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Abstract

T he main purpose of this thesis is to give a COllJ lltctc proof of the Eqnlvarian t

Drown Rcprcscntabiliry Theorem . in the process developing th~ equh 'arianl algebr,l ic

topology needed in the final proof. The proof of the th c-oretu in the categ ory o f

path-connected G-spaces is given in Chapter ·1 and follows the proof of lhe non­

cquiva elcnt case given in Spanier ([Sp], pp - ,jOG- 411). Th ere is another account of

the proal given in Switzer ([Swl. pp. 152-157) , which is closer to the original account

given by Brown [DrI], Equlvarlant versions of the theorem are announ ced in [LMS]

and [V], for exampl e, bu t no details of the proofs arc given.

In Chapter 1, the basic theory of G-spaces and G-maps is present ed. G-final aut!

G-initial structures on a sel are defined and sufficient cond itions are given which

allow such G-spac e str uctures to be constructed.

T he equi\'ariant homotopy groups are defined in Chapt er :1and the isomorphism s

1r~f(){) e lf n {X 1t ) and 1r~/(X,A ) :!! l:"n{XII, All) are established . The se tw<)result s

arc then used to prove the result s about equivaelnnt hom otopy groups needed in

Chapter 4.

In Chapter 3, G·CW -complexes are defined and ail the necessney homotopic prep­

ert ics of G-CW-complexes arc developed, culminating in the proof of the E' lllimri,lllt

Whitehead Theorem,

Finally, in Chapter 5, we prove an equivariant version of the stetcmcnt lhaLif ,1

Junctor satis fies the wedge Axiom and the Mayee-Vletoels Axiom given ill Brown's

origina l version o f his theorem, then it also sa tis flcs the Equalizer Axiom given ill

Spanier's version or the t heorem. This immediately gives a Switecr style verslon of

thcmainrcsult.
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Chapter 1 Equivariant Initial and Final G-spa.-cc Structurcs

Let G be a tcpologlcal group and let X be a topological space. T hen X is called

11.G"~Jlace if the re is a map (continuous functio n)

9:Gx X _X

suc h that the following cond itions arc satisfied:

(i) 9(9lt9(91,r)) = 9(9.91,X) for 91,92fG, xlX

(ii) 9(c,r) =x for all XiX , whcrc e is the identit y in G.

Usually 9(9,X) will be denoted by 9r, sc that (i) and (ii) become:

(i) 9d92X)=(9192)r for 91,92fG, :leX

(ii) ex = x for all :lc'(

Sneha ~ is called an adion of G on X .

For each «x,Gx = {gX!gfG} is ca lled t he 2I:liliof:l. If s ; X then as = ~Gr.

A subset A ~ X is fi.mlby G if GA = A.

If X and }' are G-sp aces t hen a map f : X - }' is said t o be eqliivariant or

a~ if for ~ 11 :lc'(, geO we have 1(9x) =9f(x) . Hence f is a G-mar ;f .' ~

following diagram commutes

GXX..!!...... X

1QX11 11
G x l'_ Y.,

where ~x and ~I' Me t he act ions of G on X and }' respec tively,

1.1 Proposition. T he composit ion of two G-maps is a C·ma p.

.r..mcl: Assume f : X _ Y and h : l' ..... Z arc G-maps. Th en



(h o /)(g z ) h(J (gz ))

h(g/(z))

gh(J(z))

g(h oll(z) •

Examples of a ·spaces

1. Trivial a·spaces

Any topo logical space X can be given the t rivial ncricn of G, defined hy

¢ :GxX _ X

~(g,:r:) = e ,

In particu lar t he spaces E" = {uR"1 [e] ::; I}, S" = {x£Rn+l l Ixl = I}. and

In = {(XhX2''' ' , x..)tR"IO :c:: Xi :$ 1, 1:$ i ::; n] will always be given t he tr ivial

action oie.

2. Coset or homogeneo us G-spaces

If H is a closed subgroup of G and G is locally compact Ileuadorff then ti le ~ct of

left cosets ~. with the quot ient topology, is a G-space with actio n defined by

¢ :Gx j

¢(g',g H)

G
Ii
g'gll

To shew that 4t is continuous consider the composite

GXG~Gx * .-t.. ]7
where q is t he quot ient map. Since G is locally compact Hausdo rff and q : G ..... ~

is an identification, it follows that te x q is also an identificat ion ($CC for example



[nro), 4.:1.2, p. 101). So,p is continuous if a nJ only if ~o (10x q) is continuous. But

~ 0 ( I G X q) is continuous since it is equal to the composite

GXG~G-!...*
where m(g' ,g) = g'g is the group multiplicati on.

For the remainder of t he thesis we assume G is compact Hausdorff . It is known

(sre for exa mple (0], Propos ition 3.3, p. 23) that ~ is Hausdorff if and only if H is

c[osl.-il in G. So il willalso be convenient to hencefort h assum e all subgroups H of G

referred to are closed.

3. Funcl ion Space!

Let Mapo (X, Y) denot e the space of a-maps from the G-spaceX to the a ·space

Y. wilh the compact ope n topology . Thi s space can be given a C·action defined by

G x Mapo(}<,Y)

(9,f)

Mapo(X,Y )

(r - g/(g- Ir »)

H }" is locally compact Hausdo rff, then we bave the following exponential law for

C·spaccs and C-maps. There is a bijection

defined by

i-« t

where j(%)(y) = f (%,y) [see [D), p, 35).

G· inili ~15l[llet !! rrs

If X is a set, then a G-space st ructure on X is a topology on X along with a

continu ous action orG on X .



Let J be an indexing set and let {Ii : X - Xj}j'J he a family of function s

from the set X to the topological spaces P'.. }j .J. Then a topology on X is said

to be lnilialwith respect to {lj l i e) if it satieflcs the fullowing universal prcpcrtj..;

for any topological space Z, a funct ion h : Z _ X is continu ous if and only if each

compo site lioh is continu ous. Suc h it topol ogy exists; it is the topology with eubbasis

consisti ng of all sets of th e form {fr 1(U)IU open in X , jcJ} . {For morc detnlls sec

[Brc], p. 153).

Now let {Ii : X - Xj} j<J, as above, be a family of G-map s. Theil the G-SPil.t·c

st ructure on X is said to bc.G:..ini.1lal with respect lathe function s {Jil j,) Hit salisfk':l

lh cfollo wing universe! property : for any G-s pace Z, a function p : Z .....X is a a- map

if and only if each compos ite Ii 0 p is a G-m:tp.

We also note that ir p : Z -> X is a G- m.lp it follows from Prop osition 1.1 that

the composi te h op is a G-map for each j(J. Hence, to cstn hlish t hat X h n.~ the

G-initial stru cture wit h respect to the family of G-maps {I, : X -> X,Ld. we only

need to show that the continuity of p follows from the continuit y of t he eomposh lons

hop, for all j tJ .

Example: Prod uct of G-spaces

For any Iarnl!v of G· spa ces {Xi}JtJ the product II X, call be given a (;·initi.ll,.J
st ructure with respect to the proje ctions Pj : II X, ..... Xj, where n j d X, has the

jr J

init ial topology. The act ion of G on II Xj is the diagOlI::LI act ion deli ned by rP : G x
j d

(IlX') ..... PXj where ~(g, (zjlicJ )) = (gz, lj , J ). To show tha l ¢ i ~ continu ous,
j.J J.J

cons ider the following diagram

G x n i ,JXi ---.!.... n j.JXj

'o." j j"

"
Xi



where fj hi the action of G on Xj . Thcn earn composite Pj 0 if! is equal to the

eomposite ?j 0 (Ia X Pj) which is clearly continous. By the universal property Cor

initia l topologies, ; is continuous. We notice that the projections Pj : ITXj -+ Xj
jeJ

are G-maps.

Let h : Z -+ IIXj be a function from the G-space Z to 11 X j such that Pj 0 h is
~ ~J

a G-map lor each ic l, Thcn for all ZlZ, glG we have

gh(z) (gp;(h(z))U<J)

(g(p;0 h)(')U<J)

«p; 0 h )(g, )lj<J)

(p;(h(gz»Jj<J)

h(g,)

Thus h is a G-map and the G-space structu re on IIXj is G-initial with respect to
j d

b'j)jeJ '

Sufficientconditions for the general case are given in the followingresult .

1.2 Proposition. Let {h : X -+ Xj}je J be alamily cl Iuncticns Irom the set X to the

G-spaces {X j} joJ. T hen X can he given a G-initialstructu re with respect to {h }jcJ

if the following conditions are satisfied:

(i) the function h : X -+ ITXj defined by h(z}= (fj(z )lil1 ), is injective, and
j. J

(ii) h(X) is fixed by G, i.e. iCglG and ylh(X), then gy lh(X).

P.mcl: Let X be given the initial topology with respect to (h }joJ. We have to define

all action of G on X such that the universal property holds.

Using condition (ii ) we see that, for each 9lG, :uX, there exists an ilX with

1I(i) = gh(z), lind this i is unique by condition (i). Define if!: G x X -+ X by

~(g,.r) =i, \Ve have to show that ~ is continuous.



it follow! by the trans itive rule for initial top ologies (see (Oral, 5.6.8, p. 15-1) tha t

X h as the initia l topology rclali '..c to the injection h, and so h : X _ .\ (X ) is a

hom eomorp hism.

Let 0 be the diagonal action 0 11 h(X). T he n ¢ =h - I 0 (IG X h) 0 h, i.e. we h ave

th e fc llcwing ecmmutative diagram,

a x h(X) ~ h(X)

''''I j,-,
GxX --;- X

So 4> is continuo us since it is the composite of continuous functions.

Let p : Z _ X be a funct ion from the G·space Z to X. Assume ho p is a G-map

Cor each j f}. Let ~x, ¢z be the act ions of 0 on X and Z, respectively. Then I' is 11.

G · map irpoQ>z = 9xo(lGxp). Out from the a rgument above tPx= h- 1o Oo(IG X h).

So we have to show thal lhe outer peri meter of the following dlagrnm commutes:

GxZ ~ Z

GxX X

"'·"1 f,-'
a x " (Xl ~ h(X)

Let (9,Z)' 0 x Z. Then



0(10 X h)(IG X p)(g,,)

O(IGx h)(g,*ll

O(g,(!i(p(,»)lj,Jll

(g!i(P{,lllj<J)

(glli op)(')/j<J)

(Ui 0 p)(g' l lj<J)

(!;(p(g'll!i <J)

h(p(g, ))

hp9z(9,z)

So Jl(gz ) = gp(z) and p is a G-map . •

Examples of a ·initial st ructures and P roposit ion 1.2

1. Product G-spAces.

The product topology is a special case of t he above proposit ion with h t he

identi ty. Spec ial examples of product G·sp accs arc ~ x e,*x Sri, ~ x En,

and %x I , where G acts tr ivially cn ", S", En, and 1.

2. G-subs paccs.

If A is a subse t of X that is fixed by G, the n the inclusion i : A -+ X sat isfies

the conditions of Proposition 1.'2 where h "" i. So if ? : G x X _ X is th e

action of G on X then ¢IG x A --I A is the action of G on A which gives A

the C· jnit i,,1 struct ure 011 A, where A has t he subspace topology. A is th en

called a G,sllhspacc of X .

If (X,. ) is a based spacewith basepoint *, then (X ,.) willhe called a based a -spa ce

if the action of G on X is such that * is fixed by G.

For G-subspa ces we have the following:

1.3 Propositi on. Let f : X - }' be a G-map . The n



(i) H A is a C-subspace of X , t hen / (A ) is a.C ·subsp;\ce of }' ,

(ii) If B is a C -subspace of }' , then / - 1(8) is a C·subsp a.c:e of X .

fulgf,

(i) We have t o show tha.t Gf( tl ) =/ (A). Let ileA, gtG. T heng/(lI) =/ (go)e/( ,\ )

since ga(A . Hence G/( /l) ~ / (A) and since e/ (,i) = / (A) we have G/ (A) =
I (A).

(ii) Let :uj- t( 8) an d geG. Th en / (g%) == g/(: )(8 since / (%)e8 and Gil == /J .

