TOTAL OF 10 PAGES ONLY
MAY BE XEROXED

Without Author’s Permission

PHILIP HOSKINS













St. John's

Equivariant Algebraic Topology and the
Equivariant Brown Representability Theorem

by

©Philip Hoskins

A thesis submitted to the School of Graduate
Studies in partial fulfillment of the
requircments for the degree of

Masier of Science

Department of Mathematics and Statistics
Memorial University of Newfoundland
1992

Newfoundland



Biblaihéque nalionzle

Bl Vaoapoey Biololn

Acquisitions and

Direction des acquisiions et

Bibliographic Services Branch ~ des services bibliographiques

395 Wellngton Stroet 5. rue Welinglon
Otiawa, Onlario Onwa v (Oriano)
KiAON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

Soww e Vo et

Qe Nt

L'auteur a accordé une licence

k et non lusi
permeﬂant a la Bibliothéque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
thése a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d'auteur qui protége sa
thése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-315-82661-4

Canadid




Abstract

The main purpose of this thesis is to give a complete proof of the Equivariant
Brown Representability Theorem, in the process developing the equivariant algebraic
topology nceded in the final proof. The proof of the theorem in the category of
path-connected G-spaces is given in Chapter 4 and follows the proof of the non-
cquivariant case given in Spanicr ([Spl, pp. 406-411). There is another account of
the proof given in Switzer ([Sw], pp. 152-157), which is closer Lo the original account
given by Brown [Brl]. Equivariant versions of the theorem are announced in [LMS]
and [V], for example, but no details of the proofs are given.

In Chapter 1, the basic theory of G-spaces and G-maps is presented. G-final and
G-initial structures on a set arc defined and sufficient conditions are given which
allow such G-space structures to be constructed.

The cquivariant homotopy groups are defined in Chapter 2 and the isomorphisms
7H(X) 2 7 (X7) and 7H(X, A) 2 7,(X", A) are established. These two results
are then used to prove the results about equivariant homotopy groups needed in
Chapter 4.

In Chapter 3, G-CW-complexes are defined and ail the necessary homotopic prop-

erties of G-CW- 1 are developed, culminating in the proof of the Equivari
Whitehead Theorem.,

Finally, in Chapler 5, we prove an cquivariant version of the statement thal if a

ant

functor satisfics the Wedge Axiom and the Mayer-Victoris Axiom given in Brown's
original version of his theorem, then it also satisfics the Equalizer Axiom given in
Spanier’s version of the theorem. This immediately gives a Switzer style version of

the main result.
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Chapter 1 Equivariant Initial and Final G-space Structures
Let G be a topological group and let X be a topological space. Then X is called
a G-space if there is a map (continuous function)

$:GxX—-X
such that the following conditions are satisfied:
(i) 8(91,8(92,)) = é(9192,z) for g1,92¢G, zeX
(ii) #(e,z) =z for all zeX, where e is the identity in G.
Usually ¢(g,z) will be denoted by gz, s that (i) and (i) become:
(i) 91(927) = (g192)7 for g1, 526G, zcX
(ii) ez = z for all zeX

Such a ¢ is called an action of G on X.

For each zeX, Gz = {gz|geG} is called the orbit of z. If § € X then GS = | J Gz.
A subset A C X is fixed by G if GA = A. s

If X and ¥ are G-spaces then a map f : X — Y is said to be equivariant or
a G-map if for all zeX, g¢G we have f(gz) = gf(z). Hence f is a G-mar. if "¢

following diagram commutes

Gxx 2 x
w|
GxY — Y
oy
where ¢y and @y are the actions of G on X and Y respectively.
1.1 Proposition. The composition of two G-maps s a G-map.

Proof: Assume f: X — ¥ and h:Y — Z are G-maps. Then




(ho f)gz) = h(f(s=))
h(gf(z))
gh(J(z))
= ghof)z) m

Examples of G-spaces

1. Trivial G-spaces
Any topological space X can be given the trivial action of G, defined by

$:GxX — X

$(9,2) = =
In particular the spaces E™ = {z¢R"| |z| < 1}, S* = {zR™'| |z| = 1}, and
I" = {(21,22).0. ,2Za)eR™0 € 2; € 1, 1 < i < n} will always be given the trivial

action of G.

2. Coset or homogeneous G-spaces
If H is a closed subgroup of G and G is locally compact Hausdorff then the set of

left cosets , with the quotient topology, is a G-space with action defined by

G G
éGxﬁaﬁ

#d'9H) = ggll

To show that ¢ is continuous consider the composite

GxG‘“"’ch—-%

where g is the quotient map. Since G is locally compact Hausdorff and ¢ : G — §

is an identification, it follows that 1g x g is also an identification (sce for cxmnp]v:
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[Bro}, 4.3.2, p. 101). So ¢ is continuous if and enly if ¢o (1 X g) is continuous. But

$0(ig x g) is continuous since it is equal to the composite

exomen S

H
where m(g', ) = ¢'g is the group multiplication.
For the remainder of the thesis we assume G is compact Hausdorff. It is known
(sce for example D], Proposition 3.3, p. 23) that ‘—,C} is Hausdorff if and only if H is
closed in G. So it will also be convenient to henceforth assume all subgroups H of G

referred o are closed.

3. Function Spaces
Let Mapg (X, Y) denote the space of G-maps from the G-space X to the G-space

V. with the compact open topology. This space can be given a G-action defined by

G xMapo(X,Y) — Mapa(X,Y)
(9,)) — (z+—gflg™'z))

If Y is locally compact Hausdorff, then we have the following exponential law for

G-spaces and G-maps. There is a bijection

a:Mapg(X X Y,2)  Mapg(X, Map(¥, 2))

defined by
f—i
where f(z)(y) = £(z,y) (see [D], p. 35).
2-il 5_(_[ ;}I res

If X is a set, then a G-space structure on X is a topology on X along with a

continuous action of G on X.



Let J be an indexing set and let {f; : X = X;};os be a family of functions
from the set X to the topological spaces {X;};cs. Then a topology on X is said

to be initial with respect to {f;};es if it satisfies the following universal property:

for any topological space Z, a function h : Z — X is continuous if and only if each
composite f;oh is continuous. Such a topology exists; it is the topology with subbasis
consisting of all scts of the form {f7'(U)|U open in X, jeJ). (For more details sce
[Bro), p. 153).

Now let {f; : X = X;};us, as above, be a family of G-maps. Then the G-space
structure on X is said to be G-initial with respect to the functions { ;) s if it satisfies
the following universal property: for any G-space Z, a function p: Z — X is a G-map
if and only if each composite f; o p is a G-map.

We also note that if p : Z — X is a G-map it follows from Proposition 1.1 that
the composite fj o p is a G-map for cach jeJ. Hence, to establish that X has the
G-initial structure with respect to the family of G-maps {f; : X — X;};us, we ouly
need to show that the continuity of p follows from the continuity of the compositions
fiop, for all jeJ.

Example: Product of G-spaces
For any familv of G-spaces {X;};s the product Hx, i bl givewa CvRL

structure with respect to the projections p; : r[x = Xj, where [Tj X; has the
initial topology. The action of G on 1’[ Xj is ch diagonal action defined by ¢: G x

HX - HX where ¢(g,(z;ljeJ)) = (g2;ljeJ). To show that ¢ is continuous,

consxdcx the [ollomng diagram

D
G x [y X; — M X;

| I

GxX; — X;
]
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where ¢; is the action of G on X;. Then each composite p; o ¢ is equal to the
composite ¢; o (Ig X p;) which is clearly continous. By the universal property for

initial topologics, ¢ is continuous. We notice that the projections p; : [T X; — X;
are G-maps. i

Le & : Z — [[ X; be a function from the G-space Z to ]| X; such that pjo b is
o Gomap for cach jeJ. Then for all zeZ, geG webave
gh(z) = (gpi(h(2))lje])

= (9(p;0 h)(2)ljeJ)

((pj 0 h)(g2)lie])
(pi(h(g2))lie])
= h(g?)

Thus h is a G-map and the G-space structure on HX, is G-initial with respect to
i

{pidics:
Sufficient conditions for the general case are given in the following result.
1.2 Proposition. Let {f; : X — X;}jes be a family of functions from the set X to the
G-spaces {X;};s. Then X can be given a G-initial structure with respect to {f;};s
if the following conditions are satisfied:
(i) the function h: X — HX defined by h(z) = (f;()|jeJ), is injective, and
(ii) A(X) is fixed by G, le 11' 9¢G and yeh(X), then gy eh(X).

Proof: Let X be given the initial topology with respect to {f;};.s. We have to define
an action of G on X such that the universal property holds.

Using condition (i) we sce that, for each geG, zeX,, there exists an ZeX with
h(z) = gh(z), and this Z is unique by condition (i). Define ¢ : G x X — X by

#(g,7) = £. We have to show that 8 is continuous.



1t follows by the transitive rule for initial topologies (sce [Bro), 5.6.8, p. 151) that
X has the initial topology relative to the injection k, and so h : X — A(X) isa
homeomorphism.

Let  be the diagonal action on A(X). Then ¢ = h~'o (1g x h)o A, i.e. we have

the following commutative diagram.

G x h(X) —— K(X)

o] [

GxX——:—»X

So ¢ is continuous since it is the composite of continuous functions,

Let p: Z — X be a function from the G-space Z to X. Assume f;0p is a G-map
for each jeJ. Let ¢, ¢z be the actions of G on X and Z, respectively. Then p is a
G-map if podz = dx o(1gxp). But from the argumenc above gx = h~'olo(lg x k).
So we have to show that the outer perimeter of the following diagram commutes:

N

GxZ ——

10|

GxX —
#

mhl i"_’

G x h(X) —— WX)

—
)

>

Let (g,2)cG x Z. Then




0(1e x h)(1g x p)(9,2)
0(1g x k)(9,p(2))

= 0(g, (fi(p(=))lje))
(af;(p(=)ljed)

(9(fi o p)(2)lje])

((fi o p)92)lje])
(fi(p(g2))lieJ)

= h(p(gz))

= hpgz(9,2)

n

]

L}

1

]

So plg=) = gp(z) and pis a G-map. B
Examples of G-initial and P ition 1.2
1. Product G-spaces.

=

The product topology is a special case of the above proposition with h the
idunti(;y, Special examples of product G-spaces are TXHEX 8% e B,
and i % I, where G acts trivially on *, §®, E*, and 1.

G-subspaces.

If A is a subset of X that is fixed by G, then the inclusion i : A — X satisfies
the conditions of Proposition 1.2 where h = i. Soif ¢: G x X — X is the
action of G on X then $|G x A — A is the action of G on A which gives A
the G-initial structure on A, where A has the subspace topology. A is then
called a G-subspace of X.

1£ (X, +) is a bascd space with bascpoint *, then (X, #) will be called a based G-space
if the action of G on X is such that * is fixed by G.

