. (4) md (L) arg just the Statement dnt G acts on F,

i ical

mup. 45! e
We shall-denote the ‘image (8.7, G,yeF,’ by the -ultipuutlva

notatién gy, Then, by (1.1.1.), there exists:a 2y

e 2156 > LEER) L - ¢

defined. by it (g) = P E, hie LIol 8-y, for geG,yeF. . Denote

“the " image Of Ut n L(F,F) by FeF arid abserve that F4F-is a growp.

of iodingnorphiLans o6 ¥, the growp, structure baing given by composition

For this Teasom, G is frequently referred to as an effe

topological transformation group of F. ” % d =

- Now observe that, because the topology on G need not_coincide

_with the k-ified compiict-open topology on FxF, G and FaF nieed not

‘be homeomorphic.. However, in practise, the two topologies usually

do’ coincide; for example, in case G is compact end'F is Hamsdorff

(im' then FsF is Hausdorff [ ; Corollary S. 2!) Observe, further- &

more, that with the kZified cempact-open topology, F#F is an H-group.’

~Now zécall thit a mmersble fibre bundle consists of a collection

(Bp,BiF,6) such that: ) ; i -
G, AR B 8 e RaD OE BN B g
(4d)  for each bcsy, £, is homeomorphic to F. i % 5

(Eid) * G is an’ effective topological transformation

group of F, called the structure group of the bundle. 5
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X o 5 ’
: ; @ chere ex{lu & niipetable covering w Hed) of B,
5 ‘
! ; the open set's ¥y being ‘called co—ul'di‘nlte neiﬂhour-
2 -

J : hoods, - together with a fanily of ho-mmpmsu, % Fo
0 v xro E[V eJ

called m-ordxnne functions, i E . o

. (@ p-o L(X2y) = X, for an n:vj, ¥eF

®) . if the map 45 F B defined by setting

g w0 Y ) " v (s -
: 1 thon, for each pair 1y an f and each nvirw S ths hommmpmsm p
- : ) J _ij.ﬁi‘.F+Fv‘- 2 =23

_.#oincides with the operation of an element of G (it is unique
i ol j sinee 013 effetive) ’ i

. : () for each paix i;5 in J, the fumction
e ViR B Jl.vr\v +G. vy
%
" defined by,. u'[g.-(x)] o ’j %01, x, u continuous; the couecnw

i lxj'i:i,jm is called a system of di s of

\the bundle. 2 % Ly
Hence, .uﬂ..a a category, F as follows (see m 6.111). .
; Let . have for objocts ail pairsi(P,x) such that P is a left

G-space and x:F -+ P.is a homeomorphisn of left G-spaces.’ bet

5 the set of mrphulls from (b,x) to (P',x") be the collection*
Gépx [geFaF), Then F is (clearly a category of Fibrés with
* distinguished object ). y ) a ! ‘

. - Let A(F ) denote.the category of au numerable hbrz

\nmd.les over CH-complexes with fibrés in the nregm-y (F, (F.l))~

: Then A,
3 on &y gy 45 aduissible by example 83,




..'.; +3. Mumerable.Principal G-bundles: - Let § = (E,p,8;F,G) bea o L
nmersble: £ibre bundle vhere F = G and G operates on 1tself by

16ft ‘translations. Then £ is called a numerable principal

bundle. Notice that the space GxG of all lcft ttﬂnslaﬁons
7 |1, 386 s procisely the shace of a11 Hght Gehomeoorphisns G
and moreover, “the mip #G+G> G, Which evaluates at the identity
oE b s Hoksomorpitsn:, Helices, i hdwusitubtion, "Hiarcatagary ,
of fibres (F,(G,1)) has for objects all pairs (P;x) such that P - #
ds a righc_G-spaée and x:G =+ P, defined b‘y.x(g) = xg, xeP, .is a ’ ,
homeoworphism of Tight G-spaces. The set of morphisms. from (P,x) '

to (P',x") is then the set of all right. G-homeomorphisms

(x; g% ! gec). & -
Let A; denote the category of all numérable principal G- bundlés J
over. CH-complexes o fibres in the category (F,(G,1)). Then AG

g, oy 8 . is adm)ssxhle by example: €2.

| e 8, "Vedtor Bundles - Let v be a k-dinensional topological vector . i

.space; real for F = R, comple:g for F =¢ and quaternionic for

W= Hl. Then a K-dimensional vector bundle is a collection
i

(g BV ) rsuch that: )

N (&)~ p:E > B-is a map of E onto B. 3 ;

(i8) . for each beB, Eb is homeomorphic and isomorphic as

a‘ vector space to vk x o e
R T bed, there exists an open nedghbourhood

) U, "of b and a homeomorphism




such that:

@ P () Gy) .
() " for a1t e, ¢(ub)1(x)xv“ VR E : is.an- isonorphisn

x, for all xsub,yzv"

‘of vector spaces. X
" Let Up (k) denote the’ orthogonal group O(k), for B =R, the
ummy growp U(K), for: = € and the symplectic’group S0 20
Ee “Thon,_any k- Fimeniionit iizos bundie with £bze v';F over
a prracompact base space can bé viewed as ‘a numerable £ibre bundle

with structure group Up (k) ([1135.7.4.1),. the action of U (k) on

. VK ‘being given by miltiplication of matrices, Notice that, if”

Wil (k) + VK, <V, denotes the adjoint of this acm:, then, for
e TE S 2 B
each geUp (k),: the homeomorphism j' (g) :V Vm is alo a vector
space isomorphism. Furthormore, because VK is Honsdorff and - B
g () 35 A T T e isomnrphxsm but also a

‘homeonorphisn’ of spaces.

Define & category of fibres F as in 2 but with the' following
modifications: the spaces P are Tequired to be k-dimensional
Stopologithl Vector spacks sich that the distinguished homeouorphism
vl g;,y s also a vector space isomorphisn. The distinguished
object of F is of course, the pair (v ,1).”

|'Let Ak ' denote the category of all k-dimensional vector T 1

.. bundles over CW»cmnplexss with fibres-in the category; (F, (VE ,1)). "

Then. A k _1is adnmissible by example C2.




P

i3 ¢ g & 1

$3. Universality. in admissible ut:gori‘r;
Fora given ot-cnqxex B let EA(I) be lhe mlloctxon N
(assmed to-be a set) of au equivalence classes of A-thntmns F

5
over B under the equivalence relation: p~p' if, and only if,

“p isfmmtoyy' equivalent to p! over B. fotice that, in view

of (2.1,

-), this equivalence relation can be restated as: p~p'
1f and only if, ‘there exists an F<mup P+ p' over !‘

Let HCW' denote the homotopy catego’z’y of CW-:am'p)exes‘ Then,

. as a.consequence of(2:1,10.), EA is a contrdvariant functor £rom-

HCH to Set,” the catégory uf'séxs and functions. Furthermore,
cach A-fibration piE + B defines a natural tx;.nsfomtioﬁ

3 z:1 ,B} > EAL) :

by the rule: for each CW=complex A, 5,:[A,B] > EA(A), where
(A, 8] deiotes the sai of w11 Prec hmctopy classes of maps A =5
is the function which assigns to each homotopy class [£], the

equivalence class of the indwced A-fibration piAME > A. This -

relati ip suggests the ing definition.

on 2.5.1.  AnA-fibration p:E, + B is said to be Free
n-Universal inA, n finite or infinite, if, for each CW-complex
A of dimension € 1, 7,i[A,B 1> EAW) is a bijection.

Notice that, if p:E. +B_ isa Free n<Universal A- flhratxm,
= £iiite or infinite, then B, is path-connected. Tiis follows
£rom the observation that, if b,b7cs, the inclusions
bublia -5

induce A-fibrations which are F-homotopy equivalent to F + +.

44




A grounded A-fibration (f,k) is a sequence
4 ] = . 1

“and(f, |Eb )-kt k'. Setting B' =B and f

Dafinition 2.3.2.. Let Bbe a C¥-complex with base pointby.

F—X5 pe—E—L s 3
o =, 8

such that keF+E, and piE > B i< an A-fibration.
0 2
A grounded F-map between grownded A-fibrations (p,k) and
('k1) is an Fmap (£,6:p + 9", such that £, is.a based map

n- e have the notion

of a pmad F-map over B. But, by (2.1.7.), %very grounded

F-map over B is an F-hosotopy equivalence; we call such 3 morphisa

a grounded F-} nn-nmgz equivalence over B. One can nshy verify

that this notion of grounded F-hosotopy equivalence is wn equivilence

relation on the subcategory of all grounded A-fibrations over 8.

Proposition 2.3.3. Let (p,) be a grownded A-fibration, (A,3))
a based O¥-conplex and ,g:A B based hosotopic maps. . Then

®gpk) and (pgsk) are grownded F-hbmotopy cquivalent over'A.

Proof: Let WiAXI » BxB be a based homotopy £rem (£,8) to (£,g).
By (2.1.8.), the grounded F-homotopy equivalence L@k + @pk)
corresponds ‘to a 1ifting 0:A - EiE of (f,£) over pep such that | .

i(-a) - 1% . MNow, consider’ the cofimutitive diagram
3 o

: . . e "
{no)xluuo—~i~—-—b, ,”E‘E P




where evz:;n,t) =0 (ay). s;née p'is an Fifibration;. pap is a
Hurewicz Eibration; hence, by [20; Teoren 4], there exists'a
* homotopy KiAKI » BB completing the.gbove diagran. : The Testriction
“of K.to Axl now corresponds, by (2.1.8.), to.a gruunded F-hol\ctopy
/;qmvalence (pf,k) > (g k) over A // ) 5

Let EAT(B) denote the collection (assumed'to be' a set) of ail
cquivalence classes of grounded A-ﬁbra:inps over B and let HOK
denote the homotopy ctegory of based C-comploxes. Thén, as a
consequence of (2.3.3.); EAT( ) is.a contravariant functor from
HOW ), to Set,, the category of based sets and based functions.
Furthermore, - ach ggm'unded A-fibration (0, defines a\gturax
transformation « . S e Lo

il LB, EAR ) ®

in the obvious mamner, where, for éach based CH-complex (A,ag);
[A,B]4 denotes the set of all based homotopy classes of:based
maps A > B. This relationship suggests the following definition.
Definition 2.3.4. A grounded A-fibration (p.k) is said %o be

Grounded

Versal in A, n £inité or infinite; if, for eich

based! CH-conplex (A,a,) of dimensich € n, ©,: 1\,13"],, + EAFa) i3

@ bijection. I, for all chotces of baso point bsb, and all -
F-1 homompy equivalences k:F + (E )b » the pair:(p ,k) is Grounded
nétniversal, we say that p is Srtdeion Uiysirsad Snik,

Given-an A-fibration p:E + B and the A»,ﬂbra!ion ciF > x, '

forn the functional G*-space cx,piFaE -+ B. Now observe that,




associated principal fibration. This termi originated

with an analogous construction in the theory of Hurewicz fibrations.

