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Abstract

This thesis investigates the convergence rates to the limiting null distribution and

the powers of six test statistics of the power-divergence family (Cressic and Read.

1084) for testing independence in the 2 by 2 Contingency Table. This fanuly of
statistics can be expressed by
B s s > (2|
=0 Wi :

= 1

which is indexed by the parameter A, z,,, are observed cell frequencies and m, , are
expected cell frequencies. It can easily be scen that the Pearson's X* (A« 1), the

log likelihood ratio statistic G? (A = 0), the Freeman-Tukey statistic T* (A = -1

the modified log likelihood ratio statistic MG? (A = —1), the Neyman modified chi
square statistic MX? (A = —2) and the Cressie-Read statistic (A = 2/3), are all

special cases.

For calculating the convergence rates and the powers of these six statistics, an
iterative procedure for obtaining the minimum power-divergence estimates for the
unkown parameters will be presented. It is found that among these six statistics,
the convergence rate of Pearson's X? (A = 1) to the limiting null distribution is the
best. For the power of the test, for different alternatives, each of .\, G? and M X'?
is the most powerful. It is also found that the power of the test depends not only
on the noncentrality parameter but on the location of alternative hypothesis. The
working rules for deciding which statistic is to be used will also be presented for the

practitioner.



Key Words: Convergence Rate, Power, Power-Divergent Family, Independence
Model, Minimun-Distance Estimator. Asymptotic Distribution, Non-Central Chi-

Squared Distribution.
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Chapter 1

Introduction

1.1 2 by 2 Contingency Tables and its applica-
tions

Let A and B denote two categorical variables, both having 2 levels. When we classify
subjects on both variables, there are 4 possible combinations of classifications. The
responses (A,B) of a subject randomly chosen from the same population have a
probability distribution. We display this distribution in a table having two rows for
the categories of A, and two columns for those of B . The cells of the table represent
the 4 possible outcomes. We denote p;; as the probability that (A,B) falls in the
cell in row i and column j. When the cells contain frequency counts of outcomes,
the table is called a 2 by 2 contingency table.

In order to study the associations between the two different classifying variables,
we will first consider the following example from Agresti (1989, p. 29-30), to illus-
trate the basic tarminology and concepts of the 2 by 2 contingency table. Comparing
the results of car accidents with seat-belt use, based on records of accidents in 1988

compiled by the Department of Highway Safety and Motor Vehicles in the state



of Florida, 577,006 car accidents were classified according to variable A: accident

type (Ay: belt use, Az no use), and variable B: accident severity (8,: fatal, By:
non-fatal). The following table, representing the resulting 2 by 2 contingency table

of frequencies, analyzes the association between these two variables.

Table 1.1: Observed frequencies of car accidents in the 2 by 2 contingency table

| Fatal | Nonfatal | Total |
Nouse [ 1601 | 162,527 | 164,128 ;
Belt use | 510 | 412,368 [412378
Total | 2111 | 574,895 | 577,006

The resulting table will have 4 cells, and we define z;; to be the number of
observations classified as in 4; and Bj, which is the cell frequency pertaining to the
cell in row i and column j of this table. The marginal freqencies are the row totals
and column totals obtained by the summation of the appropriate cell frequencies,
=12, and z; = Z"=|

and are denoted as z; . = 255‘; =1,2. The total

cell frequency is denoted as N=z,, = TL, Y1, z;;.

The above application of the 2 by 2 contingency table, in studying the relation-
ship between the belt use with the severity of accident, can also have applications in
many other studies, such as, studying the associations between Lung Cancer with
the Smoking Level (Doll and Hill 1952), Income with Job Satisfication (Norusis,
1988), and Gun Registration with Death Penalty (Clogg and Shockey, 1988).

The analysis of relationships or iations between lassified variables has

developed extensively over the last twenty years. For a comprehensive coverage of

the studies of cross-classified categorical data, see, for exam ple, Bishop, Fienberg and



Holland (1873), Haberman (1978, 1979) and Agresti (1989). Lloyd (1988) reviewed

the 10-year old controversy over the correct analysis of 2 by 2 tables.

1.2 Testing the Model of Independence

“hat is the proper probability model of p; ; for the data in the table? The model
must reflect the way in which the data was collected. There are several different
sampling procedures which could lead to this table. A single random sample size
N might be selected, and then categorized in two ways. For example, a random
sample of persons can be treated with or without belt use and for accident fatality
or nonfatality. We call this model A. Under model A, the cell frequencies z;; have

a single multinomial distribution,

N
; g o s
1 P Pai Paz -

T14, 21,2 T2y 2 _
Hemiaman ) =

The marginal frequencies are all random, and satisly z,, . + z;,. = 2.3 + z.2=N.

It might also separately select two independent random samples of persons with
lung cancer and those without, then categorize them according to heavy or light
smoking. Under this model, say model B , the table contains two independent
binomial distributions, and z,, . and z5,. are therefore, no longer random.

Hypotheses for these models are stated in terms of the cell probabilities p;,
for the sampled populations. Each model imposes different constraints on the p; ;.
Model A requires only that:

2 2

XX b

i=1j=1

Model B states that for i=1,2,



:
Y=l
=

The most commen hypothesis in the 2 by 2 contingency table formalize the
statement that there is no association between the two categories. For example,
there is no association between the seat-belt use znd severity of accident, income
and job satisfaction, or aspirin use and heart attacks. In model A, this is the

hypothesis of independence:

Ho: pij = pi-=p-jpi=1,2,and,j = 1,2 (1Ln

where p;,, and p..; represent the unknown marginal probabilities.
As the model of independence (1.1) is the most often considered in the 2 by 2
contingency table, this thesis will be concentrated upon in testing this model by

using the following power-divergence statistics.