For G-subspaces we have the following:

1.3 Proposition. Let f: X — Y be a G-map. Then



(i) If Ais a G-subspace of X, then f(A) is a G-subspace of Y.
(ii) If B is a G-subspace of Y, then f~!(B) is a G-subspace of X.

Proof:
(i) Wehave to show that Gf(A) = f(A). Let acA, g¢G. Then gf(a) = f(ga)cf(A)
since gaeA. Hence Gf(A) C f(A) and since ef(A) = f(A) we have Gf(A) =
J(A).
(ii) Let zef~1(B) and g¢G. Then f(gz) = gf(z)eB since f(z)eB and GB = B.
Hence gzcf~!(B), Gf~'(B) C f~'(B) and Gf~(B) = [~}(B). m

G-final structures

Let J be an indexing set and let {f; : X; — X}jos be a family of functions from
the spaces {X;}j to the st X. Then a topology on X is said to be final with
respect to the functions {f;}jes if the following universal property is satisfied: for
any topological space Z, a function h : X — Z is continuous if and only if each
composite ko f; is continuous. The final topology exists and consists of all scts
U C X such chat f7}(U) is open in X; for all jeJ.

Now let {f; : X; — X};us, as above, be a family of G-maps. Then a G-space
structure on X is said to G-final with respect to {f;} ;s if it satisfics the following
universal property: for any G-space Z, a function k : X — Z is a G-map if and
only if each composite ko fj is a G-map. Again we note that from Proposition 1.1 it
follows that if A : X — Z is a G-map, then the composite ko fj is also a G-map for
each jeJ. Hence, to establish that X has the G-final structure with respect to the
family of G-maps {fj : X; = X};es, we only need to show that the continuity of h
follows from the continuity of the composites k o fj, for all jcJ.

Example: Sum of G-spaces
For any family of G-space {X;};cs the topological sum UX, i.e. the disjoint

union of the spaces X; with the usual final topology, can be glvcn a G-final structure
with respect to the inclusions i; : X; < | [ X;. The action of G on | | X; is defined
i jed



by:

¢:Gx[1X; - [1x;
jeJ iJ
(9,2;) +— gzj for geG, zeX;, and jeJ
To show that ¢ is continuous we note that since G is compact Hausdorff, G x L[,\'

jdJ
has the final topology with respect to 1g x i : G x Xj; = G x [_[x (sce [Bro], 4 3.2,

p. 101). Then @ is continuous since each compasite g o (1g X ) =
the action of G on X;j. We notice that the inclusions i; : X; — | [ X; are G-maps

i=d

185, where ¢; is

for all jeJ.
Next let h : ]_[x — Z be a function from [_[x to the G-space Z with hoi; a

Gomap for all Je. Then we have for zeX;, geChs

hgz) = his(oz)
= (hoij)(gn)
= glhoi;)(z)
= ghlij(=))
= gh(z)

Thus the universal property is satisfied.
Sufficient conditions for the existence of G-final structures are given in the following

result,

1.4 Proposition. Let {f; : X; = X};o be a family of functions from the G-spaces
{X;}jes to the set X. Then X can be given a G-final structure with respect to {f;};cr

if the following conditions are satisfied:



(i) the function p : U,\',‘ — X defined by p(z:) = fi(z:) for z;eX;, is surjective,
i
and *
(i) 1 plz:) = plz;) for 2ieX;, z3eX;, with i, jeJ, then p(gz;) = p(gz;) for all gcG.

Proof: From (i) it follows that for each zcX, there is ¢ | X; such that p(z)
sed

Define the action of G on X by:

$:GxX =X

é(9,2) = plgZ)

This action is well-defined by condition (ii)
If X is given the final topology with respect to the functions {f;}jes, then p

LI X; — X is an identification. Since G is locally compact Hausdor(l
i

lexp:Gx[[X; 5 GxX
jel

is also an identification. Hence it follows from the following commutative diagram.

Gx Uy X; ~22 Gx X

| I

LjuX; —— X

that ¢ is continuous.
Let k : X — Z be a function from X to the G-space Z. Assume ko f; is a G-map
for each jeJ. Let zeX. Then we have to show h(gz) = gh(z) for any gcG.



h(gz) = h(p(gz)) where zeX; for some jeJ

h(fi(92))

(ko f;)(g%)

g(ho f;)(Z) sinceeach ko f; isa G-map
9h(f5(2))

9h(z)

n

L}

L}

So hisa G-map. W

Examples of G-final structures and Proposition 1.4
1. Topological sums A topological sum [ ] X; of G-spaccs is covered by the
jeJ

above proposition with p the identity on | [ X;.
]

N

Quotient G-space
Let ~ be an equivalence relation on the G-space X such that if z ~ y then
gz ~ gy for all z,yeX, geG. Then by Proposition 1.4, the quotient space £

can be given the G-final structure with the action on £ defined by

spoxX X

49, [2]) = l9=]
The p of Proposition 1.5 is the obvious identification map X — X,

In particular if A is a G-subspace of X then %, the quotient space obtained
by shrinking A to a point, can be given the G-final structure with respect to
the quotient map p: X — &.

Given a based set (Z,#), the rule f — fp, where f is a based function
Y/A - Z, d ines a bijective d between based functions

¥/A — Z and functions Y — Z which take A to *. Hence it follows from

Proposition 1.4 that p satisfies the following universal property:



g |

@

1{Zis a based G-space, then the rule f +— fp, where f : VAL
(Y,+) is a based G-map, d ines a bijective be-
tween
(i) based G-maps (¥/A, {A}) — (Z+), and
(i) G-maps of pairs (Y, 4) = (Z,9).
If {(X;,%)}jes is & family of based G-spaces, then the wedge VX is the

quotient G-space formed from the topological sum ]_I X; by ldcnufymg all the
basepoints, and using the identified point as bucpoml for the wedge.

. G-adjunction squares and G-adjunction spaces

A diagram of G-spaces and G-maps

i

A——Y
"
X— 2z
7
will be called a G-adjunction square if the following universal property is sal-
isfied:
if 2 is any G-spaceand j:Y — Z, k : X — 2’ are G-maps such
that j o f = k o, then there exists a unique G-map h : Z — 2
suchthat hoi=jand hof=k.
For the given maps f and i the G-space Z above is unique up to G-homeomorphisim
in the following sense. If 2’ is any other G-space such that

ALy

Ik

X— 7

7

is also a G-adjunction square, then there are G-maps h:Z — 7' and I :
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2' — Z determined by the universal property for the G-adjunction squares
involving Z and Z', respectively, which are homeomorphic inverses of cach
other. Thus, hi = ¥, hf = J', k¥ = 7, and &'f' = f. The uniqueness of
the universal property, for G-adjunction squares ensures that A'A = 1z and
kK =121

If A'is a G-subspace of X, then given the G-map f : A = Y we can form

the G-adjunction square

A— Y

|
X — Xy ¥
llere, X Uy Y is the quoticnt space of X[[Y formed by identifying a with
f(a) for all acA, and giving X Uy Y the G-final structure with respect to the
inclusion 7 : Y = Y U; Y and the function f : X — Y U, Y defined by
J(z) = [z] for zeX. The action of G on X U; Y is given by

$:Gx(XU;Y)—» XU Y

$(9,(z]) = [gz] for geG, zeX

#(9:y]) = lg] for geG, yeY.
We sce that ¢ is continuous as in the proof of Proposition 1.4. The G-space
X Uy Y will be called the G-adjunction space determined by f. The corre-
sponding function p: X [[Y — X U; Y is defined in the obvious way.
1.5 Proposition. The square used in constructing any G-adjunction space is a
G-adjunction square.
Proof. If Z is a G-spaceand j: Y — Z, k: X — Z are G-maps such that
jof =koi then we can define h : X Uy ¥ — Z by h([f(z)] = k(z) and
h([y]) = j(y) for all z¢X, yeY'. It is easily scen that k is unique. W



4. Properties of G-adjunction squares
The following results will be utilized in Chapter 3 on G-CW-complexes.

1.6 Proposition. If A, B and C are G-spaces, with A a G-subspace of B and
B 2 G-subspace of C, then the following diagram is a G-adjunction square:

B 2. B/A

i ¢

¢ —0ClA
14

where i and i are the inclusions and p and p' are the corresponding quoticnt
G-maps.

Proof: If Z is a G-space and j : BJA — Z, k: C — Z arc G-maps with
jop=koithen we can define a unique G-map h : C/A — Z by h([c]) = k(c)
if ¢ ¢ A and h([a]) = j(A) if aeA. Then hoi' = j and hop' = k. The
surjectivity of  implics that h is unique. Finally, h is a G-map since C/A
has the G-final structure with respect to i’ and p/. W

1.7 Corollary. If J is an indexing set and for cach jeJ, (Xj, A;) is a pair of
based G-spaces with A; a G-subspace of Xj, then the following diagram is a

G-adjunction square:

Wi A5 = Vies 45
Wos|  Vis|
Wi X; i Vje Xj

where p4y and px are the obvious quotient G-maps and i; : A; = X is the

inclusion for cach jeJ, and | [ij and Vs i; are the obvious G-maps.
e
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1.8 Proposition. Let (X;, 4;,+) be a pair of based G-spaces for cach jeJ and
let {f; : A; = ¥;};u be a family of based G-maps. Then the following is a

G-adjunction square:

Viesh
Viadi == Viu¥;
Vit | [Vist
Vi X — VjulX; Uy, Y)
Viurd
Proof: Given based G-maps £ : \/¥; = Z and k: \/ X; = Z such that
e jeJ

¢ (\/ 5] =k (v.',»), then for each restriction & : ¥ — Z and kj: Xj — 2
el j .

there exists a G-map h; : X;U;, ¥; = Z such that hjoi; = & and hjof; = k;.

Then if we define A : \/(X Uy, ¥;) = Z by h(X; U, ¥3) = h for cach jeJ,

wchavcho\/x,—[hij,—k ]

je

1.9 Progosmon. Let X, Y and Z be G-spaces, with A a G-subspace of X.
Thenif f: A= Y,and g:Y — Z are G-maps, the outer perimeter of the
following diagram is a G-adjunction square for i : A = X and the G-map gf:

ALy = 2
il 1 1i
X T XuY F (Xuvuz
Proof. Let £: Z — W and k: X — W be G-maps such that {0 (gf) = koi.

Thensince the left-hand square is a G-adjunction square, thereexists a G-map
h: XU;Y — W such that hoi = €ogand hof = k. But the right-hand square

is also a G-adjunction square so there exists a G-map &' : (XU;Y)U, Z — W
such that h'oi = €and 4’ 0§ = h. Hence A'ogo f=h o f=k and so the

outer perimeter is a G-adjunction square. W



5. G-mapping cylinder
The G-mapping cylinder for the G-map f : X — Y is defined as the
G-adjunction space formed via the diagram

Xx {0} —— Y

-J I'i

XxT —= (Xx D)UY

We will denote (X x J) Uy ¥ by M; and call it the G-mapping cylinder for
f. The action of G on X x I is the diagonal action with G acting trivially on
I If (X,*) and (Y, *) are based G-spaces and f : X = Y’ is a based G-map
then the reduced G-mapping cylinder, denoted by A\.I;, is the quotient G-space
Nty = 26, with {+x I} as bascpoint.

