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Abstra ct

This thesis investig.1tes the conver gence rates to the limiting null dist ribution .In.1

the powers of six lest sta tist ics of the power.divergence ri\ml l~· (etcs_, ic aIHI R,-:!. ,!.

19B4) Co r test ing indepe ndence ill the 2 b)' 2 C'ln tingcn cy T,lLle . Tlus falllll.,- .,f

stati stic s can be expr essed by

which is indexed by th e paramet er ,\, J:, .j arc observed celt fr'~' l llCIl ( ics and 111',1 <lP'

expect ed cell frequencies. It can easily be seen t hat the Pear son's S! (,\ I), th, ·

log likelihood ratio statistic G! (..\ =0), t he Freernan. Tuk ey st at ist ic r:(.\ " - 1;'2),

the modified log likelihood rat io statistic MG! p. =- I), the Xcyman IJloJdifi(,d chi.

square statis t ic AL'(2 p = - 2) and th e Crcssi e.Read s ta tisti c (.\ '" 2; :1), a r<~ all

special eases.

For calculating the con vergence rates and the powers of these six stuus tics, au

iteeati ve proc edu re for ob ta ining the minim um power-diverg ence est imates for tile

unkown param ete rs w; U be presented. lt is found tha t am ong th ese six stati st ics ,

the convergenc e rate of Pear son 's X 2 (.\ = I) to t he limit ing null distnhu uon is t il,!

best. For the power of the test , for different alternatives, each of .\'2 , Gl and .\1 .\' 1

is the most powerful. It is also found that th e power of the lest depends not only

on the nencenrrullty paramete r but on the location of alt em arive hypo the sis. T he

worki ng rules tor deciding which statistic is to be used will also be presen ted for t he

practitioner.
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Chapter 1

Introduction

1.1 2 by 2 Conti ngency Tables and it s applica­
ti ons

Let A and 8 de note two categorical variab les, both having 21t::vels. When we clas 5 i f~'

subjec ts tin both var iables, the re are 4 possible combina tions of d assific.1tions . T he

responses (A ,B) of a subject randomly chosen from t he same populat ion hcve a

probability distri butio n. We display this dist ribut ion in a table having two rows for

the categories of A, and two columns for those of B . Th e cells of the table represent

th e.{ possible outco mes. We denote Pi.; il5 th e prob abili ty tha t (A ,8 ) falls in th e

cell in row i and column j. When the cells contai n freque ncy cou nts of outcomes,

th e table is called a 2 by 2 cont ingency t able.

In order to st udy the assceiatiens be tween the two different classif)"ing variables,

we will firs t consider the following example (rom Agres ti (1989, p. 29·30), to dlus-

tra te the basi c t~rmino l ogy and concepts of t be 2 by 2 conting enc y tabl e. Compari ng

the results of car accid ents wit h seat -belt use, bas ed on records of accid ents in 1988

compiled by t he Depar tme nt o( Highway Safety and ~Iotor Vehicles in th e sta te



of Florida, 5, 7,006 ear accidents were c1as~ ificd according to variable A; accillcnt

type ( AI : belt use, '-\ l ; no use), and variable B: accident severity (8. : fa.la!. l1J :

nc n-Iaral]. T he following table, representing t he resulting 2 by :?contingency table

of freque ncies, analyzes the associaricu between these two variables.

Table I .L: Observed frequencies of car cceidenta in the 'J bl:.! contingency taM.:

The resulting table will ha...e .. cells, and we define Xi.i to be the number of

observat ions classified as in Ai ~'1d Bi , which is tne cell frequency perta ining to the

cell in row i and column j of t his tab le. T he marginal Ireqencles are the row tot als

and column totals obtained by the summatio n of the appropria te cell frequencies,

and are denored as ri . ~ = 2:;". 2:i,l> i=I ,2, and x t J = 2:?:l Xi.; , j =1,2, The total

cell frequency is denoted as N= rt,+ =r~:1 [': 1Z; .i'

T he above applicat ion of t he 2 by 2 contingency table, in st udying the relation­

ship between the belt use with the severity of accident, can also have applications in

many ot her studies, such as , studying the associations between Lung Cance r with

the Smoking Level ( Doll and HiU 1952), Income with Jo b 5atisfication (;-lorusis,

1988), and Gun Registution with Death Penalty (Clog,!l llnd Shockey, 1988).

The analys is of relationships or association s between eross-elas sjfied variables has

developed extensively over t he last twenty years. For a comprehensive coverage of

the st udies of cross. classified categorical dat a, see, for example , Bishop, Fienber g all'~



Hellan d (19i 5), Haberman ( 19i S, 19i9 ) and Agresti ( 1989). Lloyd (1988) reviewed

the IO-}'e;\r old contr o\'(' rsl over t he correct a.nalysis or 2 by 2 tables .

1.2 'Ies t ing the Model of Indep en d enc e

': : itat is the proper probability model or Pi .j (or the dat a in the table? The model

must refler:l the 'o:: y in .....hich the dat a was collected. There are several different

s.lm pling proced ures wh ich could lead to this tab le, .-\ single random sample size

:'l might be selected, an d then categorized in two ways. For example, a ran dom

sample of persons can be trea ted with or withou t belt use an d for accident (,," tality

or nonfataliry, We call t his model A. Under model A, t he cell freq uencies .l:iJ ha ve

a single multinom ial d ist ribut ion,

The marginal frequen cies are all random, and Jiltis r.)" ZI . .. + Z 2, .. = .1:".1 + r • .2=X.

It might also separately seleet two ;ndependent random sa mples ef perso ns with

lung cance r and those without , then categori ze them llccording to hea\'y or light

smoking. Under this model , say model B , the tabl e contains two independent

binomial dist ributions, and .1:"1 . .. and 1:, .+ are therefore, no longer ran dom.

H}'potheses for these model s are sta ted in te rms or th e cell probabilit ies P,.!

for the samp led popularic ns Each model imp oses different const raints on the pi ,j '

~I odel A requi res only t hat :

)fodel B sla les 1h.11 fer i= 1,2,



Pi._ := tP'.J:= L
J" l

The most comm on hyp othesis in the '2 b)' 2 ccntiugeuc y table forma lize the

sta '.eme nt that th ere is no associat ion bet ween th e two ca tegories. Fer eX'lIlIl/l,·,

t here is no associa tion be tween th e seat-b elt use z.nd severjt y of accident , income

and jo b satisfaction, or aspirin use and heart att acks. In model A, this is the

hypothesis of ind ependenc e:

Ho : Pi.; := Pi..,. ~ p_.j,i := 1,2 ,and,j := 1, :! (" I

where Pi,+ and p" J represe nt the unknown marginal probabi lities

As t he model of indep endence (1.1) is the most often conside red in the :2 by 2

ccn tlngency table, this thesis will be concentrated upon in testin g this l1lelfld by

using th e following powcr-d ivergence st atiatics .

1.3 P earson 's X ', Loglik elihood R a t io G' and t he
P ower-Divergence Fa mil y of Statistics

As a tes t crite rion for the nuU hypoth esis, Karl Pears on (1900) proposed the tc~t

(1.2)

where 1:i,j and m i.; are obse rved and expect ed cell Irequeneies for the ith and j th cell

respect ively, and suggested that th e asymp totic distrib ution of ,'( 1 is a XJ dis tribu ­

tion with 3 deg rees of fre edom . The latte r caused some co nfusion and controversy



in practica l applicat ions and was not settled until 20 yean later, Fisher ( 192:!,19'H)

investiga ted t he 2 by 2 contingency tables , and pointed out that the limiting dis­

t ribution of X 2 depends on the method of estimation for the unknown parameters

of Pi,. and p . ,} ' Wit h a different method of estimarlc n, X 2 may have a large tcst

value, and the null hypot hesis would be rejected for the large value; or the limiting

distribution of X 2 will be ot her th an the chi-squared dist ribution . It is the refore

ueecssaey to state th3t the method of esrimetion is to minimize t he objec tive func-

non. Among others, Fisher ( 1924), Moore (1978), and Berkson (1980) har e also

considered this class or:\Iinimun Distance Estimat ion.