Definition 2.3.5; An A-fibration P, iE, + B, is said to be

Aspherical n-Universal in A, n finite or infinite,

- ghoices of base point, 7, (FiE,) ='0; Ogi<n,

, for al}

i /.. ‘Definition 2.3.6. An A-fibration p_iE| + B 'is said tobe

Extension n-Uni

ersal in A, n finite or infinite, if, for every
relative Cf-pais (B,L) with,din Bsr, ind every A-Fibration pik-» B,
R each F-nap (fyy £y ):p|L > P, can be extended to an’ Femap '
T > By
£ ° Notice that: (2.3.6.) is a geheralization of the notion of . |
n-Universality in [19] for ‘the category of. umeSsle principal

G-bundles.  Theorems 19.3 and 19:4 in (15, relating-thé notions

.\ of Free n-Universal, Aspherical n-Universal and Extension n-Uni- : -
! ., ™ .yersal principal G-bundles, can be.generalized. to their corre=
| &, " sponding statements in A. Because (2.2.1.) implies admissibility

in the sense of [4], the proofs of these generalizations can be .

readily obtained by adapting the proofs of Theorems 3,1 and 3.2

“in [4], for the case n to the case of finite n. . Furthermore,

one can easily verify that the relationship in [4] of Grounded

"=-Universality. to the othér notions of =-Universality also holds B

for the fore Testrictive notion of n-Universality, n finite.’
> ' A

, .+ . Hence, we have




8.

B oo i
Theorem 7.3. 7, (43" Théoren 3.1 4 Ve fbeacion’1s Aupheri-:nl
n-Universal u andjonly 1f,"1t 1s Extension (vH) -Universal.
Thesren'2.3:8." :(f4; Thebren o 3,200 biery Adphertenl a-Ditversal
A-fibration i§ Free n-Universal.
Theorem 2.3.9. '([4; Theorem 3.3]). Every Aapherical n-Universal.
A 1s Grounded 1
“Theorem 2.3.10.. ([4; §3)).  Every Grodnded m-lniversal A:€ibration”
“is Free n-Universal. : :
iNotice that, in ofder to show that the four motisue’of.fi- i
Universality coincide in a given admissiblé catagory Ay it is 4
sufficient, from @.3.7., @.3.9) and (2.3.10.) to shiowt
‘(2311)—Evernyee 2 1 Actibr is rg
Universal (or equlvalsn:ly, Exténsion (41 -tasiezand). E
That (2.3.11.) does not -hold in géneral can be seen by -the g
: ; i : i

fnuwing 5 le: consider the category A

of all trlvul z —-bundlea, where Z 2 is the discrete group DE

order 2. The trivial Z -hnnéu G +'1g clearly Free rtilaraal

in A for any n, finite or nfinite, but is not Aspherical n—Unlversal,
for ‘any n, since the space Z %%y of alz -automorphishs of Z., &

hongoitorphic €0 Z , and Z', $a mot;even path-connected.




: Proof Lec

© {#) -also called ah m-cquivalence - : i

N B 8 5 o ¢ S

Thedren (2,3.12.)" A Asph"ericu‘l' -tniversal A-fibration is'a’

“terminal obje:t in -the hmmmpy categnry af A-fibrations. ik

*5, Yo an“Aspherical w-Universal A-mmi'on A

416t piE 38 be' any. A-£ibration. We myst show that if (£15%)

and (8,89 #re, any two F-maps p 9, ther (£, £0)=p(g)18)-

Chy (L3554t oS sufficient to. shos that, 1€ 4,4':8 -+ BeE, are

sections which correspand hy (1 3.4, to (fl,f) and [zl,gn).

xespecnvely, then’ &ds vemcalm homotopic “to &' Nucice that

;he existence of a vertical homotopy from 4 to 4 is equwalent T
Yo" ek dompletion ‘of.the folloving dagram:
Bxt— ,._._ﬂ‘.'“.._.‘ iE, 5 s AR
: » Y 2 5.
e PR, M .

A . HCHTIN. § i Sl

_Now observé that, since p'.lpm has £ibre F4E_and p_ is-

i . : [OFE
#spherical ‘w-Univexsal, pa;p, is wenk/kmtopy equivalence.
Thus, by [18; 7.6:22.], there!exists & map fi:BXT + BoE, such that,
a‘aﬂ =405" and payp,? lH(,xlrelatxve to nxi Bit, pa;p,'is @ -

Hurewice £ibration; hence, we can. eplace the map iy a = A

such that A[Bxt = MJA' and ptlp 0 . //

'The folloving Tesult Teduces the probles of the existorice:
of the four notions of a-Universality, in a given admssxhle




Category A and of the equivalence of these four notions. to

_just ‘the exi of ic Uni A

‘Theorem 2.3.13. Let ‘A be an admissible category of fibrations - -

“in which there exists an-Asphe Universal A-fibrati
Then, ‘there exist Freeis-Universal, Grounded =-Univérsal and
 Extension =-Universal A-fibrations and moreover, the four notions

s g of --Uni‘m'snmy coincide.

! “Proof:” The: first part is an imiediate consequence of (2.3.7.),

(2.3.8.)and (2.5.9.), for the case n = =y

. To seée that the four notions of =-Universality coincide,

-Universal A-fibration and let

let pl:El + BY be an Aspherica
p.:E_ +B_ be any Free =-Universal A-fibration. By (2.3.11.),
it is sufficient to show that p_ is Aspherifal =-Universal.

Now, since p_ is Free =-Universal, there exists an F-map
k= (kp,k)ipl + P, But, by (2.3.8.), pl is itself Free

=-lniversal and hence, there exists an F-map k': (kj,ki):p,

The composites k-k' and K'-k now define F-maps p_+p, and

L+ pl. Tespectively. However, p_ is classified by 1:B_ ~ B_ and

1, and )

P, is classified by 1:B) + Bl; hence, kjrk,= 1y,and ko-ky

50, kyiBL + B, is a homotopy equivalence.

\ . Now, the F-map.k:p! + p_ induces a.G*-map k = (Er“u’:

L oA ok, vhere K :FAEL » FaE, Tis defined by, K (0:F + (E)),,) =
Ky| (B, *0.. Tn particular, K can be viewed as a fibre preserving

‘map of Hurewicz fibrations, which restricts. to a homotopy ‘equivalence

50-




|
|

«-Universal. // v C

on the Fibres and which is also'a homotopy equivalencs on the
beses: AW ipplicstion of the Fivs Lemms to':lge commutative
|diagram arising fom' the exact homotopy sequence of both
fivbtatic:)‘ng now shows that il:wn; + FXE_is a weak homotopy

equivalence'. from which we deduce that p_‘'is Aspherical
I i = @ ;

54. - Universality in the category of -£ibre bundles
i

, flia preblen S equivilende of ths four motians of i i
-.m{vers'nmy: a5, défined in section 3, is. discussed'in’ [4] for
specific_adnissible categories of fibrations.. In this Section
we ' shall-discuss this problem in the adnissible category Aw
of nunerable ‘£ibre bundles. over Or-conplexes with: Fibre F jand
structure’group 6. We first show that these four. notions are
equivalerit in the admissible category Ag of muerable principal
G-bundles ove'r,c'u)_compmxes.(mis is also shown'in [4]); and
then, using this fait and the close Telationship betveen Fibre
‘bundles and their associated principal G-bundles, we give a
mecessary and sufficienit condition £67 the existance of
Aspherical =-Universal fibre bundles and hence; by (2.3.13.),

for the equivalence of the four notions of w-lniversality in

Awo

For a given mmerable principal G-bundle p:Ei- B, obsede

that the function GE - E which evaluates at the identity of G




i . it
is a hémeomorphism, its inverse being adjoint to the right - e
action ExG  E; “hence, to say that p is Aspherical =-Universal
mesns that all the homotopy, groups of ‘E vanish: Now, recall 5
that Milnor constructed in [16], for a- topological grow. G, a e i
nunerible principal G-bundie Ji 4 ¥ “
0 . Barle>8g g £ CE e

With the property that py’is Free =-Universzl and Egisa -

" contractible space. But, by the above observation, p is also B :

"X Aspherical =-Uni 1; hence, Ag; iBes m ical =-Uni-

versal G-bundle and, by (2.3.13.), we have e

‘Theoren 2.4.1. Letp_:E_~B_ be a numerable principal G-bundie < 2
b over a CH-complex B, Then p, is e-Uiiversal in all the four s J
'senses described in section 3 if it is m-Universal in any one of

these 50!15354 g
Now, the existence in A (F,6) of -v Free o-lhiversal fibr;

bundle is a direct consequence of the existence of the Milnor i e

bundle pg:Eg + Bg. This can be seen as follows: s -

Let :E ='(E,p,B;F,G) be'a numerable fibre bundle with co-

}
g . ' ordinate nei, (Vj :jeJ} and di .
Lo5:5e3). Lot T o w xGxj, topologized with the final wpoxogy '
! with respect to the )nc!usions‘ VJ-NG.KJ + T, and define on T the
folloving equivalence relation:

08 (R, 8,9) 1€, and only 16, x = X' and gy, () og = g ;

3 |
s . Form the quotient E = T/, topologized with the quotient topology,




“construction described yields a numergh

. G-bundle T the

and dofine pif > By p( Biil) = x Then £ < (a,p,m) is

o sl bl G-bundle ([19; Theorem 3. 21),,-:aued the.

sssotiated principal G-bundle of p. -Notiss that'the co-gsdinate

‘transformations of £ are precisely the same as those for £ and

lfurthemore, the above construct).on works in reverse; that is to

say, if € is a principal G-bundle, then, by Teplacing Gby F

in’ the above construction, the resulting bundle 5‘ As a l\umerabls,

fibré bundle with fibre F aid strdfture grnup G,

Ncw, Steenrod has shwn ([19 'nleox'em 3 '3]) that. there is

‘a1 - 1corre . between equi classes of bundles -

and equivalence classes of systems of co-

. & ;
_ Hence, the rule which assigns to each £ibre bundle its associated.
: X

principal-G-bundle, sets up a L = 1 correspondance betwgen

cquivalencé classes of fibre bundles with fibre E4hd structure

group G and équivalence classes of principal G-bundles. Therefore,

since pg:Eq * Bg is Free =-Universal, replacing Gby F in the y

e fibre bundle which is,

Free =-Universal inA o). Conversely, given a Free s-lhiversal

. ‘numerable fibre bundle, the same construction yields a Free. = -

' = Universal“principal G-bundle.

Although the existence of a Free’=-Universal principal -

of a Free =-Univérsal fibre
bundle and conversely, we shall see that the same cannot be said
for the notion of Aspherical --anversalxty. This is becguse,

\mlxke the fomer

wbere the classification of fibre 3

" Vi o
dinate transfornations.
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bundlés and principal G-bundles depends only on the' bgge space

B and thé topélogical grow G, the enstence of Aspheru:sl B " ap o

¥ g ‘=-Universal fibre bu‘nd]es depends directly on the fibre F am‘l

its velation to the group G. We mow exanitie s nun» sxtuation.