Let f: X — Y be a based G-map and M be the reduced G-mapping

cylinder. Then we have the following commutative diagram:

x Ly

My

where i and r are the based G-maps defined by

it(X,) o (M)
z +— [z,0], and

ri(My,%) = (Y4)
] — ¥

28] — fla),

where tel, zeX and yrY.
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We also have the based G-map j : (Y;+) — (Mj,+) defined by y — [y]. By
an t ! to that in ivariant case, r is a G-h

equivalence with inverse 7.

. Expanding sequence of G-spaces
Let Xo C X; C...C X, C... be an expanding sequence of G-spaces,i.e.
X, is a G-subspace of X4 for all n > 0, and the set X = U X,. Let

=3

U Xn — X be defined by p(z) = ia(z) where zeX, and i : X,. < X be
tiie Tactusicin: S, by Propositions 14, ¥ can Be givei'the (sl ateistirs
with respect to the inclusions {in : X5 = X }u30. From the universal property,
it follows that f: X - Z is a G-map if and only if f|X" is a G-map for each
n20.

1.10 Proposition. If Xo € X; C ... C Xa C ... C X is an expanding sequence
of G-spaces where X has the G-final structure with respect to the inclusions

{int X < X}nz0, and A is locally compact Hausdorff, then

XoxACXixAC.. X, xAC...CXx A

is also an expanding sequence of G-spaces with X x A having the G-final
structure with respect to the inclusions {in X 14 : X, X 4 — X x Alnsor

Proof: Let h: X x A— Z be a function from X x A to the G-space Z such
that k| X, x A is a G-map for all n > 0. By the exponential law for G-spaces
and G-maps, for each h| X, x A there exists a G-map &': X, = Mapg(4, Z)
and o function ki : X = Mapg(4, 2) such that & = h[X,. Since X has the
G-final structure with respect to the inclusions, it follows that & is a G-map
and hence k is also a G-map. Thus X x A has the G-final structure with
Tespect to the inclusions {in X A: Xox A< X X A}nyo. W
7. Cones
Let X be a based G-space. Then since X x {0} U* x I is » G-subspace of




X x1I, C(X) = gfixk—7 is a quotient G-space. It will be called the gone of
X.
Gy gn Sy En
Define S = «’1——)(—: and Efy = ”—x ) where § x §™ and § x E" have
i 7
the diagonal action with G acting tn’vlally on §™ and E". The following fact
is nceded in the proof of the Brown Representability Theorem:

Gy gn n) Gy it
om0 (BA%) o XS L Bx B! _ s
" X#* " X * Vi X *
That the left hand % above is a homeomorphism follows from the following.

1.11 Proposition. Let X and Y be based G-spaccs, where the underlying
space of X is locally compact Hausdorff. Then there is a homeomorphisin

P Xxv)~ X s defined by the rule that the equivalence classes
of (z,y,1), in the two spaces, correspond, where zeX, ycV, tel.
2 e B BxlI

Proof. Recalling thatif A is asubspaceof B then C ( ) W

) XxYxI
Xx* (X xYx {0})U (X x {} x
We also note that X x (Z) is homeomorphic to the quolicnt space of
X x B in which {z} X A, for each zeX, is identified to a separate point. llence

we notice that C (

XxCY is homecomorphic to the quoticnt space of X XY x / where for each r,EX
({2} %Y % {0}U {z} x {#} x I} is identified to a scparate point. Since X"x -
is a quotient space of X x CY and CY is a quotient space of ¥ x I, then,

using [Bro], 4.3.2, p. 101, £XC¥. i (essentially) a quotient space of X x ¥ x I

under the cquivalence relation we will denote by ~. Then we have (2,,0) ~
@40 ~ (54 D(;far zeX, yeY, and (z,%,1) ~ (z,.,o) 5 (4y10) for acX,

tel. llencc

el ““"“’(Xx}'x(o))u()rx()x:)
In both cases the actions of G agree with that un’the quotient G-space
TR ¥ AT T ST T WL a i
FxVx {OQUSX XGIT that is itsell induced by the diagonal action
of Gon X x 1.



Using p, ¢, r and s to denote the quotient maps:
p:XxY-—o"xy q:(xxy)xl—»c(xxy s

Xx»+' Xxx Xx*
PYXTAGY and s:Xx0Y 45X
we note that we have
X xY
q(pxl,):XxYxl—tC(Xx') and
,(1x><r):x><y><l_.xx"£y.

Since 1 and X are locally compact Hausdotff, q(p x 17) and s(1x x r) are
identifications, ¥ s a bijection, and since $ig(p x 1) = s(lx x r) it follows

that 3 is a homcomorphism. W

8. Suspension
Let X be a G-space with basepoint *. Then X x {0} UX x {1} U+ x I isa
G-subspace of X x I and the suspension of X is the quotient G-space defined
by
XxI
SX = U XX [JurxT
9. Smashed product

Let X and ¥ be based G-spaces. Then X VY = (X x {+})U({*} xY) isa
G-subspace of X x ¥ and the G-smashed product is the quotient G-space

XxY
XvYy
Finally, let (¥, ) be a based G-space and X is a G-space. We define the G-
space X* by adjoining to X an additional point co on which G acts trivially.
Then we have X*AY = X

Xx*

XAY =

If H is a closed subgroup of G and X is a G-space, we define X = {zeX|hz =
7 for all A} with the subspace topology. Then, if X is Hausdorff, X# is closed in X
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(sce [D], 3.9, p. 25). I f : X — ¥ is a G-map then f# : X7 — Y'H denotes the
restriction of f to X¥,
1.12 Proposition. If X and Y are Hausdorff G-spaces, then the adjunction space
XM UuYH is a closed subspace of X U, Y.
Proof. Since A¥ € X¥, X" is closed in X and Y# is closed in Y, it follows from a
result of general topology (see [Du, VI, 6.4, p. 128) that X# U;n Y will be a closed
subspacein XU, Y. W
From this it follows that since X¥ Uyx ¥ and (X Uy Y)" have the same underlying
scts, and (X Uy Y)¥ is a subspace of X Uy ¥, they must be homeomorphic, i.c.
XHUmYH = (XU, Yy,

In order to show that the G-CW-complexes defined in Chapter 3 are Hausdor(f
we need the following result about adjunction spaces.
1.13 Proposition. If X and Y are normal spaces and A is a closed subset of X then
for any map f: A — Y, X U;Y is also normal.
Proof. See [FP], Proposition A.48(iv), p. 260. B

1.14 Proposition. (i) If X and Y are G-spaces then (X x Y)T = X" x Y/,

"
(ii) If {X;]jeJ} is an indexed family of based G-spaces, then (V X,-) = V().
jed By

Proof. Both (i) and (ii) follow quite easily from the definition of the actions of G on

the spaces X x Y and \/ X;, respectively. B
idJ



Chapter 2 Equivariant Homotopy Groups

Two G-maps f,g: X — Y are said to be G-homotopic if there exists a G-map
F:X xI-Y, with G acling trivially on I, such that for all zeX, F(z,0) = f(z)
and F(z,1) = g(z). Note that each map F,: X — Y defined by Fi(z) = F(z,t) is
itselfl a G-map since for zeX, gcG we have Fy(gz) = F(gz,t) = gF(z,t) = gF(z).
The sct of G-homotop; classes of G-maps from X to Y will be denoted by [X : Y]g.

Il A is a G-subspace of X and B is a G-subspace of ¥ then two G-maps f,g :
(X,4) = (Y, B) are said to be G-homotopic relative to A if there is a G-map F :
(X % I, A x I) = (¥, B) such that for zeX, F(z,0) = f(z) and F(z,1) = g(z) and
for acA, F(a,t) = f(a) for tel. The set of relative G-homotopy classes of G-maps
from (X, A) to (Y, B) is denoted by [(X, A) : (¥, B)]g.

Il X and Y are based G-spaces, then the based G-maps f,g : X — Y are
based G-homotopic if there exists a G-homotopy F : X x I — Y between f and
g with F(x,t) = « for tel. We write f 2~ g to denote the based G-homotopy. The
st of based G-homotopy classes of based G-maps from X to Y will be denoted by
(X VI8 or [(X, ) (¥, ).

Lel (X, ) be a based G-space. Then for each closed subgroup H of G, the under-
Iying sct of the nth equivariant homotopy group of type H is defined by

(X% = [Sh: Xy
[(ng" —-x*) (x*)]

4

the canonical bijection & being defined using the universal property of quotient G-

spaces, where S = ”GTi > (9) AS™. Using the fact that AA SB = S(AAB)

H

we have




E
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Since S} is a suspension for n > 1, we can define a group operation on x¥(X,s) ina
way analogous to the non-equivariant case. If [f], [g]ex (X, +) are two elements, then
the product of [f] and [g], denoted [f]- [g], is the G-homotopy class of the composite
G-map

w2, snvsy 8 xvx L x
where V is the folding map defined by V(z, ) = z, V(+,z) = z for all zcX, and vy

is the comultiplication G-map given by:

vg: Sy = SHVSK

(l9H,[z,2t]),%) if 0St<y, zeS™!
(o5, (=, t] — { ) :
(% lgH,[z,20=1))) if 1<t zeS™!
This uses the fact that S} = (§)" A 5" = (§)" A 5(5™") so that an clement of
S}, is the equivalence class [g, [z, ]] where geG, zeS™~" and tel. Then vy is casily
seen to be a G-map.
2.1 Proposition. Let H be a closed subgroup and (X, #) be a based G-space. There

cxists a natural isomorphism

To prove this proposition we need the following lemmas. First let Mapg (X,Y)
denote the set of G-maps from X to Y and Map (X,Y) denote the sct of all maps
fromX to Y.

2.2 Lemma. If X and Y are G-spaces, with G acting trivially on the locally compact
Hausdorff space X, then for cach closed subgroup H of G there is a bijection

Mepg (f_, x X, y) = Map (X,Y").
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Proof: Define 0 : Mapg (£ x X,Y) — Map (X,Y") by 0(F)(z) = F(H,z) for
FeMapg (& x X,Y) and zeX, and define ¢ : Map (X, Y¥) » Mapg (£ x X,Y)
by ¢(f)(gH, ) = /(=) for fe Map (X,Y™). We first show 0 and ¢ are well-defined
and continuous.