COthran (1952) gave a review of the early development of t he Pearson's chi­

squared test X 2 , and discussed a variety of competing tests, including t he log like.

lihood ratio test G~ ;

(1 3)

T he question of which one is the best has 10Rg provided interest , speculat ion and

controversyin liternt ure.

Cochran ( 1936) felt tha t t he G1 distribu tion might be bette r represented by a

continuous curve than the X 2 dist ribution in a contingency table, and he ( 1952)

concluded tRilt there is littl e to distinguish. Xl Ircm G2, Fisher (1950) found the

X t test to be governed by and more sensitive to high observat ions in several cells

than the G' tesr. Chapman (1976) concluded that th e difference between the exact

Xl lest prcbabilties and the chi·squared probabilities is usually smaller than that

between the exact G' test probabilities and the chi-squared probabilities. West and



Kemp thcm e (10';'1) plotted t h~ $ens itivity oC X ' and Gl Cor :!.few CasN o £t..-o, thr""

an d COllr cells, aed concluded that t here existed diffe rent regions (or which one il

be tt er tha n othe r. In :L~fonte Car lo stud y, KilUcnberg, Ooi le roo[ , a nd Scltricl 'cr

(1985) she....red tha t .\'2 and G1 have simila r po·...ea for test in g the eq uiproba bl..

null hypo thesis Cor th e cells with sm all frequencies. L..te (IDS';') confirm ed th at tit..

powers oCthe .\'2 and G' tes ts depend on the noncent r...lity pa rameters in teSli lL~

for ordered rest riction on multivaria te param eter s. T hree of t he potential 1lI0,ld $

a re discussed by KroU (1089), they <LtC the hyperg ecrnet rje ind ep elulc lIcl' trial, the

dou ble-bin omial compa ra tive t rial, and the multin omia l double dichotomy trial f'.Ir

testing ind ependence in :2by 2 cont ingency table.

Crcnie and Rea d (198.1,) introduce d il. powee-divergenee f:Lmily of gocdness -or-Hr

s tatistics, P, defined as :

S ta.tistic s (I A) are obtai eed by the cont inuity for the cues o f ~ .= - I and ~ .= n.

Using the filet tha.t In(t ) =lirn~-o(t'" - 1)/" , we obtai n:

end

" m1iml __ (21),(:I:: m) =2?;~m; ,jln ( i::) '

I t is not ed that when ~ = I , the st atistic (lA) is the Pe.1u on's .\'2; ~ = 0, the log

likelihood ra tio sta t istic Gl j ~ = - 1/ 2, the Freeman-Tukey ( 19M) stiltistie T 2
;



, ,
T~ =.\ L L(vfii:i - .;rn~jV

; :olj"l

(L5 )

,\ ': -1 , the modified log likelihood rati o st Olt istic or minimum discrim ination infer-

marion statis t ic GM~ (see Kullbuck, 1959,1985);

, ,
G.'" =2~:; mi,jln(~) ;

,\ = - 2; the :-;cyman ( 19·19) mod ified chi-square stati st ic .\1.\"' ;

,\IX' =i: i: ::I:;,j - m;,i)' .
':lj"'l Xi ,;

(1$)

(U)

The theory underly ing these statis tics, as of most omnibus tests of fit, is '" large­

sam ple theo ry. Under the null hypo thesis HOI this theor y is well und ers tood . When

N tends to infinity in the 2 by 2 contingency table, all the members of I). have

the same limiting null distribution, the chi-squar e dist ribution with one degre e of

freedom xl. as they are all equivalent , d JC to Cr essie and Read (1984). For Pear­

son's .\"2, this large sar-tple approxi mation is surprisingly accurat e for moderate end

small sample sizes:-J, especially when the cells are equiprobabte (see Yarno ld 1912);

however, the approximation is markedly less accurate Cor l Car Crom 1 (Lamr e 1987

and Read 1984). Cressie and Read (1984) found the chi-squared approximation

adequate for l between 1/3 and 3/2.

Cressieand Read (1984) proposed a test which is between .'( , (l = 1) and GJ

(l =0), viz. l =2/3 , to take advantage of the desirable prop erti es oC both. The

test :



(I.S)

has been called the Cressie -Head St3.tistic by Rudas ( 1!J86). a n,l cnrlicr , ~I , ...-re

( HI8.j) named the family ( i ..l) the C eessic.Rend srot istl cs As a n .muubus «' 5t of

goodness-of -fir. Cressie and Read ( 19B-\) showed it to he the m ost compcuuve in

this famil)" of (tAl . ~ rore de tails can be found il' R':ad (1!J8-1) nnd /t'>.1,1 ;I IHI (' r, ·s .~ it·

( l988)

\\ 'c will present iter ative procedures in Chapter 2 to obtain the minimumpower

divergence est imat ors {or the unknown para meters Pi.I' which 'He the BAS estima -

to rs defined b)' Neyman (19-\9); and which are also in the cla ss of tltu minimum

di stance estimators . In Chapter 3, we will investi g.:lte the converg ence ca tes to t he

null limiting chi-squared dist ribution of the afor emen tioned six dillercnt s t at i~ t i c s

for te5ting the model of independence in the 2 by 2 contingency tabb , by using tlre

min imun power-d ivergence estimators for the unknown param et ers . In Chapter ,I,

comparisons between the powers of t hese stat ist ics for testing independence will be

Investigated. Discuss ions ca n be found in the las t Chap ter.



Chapter 2

Minimum Power-Divergence
Estimation for Testing
Independence in the 2 by 2
Contingency Table

2 .1 A symptoti c Equivalence of the P ower-Diverge n ce
s t a tist ics

\Ve consider testing the hypothesis of indepe ndence in the 2 by 2 cont ingency h.blc

H. : Pi.j =Jl;.,~ • p"',j,i = 1,2,and, i::: 1, 2. (2.1)

Let the sample size be :sand let zi.j be the obs erved cell frequen cies , i= I,2

and j= I,2. The rand om vect o r X=( ~ l,I,ZU I :r 2,1,Z I,2 ) hu I multinomial distribution

with sample sire N and cell proba bilities P:::(PI,IoPt.: , Pt,IoP2,' )' T he param eters

PI ,,,,,PI. ~ , p"' .lllnd P....2 willbe estima ted under certain principles and t heieesrimates

Me denoted by Pl... Pz·....P~ , l and P'::' .2' The expected frequencie s under (2.1) are



t,)

Ctc5sie and Rc;ad(198 -1)iereoduced a family o f p.,.n ..t-di\·C't~ence tt ..ui stic s.

(Orl~ting the null hypot ht'fil (2. 1}. The nu ll dist ributions ., ( Ihe s t "J.lisl ic ~ (::!.:!l .uc

asympto tically equivalen t baled o n Theorem ~. :.! o( Creu ic ;l Ull Read (HIIH ).

Th e o re m 2. 1: Under the nuU h)'pothcsis, the family o f pc....cr· d i\"l'rgellcll . ' "tis

tie s are aS ~'mptot i c lllly equivnleru , in the sense th a i

where 0,,(11 repeeseeu c term that conve rges to 0 u ~- 00.