Recall that, if § = (E,p,B;F,6) is a numerablé glbra bundte,
. theri the action u:GXF + F (uésug.ed to be effective) giveé rise ; o

to.a _conti‘nuous bijs:tive'homnmrphism WG + FaF. Now, consider
. the associated principal G-bundle & = (E,p,B;6) and the associated 4
i '”p;irici:p'avi Fibration E = (F;E,n‘a'zp,‘B;F-Fi and defixxf\o 5 o s
r L A L e e ST
‘ ovei'B, hy u'([x,g il) )

Lomma 2:4;2. | 7' B F-E is a continuous bijection,

Proof: @) . ' is weli defmerl. 5

Supyose (x,8,3)~ (x',g'k), then x.= x! ‘nd, ng(x)vg g L
Now; ¢y -y on'(g") = fk x4 By (x)-
=%, ,-\u(gk ) w ®

fg, s h BER, ‘ﬁ: : i 8 . ’
S ; ‘.‘Gj,-u(s), = 5 \/,_/\\

“henice, §(1x,g,51) = W' ([x',g' kD). Y / : o

Sa () 1 is'injective: g . 05 -
YEL .. supose i'clx.z.j!i B, KD then %= x and oo
b @ = P g, Now, : Tyt .

B ERRUCET T DR .

el e, ey ¢k,x’¢j,x'“;g),"-w(g) e N




S g )@ )
B3
> g 0B = k) d
» 1

iut,’ ¥ is injéctive; hence, g, (0.

&' ad so, (x,g.3) <
C ek, : .
(£id) 3! is surjective: &

5 “
Let £iF + E, be an element of FuE. Then, for some .

66, £ = ¢ .= @ ,+u'(g); hence, § '(l'bzkl)-& '(e) —.f.
3 k,b k)b kb

(l.u) B 1s continuous: .
S Because ihas the. fmll ‘topology with respect to the
inclusions Ay fVyxGxi + E, i 'is continuous if, and only 1{, for.

each ieJ, the composite !

| Viroxd =i BBy e .o

is continuous. But,

can be written as thé following _
.composition, e 3
¥ LI}

5 .ViWiJ;FnBF-P_—L-)’F-E
;herc (.'i:v1 + FsE is the adjoint of the co-ordinate function
GV XF + E|Vy and K is the .a:tim, by composition, of FaF
FaE; herce, ' is continubus. // 5 =
The following Tesult now folloes quite easily fron (2.4.2.)
end the wpology on Fag. y .
\
7\ Theorem2.4.3. - Let § = (E,p,8;F,6) be a mmerable £ibre bndle.
} - I£ u':G » F#F is a honeonorphism, .then § and § are cquivalent
i principal G:bundles. ‘Moreover, the bindle,structuve on- sristig
row the ackion: o P on AR by campustton cotnctdes with s
bundle structure induced from £ by u'. 5




4
|
|
|

\

‘ 4, ¥ . 2 " 3%
| Pooof: " It'is sufffeidnt, by (2.4.2.),. to show-that (i') '} is
continudus. Then the bundle structure on & indices, via the

map. ', ‘an _equivalent bundle structure on E.

% Mot ehat (Y teconilnioims obstveyhats by (LATIALY,
F4E has the final topology with Tespect to the .co-ordinate functions
¢i;§/1xm? + P, ieJ, and hence, ")} is continuous if; and only -
if, the composites (i") 1+, are continuous, foreach icJ. .But,

for each-icd, (i')7 4 . Alv(lvix(u')'l] and (1)} is continuous
by assumption; hence, (i')! is continuous. .+ )

The proof of the second part follows frém the cbservation
that the following diagram is camm.ftnive:/ R
2 .
Bt MY v gy
] Bt P L

’ D RaEF Y S HE

Here, 1. denotes -the action of G on B defined by n.([b, gl 1) =
(©ee2,0)): // ™
Although £ is not i general a principal G-bimdle, notice
that both £ and &' aze Hurewicz fibrations and moreover, the
action of G on F determines-d fibre preserving map of Hurewiéz -
fibrations. This leads us to the following result on the

of Aspherical i "Fibre bundles.

Theorem 2.4.4. There exists an Aspherical =-Universal fibre.

bundle in Agp o) if; and only if, u':G »-F+F.is a.weak homotopy ..
g ~

i+ equivalerice. o




{
|
|

, Proof:’ (=)):° LetE = (E,p,B;F,G) be an.object of Ae, gy Which
is Aspherical =-Universal. Then, by (2.3.8.), £ is also.Frefy b

a-Universal; hence, ‘thé associated principal G-bundle § = (E,p,8;0) *

is Free =-Universal in AG and thus, by (Z:A.LJ, Aspherical -
©-Universal. ¢ : ) |

Now te action f G on' F determines, by (2.4.2.), a continuous
.bije:tinn {i":E + F«E over B which is, because-all the homotopy :

groups of E and FuE vanish, a weak homotopy -equivalence.. Since

the restriction of fi' to the fibre_over a point beb can bé identified i
, with the ‘map ' :6 ~>‘FqE,.an application of the Five Lemma shows that
4" s also a weak hototopy equivalence. )

P ((/_-:}: Let § = (EG,fJ;;,BG;F,G) be the mumerable fibre bundle
sssociarslleo thecthimor adis g & (Bgrpg:BiG) < Ve show that J
Fis Aspherical o-Universal.

wEn (ke B, B PHE) be the associated principa‘lv o

Eibration-of E.” Then the action of G on F determines, by. (2.4.2:)

2 continuous bijection i':Eg » F;EG over B whose restriction to

the fibre ovex a point b eg can be identified with ':G ¥ PAF.

But, by _-ass"mwtion, ' i5 a weak homotopy equivalence; hence, by

the Five Lemna, §! is also a weak hohotopy equival'ence.' Since all i
the homotopy groups of Eg vanish, ail the horotopy grolps of

Pk vanish and so, § i Aspherical =-Universal. //, i
“As an imediate consequence of (2:4.4.) and (2.3.13.) we have |

the following result: . s




Theoren 2.4.5. " The four notions ‘of =-Universality

axe’equivalent in Ay G)'if. and only if; u':6 -+ FaF‘is a weak

. Homotopy equivalence.

© Now recall from.example C4 that any k-dimensional vector

bundle with fibre Vi, and base space.a Jou-comptex as ‘stractie

group. Uy, (K); furthermore, since Uy, (k) is compact and v‘l‘F is®

Hiusdor££, the adjoint u' sl (k) '»_v;.y; of the agtion of Uy ().

on VK, s d Hence,.as & of (2.4.5.)

we obtain: 4

Corollary 2.4.6. Let § = (Ep.B5V Up (k)ih/=’7m dbject of

. [
. Then £ is o
Sy

Univorsal in al] four semses if it is

©-Universal in.any one of these senses..

I
i




'

,'Lemma 3.1.2. Let (P;Q) be a relative CW-comflex, with inclusion

| Definitiom 3.1.1, Let p:E'»> B and p':E'+B' be maps and let

III.. THE HOMOTOPY OF SPACES OF F-HOMOTOPY EQUIVALENCES
o

§1. Some technical results

4 s
In thi's section we shall discuSs some results, which will be needed
'in’ the sequél, ‘about Hurewicz fibrations and the inducing of H-group
structures on function spacés. Once more, we recall that all spaces

and maps ‘considered are objects and morphisms of the convenient category K,

'g = (g1:89) P * p' be a fibre preserving map such that g, and g) .
are n-equivalences (resp. homotopy equivalénces). Then.g is'called
an n-equivaleice (resp. homotopy guivaler‘l:e)r and we say that p s
n-equivalent (resp. homotopy eguivalent) to p'. 5 .

map 1:Q + P, such that dim. (P\Q).S n. Let g = (g'l,so): p+p' be amap
of Hurewlcz fibrations, where g 18 an m-equivalence and gj'is an
“(uti)-equivalence, n finite or infinite, and lec 51~ p be z map. Tl:en;
given & Lifting afP + E' of the msp g+f, there exists a 1ifting BiP + E
of £ such that 88 1s homotopic to o relative to g-f. . 2
This result is a trivial generéxizun;un of [18;7.8.11.3; its proof

involvs two applications of [18}7.6.22.) and then two applications

of [20; Theorem 4]. !

el B
Lemma 3.1.3. Let g = (8;,8,)p'* ' be a wap of Hurewics fibrations,

where g,is an n-equivalence -and 8, 1. an.(etl)-equivalesce,

n finite or infinire, and le-kiA + B and k':A" + B' ' .




;

» e (CE

'
s maps. * If there is a map £5:hr A such that ' k! g = g5k
and fo ls a Hurewlcz fibration and an n-i equivalence, tl\en ﬂle
induced pap £+ ATIE 5 AVTTE!} defined by £,a,) = (£(2) 8, (),
“is, an n-equivalence; hence, £1= (£ £)ip, » By, s an n-equivalence

of Hurewicz fibrations.

Proof:. Let (ag,x)) be the base point of AME, where a) and X
are base points of A and E, uspecuvaly For each 'j > 0, consider

the. 1nd\lced hommnrphlsm (fu‘nct)m\ fm- g 0

g J-(AI'\E 2 (3g,%g)) >y wne, 0(8g)s sl(xo))).

defined by ’(fl).([h]) = [£+h]. We showthat '(f;), " is bijective

for. 0'<j'<n-l and surjective for j = m.

L) (£), is injective for 0<j <n-1:

Let [n],[0'] & xj(AME, (29,x,) be sich that £,+h i based
\ e : .
hopotopic to £ -h' and let * denote the base point:of S”. Then
\ tiiers sxiste s Wbty B STRUA ATVEL, swboee B0y 5 £h,
HED) = £t and HGt) < (E(ag)y gy(xg)).. for all ¢ el
. Consider the following commutative didgram

L, uyk-s « . . >
saUsi —“————) A : ’

st Sy

where - G (#,1) =g te 1, and.a(-,0) =h, " a(-1) =k,




N .
Since £, s an n-equivalence and din (Sx\exIUS'xD) T n (G s
at'most n-1), there exists, by [18;7.6.22.], a map H':Sj‘xl +A
such that ! |sxIUSIx] = Cyuipyce md £oH' s hémotopic-to
P'irH Telative to - xI us’xi But, because £, isa fih:rlticm,rle
“can replace H' by a eap B :59xI + A such that| the sbove triangles

commute. Now, consider tha fnllmung commutative dhgﬂn

ﬂwsﬂxl__fﬂ':l_‘i__. T A ‘ .

where K:AME +E and R':A'ME" +E' are the projections, and
observe that, 4f y denotes the map pair  (C,\JK-0,k-H), ‘then
€ 0

K'-H s a 1ift of 'gey. Applying (3.1.2) to the above diagram, we -
obtain  1ifting’ G:8341-2'B of 1 such that 8,°C and K'-H are
homotopic relative to g+y. -G and fi now determine, by the universal
property of pullbacks, 4 wiique map 8:5)xI + ATIE which is a Based

homotopy between h ‘and h'.