Since hO(F)(z) = hF(H,z) = F(hH,z) = F(H,z) = 0(F)(z), it follows that the
image of 0(F) is a subsct of Y. Defining i : X — & x X by i(z) = (H, ), where
zcX, we see that 0(F) = Fi, so 0,.7) is continuous and  is well-defined.

We notice that if g1, 92¢G and g7 'gi€H, i.e. g1 = gsh for some heH, then g, f(z) =
92hf(z) = g2 () for all zeX. Hence g(f) is well-defined. The function m : Gx X ~
X, defined by m(g,z) = gf(z) where geG and zeX, is clearly continuous since
gx1x:Gx X — & x X is an identification. Now ¢(f)(q x 1x) = m so ¢(f)
is continuous. Also, ¢'6(f)(9H,2) = ¢'a/(z) = $(/)(g'aH,2) = $(/)(¢'(gH,2)) s0
that §(f) is a G-map and  is a well-defined function. To establish the bijection we
have to show that ¢ 0 0 and 0 o ¢ equal the respective identity functions.

Let Fe Mapg (§ x X,Y). Then

($00)(F)gH,z) = $(0(F))(gH,z)
= gb(F)(z)
= gF(H,z)
= F(gH,z)

So ($00)(F) = F. Now lct fe Map (X,Y"). Then

009)(N)=) = 8(8(N)z)
= $(f)(H,z)
= f(=)

Hence (0o g)(f) =f. W
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2.3 Lemma. If X and Y are based G-spaces with G acting trivially on the locally
compact Hausdorff space X, then for each closed subgroup H of G there s a bijection:

G G v "
Mapg ((ﬁ XX, 5 x ‘) :(y,*)) 2 Map (X, 9): (Y",4))
Proof: We define 0 and ¢ as in Lemma 2.2, noting that 0(F)(s) = F(1,+) = » and
B(f)gH,#) = gf(+) =g+ =+

So 6 and ¢ take based maps to based maps, which allows us to establish the

bijection between the two sets. B

2.4 Lemma. If X and Y are G-spaces with G acting trivially on the locally compact
Hausdorff space X, A is any G-subspace of X and Z is any G-subspace of ¥, with
*€A C X and xeZ C Y then for cach closed subgroup H of G there is a bijection

Mapg (5% X, & x A, Sx): (1,2,0) & Map ((XA,2): (V7,5,0)

Proof: Define 0 and ¢ as in Lemma 2.2. Let Fe Mapg (% xx 2

7 x A, 2 X *
and feMap((X,A,*), (Y¥,Z7,%)). If acA then 0(F)(a) = F(H,a)c%" since
hF(H,a) = F(hH,a) = F(H,a) for all heH, and ¢(f)(gH,a) = gf(a)cZ since
f(a)eZ and GZ = Z. Since 0 and ¢ are inverses of cach other, this allows us to
establish the bijection. W

If X is replaced by X x I and A by * x I in Lemma 2.4, then we have the bijection
Mapg ((§x X x 1, § x+x1):(Y,%) 2 Map (X x I, «x I): (Y, ¥)).
So there is a bijection between the based G-homotopics of f_'g—:((if- to Y and based
homotopics of X to Y. i
Proof of Proposition 2.1

Let a : Map% (Spy, X) — Map® (S, X") be defined by a(f)(z) = f(/,2) for
2eS™. Then by Lemma 2.3 there is a bijection



@t [Sh: X)S - [S7: XHP

where a.([f]) = [a(f)]. We have to show that a. is a homomorphism. Let fo, fy :
Si = X. Then a. is a homomorphism if au([fo] - [i]) = au([fo]) - au([f1]). Let
o(fo) = g0 and a(f1) = g1. Then [fo] - [/i] is the G-homotopy class of the composite

n 2 sn o xvr T x.

Similarly [go] - [g1] is the G-homotopy class of the composite

Sn s Sy s gy XH Y XH

Hence a. will be a homomorphism if we have

a([Vo(foV h)ovu)) =[V7o(sV gr)ov).

The map 7% 0 (g0 V g1) o is given by:
5t Ly shvsEn xiy xH Y x

. {(wu,‘) — golln2)  0StS) st

([22-1)) — qiz2—-1) }<1<1, 2e5m1,

The map Vo (foV fi) o vy is given by:
sy M spvsy ¥ xvx Tx

ol ot v {([g”,[-'»ﬂ]lv*) = fo(lgH[5,2t)  0<t< ], ze5™t

(xlgH,[z,2t=1]) — fi(lgH,z,2t—1])) 3<t<1, ze5™
It f : Sf; = X then a,([f]) is the G-homotopy class of the composite



s gy L x
L UACY B ((CACIN

Hence a.([V o (fo V fi) 0 vn]) is the G-homotopy class of

" — SpVSE— X
s (14, [2,24]), %) — fo((H, [z:21]]) 0<tgy
i {(*,(H.[z,ﬂ—l]l) — A(H(z2=1)) <<l
But fo([H,[z,24]]) = go([=, 2t]) and fi([H,[z,2¢ = 1)) = ou([=, 2t = 1]),

which implics that a.((V o (foV fi) o vi]) = [V 0 (90 V g1) 0 »]. Thus au i
homomorphism and consequently an isomorphism. M

Let (X, A, *) be a pair of G-spaces with basepoint *. Then for cach closed subgroup

H of G the nth relative equivariant homotopy group of type H is defined by:

(XA = (B Si ) (X, A0
X *

= [(%xE", %xS", % ) :(x,A,,)]:.

R

2.5 Proposition. There is a natural ismorphism

7H(X, A, ) =m0 (XH, AT 4),
Proof: This follows from Lemma 2.4, with the proof being similar to the proof of
Proposition 2.1. W

2.6 Theorem. Given a G-map & : (E},S},#) — (X,A,+), then [a] = 0 in
«H(X, A, ) if and only if a is G-homotopic relative to Sj™* to a G-map E}; — A



27
Proof: From Proposition 2.5 it follows that [a] = 0 in (X, A,#) if and only if
for the corresponding map a' : (E",S™1,#) — (X", A" 4), we have [o] = 0 in
7a(X",AY +). Then o' is homotopic relative to S™~! to a map E™ — A¥ by a

homotopy

F': (B 5" %) x T = (XH, A1 4)
(sec for example [Sp), Thm. 1, p. 372.)
Also a G-homotopy from o to a G-map Efy — A is given by

(G pn Gy G
F’.(ﬁxE,”xS ,HXt)xI—o(X,A,&)
where F(gll,2,t) = gF'(2,t) for geG, zeE™ and tel.

This G-homotopy is relative to S since for 065"~ we have for all tel and geG:

FgH,z) = gF/(x)
90!(z0)
9a(H, z0)
= a(gH, z).

Conversely, assume that there is a G-homotopy F : (% x E", % X581, % X t) X
I = (X, A,#) relative to Si;™" with Fo = a and Fy(E") C A. Then [o] = [F] in
ni(X,A,+) and a G-homotopy K from Fi to the constant map § x E — xeX is
given by

S . G n G =1 G
I\.(ﬁxE,ﬁxS ,ﬁx‘)x!—o(X,A,w)

where K(gH,z2,t) = F(gH,(1-1)z+1x). W
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Let n > 0. A pair (X, A, *) of based G spaces is said to be G-n-connected if every
path component of X intersects A and, for 1 < k < n, we have #J/(X,4,+) = 0 for

each closed subgroup H of G. As a direct consequence of Theorem 2.6 we have the

following corollary.

2.7 Corollary: A pair (X, A, *) is G-n-connected forn > 0 if and only if for0 < k <n

every G-map a: (E}, Sk1,*) = (X, A,*) is G-homotopic relative to S§™' to some

G-map Ely - A.

Finally we note that from the naturality of the isomorphisms 7 (X, %) & m, (X", +)
and 7 (X, A, ) & m, (X7, A¥ ) we have that for each closed subgroup /I of G the

following diagram commutes

L= (G AN D A A (X))
1 1 1

c o T (XHAH ) 2 (A k) B m(XH k) 2

(X, A% o

!

(X1 AT ) 2

Since the bottom row is exact and the vertical homomorphisms are in fact isomor-

phisms, it follows that the top row is also exact.



Chapter 3 G-CW-Complexes and the Equivariant Whitchead Theorem
Let n be a fixed positive integer. The G-space X is said to be obtained from
the G-space A by attaching equivariant n-clls if for a family of closed subgroups
{H;|jeJ} of G we have for each jeJ an indexing set L; and for cach AeL; there is a
copy (E§,S3") of the pair of trivial G-spaces (E", $""!), and we have the following
G-adjunction space:

¢
L& x5 — 4
L7

J
AL,

L
]_;%XE;' — X =AU, I_;H%XE:\‘
e

je i
ALy ALy

We denote ¢|§ % §37* by ¢ and 8| x B} by 8], We call ¢] the attaching map
el

for lis:squivariant necell EG— x E} and we call @ the characteristic map. We say
i

that the pair (X, A) is a G-adjunction of equivariant n-cells.

3.1 Lemma. If, in the situation just described, A is normal and Ty, then X is normal

and T}.

Proof. Since H; is closed in G for each jeJ, it follows (see p. 3) that ﬂ'- is Hausdorff
for cach jeJ. Since G is compact ff; is compact, and hence H% x E} is a compact
Hausdorff G-space for cach jeJ, AeL;. Thus % x E} is normal since every compact
Hausdor spacc is normal (see [Hu], Proposition 2.7, p. 63). Hence the topological
sum l_; 7‘—,"— x E} is normal and by Proposition 1.13, X is normal. Also X is T} since
i
ek,
both 4 and H & % E are Ty (sce [[lu], Proposition 3.7, p. 125). W

AL,
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Let (A,*) be a based G-space, and let {H;]jeJ} be a family of closed subgroups
of G. If for each jeJ there is an indexing sct Lj, and for each AeL; there is a copy
(E3, 0 SH;A) of (Ef,, Sii*), and ¢ ¢ \/Js;,;,g — Ais a based G-map, then there is
it
A,
a based G-adjunction square:

I l

N
V Eja — X=AUs | VE},,
el o
el Ay
We say that the pair (X, A,*) is a based G-adjunction of based equivariant n-cells,
or that X is obtained from A by attaching based equivariant n-cclls.
A G-CW-complex or simply G-complex is a G-space X such that there is an
expanding sequence of G-spaces

X0 CX G e GXP Conis
with the following properties
(i) there is a family of closed subgroups H; of G indexed by J, i.e. {HljeJ},
with the property that for cach jeJ there is an associated indexing sct Lj, and
G
Xo= (—) x {A}
0 ’L‘; [Il i

el
(i) (X, X™"1) is a G-adjunction of equivariant n-cclls, and

(iii) X has underlying set Un30X™ and carries the G-final structure with respect
to the inclusions {in : X" & X}a0.
The dimension of X is the largest n such that X contains an equivariant n-cell. If

no such n exists then the dimension of X is said to be infinite.
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More generally, a relative G-CW-complex is defined as follows. If A is any G-
space, then (X, A) is a relative G-C\W-complex if there exists an expanding sequence
of G-spaces (not pairs of G-spaces):

A=(X,A)'C(X,A°Cc(X,A)' Cc...c(X,A)"C...
with the following propertics:
(i) there is an indexed family {#;|jeJ} of closed subgroups of G, such that for

cach jeJ there is an associated indexing set L;, and (X, A)° = ALl | 11 (%) x (A} |-
Jed
AL,
(i) ((X, A", (X, A)™-1) is a G-adjunction of equivariant n-cclls for n > 0.