1.3 Pearson’s X?, Loglikelihood Ratio G* and the
Power-Divergence Family of Statistics

As a test criterion for the null hypothesis, Karl Pearson (1900) proposed the test :

(12)

where z; ; and my j are observed and expected cell frequencies for the ith and jth cell

pectively, and d that the ptotic distribution of X? is a x? distribu-

tion with 3 degrees of freedom. The latter caused some confusion and controversy



o

in practical applications and was not settled until 20 years later. Fisher (1922,1921)
investigated the 2 by 2 contingency tables , and pointed out that the limiting dis-
tribution of .Y'? depends on the method of estimation for the unknown parameters
of p;., and p.,. With a different method of estimation, X? may have a large test
value, and the null hypothesis would be rejected for the large value; or the limiting
distribution of .X? will be other than the chi-squared distribution. It is therefore
necessary to state that the method of estimation is to minimize the objective func-
tion. Among others, Fisher (1924), Moore (1978), and Berkson (1980) have also
considered this class of Minimun Distance Estimation.

Cochran (1952) gave a review of the early development of the Pearson's chi-
squared test X?, and discussed a vaiety of competing tests, including the log like-

lihood ratio test G

= ‘Ziiz;,ln(ﬁ (13)
i=lj=t ;i

The question of which one is the best has long provided interest, speculation and
controversy in literature.

Cochran (1936) felt that the G? distribution might be better represented by a
continuous curve than the X? distribution in a contingency table, and he (1952)
concluded that there is little to distinguish X? from G?. Fisher (1950) found the
X? test to be governed by and more sensitive to high observations in several cells

than the G? test. Chapman (1976) concluded that the difference between the exact

X? test probabilties and the chi-squared is usually smaller than that

between the exact G? test probabilities and the chi-squared probabilities. West and




Kempthorne (1971) plotted the sensitivity of X* and G? for a few cases of two, three,
and four cells, and concluded that there existed different regions for which one is
better than other. Ina Monte Carlo study, Kallenberg, Qosterhoff, and Schriever
(1985) showed that X? and G? have similar powers for testing the equiprobable
null hypothesis for the cells with small frequencies. Lee (1987) confirmed that the
powers of the X* and G? tests depend on the noncentrality parameters in testing

for ordered iction on vari Three of the potential models

are discussed by Kroll (1989), they ace the hypergeometric independence trial, the

double-bi ial ive trial, and the multi ial double dich: trial for
testing independence in 2 by 2 contingency table.

Cressic and Read (1984) introduced a power-di family of goodness-of-f

statistics, I*, defined as :

3 3 zi;
z ‘""‘“A(A_iu%,:, P - (L

Statistics (1.4) are obtained by the continuity for the cases of A = —1 and A = 0.

Using the fact that [n(t) = lima—o(t* — 1)/h, we obtain:

2 2 _
limy—g2[¥(z : m) =23 3" 2 yin( 2
=)=t m,

m,

g &
limy—o 20Nz : m) =2 3" myin(
=t

]
It is noted that when A = 1, the statistic (1.4) is the Pearson’s X% A =0, the log
likelihood ratio statistic G?; A = —1/2, the Freeman-Tukey (1930) statistic T%



T’=4ii(vﬁ—‘/m_w)’ sy
=t

A = -1, the modified log likelihood ratio statistic or minimum discrimination infor-

mation statistic GAf? (see Kullback, 1959,1983);

22
G =2Y Y myjin(
i=lj=1 2

8]

~2; the Neyman (1949) modified chi-square statistic M.X?;

MX? =ﬁji (1)

The theory underlying these statistics, as of most omnibus tests of fit, is a large-
sample theory. Under the null hypothesis Ho, this theory is well understood. When

N tends to infinity in the 2 by 2 contingency table, all the members of I* have

the same limiting null distribution, the chi-square distribution with one degree of
freedom x?, as they are all equivalent, dae to Cressie and Read (1984). For Pear-
son's X2, this large sample approximation is surprisingly accurate for moderate and
small sample sizes N, especially when the cells are equiprobable (see Yarnold 1972);
however, the approximation is markedly less accrrate for A far from 1 (Larntz 1987
and Read 1984). Cressie and Read (1984) found the chi-squared approximation
adequate for A between 1/3 and 3/2.

Cressie and Read (1984) proposed a test which is between X? (A = 1) and G?
(A =0), viz. A = 2/3, to take advantage of the desirable properties of both. The

test:



(1.8)

has been called the Cressie-Read Statistic by Rudas (1986), and earlier, Moore
(1984) named the family (i.4) the Cressic-Read statistics. As an omnibus test of
goodness-of-fit, Cressie and Read (1984) showed it to be the most competitive in
this family of (1.4). More details can be found in Read (1984) and Read and Cressie
(1988).

We will present iterative procedures in Chapter 2 to obtain the minimum power.

divergence estimators for the unknown parameters p;,, which are the BAN estima-
tors defined by Neyman (1949); and which are also in the class of the minimum

distance estimators. In Chapter 3, we will investigate the convergence rates to the

null limiting chi-squared distribution of the af oned six different statistics
for testing the model of independence in the 2 by 2 contingency tables, by using the
minimun power-divergence estimators for the unknown parameters. In Chapter 4,
comparisons between the powers of these statistics for testing independence will be

investigated. Discussions can be found in the last Chapter.



Chapter 2

Minimum Power-Divergence
Estimation for Testing
Independence in the 2 by 2
Contingency Table

2.1 Asymptotic Equivalence of the Power-Divergence
statistics

We consider testing the hypothesis of independence in the 2 by 2 contingency table

Hotpis =pie % pejsi=1200d,j = 1,2. (1)

Let the sample size be N and let z;; be the observed cell frequencies, i=1,2
and j=1,2. The random vector x=(z,,,,21,2,Z2,1,222) has a multinomial distribution
with sample size N and cell probabilities p=(py, p1,2, 2.1, 2,2). The parameters
P+ P4y P+, a0d py o will be estimated under certain principles and their estimates

are denoted by py,4 ps4 pi and pl,. The expected frequencies under (2.1) are
mig= Npis=piji=12%amd.j=1,2.