Ilence g:uj- t(B) , Cr l(D) c;;;: / - t( B) and G/-1(D) =/ - I( D). •

C_fio;\! st rl1 ct ll rr~

Let J be a n indexing set and let {Ii : X j --0 XL,J be II. Family of functions Irom

the spaces {Xj }itJ to the sd X . Th en a topology on X is s(lid t o be Iinnl wit h

respect to the funct ions {fj ).i.J if the following universa] property is satisfied; for

any t opological space Z, a funct ion h : X _ Z is continuous if a nd only if ('a(1I

composite h 0 h is cont inuous. T he final topolo gy exists and coosists of a.1I sets

U ~ X such Lhat /Tt(U) is open in Xj fe r all j cJ .

Now let {Ii : X j _ X )itJo as above, be a family of G·m.t ps. T heil a C -sl','ce

st ructure on X is sa id to !L:.fin4.1 with respect to {fj }j.J if it satisl'ies the following

universal proper ty: for any C·spa ce Z, a function 11 : X ...., Z is il G-map if and

only if each compos ite h 0 Ii is & C-map. Again we note t hat from Proposit ion 1.1 it

follows th at if h : X _ Z is a C-map, then the composite 11 0 h is also a G·ma p for

each j cJ. Hence, to establish tha t X has the C-final structure with respect to the

family of G-map s {fj : Xi - XI ;.J, we only need to show that the conti nuity of h

follows from t he continui ty of the composites hoI;. for all j eJ .

Examp le: Sum of C·spa ces

For any family of C· space {Xj }itJ the to pological sum UXi• i.e. t he disjoinl
itJ

union of the space s Xj with t he usual final topology , can he given a G-final struct ure

wit h rcspect to th e inclusions ii : X j ...... UX j . Th e action of G on Ux, is define.J
j tJ j.J



by:

. ,ax Ux;
i<J

(g,ri)

ux;
j <J

gXi for g(G, rj!X j, and [c-l

To show that ,p is continuou s we note that since G is comp act Hausdo rff, G x UXi
i, J

has the final topology wit h respect to Ic x ii : G x X j -+ G x UX j (see [Bre], 4.3.2,
j,J

p . 101). The n f is continuous since each composite ec (Ia x ij) = ii~j . where ¢j is

the action of G on Xi' We notice that the inclusions ii : Xi .... U Xi are G-maps
jr:,J

lor alljd.

Ned let h : UX j ..... Z be a function from UX j to the G·space Z with h 0 ij a
i ,J j<J

C- lIIap for all [cl: The n we have for uXh gcG:

h(gr ) hii(gz)

(hoi;)(gx)

g(hoi;) (x)

gh(i;(x))

gh(x)

Thu s tile universa l proper ty is satisfied.

Sufficient conditions for the existence or G-fioal stru ctures are given in the following

result.

1A Proposit ion . Let {Ii : Xj -+ X}i<J be a fa mily of funct ions from the G·spaccs

{Xj} j<J to the set X . Then X can be given aG-linal st ruclurewith respect to {fj}i<J

if t he following con ditions arc satisfied:
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(i) th e funct ion p : UXj -. X defined by p(z;) == f ;(z ,) for r ,l.\;, is su rjec tive ,
j f J

aod

(ii ) If p(z;) == p(r j) for XiC\'"; . %j (.1( j, with i,itJ , then p(gzi) == 11(9Xj) for all gtG.

P..mszf; From (i) it follows th itt for each ,1:(.\' , th ere is XC UXj such 1hill p(i ) == x,
,i t}

Define t he acti on of G on X by:

s-c cx-: »
.(9 •• ) = p(g. )

This act ion is well-de fined by condit ion (ii)

I£ X is given the final topology with respect t o the functi ons {!i }jrJ. then I' :

UXj -+ X is an identi ficat ion. Since G is locally compact HausdorlT
j <J

la x p:G x U Xj -t Gx X
j t}

is also an identification. Hence it follows from th e following commut ative dlng rnm.

Gx Uj </X j ~ G x X

.j l-
x

that ~ is continuous.

Let h : X .....Z be a funct ion fro m X to the G·space Z. Assume h 0 Ii is a a ·map

(Of each ill. Let :rcX. Then we have to show h(gr) == gh(z) for any 9,0.



II

h(gz ) h(p (gi )) where i()(j Ior some jfJ

h(f;(g' ))

(h o !; )(y.)

g(h o/j)(i) since each h 0 Ij is a G-map

gh(f; (' »)

gh(x)

So h is '" C -map . •

Examples of C -fina l str uct ures and Pr oposit ion 1,4

I . Topological sums A topological sum UX j of a ·spaces is covered by the
j<J

ab ove proposit ion wit h p t ile identity on UXj '
jcJ

2. Qu otient G- space

Lct e- be an equivale nce relation on the a -space X su ch that if oX- 1I then

gr ....911for all x, y£X, 9£0. T hen by Proposit ion 1.4, the quotie nt spa ce ~

can be given the G· final st ructu re wit h the action on ~ defined by

9:GX~ ""~
'(g,!.]) = (g.]

T he p of Pr opositi on 1.5 is the obvious ide nt ifica tion map X -+ ~.

In partic ular if A is a G-subspace o f X t hen :} , the quoti en t spa ce ob tained

by sh rink ing A to a. poin t , CAn be given th e C · final st ruct ure with respe ct to

the quotient map p : X-f.
Given a based set (Z,.), the rule f .-. Jp. where f is a based func tio n

}~/A -+ Z. determines a biject ive corresp ondence bet ween based fun el ions

}~/A _ Z and Iuuct ione Y -+ Z whic h tak e A to *. Hence it follows from

Pro position 1..1 tha t p sa tisfies the following uni versal pro perty:
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IfZ i, abued a ·space, thcnlberulef _ lP, where! : (YIA,{ A }) ...

(Y,') is " based G·map. dct<'l'minesa bij cetive eo rrespcndence be-

tween

(i) b...,j G· ma.. ll'/ A.{All - (Z,. ), ",d

(ii) G ·map5of pairs (Y, II) ... (Z . -).

If {(X,j•• )};.J is a family of based G' spacClll, lhcn t he wedge VX j is the
i t)

quotient G-s pacelormed from the top ological sum UXj by identifying all the
j ,)

basepclnta, an d using the identified poin~ as biUl:poinl for the wedge.

3. G·adjun d ion squares and G-adjunction spaces

A diagram orC-spaces and G- maps

will becalled a G·a,diundion squuc if the following uni\ 'mal properly is ,."t·

isficd:

if Z' is any G-space and i :Y _ Z', k : X ... Z' are G·ma~ such

that j 0 f = k 0 i, then there exist! a unique a ·map h : Z ... Z'

suchthat he I:::: j and h oi =k.

For the ll:iven map. f and i the G-space Z above is unique upto G .homeomorphillm

in the following K OSC. If Z' is any other a-sp ace such t hat

is also a a-adjunction square, then th ere are a -maps h : Z -. Z' and h' :
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z' -+ Z deter mined by the universal p roperty for the G-adju nction squa res

involving Z and Z', respecti vely, which are homeomor phic inverses or each

oth ee. T hus, hi =", hI = 1', h'l' = I, and h'l' =J. The uniqueness of

the universal property, for a-adjunction squa res ensures that h'h = l z and

hh'= lz',

If A is a C-subspace of X. then given the G-m:l.p f : A _ Y we can form

the G-lUIjundion squa re

A .L; y

x I X UJY

Here, X VJ Y is the quotient space of Xli Y formed by identi fying a with

j {a) for all acA, and giving X UI Y the G-final st ructure with respect to the

inclusion I : Y -I Y VJ Y and the function 1 : X -+ YU j Y defined by

J(r ) = (x} for Xi X. T he actio n of G on X U, Y is given by

¢ ,Gx(X UJ Y) ~ X U/Y

.(g,[, D=[gzlfo,g,G, " X

¢(g,[,D=[g, ) fer g, G, ,<Ie
We sec that ¢ is conti nuous as in the proof or Proposition 104. The G-space

X UJ Y will be called the G-adjunct ion space determine d by I . The corre­

spond ing functi on p: X liY --f X UJY is defined in th e obvious way.

1.5 Pr oposit ion . T he squa re used in constructi ng any G · adjunctio n space is a

G·adju nction squa re.

E,mcl. If Z is a G-spa ce and j : Y ..... Z, k : X --f Z ar e G·m a ps such tha~

j 0 f = k 0 i th en we can define A : X UJY --f Z by h([/(z)] = k(x) and

A(fy!) =j( y) (or all xcX, yc}'. It is easily seen th at h is unique . •



4. Proper ties of G·ad jund ion squares

The followin~ results will be utilized in Ch~ptn 3 on G·CW-complexcs.

1.6 Proposition. If A, 8 and C are G-spaces, with A a G,slIbsp.,ccof D ant!

n II G-subspace of C, lhcn the following dia~ram is ;\ G-.djunction sq uare

C -;;;-CIA

where i a.nd i' are the inclusions and p and p' IIrc the corresponding quolienl

G-mtJ.ps.

£..m2I: If Z is a G-space and j : E IA -0 Z , k : C _ Z Ar C G'lnap~ with

j op =k oi then We can define a unique G·map II: CI A ~ Z by hUeD= k(e)

i£ e rt A and hUo]) = i (A ) if Cl(A . Then h o i' = i and h oy = k. The

surjcctivity o£ y implies tha t h is unique. Finally, h is a G-map since CIA

has the G-final st ructure with respect to i' an d p. •

1.7 Corollary. H J is an indexing set and for cadi j ( J, (Xj . Aj ) is a palr of

based G-spaces with A.;a G-subspace of Xi>then the following diagr.,m is a

G-acljunct ion squa re:

Uj,JA j~ Vj,lA j

u"",j v",;,j

whcre PA and px arc the obvious quotient G-mAps And ij : Aj .... Xi is till:

inclusion for each j (J , end Uij and Vj<J i j arc the obvious G' lRilJl~.
j <J
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1.8 Proposition. Let (Xi . A';t . ) be a pair of based a·spaces for eac h j (J and

let {Ii : Aj -0 i j};<J be ~ family of based a·maps. Then the following is a

G-a djunctio n squa re:

V'ol!'
Vj <JAj -

v",;, j
Vj<J i 'j

IV",;,
Vic} Xj - Vj.J{Xi U'J Yj)V,.,"

f.m2[: Given based G-ma ps i : VY, -+ Z and k : V Xj -I Z such th at
i.J ie;

e(VIi)= k (V i,i), then for ea ch rest riction e, :l j -+ Z and kj : x, -+ Z
I ' } ,.J

th ere exist s a a-map hj : Xj UJ,Y; -+ Z such tha t hj o1; = l j and hj oi; = kj .

Then if we define h :V( XjUj, lj) -+ Z by hl(X; U/,lj)::::l hj fo r each j d,
j<J

we have ho Vlj =l,ho Vh= k.•
jl} j oJ

1.9 Proposition. Let X, Yand Z be G·s paccs, with A a a -subspace of X.

T hen if f : A -+ Y , and g : Y -+ Z are G·maps, the outer perimeter of the

following diagra m is a a -adjunction square for j : A ..... X a nd the G·map sl .

A L y .z; Z

i j ! I ) 1

x 7 x U/Y T (X U/Y) U,Z

CI2cl. Let I : Z - Wa nd k : X -+ W be G·maps such th at to (gJ) = k 0 i.

Thcuelncc the left- hand square is a O·adj unct ion square, t hereexish a G-map

h : XU,i' -I W such tha l hOI= l og and b »] = k , But th e right-h and square

is also a G-adjunction squa re so t he re exists aG-m ap h': (X U/Y )UJZ _ lV

suc h that II' o ~ = t and h' og = h. Hence h'og 0 J= h oj= k a nd so t he

ou ter perimeter is a G·adj unction square. •



16

5. Comap? ing cylinder

Th e a-mapping crlindcr for the G-map f : .\' -+ Y is defined all th e

a- adjunctio n space fo rm ed via the diagram

x , {OJ -l.... l'

,I I,

We will deno te (X x 1) U, Y by M, and call it the G·mapllillg cylinder for

f. T he act ion o f G all X x I is t he diago nal actio n with G acting tr ivially on

I . H (X,. ) and (Y,. ) ar e based G·spaccs and f : X ..... }' is a based a -map

then the~G-mapping cylinder, denoted by ,fll , is t h e quoti ent G-spare

Ai } = ~, with {. X 1) as basepoint

Let f : X _ Y he a based G·map and ,.ij be the reduced G-mapping

cylinde r. T hen we have t he follo wing com mutati ve diagra m:

x ...!..... y

where i and r arc the based G-maps defined by

;,(X, ') (Ai" .)