(iii) X has underlying set Unso(:X, A)" and carrics the G-final structure with re-

spect to the inclusions {in : (X, A)" = (X, A)}nz-1

The relative dimension of (X, A), written dim(X — A), is the largest value of n
such that the construction of X from A includes an equivariant n-cell. If no such n
exists, the relative dimension is infinite.

A based G-CW-complex can be defined as a based G-space X by taking the defini-
tion of G-CW-complex, requiring X° to be a 1-point space *, replacing G-spaces by
based G-spaces, maps by based G-maps, disjoint unions by wedges and G-adjunctions
by based G-adjunctions.

Similarly, a based relative G-CW-complex can be defined as a based G-space X by
taking the definition of relative G-CW-complex and replacing G-space by based G-
space, G-map by based G-map, disjoint union by wedge, and G-adjunction by based
G-adjunction.

3.2 Proposition. A G-CW-complex is normal and T; (and hence Hausdorff).

Proof. Since X is discrete, it is normal and T;. By applying Lemma 3.1, we see that
cach X™ is normal and T for cach n > 0. Since X = U,30X", it is a normal G-space.
If z is a point of X, then zeX™ for some n > 0. But X" is Ty, so that {z} is closed
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in X", Since X" is closed in X, it follows that {z} is also closed in X. Hence, X is
T,.m

Since any d G-CW- plex is G-t ivalent to a based G-CW-
complex (see [FP], Cor. 2.6.10, p. 82 for the non-equivariant version), it suffices to

consider only based G-CW-complexes in our discussion.

In fact, each based G-CW-complex is also an ordinary G-CW-complex if we neglect
basepoints. This easily follows from the following result.
3.3 Lemma. Let (A, #) be a based G-space and (X, A, *) be a based G-adjunction of
based equivariant n-cells. Then, disrcgarding the bascpoint, (X, 4) is a G-adj

of equivariant n-cells.
Proof. Consider the following diagram:

a n=1 G m~1 m-l 9
O&xst — VExspt — Vs 5 o4
g jeJ o
ek el ALy

1 4 1

U &xe — FxXE — VB ¢ X
el jeJ el

AL, Ay el
The right-hand square is a based G-adjunction square since (X, A,+) is a based
G-adjunction of based equivariant n-cells. The middle square is a G-adjunction
square by Propositions 1.6 and 1.8. Tkz left-hand square is a G-adjunction square by
Corollary 1.7. Finally, by Proposition 1.9, the outer perimeter of the above diagram
is a G-adjunction square. The result follows. W
3.4 Theorem. If (X, ) is a based G-CW-complex then X is a G-CW-complex.
Proof. This follows easily from Lemma 3.3 and the relevant definitions. W

From this we can conclude that results given below for ordinary G-CW-complexes
(e.g. Propositions 3.5, 3.6 and 3.9) also hold for based G-CW-complexes.

The G-map i : A = X is called a G-cofibration if for all G-h; ies I :
AxI—Y and G-maps f: X — Y such that fi = K, there exists a G-homotopy
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F:XxI—Y such that Fo = f and Fi = K, for 0 <t < 1. This is equivaleat
to saying that the following commutative diagram can be completed by means of 2
G-map F: X xI—=Y.

AxI -

F
Ax{0} XxI----3Y

X f

If A is a G-subspace of X, then A is called a G-retract of X if there exists a G-map
r: X — Asuch that r|A is the identity. The G-map r is called a G-retraction of X'
onto A.

3.5 Proposition. If X is obtained from the G-space A by attaching equivariant n-cells,
then X x {0} UA X I is a G-retract of X x I i
Proof: We know that there exists a non-equivariant retraction p : E* X I — E™ x
{0} U §™* x I (see for example [Sp], 3.2.4, p. 117). Then if H is a closed subgroup
of G an equivariant retraction is given by:

.G G G g1
lxp.H—xE‘xI - HxE"x(O)UExS‘ xI.
(9H,2,t) +— (oH,p(z1)).

Let & : % X B} — X be the characteristic maps for the equivariant n-cells
% x E}, jeJ, AeL of X. Then a G-retraction can be defined by:
R:iXxI — Xx{0JUAXT
58— (@), (B0 — (1 x ) oH;z1)

where zed, tel, gHjcﬂg and zeX.W
i
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3.6 Corollary. If X is obtained from the G-space A by attaching equivariant n-cells,
then the inclusion i : A — X is a G-cofibration.
Proof: Let R: X x I — X x {0} U A x I be the G-retraction given by the above
proposition. We have to show that the following diagram can be completed:
AxI K
o
Ax {0} x!ﬁ r}-%y

X X {0} §

where ¥ is any G space, K and f are any G-maps. This can be done by letting F

be the composite

XxI-BxxouAx 1y

The diagram will be commutative since RIAXx I = Ax I and RIX x 0= X x0. W
We can extend this result to the case where (X, A) is a relative G-CW-comples.
3.7 Proposition. Let (X,A) be a relative G-CW-complex. Then the inclusion i :

A< X is a G-cofibration.
Proof: Let K : Ax I — Y be a G-homotopy and f : X x {0} - Y be a G-map with
F1Ax {0} = Ko. We will construct a G-homotopy F': X x I — ¥ inductively on the
n-skeletons of (X, A).

We have

A= (X,4)7 C(X,A)° C(X,A)' C...C(X, A" C...CX

where (X, A)* is obtained from (X, A)*~! by attaching equivariant k-cells.
Consider the following diagrau:
AxI. L

Ax(O)‘ﬁA}xl\F—;)'Y
\-‘ £]e6a° x 0

(X,4)°x {0}
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The G-homotopy F? exists since (X, A)° is obtained from A by attaching 0-cells, so
by the previous corollary A < (X, A)° is 2 G-cofibration.
In geaeral we have:
(X, At x I\ 1
fn
(AT x {0} (X, Aj" xI Y

£ x o
(X, 4)" x {0}

IHence we can construct a sequence of G-homotopies {F" : n > —1} with F-' = |’
such that:

(i) I3 = fI(X, A)"

(i) Frl((X, A"t x T) = Fr=!
Define F : X x I — Y by F(z,t) = F*(z,t) for z¢(X, A)", tel. F is well-defined
since FJ((X, )" x I) = F** so that if ze(X, A)%, F*(z,t) = F*Y(z,f) = ... =
F~Y(z,t) = K(z,1). Wealso know that F is a G-map since F|((X, 4)*xI) = F* and
(X, A) x I has the G-final structure with respect to {(X, A)" X I}n5-1 (by Lemma
33).
Finally Fp = f, since by (i) if z¢(X, A)",

Fo(z) = F(z) = f(z),

and FJ4 x T = K, since if z¢A the

F(z,t) = F7\(z,t) = K(z,t),
which implies that i : A < X is a G-cofibration. W

3.8 Lemma. For any family {X;};es of topological spaces, mx (V(X,- x E™), \/(X; x S")) =
i jed
0for0<k<n. 3 &
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Proof: We use the fact that \/(X; x E™) = (’V x,-) x E™and \/(X; x S") &
jed jed i

(VX,-) xS Let X =V X;andlet p: X xS » X and g: X x E™! = X'
jed el
be the projection maps. Then since p and q are fibrations with fibres S* and E™+!,

respectively, we have the following diagrain:

- m(S - mXxS) B o) L mals) -

£y Py

= m(EM) = m(X Q’E““) LX) 2 omalEM) =

with the two horizontal rows exact. Since gi = p we have q.i. = p.. Also m(5") =0
for 0 < k < n and m(E™!) = 0 for 0 < k < n + 1. By exactness, p. and q. arc
both isomorphisms for 0 < k < n, and hence, i. is an isomorphism for 0 < k < n.

For k =n, g. is an i and p. is an :. Hence i, must be an

epimorphism for k = n.

Now consider the long exact sequence
s T (XX S™) B (X X E™Y) o mp (XX E™L XX 5™) B mpy (X X 5™) = -

Since i, is an isomorphism for 0 < k < n and an epimorphism for k = n it follows
that mx(X x ", X x S")=0for0< k<n. W

3.9 Proposition. If X is obtained from the based Hausdorff G-space A by attaching
based equivariant n + 1-cells, then (X, A) is G-n-connected.

Proof: Let (X, A, #) be a based G-adjunction of based equivariant n-cells:




V 5 x 5% 2.4

S

ek
T
LR XEN —
ey
where {/I;]jcJ} is an indexed family of closed subgroups of G and {LjljeJ} is an
indexed family of sets.
Taking II-fixed point sets we sce from Propositions 1.12 and 1.14 that the following

is an adjunction space:

p o
V(#) x5 < 4
g
ek
u
V() x g 2 xu
jeg
el
"
Since (I_CI"_ x S} is a defc jon retract of a neighbourhood of (,%)" x E#,

H;
follows as a special case of the Blakers-Massey excision theorem, (see [DKP], p. 211),
that (X%, A¥) is n-connected. Hence m(X¥, AH) = 0 for 1 < k < n and so, by
Proposition 2.5, 7f/(X, A) = 0 for 1 < k < n. So (X, A) is G-n-connected. W

§
H "
andn(v(g) xEj\‘*‘,\/(g-_) xS5") =0for 0 < k <n (Lemma 3.8) it
5

3.10 Lemma. If X is obtained from the based G-space A by attaching based equiv-
ariant n-cells, and (Y, B, *) is a based pair of G-spaces such that 7¥(Y,B,*) = 0
for all closed subgroups H of G, then any G-map f : (X, A, %) — (Y, B, *) is based
G-homotopic relative to A to a G-map k : (X, %) — (B, %).
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Proof: Let §; : (EXE" ICI: T Fxo — (X,A,#) correspond to the
attaching maps of A equivariant n-colls, Then the composite

(‘fl" g G s+t Ex.) 2, (%, A,0) L (1,B,9%)
i
represents a homotopy class in x1”(Y, B,+). By Theorem 2.6, there exists a based
G-homotopy
F, E XE"xI =Y
such that

(i) Fj(gHj,2t) = f(8;(9gH;,2)) for (g, 2)ef]: x S~
(i) F(gH;,2,0) = f(¢5(9H;,2))
(iii) Fj(gHj>2,1)eB.
We can thus define a based G-homotopy

K:XxI-Y
by K(z,t)=f(z) for zeA, tcl

and K(¢;(gHj,z2),t) = Fj(gHj,z,1) for (gll,.z)c— x E", td.
Clearly the G-homotopy is relative to 4, and

K(¢3(9H;,2),1) = Fy(gH;,2,1)eB  for (.v”nz)l— X E"
Then k(z) = K(z,1) is the required G-map. B

3.11 Proposition. If (X, A, #) is a based relative G-CW-complex of relative dimension
< n, and (Y, B,*) is G-n-connected, then any G-map [ : (X,A,+) — (Y, B,+) is
based G-homotopic, relative to 4, to a G-map from (X,+) — (B, *).
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Proof: We have the following sequence of G-spaces: A = (X,4)° C...C (X,A)" C
... C (X, A) where (X, A)%, (X, A)*=") is a based G-adjunction of equivariant k-cells.
Since (X, A)! is obtained from (X, A)° = A by attaching based equivariant 1-cells, by
Lemma 3.10, f|(X, A)" is based G-homotopic relative to A to a G-map (X, A)' —» B
via a based G-homotopy K' : (X,A)! x I = (Y, B). Since (X,A)! < (X,A) isa
G-cofibration we can extend K* to a based G-homotopy F': (X,A) x I — (Y, B)
such that F3[(X, A)! x I = K*.