9
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Cressie and Read (1084) introduced a family of power-divergence statistics,

N 2 22
2z :m)= mz;z:”
Sa

for testing the null hypothesis (2.1). The null distributions of the statistics (2.2) are:

asymptotically equivalent based on Theorem 2.2 of Cressie and Read (198:4).

Theorem 2.1: Under the null hypothesis, the family of power-divergence statis.

tics are asymptotically equivalent, in the sense that
20Nz 1 m)=2I'(z: m) +0y1) (2.3)

where op(1) represents a term that convergesto 0 as N— oo.

Proof: The statistics (22) can be written as
2Nz :m) = 2):». i1+ ’"")l B g
Wy A T L ]

provided that A #0 nor -1. Now let v; = (zi;— my;)/m, and expand in a Taylor
seties for each A, giving

A(A l) 2,

2eim)= o zzmuua—nv 220y

—IZZM-;V sop(1)] =28z 1m) < 1)

i=1j
Anidentical result holds for the special cases of A=0and -1, also by a Taylor series
expansion. This completes the proof of the asymptotic equivalence of the power-

divergence statistics. O



1

This result is sufficient for us to conclude that each member of the power-

divergence family has the same asymptotic null distribution.

2.2 BAN estimator for the unknown parameters
under Birch’s Regularity Conditions

[norder to test the null hypothesis (2.1), we need to estimate the unknown marginal
probability p;, ., i=1,2 and pa.;, j=1,2. Moore (1978) recommended that the MLE,
which is equivalent to minimizing (2.2) with respect to m,, when A=0, is always
used in the contingency table, namely z, /N and z.,/V tespectively for p; - and

peje This gives the estimated expected frequencies:

Ziwy 2
miy = N-(T'Vi)«( =

A natural procedure is to obtain the estimate which minimize (2.2) according
to the specific value of A, This leads to the following definition of the minimum
pover-divergence estimate m{y) of my ;:

Definition: m{} satisfying the following equation is called the minimum power-

divergence estimate of my for a specific value of A,

Pz :m™

nf *(z:m). (2.4)

Since (z™* — 1)/A(A +1) is strictly convex for z > 0, including the limiting
forms for A = 0 and -1. The strict convexity of /*(z : m) ensures uniqueness of the
estimate m(*) (see Read and Cressic 1988, Appendix 2. page 159). Various authors
(e.g. Fisher (1924), Moore (1978), Berkson (1980)) have considered the minimun



12

power-divergence estimator, and Parr (1981) has provided an extensive bibliography
for this estimation.

Why then should we consider alternative methods to the MLE ? Rao (1961,1962)
defined a second-order efficiency criterion, for which he showed that the method of
Maximum Likelihood Estimation provides the unique optimum estimate. However,
the sovercignty of MLE has been called into question by a number of authors (c.g
Berkson 1980, Parr 1981, Harris and Kanji 1983). Therefore, it scems quite rea-
sonable to recommend the minimum power-divergence estimate. For example, if we
decide to use Pearson's X* (A=1) for the test, then we might estimate m by mt')

In the case of testing independence in the 2 by 2 contingency table, the way to

estimate pi ; is to choose the pt’) that is closest to §. which satisfies:

. z —
1*(N : pY) = u;tl*(ﬁ : p) (2.3)
where pis a vector of pi; and p* a vector of pfY.

Ensuring that the minimum power-divergence estimate p%), a function p{})=

F(p{3,p)) under H,, exists, Birch (1964) defined a set of six regularity conditions
sufficient to ensure that the null model H, really has 2 parameters, and that F
satisfies vatious requitements. The conditions are:

(1): there is a 2 dimensional open neighbouthood of (p{*), p)), which is com-
pletely contained in its domain Py,

(2): F(p{*)p2)) > 0, for cach of the two coordinates.

(3): F is totally differentiable at (p\"},p}), with partial derivatives.

(4): the Jacobian of F of py.. and p. is of full rank 2,



5): the inverse mapping F-" is continuous at F(p{*] p)),
g P1P-

(6): the mapping F is continuous at every point in its domain P,.

Birch (1064) showed that any estimate satisfving the regularity conditions is
best asymptotizally normal (BAN) defined by Neyman (1949), which have three
important properties:

(A): They are consistent, i.e., the estimate converges to the true value of the
estimated parameter as n — oo.

(B): They are asymptotically normally distributed. The asymptotical chi-squared
distribution for 2.VI\( & : §™) is based on this result.

(C): They are asymptotically efficient, no other estimator can have a smaller

limiting variance, as N - oo.

By a straightforvard generalization of the argument provided by Birch (1964)
we obtain the following theorem:
Theorem 2.2: Under the above regularity conditions, any minimum power.

divergence estimator under H, in the 2 by 2 contingency table is BAN.

Birch (1964) showed that the MLE (A=0) is BAN. In another case, the minimum
chi-squared estimator (A=1) was proved to be BAN by Holland (1967), and the
general case for any A was proved by Read and Cressie (1988, Appendix 3. pp. 163-
166). It follows that p) is a BAN estimate under Ho, and v/N(% - p*)) converges

in ion, as N— oo, to a normal random vector with variance-

covariance matrix A - pp’, here A is a 4x4 diagonal matrix with diagonal entries

Pra Pr,a2 Py and Pyg, and pis a column vector of p; ;. It is well known that



can be written as a quadratic form of v'V( % —p(V), and X? converges in distrib:tion

to a chi-squared random variable with one degree of freedom under H,. Therefore

by the asymptoti lence of the power-divergence family (2.3), it indicates that

for testing independence H, in the 2 by 2 contingency table the pow "

statistics are asy y chi-squared distributed with one degree of freedom un.

der H,.