Proo f: The statistics (2.2) can be writtee as

I'· ::)

prorided t hat ~ ,.10not .1. iio'IV le t 11iJ = (z iJ - m ..,)/m ;.J' and eXil3.1I0in ..1 Taylor

series (ot tach .\, giving

, ,
= lL L mi'll1L +Qp(l) ] :::2f I(.l : m) ..... 0,(1)

i_ I J. I

An ident ical result holds for the special cas es of -' = 0 and ·1 , also by a.Taylor serie,

ex pansio n. This comple t es the p foof or th e ;s.symplotic equivalence "f t he power ­

di , ergencesta.tistics.O



u

This re~\l l t is sulficicnt fo r us to conclude tbat e aeh member of til e pO.....e t ­

divergen ce fam ily has t he same asympt o tic null distribll tion.

2.2 BAN es t imat o r for the unknown paramet ers
under Birch' s Regularity C on dit io ns

In orde r to tes t the null hypothesis (2.1), we nee d to est im ate the unknown margi nal

probab ility Pi. .. , j=L,:! and P".J , j::;I,2. Moore (19 ; 8) reco mmended that the :\IL E,

which is equivalen t to minimizing (2.2 ) with respect to m,.) wh en .\=0, is always

used in the con tingency table, namely ~., t/N a nd r • ./ / N respe ctively for pi,. an d

Fs-i- This gives the est imated ex pected frequen cies:

m '.j ::; N .(7;:) . (~ ) ::; ri.:~ " ,j

A n atural p rocedure is to obt ain t he estima te which minimiz e (2.2 ) according

to the specific value o f ..\. This leads to the following definition of th e minim um

power-divergenc e estim ate mel of mi ,'; :

De finition : melsa tisfying the following equation is called th e minim um power ­

divergence estimat e of m i,j for a specific value of .t

(204)

Since (: - >. - 11/ .\(,\ .I. 1) is strictly convex for: > 0, including th e limit ing

forms for'\ = 0 and-L The stri ct convexity of ll (~ : m) ensures uniqueness of the

estima te mel) (see Read and Cre asle1988, Appendix 2. page 15 9). Various <lu t hor!

(e.g. Fis her (1 92~1, Moore (19 78), Berkson (1980)) hav e considered t he minimun



po\'...e r-divergence estimatcr , and Parr ( i981) has provided an ex tens ive bi bliogra p hy

for this estimatioll.

\ Vhr then should weconsid er alternative met hods to the :\I LE ? Rao ( 19til ,196:l)

defined a see ond -crdee cfficie nC}" cri t e rion, for which he .1\0Wed that the metho d ,If

~1a.ximl1m Lik elihood Est imati'Jn provides the unique optimum est imate. However .

the sovereig n ry of :\IL E has been cal led into ques tion hy a number of authors (e .g

Berkson 1980 , Parr 1981, Har ris and Kanji 1983). T herefor e, it seems quite re-a-

sen a ble to rec ommend the minimum power·divergence estimate. Fur nxamplc, if we

dec ide to use Pearson 's X' (..btl {or the test , then we might estimate 1II by 1/I 1I )

In the cas e of te s t ing independe nce ill the 2 by 2 contingency table , the way t,

est im ate P;.i is to cho ose the p\~) t hat is closest to k. which sati sfies'

(2 .5)

where p is a. vector o j pi,} and ptA} a. vector o f p! ~l .

E nsuring that the minimum power-diver gence es timate pt~J , a function p~ .~1 =

F( P!.).~ ,P~AJ) u nder Ho' exis t s , Birch (1 964) d e fined a set o{ six regula.rity ecndtucns

suffici ent t o ensure that the null m odel H~ really h as 2 pa ramete rs, and t ha t F

sa t is fies vari ous requirements. The condi tion s <1-11::

(1 ): there is a 2 dimensional open neigh bourhood of ( p~;l, p<:.\), w hich is corn -

ple te ly con tained in its dom ain PO I

(2) : F(p~~! ,p~.l ) > 0, {or cae-II o f t he two coordin a tes.

(3): F is totally differen t iable at (p~~LpC:l), wit h part ial. de rivatives.

(4 ): th... Jacobia n of F <>f Pl.~ and P~.I is or full ra nk 2,
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(5) ; th e inverse mapping F·\ is conti n uou s at F (pi~l , pl!. \ ) .

(6) ; t he m.1pping F is eonu nucus et every point in i15dorn.un P".

Birch (1!l6·l) showed that any esti mat e satisfy ing the rcguJa.rity condit io ns is

best uay mptctically normal ( 8.-\);) defined by Xeym an ( t 940), which have th ree

import ant prope r-ties:

(A ) : T hey ar e consistent , i.e., the esti m ate converges to the t rue value o f the

estimat e d param et er as n -- ee .

( Il ) : T hey a re asymptotically normal lyd istribu ted . The aayrnptorical chi. squared

distribut ion for 2.V l~Cq : pP l) is based on t his resu lt .

(C ) : T hey a re csymptct ieally efficient , no other est imato r can have a sm aller

limiting variance, as ~ -- 00 .

By it straightforward generalization of t he argument provided by Birch ( 196.\)

we obtai n the following th eorem:

Theorem 2. 2 : Under the abeve regu larit y co nditions , any minimum power­

divergence estim a tor under Ho in the 2 by 2 continge ncy tab le is B AN .

Birch (196·1) showed that the ~lL E (.\ = 0) is BAN . In anoth er case, the minimum

chi-squa red estim ator (.\ = 1) was proved to be BA'" by Holland ( 1967), and the

general case fnr any.\ was proved by Read a nd Cressie (1988, Appendix 5. pp . l63·

166). h follows t h.1t pIll is a B .·\ ~ estimate under Ho' and ./N(fi - pIl l) converges

in dist rib ut ion, lLS N- co, to a multivariate normal random vector with vari a nce­

covarianc e mat rix A. - pp' , here A is a 4x -l diagonal matrix with diagcnal e nt ries

PI.! PI,' P'2.I and PJ,J, and p is a column vector of Pi. j ' It is well known that



\-\

can be written as a quadr atic Corm 'If ../V(~ - pIll) , and ,'(~ conl'ergcs in di~trih"tl" 1 1

to a chi-squared rand om variable with one degr ee of freedom under flo . Tlwrd on' ,

b~' the asy mptot ic equivalence of the power -divergence (amily (2.;1), it indica t.'~ tll;lt

for test ing inde pendence H.. in th e:! by 2 contingency ta ble the pow..r .di\,"r~"Il Ct.

statist ics are asymptotically chi-squared dist ributed with one degre.. of freedom II Il

der H...

2.3 I tera t ive Pr ocedure of Minimum P ower-Divergen ce
estimate in the case s of A >0

Under t he indep endence model H.. in the 2 by 2 tables , there are no closed-form solu·

tions or the unknown par ame ters pi,_ and P"J for me mbers of the power-dive rgence

sta tisti cs , excep t for the maximum likelihood estimate when A='). This is one »f

the reasons why )o(oore ( 1918) recommen ded tha t the :'tILE is always used fo r lb,!

contingency table. T~.,~ugh the minimum power-d ivergence estimate attr acts many

autho rs' inte rest, very few use it in the con tingency table to tes t the hypothesis »f

independence.

Th e problem, for A = I , h;u been studied by Cohen ( 1!182), and rece ntly , a

general method to compute the minimum power-diverge nce estimate pe2 and P~~.~

was dis cussed by Bohning en d Holling ( 1986) .