Now assume that F™~!: (X, A) x I — (Y, B) with m > 2, has been constructed
such that F™*|(X, A)™ : (X, A)™ — (Y, B) is a based G-map with F"~'((X, A)"~*) C
B. By Lemma 3.10 there is a based G-homotopy

K™ (X,A)" x I = (Y, B)
such that K*(X,A) C B and K™ is relative to (X, A)™~1.
Since (X,A)™ < (X,A) is a G-cofibration we can extend K™ to a based G-

homotopy

F™:(X,A)xI = (Y, B)
such that F*((X,A)™) C B.
Hence we have a sequence of based G-homotopies F, F1,...,F", ... such that:
O B =Fp
(i) (X, 4m) c B
(iii) F™ is a G-homotopy relative to (X,4)™"1.

These can be combined consecutively to give a based G-homotopy

F:(X,4)x I (Y,B)

such that F is relative to A and Fy(X,A)C B. &
Let X and ¥ be path-connected based G-spaces. Then a based G-map f : (X, +) —
(Y, #) is a based G-n-equivalence if /7 : (X¥,+) — (Y*, *) is an n-equivalence for all
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closed subgroups H of G (by an n-cquivalence we meana map f : (X, +) = (¥,+) such
that f. : mo(X, %) = mo(Y,) is an isomorphism for 0 < q < n and an cpimorphism
forg=n). If f: X — Y is a based G-n-equivalence for alln > 1, then f is said to
be a based G-weak homotopy equivalence.

If M is the reduced G-mapping cylinder for f with the G-maps i: X — Af; and
r: 8y =Y defined in Chapter 1, then since r is a G-homotopy cquivalence, f is a

G-n-cquivalence if and only if i is.

3.12 Proposition. Let f : (X,+) = (Y, +) be a based G-map. Then (A7, X, +) is
G-n-connected if and only if i : X — M is a based G-n-equivalence.
Proof: Consider the long exact sequence
s aff(X) 2wl (1) 2 7fl (8T, X) -2 fl (X) 2 wfl () — o

where k < n. 1fiis a based G-n-cquivalence then i, : ol (X) — «ll,(#)) is an
isomorphism. This implies that keri. = im & = 0. Since i, : =f{(X) — =ll(¥1))
is an epimorphism we have ker j. = x{ (M,) and hence im j. = 0. By exactness
0= im j. = kerd = xff (A}, X). So (M, X) is G-n-connected.

C y, if (M7, X) is G- d then «f/(M;, X) =0 for 0 < k <n and
by a similar argument to the above, using exactness of the sequence, it can be casily

shown that i : X — M, is a based G-n-equivalence. W
The key to proving the equivariant version of the Whitchead Theorem is the fol-

lowing lemma.

3.13 Lemma. Let f : (2, +) - (Y,+) be a based G-n-cquivalence ( finite or infinite)
and let (X, A, +) he a based relative G-CW-complex with dim(X — 4) € n. Then for
any based G-maps p: A — Z and ¢: X — Y such that g|A = f op, there exists a
based G-map p': X — Z such that p'|A =pand fop ¢ grelativeto A.

Proof: Let M, be the reduced G-mapping cylinder of f, with inclusion mapsi: Z <
iy and j: Y © K1y and the G-relraction r: My — Y. Proving the lanma amounts
to essentially completing the following diagram where p'| A = p and fop' 2 ¢



A— X

T l/
5}
:
Zhgsy

We replace this diagram with the following
A == X

24T W

We then have joglA =jo fop=joroiopxg iopsince jor g luy,). Let
K : Ax I — M be the based G-homotopy from jo g|Ato i o p. Since A—> Xisa
G-cofibration, (Proposition 3.7) there is a based G-homotopy F : X x I — A, with
Fo = jogand FJA = K. Let ¢ = Fy. Then ¢'|A =iop androg’ =g rojogrelative to
A. Since ¢ : (X, A) — (dly, Z) and (41}, Z) is G-n-connected and dim(X — A) < n,
by Proposition 3.9, ¢’ is based G-homotopic relative to A to some map p/: X — Z.
Hence p/|A = pand

fop =roiop'mgrogd agrojog=gq.
So fop =g grelativeto A. W
3.14 Corollary. Let f: X — ¥ be a based G-n-equivalence and let P be a based G-
CW-complex of dimension < n. Then the induced function f. : [P, X]g =+ [P : Y]g,
where £.([p]) = [f o p], is sudective. 1f dimP < n —1, then f. is injective. In
particular, if fis a based G-weak homotopy equivalence then f. is bijective.
Proof: To prove the first par!, apply the previous lemma to the relative G-C\V-
complex (P, 6)
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For any based G-map g : P = Y there exists a based G-map p' : P = X such that

fop'=gq
which implies that f.([p]) =[f o | = [¢'] and f. is surjective.

To show that f, is injective for dim P < n — 1 apply the lemma to the relative
G-CW-complex (Px I, Px1).

Suppose po,p1 : P — X are based G-maps such that fopy ~g fop. Let
p:Px I X bedefined by p(z,0) = po(2) and p(z,1) = pi(=). Then there is a
based G-homotopy F : P xI — Y such that Fo = fo ppand Fy = f op,. Since
dim(P x I) < n, we can “complete” the following diagram.

Pxi—— PxI
1A
e
X — Y
I
‘We have p'|P x I = p which implies that p/|P X 0 =po and p'|P x1=p,s0p’ isa
G-homotopy from pg to p; and [po] = [p1]. Hence f, is injective. W

3.15 Theorem. (Equivariant Whitchead) A based G-map between based G-CW-
complexes is a based G-weak homotopy equivalence if and only if it is a based G-

homotopy equivalence.

Proof: Clearly a based G-map which is a based G-homolopy equivalence is also

a based G-weak homotopy cquivalence. Assume f: X — Y is a based G-weak
homotopy equivalence. By the corollary, f.: [Y : X]g — [V : Y]|gand f,: [\ :
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Xl = [X : Y]o are bijections. If p : Y — X is a based G-map with £.[p] = [ly]
then fop 2z ly. Also we have
Jlpo S =[fopo fl =[tv o fl=[f o L] = f.(llx])-
Now f, is injective so [po f] = [1x], which means that po f =g 1x. So we have
fop=gly andpo f ~glx, and f is a based G-homotopy equivalence. B
Even though Theorem 3.15 is not needed in the proof of the Brown representability
theorem, we have included it since it is a direct consequence of the results of this

chapter.
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Chapter 4 Equivariant Brown Representability Theorem
Let Co be the category of path-connected based G-spaces with theinclusioni : * <
X a G-cofibration for cach X¢Co and let the hisms be the based G-h Py

classes of based G-maps. Unless otherwise stated all G-maps are assumed to be based

G-maps and all G-homotopies are assumed to be based G-homotopics.

Given two G-maps fo, fi : A — X then the G-map j : X — Z is said to be an
equalizer of [fg] and [fi] if the following hold:

()joforgioh
(ii) If 5 : X — Z'is 2 G-map such that j'o fo 2 j'o fi then there exists a G-map
9:Z - Z'such that goj~g j'.

4.1 Lemma Any pair of G-maps in Co has an equalizer.
Proof: Let fo,f : A= X be two G-maps in Co. Consider the G-adjunction space Z

defined via the following diagram:

fouht

(Ax{ohu(Ax {(1Hu({*s}xI) — X
AxI — Z=(AxI)Upu, X
IO

Then F = F;Ufy : Ax I — Z is a G-homotopy such that Fy = FIA x 0= j o f,
and i = F|Ax I =jo f. Furthermore, if j': X — 2’ is a G-map such that there
is a G-homotopy K : Ax I — Z' from j'o fo to j’ o f; then we have the following

commutative diagram:

(Ax (O} U4 x {IHU({s) x I) 20 x

li
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By the universal property of G-adjunction spaces there is a G-map h such that
hoj=j Hence j: X — Z is an equalizer of fo and f,. W

4.2 Example. If fo is the constant map, then Z = CAUy, X.

A G-homotopy functor is a contravariant functor F' : Co — Sp from Cp to the
category Sg of pointed sets such that the following two properties hold:
Equalizer Axiom: If j : X — Z is an equalizer of fy, f; : A — X and ueF(X) is such
that F(fo)u = F(f,)u there exists veF(Z) such that F(j)v = u.
Wedge Axiom: If {X}acr, is a family of G-spaces in Co then there is a bijection of

sets

{Flis))x : F(WX) = [] F(X)
AL

where {F[i]}, is the morphism induced by the inclusions iy : X) < V), Xa.

Nole that if L = {1,2} and X; = * = X3, then

{Flis], Flial} : F(X1V Xa) = F(X1) x F(X)

is a bijection. But Xj V Xz =, so that we have a bijection {F[i;], F[is]} : F(x) -
F(%) x F(). This can happen only if F(*) is a single point.
4.3 Proposition. If ¥ is any pointed G-space in Co then ¥ = [ : Y]% is a G-homotopy
functor.
Proof: Let j : X — Z be an equalizer of fo, fi : A — X and let uer¥ (X) be such
that 7V (fo)u = wy(f,)u. Thus o fo ~¢ uo f; and since j is an equalizer, there is a
G-mapv: Z =Y such that voj ~g u, which means 7¥(j)v =u. So 7¥ = : Y|}
satisfics the Equalizer Axiom.