2.3 Iterative Procedure of Minimum Power-Divergence
estimate in the cases of A >0

Under the independence model H, in the 2 by 2 tables, there ate no closed-form solu-
tions of the unknown parameters pi,- and p..; for members of the power-divergence

likelihood estimate when A=0. This is one of

tatistics, except for the
the reasons why Moore (1978) recommended that the MLE is always used for the
contingency table. Though the minimum power-divergence estimate attracts many
authors’ interest, very few use it in the contingency table to test the hypothesis of
independence.

The problem, for A = 1, has been studied by Cohen (1982), and recently, a
general method to compute the minimum power-divergence estimate pfy and g’}
was discussed by Bohning and Holling (1986).

The power-divergence statistics (2.2) under H, can be expressed as a function of

pi+ and p; through f;; = C,,



\ E 2 2
W)= fii-
~ i=1j=1
where €, , = 22)7 1/ A(A~ 1)V} for i=1,2and j=1,2 and C=2/A(A~ 1) ate constants
for a given X, If f,., is strictly convex for all i and j, then so 1 T2, T2, £, .
Theorem 2.3: For any A >0, the power-divergence statistics for testing the

hypothesis of (2.1) is a convex function of py.. and p_y.

Proof: Suppose that F is a twice conti ly differentiable real-valued function

on an open convex set C in A", Then F is convex on C if and only if its Hessian
matrix Q. = (4,(2)),

d'F

z) m(zw- BES

is positive semi-definite for every z €C. (see, Rockafellar, 1972, pp.27)
Therefore, the convexity of fi j over pi+. >0, ps1 >0is equivalent to the following

three inequalities:

A+ DR8P 2 0,

AN+ )k 2 0,
and
A2+ 1)) -1(,\«-) >0.

The sufficient condition of convexity of the power-divergence statistics is A >0.

This completes the proof. O
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Remark 1: Bohning and Holling (1986) stated, incorrectly, that the sufficient
condition of convexity of the power-divergence statistics is A >-1/2. There is a
defect in their proof, in which they required a less restrictive condition that the

determinant of its Hessian Matrix is positive. Consider the function

f(zy) = =22 - 3y)* - =%

The determinant of its Hessian Matrix is 36. However, it is not convex. Therefore,
their conclusion should be amended as Theorem 2.3 above.

For A = 0, the estimates of pys and p.; are the MLE, z, /N and z. /N, de-
noted by p{®) and p{%), respectively. For A >0, the convexty of the statistics ensures

that the mini P di i exist and are unique. Although there

are no closed form expressions for these estimates, we shall present the following well-
known iterative procedure, which is commonly used in the analysis of contingency
tables and linear models to obtain the estimates for the unknown parameters. Since
psy and pys are redundant under H,, we denote the power-divergence statistics
IM(py 4, py.,) as a function of py 4 and pys

Iterative Procedure 1:

Step 0. (initial value).

Choose any initial value p{*), 0< p{%) <1, and let n=0.

Step 1. Compute

{7 (n) ¥

o = (@411 = ) + At (N
AT (n) oy ¥e 'n) w: n) .

T @ =D 2N + @ - AT + 23 Pie

(26)




Step 2. Compute

(o) _ (271 = A0 + 25 )

P A - ARG + (- ) - B
(&%)

Replace n by n+1 and go to step L. The sequence (p{"), p("}

) converges to the
desired solution.

Theorem 2.4: Let A > 0 and (p{"), p{")) be a sequence obtained by the [terative
Procedure 1 for any initial value between 0 and 1. Then the sequence converges to
the same limit (p{*), p*)) and this limit minimizes the power-divergence statistics,
ie.,

(G ) < (5 1)

for any p=(p; ), with p;j = pi+ + pay where p{}) = p) « p2).

Proof: As in (2.2), I* is a function of the two variables py . and p.,, and
I*(p,q) > 0if p £q. We diffetentiate I* with respect to p, ; and py. ., and set them
equal to zero, thus obtaining the equations (2.8) and (2.9):

pu .
(2330 - po)* + 2357

(28)

Per= —
(1= P ) + 25T + (=300 - o - 23T
A+l A 4 pdziph ATi
231 (L= pan)t + 205 P2 )T
. (2281 = pan) 12'P2) — (29)

= ey
(&1 = paa) + 23 P17 + (2311 - ) + 233117

Let 8 = py o /(1 = py,») and ¢ = p.; /(1 = ps,), one-to-one transformations, we

obtain:



(2.10)

(210

The two parameters 6 and & are bounded, ¢ £{z2,1/22.2, 214/ 12} and § S(zy 3/ 722,
24/224), if the odds ratio r = 2y1222/T12821 > L, and ¢ €[6y1 /212, 821/ 222, 0 -

[201/221, 21,2/ 222} il 7 < L. Since

oMt . a5t
do d

>0,

where

a1 A (el - oty
= T g
L4 (23" +225'6)

At MM alptaa - aital)
d (=3 + =230

the functions of (2.10) and (2.11) are either both monotonically increasing, or both

lly d i d ding upon whether the odds ratio r >1 or r <

1. Since pi,. and py, are monotone functions of § and $ respectively and the
functions (2.8) and (2.9) are bounded over [0,1], we have that (p{), p"}) converges
monotonically to a limit, say (p{"), 5")). By the continuity of equations (2.8) and
(2.9), the limit (p{*), pi2)) satisfies these two equations, and since I*(z/V : p), under
the null hypothesis H: pij = pi.- = P+, is a convex function of py . and p,,, p*)

is the desired solution. O



Remark 1: When the odds ratio r=1,

Nz = (210 + Zia + Za1 + 222) 210 =

T(Zua o+ Zia) T T F BT = e %2y

the estimates p{*) and p) are 24 and 2, respectively, and the values of every
power-divergence statistic /)(z/V : p) will be zeto.
So far, for A >0 by using the iterative procedure presented above, we can obtain

the minimun power-divergence estimates.