Th e power-divergence sta tistics (2.2 ) u nde r H",can be expressed as a func tion 1)(

Pi.+ and p...i th rough /i .i = C,.JP.~~p~~ :
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2N /~ ( -li : p) =t.tl;.j - C
; = 1 /= 1

where C,..1 = 2l~\;1 i .\(.\- l )N l for i= L,2 and j=I ,2 and C:2N{.\(.\-l) are constants

for a given ). [f 1'.1is Jlrictly convex for all i and j, then 50 l ~ E~=l E;"l f "j '

T heo re m 2.3 : for a ny .\ >0 , the power-divergence statistics for test ing the

hypctheais of (2.1) is a CO I\ \ ' C:< functio n of Pl,,,. and P- .l'

Prl) "f: Suppose that F is a twice contin uously differentia ble real-valued funct ion

on an open convex set C in W. The n F' is convex on C if and only if its Hessian

matrix Q", =(I/i,(.r) ),

is positive semi-de finite for every J:' EC. (see, Hockafcllar, 1972, pp.2i)

Therefo re, the convexity of Ii,) over Pi.+ >0, P+.l > 0 is equival ent to the foUowing

th ree ineq ualities:

and

The sufficient condition of convexity of th e power-divergence statist ics is A >0.

Thi s completes the proof a



Remark 1: Bohning and Holling (1086) stated, incorrectly, that the sufficient

ecnditicn of convexi ty of the power-divergen ce statist ics is .\ >. 1/2 . Th ere is a

defect in t heir proof, in which they required a less restricti ve condition th at t he

determinant of its Hessian ~ratrix is positive . Consider the funerion

The det erminant of its Hessian ~Iatrb: is 36. However , it is not convex. Thcrofo re,

their conclusion should be amended as The orem 2.3 above.

For.\ ::= 0, the estimat es of Pl,+ and 1''',1 are the \ILE , z l. . / N and z ...vl N, de­

noted by p~~l and P~.)I ' respectively. For.\ :>0, t be convexi ty of tile st a tistics ens ures

that the minimum power-divergence estimates exist and are unique. Although t here

are no closed form expressions for these estimate s, we sha ll present the followingwell­

known iterative procedure , which is commonly used in the analysis of conting'!lIc y

t ables and linear models to obtain the estimates for t he unknown param et ers . Since

pJ,t and 1'+.1 are redundan t under Ho ' we den ote t he power -divergence st ntist ics

/ (A}(ht, p+.d as a function of Pl.t and pt .1

It erative P r o cedur e 1:

Step o. (initial value) .

Choose any init ial value Pl~~, 0< p~~~ < 1, and let n=O.

Ste p 1. Compute



Step 2, Compu te

(... l ) (.e:.il(l - p~~; l ) .\ + Z:.j l (p~~ ; I ' ) Ji ) r.,

PI.. = (z: .i l(1 _ p~~~ ll ).. .,.. .e: .'i l( p~~~ l l).\ph + (z;.il( I _ i~; I I ) J -'-Z;,i l (pl.~~ l l ) .\ ) rl7
(0.'1

Rcplilce n by n+1 and go to step 1. T he sequence ( p~~~,p~~\) con\' ergl:5 10 the

desired solut ion,

Theorem 2.-1; Let A > 0 and ( p\ ~~, p~~l ) be a sequen ce c brained by the l te rari ve

Proced ure I for any initilll value bet ween 0 an d 1. Then thl,! sequence converges to

the same limit (p\~~ ,P<.:':t ) and this limit minimizes th e powe r-di vergence stat ist ics,

i.e. ,

for ilfIYP=(PiJ ), _ jth PiJ =Pi,... • P" ,I where p!~1 =pe! ~ p':J,
P r oof: As in (2.2) , t - is a. function of t be two variab les PI ,.,. and p.,1t and

[.\(P. q) > aif P Fq, We differen tia te [ Ji wilb resp ect to P.,I lind PI.+>and set the m

equal to zero, thus obta.ining the equations (2.8) and (2.9 ):

(2.8)

(2.9)

Let 8 =PI.• /(I - PI, ...) and ~ =p...1/(1 - p•. d, cne-tc-c ne transform a.t ions, we

obtain:



8~-' =;g:::f:~:~: ( ~. Wl

(:1.111

The two param et ers (Jand dJ are bou nded, ,; O:; : .l1,l 1 .l ~ , ~, .l:l,l / x l,~ j and IJ ';::.lu ;.r~ ,:.

2: l,,/zu l. if t he odds rat io r = .l U:Z: ~,2 / :t: l.~.l U > I , and ,pE[ .l1,1/Xu, r~ .d .lu ;, IJ"

where

d(J~ +1 ~41U-I(x~,~lx~,~ 1 - X~,2Ixt,tl )

d¢ = (X ~.!I + 2:~.~ 11/I~ )2

d4Jhl },(J2~ -I(X~.iIX~,il - Xt2Ix~,i l)

d9 = (Z~:; l + ll~,2 1(J ~ )2

the functions of (2.10) and (2.11) are either both monotonically increasing , or bot h

mcno tcnically decreasing , depend ing upon whether the odds rutic r >l or r -:

1. Since PI,,.. and P" ,l ere monotone functions of (J and 4J respe ctively Il IHI t Il':

functions (2.8) and (2.9) are bounded ever [0,1]. we have that ( pl ~!, l~~ ) COI1\"Crges

monotonically to a limit , say (pe~ , i:.l ). By th e continu ity of equati ons (2.8) and

(2.9). the limit (pl~l . p~,~) sat isfies these two equations, and since I~ ( .l /N : p), under

the null hypothesis H,,: P;J = Pi,.. . P" .i> is a convex function of PL... and P",I> pP l

is t he desired solution. D
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Re ma rk 1: When the odds ratio r=l,

the estimates p1 ~l and p!!.i are ~ and ~, respectively, an d the values of every

power- divergence st ntistic 1{ ~ ) (zIN : piAl) will be zero .

So rar, for A >0 bj- using the iterative procedure present ed above, we can ob tain

theminimun power·divergence estirnates.

2.4 Iterative Procedure ofMinirnun Power-Divergenca
Estimates for ,\ < 0

When), <0. l~(z/N : p) may not necessarily be a convex function of Pi,.... and

P+.l · We shall present the conditions in Theorem 2.5 to ensure that the lter ntive

Procedure 1 is available to obtain the minimun power-divergence est imate for ).= .2,

and ),,=-1/2. This approach may be applied to all oth er cases when A < O.

T heorem 2.5: For any.\. <0 and .\ f - l, let (P~7!, P~~ ) be a sequence obtai ned

by the Iterative Procedure L fl r > 1 and

or i( r < 1 and



t h~ 1I t he sequence COI1 \'crgcs to il unique limit (pe!, p~l,tl. and this limit minimil n

t he power-divergence .t at istics , i.e.,

for ilny P= (PiJ) with Pi.J = Pi. ~ ~ P_,j'

Proof : W~ shall prove t he esse of r > I, and the CilSC of r < 1 follows simi-

larly, Let D={(z l 'x~) : a i :5 Xi :5 b;, i = 1,2} with given a lt ti l , bl and b~ . I.I't

g(X)==(91(Z),g1(J::))be a continuous funct ion which maps from 0 into D itself. Or-

tegol(19i2, p.153) showed tholt g has at least cue fixed point iii 0, i.c. , there exists

Z D ED such thilt g(z.) =xD, and t he fixed point is unique if g has cont inuous pa rtial

derivatives and if the re exists a consta nt k <:: l such thilt

It suffices to consider t he map ping

(2. IS)

(2. 16)

IC r > I, then gl E [;;; ,;;;1, gz E [ ;;;, ~I, and because of..\ c 0, Sl E



"

~ 2 gl-I¢)- IZ;(; +l)z:;ft- I)(I _ r:\-Ill

(r:I) g~9U&~.jl + Z~~2* 1 )¢.\ )2 (Z~.; I ....:c~~;I )I91p s

). 2 ZbJ:~~- '.:z: ~;Y" ' (1 - r .\1"1 ) 2 I
( ~-=-t ) (.z::.; I .l:~.I-:-J::YX:. 1F(J:~.t lJ: ~.I+zi.VJ::.dl < 2"

then the condition (2.12) wiU hold for r > 1. 50 und er the condition (2.12) or (2.13),

(p\~~ ,p~~\) will be convergent to the unique point ( p\ ~! , p~:i ) [or an}' given initial

value, and will satisfy (2.15) and (2.16). Therefore, by 8.\ and .pAt we can cbarln

pel and p~~L which ate the Minimum Pewee-Divergence Estimates. 0

If J: = (':1,1, .1:1,2, Z U , ZI ,I ) does not satisfy the conditions (2.12) and (2.13) for a

given >. , then the linear equat ions 9 =91(8,4» and ¢>=gl(B,¢} in (2.15) a nd (2.16)

may have mere than one solut ion. Using the foUowingIt e ra tive Pr ocedure 2, we ean

obtain finitely many limits.