Tor the Wedge Axiom, let {[f)]}acz be an element OfHﬂY(XA), where fy: Xy =
Y is a G-map. Define f : V)X) — Y by f(z) = fi(z) for zeXy. Then we have
S oiy= fy forall AeL, which means that {x¥[iz]A[f] = {[/il}r So {x¥[ia]}x is

surjective.
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Now assume that [f] and [g] are two elements of [V, X) : Y]g such that {z¥[i]}alf] =
{#"[i]}lg]. For each AeL there is a G-homotopy K* : Xy x I — Y such that
Kx,t) = * for tel, K3 = [oiy, and K} = goiy. Using the fact that Vy(Xy x I) &
(VaXs) x I we get a G-homotopy K : (VaXy)x I —Y with Ko (iy x 1) = K* and
Ko = f, Ky =g. Hence [f] = [g] and {z¥[i]}, is an injection and thus a bijection.
-

I Y is an object of Cp, then for any element ueF(Y’) we have the natural trans-
formation T, : ¥ — F defined by T,([f]) = F([f])u. To show that this is a natural
transformation let f: X — Z be a based G-map, where X and Z are G-spaces in

Co, and consider the following diagram:

IX 1 Y)g —= F(X)

’YU)I F(llI

12 :Y]e —— F(2)

If a: Z = Y, then 7¥(f)e] = [a o f] and Ti([ao f]) = Flao f)u = F(f) F(a)u.
Hence the diagram commutes and 7, is a natural transformation.

For any suspension SX, F(SX) is a group (for the non-equivariant case see [Sp),
Lemma 6, p. 407, the equivariant case follows by the analogous argument). Let
vy 18X — SX V 5X be the comultiplication map. Then the group multiplication
on F(SX) is given by the composite:

F(5X) x F(sx) FELEE™ pesx v sx) 28 psx).
4.4 Lemma. Let H be a closed subgroup of G and let F be a G-homotopy functor.
If ueF(Y) then T, : 7¥(S§;) = F(S{) is a group homomorphism.

Proof. Let [f], [g)ex” (S§,). Then
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T(V(fVa)on) = F(V(]V g)vu)(u)
= Flon){Fla), Flial} ™ {Flia), Flal}F(V(f V 9))(u)
= Fup){Fla) Fli)} {FI Y 9)ial FI(S = Va)ial}(w)
= Fun){F[i), Flealy ™ {FI1 Flol}(u)
= Flon){Fli), Flia)) ™ (FIf)(), Flol(x)

and the last line is the product of F(f)(u) and F(g)(u) in F(S}), as required. @
The element ue F(Y) is said to be G-n-universal for n > 1, if for all closed subgroups

H of G, T, : #¥(S}) = F(S}) is an isomorphism for 1 < ¢ < n and an epimorphism

for g=n. Ifuis G-n-universal for all n, then u is called a G-universal element and

Y is called a classifying space for F'.

4.5 Lemma. Let F be a G-homotopy functor with universal elements ueF(Y) and
u'eF(*") and assume f : Y — Y is a based G-map such that F(f)u’ = u. Then fis

a based G-weak homotopy equivalence.

Proof: For ¢ > 1 and H any closed subgroup of G, we have the following commutative

diagram:

LECEES B
T,
Tu u
F(Sk)
where f.([a]) = [f 0a]. The commutativity follows from the fact that ifa: S}, —» Y

is a based G-map then
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Tu(fle]) = Tu(lfoal])
= F(foa)u'
= Fla)F(u
= F(a)u
= Tu(la))
Since T, and Ty are bijective, f. must also be a bijection. W

Let Y be a G-subspace of Z in (o and ueF'(Z). We will write u|Y’ for F(i)ueF(Y)
where i:Y — Z denotes the inclusion.

The key to proving the Brown Representability Theorem is the construction of a
classifying space Y and a G-universal element ueF(Y). This is done by constructing
a sequence of G-spaces ¥, C Y, C... C ¥, C ... such that for cach n > 0 Y4y is
obtained from ¥, by attaching equivariant (n + 1)-cells, and such that there exists a
G-n-universal element u,eF(Y;,) with %,41|Yn = u,. The classilying space for /7 will
be Y =UnyoYa.

The sequence of G-spaces is defined in the following two lemmas.

4.6 Lemma. Let F be a G-homotopy functor with Yo a G-space in Co and uyeF(Yp).
Then there exists a G-space Y; obtained from Y, by attaching equivariant 1-cells, and

a G-1-universal clement ueF(¥) such that w,[Ys = uo

Proof: For each closed subgroup I of G and for each AeF(S};) let S}y, be an equiv-
ariant I-sphere and let Vi1 S};, be the wedge of these I-spheres. Define ¥; = YoV
(ViraSha)- Let gia be the composite S} = S}, < Y. By the Wedge Axiom we
know that thereis an element u;eF(Y;) such that u;|Yo = uoand F(gu,)u; = A for all
AeF(Sk). Since Tu(lgup]) = Fllgual)ua = A it follows that T, : 71 (S}) = F(S})
is surjective and u; is G-l-universal. M

4.7 Lemma. Let Y, be a Hausdorff G-space in Cp, F be a G-homotopy functor,

and u,eF(Y,) be a G-n-universal element for F, with n > 1. Then there exists
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an object Yp41 in Co obtained from Y, by attaching equivariant (n 4 1)-cells and a

G-(n + 1)-universal element ting1¢F(Yagy) With tnga[Ya = tp.

Proof: For cach closed subgroup If of G and for cach AeF(Sj*"), let S be an
cquivariant (n + 1)-sphere and form the G-space Y V (ViaSih!). For each based
G-map a: S — Ya such that T, (a) = F(a)un = 0 attach an equivariant (n + 1)-
cell to Y, by a to obtain the based G-space Yp41. Let gi be the composite based
Gemap S F Sp o Y V (ViaSER). By the Wedge Axiom there is an element
BCF(Ya V (ViraSit)) such that Y, = un and F(gi,)@ = A for AeF(SiH).

For cach based G-map a : Sy = Y such that F(a)u, =0, let S, be an equiv-
ariant n-sphere and let fo : VaSf. = Ya V (VaaSi) be the constant map. Define
it VaSja = Ya V (ViraSji) by filSh = @ Then according to Example 4.2 we

have the following G-adjunction space:

SVt
(VaSia XO)U (VaSfa x 1) 2 YoV (Vi S
i

— Z=C(VaSfia) Up Ya V (VaSHR

VoSha 1
Joolt

Using the fact that C(Sy) = Ej', it follows that C(VaSf,) = VaC(Sh,) =
VoEjt. lence Z is homcomorphic to Yoy and j : Yo V (ViaSEH) < Yoy is
an cqualizer of fo and fi.

Since fo is the constant map F(fo)i = 0. We can also show F(f,)i = 0.
Since 1S}, = @ and F(a)u, = 0 for each a, then from the bijection given in the

Wedge Axiom, we have

F(fi)i={F(a)un}a
So F(fo)it = 0 = F(f;)&. By the Equalizer Axiom there exists an element un41€F(Yoy1)

such that F(j)unyy = @ which implics ting1|Vs = ,. We have to show that iy is

0.

G-( +1)-universal.
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For each closed subgroup H of G we have the following commutative diagram:

T (Yarn, Ya) o 28 (V) 25 2H(Von) 25 ¥ (Yo, Vo)
T“n T“nﬁ
F(Sk)
Since Y,41 is obtained from ¥; by attaching equivariant (n + 1)-cells we know from
Proposition 3.9 that 7/ (Yo41,¥,) =0 for 1 ¢ < n and for any closed subgroup If
of G. Hence i. is an isomorphism for g < n and an epimorphism for g = n. Since T\,
is an isomorphism for ¢ < n'and an epimorphism for g = n, T, must also be an
isomorphism for ¢ < n and an epimorphism for ¢ = n. We thus only have to show
that T,,,, is injective for ¢ = n and surjective for g=n+1.

Let fer¥(Yap) with Ta,,,(8) = 0. Since i. is sujective for g = n, there exists
acx!(¥,) such that i.() = f. Hence Tun(a) = Tupyy(ia(@)) = Tiny,(B) = 0. By
definition of ¥4y there is an equivariant (n + 1)-cell attached to ¥, V (ViraSjH) via
a. This implies that i.(@) = 0 = . So ker T, = 0 and T,,,, is injective for g = n.

To prove that T,,,, is surjective for ¢ = n + 1, let AeF(S}*') and note that the

G-map j 0 gy ¢ St — Yy is such that

Tunpi(li09ual) = F(j o gra)unss
= Flgna)F()unn
= Flgna)a
= A
Hence un41 is an isomorphism for ¢ < n 4 1 and and epimorphism for ¢ = n + 1.
Therefore 41 is a G-(n + 1)-universal element. W

4.8 Lemma. Let {¥;}n30 be ascquence of based G-spaces in g such that the inclusion

iy 1 ¥, = Yoy is a G-cofibration for all n > 0 and let Y = UnyoY;, where Y has

the G-final structure with respect to {¥a}n0. Let 1, : ¥, — Y, be the identity and
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jn: Ya = Y be the inclusion. If i : VY, = VY, 1: VY, - VY, and j: VY, = YV
are the based G-maps induced by the i,’s, 1.'s, and j,’s respectively, then j is an
cqualizer of i and 1.
Proof: It is clear that juss 0in = ja© 1p. Henco joi = jol. Now assume
J': VY, = Y'is such that j'oi g jol. Let j : ¥, — Y’ be defined by ji, = j'|V,
so that ji,, 0 in g ji. Since i, is a G-cofibration we can define a sequence of
G-maps gy : Y, — Y’ such that j.' ~g gn and gn41 0in = gn. Using the universal
property for expanding sequences of G-spaces define g : ¥ — Y' by g|¥s = gn. Then
90n = gn 0 ju' 50 that goj =g i and j is an equalizer of i and 1.

4.9 Theorem. Let F be a G-homotopy functor, Y a G-space of Cy whese underlying

space is normal and Tj, and u,cF(¥). Then there exists a classifying space ¥’ for
F such that (Y,Yp) is a based relative G-CW-complex - ad a G-universal clement
ucF(Y) such that ulYp = 1.

Proof: By using Lemmas [4.6] and [4.7] we can construct a scquence of G-spaces
Yo C Y C...C Y, C ... with Yy, obtained from ¥; by attaching equivariant
(n + 1)-celis, and G-universal clements u,eF(Y,) with tn41|Ys = u,. Lemma 3.1
ensures that each G-space Y, is normal and T}, and hence Hausdorff. Thus Lemma
4.7 can be applied to each Y. Let Y = UnyoYs have the G-final structure with
respect to {Ya}nyo. From Lemma [4.8] we know that j : VY, — Y is an equalizer of
i:VY, = VY, and 1 : VY, — VY,. By the Wedge Axiom therc exists an element
@eF(VY,) such that @Y, =
F(in)a = F(1,)a for all n > 0 and hence

e Since @41 = thngs and tng1Ya = un we have that

F(i)a= F(1).
We deduce from the Equalizer Axiom that there exists an clement ueF(Y') such that
F(j)u = @. Since @]}, = up, u|¥, = u, for n > 0. In particular u|Ys = u,.
For 1 < ¢ < n and Il a closed subgroup of G, we have the following commutative

diagram:
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For 1 < g <nand H a closed subgroup of G, we have the following commutative
diagram:
) )
T T
v u
F(S)

Since Y is obtained from Y, by attaching equivariant cells of dimension > n +1 and
1

g < n, (ja) is an isomorphism. Also T, is au i ism since u, is G-
Thus T, is an isomorphism for ¢ < n. The above argument holds for any n and thus

T, is G-universal. &
The completion of the proof of the Equivariant Brown Representability Theorem

is very similar to the proof of the Whitehcad Theorem in Chapter 3.