2.4 Iterative Procedure of Minimun Power-Divergence
Estimates for A <0

Whea A <0, I*(z/N : p) may not necessarily be a convex function of py,, and
P+t We shall present the conditions in Theorem 2.5 to ensure that the Iterative
Procedure 1 is available to obtain the minimun power-divergence estimate for A=-2,
and A=-1/2. This approach may be applied to all other cases when A < 0.
Theorem 2.5: For any A <0 and A #-1, let (p{"), p{7}) be a sequence obtained

by the Iterative Procedure 1. If r > 1 and

2 el A+l A+1y2
Tha%ia a1 (1 - r)

A 1
=) & ' <3 (212)
AU (237 e + 23302 2@ eh, + 33 eh, ) 2
orifr < 1and
3 23 (1 pM)2
2}a73( =7 ) < 1 (2.13)
(212 +222) (220 + 222) T 2
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then the sequence converges to a unique limit (p{"), p*)), and this limit minimizes

the power-divergence statistics, i.e.,

a/N :pN) < P2V 2 p)

j) with piy = P =P

Proof: We shall prove the case of r > 1, and the case of r < 1 follows simi-
ladly. Let D={(zy,21): & < 2 < b i = 1,2} with given ay, az, by and by, Let
&(0)=(g:(z), q2()) be a continuous function which maps from D into D itself. Or-
tega (1972, p.153) showed that g has at least one fixed point in D, i.c., there exists
2z, €D such that g(z,)=z,, and the fixed point is unique if g has continuous partial

derivatives and if there exists a constant k<1 such that

9.

et

1< 1)

It suffices to consider the mapping

A+l A+l g4
N k¥ X )i

o T T 2.15
B are (adz)

9(6,9) =(

2?3‘ b z:}‘ol)ﬂ_‘ (2 Hi]
EREEHD

9:(0,¢) = (

Ifr > 1, then gy € [22,54] g, € 24 54], and because of A < 0, 8* €

=a ma ma' ha

(G (22, ¢* € [(54)M (52))) By (2.14)

ETRRA T il Naa
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<
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then the condition (2.12) will hold for r > 1. So under the condition (2.12) or (2.13),
(™, 7)) will be convergent to the unique point (), 5)) for any given initial
value, and will satisfy (2.15) and (2.16). Therefore, by 65 and ¢s, we can obatin
7" and ), which are the Minimum Power-Divergence Estimates. O

I 2 = (21,1, 212, 224, 222) does not satisfy the conditions (2.12) and (2.13) for a
given A, then the linear equations 8 = g1(d, ) and ¢ = g;(6,) in (2.15) and (2.16)
may have more than one solution. Using the following Iterative Procedure 2, we can

obtain finitely many limits.

Iterative Procedure 2:

Step 0: Choose a small quantity €. Choose a small initial value, say 8{*)=.0101

(ie, prs = 01) and a large initial value, say 6=99.0 (py+ = .99), using the
Tterative Procedure 1 to obtain limits a and b, respectively. If a> b — ¢, stop this
procedure. Otherwise let L={a, b} and I={(a, b)}.

Step 1: Choose (a,b)€l, and let I=I-{(a, b)}. Use the Iterative Procedure 1 with
the initial value 6”=m=(a+b)/2. The procedure is terminated if either a limit ¢ is
reached or a value ¢ lying outside the interval (a,b) is observed.

If ¢ <a then [=1U{(m, b)}, if m< b—c.
Ifc2b then I=IL{(a,m)}, if a< m —&.



Ifa < c < m then L=Li{e}, I=IC{(a,¢)} if a< ¢ — e and I=I_{(m, b)} if m< b—<.
Ifm < c<bthen L=Lo{c}, [=1U{(e,m)} if a< m — ¢, [=IC{(c,b)} if c< b—¢.
If m=c then L=LU{m},

=1u{(a, m)} if a< m - &, [=IC{(m, 5)} if m< b - <.
Repeat step 1 until [ is empty.

Step 2: The minimum power-divergence estimate is the limit in L which has
the smallest value of the given statistic.

In the case of A=-1, the power-divergence statistic is defined by the continuity

of (2.4) us A — -1, and J(!) has the following expression:

ZZ Npiop- JIH(M) (217)

=1

GM? =

Differentiate GM? with respect to py . and p.;, and then set them equal to zero;

thus we obtain:

23
_ . m3
o= e @)
E=XY
(2.19)

Doy = 2
1= i En
(v

here r = 1/r, tis the odds ratio 2422,
By using the Iterative Procedure 1 through (2.18) and (2.19) for any initial value
%), there is the series (p{"), p')). By Theorem 2.5, the sufficient condition for the

unique limit (p{}), (7)) is

Oprs  Opes (tnr)rff 740z, 12,
Opey Opre (0 + Z2P(T + 24P,




(lnr)? 1
5%
(lnr)? <2 (2.20)

Therefore, if X=(21,1, 212, 22,4, £22) satisfies the condition (2.20), the minimum
power-divergence estimate can be obtained by the Iterative Procedure 1.

If the condition (2.20) fails to satisfy, we can obtain all possible limits by using
the Iterative Procedure 2.

Remark 2: For A=-2 and -1/2, from (2.10) and (2.11), we can obtain a poly-

nomial of five degrees and two degrees, respectively in 8, such as follows:

£(8) = £(6% + u)*(8 — v) + (67 +v)(6 ~ u)

= 24/, v = 214/22, and t=zy, /2,5 for A = ~2 and

9(0) =ab*~ (2a +b) +a

a=(\/Fi1%01 +/Fia823)" and b=(212—22,2—Ta1 +21,41)? for A =-1/2. The Iterative
Procedure 2 can produce, at most, five limits for A = -2, and two for A=-1/2. In
the simulated study, we found that there are, at most, three limits for A=-2. In
which case, one of the limits is a local maximun, while the other two limits are local
minimums.