(.:,OJ, and

r , (Ai". ) (Y,.)

[yJ ~ y

[x,/1 I (x),

where Id, uX and y"Y.
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We also have t he based G·map j : (Y,. ) --t (M" . ) defined by y 1--+ !y]. By

an argument a.nalogous to tha.t in non-equivariant case, r is a G-bomotopy

equivalence with inverse [ ,

6. Expanding sequence or G -spaces

Let Xo C Xl C •. . C x ..C . •• he an expanding sequence or G-spaces,i.e.

X.. is a G·5ubspar.e of X nH for all n ~ 0, and the set X = U X". Let
,,;::0

p : UX" ..... X be defined by p(z ) =inez) where ZfXn and i ll: X .. .....X be
n<?;D

the inclusion. So, by P ropo sition 1.4, .Y can be given the C -Iinal struc ture

with resp ect to the inclusi o ns {in : X.. - X}II~O ' From the universal pr operty,

it fellows that f : X ..... Z is a G-map if and only i£I IX" is a G-map for each

n~O.

1.10 Propo sition. If Xo C X I C • . • C X" c ... C X is an expanding sequence

or a·spaces where X has the a·final structu re with respect to thc inclusions

{in X.. <-t X }n;::o, and A is locally compact Hausdorff, then

Xo )( A C X I )( A c ...X.. x A c ... C X x A

is also an expanding sequence of G-spaces with X x A h a ving the C-final

struct ure with respect to t he inclusions {i.. x 1,, : X.. x A~ X x A) ..zo.

.f.m2{: Let h : X x A -+ Z be a fun ction from X x A to the G-space Z such

th at IiIX.. x A is a G-map for all n 2:O. By the exponentia l law for G-spaces

a nd G-maps, for each hJX .. x A th ere exists a G-map h' : X .. -+ Ma po( A, Z )

and :-.fu nct ion h : X -+ MaPG(A, Z) such that h' = hIX... Since X has the

G-final structure with resp ect to t he inclusions, it follows t hat h is a G-map

an d hen ce h is also a G-map. T hus X x A has the G-final struct ure with

respect to the inclusions {in )( A : X .. x A 4 X x A },,~o. •

7.~

Let X be a based G-space. Then since X x to) U • x I is ;> a -subs pace of
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x X1, C{X) = x.MS.•, is a quot ient G-space. It willbe called the W1£ of

X.

Define S;' =~ a nd Eir =~. where *x S" and ~ x E" have
tt x * l1)C .

the diagonal act ion wit h G acting trivially on S" and En. The following fact

is needed in th e proof of the Drown Ilcprcscntablllty T heore m:

That th e left hand ~ above is a homeomorphism follows from the fo llowing.

1.11 Pr oposit ion . Let X and Y be based a ·spaces, where the underlying

space of X is locally co mpact Haus dorff. Then there is a homcomorphistu

(
X x Y ) X x C y .

!{J:C ~ -+ ---xx;-defined by t he rule that the equiv alence classes

of (z,y, t ), in th e two sp ac es, corr espond, where XfX, y'Y . tel ,

. . . r h C(8) 8 <I
~. Rccalhng that If A IS a subspace0 81 en A a (B y.{O})U(A x 1)'

. (X X Y) Xx Y X I
we nctfce tho'llC XX; a (X X Y X {O})U( X x {. } x t

We also note t hat X x (~) is homcomvrphi c to the qu otient spnce of

X X B in which {e] x A, for each ZfX, is ide ntified t.oa scparete point . lienee

X xCY is homeomorphic to the quotien~ spaceof X x Y x I where for ea ch zeX,

({z} x Yx{O} U{:e}x{. ) x / ) is identificd tc a separatc polnt, Since XXXx
G
:
Y

is a quotie nt space of X x CY and CY is a quotient space of Y x J, then,

using IBroJ, 4.3.2, p. 101, x.;e:- is (essentia lly) a quctlcnt space of X x Y x I

un der the equivalence rel at ion we will deno te by ...... The n we have (:e,y,O)· ...

(z,. ,O) ..... (.\J ~ ~~o~ uX, yeY. all~ (%,.,/) ..... (%'X~ Y ~.t,O) for zeX ,

«: Hence----xx;.-J9 hom comorp hlc Io (X xYx {O})U(X x {.} x I) '
In both cases the acti ons of G agree with lhat "II the quot ient a ·space

X xYxl , . ll l duced b hc dl I ·(XxYx{Oll U(Xx{.}X/ , thatJsJt se muuceu yt C UJagona ecucn

of O onX xY xi.
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Using p, q, r and s to denote t he quot ient maps:

XxY :(~)XI~C(£>:.!:) .p:X xy .....~, q x « , Xx -

r : }' x I_ CY and., :XxC}" _ XXxxC,Y,

we note that we have

(
X XY)q(px l,):XxY x l_C Xx. and

,,( I x x r}: X x Y x 1_ \ XxC,Y .

Since I ami X arc locally compact Ha usdorff, q{p x 1,) and "(Ix x r ) arc

identifications, T/J is a bijcctlcn, and since ,pq(pxii) = J(lx x r) it follows

that", is II. homeomorphism. •

S. Suspension

Let X be a G-spacc with basepoint '. Then X x {OJ U X x {I} u. x 1 is a

G-subspace of X x 1 and the suspens ion of X is the quotient G-space defined

by

S Xx I
X = X x (O)UX X {l} Uox I

9. Smashed product

Let X and Y be bascdG-spaces. Then XV Y=(Xx {. })u ({.} x Y) isa

a·subspaceof X x Y and the G·smashcd product is the quotient a·space

XAY=~~~
Fillally, let p',,) be a b;UM G-space and X is a G-space. We define t he G·

space x: by adjoining to X an additio nal point 00 on which G a ct s trivially.
Xx V

Then we have Xi- II Y ==,~.

If l/ is a closed subgrou p of G and X is a G-spacc, we define XI( = {u X/hz =
;r for all h} with the subspace lopology . Then, if X is Hausdorff, XIl is closed in X
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(sec (OJ. 3.9 , p, 25). If f : X ..... }' is a a .ma p then /" : X II -+ y ll denotes the

rest rict ion of f to XH.

1.12 Proposi tion. If X and Y arc Ha usdorff a ·spaces, then the adjun ct ion space

X I1 U/H yll is a closed subspace of X UJ Y .

b.29I. Since All C X", X" is closed in X and yll is closedin Y, it follows from a

resu lt of gene ral topology (sec [Dul. VI, 6.4, p, 128) th at X" U", yll will bell. closed

subapece in X U} Y • •

From this it follows that since XIf U/H y ll an d (XU! y )/1have t he same underl ying

~, and (X UJY) " is a subspace of XU, Y, they must be homeomo rphic , l.c.

X" U/H y ll = (X UJ Y)u.

In order to show that the G·CW-complcxcs defined in Chapter 3 arc llausdorff

we need the following result about adju nction spaces.

1.13 Propos ition. If X and Y arc norma l spaces and A is a closed subse t of X then

for any map J :A -+ Y,X U, Y is also norma l.

.P.m2(. See {FPj, Prcposltlcn A.4.8(iv), p. 260. •

1.14 P roposi tion. (i) If X and Y arc G -spa.ces then (X x Y)1l= XII X l"JI .

(ii) If {Xjlie:J} is an indexed Iamily e r based G·spaces, then (VXj) H = V(XJ!l.
~'J j .J

fiQQf. Both (i) and (ii) follow quite eas ily (rom the definition of t ile act ions of G OIL

the spaces X x Y and VXjo respectively. •
j<J
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Chapter 2 Equivariant Homotopy Groups

Two G-maps f , g : X -I Yare said to be a-homotopic if there exists a G-map

F : X x l .... Y, with G acting t rivially on [ , auch that for all z tX, F(x ,O) = fez)

aut! F(z ,l) = g(x). Note that each map PI : X _ Y defined by Fj(x) = F(z, t) is

itself a a-map since for uX, geC we have Fj(g%) = F(gx,t) = gF(x,t) = gFI(x).

The set of G-homotoPi classes of G-maps from X to Y willbe denoted by [X : Y]a.

If A is a a -subspace of X and B is a G-subspace of Y then two G-maps 1,9 :

(X, A) ..... (Y,B) arc said to be a -homotopic~ if there is a G-map F :

(X x I ,A x/) .....(Y,B) such that for XfX, F(x,O)= f(x) and F(z,!) = 9(Z) and

for "cA, F(a,l) = I(a) for tel. The set of relative a ·homotopy classes of G-maps

(rom (X , A) to (Y, B) is denoted by [(X , A) : (Y,B)Ja.

If X and Y arc based G-spaces, then the based G-maps Ls : X _ Yare

ba~cd G-homotopic if there exists a G-homoto py F : X X I -. Y between / and

9 with F(.,l) == * for tel , We write / ':::!.G 9 to denote the based G-homotopy. The

set of based G· homotopy classes of based G·maps from X to Y will be deno ted by

[X , YJ~.' [(X,. ) , (Y")I~.
Let (X, .) be a based G·space . Then for each closed subgroup H of G, the under ­

lying set of the nth e9uh:ariant homotopy group of type H is defined by

1r::(X,*) [SH :X}~

~ [(WX 5", wx.) ' (X" ll:

the canonical bijection ~ being defined using the universal property of quotient G-
Q x S" (G)+spaces , .....here Sil =~ e 11 1\Sr>. Using the fact ~l~al A 1\ 5B Si S(A 1\B)
H

wehnve
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Since Sii is it. suspension for n ~ 1, .....e can define a gr oup op« ation on ...!'( X •• ) in a

way analogous to the non-cquin.rianl usc. 1fUl.(gJn~'(X, .) are t,,"Oelements , t hen

the produ ct of [J] and [gl . denoted. (J). [g). is t he G· homotopy clast of the composite

G-map

Sj, 2..t SY VSj, !:!!.X V X.:!. X

where V is t he folding map defined by V(x , .) =x , V( . , r) =z for all n .\", a nti 111/

is the comultip licat ion G- map given by:

lin : 5i/ 51/V S'H

{
([g1l, [=,21J1. -) if O:5l :5 1. %,5..- 1

[gH,I' ,'lJ
h [gIl, (z,21- 1)]) i f 1 :::;: 1$ 1, z(5..- 1

T his uses the ract that Sit "" (i )+AS' =- or 1\ 5(5 ..- 1) so that an clement of

Sit is the equivalence cl~ (gIl ,I=,tJlwhere geO, US"- I and tf!. 'Then 1111 is ca,ily

K'Cn to be a G-map .

2.1 Prop osition. Let II be a closedsubgroup and (X , _) be" based G-space. T here

ex ists a nat ural isomorph ism

To prove this propos it ion we need the following lemmas. First let MaPa (X , Y)

de note the set of G-maps from X to Y and Map (X ,Y) denote th e set of all rnaps

from X to Y.

2.2 I&mm..a.. If X a nd Yare G-spaccs, with G act ing lrivially on the locally compact

Hausdorff space X , then for each closed subgroup JI orG there is a bijection

Mapa (~ )( X, y ) ~ Map (X, y ll ).
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f.r22f; Deline 0 : Mapc (~x X, V) -+ Map (X , yll) by O(F)(x) = F(H ,z) for

r« Mapa (¥, x X,V) and zeX, and define if! : Ma p eX,y H) -+ Mapc (ft x X,v)
by ~(f)(gll. x) = gf (x) for [ c Map (X, ylf ). We first show 0 and 9are well-defined

and continuous.