It erative Pr ocedure 2:

St ep 0: Choose a small quantity c. Choose a small initial value, say eiO)=.OlOl

[i.e., PI.+ = .Ot) and a large initial value, say "iO)=99.0 (Pl.• = .99), using the

Iterative Procedure 1 to obtain limits a and b, respectively. If a> b - C, stop this

procedure. Otherwise let L={a,b} and I={(a,b )}.

St ep 1: Choose(a ,b)EI, a nd let I={.{(a,b)}. Use the Iterative Procedur e 1 with

the initial value s1°)=m=(a+h)/2. The procedure is termin ated if either a. limit e is

reached or a value c lying outs ide the interval (a,b) is observed.

If c ~a then I= IU((m , b)}, if m e b - e.

rl c~b then I= It.:{(a, m)}, if a < m - c.



If CI < c < m t hen L::L;...:{c}, 1=h.: {(CI,cH if a-c c - cand \;"I ...{(m ,b)} if mc b _ c.

IIm < c < b then L= L..:{c}, l=t;':{(CI,m)} ib.< m - c, I= I,; {(c.bH if e« b - c.

If m=c then L= L:':{m}, J=J:..lHa, m)} il a c m. - c, l=h...Hm.b)} if m< b - :;.

Repeat step 1 until I is empty.

Step 2: T he minim um power-divergence esti mate is the lill\it in L which h .,~

the smaUest value of the gi\'en sta tistic.

In the case of '\= .1 , the power-divergence stat istic is defined by the continuity

o( (2.-1 ) U:I .\ - ·1, lind / ( - 1) has t he following expression:

Differentia te GM' with respec t to PI,. and P" .1> and then set them equal to zcm;

thus weobta.in :

Pt,.. =,.r."+;;;

!!.!.

P"',I = 1{" . ~ ;;;

(2.1')

(2.")

here rl = Ii ,.,r is the odds ratio~.

By using the Iterativ e Procedur e 1 t hrough (2 .18) and (2.19) for any initial v;llllc

p\~~ , there is the series ( p~~~ ,p~~~). By Theorem 2.5, the sufficient condition for th e

unique limit (p~ ~; l , p~:: l ) is



(2.20)

Therefore, if .t =(J:l.l, ,cl.l, J:U, X2.2) satisfies the condition (2.20), the minimum

power-divergence estimate can be obtained by the Iterative Procedure 1.

lf the condition (2.20) fails to satisfy, we can obtain all possible limits by using

the lteeauve Procedure 2.

Re mar k 2: For '\= ·2 and -1/2, from (2.10) and (2.11), we can obtain a poly-

normal of five degrees and two degrees, respectively in 0, such as follows:

g(9) =a02
- (2a + b)9 +a

a =(~+~) ' and b=(xu -:r,.! - X2,1 + Zl.a)' for A = -1/2 . T he Iterative

Procedure 2 can produce, at most, five limits for A = - 2, and two for ,\= -1/ 2. In

the simulated st udy, we found that there are, at most, three Iimih for A=-2. In

which case, one of the limits is a local maximun, while the other two limits ere local

minimums.

Example: We shall demonstr ate the use of the above Ite rative Pr ocedure to the

car accidents data in Chapter 1. It does not satisfy the conditions for the unique
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limi t of the Itera t ive Procedu re in Theoren :!.,i, c.c shall use t wo endpoin t s ns initial

values. However, the y converge to the single limit for each ,\. T hercr fore , the limit>

are the minimum power -d ive rgence est imates. The co nverge nt sequen ces (l'i'.• . 1''::. ,,1

are provided in t l\1~ 'Iable 2.1.

Ta ble 2.1: Example of the ite rat ive procedure [or the ca r accident data

,\ < 0 : ', I Pl . I p~ , : pi * I p~ , : pi. I p~ I I pL~..--J

1.2 I:~~ :: ~~~; :: ;~~~ :: ~~ ~~ : : ;:~ : :: ri :: ~ ~ ;: ; :~1
· 1 ' .99 .0096 I .2867 , .0022 . .28:16 . 002~ ' ,28:!li

.OL ! .0013 .2832 , .0022 r .28:16 .Olm i .2S:m:
. [/ 2 .99 1.0037 i .2845 .003; 1. 2M-I .003i .28-1-1 1

.01 .0031 I .2844 I .0037 I .2844 I .003i I .28·\·1
,\ > 0 2/3 .99 I .003i ! .2844 I .0031 I .2M4 .0037 I .28H

1 .99 .0013 j .2899 I .0052 I .2845 .OO,j3 .28-15

wbe n x = 0, t he p~~l and p~\ or the i\-ILE are 7=.028.\.1and T = ·OU3i,

respecti vely. The Iterative Procedur e 1 is efficient; nO[011l.1Iy, six 10 seven steps ;HI::

sufficient to obtain the limit .



Chapter 3

Convergence Rates to the Null
Limiting Distribution of the
Power-Divergence Family of
Statistics

3.1 The Criterions of Cochran an d Yarnold

It has been esta blished ~h ilt the power -divergence family of statis tics has limiting

null chi-squared distribu tion with one degree of freedom for test ing the hypothesis

of independence in 2 by 2 contingency tables. Which chi-squared test in the family

is the best has attracted a great deal of interest in literature. There is no uniformly

pecfereble tes t.

The most important characteristic is t he accuracy of the probability of th e event

2N Il( ~ : pP I) :> X~(I ) as compared to the significance level 0:. The accuracy

depend s on the sam ple size N. A small sample size usually means a less a CCUI 3.t e test .

However, a larger sample size means higher costs for experiments . Determ ina.tion or
an 3.dequate minimum sample size has a ttr acted many studies, and most heve been

devoted to the comparisons between X' and G2.

25



It has long been known tha.t the approximat ion to t he chi-squa red d istriIJllti')ll

for Pear son's X~ statis tic relies on the expec ted frequencie s in ' -;teh cell b,-ing larS'­

Cochr an ( l!l52, 1!J54) provide d " com plet e bib li" grnplry llf the carl)' dls cusslons

regarding th is point. a nd stated ( !!J5~ ) t hat the apprcxim arion is acre-pta bl.. if t he

exact power falls within the range cl .0 ·\ ell ,06 for the .115 tab lilar value. an d within

the ra nge of .007 to .015 for th e .01 t a bular value. Il l' ( 19,'j.I) rccounueudc d th t'

use of milch smallee expectations by sa rin g tha t gocdness-of-Ht ksls of nnimo.lal

dist ribu t ions ( such as the normal or poisson}. here the expr-ctn tio ns will he .~ rna ll

onl y at one o r both cells. Group so thut the min imum expccta no u a t each cell is 01.1

lea st one .