Example: We shall demonstrate the use of the above Iterative Procedure to the

car accidents data in Chapter 1. It does not satisfy the conditions for the unique
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limit of the [terative Procedure in Theoren 2.3, v.c shall use two endpoints as initial
values. However, they converge to the single limit for each A, Thererfore, the limits

are the minimum power-diverg timates. The 5 [

are provided in the Table 2.1.

Table 2.1: Example of the iterative procedure for the car accident data

N<OTN AT, Te TRl i [, Ie. |
.99 1.0097 1.2962 | .07 : .2831 1 .ODIG .

01

832 0022 |
2845 | 0037
2844 | 0037 | 280
844 | .0037 | .2844
899 | .0052 | .2845

When A = 0, the p{*) and p%) of the MLE are %=02811 and St=.0037,

respectively. The Iterative Procedure 1 is efficient; normally, six to seven steps are

sufficient to obtain the limit.



Chapter 3

Convergence Rates to the Null
Limiting Distribution of the
Power-Divergence Family of
Statistics

3.1 The Criterions of Cochran and Yarnold

It has been blished that the pi diverg family of statistics has limiting

null chi-squared distribution with one degree of freedom for testing the hypothesis
of independence in 2 by 2 contingency tables. Which chi-squared test in the family
is the best has attracted a great deal of interest in literature. There is no uniformly
preferable test.

The most important characteristic is the accuracy of the probability of the event
2NIME : p™) > x2(1) as compared to the significance level a. The accuracy
depends on the sample size N. A small sample size usually means a less accurate test.
However, a larger sample size means higher costs for experiments. Determination of
an adequate minimum sample size has attracted many studies, and most have been

devoted to the comparisons between X2 and G,

25
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It has long been known that the imation to the chi-squared distrit

for Pearson’s .\ statistic relies on the expected frequencies in each cell being large.

Cochran (1952, 1954) provided a complete bibli y of the early di

regarding this point. and stated (1952) that the approximation is acceptable if the
exact power falls within the range of .0t to .06 for the .05 tabular value, and within
the range of .007 to .015 for the .01 tabular value. He (1951) recommended the
use of much smaller expectations by saying that goodness-of-fit tests of unimodal
distributions ( such as the normal or poisson): here the expectations will be small
only at one or both cells, Group so that the minimum expectation at each cell is at
least one.

Tate and Hyer (1973) stated, in a study of the accuracy of the chi-squared ap-
proximation for Pearson's X test, that the chi-square probabilities of X may differ,

from the exact lati Itinomial probabilities. In 1970, Yarnold

stated that the X? approximation was originally derived under the assumption that
all expectations are large. For this reason, many authors recommend that all expec-
tations be at least five, and that neighboring classes be combined if this rule is not
satisfied. Other authors recommend a minimum expectation of 10 or 20. Like the
criterion of Cochran (1952), Yarnold (1970) presented a new rule with a wider range
for acceptable approximations; the range being .0375-.06 for the .03 tabular value,
and .006-.0162 for the .01 tabular value. He concluded that if the number of cells.
k, is three or more, and if r denotes the number of expectations less than five, then
the minimum expectation may be as small as 5r/k. So in the 2 by 2 contingency

table, it becomes 5r/4.



3.2 Calculation of the Convergence Rates of the
Six Statistics

Using power-divergence statistics tor testing ind d in the 2 by 2 ¥
table, it is important to study the convergence rate to the null distribution and
the corresponding minimum sample size. Simulation studies are conducted for this
investigation.

Due to the symmetry of the 2 by 2 contingency table, the values of the power-

divergence statistics remain the same after changing the columns, the rows, or trans-

posing the data matrix. It suffices to consider the case:
z12 < 220 £ Za,20d, 21, < 222

Let Fg,(¢) be the exact distribution function of power-divergence statistics in

(L1) for a fixed A and for a given p = (p11,p1,2, P21, P22) € Ho, satisfying the
hypothesis of independence. Let Fyaqy(t) be the x? distribution function with one
degree of freedom. It follows, from the asymtotic eqivalence of the power-divergence

statistics that

Fi(t) = Fyap(t) + o(1) (3.1)

holds for all t.

To calculate the Fg, for any given N ,A, and p € H,, the following three steps
are performed:

1. For every possible outcome z = (1,1, 21,2, 22,1, €2,2), calculate the exact prob-

ability Pr(X=x) as



o,

N!

Pr(X =2)= TPUL P PR PR

Tl

2. Compute the minimum power-divergence estimate #,'" for every outcome x
and the value of the statistic 2N[3(z/V : p(M).

3. The cumulative probability of the event 2V /% < ¢ is the exact distribution
Fi,(t).

The accuracy of the approximation can be measured by the difference between

1-Fg, (£a) and a, the size of the test, where ¢, satisfies:

1= Faq(ta) = a (3.2)

The values of 1 = Fg,(ta) are provided in Table A.1 and Table A.2 for a=.05
and a=.01 respectively for the four different parameters p=(p;,), p& H,.

We shall introduce the notation to represent all possible configuration of the

hypothesis of independence by Ry = pya/prs and Ry = pay/pis. For example,

the equiprobable hypothesis is d by (Ry, Ry)=(1,1). Simulation study is

conducted for different values of (R, R,) to investigate the behaviours of the six

statistics.

3.3 Discussion of the Convergence Rates and The
Minimum Sample Sizes

Most often, the equiprobable hypothesis:

Hytpij=1/4,i=1,2nd,j = 1,2 (3.3)
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will be assumed for small-sample studies of goodness-of-fit. Read (1984) stated that
there are three reasons: First, there have been various studies published indicating
that equiprobable class intervals produce the most sensitive test (e.g. see Cohen
and Sackrowitz 1975, Spruill 1977). Second, by applying the probability integral

many goodness-of-Rt problems are reduced to testing the fit of a

uniform distribution on [0,1!. Finally, the power-divergence family of statistics is
invariant to permutations in the observed frequencies x, when (3.3) is assumed. This
greatly reduces the computations for calculating F,.