Since hO(P)(x) = hF(Il,x) =F(hIJ,x) =F( Il ,z) = O(F)(z), it follows that the

image of O(F) is a subset of yll . Defining i: X -+ ~ x X by i(z ) = (/l ,Z), where

:reX, we see that OfF) = Fi, so 0l~:') is continuous and 0 is well-defined.

We notice t hat iC9h 92CG and 9'2'9 1(8, l.e. 9' = 92h for some hell , th en oil(r) =
91111(x) = 911(x) (or all xtX. Hence r$(f) is well-defined. T he function m : Gx X-+

X, defined by m(g,r) = 9f(r ) where 9(C and ;teX t is clear ly continuous since

q x Ix : G x X -+ ft x X is an identification. Now ¢J(j)(q x Ix) = m so ¢J(f)

is continuous. Also, g'4JU)(gll,z) = 9'9[ (Z) = ,p(f)(g'gll,z ) = tjl(J)(g'(gll ,z)) so

tha t q,(J) is a G· map and ,pis a well-defined functi on. To establish the biject ion we

have lo show t hat tP 0 0 and 0 o ,pequal the respect ive identity Cunctions.

Let F£Mapa (» x X,Y) . The n

(ooO )(F)(gll, x) = o(O{F))(gH, x)

= gO(F)(x)

gF( Il ,x)

= F(gll, x)

So (,po O)(F)=F. Now let [ c Map (X, y lf ). Th en

(0 0 o)(/)(x) O(o(/»)(x )

oU)(II,x)

fix)

Helice (0 0 ,p)(f) = I . •
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2.3 1.srD.wA. U X and Yare based a-spaces with G acting trivially on the locally

compact Hausdorff space X. then Ior cech closedsubgroup 11of G the re is.\ bijection:

~: We define 0 and ¢ as in Lemma 2.2, noting that O(F)(.) = F(ll,.} =.aud

'U)(g1l,·) ~ gf(.) ~ g. =•.
So 0 and rP take based maps to based maps, which allows us to establish the

biject ion between the two sets.•

2.4 I&mm..a.. If X and Yare a-spaces with G act ing trivially on the locally compact

Hausdorff space X , A is any G-subspace of X and Z is any G-subspace of }', with

.fA c X and *fZ C Y t hen for each closed subgroup 1l of G there is a bijcctlo u

. (G . G G)f.rQQI: Define 0 and rP as In Lemma 2.2. Let Fe l\Iapo Ti)(J.:, 71 X A, Ii x.
and fd.1ap(X,A,*), (Y" ,Zll,*» . If acA then O(F)(a) = F(J/ ,a)cZ" since

hF(ll,a) = F{hll,a) = F(JI,a) for all hdl, and ¢(f)(glf,a) = gf(a),Z since

f(a)cZ and GZ == Z . Since 0 and ,p are inverses or each othe r, thi3 allows U9 to

establish the bijection . •

If X is replaced by X x / and A by • x 1 in Lemma 2.4, then we have the bijection

l\IaPG ((*x X x I , »X. X/ ) : (Y,.») ~ Map «Xx 1, • x 1) : (Y1l, .)).

So the re is a biject ion between the based a -homotopics or~ to Y and Lased
Il x e

homotopie s or X to yJl .

P roor or Proposition 2.1

Let 0: Map~ (Sif'X) -+ Mapo (S" ,XII) be defined by o(J)(z) = f(l/,::) for

as-, Then by Lemma 2.3 there is a bijection
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Q. : ISii : XJ~ ..... (5" : xlif

where a,([JI) = [0(/)1. We have to show ~hat c , is a homomorphism. Let /0.11 :
51, -+ X. Then Q. is a homomorphism if a.(lfol · lId) = Ci. ((/ OJ) · O.([!II). Let

0(/0) = 90 and 0(/1 ) =9•. Then Ifol ' Ud is the a -homotopy class of the composite

SH ..!:!!... S'ir ~ XV X -.!.. X.

Similarly [gol [gIl is the G-homotopy class of the composite

li enee a . will be a homomorphism if we have

cr.([V'o{/oV Id 0 I'll]) =['VIII 0 (goV 91) 011].

The map "(11/0 (gOV91) 0 II is given by:

{
([,.2'1. ') ~ g,([, .21]) 0';''; I. ,, 8'-'

h(=,21-1]) 1---+ 91((Z,2t - 1)) ~.:5: 1:5: I, %(5.. -
1 •

The map V 0 (fo VII) 0 V/I is given by:

{
([gll.[, .2'i1. ') ~; f,([gH.I,.2'iJ) 0 ';' '; I. ,,8'-'
(••[gll.(,.2'- 11lJ ~ f ,([gH., .2' - 11IJ I,; ',; I. ,,8'- ',

If f : S'H -+ X then a.([J]) is the G·homolopy class of the composit e
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s..!.!!...S;i L x

lIen ce o .( [Vo (/0 v I.)0 vll11 is th e C-homotopy class of

SPI S;rV SH-X

{
([JI, [z,21J1, ')

(', IJI,[,,2' - IJI)

fo([JI, I, ,2'iJ)

f,([II, I, ,2' - IJl)

O:5!:5 ~

~ :Sf::; !.

B,' f,([Il, [, ,2'iJ)=go([z,2<]) and 1>(11I,[z,2' - IJI)~ g,([z,2'- IJ),

wh ich implies that 0 . ([\7 0 (faV III 0 II,,]) = iV" 0 (goV 91) 0 c]. Thus o , i, a

homomorphism and consequently an isomorphism. •

Let (X, A,. ) be a pair of a-spaces with basepoint e, Then for each closed subgroup

H of G the nth rela tive equivariant homotopy groupof type Jl is defined by;

1t~ (X,A , .) [(Ei't,Si,-t, . ): (X,A , . ) J~

~ { (~ xE", ~ xS\ ~ x.): (X, A,.) J: .

2.5 Propos ition. T here is a nat ura l ismorphism

£rW: This follows from Lemma 2.4, with the proof being similar to tile proof of

P roposition 2.1. •

2 .6~. Give n a G-map 0' ; (EH,S}',- I, .) -+ (X,A,* ), th en (01 = 0 in

1f::(X,A,* ) if and onl y if Q is G·homotopic relative to 5 ;'-1 t o a G·map Bit --t A.
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f.rllill: From Propos ition 2.5 it follows that [e] = 0 in ~~'(X,A, .) if and only if

for the corresponding map a ' : (E",S,,-I ,.) -+ (XII,AI/,.) , wc have [0'] = 0 in

r ..(XJ1,AII, .). Then a' is homotopic relative to $"-1 to a map En _ All by a

homot opy

F' : (£",S..- I, .) x 1_ (X",AI/ , . )

(sec for examp le (Sp], Thm. 1, p. 372.)

Also a a -homotopy from Q to a G·map Eit -+ A is given by

F : (% xEn, %X 5..- 1
, *x.) X 1 -+ (X ,A,.)

where F(gll,=,t) =g F'(:,t) for geC, le E" and Ill.

T his G·!Lomotopy is relative to 5;,- 1 since for zo,5 ..- 1 we have for all ttl and 9'C:

F1(911,Zo) 9F:(Zo)

go'(:o)

90(H,:0)

0(9H, zo).

Conversely, assume that thcrcisa G· homotopy F : (* x En, ~ X$" -1, »X .) X

J -+ (X, A,.) relative to S'H- t with Fa = 0: and Fa(En)f; A. Then [c] = [FII in

lr~/ (X.A ,. ) and a G-h omotopy J( (rom PI to the constant map» x E" _ *f X is

given by

where K(gJl,%,I) = F1(glf ,(1-l)= +tt). •
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Letn ~ O.A pair (X. At. ) of based G space! is said to he~ if every

path component of X inter sects A and, Cor15 k::; n, we have "'l' (X ,A•• ) = 0 for

each closed subgroup H of G. As a direct consequence of T heorem 2.6 we have the

following corollary.

2.7 Corollary: A pair (X ,A,.) is G·n-oonnected for n ~ 0 if and only if for 0 S k:5 II

every G· ma p Q: (£1, 8 ;'- 1, . ) - (X ,A •• ) is G-homotopic relat ive to stt l to some

G-map E;"_A.
Finally we note that from the natur ality of th e isomorphisms 1r~1(X , ... ) ~ 11".. ( XII , . )

and lI"~(X,A,*) ~ If .. (X H,AH, *) we have that for each closed subgroup JI orG lhl~

{allowing diagram commu tes

,
--+ ...

7r.. (X H, A", *) ...!... ",,,(A" ,.) -!' . 1r.. (X II , . ) ....!:.... 1f .. (X l/ t AII , .) ..!... ...
Since the botto m row is exact and the vertical homomorp hisms arc in fact isomor­

phisms, it follows that the top row is also exact.
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Ch apter 3 G·CW -Complexcs and the Equivariant Whi tehead Theo rem

Let n be It. fixed positive integer. The G·spacc X is said to be obtained from

ti le G-space A by att aching cqu ivariant n-cells if for It. fami ly or closed subg roups

{ llilid} of G we have for each j lJ an indexing set Lj and for each ).fLj there is a

copy (E.\',Si-I) of the pai r of trivia l a ·spaces (£ " , S..-I), and we have the following

G-adjunction space:

Jj ff:- X E.\'

"',
We denote tPl*x S;-I by tPl and ¢If!;x EX by ¢t. We call ¢{ the attaching map

for the cquivariant n-cell 7h x EAand we call 3{ the characteristic map. We say

th at th e pair (X, A) is a G-adjunction of c9uiva riant n-cells.

3.1 Lcmm.a. If , in the situation jus t described , A is normal and Til then X is normal

and Tlo

£mill. Since Hj is closed in G for each jd, it follows (sec p. 3) that fi; is Hausdorff

for each i cl, Since G is compact fi; is compact, and hence fi;x E~ is a. compac t

Hausdorff G·space for each jfJ, ),fLj • Thus if;x Ei is nor ma l since every compact

Hausdorff space is normal (sec [Hu], Proposi tion 2.7, p. 63). Hence t he topological

slim Hif;x Ei is normal and by Proposition 1.13, X is normal. Also X is T1 since

".L,
both A and Yfi;x Ei are T1 (sec [Hul, Proposition 3.7, p, 125). •

" ILl
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Let (A, ") be a. based G-Spll.CC, a nd let {/ l i lj (J } be a family of dosed subg roups

of G. If for each i eJ there is an indexing set Lit and for each ),cLj there is a copy

(Ejf, ,.\ . Sj,~.U of (Ei't" Si/; I), and ¢: ~ Sit.\ - A isa based G-map, then there is

~, L,

a based G-adj unctio n square:

We say that the pai r (X ,A,. ) is a based a -adjunct ion of based CQuivariant n -cclls,

or tha t X is obtained from A by att aching based cquivariant n-cclls .

A O-CW 'complex or simply G-complex is a G-space X such th at there is an

expanding sequence of a·spaces

Xo C X l C .. . C X" c ...

with th e following properties

(i) th ere is a family of closed subgroups Hj of G indexed by J , l.e. {lI j li cJ },
with the p roperty that for each j tJ ther e ill an associa ted indexing set Lit and

X'= !J (if:) x P l,,.J J
~.LJ

(ii) (X ",X" - l) is a G-adjunct ion of equivarlan t a -cells, a nd

(iii) X has underlying set Un~oXn and carries the G·final st ructu re with respect

t o the inclusions {in: X" ...... X }..zc-

T he ~inwci2n. of X is the largest n such that X contains an cquivarian t n -ccll. If

no such n exists t hen t he d imension of X is said to be infinite .
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More generally, a rd a tive G-CW·complex i5 defined as follows. If A is any G·

space, then (X ,A ) is a rd alh-eG-CW· complex if there eJ:ists an expand ing sequence

of a ·spaces (not pai rs of G·sp aces):

A =(X,A r ' c (X,A )' c (X,A) ' c ... C (X , A)" C .. .

wilh the following properties:

(i) the re is an indexed family {Jljlid } of closed subgroups of G, such t ha.l for

each j cJ there is an associated indexing set Lioand (X , A)O = A ll (U (11;) x (AI).
j<J
~.LI

(ii) ((X ,A)", (X ,A)"- l ) is a a ·adjunction of cquivariant n-cclls for n 2:: O.