()7 (£), is surjective for 0.3 <n: 3

3 \ s

.Let ] €y (A'I’\E‘, (fu[an)- zl(xo))) We ‘show that there exists

a based map | a:. SJ -+ AME; such that f o /16 hl!ed humtopic to h.




s

i -
% o S Y R R

:
-équivalenck and dim (s%+) < n:

; o :
and cbserve that, because ' £ is an

(. is at most n), '‘there exists, by [18;7.6.22.],'a map §:5 > A

- such that " § ‘is’a based map and £536 is based homotopic to 'y,

But, because £ is a fibration, we can rgplnce 8. byamap y: L IR

\such- that the above triangles commite. Now, form the following commutative

, diagran : B
r

% :
. '#-;gﬁg}.;,g-
3 . B

- i3

T i ~ g 5

S]_"']_)B.—o_,a'

. and_observe mf Xf ¢ denotes the map pm (xgs ko), then k'
is a lifting of 'g'®.' Hence, by (3.1.2), . there exists a lifting

5 st v - of ¢ such that gl 8 1is homotopic to "k!:h relative to

e Themine: Bigndly) mow detsraing: byt universal properey of
‘palTbacks; a wnique mep -a:SS > ATE by the rule, a(x) = (Y0, Bx)x e S,
In particular, a(*) = (Y(#),8(+)) = (3;,x,) and so & is acbased map.

' It remains to show that £ *a is based homotopic to h:

To this ‘end, let K:$IxI + A" be defined by, @y '
E

K(x,t) = p'y,*h(0, x ¢ s7, ‘t €T, and let G:S'%I + E¥ denote a homotopy

v

fron g 8 to K'h relative to ge4. - Then,
1 v E et

PN G = ggkey = PoRIh = k'-p\-*,-h = k'+K -and so there exists Errunique map

] g e




1

Jesdxt o+ ATFAE', defined by J(x,t) = (R(x,t), G(x,t)), Now, observe

that, because p";,.fl.m = ey = Pl ehad

o= g fea =g 8 I 'is a based homotopy £rom £, to h.//

The following two resylts are trivial consequences of (3.1.3.). *

Corollary 3.1.4." Let g'= (gl,go): PR T LT W .
where g, is an n-equivalence and g) is an /(niil)—-zqulvnlencev, n finite or
infinte, ‘and let ¥ = p?l(ho> and 7= (p')’i(go(bu)). Then g [F:F + F'

1s'an n-equivalence. 4 ' g k oy

Notice ‘that, if the spaces involved are path-connected, then

' {3.1.4.) is a trivial consequence of the Five Lemma. |

Corollary 3.1.5. Let'g = (gl,g'o) :p > p' be 4 map of Hurewicz fibrations,
where g) 4s an'n-equivalence and g;'is an (n+l)-equivilence, n Finite or
in‘fl;ni\:e, and let k:A + B and k':A > B' be maps - such that 8o k= K.

Thén the induced map g :ATIE + ATIE! is an n-equivalence over' A. i

Lemna 3.1.6.  Let piE B be a Hurewice fibration over'a CW-conplex B
and, for a given base p;in: b € B, let - p_lzbu). Then, 1f «
sek p # 8, .the map / o
o "y e ¥, »
dofined By & (5) = 6(by), o & sec p 1s a Hurestos fibration vith '
fibre sec, p. . )
Notice that, if F is not path-connected, then % need not be sirsecerse,




Proof: For-a given space W, let ‘g + sec'p be'amap and let .

We must show that there’ exists a

e W<l F “be a homotopy of %,

homtopy H:WxI > sec p such :hat the follwmg tuangles commute:

~ W0—— 8 'y sec pel(B,E)
e : )
o e . w3
2% S 2 55 s B
e LR Fel(5y.B)

¢ % ¢ 4 . =
But, by (1:1.1), the completion of the abové diagram is equivalent to
the completion of the following diagram G 5

|

: Wx’(bD})V(IUWxBxO SiUs: e
Wl

i YRV | [ T
Whete. G (W,bgt) =/G(0,2) (by 1o '(,b,0)' = g(3,0) (5) . and
u;b,t) = b. Now observe that the lattér diagtam ern be completéd By

[20; Thesren 4].// i

‘‘Lemma’3.1,7. Let p:E +B and p':E'>B be Hurewicz fibrations over

a CH-complex B and let f£ip - p! be an n-equivalence over B, m finite
or infinite. Fora given base point -by'c B, let F'= p_l(ho] and
= (p')_l(boL Then, if both ‘sec p and sec'p' are non-empty: and

‘dinB=m<n, finducesamap | R :

31 sacvmesnse 51,




*the dimension of -B.

defined by E(s) = £5,s'c sec.p, such that' the Tesulting
map a= (F,£|F)ie i+ o' is an (n-m-equivalence. In the
bt *'hy e :
case n ==, o is'an’ =-equivalence and ‘there:is no condition on’ i
Notice that, because of (3.1.4), F|:sec, p* secy p' -is also
an’ (n-m) -equivalence when n' is finite and m # 0,and an @ equivalence

when n.is infinite. .

The commutativity offthe diagram - - * i

TS L

oo s
Fo -] F'

is clear; furthermore, by (3.1:.4), £|:F > F' ‘is'an n-equivalénce and
" ‘hence, &n" (n-m) -equivalence. Therefore, it is sufficient to.show that

Trsec p nsec p' is an (n-m) ~equivalence.

Let s:B + E. be the base point of sec p.. For each' 0 <
cinsider the induced homomorphisn {function for § = 0, B

Evj(sec ,s) + 5 (sec ', £15), . -

defiined by ‘Ej([h]) = [E+h]. We show that E, is bijective for
‘V

)
<n-m-1 and surjective for j = n-m. AR
b4 . ' 2

0s

) Exds dnjective for 0 <j < nem-l: \

Let [h], [n'] ' vj(seq,p.s) "be such that Eh is bused.

tonotopic to” +h' and let v depote the base point of S




Then there exists a homotopy. H:S'xI'> see 3 such that H(-,0) = E-h,

. H(-,1) .= E-h' and H(s,£) = fi5, for all te f. Now), dbsegve that H
can be viewed'as a map " S%1 » L(8,B") and’tho condition that; the inage .
of H lies in sec.p' i equivalent to the fact that the following diagram .

commutes’ E L . B

sha—— & 5 imen'

? L(B,BY . Ve

R vhere (p)%(e)' = p'.g  and €, ‘is the constant map to 1p. Applying
- B,

(1.1.1:) fo the above diagram, we obtain the following commutative diagram

L% SR WS 1)

. where HCob,t) = L)) and 1(x5,8)

Now, consider the commutative diagram

EER N S LR

[30% = ool AEERFUNG SN SN S

where s(- b,t), = s(h) and B(x,b 0) = h(x)(b), 8(x,b, 1) h'(x)(b).

! and ,ohserve that H' is a liftmg of fey, where Y rlgnntes the map




i Ay 5

Now observe that the ‘image of G' lies in sec p and moreover, .G' is.a

" based homotopy from .h' to h'.

by g : : . e
pair (Gue,m). Because j < n-m, din. (SJxBxl\-xBxlUSJKBXI) é (n-m-l)ﬂnd =n
and hence, by. (5.1.2), there exists a lifting G: :sTxBeT + B of y such

*that "£:G is homotopic to H' relative to fvy. Appljing (1.1.1.) to the

homotopy G we vbtain a homotopy G':SIxI  E(B,E), defined by e
©(x;t)(8) = G(x,b,t); such that the following diagram commtes: v
j K o
slnss B L vy s " .
i . “L(B,B) ¥ e B

(i) £, "is surjective for 0 % j <nem:

Let [h] ¢ uj(séc p', £25). We show that ‘there exists a based

4mp a:S7 > sec p such that .o is based homotopic to h. i B ]

-To this, end, consider the commutative diagram /- e

where h'(x b) = h(x)(b), and gbserve that, because for each

e s), R(x) e sec p', h' is a lift of f£ey, where y  denotes ‘the
mp pair (s,p:rz) Since j < n-m, dim. (S7xB\#%B) < n-mem.= n ‘and so,
by (3.1.2. ), there exists's 1ifting a!:S)xB + B such that fat aad

homotopic to 4(' relative to’ feoy. Applymg (1.191.) to the map o',
i . >

h o




"= ¢ obtain the based hap o) ¥ sec’p as required.

- It remains to show that Fra is based homotopic to h. But, rec‘m

thac_»_ f.a' is homotopic to. h' relat;va to f'Y‘ H=nce, théne’exxsfs a

homotopy  H':SxBxI > E' from £:d' “to 'h' such that the following"
diagran commtes: ' q . D ’

U " i Y By

£ :
FLE. S S |

. 2 Py . . .
i ere,  P5(+,b,t) = £+5(b) and w(x,b,t) = b.  Applying (1,1.1.) to the

map H',| We now obtain a based hojotopy H:SIxI' > sec p' from Fa. to h.//:

If{we now consider p:E'+B and p':E' > B as objects of the adpissible

cate.gort ‘A of furewicz fibrations wii:h‘fibre‘s of the homotopy type of a

fixed sface’ F, we.have the following analogue of (3:1.7.) for the notion
of fibrf homotopy equivalence'. - -
Lomma 3.1.8. Let ‘p:E +B and g- E' »a be ohjects of the categoiy A

and 16t £:p'hp' be a fibre homotopy equivalence over ' B. Then, if both

sec’ P T’d sec.p' aré' non-empty, the induced map. .a: ;,f|): '}’n - e“’o -

5 o & C t D 3

is'a hgino:op} ivalen Ry th £| :secy p + sec, p'
% . ; S | :

. is'also. a homotopy eduivalenc o Al . &

Observe. that f| is.a holwtopy eqmvalence by [7; Theorem 6. 315

futthermore‘ 1f 2 1sec p + sec p‘ 'is a homotopy equivalence), then

.- flisec,p +sec, 'p

’3: a isstops bqutvitonce. by 5] Corllary 1.5

to'show that | £:sec p +sec p' 'is a homotopy.
o' P P hos

Hence, it is sufficie




N 2 . s :
equivalence. o v, ’

_Now, let £ ':p'+ p denote a fibre homotopy inverse of f over B

and define

ec p' + sec p’

H : | )
by F(s') = £l-s'. Let (h,pryip<l; > p be a fibre homotopy such that

»

-0 = £ L6 and .= B(-1) = 1g,, andlef (h',pr)s

bé a fibre homocopy such that hy = hi(-,0) = €67 and hy = W1 =
Thep define K
H:sec pxE »secp and H'isec p'xI+ sec p' s

by H(s,t) = h s and H'(s',t) n"hé-s'. Since p-ht =p and .
and “plH!(s',t) 'plehlest = prest

p'+hi = p', P~H(s;t) ph-s pes

hence, forall (s,t) ¢ sec p<I and a1 . (s',t) ¢ sec P'*I, H(s,t) € sec p
L : ¥

and HW'(s';t) ¢ sec p'. Furthermore, since the ad)oxnts of H. and H' can 3
-

be idenfified with the composites sec pthI—\ B hE g

et )
sed p'xaxr,——lnvxz,.—"»'s', respectively (e and je' are evaluation
: ot

maps), H .and_H' are continuous.: Nn»j observe that H(-;0) =

HO 0 = L 0 and H1C,0) = BE D) = Lgge g 3 hencey E7and.