It is found from Table A.1 and Table A.2 that the commonly used minimum size
N=20, for testing the hypothesis of equiprobabilities, is acceptable for A=1, 2/3, and
0 at both test levels a=.05 and .01 under the criterion of Cochran. The Pearson's
X? (A=1) seems to be the best among all six statistics. When ) decreases, the
convergence rates are slow. Therefore, N=40 will become acceptable for A =-1/2
and -1 under Cochran’s criterion; the Neyman-modified M.X? (A=-2) requires that
N=60.

The cases of (Ri, Ra)=(1,2), (1,4), and (1.5,1.5) have been also investigated, and
the powers at the levels of .05 and .01 can also be found in Table A.1 and Table A.2.

As R; increases from 1 to 2, the minimum sample size N remains the same at
20, for A = 1 and 2/3, under Cochran’s criterion at both levels a=.05 and .01. For
A=0, -1/2, -1 and -2, the required minimum sample size N will be increased to 30,
40, 50 and 60 respectively.

Simulation studies have shown that with R, and/or R; increasing, the minimum
sample size N will increase too; however, the convergence rates of A=-1 and -2 are

quite slow as compared to that of A=1, 2/3 and 0.
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Upon the above i of the B! rates and the mini sample
sizes, we found that the X? (A = 1) and the Cressie-Read statistic (A = 2,3)
are the best for the four locations of the null hypotheses. [t is interesting to note
that the log-likelihood ratio statistic G* (A = 0) does not perform as well as the
Pearson’s .X? statistic (A = 1). This result is supported by the small-sample studies

of Larntz (1978) and Chapman (1976). The statistics MG (A=-1) and M X? (A=-2)

do not perform This can be d to the fact that for \ < -1,

the corresponding exact critical region will contain all possible x, with one or two

random zeros in the opposite corner; since, in these cases, 2V 1V)(% : p™) are



Chapter 4

The Powers of Tests under the
Different Alternative Hypothesis

4.1 Calculation of the Powers of the Six Statis-
tics

The advantage of considering various kinds of statistics in testing independence is
that one may choose the most powerful test among them for a specific alternative.
Therefore the next step is to compare the performances of these statistics. By the
Neyman-Pearson theory of hypothesis testing, tests of the same sample size N are
compared by determining their powers against relevant alternatives. Ifone of the six
statistics has the greatest power against all alternatives, it is called the uniformly
most powerful test; but no such test exists for testing independence in the 2 by 2
contingency table. Previously, many studies have been conducted in investigating
the behaviour of the statistics under the different alternative hypothesis.

It is also known from Drost, Kallenberg, Moore and Oosterhoff (1989) that the

powers of the statistics are approximated by a tral chi-squared distrib

with one degree of freedom for testing the ind d in the 2 by 2 i 3

31



table. The noncentrality parameter is V§(*), where

64 = 210(q: qV) = inf. 21N : g7) (1)

The power of the statistics depends not only on their corresponding noncentrality
parameter 5(*) but also on the location of q. This confirms Lee's argument (1987)

Testing the hypothesis of independence against the alternative q in the 2 by

2 table, the limiting distribution of any member of the power-divergence family of
statistics under q is the noncentral chi-square with one degree of freedom, x2( V81V

For example, the limiting distribution of Pearson’s .\’ under the alternative q is

X3 V() where
2

2 (g = g5y
T T

=l

Simulative study has been conducted for the powers of the tests. Let Gg,(t) be
the exact distribution function of the power-divergence statistics fur a fixed A and
a given alternative q. Three steps to calculate Gpg,, as in Section 3.2, have been
conducted with pij, piy and Fg, replaced by gij, qf)) and G, respectively.

We choose &%) and t@¥#™), which depend on A, the sample size N and the

alternative q (through ¢{) so that;

Nt
1= Fe (3™

ath
1= Fg, (t%: %) = o1

where F, (£) is the exact distribution of power-diver~ence statistics defined in Chap-

ter 3. Then calculate the powers P(t3¥ ™) and P(EY") such as:



PN = 1= Gey (™)
and

PG = 1= G, (€5

for the six statistics with the sample size N=20, 40, 60, 80, until the power reaches

approximately 90 percent.

4.2 Discussion of the Most Powerful Test

We compare the powers of the test statistics for testing pij = pi. = ps; at the

following four alternative locations:

a1 = (1,912,921, 922) = (1/25,8/25,8/25,8/25)

92 = (qu1, 912, Gar, 922) = (1/15,1/15,1/15,12/15)

@ = (qu1, @12, g1, 922) = (3/20,1/20,4/20, 12/20)

9 = (qu, 912, @2, 9n) = (5/14,2/14,2/14,5/14)

Therefore, for g, we investigate the powers of statistics when one of the alter-
native cell probabilities is very small, as compared to the other three equal cell
probabilities; g, is just the opposite of g, one large cell probability and three small

equal cell probabilities. For gs, we investigate the case + hen gy, is greater than ;s
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and g:; greater than gy. For gy, we investigate the case of two small equal cell
probabiblities at the two diagonal corners of the table, and two large probabilities
at the other diagonal corners.

The simulated powers for the above alternatives have been presented in Table
B.1 and Table B.2 for the significance levels of @=.05 and .01. The 5 for different
alternative hypotheses and different A have also been provided in these tables. The
6™ is calculated through (4.1) using the minimum power-divergence estimate 4(%).