4.10 Corollary. Let Y be a G-space whose underlying space is normal and T}, and
let ueF(Y) be a G-universal element for a G-homotopy functor F. Let (X, 4,+) be
2 based relative G-CW-complex, where A and X are G-spaces in Co. Given a G-map
g:A—Y and an element veF(X) such that v|A = F(g)u, there exists a G-map
g': X =Y such that ¢'|A=g and F(g')u=v.

Proof: We are given that F(f)v = F(g)u and have to find a ¢’ such that F(g')u = v.
The proof is similar to that of Lemma 3.13 in that we must complete the diagram:

2L x
P
;J o l,
Y'—y
A
where h is a G-weak homotopy equivalence and §|A = hog. So we first have to define

Y’ and the G-maps h and §.
Let j: X VY — Z be the equalizer of the composite maps:

Al xExvy
ALy xvy
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By the Wedge Axiom there is an element 7¢F(XVY) such that 5]X =vand 5|Y = u.
Since F(f)v = F(g)u we have F(ix o f)v = F(iy o g)u and by the Equalizer Axiom
there is an element @eF(Z) such that F(j)@ By Theorem [4.9] we can construct
a G-space Y’ containing Z with w'eF(Y”) a G-universal element and v'|Z = &. Define

h to be the composite

Y& xvrdz&y
\_/l
h

Then F(h)u' = u and by Lemma 4.4 h must be a G-weak homotopy equivalence.

Since j is an equalizer of iy o f and iy o g, the composite

is G-homotopic to the composite
ALyExvydzEy |

Let k be the composite iz 0 j oix. Then hog =g ko f. Since f is a G-cofibration,
there is a G-map § : X — Y” such that § 2 k and |4 = ho g. By Lemma 3.13,
there is 2 G-map ¢’ : X = Y such that ¢'|[A =g and hog' ~¢ §. Since hog’ 26 §

and § = k, we have
F(g')u = F(g)F(h)u' = F(g)u' = F(k)u' = F(ix)F(j)F(iz)x' .

But F(j)F(iz)u’ = & so F(g')u = #|.X = v, and g is the required G-map. ®

4.11 Theorem (Equivariant Brown Representibility Theorem). Let G be a compact
Hausdorff group. If F :Cy — Sy is a G-homotopy functor, then a classifying space
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Y for F exists with a G-universal element ueF(Y). Further, for any based G-CW-
complex X in Co, T, : x¥(X) — F(X) is a natural equivalence.

Proof: The existence of Y and u follows from Theorem 4.9. Taking Y; to be a 1-point
G-space, Y will be a G-CW-complex, and hence is normal and T} by Propasition 3.2.
(i) T. is surjective. Taking veF(X) we will apply Corollary [4.10] with A = + and
g the constant map. Since F(+) is a single point, F(f)v = F(g)u, so there exists a
G-map g': X — Y such that F(g')u =v.
(ii) 7. is injective. Let go,g1 : X — Y be two G-maps such that Tu([go]) = Tu([ni]).
g 2 (\'"X')U(\"‘"xl)

Let X' = £X[, i.e. the based G-CW-complex with n-skeleti
forn >0, and and define b : X' — X by h([z,1]) = z. Let veF(X') bl. duﬁncd by
v = F(h)F(go)u. Identifying A = X"' with X V X we will define g : A — Y by
o) = ) 3 o 1) = (),

We need to show that F(g)u = v|A. Let V: Y VY — Y be the folding map,
i:A=XVX — X'be theinclusion, and {F[3], Flis]} : F(XV X) — F(X) x F(X)
the known bijection. Then

Flglu = F(V(g0Vg1))u
= {Flia), Flal} ™ {Flia], FI}F (V{90 V 90))u
= {Flir), Flial} ™ (Flgo)u, F(g1)u)
= {Flis), Flial} ™ (F(go)u, F(g0)u)
= F(V(9Va)s
= F(gohi)u
= F()F(WF(gou
= F(i)
= vlA

By Corollary 4.10 there is a map ¢’ : X’ — Y such that g'|A = g. The composite
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By Corollary 4.10 there is a map g': X' — ¥ such that ¢/|4 = g. The composite

Xx1nXx1 sy
*x I

is such that g'0 p|X x {0} = go and g'0p|X X {1} = g1. Thus g'opis a G-homotopy
from go to g1, which implies [go] = [g1] and so T, is injective. W



Chapter 5 The Mayer-'ietoris Condition and the Equalizer Axiom

Following Brown’s original acccuut, [Brl], we could define a homotopy functor
F :Co — Sp as one which satisfies the Wedge Axiom and the following:

Mayer-Vietoris Axiom. Let (X : A;, A;) be a triad of G-spaces, i.e. A, and A, are
G-subspaces of X with X = A;UA,. Then if there are z,eF(A,), 26 F(A;) such that
21)A1 0 Az = 23141 N Ay, then there exists veF(X) such that v]A; = 2, v]d; = 2.
Such functors F will be called MV-homotopy functors.

Let A, X1, X; and Z be based G-spaces and let f : A — X, f: A = Xy,
91 X1 = Z and g, : X, — Z be based G-maps such that g, f; ~¢ gafs. Then
(f1,91, f2,92) will be called a weak pushout if, for every based G-space Z’ and pair
of based G-maps g} : X; — 2 and g} : X — 2' such that g} fy g ghfa, there exists
a based G-map g: Z — 2’ such that gg1 ~c g} and gg2 ~c gj.

5.1 Proposition. Given that j : X — Z is an equalizer of f, : A — X and i A= X,
then (/1 V f2,3,V,if1) is @ weak pushout. Here fy V f: AV A — X is the obvious
G-map and V: AV A — A is the folding G- map.
Proof: We first notice that j(fy V f2) = ifi Vifs %6 jfi Vify = j/iV. Assuming
that Z'is a based G-space, and g} : X — 2" and g} : A — 2’ are based G-maps such
that g{(fy V fz) ~g 93V, we have

ahivVah=ahVh) % aV=aVa,
50 g} f1 6 g ~ g} f2. Now j is an equalizer so there is a based G-map g: Z — Z'
such that gj &g g}. Further g} ~g gifi ~g gifi. W
5.2 Proposition. Let F' : CWp — So be an MV-homotopy functor andlet f: A= Xy,
fat A= X3, 91: Xy = Z, g2 X2 = Z be a weak pushout in Co. Then if there
are z,€F(X1), 726F(X;) such that F(fy)z; = F(f2)z; then there exists veF(Z) such
that F(g,)v = zy and F(g,)v = z5.
Proof: Let My, and My, be the G-mapping cylinders of f; and fp. Let My, j, be
the quotient G-space of (A x [0,2])[I(X; 1 Xs) formed by identilying (a,0) with
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fi(a), (a,2) with f(a) for all acA, and by shrinking {s} x [0,2] to a single point.
Let & : M, — Ay, z, be the inclusion and let & : My, — M), ;, be the G-map and
homeomorphism into defined by £([a, ]) = [a,2—1] where aeA, tel, and &([z]) = [z],
where zeX;. Then there are G-maps jy : Xy < My, vyt My, = Xy, 521 Xz = My,
and ry : My, — X; such that j, and ry, j, and r; are homotopy equivalences and

homotopy inverses respectively. Then we have the following commutative diagram:

212 2 &2 f2, (where i) and i; are the inclusions of 4 into

Since &yj1fi ~g &iy
KTy, and ATy, respectively) then, as we are working with a weak pushout, there exists
a G-map h : Z — My, s, which makes the above diagram G-homotopy commutative.

Applying the functor F to the above diagram we have the following commutative

diagram in Sp:



F(3p)
F(3,)
F(£)F(;) J/ v
EG; FU) F(]‘) 3
y w:.’
F

F
(A)\ P2} (il )
F(E,) /
i FX)— Flag)
F(£,)F(1,) T

Fiy)
F(I5) ¥y

Now j; and j; are based G-homotopy equivalences, so F(j,) and F(j) are bijec-
tions.

We notice that (M}, p,, My, My,) is (essentially) a triad of G-spaces (to make this
literally true we have to replace [0,1] in the definition of AT, by [1,2]).

Now let u;eF(M},) and uzeF(M),) be such that F(ji)u, = z, and F(j;)uz = z,.
Then we have F(f;)F(ji)uy = F(f2)F(i2)ua, so by the Mayer-Victoris Axiom there
exists 5eF (8}, z,) such that F(€,)5 = u; and F(&;)5 = u;. Thenlet F(h)5 = veF(Z).
By the commutativity of the above diagram we have F(g)v = F(g;)F(h)o =
FU)F(6)5 = FljsJu = 21, and Flgs) = Fla:)F(R = F()F(6)3 = Fia)us =
3. So veF(Z) is the desired element. W )

5.3 Proposition. If F : CIp — So is 2 MV-homotopy functor theu it satisfies the
Equalizer Axiom.

Proof: Let j : X = Z be an equalizer of fy,f : A = X. Considering the weak

ibed in P, ition 5.1 we have th P g ive diagram

pushout d
in So



F(X)
F(3,vip) )
F(4) x FafFael ra v 4) F2)
F(9) ’ﬁ(jofl)
FlA

where {F[i1], Fli2]} is the bijection given in the Wedge Axiom. Assume that F(f,)u =
F(fiju = wfor ueF(X). Then {F[is), FEl}F(iVfa)u = (w,w) = {F[ia], F[iz]} F(V)F(fi)u.

Since {Fli1), Fli2]} is a bijection we have:

F(fiV fa)u=F(V)F(fi)u
By Proposition 5.2 there exists veF(Z) such that F(j)v = wand F(j o fi)v = F(f,)u.
In particular F satisfies the Equalizer Axiom. W
5.4 Theorem (alternate form of the equivariant Brown-Representability Theorem).
Let G be a compact Hausdorff group. If F : Co — Sp is an MV-homotopy functor,
then there exists a classifying space Y for F and a G-universal element ueF(Y).
Further, for based G-CW-complexes X in Co, T, : #¥(X) — F(X) is a natural

equivalence.

Proof. This follows from Theorem 4.10 and Proposition 5.3. B
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