B are, inverse homotopy " equ:vuluncps 1

 Given spaces . A md B, we shall denote by- L(A B;K), the space of
all maps A+ B which sre humtopxc tod given map k:A » B. Equivalently,
L(A,Bjk) is the path cmn'pmlenc of thE\ funcr.ion spal:e' L(A B) conuming the map
K. ~In case.wé deal with based’spaces and based, map! th1s component wxll be

denoted by < Ls(A,B;K) and the function space of based maps by L+(A,B).




Now recall that an. Hogroup™) constacs of-a based’ npnce
(B, ‘,J, together with a continuous multiplication .-
i} u:iBxB > B

that respects base points, satisfying:

r ] ) %y
@) if Cy :Ba'B is the constant.map to the base point by,
0 B .

dotdl s e e i
Ayl . By v,

are based homotopic to 1g; ¢

(ii) - is homotopy associative; that is to say, the square
1 ry ’
ux
BeBxB—B 5Bxp
lkxll ’ X "
5 = ‘BxB———t 5B
ity . ! .
is m commutative (with respect to base points);
(i41) there exists a based map ¢:B+ B, called éfjonotopy inverse for 'B;

such that
et B (%.1p) W op
. g P -
are Based hoaotopic to Gy - . i
Recall,atso, thit an H-cogro = ). constots of a-based: sym\(l\,nu).
mgezhu I o o :mmltiphcatxon T oviAeava S

——— e o
()~For an alternate desciiptish see [s, .10,
161,097 and [101;,, .

more generally, see

()“') -For an alternate deucription lsée. tha dual of Theorem l; 10 din [B], mal‘e e 2

- ‘generally, see [B] [9] and [10]




|
]

il

F

(here,

¥ : o 2
AVA is the one-point union of A ‘with itself) that respects base
points, satisfying:

if C A+ A

0

@ /is the constant map to-thé base point ay,

6, ©, B
Ay vai—— O A and A——)A\IA-——”—)A

are based homotopic-to . 1,

G v LS homatyz associative; that is to say, the square
e e
5w : A—Y 5ava- .
v 1e 5 g
Wl ¥ ¥ . §
AVA R avava
is homotopy. commutative ith respect to basé points); .

: . |
(1) there exists a based nap ‘iA - A, called a homotopy coinverse for

such that |

[e99°)
Ay na— A

A and Ai—‘L)AVAA.,—)A

are ‘based homotopic to C,

Lemma 3.1.9. .If 4 Izs an H-cogmp., 14(A,B) is an H-group, for eyery

space’ B; if ‘B~ ‘xs an fi-group and - A i any space, bﬂth LA s) and

LW (A,B) are i-groips.

 have the' sane homotopy type. A sinilax résult holds for L(A,5).

We fu'st show that if A is anH-:Szmup, L+(A,B) . is an H-group.

(= s

A,

Finally, if L(WE) - is an Hagroup, its path conponents




. composition of c:
. -0

ac A ‘and by e B bebase points and define .

Let
" 3
Ve BA B s LeALD) i
: o
as follows: for any two maps f,g e L*(A B), -let V(f,g) be the %

-

woipastte vB-fvg'v, vhere '7;:BVE * B(%s the, Folding map. T is clearly -

Vell-defined ‘and continuous. Let us take as base point oOf. L+ (A,B), the

constant map cg to by and let /C(Lx(AB) denaie the constant map of: Le (4,B) ‘to

‘ o K s :
base point c:(]. We want to :shnw!«thu Bl e b C(L-(A 8))) s based :
homotopic To 1, ¢p p- 5 1 )

Since A is an H-cogroup, 1,6, )-v is based howotopic-to

hgnce, let  h:AXI A" denot!n based homtopy fron (1A.C )-v to 1,

md dofine .

i 4 T HIL(ABYX > Lr(AB) X

by the rule, H(E,®) = £ Since the'adjoint of H can be idmtifiod . .
r

vith the L+ (A, B) xAxT la, 5! Le(h/B) FA—2 5B ) 6

(e is the nmap), Hois because the

, ' is abased homotopy.

% vcgo\.

oy ¥ lLr(A n)(f"

with any'map is c:
&> 0

Now 0hsur\:"e t‘)‘tat JH(£,0) = ho - f'('lA’,ca Jeyv

Uraq, ny? C(L§(a ) ma W, 1)

Th

hence, "’“L-(A B). C(L (A, 5))) is based homtopxc r.o L‘(& B)"
e slm)lu‘ Susliton e show’ that \,.(cu,.(.\ a))“lb A B)) s based 5
hmmtnp)c to xMA n) # i ¢ .

i X T 2 5 )

z " ; s i
o o g i
* g ey s ; % ¥ g T
Aoy .




For'a homotopy coinverse y of A, define

$:L%(A,B) + L(A,B)

by J(E) = £y, forevery fe Lﬁ(A B). We are'going to show that §

is' a homotopy inverse for Le(A,B). In.iact, i:cmside'r the composition

Lu(A&—M—) L.(A Lo (A,B) 2> Lu(A, B) 3

and observe that, if ‘£ e L+(A/B), then ""(lL*(A,B)’ D) () =g (EVEY) v

(1354)v. But, since. y s a homotopy cofnverse for A; (1)
p p

‘is based homotopic fo C, ; hence, let. h:AxI > A donote a based homotopy
T ey : ;
from (1,,y)sy to C_- and define
A - In

HiLe (A, B)xI + L-[A,Il]v

by the rule, H(f,t) = f£oh,.  Onme can easily check that H defines a ba

bomotopy £rom S to C(L«(A,l])i Ina sinilar fashion ve SHow

“that’ S+ Chlp,(a )~ is based homotopic to C(LT(Afn)). The construction

of #’based hanitopy botwesn . 33y, (o ) nd “'Uu;),é)" %) - froma
baséd homotopy betueen e e (v i also, straightforuard,’
The proof that "L(AB) - is an H-group i€ 8" 18, an H-group is
malogous to that above. In this situation the mu}ti‘plicatxcn

ot L(AB)XL(A,B) + L(A,B)

is defined as follows: for any two maps .f,g c.L(A,B),u(E,g)" is the composite
pefgedy, Where AA'» A is the:diagdia} map. A homotopy inverse for
! 3 v o,

O LT iy i
S $:L(AB) > L(ABY, -y,




on the:other hand, 5(k.LJ£
& o - )

isdefined by ¢(f] £, The miltipligation pnd homotapy inverses. for

L(AB), where B is an H-group, are, defined in.the same fashion.

We' now prove that the H-group structure of L%(A,B) :unphzs that its i

compoftents have the Sane. honotopy type. .. Indeed; ve shall proyethat, for

every k’ € 1+(A,B), L*(A,B;K) has the ‘saie hommpy type as Ll(A B, c“)

o il
(k) k "C .
G, f;-v(wc) A

e ey eh

Henc’e,'deme )
Hences,

' I fe L'(A.B;k).
s

md 50, 1 £ ¢ 0,9 s'»(klc:)
: % !

Enk) ——)L-(AB,C:] T 5 T g

by, 6() & V(H(K),D, ‘and -

0':Lx (A, B5CL ) —> Ly (A,BiK);
 owandy S :
by o' =ik,H. ; \ ‘& . den g
Then, o * % .

3 o . . X
6'0 =073k, = S(k,5HK)3-)) & 0;’(;(‘(’@(”)4_) - ;’(CC

e anti.

K, vk, )3 = v(v(w(k) k) ;-]

s ¢ s A : H
hence, 8 and @' are inverse homotopy equivl!ench

"The proof of the corresponding kesult for  L(A}B)

‘gashion.// . Ao BT el




3y Ry ¢ 2. - Spaces of F-homotopy Equivalences

B Th:eughour. thia section ve shall alvays assume that A is an admissible

s caLegory of flhxationa which admits Aspherical, n-Unive!ssl A= ﬁbrathns, n

Einite or {nfinite. Naﬂc: that, by (2.3.7.), (2.3.8.) and (2.3.9.), any such

Aspherical - 14

s Free sal, Grounded 1’

and lentl (o1,

1. Because the notion of ‘an
“n-eqbivalence of Hurewicz fibrations appéars. extensively in this section,
s .we wish to remind the reader that if the map on the base oyaces'is also an

(n#1)- equivalence. then the Testriction to the fibres is always'an .~ _

n-equivalence (ue-(S 1.4.3). This fact ahould be borne. in mind whenever
-

the situation -rnes. 4 i b

Let p:E > B be ‘an A-fibration and, for a given base point bn € B, 1et

F=ptp). we dunnte by F(p),. the space of all F-homotopy equivalences

: pp overB, and by F*(p), the space of all' F-homotopy equivalencds

i »p overs which extend  1: r(? Notice that , both F(p) and F‘(p)

i . are non-empty, since . 1:p+ p belongs to both and furthermore, by.,(2.1.9. »

F(p) 1s homeomorphic to sec(pp)g , the space of nu sectlons to
i (@) (EE) > B, and #3710 homesaorphte to seex(pp)y »'the space of

all based sections to -(pp)'F sithat 1s to say, of all sections to (pp)f
G F . .

| to 1y € FXF: One. can u.aily see that the function

m :Fp) F*F s deﬁned by lu (f) = £1F , cnu\cides with the map

which map by e

abo_h\aC(w)F > E deﬁnsd by o (s) = 's(by), and consequéntly, ‘by. (3.1.6.),




i
s
{
i
i
-4

" completed by a homotopy F .

Proposition 3.2.1. ’szf(p) +!F*F is a Hurewicz fibration with f£ibre

fo. !
We shall show that, if piE+B ' isan_ A- fibration with dim B=m
ad p istnduced from an ical n-Uni A- pnzn+nn

n finite or infinite, thm w :F(p) > F+F can be approximated up to [n-ll)-

equivalence by a “certain loop ; fibiation vhose hootopy, in- special situations,-

-is cullputzble. in :he case n

tll: dxnension of 'B can be finite or

. inﬂn:h:e and-the cpproxlmtxpn iSup to =- equivalence:

“We proceed as follous: ‘let p :E s B _be'an Aspherical n-Universal

A- fibration, n finite or infinite, “and let u"l L(I B ) »>B denote the

evaluation fibrations at 0 and 1, ‘Tespectively. Cmsider the pullback
diagram . P s 2
1 % ¢ ¥ e S
T L(LB )M E,
- B 2 N 1 (pn)eo
() Wty
o M
. nll 3 LT, L - L.
. AT o
* where ‘s denotes the projection map. Now, define a homotopy
f:l:(l,B‘!)xI - I‘ from € to, e by’ f(i',') ="2(1), 'L € L({,Bn),_a.nd
observe that, since p; is an F- fibration, the following disgram can be

such that (F,£) is an- F-hemutdpy with” FE-0) =
the P lup (F( ,,1) ey); "we now nbtam a nap

L[Im)xl—————)li‘ Ay e S




= e W
& Yi ey P*Py B | - ,

over B x B, where eg 17('1,3") > BB, is defined by ey (£) =9(£(0) ,£(1))
md Y0 () = F(E),1). . ) '

Proposition 3.2.2. | y:'€y |+ PP, is an n-equivalence over BB .
2 Proof: . First,observe that ey  is'a Hurewicz fibration; it can be identified
'ith the wbll-known fibration L(1,B) > L(LB) which maps an element £ ¢ L(1,B) .

s 7=
to its restriction f|iI + B %

) . MNow, let' b be the base point of B and let F= p;l(b“). Pulling back

the fibrations ‘e, | and ‘prp, over the nip (cb“.lB B, BB, ve

* obtain the Following commutative diagram of fibrations

B . . '
n : S 2

svhere th induced map T PB -+ FaBy s just the fostriotion of 'y to PB, ° :

the space of+all paths. in B originating at the point b . The identification

. Tof eyp,. with' the G-, space inducéd £ron . py'p, by the map (C;’,1;) follows
. : ; ' B




\

\
!
a

from (1.3.9.).