(iii ) X 11M unde rlying set U..~o(X, A)" and carr ies the G·final struct ure with rc­

sped tc the ind usions {i.. : (X , A)" .....(X,A)} ..~_ I '

T he relati ve djm"mjou of eX, A), written dim(X - A), is the largest valu e of n

such t hat t he const ruct ion of X from A includes an cquivarian l a -cell. J( no such n

exist s, th e rela tive dimension is infinite.

A based G-CW-complex can be defined as a based G·space X by taki ng the defini­

t ion or G·CW ·complcx, requiring Xu to be a I- point spa.ce . , replacing G·spaces by

based G-spa c.cs, ma ps by based G· maps, disjoint unions by wedges and G-adjundions

by based G-adjunctions.

Similarly, a based rcl&tive C -CW-complex can bedefined as a based G-space X by

taking the definition or relati ve G-CW-complex and replacing G·space by based G­

I Jl ;\CC, C-ma p by based C- map, disjoint union by wedge, and G-adj unet ion by based

G· M1junet ion.

3.2 Proposition. A a ·eW·comp lex is normal and T1 (and hence Hausdorff).

£.mill. Since XOis d iscrete, it is normal and T1• By applying Lemma 3.1, we see t hat

eac h X.. is normal and Tl for ea ch n ~ O. Since X = U"l!;uX ", it is a normal G· space .

H z is a point or X, then Z(X" for some n ~ o. But X" is Tl , 10 that {e} is closed
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in X" . Since X n is closed in X, it follows tha t [e ] is also closed in X. Hence, X is

Tlo .
Since any connected G·CW.comp!cx is G-homotopy cqui\'alcnt to a. based a·cw·

complex (see [FPI. Cor. 2.6.10, p. 82 for the ncn-equiva riant version], it sullicea to

consider only based G·CW -complcxcs in our discu ssion.

In tact, each based G·CW.comp lex is also an ordinary G-CW.complcx if we neglect

basepoin ts. This easily follows from the following result ,

3.3 L!:mm.a. Let (A, .) be a based G-space and (X, A,.) be a based G-adjunction of

based cquivariant n-cells. Then, disregarding the basepoin t, (X, A) is a a ·adjunction

of equivariant n -cells.

f.rQQf. Consider the following diagra m:

LJ fI; X 5;-1 V f!;x Sl'-t V Si,~~1 ...t. A
", it J j<J
.l.L, .l.L, ),. L,

I

JJ fi;xEl' V ftxEi V Eir,). ~ X
je J I it)

>.,L. )"L , .l.L ,

Th e right-hand square is a based G-adjunction square since (X ,A ,t-) is a based

G-adjunction of based equivarlant a-cells. The middle ..quare is a a -adj ullct ion

squa re by Pr opositions 1.6 and l.B. Tb left-hand squa rc is a a-adjunction squa re by

CoroUary l.7 . Finally, by Propo sition 1.9, the outer perimeter of the above diagram

is a G-adjunction square. The result follows. •

3.4~. If (X, _) is a based G·C W-complex tbcn X is a G-CW-complex.

~. This follows easily from Lemma 3.3 and t he relevant definit ions. •

From this we can conclude that results given below for ordinary G-CW. complexcs

[e.g. Propositions 3.5, 3.6 and 3.9) also hold for based a -CW-oomplcxcs.

The a -map i : A _ X is called a~ if for all a- homotopic, J( :

A x J _ Y and a ·maps I : X - Y such that Ii =[(G, there exists a G-homotopy
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F : X x I _ Y such that Fa= f and iji = X, for 0 $ r :5 1. T his is equiva leat

to saying that the following commutative diagram can he completed by mans of l­

e -map F : X x l _ Y.

/r~
A x {OJ X x I- -- -W

~ J~
X x {O} f

If I i is a G-subspaceo! X, the n A i sca.Iled a~or X il there exlets a C-map

r : X -+ A such that r iA is the identity. The C-map r is called a~ of X

cntc A.

3.5 Proposition . ITX is obta ined {rom the a·space A by att aching equivaria.ot a-cells,

then X x to}u A x / is I. e- retract oe x x l . .

fm(: We know that there exisls a non-equivariaat ret raction p : E" x I -+ E" x

to}U$"-1 XJ (see for example ISp),.3.2.4, p. 117). Then if H is a closed subgroup

of G an equivariant retr action is given by:

l x p:i x E" X]

(gH,z ,' )

*x E" x {O} U ~x 5"- 1 X I

(gH,p(z,<)).

Let ~ : if; x E! - X be the characterist ic maps lor the equivatian t a-cells

fi; x Sit jll , ),tL of X . Then a. G· retractioo can be defined by:

R: X x / _ X x {O}UAx I

(=,1) ~ (z, I) , (¢{(gH;,=l ,t ) ~ . \«1 x p)(gH; ,z,1))

G
where %fA., «t , gHj f n; and : (X .•



3.6 Corollary. If X is obt ained from th e G-space A by a tt aching equivariant n-cetts,

then the inclusion i : A ...... X is 11 G-cofibration.

E.r2Q!: Let R : X x I _ X x {OJ U A x I be th e G-ret raction given by the above

pro position . We have to show that the following diagram can be completed:

.....-"A i l~
A X{O} X xl- - -.,.Y

"'-.x J{O)~
where Y is any G space, [{ and f are any G-maps. This can be done by let ting F

be the composite

XXI~XxOUAxl~ Y.

Th e diagr am will be commuta tive since RIA x I = A x I and IlIX x 0 = X x O. •

We can extend this result to the case where (X , A) is a relative G-CW-complcx.

3.7 Prop osition . Let (X,A) be a relative G·CW-complex. Then t he inclusion j ;

A .....X is II G-cofihration .

£IQQ{; Let J( : A x 1 _ Y he a G-homotopy and t .X x {OJ _ Y be a G-map with

f1A x {OJ=/(0' We will construct a G-homotopy F : X x 1 -+ Y inductively on the

n-skeletona of (X ,A).

We have

A = (X,Aj- ' c (X ,A)' c (X, A)' c ... c (X,A)" C .. . C X

where (X ,A)k is obtained (rom (X , A)l'- ' by attaching equivarian t ,(,;·cclls.

Consider the following diagram:



T he G·homotopy £0 exists since (X ,A)Ois obtained from A by attaching D-cells, so

by the previous corollary A .... (X, A)Ois a G·cofibratioll.

In general .....e have:

~"(,AT x1:;:-1
(X,A )'-' x (O) (X , At x I ...!....., Y

"'-.. J /": /eX, A)n '- 0
(X ,A ) x (O)

Hence we can const ruct a sequence of G·homotopie:s {F" : 0 ~ - 1) with F -l =A'

suchIhat:

(;)F,= f1(X ,A )"

(;;) F"!( X,A)"-' x I) =F' - '

Define F: X X J -+ Y by F(z , t) = Fn(z, t) for %((X ,A)", tel , F is well-defined

since F"!«X,A) n- 1 x 1) = po- I 50 thal if %(X ,A)O, F"(z,t) = pn- l(z , t ) =... =

F - I(z ,t) = K(z , t ). Wca1so knowthat F is a G-map sinceFI«X, A)" x l) = F" and

(K ,A) x J has the a ·final structure with respect to {(X,A)· x 1}"~_ 1 (by Lemma.

3.3).

Finally Po =I , sincc b)' (i) if %( X,A)" ,

F,(r) = F;'(r) = f er ),

and Fl." x 't = K, sincc if z(A then

F(r ,l ) = r ' (r , l) = K(r, t) ,

which implies that i : A~ X is a G-cafibration. •

a.s Lcumn. Fcr anyIamily {X; }jd oft opo!ogica! spaccs, =-. (v(X;x £ "+1) , V( Xj x sn»)=
j d jd

ofor 0 < k :$ II .
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fI22C: We use the fact that Vex, )( £,,+1) i:! (v Xi) X E"+1ard veXj)( S" ) :r

ieJ j . J i .J

(VXi) x S". Let X = VXi and let p: X x S" - X and q : X x £,, +1 _ X
j .J jeJ

be the projection maps. Then since p and q are fibr:t.tions with fibres S" and e"u.
respcc til 'cly, we ha ve t he following diagra:n:

with t he two horizontal rows exact. Since qi = p we lmvc q.i . =p•. Also lI"k(S") =0

lor 0 < k < n and 1'.4: (E"+I ) = 0 for 0 < k S n +1. Dyexactness, p. a nd q. nrc

both isomorph ism s (Of 0 < I.:< n , and hence, i . is an isomorphism lor 0 < k < II .

For k =n, q. is an isomorphism and p. is an epimorphin.: llcnce i, must be .UI

epimorphism for k = n.

Now consider t he long exact sequence

Since I' . is an isomorphism for 0 < k < n and an epimorph ism for k =11 it follows

th at 1r!;(X x E",+I,X X S" ) =0 for 0 < k ::; n . •

3.9 Prop osition. H X is obt ained from th e based Hausdorff C-spacc A by al~nching

based equivaria nt n + l -cclle, then (X,A) is C· n-con nected .

fmm; Let (X , A,- ) be a based a -adjunc tion orbased equlvarlant n -cclls:
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j~ D;x S'J.
I.. Lj

where {J/j JjcJ} is an indexed family of dosed subgrou ps of G and {L j li d } is an

indexed family of sets.

'ra king J1·fixcd point sets we sec from Proposit ions 1.12 and 1.14 that tbe following

is an adjunction space:

V (O;)H X EA+1-.!.:... XH
jeJ
)"Lj

Since (~)Hx SA is a deformation ret ract of a neighbourhood of (fI; )H x EA+1 ,

and I' k (v(Ih)HX Ei+1,V(~)H X 5") =0 for 0 < 1:.:s n (Lemma 3.8) it

followsas a special caseof the Blakers-Massey excision theorem, (see[OKPI,p. 211).

that (XJr,A H) is n-connected. Hence 'II" ,I, (X H,AH) '"" 0 for 1 .:s k .:s n and so, by

Prop osition 2.5, I'.F(X,A) = 0 for 1 :::;k:S: n . So (X,A) is G-n-connected. •

3.10 kmrD.a. If X is obtained from the based G-space A by attaching based equlv­

arianl a-cells, and (Y,B,") is a based pair of G·spaces such that 1r!!(Y,B,.) = 0

for all closed subgroups H of G, then any G-map f : (X ,A,* ) -+ (Y,E,.) is based

G-homotopi c rela tive to A to a G-map k : (X , . ) -+ (B ,.).
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- (G G ,G ~fm2{: Let 9; : 7ij x E"', tiix 5"- . Jf. X . - (X,A, .) eorrcspcnd to the

attaching map! of the cqu ivui&lltn-cells. Then t e composite

represents a homotopy class in ll'~" ( Y, B , . ) . By Theorem 2.6, there exists:l based

G-homotopy

such t hat

(i) FAgHj,z , t) = !(9j{glij . z)) for (glfj, z} ~ R; x 5"-1

(iil Fj(gH;" ,O) = / « ;(g// ;. , ))

(iii) Fj(gHjoz,l )t:B.

We can thus define a basedG· homolopy

K :X x l_ Y

by K(z ,l ) = f {z ) for %t:A, tel

and K{¢>j(gHj,z ),I) =F';{gllj ,%,t) for (gl/itz)(~)( e-, 1<1.

Clearly t he G-homo topy is ,d ative to A, and

G
K( 4Jj(gH;,z),1)= Fj(gll" z, l )cB for (gll jozkjJj x E".

Th en k(x) = K(x , 1) is the required a -map . •

3.11 Proposition. If (X , A,.) is a based relef ....e G·CW·complcxorrelativedimension

:5 n , and (V,B, . ) is G-n·connected, then any G·map f: (X,A, . ) - (Y,n, .) is

based a-homotopic, relati ve to A, to a G·map from (X, .) _ (D, .) .
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fm!l(: We have the fo llowing sequence oCa·spaces: A = (X,A)Dc ... C (X,A)" C

... c (X,A) whcrc«X,A) k,(X,A)1-- 1) is abased G-adjunction orequivarian t k-cclls.