From Table B.1 and Table B.2, it is found that against gy, the Neyman Modified
MX? (A = —2) is the most powerful, and the power will increase when A decrenses,
aslong as N is sufficiently large, such as 60. With the alternative ga, the log likelihood
ratio test G* (A =0) is the most powerful; for the alternative gz, the Pearson’s chi-
squared statistic X? (A = 1) would be recommended, as it has the greatest power,
and the power will decrease when A decreases to -2. With the alternative g, there
are no difference in the powers of these six statistics. For these alternatives and
others not listed in the tables, it has been found that the larger the noncentrality
parameters, the higher the simulated powers in most cases of the simulations. They
confirm the conjecture that the powers will depend on their noncentrality parameters

and the alternative . [t is found that there is no uniformly most powerful test.



Chapter 5

Discussion and Conclusion

Another method in calculating the values of the modified loglikelihood statistic M/ G*
(A = =1) and the Neyman-modified M.X? (A = ~2), when there is a cell with zero
frequency, is to replace zero by .5 and N by N+.3 to obtain the values of MG? and

MX? Simulative studies have been cond d to i the of

these two methods. The result of the studies indicates that there is no difference
between these two methods, because when there is a cell with small frequencies in
the table, the values of the above two statistics will always be very large.

In the simulation studies of the Chapter 3, it is found that the chi-squared ap-
proximations for the Pearson statistic X? (A=1), the Cressie-Read statistic (A=2/3),
and the log likelihood ratio statistic (A=0) are adequate for the sample size N=20, at

the both .05 and .01 significance level, according to Cochran’s {1952) and Yarnold's

(1970) criterions for testing y of the null hypothesis. The Freeman-
Tukey statistic T can not be accepted at the .01 level, although it satisfies the
criterions at the .03 level for N=20. The sample size N=16 has also been studied for
this hypothesis, but none of the statistics could be acceptable for either test level

and criterion.



For the unequal probabilities of the null hypothesis, the minimum sample
N will increase as the diffc:ence between R, and Hj increases. From Table A.1 and

Table A.2, it can be concluded that the difference between Ry and Ry will affect the

minimum sample size much more for the loglikelihood ratio statistic G* (A=0), the

Freeman-Tukey statistic 7% and the modified likelihhood statistic MG? (A = ~1)

than the Pearson statistic X'? (A = 1) and the Cressie-Read statistic when A = 2,3

The gence rate for the Ney dified statistic M.X? (A = —2) is very show,
and it requires a sample size of at least N=60, even for the equal probabilities of the
null hypothesis.

Therefore, the Pearson statistic X* is the best one for the convergence rate to
the null limiting distribution of chi-square with one degree of freedom.

The powers of these test statistics, “en the null hypotheses are false, are sim-
ulated and presented in Table B.1 and Table B.2. We can see that, for different
alternatives, each of the Pearson’s X?, the loglikelihood ratio statistic G* and the
Neyman-modified MX? would be the most powerful, as we have discussed in Chap-
ter 4. The powers depend on their noncentrality parameters and the alternative
q. The Freeman-Tukey statistic T? and the modified likelihood statistic MG? are
rarely used, as their performances are not as good as X? and G?.

Because the Cressie-Read statistic, when A = 2/3, appears to do well in most

cases of the ding di

it gives new ition for all of the other well

known statistics. It should recieve more study and consideration in the {uture.
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Appendix A

Tables of upper tail probabilities
of power-divergence statistics
under Hp: pi,j = pi’_}_ *p‘hj



Table A.1: Table of upper tail probabilities for a=.05

(R, Ro) | A
3 120

()

(1,2)

L4

(15, 13)

* Minimum sample size under Cochran's criterion



Table A.2: Table of upper tail probabilities for a=.01

Eof) |4 ] N
[30_[%0_ [4 [0 o0
(L) [L_ 0L {010 : 009 |.089 |.010 | .00
273 ;.01 | 1L 010|010 |.0(L | _0io
0 (015 |04 1012 |0l [ 012 [ 0l
1,2, 024 (016 015" | 018 [ 013 | 912!
1 [.020 1017 0i6 ;
21015 | 018 | 018 [
1,2y [L__ 008" ;.08 {.009 |

2/3 1.010°;.010 |.010 [.010 !.010 010
1.017 |.015° | 012 {.012 ].011 011

-1/21.038 012
-1 015 0L
-2 ].010

.003
005

014
0

-1 .006 | .009
-2 [.004 |.008

(15, 1.5) { L .009" ; .009
2/3 |.010" . .010
0 0157 § 014

(1,4

-1/21.032 [.018 013 011
-l {017 1016 1.016 ;014" ¢ 013
-2 (011 1.017 1.017 i.016 1oL

* Minimum sample size under Cochran's criterion




Appendix B

Tables of the simulated powers of
the power-divergence statistics
for four different alternatives



Table B.1: The simulated powers for N=20,10.60 and 30 under a=.03

Hot (g gnge) A | N noy
2 0 60§80 |
3

(1725,8/25,8,25.8, 23)

(1/15,1/15,1/15,12/15)

(3/20,1/20,4/20,12/20)

(5/14,2/14,2/14,3/19)

617 878




Table B.2: The simulated powers for )

10,60 and 80 under a=.01

(Ha (@ 12, 020,922) 1A N s
| | 20406080
[T1/25,8725,8/25,8/23) 150447 . 712830

(1/15,1/15.1/15,12/15)

il
2
i<
ol
=]
=
=
oo

834

1
2/3 | .241] .490 | .716 | .826 | .143
0
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/2 | 211 | .367 | 450 | 624 ' .1IL_
T [ 223 | 447 | 652 | 814 090 |
2 224 [ 409 | 520

224 | 483 | 621

228 | 494 | .632
1256 | .515 | .658

382 | 723 | 159 |
~484 | 668 | .126 |

0
-1/2 ] .267 | 463 ; 601 | .
-1
2
1

704 | 862 | .184 |

! 0. 2
-1 50 . 417 701

)

1.235 | 420 698 ;
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