Now , it is well-known that LN is a contractible space and, for

—o

<j<n and for all choices of base point, '-’(F-E“) =0, since P,

Aspherical n-Universal; hence, 7 -induces isomorphisas in hozotopy,

5

A2 4
£ 0<j <n Applying the Five Lema to the commtative diagran arising
m the exact hondtopy. sequence of both fibrations and using the fact that
“Bf is‘path-comnected (p, is Free n-Universal), we obtain that

v|} 9B > P+F is an n-equivalence. Applying the Five Lemna once again

T

for the: fibrations ¢y, and p“; Py - We obtain that .

L(1,B) > En’zn'
is b n-equivalence; the bijection Y3 (LB ) 5 (B eE y(8))

i§ inmediate, since vD(L(l,B“) 20 = vrn(B".,l(D]) 20 and wo(ﬁnﬁin,ytl)) 50

tron'the. £ibration. FoE, ' * BB, —Pn'1Pn 5 8 77
'Recall that the functional £ibration ®,P)p (EE)f* B, vas dofined

as ‘the pullback of psp, over the diagonal map A:B_ =B %8 . If we now

mllbsck eq | over 4, we can easily check that we Gbtain the evaluation

fibration “g: L(S',B) + 3, Where e, evaluates at the base point » ¢ S

The sap. y: e ) e, over ’nnxnn then induces a map §

1

yiLstB) ~ BB

over B such that the \fnllw’i.ngi.i:gru commutes:
) 4%




ES
[ 4
S
$

e

I T e L Lo ey
> .

totice that y': us'.8) + (B is just the Testrictionof y to n.(s“,nn).

'l'he following result now follows imsediately from (5.2.1.] anrl (3.1.5.).

- Proposition 3.2.3. Lishe )‘» (E EDF B i VG B,

Recall that if A and B msp:ces and k: A+B na-p,ﬂwn

L(l B;k) denotes the component of L(A,B). m!lining k. .In the case we .

dukwuh based spaces and based maps, this component 'is. denoted by Le (AB5K) -

Nuw. let.ay e A be thn basq point md et 6. ¢ L(A B) an dennle evaluation, «

%

at the point ~ ag., Tt.is well-nown that e, is.a furewicz fibsation and S
’ o

soreover, its resirictim to the compmnt L(A,B;K) s al a Huedcz

I£ 8 is pad\-:annnted then o maps | LCABK) onto

ﬁbmtxnn B, .

_ Applying the 1o0p Bunctor ‘2 to e‘ . we obtain amap | - t
; o 3




LA, B;K) QB . .

-£,’tc QL(ABK) 5 in fact, Re, s a Hurewicz 7
[ s iz o

defined by, Qe (£) =
%

fibration with fibre QL+(A,

A- Eibration,

Theorem 3.2.4 Let Pyt E -»B heln" herical n-|

- n finite or 1nﬁmte, and let p: E +B be IIIA— fibratxnﬁ with’ din B = meno

Let bo be t)w base, point of B and let k: 5 ~ B be the classifying- mp

for p. Tnen tl\are exists @ fibre presenmg mlp a= (uL.un) fron : 8

3 m.(s,n 3K na' to o, F(p) -»F-F such that “a isan (n-m)-equivalence:

n éase n==,qisa --eq\uvalcnce. and there 1s no condition on the dinerision |

| wfE Bl ol o .

" Broof: Consider the commutative diagran of fibrations

0

e B < i | (Enin)f

sficaa Sas | CPabelE

(ORI S e, e

“whers s 7 BIVLES',B) > uri(s“E")F

L T » * S \
islan n-equivalence’(see(3,2.3.)),
. P ® ] o




TLoLfe (=.,,k) Baxt, by (L1.1.), we can identify Life (e,,k) with

Vb ne iy mowhas e requ1r=-‘l propertie!.//

et

Now observe the following facts: 5
: P ot o & )

(), BY(1.3.18., (B P,) 0 (BMVE, BRVE)F » B con b idencified’,
with the induced G-space ((P,p))

X3 !n(EnE{;)F - B; f}xr'themore, the \‘

‘evaliation fibration “e, sec () (p))F ~PF cn'be identificd vith
(3 Fg(p )Q~F-F ) B v

the tlbration )

(u) Sincé sec e, is pty, sec (&), is

_because

(e,]k is the pumu:k of e over - Kk, sec (e,)k‘ is mm=umrph1c to

. RLBB K nmcq, the evaluation fxbnuon “sec, (8, + B

(oim:ides idth t||e lonp fibratmn ﬂe

I£ we nw?m;ly (5

appropriate idenn(xcanung with' the eviluatlon h.hra o

(n-n)( = equivalence’ ¢ = (B,Yl) from neh % 3
o ¥ - 0./ e N
Filp))~ BF. i Ly &Rt B

B 3 \

(p“) s

Since k .is the L‘.llssxfymg sap for g, p isF

to [1:“)k over B.- But then, by [1 3. 19.). (Pp)p is°G-] homompy eqnivslent ¥ 1

H s a : £
wto (;?ﬁ)k(i:“)lgy over b, “Lét n ((p“)k,Cp )k)F,-* onF. defotesuena |

G-honotopy equival'once. If we now apply (3.1287 to » and mzke the:

:yymprxat: 1dent1£lcet1m\s uuh the e'vnluat:.ms thrntmns, we ﬂhta)

hnnmc

¥ equivalence ¥ (""‘l) from’ m(p ¥ The domposite’
k‘

P




“in centain dinensions, :n‘cm‘pumg the' homotopy groups of §L(B,B 5K)

‘and QL (8,851, respe:tively' however, the computation of ‘the homotopy

groups of ‘these )onp spaces, “is, in general, a difficult 'prcblem. Neverthe- "

less, in some cases we can obtain good ansvers: For example, if k = Gy
P %5 n

the constant map to a point b ¢ By,  then p = pr i BXF + B and thie

. looy Dﬁm-atian' fle, ' QL(BiB3C, )+ QB can be identified, via (1.1.1.) .
P 1 ' J; .
» : n . &

by

to the evaluation fibration ey i L(B;B) > 9B, with fibre ' Ls(B,88);"
0. R

in fact, for a trivial A fibration pry: BxF + B we can see directly that

Fpry) éec(prlprl)F L(B,F+E), since (prlyrl.),,,‘ 1% the trivial,

fibration: pt: BXFsF > ‘B *(see(1.3.20)), and Fli[p) & secp(prypry)ps Le(B,Fe): |

it B e

Hence, in this situition, certain 3 are

shall see. that, under suitable conditions, the problen of computing 'the.

we

homotopy ‘of F(p) and F‘(Pi for an A-fibration p E+ B with'classifying

ngp k ‘mlot homotopic to a constant map, - can be Sy, u certxnn dimensions,

o the simplified problen of computing the homotopyof F(pr;) . and P (prp).

Théoren 3.2.5. ~Let P E“ + B, bean 1 n-Uni 14

i finite or infinite, over an H-group B i and let p:'E + B be an

A-Fibzation vith WliB =n < 0. Let by be the base point of B and let |

k:B 48 be the classifying map for p.. Then there exists a fibre preserving

Hhp?ae (8,.6p), fron e

L(BAB,) B, to q: F(p) + F1F  such that .3

is an (n-m).- equivllenr.e. Inithe case n'==, 8 is'an =-equivalence,and

there is no comht)on en the dimension of B.

Proof: First observe that, by (3.2.4.), thare exists an (n-m) - ‘equivalence

o "

(%)= see (3.2.5.), (3.2.6.) and(3.2,7.3."

- &144 r Sl




&5 R a 4w

@) from nebn:.mv.(a,nn;k)_»m“‘ to mf:F(p) + FoF,

g Now, let C, 'B.*B, denote the constant map to the base point
b, € B, Since B isan H-group, by (3.1.9), both .L(B,B) and Ls(8,B)

. are H-groups; furthermore, the map - ol g

o LG )+ UBY ey B e
defined by '¢(f)'= f(k,f), where ~ i is the multiplication in L(B,B ),
is a homotopy' equivalence ‘and so is its restriction

¢]? L-‘(B,B";Cbn] + Ln(B,Bni.E)- - o
* Now, & i'nduc.es amap ¢;:B, B, defined by ¢, (x) = u(kix),

where :¥ is the multiplication in B, such'that the following diagram

Notice that ¢, is a Homotopy
loop functor 2 to the aboyé diagfam; we obtain the.commutative diagram
il . * I 3 rE o

ab

__&_—_)‘ ) = 35
aB; as,
i .
el = e 1 . 4 "
~ Where b and R¢ are homotopy equivalences. Let us derote the’ map
5 K . :
/ . 3 3 - g, 12

L RLBiB )ﬂllg"m :
_— Ay 2 E e"o e E .




- . 3 8l

pair’ (3;26,) by n. Now, observe that the loop fibration

R, '+ QL(B,B 3G, ) + QB can be identified, via (1.1.1.), with the
5 BBy | e
evaluation fibration e, : L(B.RB) +QB " with fibre ' Le(B,0B,) and
' (] . .

the map aen: e - oy has the required properties.//

0 . = a
Theorem 3,2.6.. * Let p: E -+ B be an ‘Aspherical n-Universal A
fibration, 'n finité or infinite, and let . p: E + B. be an A-fibration
where B is an H-cogroup and dimeB = m < n. Then there exists an
*(n-m)-" equivaléhce §: L+(B,8,) > (). In the case nw==, & .

is an '» - equivalence and there is no-condition on the dimension of B. % 5

Proof: lLet B B " be the classifying nap o3, p. Then, by (3:2:4.)

there exists an (n-n) - equilalénce ay: RLx(B,B, k) S F ) Now,
let cb“: B 4B, ‘dénote the constant map to the base point b, ¢ B . J
Since B is an H-cogroup, by (3.1,9.), L+(B,B) - is an i-group and

furthermore, the map -

i b L-Fa,a“;cb“) - lj*(B,Bn;k)

[deFined by, 6(F) = S(k,£), where 5 is the miltiplication in, La(B,B),

is a homotopy equivalence; hemce, !