Ta te and Hyer ( t9i 3) stated , in a st udy of the accu racy of t he chi.squared ap­

proximation (or Pea rson' s X 2 test , tha t th e chi-squ are probnbillties of .\"2 may differ ,

markedly, from the exact cum ula tive multin omial peebnbilities. In ID70 , Yaenold

sta ted th at the .'\ 2 approximation was originally derived under the ussump fiu u th,tt

all expectations are la rge. For this reason , many authors recommend that all uxpec­

tations be at leas t five , and t ha t neighboring cla sses be combined if th is rule is no t

sa.tisfied . Other auth ors recomm end a. minimum expectat ion of 10 or 20, Like th e

criterion of Cochran (1952), Ycmold (1970) presented a new rule with a wider r ang'~

(or acce ptable ap proxima tion s; the ra nge being .03;5· .06 for the .0,; tahu la r value.

and .000·.0162 for the .01 tab ula r valu e. He co ncluded that if the numher of eells .

k, is three or more , and if r denotes t he number of expectat ions less than five, then

the minimu m expect a t ion may he as sm all ns 5r /k . So in the 2 by 2 contingency

table, it becomes 5r /4.



3.2 Calculation of the Convergen ce Rates of the
Six Statistics

[s;ng pnwer -divergenee s tatistica tor testing independence in the 2 by 2 contingent)"

table , it is important to study the conve rgence ra te to the null dis tribu tion and

the cor responding minimum sample size. Simulation studies are conduct ed for this

investigation.

Due to the symmetry of the 2 by 2 contingency tab le, the values of the power-

divergence slnti s!ics remain the same afte r changing the colum ns, the rows, or t rans,

posing the data matrix. It suffices to consid er the case:

Let Fe, (t ) be the exac t distrib utio n funct ion of power-d ivergenc e stat istics in

(l.l ) for a fixed A and for a given p = (Pl.l, PI,2,PJ,I,P2.2) E Ho• satis fying t he

hypoth esis of independence. Let FJe'(IJ(t ) be the Xl distributi on funct ion wit h one

degree of freedom. It foUows, from the asymt otic eq ivalen ce o f the power -divergence

st atist icstht

(3.1)

holds for ali t.

To caleul...te the FE. for ...ny given N ,'\. and P E:Ho• t he following three steps

are pe rformed:

1. For every possible outcome z =( Z I,I • .1:1,1' Z2,I, .1:1.2), calc ula.te the exac t prob-

a.bility Pr(X=::x) as



2. Compu te the minimum power-divergen ce est imate r." Ior el't'f)' outcome x

and t he value of the statistic 2':11~(zIN : pPI).

3. Th e cumulativ e probabili ty of the event '2Nl l S t is the exact distribution

T he accuracy of the approximatio n can be measured by the difference but wcen

I-F£. {t..) and 0 , the size or th e test , where t" satisfies:

Th e values of I - FE.(t",) are provided in Table A.I and Table :\.2 for o =.U5

ana 0 = .01 respectively for the four different paramete rs P=(pi,J)' pE Ho •

We shall intro duce the notat ion to represent a.I1 possible configuration or the

hypothesis of independence by R l = Pl .2/ PI,1 and Rz = h i/ PI.!. For examp le.

the equlp robuble hypothesis is represented by (R I , Rz)=(l, l ). Simulation stu dy is

condu cted Cor different values of (RioRz) to investigate the behaviours of t he six

sta tistics.

3.3 Dis cussion of th e Convergen ce R a tes and Th e
Minimum Sample Size s

Most often, the equiprobable hypothesis:

Ho : Pi.i = 1/4, i "" 1,2and,j = 1,2. (3.:1 )
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will be assumed for small-sa m ple studies or goodn ess-o r.fit. Rea d (198-1)stal ed t hat

the re are three reasons: f irs t , there IHI.\"C been various stud ies published indicating

that equiprobuble class interva ls produce t he most sensitive test {e.g. see Cohen

and Sackrowita 19i5, Spruill IOr i) . Second, by applying the probabi lity integral

rrunsfcrmafion, many goodness -of-fit problems ar e redu ced to testing the fit of a

uniform dist ribut ion on ~I) , l : . finally, the power-divergence family of stat istic s is

invaria nt to peemuta tions in t he observe d frequ encies x , when (3.3) is assu med. Th is

grea tly red uces the computations for calculating FE"

It is found from Table A. ( and Ta ble ..\.2 that the commonly used minim um size

N=20, for tes ting t he hypothesis of equiprcbabillties, is accep table for ..\=1, 2/3, and

oat both test levels 0:= ,05 and .01 unde r the criterion of Cochran. T he Pearson 's

X J p = l) seems to be the best among all six sta tistics . When ,\ decreas es, the

convergence rates are slow. T herefore , N=40 will become acceptable for ..\ = .1 / 2

and · l under Cochr an's crite rion; the Ney man-mcdifled ,\/.'(2 (..\=.2) requires tha t

N=60.

Th e cases of (R I • R~)=( 1,2) , (1,4), and (1.5,1.5) have been also invest igated, and

the powers al the levels of .05 and .01 Can also be found in Tab le A.l and Table ..\.2.

As Rz increases from 1 to 2, the minimum sam ple size N remains th e same at

20, for'\ =1 and 2/ 3, under Cochran's cri te rion at bot h levels a = .05 and .01. For

..\=0, .1/2 , · 1 and . 2, the required minimu m sample size N will be increased to 30,

·10, 50 and 60 resp ectively.

Simula t ion st udies have sh own that with R1 and/ or Rz increas ing, th e minimum

sample size N will increase too; however , the convergence rates o( '\ =·1 and ·2 are

quite slow as com pared to that of ..\ =t, 2/3 and O.
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Upon th.: above comparis ons of t he convergence rates and the minimum sall\l'l.~

sizes, we found th at the X ! P = 1) and the Cressie-Rcad stat istic (.\ = :!/:I)

are the bes t for the four locations of the null hypothe ses. It is interest ing to note

that the leg-likelihood rat io statistic C! (A =0) docs not perform as well as tl l<:

Pearson's X : stans ric (.\ = 1). This result is sup ported b)' the small-sump!e s t lld i t'~

of Larntz (1978) and Chapman (1976). The sta tistics '\/G~ (.\=-1) and .11.\'1 ( .\ -, .:!}

do not perform satis facto rily. This can be at tribu ted to the fact that foe .\ ;,:; -l,

the corresponding exact critical region will conta in all possible x, with one or two

random zeros in t he opposite corner; since, in t hese cases, 2N (Pl(y : pC11)nre cc



Chapter 4

The Powers of Tests under the
Different Alternative Hypothesis

4.1 Calcula tion of the Power s of th e Six Statis­
tics

Th e advantage of considering various kinds of sta tis tics in test ing indep e ndence is

that one may choose th e most powerful test am ong them fer a spec ific alt erna tive .

Ther efore the next st ep is to com pare the perform anc es of these st at isti cs. By the

Neyman-Pearson theory of hypothesis testing , tests of t he same sampl e size ~ are

compared by determining their powers agains t relevant alt ernatives. ([ one of the six

statistics has the gr eat est power .:tgainst all alternatives, it is called the uniformly

most powerful test ; bu t no such lest exists for test ing independence in the:2 by 2

contingency tab le. Pre viously, many st udies hav e been conducted in investiga t ing

the behavio ur of th e st:tl ist ics under th e different elteena rive hypothesi s.