Since (X,A)' is obta ined from (X, A)O= Aby a.ttach ing based equivariant l ·cells, by

LClIlma,3,1O,f l(X,A)' is based a·homotop ic relative to A to a.G-map (X , A)l _ B

via a based G-homotopy KI : (X,A)! x I _ (Y, B). Since (X,A)! ~ (X ,A) is a

a ·cafibration we can extend J( ' to a based G·homotopy F1
: (X , A) x 1 _ (Y, B)

such that F' !(X ,A)' x l =K I.

Now assume that F""-I : (X,A ) x 1 _ (Y,B) with m ~ 2, has been constructed

such thd F,,,, -lj(X,A)"': (X , A)'" -+ (Y,B )is a based G-mapwith Fj-I«X,A)"'-l) C

n. By Lemma 3.10 there is a based G-homotopy

tcr . (X, A)" x 1_ (Y,B)

such that [<j {X , A) c Band 1('" is relat ive to (X ,A)",-t.

Since (X , A)'" '--t (X,A) is a G·cofibration we can ex tend K'" to a based G·

homotop y

F" ,(X,A ) x l_ (Y,B )

such tllal Fj«X,A)"') c B.

l ienee we have a sequence of based O·homotopics pe,F1,. . . ,F", .. . such t hat:

(i) }i~ - I = Fo'"

(H) fl"(( X , A)") C B

(iii) F'" is a O-homotopy relative to (X,A)",- I.

These can be combi ned consecutiv ely to give a based G· homotopy

such that F is relative to A and F1(X, A) C B . •

Let X and }' bc pat h -cc nnected based G·spaces . T hen a based G·map!: (X, .)--+

(1', .) is a based C·II-cquivalencc irp' : (X", .) --+ (yH, .) isan n-equivalen ce fcr all
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closed subgroup s Jl orG (byan n -equiva lence .....e mean a rrrap j" : (X,.) -+ (l~ 'l such

that / . : "'9(X ,*) -+ ll'q(Y,') is an isomo rphism for 0 < q < II and all epi morphism

for q = n). 1£f: X -+ Y is a based G·n·equi valence for all n?: I, then I is said to

be a bas ed G-weak hom otopy cquh·alcncc.

1£ Ail is the reduced G·mapping cylinde r for f with t he G·ma ps i : X - ii, and

r: Aif -+ Y defined in Chapter 1, then since r is a a· ho motopy equivalen ce, f is a

G·n-cquivalence if and o nly ie i is.

3.12 P roposit ion. Let J : (X, .) -+ (Y,.) be a based a-map. T hen (Ai" x,.) is

G·n-connedcd if And only if i : X -+ u, is a bas ed G·n -e quivalence.

£.tQQ.(: Consider the long exact sequence

. . . -+ ll' ll(X) ..i=-. ll'f!(Ai, ) .s; xf (A"I" X) ..!... :l{I(.l:) 2=.., 1f!~ I (A-IJ ) _ . . •

where k ::; n, U i is a based G·n· equivalence th en i.: 1l'" l~I(X) --+ lI'L'_,( KI/)is an

isomorphism. This im p lies tha t kcr i, = Im a =O. Since i. : ""l'(X) _ K:' (lf f , )

is an epimorphism we have ker j . ::: ll'f!(i f, ) and hence im i, = O. By exactness

0= im i, = kcr d « rrf! (i l / ,X). So(Ai" X) is G -n-con nected.

Conveesely, if (l\i" X) is C-n -conneded then 1rl'(M" X ) :::0 for 0 .5 k ::; I I a nd

by a similar argument t o the above, using exactness of t he sequence , it can beeasi ly

shown tha i i : X -+ Ai, is a based G-n-equivalcnce. •

The key to proving th e equivarlant version of the Whi tehead Th eorem is the fol­

lowing lemma.

3.13l&mIn.!!,. Let I : (Z,* ) -+ (Y,_) be a based G-n-equivalence (II finite o r infinite)

and let (X,A, _) be a based rela tive G-CW-complex with dim(X - A) ::; n , Theil fo r

any bas ed G-maps p : A -+ Z a nd q : X -I Y su cn Ihat qlA = f op, the re exist s a

based G-map p' : X ...... Z such th at p'IA =p and lo r! '::::0 qrela tive to A.

f.t22{: Let Af, be the redu ced G-mapping cylinde r ofI, with inclusion ma ps i : Z ......

Af, and j: Y ...... Af, and the G- retraclion r : M, -+ Y. Pr oving the lemma amoun ts

to essen tially completing the following di agram where p' IA = p and l op' ::::G IJ
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A -X

-1~;/1'
z l!_y

I

We replace this diagram with the following

A - X

j /1,
p',

p / y

.: Ii) r
Z i M,

We then have j 0 qlA = j 0 f op = j o r o i op :::oi o p slace j e r ::'G 1(.\1/ )' Let

I{ : A x I --f Ai, be the based a ·homotopy from j 0 qlA to i 0 p. Since A X is a

G-cofibration, (Propo sition 3 .7) there is a based G-homotopy F : X x l Ai} with

Fo = j oqand FilA = K,. Let. f/ = Fl ' Then q'IA =iop and roq ' :::0 r oj oqrelath-eto

A. Sinceq' : (X, A) _ {A"II' Z } l nd piJo Z) is C·n-conned ed and dim(X - A ) 5 n,

by Pr oposition 3.9, q' is based a -homotopic relative to A lo some map rJ : X -+ Z.

Hence p'rA =p and

/ 0" == r oi o p' :::a ro q'~ raj 09= q.

So f op' ~G q relat ive to A. •

3.t.I~. Let f : X _ Y be a. based G·n.~u i \'a.lence an d let P be a based G·

CW -ccmplcx of dime nsion 5 n. The n the induced functiOll f . : (Jl,X]a -+ IP : Y]e,

where f.([PJ) = [f 0 pI, is sl:dcetive. If dimP $: n - I, then f. is lujeefive. In

pu ticu1.u, if f is a basedG·wc~k homotopy equivalence then f . is bij ective.

~: To prove the firsl par' . apply the previous lemma to thc relative e·c\\-'·
compl.'x( P.9)
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"
.~p

,j ~,/ I'
X __ y

J

For any based G-map q : P -I Y there exists 11based a- mapp' : p ..... X such that

Jo p'~Gq

which impliesthat ! .((p'J) = If 0 P'I = (q']and f. is surjective.

To sh ow that f . is injective fo r dimP :5n - 1 apply t he lemma to the relative

G·CW-complex(P X I, P X i).
Suppose Po,PI : p - X arc based G-maps such thal f 0 Po ~G f 0 Ill ' trot

p : P x i ..... X be defined by p(z,O) = Po(:) and p(z, l) = PI(:)' Then there is a

based G -homoto py F : P x 1 _ Y such that Fo =f 0 Po and F1 = 1 0 Pl' S ince

di m(P x I) 5 n , we can "comple te" the following diagram .

Pxi __ PxI

'1 // F l
x t " __ y

J

We have p'jPX I =p wh ich imp lies tha t p'IP x 0 = poand riP x I = p, so p' is a

a-homotopy {rom Pnto P I end lPol = (Pd. Hence f . is injective. •

3 . 15~. (Equivariant Whitehead ) A based G-map between based a·cw.
complexes is 11 based G-wcakhomotopy equivalence if and only if i~ is a based G·

homotopy equivalence.

.E.r22f: Clea.rly a based G-map .....hich is a based G·homotopy equivalence is also

a based G·weak homotopy equivalence, Assume / : X -I Y is a bas ed G·weak

homotopy equivaleoce. By the corollary, I, : [Y : XlI; -. (Y : Y]a an d [, : (X :
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X]a ..... IX : YIGare bije<:tions. If p : Y - X is a based G·map with f.[p] = {lrJ

then J op ~a l j-. Also we ha ve

1.(iPo III = If o,o Jl = (ly 0 11=[1ol xl = f . lIlx]).

Now f. is inj ective so [p0 I J = [Ix I. which means that p o f ~G I x. So we have

fOp ~G l y and p 0 f '::tG Ix . and f is a based G·homolopy equiv alenc e. •

Even though Theorem 3.15 is not needed in the proof ofthe Brownrep resent.ability

theore m, we have included it since it is a di ced consequence or the result s of this

chapter.



I
I
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Chapl er 4 Equiv ariant Brown Represcntability T heorem

Let Co b e the categoryoCp ath-connected based a ·spaces wit h the inclusion i : • ~

X a G·cofibratioD for each XcCo and Id the morpbismsbe the based a ·homotopy

classes of based G·map s. Un less otherwise sta ted all G·m3ps arc assumed to be based

G-m aps and all G·h omotopics arc assumed to be based G·homotopics.

Given two a -maps fo.ll : A -+ X t hen t he a -map j : X _ Z is said 10 be an

e9 u:l1izer of Ifn!and IJd if the following hold:

(i)jofo~Gjofl

(ii) If j': X _ Z' isa G·m<lpsuch tha t j'ofo~Gj'ofl then thercc xislsaG·map

9 : Z -+ Z' such that go j ~G i',

4.1 l&.m.m.a. Any pair of a-maps in Co has an equalizer.

EI:22I: Let fo,b : A --+ X be two G·maps in Co. Consider the G-adj unctioll sp'\CCZ

defined via the followingdiagram:

(A X{O})U(Ax {l »)U({' ) xI) ~ X

1 1i

AxI

ThenF == f oUfa : Ax! _ Z is a G-homotopysuch thal Fa =FIA x 0 = i s I«
and FI = PIA x J = j 0 fl. Furthermore, if i ' : X -+ Z' isa G-map such ~h:d tbcrc

is a G·homotopy K : A x I -t Z' Irc m j' 0 f o to l 0 I t then we have th e following

commutat ive diagram:

(Ax{ O})U(Ax {l »)U(( . ) x I )~x~

1 1i J'
Ax I Z h

~ """ <:
~Z lK .



By the un iversal property or a -ad junct ion spaces there is a G-ma p h such that

h oj=j'. Hence i : X _ Z is an e qualizer o r foand fl' •

4.2 Example. It f o is the const ant map, th en Z = C AU/i X .

A a·homotopY Cunctor is a con t ravariant functor F : Co _ So fro m Co t o the

category So of po inted sets such tha.t the foll owing t wo propert ies hold:

Equalizer Axiom: If j : X _ Z is an equalizer of fo, / t : A _ X and tu F(X ) is such

that F{fo) u = FUJlu the re exists vf F(Z) such that F(j)v = u,

Wedge Axiom : If {X~h.L is a fam ily or G-spacc:J in Co then there is: a bijection of

sets

{Fli,]), , F(V,X,) ~ II F(X,),,'
w here {F[i~lh is th e morphism induced by th e inclusions i~: X~ ....V~ILX~ ,

Note tha.t if L = {l,2} an d XI = • =X3 , t hen

{Fli,l, F li,]) , F (X , V X ,) ~ F(X,) x F(X,)

is a bijectio n. But XI V X3=.,so th at we have a b ijection {F [i tl,Fri3)} : F (. )-t

F{ .) x F{.). This ean happen only if F(.) is a single point.

4.3 Proposition. If Y i3any pointed G- space in Co then 'lI'Y =( : Y]~ is a G·hom oto py

fun ctor.

f.rQQf: Let j : X _ Z be an equal izer of /0' /1: A -. X a nd let Uf1rY (X) he such

t hat 'lI'Y(Jo)u = ,..Y (JI)U. Thus 1.10 / 0 ~o u o fl andsincej is en equalieer, there is a

G -map II: Z -t Y such th at lJoj ~G u, which means 'Il'Y(j)1J = 1.1.SO lI'Y=[ :Yl~

satis~cs t he Equalizer Axiom .