9.5 QL (BB, 50, ) QL*(B,B 3K) "
: n

is' a homotopy equivalence. e - v

Qe (B,8,5C; ). can'be identified, via (1.1.1.), with the space L\-(B,Qp").// h
n e ,

"Now, form the composite a,-20 .and opserve that

1€ e now assune that the classifying space’ B is p-cpniected,




|

‘%:F(p) > F«F we obtain that

n 5.0, then F+F is (nll) - commected and from the £ibration

for 0c i nel, A FE) sy @

“This cbservstmn can actually be extended to the folluwi.ng stable

range result. |

Theorem 3.2.7. Let p: E, > B, be an:Aspherical ® - Universal A-

\fibration and|let ) p: B >'B be an A:fibration with classifying nap k...
CTE, B, s n-connected, i3 0, “and dimB = m < 2n, then, for

o < i< 2nemel, l-(F(p)) =7y (L(B FTF)) and. . (F ®) J(L.(s;'p.p]].

Proof: Let SB, denote the suspensxan of ‘B, “and'let -p: B > Ass

" ‘denote the, adjoint of the identity map.on 'SB_. Since B, is n-commected,

by [18;8.5.10.and 7.5.9], ¢ 4s a (2n+1)’ - equivalence.: Now, ‘observe

that the following diagram commutes,

Lstp)—— o' sustass)

o . e
* g p {
By ——————————» 08B > e p

where p' . is'the obvious nap indiced b)" (3 ‘futthern\bre, the, restriction

of p'. to.the fibre 0B, is precisely the nap’ 0p: 9B, +0’sB_ ."smcg b

Lisa  (Zne1) - eibviiances B, Tormdn i equivalence; hence, by the’

Five Lemma, p' is 4 Zn -.equivalence. ' -

Next, consider the commutative diagran




‘withlib

PREN LT S X v
2 k %53

-EP‘_;,-)Q 55

and observe tha, by (3.1.5.), the induced map p'

By (3.1.7.),  3' induces a (2n-m) * equivalence

o §.5ec ey ™ w, o gb'~ sec (e.l

ot (e,)k g,

'cbﬂ

and furthermm‘e, via (L1, r see (),

§ DLBASB,0K) o’

e =5 L(Slﬂsﬂ_?'

o nzsn'

‘».nsn_

is a 2n’ - equivalence.

4= (8,20) _fiom

However, recall. that’

can Be ldentliied with ﬂab m.(n B; k], + ﬂB

can be &de‘ntlﬁed‘

s hence, for 0 <3 < 2w,

m.cs.a_; k) =

73 (AL(B,ASB_;°K)) "and =

it

(ﬂL:(B H ,k)) = ij’-‘(ﬂ,ﬂsﬂ o k)]

YL But, by (5.2:4.), there exists an = - equivalence a= (a.l ag) “eron ,

s, 5,

)'»ﬂn_ to mp: F(p) » FeF; hence, for  0:<j < Zn-mel,




L nyFO) = nGLELBR) = vy GOS0

EE) F nELeasR) = 5 SO0, s

‘ : Hnu’ly, observe that since 0SB is mH—zer. (3.1.9.) shows » -
that we can rupluce aL(B,! nsl ,p-k) by m.[n GSB, ;¢) and
DL-(B 0SB, 30 k) by/ SIL'[B ﬂSB .c) in ﬂw :ﬂlpuuﬁnns uhwa (h‘re

1 %
1 © B > 0SB, denotes any comtm ‘-sp). Moreover, via @.

, we can.
3 { -, identily QLB,088 ;0) ‘with L(B,0%SB_) - and QL (B;95B_32) with - J
. E’ L, (5! nzsl J; hence,. fqr 0<j< 2n-wl,

i LU ey e ey n,m.(is.r{-m i :
¥ # any (F‘(wi (o650 & s e ]
b ! ;

L tas * We concluds this section nch'm fonmng A =

‘ 4 < Let p:E~B md p- BB ‘be - F-honstopy .qm-mu -fibrations
3 ‘ B by d : .

: i) beatt pups L
i e P is just the space Of all F-hmtbpy Squivalences’ 4 g over. . |

[ B and'furthersore, - F,(9,p') 1S hoaeomorphic 'To.sec (pp')f, . the sp;ace . ;

1 : . of ailsection to (pp')r (1) +8. If £ pap' is s F-hosotopy * i

| S vnqqiv-lanc,e ovor. B, - them rl(y.p') will denote the space of all

F-Homotopy eqiivalences, P » p!  over B vhich extend £[:F+ F. By

K ) vvF‘i(p,P"} is homeonorphic to sec, (pp');, the space of all . ' (
2 * based sectiohs to (pp')p;  that is to say, it i$ the subspace of i
B ey d Sl St o
. “ . :

- 1 P * . 2




o

il - ]

= equm'ent A- mmxons p and p'.

obtained by the Milnor construction®[16].

s-j:rty. Yow, by (1.3.19. ) the functional thndon @) (x-:z-)F »B7

“% T e
n3 (yp)r + (pp'); denote such a G-Homotopy equivalence dver B.
" “Applying (3.1.8.) to

homotopy équivalent to (pp)r- (EE)p + B over B.

n and making the appropriate identifications with

the hspfcei of sections we obtain a homotopy equivalence §¢ = (a;ﬁl):mp - u(M.‘), ;
where “G iy is the fibration” F,(p,p') » FeF. uanca.\me conclusions

of (3.2.4. ), (3 2.5.), (3.:2:6.) and (3.2.7.) remain' v.ud :\f we repllce the .

“gibration by ‘the more genem flbration LS O fbr F-homor.ap)' i
"‘p (AR g’

= 3 o? ¥

Some Results on Groups of Gauge Transformations

§3.

We now agply. the generaltheory of section 2 to the admissible category
Ag of mmerable principal G-bundles to obtain some specific calculations' of
‘the Tiomotopy of spaces of bundle- equivalences.
or infinite, there exists an Aspherical n-Universal principal - G-bundle;
namely, the ; (Aspherical)

Universal G-bundle =

e .
+Bg
! . S
. Because. the general results of

section2, for p_: E_+B, an ical Universal A ibF

actually have a stronger formulation in Ag, We give the corresponding

results for pg: Eg BG."):hresults of section 2 in Ag; for 2, B By
an Aspheru:ll n-Universal prmcxpal G-\:undle, n finite, remnn che same

as in a general adnissible cntsgory

7

)= see (3:3.3.), (3.3.43), (3:3:5) and(3.3.6.).
R i 2l S

Recall that, for.any n-finite . -

i
1
!
{
|

[



0 8 el s gt

2

g

Let p:E 4'5 be a-numerable 'ﬂ‘é‘mcip-x G-bundle and fox ; siven base
puln( bo €8, let G = p'luaa). We shall denote by 90) , the’space of all
GV W ‘G*(e) ., the ‘space of all G-automorphisas of
P vhich extend 1:G + G . Because the cnly G-msp G » G which has a fixed
potne 8. 1 > G() " chn also be vieved as the space of all based
G—ln:mrpl;lgu of p. Notice that the spaces Q (p)° and 9“(») are .

actually topological groups, the group operation being given by composition

of ‘functions, qpd moreover, by’ (2-1.9.), G ) 1s honeomorphic €0 sec (pp)g

(p) 1e' Homeomorphic to ‘secy (pp)c It phnuld also be noted” that the

' group’ 9 (p) apvurl in’ lheoretiml phyll.:-, J‘IEII it il called the group

of all g uge t: mcommm of p . In the phyui::s context G is a compact,

connected Lie ‘group and the principal G<bundle p 1s actually a smooth

_ bundle gver a smooth manifold B+ Since the.results we obtain are of a

by @G22,

% -—Equivalgnca over B xn - But, reuu that, for any peineifin §-busdle "

more general nature, we-elect. to ‘stay. in the general adaissible category
A; and sEn)) eall G ) the group of gauge transforsatfons.of p .

Yowconsider the .-ﬁnuenu G-buadle Pgify * By and observe that

), -pg has :h: property that the map Y: ey * pG‘-pG is an

(]
and, 4a plrtuulli, for lhc -rvniverall G-bundle poiEy > BG » :he

associated: principal ‘f‘nﬂ’ltion nﬁsz:G*!G '*'IG l:a!.ncideu with Pg and
the total space i 1a conraceible; hence, the induced map

FiRBy + GAE, Ec ovez nc is mot only an —nqul\llhnce (see proof of

‘homotopy eguiv-'_ience -over. 'c i Applying [7; Theorem 6.31 n;, Y s we

. —
obtain the stronger result:

i i




Proposition 3.3.1..  y: L(I,Bg) + EgiEg
over 1B X Bge

is a- Fibre homotopy ‘equivalence

Since the “restriction nf the “induced map Y': L(S BG] + (EEQge
in (312 3. ), to 0By is ptecxsely the map ¥|: g+ G, by [7;Theorem 6.3]
§ " DR
and (3.3.1() above, we also have: 5 {&
s L » .
Proposition 3.3.2.7

’ L(s%,Bg) > (BgEg), s a fibre homotopy equivalenice .*
over | By ' .

This now gives ys the following formulation of (3.2.4.) in AE‘ for

for the case . n

! e : 4
Theoren 3.3.3. ' Let' py:E+ By be the w-Universal G-bundle obtained by
the Mildor construction’and let p:E + B be any numerable principal G-bundle.
Let by be the base pdint of B and.let kiB + By be the. classifying map “x

for ‘p. Then'there exists a fibre preserving map o = (6,Jag) " From
ﬂeb 0610 + 0 €8 w Go) » 6 sueh e

and a|#aLe,Bgk) + G (p) are homotopy equivalences.