It is also known from Drost, Kallenberg, :\Ioore and Oosterhoff ( 1989) tha t the

powers of the statistics are approximated by 11 non-central chi-squ ared dist ribut ion

with one degree of freed om for test ing the ind ependence in the 2 by 2 contingency
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table. The noneemratity parameter is :'I' SP l, where

(1.1)

T he power of the st atistics depe nds not only on thei r corresponding 1I0nCC lltr;\ Ii I~'

param eter 6( ~ 1 but also on the location of q. Th is confi rm s le e's a ~ E;ll nl<~ nt (19li;)

Testing t he hypot hesis of inde pendence against the altl'rnative q in t hl' :! h~

2 table, the limiting distr ibution of any member of the power-divergence family .,f

sta tistics under q is the nonceuteal chi-sq uare with one degree of fr(~e{I,'m, \ t { .v ~ l l l )

for example, the limiting dist ribu tion of Pearson 's X~ under the altcruntive 'I is

S(ll = i; i; (qi.j ~ lil.~i)~ .
, : 1 1 : 1 qi.j

Simulative study has been conducted for the powers of the tests. Let G E,(t ) h,~

the exact dist ributio n function of the powee-dlveegence st atist ics f':.r.1.fixed -\ and

a given alternative q. Three steps to calculate G El ' as in Section :I.:!, ha ve b'~l~ n

eendueted with Pi,j, p!~) and FE. replaced by qi.j, qel and GE• respectively.

We choose t(;sN,1{A)) and tC;i,V,q(" ' , ....hich depend on ..\, the sample size ~ and the

alternativ e q (thr ough q ( ~ l ) so that;

and

where FE.(l) is t he exact distribution of pcwer-diver-ence stat istics defined in Chap.

ter 3. Then calculate the powers P(t~;/"·ql' ll ) and P(t(.;\<v.1[·))) such :1.5:
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a nd

for the six statistics wit h the samp le size :or =20, -l0, 60, BO, until t he power teaches

approximately 90 percent .

4.2 Discu ssi o n of t he Most Po werful Test

We compa re t he powers of the lest statistics for testing PiJ = P'... .. P....i at the

following fou r alternative locauons:

Therefore, [or ql, we investigate the powers of statist ics when one of the alter­

native cell proba.bilit ies is very small, as compared to th e other three equal cell

probabilities; q~ is just t he opposite of q\, one large cell probability and three small

equal cell probabilit ies. For qJ, we invesrigct e the u se ' he n qll is great er tha n Q12'



"
and q:l greate r tha.n q:I ' For Ql. we in\'cstiga te the cue of two small eq ual e..n
probabibliries ar tbe two diIJ.gon.u corners of the table, and two large probabrliues

l1t the otbe r diagon.1l corners.

The simula ted powers Tor th e above 3.hern.1ti\'cs havc been presented in T.,h1.,

B.l and Table e.:! for the significance levels of 0=.05 and .11 1. The ~(l l for .lilr,·r '~lI t

alter native hypotheses and different ~ have also been pr.,vi,lcli in these tables. T Ill'

all) is calculated through (4.1) using t he minimum power-divergence estima te ,'pl .

From Table 6 .1 and Ta ble 8.2 , it is found th a t aga inst 'II, the ~"'Yll1 au :\Iu,[ili"l!

M X: (,\ = - 2) is the most powerful, and the power will increase whcu xdecreases.

as long ;15 N is sufficiently large, such as 60. wirh the ahe marive '13,the log likdih o", l

rILtio test G! (.\ = 0) is the most powerful; for the ahemarive qz, the Pcaesun's chi.

squared statistic X ! P = 1) would be recommended, llS it Il llS the grealot po",,, r,

and tbe power will decrease when 1 decreases to -2. With the alte rnative '1_, t here

are no difference in the powers of these six statistics. For these alterna tives and

crbers not listed in the t:lbles, it ha.s been found tbal the larger the noncentrality

paramete rs, t he higher the simulated powers in mOlt c~ nrthe simulations. Til r.y

confirm the conjectu re th at the powers will depend on their noncentra lity parameters

and the alt ernative q. It is found that there is no uniforml)' most powerful test .



Chapter 5

Di scussion and Conclusion

Another method in calculating the values of the modified loglike!ihood statistic sic:

(..\ = - I) and the Neyrnnn-mcdified .\IXl (..\ = -2), when ther e is a cell with zero

frequency, is to rep lace zero by.5 and ;-;by X+ .5 to obtai n the values of MGr and

M .\,1, Simulative studies have been conducted to investigate the performances of

these two methods. T he result of the stud ies indicates that th ere is no difference

between t hese two methods , because when there is a cell with small frequencies in

the table, the values of th e above two statistics will always be very large.

In the simulation studi es of the Chapter J, it is found th at the chi-squared ap­

proximations {or the Pear son statis tic X' (..\.=1), the Creesie- Read stati stic (A.=2/3j,

and the log likelihood ratio stati$tic (.\=0) are adequate for t he sample size N= 20, at

t he both .05 and .Ot significance level, according to Cochran's {1952) and Yarnold's

( 1910) cntericns for testing equip robabilit y of the null hypot hesis. The Freema n­

Tukey statist ic T Z can not be accept ed at the .01 level, although it satisfies the

criterions li t the .05 level for N=20. The sample size :'0" =16 hll! also been studied for

t his hypot hesis, but none of the stat istics could be acceptable for either test level

and criterion.
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For t he unequal probabilities of the null hypothesis. the minimum sample size

N willincrease as the difference between Rl and R1 increases . From Table :\ .1 and

Table A.2, it can be conclude d that the difference between R1 and R1 will ,ltfl'ct ti l<'

minimum sample size much more for the logfikelihood ratio st atistic G' (,\ =..11), tile'

Freeman-Tukcy stat istic Tl and the modified likclihhood sta tistic ,HC 1 p :: ·· 1)

than the Pearson stat istic _\ 1 (,\ ::: t) and the Cressie.Rend st::Ltistic w lll~n .\ ..:; :!, :l

T he convergence ra te for t he ~eyman-modified stat istic .\f X' (.\ ::: - 2) is n ·t )· sl,,,\',

and it requires a sample size of at least X; 60, even for the equal pruhabiliti,·s 'If the

null hypothesis.

T herefore, the Pearson statistic Xl is the best one for t he couvergeuce rnu- I"~

the null limiting distribut ion of chi-square with one degree of freedom.

T he powers of these test statistics, "en the null hypotheses are false, arc situ­

ulat ed a.nd presented in Table B.l a.nd Table 8 .2. We can see that, fur different

alternatives, each of the Pearson's X2 , the loglikelibood ra tio stat istic G1 and till'

Neyman-modified AIX 2 would be t he most powerful, as we have discussed ill Chap.

te r 4. Th e powers depend on their noncentrality paramete rs and the ahc murive

q. The Freeman-Tukey sta tist ic T 2 and the modified likelihood sla listic MG' ,U<~

rarely used, as thei r performances are not as good ll$ .\'2 and G1
•

Because the Cressie-Read statistic, when A ::: 2/3 , ap pears to do well i ll ll1<)~t

cases of t he preceding discussion, it gives new competition for all of the I)tlwT w,·11

known statis tics. It should recieve more st udy and conside ratio n in the future .
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Appendix A

Tables of upper tail probabilities
of power-divergence stat ist ics
under Ho: Pi ,j = Pi,+ *P+,j

01'



Ta ble A.L: Table of upper t ail proba bilities for a "".r15

!
(R" R, ) i, .\ i

, 12U 130 ' -10
( I, 1) 1 : .05 1- .050 i .051

2/3 : .052- .050 i .051
o ! .059· .055 1.05t

1- 1/2 ' .058" ..055 I .054
i · 1 i .06 t : .060" 1 .056
i -2 1 .080 rora ! .065

1(1, 2 ) ! 1 1.049" I .050 1 .052

:'i
· 50
I. 05i
: .05i
: .059
i .059
' .059
1.0 64
! .053

I on
1 .052
1 .052
1 .053
1 ·054

i .05t

I

TO
.051
.051
.052
.053
.054
.056
.050

i 2/ 3 1.052- I .053 1 .054 ; .053 ! .05t .051 1

, 0 ! .075 1.060" f .05S :.057 1 ·05-1 .053
· 1/ 2 .08 t ! .060· 1. 059 1 .058 1 .056 , .054 '
· 1 1 ·055 1.065 1. 061 1 .059- 1 .058 .056 I
·2 .065 ! .071 .066 1 ·062 1 ,060- i .058 ;