Forthe Wedge Axiom, let H/AJ)AcL be an element of II lI'Y(X~) , whe re b : X~ -t

""} ~ is a G-map. Define f : V~X~ _ Y by f (z.) = h(z) for Z.fX~. Then we have

/ 0 I·~ = I» for all ),fL, which means tha.t { 1rY!i~Jh(J1 = Hhlh.L. S o {ll"Y (iA]}~ is

surjective.
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Now assu meth at(fl and 19}arclwo el emenhortVA:<~: Y!asuch that ( "Yli:\})~lfl =

{,,"Y[i,l.]}l9 ]. For each J..fL there is a G·homolopy K~ : X" )( I _ Y suc h that

! <"(*,!) == • for tfl, K~ == f o i)" and Kt =:: g o i". Using th e r...ct t ha t V"(X',, x I ) =:!

(Vj,X,,) x 1 weget a G·homotopy J{ : (VA X),) x I _ Y with K o(i.\ x 1)=1\ ),lind

/(0 == f . K 1 = g. Hence (II= 191a nd {.-Y[iAJ},\ is an injection And thu s .\ bij ect ion,

•
If Y is an object of Co , th en for any clem ent ulF (l') we hevc th e natural tr ans­

form ation Til : t>Y __F defined by T..(lJl) =F([Jl)u. To show that th is is a n:l.tural

transform ation let f : X _ Z be a based G·map, where X and Z ar c G -S p.\Cl'S ill

Co,and consider th e following diag ram:

IX' Y]a ----"- F(X )

rY(J) l FUll
IZ , Yla ----"- F( Z )

If a : Z _ Y, thcn 'KY( f){aJ = (0'0/1 and TII{1aofJ) == F (a of)u ==F(f)F(o) u.

H ence the diagram commutes and T.. is a nat ural trans format ion.

For any suspension SX , F (SX) is a grou p (for th e ncn-cquivariant case sec IS"I,
Le mma 6, p. 407, the equlvarlant case follows by the analogous a rgument) . t el

VJf : SX _ SX V SX be the comultiplicat ion map. Then th e group multtplication

on F(SX) is given by the composite:

F(SX ) x F( SX ) (Ffi l~lll- I F (SX V SX ) F~l F(SX ).

4.4~. Let II be a closed subgroup of G and let F be a G·homo lo"y fun ctor.

If u£F(Y) t hen T.. : x-Y(SJ, ) -i F(SZ) is a gro up homomorphism.



T.('V(f Vg),u ) = F('l(fV g)'H)(.)

F(,,,)(F[i, ),F[i,W'(FF,),Fli,llF('l(f V g)J(u)

F(' H)(F[i ,l, F[i,W'{F[(f Vg)i,J,F[(f - Vg)i,ll (u)

F(,,,)(F [i,), F[i,1J-'{F[f), FblJ(u)

F( , ,,)(F[i,), F[i,1J-'(F[fJ(u),FfgJ(uJ)

an d the les t line is the prod uct of F (j )(u) and F(g)(u) in F(Sk ), as r equire d. III

T he element ufF( Y) is sa id to be~ for n 2:1, if for all close d su bg roups

II ora,T.. : lI'Y(S1;) -t F( S;' ) is an isomorphism for 1 ~ q < 11and a.n epimorphism

Ior q"" n , ICtl is~ for all P , thea u is called a G-univer sa.1 element and

Y is called a class ifying space for F.

4.5~. LeLF be a G-homotopy functor with universal elements tlfF(Y) and

u'eF(VI) and assume j : Y -f l" is a based G·rnap such that F(f)u' = u. Then f is

a b ased a -weak homotopy equivalence.

f.r..2Qf: For q 2:1and IIany closed subgroup ofG,we havethe following commutative

diagram:

(SJi :Ylg. J:.. 15k: Y'J~

T~ ~"'
F(S1d

where I.{(o])= [f c c], T he commuta tivity follows(rom the fad that it Q: 51, -+ }~

is a based G·map then
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T.,(f,[[o]) T. 'lI f ' o])

FUoa)u'

F (o)F(f )u'

F( o)u

T.lIoll
Since TM and T~, arc bijective, I. must also be a bijection. •

Let Y he a G·subs pace oCZ in Co and u€F(Z). We willwrite ulY for F(i)u(FP')

where i : Y ..... Z denotes the inclusion.

T he key to proving the Drown Rcprcscnla bility Theo rem is the construction of a

c131isifying space Y a nd a G-univcrsa l elemen t ucF(Y). This is done by cons tructing

a.seq uence o f G·spaces YoC YI C . • . C }'n C •" such that Ior each 11 :::: 0 1',,+1 i~

obtained from Y"by attaching cquivarian t (n +1)-cel1s , and such llml t here exists a

G·n-universal element u,,(F(Y,,) with u,,+dY.. =lin' The c1assirying space for F will

be Y =U"~OYn'

T he sequence of G-spaccs is defined in the following two lemmas .

4.61&mml!:. Let F be a G-homotopy fu nctor with Yo a a·space in Coand lIo£F(Yo).

Then there exis~s a G -space YI obtaine d from 1'0 by a~~nchillg cquivar lnnt l-celta, and

a G· l·unh·ersal clement uleF (Yo)such that udYo=Ill)

fiQQf: For each closed subgroup II of G and for each ).cF(S1t} let 5],,),.b e il lI erieiv­

ariant l -ephcre and le t VIr,ASJ/,,. be t he wedge of these l-sphcrcs. Defin e YI = YoV

(VIf,>.SJ,,),,). Let gil,>. b e the composite 5], e! 8]",. ...... 1'1. By the Wedge Axiom we

know t hat t here is an clement ulcF(Yi) such t h at uilYo =uoa nd F(U/f,,.)u. =). fo r all

).cF ( S),). Since T..([911.,.J) = F([gIf,.l])UI = >. it follows tha t T", : f!'Y'(Sh) - F(SJ,)

is su rjective and til is G·l·uni·mrsal. •

4,7 l&.!::nInll. Let Y" be a Ha usdorlT G-space in Co. F be a G· homotopy functor,

and u"cF(Y..) be a G-n -unive rsal clem ent fo r F, wlrh n ?: I. Then th ere exists



an object Ynt l in Co obtained from Yn by attaching cquivariant (n + lj-cclls and a

G-(lI + I)-universal clement Un+1(P(Yn+l) with un+tlYn = Un'

fr.wll: For each closed subgroup JI of G and for each ).(F(Sj/I), let Sil,,' be an

eqllivariant (n + I )-sphere a nd form the a·space Y..V (VII.J.Sjj~:n . For each based

G-map 0' : Sn ..... Yn su ch tha t Tun(o) =- F(O')un = 0 attach an equivariant (n +1)­

cell to Y.. by 0' to obtain the based G-space Ynt l . Let 9/1," be the composite based

a·map Sir....~ Sjl} .... Yn V (VII,,,Si/:n By the Wedge Axiom there is an element

u(F(Yn V (VJ1,,,Sjj~n ) such t hat iilYn = Un and F(gH,,,)ii = .\ for .\tF( Sir+l)·

For each based a ·map 0' : Si, ..... Y su-h that F(o)un = 0, let SH,a be an equiv­

arlant a-sphere and let 10: VaSi"a -+ Y..V(VJI,J,.Sir'tn be the constant map , Define

II : VaSi".. -+ Y.. V (V/f;ASj':>.I) by ll lSi',a= a. The n according to Examp le 4.2 we

have the following a -ad juncti on space:

(VaSi"" x O)U (V..SU,a X I)~

j
Y.. V (VII.J.Sjr:"t)

j;
VaSi"a x I -==:! Z = C(VaSir,o)U/l Y..V (vH,>.Silf)

IoU"

Using the fact tha t C(Sit) = Ejl+t I it follows th at C(VaSiI,..) = VaC(Sit,a) =
v;Ej,;;. lIence Z is homeomorphic to Y..t l and i : }'n V (VJI,>.Sji~l) .... Y..tl is

an equalizer of 10 an d h-
Since 10 is t he constant map F(fo)ii. =0, We can also show F(h )u =O.

Since IdSil,.. =a and F(O')u n =0 for each 0 , then from the bijection given in the

Wedge Axiom , we have

F(f,). = (F(Q)• • l, = O.

So F(fo)u = 0 =F(fl )ii..By the Equalizer Axiom there exists an element untl,F(Y..+I)

such tha t F(j)u~+1 = ii which implies tl~td }'n = u ... We have to show that U~+t is

G' (II +l )-univcrsal.
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For each. closed sub group H of G we have the following commu tative diagra m:

Since Y..+I is obt ained from}~ b}' att aching equivatlnnt (n + l l-cclls we know from

Proposition 3.9 th a t :r:{(Y"+h }'~ ) =0 for 1 ~ q ~ n and for any closed subgroup If

of C. Hence i, is an isomorphism for q < n and an epimorphism for q =n. Since T..~

is an isomorphism for q < nand an epimorphi sm for q;:;: n, 1~" +l must also be a ll

isomorph ism for q < n aod an epimorphism for q = n. We thus only have to show

t hat Th +1 is injec tive for q =n and surject ive for q = n + l.

Let P!"'~(Yn+l ) with 1:' ftu (P) = O. Since i, is surj ective for q == n , there exists

(W;~(Yn) such that i. (O') =p. Hence T",,(a) = T""u(i.(a )) = l~"+I (.O ) = O. Dy

definition of Y"+1 th ere is an equivarlant (n +l j-cell atta ched to Y"V (VII"ISH;"' ) via

a. T his implies tha t i.( a ) =0 =p. So kerTuftU =0 and Tu..u is inject ive for q =n.

To prove tha t T"ft+' is surjective for q = n +I, let .\(F{SH+I) and note that the

G-map j 091t.J.: 5;'+1 -I Y..+I is such that

Tuft+ l{[joglf,J.J) F(j°91f.J.)U..+1

F(gH")FUl ". ,,

F {9If,J.)U

A.

Hence Un+1 is an isomorph ism for q < n +1 and and epimorphism for q = n +1.

T herefore Un+1 is a G-(n+ lj -universal element. •

4.8.Lm1.mA. Let { }: } "~ a be a sequenceof based G-spaces in r.o such that theinclusion

i .. : },on ..... Yn+1 is a G·calibrat ion for all n ~ 0 and let Y = Un~aYn where }' has

the G-final st ructu re with respect to {l~} ..zo- Lct l .. : l'....... Y.. be the ident it y and
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i" : Y" ~ Y be th e inclusion . If j : VY.. -+ VY... 1 : VY.. -+ V}~'" and i : VY.. -0 Y

arc the based G-m aps induced by the in's, 1.,'s, and in's respectively, then j is an

equa lizer a{i and 1.

fmQf: II is clear that i n+ 1 0 I'" = i" a I" . Hence j 0 i = j 0 I. Now assume

j' : VY.. -+ Y' is such that j'o i ~G jo 1. Let j~: Y.. --f Y' be defined by j~ =j'lY'"
so ll ml j~+1 0 in :::0 j~. Since in is .it. G-calib ration we ca n define a seque nce of

G-Illaps !In ; y.. .....y' su ch that i,,' ixa On and 9..+1 0 r, = !In. Using the universal

property for expan ding sequences of G-spaces define 9 : Y -+ Y ' by glYn= On' T hen

9 oj.. =!In :::ai..' SO that g oj :::o j' and j is an cqualizcroCi and 1. •

4.9 T heorem, Let F be a G· homoto py functor, Yo a G-spacc of Co whose und erlying

s pace is normal and Til and uoc F(lo). Then there exists a classifying space Y for

F such that (Y,}'O) is a based rela tive G-CW -com plex ~ nd a G-unive rsal clement

ucF(Y) such that uJYo = tID .

£rrm.(: By using Lemmas [-1 .61a nd 14.7J we can const ruct a sequence of G-spaces

1'0 C YI C . . • C Yn C ... with }~n +l obtai ned fro m Y.. by attaching equivar lant

(It + I )-celis, and G-univer sal clements u..~F(Y..) with U... I IY.. = Un ' Lemma 3.1

ensu res that each G-space Y.. is nor mal and Til and hence Ha usdorff. Th us Lemma

4.1 ca n be ap plied to each YII' Let Y = UIl2:oYn have the G·final s t ructu re with

respect to {Y..}..:!:o.From Lemma /4.8] We know t hat i . VY.. -t Y is an equal izer of

i : V}'.. -t vY" and 1 : Vy~ -+ VY... By th e Wedge Axiom th ere ex is ts an element

iicF(VY,,) such t hat illY..= u... Since illY... 1 =U..H and uIIHIY.. = u" we have that

F (i ,,)il = F(I,,) u for all n ~ 0 and hence

F(i)'~ F(l)' .