By (3:3.2), ‘y': x.(sl,sa) o (EgEg)g ~is a fibre homotopy équivalence

Proof:
i ¥
avgr‘ Bg: hence, by [7; Theagem 6.3, the induced map
IO L ITER AR BR(EGEg) 15 also a fibre homotopy equivalence over B.
1f we now apply (3.1.8), instead of (3.1.7), to the map !, 'in the proof
of (3.2.4.); the resulting map ¢ = {B,ﬂ):»ﬂ;b #up .y has the property:
0+ G’k )

that M gand 8| “are homotopy equivalences.  -Setting « Y4, s in,
the proof ‘of (3.2.43, gives the requn'ed Tesult. // i
(3“2.5.) now has ‘the following formulation in - AG for the case n = =,

N g % s
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egkem 3.3.4. Let yG:E + “s be the Milnor buridle, where' ‘By ‘is.a‘n

varoup, and let P £b be any Junerable principal G- bmm'. Then,

for a given base' pclnt by e n, the evaluation fibration,’

L(B,G) > G is fibre homotopically equivalent to” % g(p) 36 over
B : T

6. ) Y i :

N

4
Let k:p B h&tﬁ.g classxfyxng map for p. Then, by (5.3.5.,
there ‘exists a homotopy equxvnlence = (ul,uu) f£rom i
s L, B 3K+ A to # G(p] i tow, construct the homotopy «

equivalence = (\')],nu] £ron ﬂe m(n B, ,c )¢mz to b

- er FAL(B B k) + QB ‘as-in the proof of (3.2.5.). Id.entifyu\g

ﬂehn: HL(B'BG;Chu)- > B with the Evalua'iion fihralidn» ebu: Lga,uss) - WBgs

ve Gbtain 8. Tigaotopy egrivalene ‘an ® (g nyisg gt & vy

Let g% uu ngt @8> G- and let g7

of ‘g Then ‘g 1 induces a map L(B,6), » L(B,B), defined in

the. nbvlous mnnner, such that the following diagram commutes:

b * 1; \a g
L(8,6) ———~E———> L(3,28)

G __,___,mrﬁ

Now, it is easily verified that” .0 is a homotopy =quiva1ence;’

hence, by [53 Covollasy 1.51, §'1

L«(B G) + La(n.sz] is.a hommpy

equxvalence. ‘Lot 'us .denote’ the homotopy equivalents (2™Lg™)) by o

Then. & (ul'nl -#h,6-gY) deties a homotopy equ;\valence £ron
‘ \

G+ @By be a homtopy inverse

i
1
i
i



¢ .
! oA

LL(B)6) » G to m‘p:ﬁ(p) 3G But, since g-g is hootopic to ‘g
i i B o i 4 4

we can’ Teplace the homotopy equivalence ' -n,-

1. and g covers 1:GG.//

by a map g1 L(B,0) -vg(P)‘

such-that g is fibre homotopic to ajmye
" We now study G () and Glp)  for p 2 numerable principal U-bundle

B : - .over a sphere: S™(n'z 1), 'where U. is the infinite unitary group.

_Recall that the classifying space BU. of U-.is of the same homotopy S

*_type as QU . and hence, is an. H-group; moreover, £rom the ‘Bott. _periodicity’
- theorem ‘we have' that @Y © BUXZ and ‘o, for 121, e i

i S T e e
. EANOPE D

: 2 : 0, iodd .
Now'consider the fibration mp:~9(p) > U By (3504, wp s £ibre

" homotopically equivalent to the évaluation £ibration e : L(",U) '+ U over =l
: : R £ s o,

U, '» £ S". - Thus, for' 130, 7 (Le(S™U)) . and” s 2
20, ™ . I

1) = E WYL But, fof 30, wlle (SN0 = ny(0) (see . J
©oet L. [22;2.20]) johence, 3 X PR -
if n is.even, ‘mill}l(p)l 2 b Lisie 5 K : °
e 2, i odd ity g e
) and, if 0 is odd, 7;(§EN = {1 Lreyenms g
4 7 “Pet Y o Op~ 4 odd
Now, in view of [L3iTheoren2.2] = = . . 55 we g !

TLEND = U

s fe 20, : “
j ; : ¥ 3
GET ¢ m (W 8 mywGm ) = mm e 7§ o) g i
" andhence; - ° x e W Nk, § ) .




if ‘0 i's even, p -i(‘_'(p)) e \ 0 fieven: [ ": .
= : Zoz, iod .

and, if- n' is odd, 'i(S(P))"'z {z,.1ieven
- e SRS Z, iodd S *

e mext result is a strongef version of '(3.2.6.) in A for the

. Its proof follows qﬁsily from (3.3.3) and (;.1.9.-)7»'

Let Pgt ! #eL B be the Milnor blmdle and let PIE +B
‘. be any nulnanbln Brincipal G-bundls, “If B is'n H,cu.mup, then glm
has the same hbmotopy type as L#(B, s) S

| Notice thut, as a :m\seq\mnca of this xesul( fora numexahxe ¥y
principal. G- hundle P owra sphm s 1), the I\uwtcyy of the.
growp 9 (P) is cmhtely detmu:ed by the holotc'py of .G; more predsely,

©. X s %

Tianl

for 120, 1G'e) = i(hrS"c)) =

Since. the grow  GaG of all € automorphisas of 'G can be idéntified
with G, we have- the following forsulation of (S.z':r; m A
Theoren 3.5.6. Let ‘piE+ B bga‘mmenblq»yﬂn:‘_ipll G-bundle. Lf G -
i’s (n-1) - connected, n> 0, anddim B=-m <, the, for
‘0<ic 2nml, [g @)z 0o md g Gons 10 .6):
; it pis any mmerabls principal G-bundle over a sphere s,
.where G is  (n-1) - cambc:ed,- n>°0, ‘and ‘j< 2n, than codnninz
(3.3.5.) and(

.6:) we have that i 3 -]

S for 130 mGE) £ g (0, :
and, for 0 <1 < i1, 53 (G &

CRF VR 5©




@ ‘- K :
5 £ ; % ! ]9u . i
2o ki . A a 6 : '
Now,. urther: computations ‘of e homotow of g(p) ind Q () éan
also he.ohta1ned for numerable ptlnuyal G: -bund1es p inwhich thev i

fibration  u: G .c has 4 section

This is a consequence of the
iollomng result. oy s b o
Theoren 3.3.7. Let p:"E +§ be a:umerable principal G-bindle and, ° -

: it Lo
for a given base point by B, ‘let G = p"lv(hu) . ‘Then-the ‘FolTowing:

“Statenents are e ivalent:: | P P 1
e 0) e secrion s B g 4
] “P is. 'ﬁbu'hommpicmy equivilenc'to LB 6. overy G i
(01D, there exists 4. ibre Homotopy qm.valAnue ‘iB X G (EE); ovet H
e ¥ -which extends 13 G+ G 5 ?
i T (V) the G-morphism (oppr): PIG x1; > p, defifed by V(a,g) = z
! - can be extended to a G-norphisn (i, 'pr]) BxIgp
= 5
o Proqu 1‘(e eqluvnlence of (m) and (iv) s a’consequence of (1 3.3, TR e i
15 and the equiva'le‘ncg of () rand (i 11) isve cénsequénce of (1:1.1.)" L gt
Py CE=S0) Let £ie, 4, “be a’Ebre, homotopy equivalonce over  G. ;
. : ‘ o ¥ ; Tae . ¢
_Mow, e has a section, namely, i G- L(Bj6) defined by s(g) = 'cg. X EC
N n 2 A .
‘the constant map to g ¢ G; -hence, .f-s: Ger((p) + defines aisection to i s
: i - ¥ T AT
) e . ; e s w
G L GHD=PD: et g: pry + ()G be m £ibre homotopy -equivalence over R

5+ 6. Then, by (3.17

B whichextends 1:: .);- g’ indutes a homptepy' -+

. swivalsice ' gi'sec.pr) v 5 Py m%f [ xdeng?fymg e"a' seepry > 6

with '8, s L(B,G) » G and
o B .

\seclm)g + G with u :G) »Gvina
z - e




e o . = @

epplytng [73Theoren 6.1 1, ve have that §: e
g o By

uy.” is a fibre homotopy

s !
‘equivalence over G. L i P

Genera]_ly speaking 1t is difficult’to aetemn\e if sec u ,# ﬂ for

' “a:given numerdble principal G-bundle p; however, uaidg (3.3.7.) onme csn
| ebtzin sqme exa.u\p1254 - The' most ob¥ious exmple af ja bundle p in which

x G = B

u, has a section is, of course, the értvial G-bundle pr.

Anbther example 15 given by a nupkrable principal G-bundle p in'which

the classifylag space By for the' groupG is:-an H-group; this is'a

' consequence of (3.3.4:) and (11)70£(3.3:7.): Using (iv) 'of (3.3.7.)5
i \

‘ we can produce two more examples; namely, -

o i d, F o 8 S
o «1) If p:E > B is amutetable principal G-bundle, vhere G is any

gbeldan grnup, then, because of .cneumcivicy in 6, the right'action

x g Ui Ex G+ E‘deiines a right G-map; in fact,:one can easily check that’

. (uypEp) P x .1 + P defines a G-morphism which extends ‘the G-morphism.

(\J prl) giveq in (iv) nf (3.3 7 ) Hence, oy has a sec:ion. Notlce that,

because W' actually givaa rise, 'by 1.3.3.), o a hamemurphxsu

Sv © T
E W' B 5 G+ (KE)G,nyet B, oy, catt be ldenu.ﬁled with Eb L(B G) * G.

P . o
3 AR (1) Let Cbia closed, nomal subg:ouy of a topnlogical group'H and

fef pibs e dennte the projéction., Let i H'x G- H be'defined by * -

3 ERTCHERS n, uhere ", denotes the'multiplication in H.' Then, because

S s 8L g is formal An g, the fullnwing diagram “Fomautes:

o




i
i

% : °§ 3 % o= 3 ey "
* Since multiplication in 'H is associative, y ‘is d right G-map and

\furthepnore, (u.pr ) extends' the G—nwrphism (\;,prl) given in (iv) of ~

l 4138
3.3.7.}. Hence, 8y has a section. Nnti:e that be:ause n

can be 1dentlﬁed mth the evnluatim\ f).hratmn e L(H/G,G) + Gy

b € HIG.

Theoren 3.3.3.. Let p: E 7B be & numerable principal G-Bundle and let

has‘a section.. | .. g . o
Proof: Cnnsider the follnwing pul].back diagram
v s mm)é———> WG oo 4

7 P i :
€] ((»p)(;)f  , st (R)g -
'

actually

.. gives rise to 4 homeomorphism i H/& % 6 (“‘”c over H/G (ses(1:3.3. s

. Lo s % & . I

fA»n be a map.” If (p)»G Imsasel:t then e (07 R
4 G “\g@. 4, G _

. '
*and observe that if .s ¢ sec(pp)g, s°f g;,'if:((pp)c,f? and -hence
: v

K ANER), defined by t(a) = (a,5:£(a)); . is a sectiow'to .

‘(o)) g- Therefbre, define 4: sec(pp)g » sec((B)gle by 8(s) <

“The continuity of ¢ 15 a straight forvard application of (1.1.1.) snd
; : o

the niversal pioperty of pullbacks. If &

hemesy defines a fibre preserving map over G.

L ®f(a;

(pipf][;f (AFIE ..AHE)G + A canbe identified with ((pp)g)gh ATI(EE)G » A.

Thus," if we' 1dent:|fy & g} S G with upfg(pa %G,

; E“n: sec (pfpf]G ‘TG with mpf:,g[pf),.»‘(; and let 'yi G .,5(9)

'€ A is the base point,

Now, observe that, since p. is induced f£ron p, by '(1.3.15.),
) 7 P

he a

i




section, .then ¢y deﬁnes a secnon tc m //

The existénce of at least one nonvtriv:al numerable Seinctpal

" i-buhdle for which séc u, Y can thus be used to genetate ‘many examples

p’m'ymy

of such G-bpndles

chst mP

In fact 1f the, =- Unlvgrsal G-bundle b is such ~

has'a sectiof, then every nunerable principal G-bupdle. has this

“This is the smmmn when the ‘classxfymg space is an H-group

“or when the grgup G is abeljan.
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