(1, 4) 1 1 .036 1.040' 1 .046 .047 .046 .048 1
2/ 3 .04 1" .051 1 ·051 1· 052 .052 I .052 ,
0 ,089 .078 1 .068 t .062 .05S- I .057 1
-1/ 2 I .13 1 .101 .079 1. 065 1 ·05S- , .057'
· 1 1·032 ! .058 .065 1· 065 1. 064 1 .060-

·2 .027 1.047 1 .059 .060 .061 1 .058"
(1.5, 1.5) 1 1.049" I .050 .052 .052 1. 050 I .051

2/3 1.052" I .051 .054 I .052 .052 I .051 '
0 1.069 1.05S" .056 1 ,056 .052 i .051
-1/2 I .073 : .05S" I .056 i ·056 ! .052 I .U51

1 1
.056 1.063 1 .060" 1.058 1 .058 .056

·2 1.069 : .071 i .063 1 .061 1.059" ; .057

• ~ li ni mum sam ple size u nder Co chran's criterion



Table A.2; Table of upper tai l probabilit ies for 'l ""=".OI

I x
I 20 I 30 , ~O 1,i1J
I .011" : .l)I'l ~ 009 I .l1l19

: .012" I rt t ,-7,.";;10:--,-' '7,;"':;c"-+,~+-,~
I .015" 1.01" - ! .1)1 2 i .011

-1/ 2 ; .02-1 ! .OL6 ! .015" j .1.:113 t .1}\3 .iii:f1
· 1 1 .020 I Jll T i .IJl l,j rm.r icu 012

1 ·2 i ·015 i .018 I .OL8 I .OL; 1.01,5' : Ill-I I
(1,2 ) I I i .008" : .008 1·009 I ·U09 I ,OU9 , .OllJ l

2f3 1.010" , .010 (.0 10 I ·OlD 1 .0llJ , .0III, 1.01; , .015" .012 j.012 1 .011 , .011
-1/2 ! .038 .019 .015" i .013 .013 .012
· 1 1 .015 I ·OL6 .016 .0\01" .01·\ .01:1
·2 .010 ime .017 .016 .01·1" .OH

(1,') I .003 .004 .006- .007 1.007 .Oll;

2/3 .005 .005 I .OOS" .008 .009 .om)
0 1·01' .018 .017 .015"1 .013 .012
.1/2 .050 1.0-1.0 .028 .1)20 .O!6 1. 015"., .006 .009 .014 .015 .016 .015"., .004 .008 .014 1·016 .016 .0 IS-

(1.5,1.5 ) '1 1.009" : .009 .009 .009 .oiu I .010
2/3 .010" .010 .OW .010 .010 I .mu
0 .015" .014 .011 .OL2 1.011 UIL
-1/2 1.032 .018 1.015" ' J1l3 I ,Ot2 .eu.

I· ' I·Ul i .OIG I .OLG ; .O\ol"i .O[.l , .UI3 :

I· ' .011 .017 , .Ot7 , .016 , .015": Ol-l

• :o,f inimum sam ple size u nder Cochran's criterion



Appendix B

Tables of the simulated powers of
the power-divergence statistics
for four different alternatives



IH,,: ('1l 1,qU,qll ,q~~) • ..\ 120 1.\0 ;.;til) I HI) -~r.il:

1( 1/2; ,8/ 25,8:25.8; 25) : ~ ;3 ; : li~ :: ~~~ .: : ~~ : : ; ~ ~ ,: : ~~ .
i i l) i ,-lH ; .75:1 .!l1l7 !.!JIj·1 . IliS·

! i :: '2:' ~ 6~ : : ~ ~~ . :;:i: : ~~~ ~:~~'
I 1 .2 , ..I28 , ,;;U .928 ,985, ,225

1 (1/ 15,1/1 5,1115,12,'15) i;13 : : ~ ~~ ; :~~~ : ::~~ ; : ;~; . : : ~~:
10 1 ,-l28i ·ti61' .83!1! ,9:l2:, 131l :
! . 1/2i ,-108 : .51i l .6,16 i ·80I i .1I I i
! ·1 I A22 1 . 63 !l :. S3 -l j , 909 i , 0~

1·2 1 .01.20 I .603 i ,76:11 ,892 i .05.,
(3/20 ,1/20 ,-li20 ,12/20) : 1 IA·IQ j .701; ,s-5TT ·9:12 ! .16;(

12/ 3 , A36 1. 701)'.S59 ; . 9 3 8 ,, 16~

) I) I ..18:1 ' ,7-12 I ,S86 ~ ,951j ,17n
.1/2 ! ..1-17 1·712 : .849 i .910 , 1li8 :
· 1 I .3,L2 i ,686 ,786 1 .874 .159'
·2 .z.n ' .563 , 01 : .811 : ,12li 1

(5/ 1-1,2{ 14,2/14 ,5i H ) 1 .-1531 .619 881 ' .986 , . t8·'
2 / 3 . ·' 5 I i , li2 1) · .8 8~5
U .-152 ,620 .882 .DR? · 191)
· 1/2 .-13 1 .617.880 .!l8" .19.')
.\ .·139 ; .Im .880 ..!Jig .2U:(
-2 .-13·' 617 .878 .!li 5 .225



Table 8 .2: T he simulated powers for X=20..1O.60 and SO under o:= .Ot

1 ~ : 5{.\)
i 20 i 4lJ 130 180
i .150 .-1-17 , . il~ .8::10 .140
i .150 .-166 .72-1 .837 .1.53'
I '100' 501 ' i.J.-2 : 8-16 l68

"12/3
10

10 1 ._31 1A~w . /06 .863 · .190
: . 1/ 2 ; .203 . .-121 .105 .859 , . L95 :
j . l 1 .250 ; A17 .701 .855 1 .203

I(1/25 ,8/25 ,8/25,8/ 25) i-i-;O+-'i'ii::--c;rr-:..:;;::;-.-~.....:;*"

I
.. ,.

I · L/ 2 j .202 : .-I97: .7501 .852 , .181 !

i : ~
j .168 1 .52-1: .757 i .856 ; .195
1 .193 ! .538 : .775 1 .880 ; .225

(11t 5, lfl 5, L1l5,12/1 5) ;1 .2-12 1 .50-l · .Tl B I ·8J.l i .l -17
2/3 1 .2-1 1 .490 1.716 .826 I .1-13

10 1 ·250 l ..172 1 .672 1.782 1 .130 '
. 1/ Z .211 .367 I .450 .624 '. 111
-i .223 ..1-17I .652 i .814 1 .090 i
·2 .22-1 .409 .520 .735 i.058

(3/ 20,1/ 20,,1/20,12/ 20) 1 1 1.224 ! ..183 ( .621 1 .792 ; . L63 i

12/ 3 228 I ..194 1 .632 ! .797 ; .166 i
0 256 .515 I .658 I . 8~5 I .1TO I
.1/ 2 .257 .-163 I .eot ) .766 i .167 '
· 1 l . l52 ..116 1 .582 .723 i .l 59
·2 .101 1 .201 : .484 .668 ; .126 1

(5/ 14,2/14, 2/H5j 14) I 1.2671 .-123 : .704 .862 1 .184 i
2/3 j .237 .-123 .706 .861 : .L85., ')') -

1·2 1 .235 i .-120 .698 .849 ' .225 ;
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