We ded uce from the Equalizer Axiom that there exist s an element u£F(Y) such that

F(j)u = Ii , Since ull';. = 11" . u1l'n = UII for n 2:O. In particu lar ulYo = !lo.
For I :5q < n and /I a closed sub group of G, we have the following commut ative

d iagram :
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For 1 $ q < nand H l closed subgroup of G, we have the followin&: commutative

diagr am:

.:(Y.) !!:!; r:(Y1
r.~ / r.

F(SkI
Since Y is obtained Crom Y.. by attach ing equh.n b.nt cells ordimension ?: n +I and

q < n, U..) is an isomorphism. Also T.... is an isomorphism since u.. is G·n·unjvcrsOlI.

Thus T. is an isomorp hism for q c n, The above argument holds for any n and thus

T. is G-universal. II

T he comp letion of the proof of the Equiva ricnt Brown Representability Th eorem

is very similar to the proof of the White head Theo rem in Chapter 3.

4.10 Corollary . Let Y be a G·space whose undcrlyic g space is normal and Tit and

let u~F{Y) be a G·u nivrcnl element for a a ·homotopy functor F. Let (X. A, .) be

a based relative C·CW.complex, where A and X are G-spaces in Co. Gi\1!Da a ·map

9 : A _ Y and an element v(F(X ) such that viA = F(g)l.l , there exists a G·m3p

9':X - Y such that g'IA= 9 and F{g')u =v.

~: We are gi\'tn that F(f )v = F(g)u and bave to find a g' such that F(g')u = v.

The proof is similar to that of Lemma.3.13in that we must complete the diagram:

A -!..... X

;j .{ jl
Y"~Y'.

where h is a.'C-weilk homotopy equivalence and SIA=hog. Sowefirst have to definc

Y' and the G·maps hand g.
Let i :X V }' _ Z be the equalizer of the composite maps:

A .!... X~XV )'

A ...!.... l' t!. X v l'
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By the Wwge Axiom t here is an element vcF(X VY) such tha.t iilX = 11and iilY =u.

Since F{/ )v = F(g)u we have F(ix 0 /) v = F(iy 0 g)u and by t he Equalizer Axiom

there is an element u(F(Z) such thal F(j}ii = v. By T heorem [4.9] we can construct

a C· spac.cY' contain ing Z with u'cF(Y' ) a G-universal elemtnt a nd tIIZ = ii. Deline

h to be the composite

Then F(h)u' = u and by Lemma 4.4 h must be a G-weak homotopy equivalence.

Since j is an equalizer orix 0 f and iy 0 9 , the composite

A 4X :='XVY .J..Z t!. y,

is a -homolopic to the composite

Let k be the composite iz 0 j 0 ix• Then 11 0 9 ~c 1:0 I . Since I is a a-calibration,

t here is a G-map 9 : X -t y ' such that 9 ~G .I:and glA =11 0 g. By Lemma 3.13,

there is a G-map 9': X -+ Y such that g'jA = 9 and hog' ::::cg. Since hog'::::c 9

and 9~G J:; ~'e beve

Dul F(j )F( iz )u' = v so F(9' )U=vlX =v, and 9 is the required C-map. •

U 1 I.l!mrrm (Equh·a.riaDl Brown Representibility Theorem}. Let G be a eempact

Hausdorffgroup. If F: Co -0 S'J is a G·homotopy functor, then a. d;lssi(yingSp;lCC



Y for F exists with a G-universal element u(F(Y). Further, for any based a-cw.
comp lex X in Co,T.: ..Y(X) - F(X ) is a na tural equivalence.

f.[mf: T he exis tence of Y and II fcllcws from T heorem -1.9. Taking 1Oto be a. l -pciat

a ·space, Y will be a G-C W.com plex, and becce is normal and T1 b)' Proposit ion 3.2.

(i) T. is sur.iJ:ct ive. Taking vl F( X) we will apply Corollary (.1.101 with A =, and

9 the coratant map. Since F(. ) is a single point , F(/)11= F(9)1I,so t here exists it

G-map g' ; X - Y su ch that F (g')11 = 11.

(H) T.. is injecti ve. Let go,gl : X ....Y be two G-m aps such th1l, t T..(lgoJ) =T..(lYd).
Let X ' = '!if,Le. the based a -CW .comple :<with n-skeletion (X " x I).U}·r- 1

x 1)

for n 2:0, and and de fine h ; X' .... X by h([r,t]) = e , Let lIlF(X') be defined b)'

v = F(h)F(go)u. Iden ti Cying A =~ with X V X wc will define 9 : A _ Y b)'

g({%,O])= g,(%) and g(I%, I]) =g,(%).

We need to show t ha t F(g)u = viA. Let V : Y v Y _ Y be t he (old ing map,

i : A = K v X - X' be the incl usion, and {F[ill, F!i1]} ; F(X V X ) ....F(X ) x F(X )

the kno wn biject ion. T hen

F(g). F("(g, V g,»).

{Fl i " ,F(i,U-'{F(i, j,F(i,]}F(" (g, Vg,)).

{Fli ,l, F!i ,]}-'(F(g, ).,F(g,).)

{Fli ,J,F !i,]} -'(F(g, ). ,F(g, ). )

F(" (g, V g,)).

F(gohi)u

F(i)F(h)F(g,' .

'F(i ),

= ' IA

8)' Corollary 4.10 t here is a mo1 p 9' ; X' ....Y su ch that g'IA = g. The composile
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Dy Corollary 4.10 there is a map g' : X' _ Y such tha t g'IA = g. Th e composite

XX /~ ~..t...y
ox l

is such tha t g' oplX x {OJ =goand g' oplX x {I} = 91' Thus g' op is a G-homotop y

from 90 to g .. which implies 19(11= (gtl and so T~ is inject ive. •
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Ch apter 5 Th e Mayer ·Yietoris ConditioD and the Equalizer Axiom

Following Brown's original accc~:.t, [Drl] . we could define a homotopy functor

F: Co ..... So as ODewhich satisfies the Wedge Axiom and the following:

Marer-Victo ria Axiom. Let (X : A" A1 ) be a triad of G-spaces , l.c. AI and A~ arc

G-subspaccs of X with X = Ai UA, . Th en if there are xl(F( A,), :r2(F(A, ) such ihn!

z,IA , nA, =%,IA1 n A" th en there exists vlF( X) such that vIA, = ZI . viAl = x, .

Such functors F will be called MV-homotopY functors.

Let A, XI> X, and Z he based G-spaccs and let I I : A - X.. h : A ..... X"

91 : X l -I Z and 9' : X 2 - Z be based G-maps such that 0.1. ~G 9217. Theil

(1,,91012,92) will be called a weak pushout if, for every based a ·space Z' and pair

of based G-maps g\ : Xl -+ Z' and 92 : Xl"'" Z' such th at gift =='0 9i / l ' there exists

a based G-mapg: Z -+ Z' such th at gg, ~G g: and gg2~G u~.

5.1 P roposit ion. Given that; : X -+ Z is an equalizer of /, : A -+ X and h : A -+ X,

then (f, V h ,; ,V,ili ) is a weak pushou t. Here Ii Vh : AV A --t X is the obvious

G-map and V : A V A -+ A is t he folding G- map .

f.r!mf: We first notice tha t i(fl V b) = j1l Vih ~G ifl V i ii ::= j / IV . Assuming

that Z' is a based G-space,and g~ : X -+ Z' and ~ : A -0 Z' arc based G· maps such

that uHh Vh) ~Q 92V, we have

g~!J Vg;h = gal l Vh) ~G g;V =g;v g;,

so gU I ~G g2~G g~h. Now i is an equalizer so there is a based G·m ap 9 : Z -+ Z'

such tbat gj ~G g;. Further g2~G gUI ~a gj"• •

5.2 .E!..0position. Let F : CWo -+ So be an MV-homotopy functor and Ict la: A --t X h

/] : A -+ X 2 , 9 1 : XI -+ Z, g] : X 2 -+ Z be a weak pushout in Co. The n if the re

are %lfF{XI), %2fF{X2) such tha t F (fI)::1= F(h )z2then there exists vfF(Z) euch

t hat F(gl)v = %1 and F(g2)V= %2'

£m2f: Let i f/i and Mh be the G-mapping cylinders of /1 and h. Let MJhh be

the quotient a -space of (A x (O,21)U(XI U X2) formed by idenlifying (a, O) witll
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!t(a), (4,2) with h (4) Cor all acA, aDd by shrinking {.} x [0,2J to a single point.

Let i, : i l l . --. J.iJ,JJ be the inclusion acd let I , : }.iJr - J.ill J I be the a -map and

homeomorphisminto definedby M[a,tJ> = (a,2-f] wherealA , teI, and l ,((:J)= [e],

where :reX,. T hen there are C-maps it :Xl .....Alia' f l : /Ii ,. -. XII h :x, ...... .\if ..

and f J : J.i/J -0 X, such that it and rio j~ and r, are homotopy equivalences and

homotopy inverses respective ly. The n we beve the following commutative d iagram:

Since llith ~G tt i l = t2i, ~G 12hh, (where i l and I, are the inclusions DC A into

i thand fti h ' respectively] then, as we are working with a weak pushout, there exists

a a ' map h : Z _ J'ill,h which makes the abovediagram a-homo topy commutative.

Applying the functor F to the abovediagram we have the following ecmmutatlve

diagra m ill So:



"

Now il and h arc based G·ho motopy eq uivalences, so F(h) and F(h ) arc bijcc­

rices .

We notic e tha t (Ai" .JlIAill . /oi }J) is (essentially) a tria d of a ·spaces (to make this

literally true we have to replace (0,1] in the definition of i l ll by (1,2]).

Now let u,cFpi J, ) and u~(F("ih) be such that F(jt)ul = %\ a nd F(j 2)U] = %,.
Then we have F(fl)FUI)UI =- F(!J )FU 2)U2t SO by the lI.'[a}"er-Vicloris Axiom there

exists jj(F(J\i b.h) such tha t F(tl )u= III and F(l l )ii =112' Thenle t F( h}ii =vlF (Z).

By the conunuta tivil)" or the above diagram we have F(gl )u = F(gI)F(h)ii =

F U,)F(l, ), =FU,)• • =z" and F(g,). =F(g,)F(h)' =FU,)F(l ,), ": FU, ). , ­

%,. So vlF(Z) is the desired element. •

5.3 Proposition. U F : ClVo _ So is a MY-homotopy functor th(:l1 it satisfies the

Eq ualizer Axiom.

fm.W: Let j : X _ Z he an equalizer of /11h : A - X. Considering the weak

pushout described in Proposition 5.11'.'e havethecone sponding commutative diagram

in Sa:



"

where {Ffi d .FIil !} is the biject ion given in the Wedge Axiom. Assume that FUl lu =

F(f, j. =w £0' .'F(X). Then(Fl i", F[i,))F(J,vf,). =(w,w) = {F[i, ),F(i,))F(v)F(j,Ju.

Since {F[ia}, F [i2J}is a bijection we have:

F(J, Vf,)u = F(v)F(f,).

Dr Proposition 5.2 thereexists vlF(Z) such tha.t F(j)u =u a.nd F(j 0 Idv = FUI)u,

In particu lar F sat isfies the Equalize r Axiom. •

5.4~ (alt ernate form of the equivariant Brcwu-Repreeea tability Theorem).

Let G he a compact Hausdorff group. ITF : Co ..... So is an MV-homotopy Iuecrcr,

1I11:0 there exists a. classifying space Y for F and a G·unh·crsal element tlcF(Y) .

Furtber, for based G·CW·complexcs X in Co. T. : lfY(X } -+ F (X} is a natura l

equivalence.

fr2Qf. This follows from Theorem4.10 and Proposition 5.3.•
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